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Abstract

We find a formula for the Virasoro fusion kernel at c = 25, in terms of the connection
coefficients of the Painlevé VI differential equation. Our formula agrees numerically with
previously known integral representations of the kernel. The derivation of our formula
relies on a duality c → 26 − c that is obeyed by the shift equations for the fusion and
modular kernels. We conjecture that for c < 1 the fusion and modular kernels are not
smooth functions, but distributions.
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1 Introduction and main results

Exactly solvable CFTs and crossing symmetry

The properties of two-dimensional conformal field theories depend strongly on the central
charge c of the underlying Virasoro algebra. For low values of the central charge, there are
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quite a few reasonably well-understood CFTs, such as minimal models (for rational values
c < 1), or the critical O(n) and Potts models (for all values such as ℜc < 13). In particular,
the value c = 1 gives rise to a number of exactly solved theories, including compactified free
bosons or orbifolds thereof [1], Runkel–Watts theory [2], and the Ashkin–Teller model [3].

For high values of the central charge ℜc ≥ 13, the only solved, nontrivial CFTs with no
extended chiral symmetry algebra are Liouville theory and generalized minimal models, which
in fact exist for any c ∈ C [4]. However, the necessary conditions for high c CFTs to be
holographically dual to three-dimensional quantum gravity include being unitary, compact and
non-diagonal [5,6]. By compact we mean that the spectrum of conformal dimensions is real,
positive and discrete, with a unique state of dimension zero. By non-diagonal we mean that
there are primary states with nonzero conformal spins. But Liouville theory and generalized
minimal models are diagonal and non-compact.

On the other hand, there is no shortage of unitary, compact CFTs with extended chiral
symmetry algebras, starting with Wess–Zumino–Witten models. The extended symmetry can
then be broken by a relevant perturbation, and another CFT can be reached by following
the corresponding RG flow. It is not easy to show that the resulting CFT has only Virasoro
symmetry, see [7] for an argument in the case of coupled minimal models. It would be even
harder to solve that CFT, where the original extended symmetry manifests itself by the presence
of a large number of Virasoro representations in the spectrum.

In order to explore high c two-dimensional CFTs, the most direct approach is to solve
conformal bootstrap equations on various Riemann surfaces. There has been much work on
the torus partition function, which so far did not result in the identification of a single CFT.
One issue is that the torus partition function is not a very rich object, as it only depends on
the CFT’s spectrum. As a result, a modular invariant partition function does not necessarily
correspond to a consistent CFT [8,9]. It would be more interesting to solve crossing symmetry
for sphere four-point functions, which capture not only the CFT’s spectrum but also its structure
constants.

Solving crossing symmetry of four-point functions requires knowledge of the crossing prop-
erties of Virasoro conformal blocks under the fusion kernel. Even though there is no sim-
ple formula for Virasoro blocks, there is an explicit integral formula for the fusion kernel for
c ∈ C\(−∞, 1] due to Ponsot and Teschner [10]. There is also another integral representation
due to Teschner and Vartanov [11], which will be more useful for our purposes. For c = 1, a
simpler i.e. non-integral expression for the fusion kernel was derived by Iorgov, Lisovyy and
Tykhyy, in terms of the connection coefficient of the Painlevé VI nonlinear differential equa-
tion [12]. Using the Painlevé VI point of view, it is feasible to check crossing symmetry of
four-point functions in various exactly solved CFTs at c = 1 [13].

The Virasoro–Wick rotation

Our main idea is to relate low and high values of the central charge via a map that we call the
Virasoro–Wick rotation. Just like the fusion kernel, this map becomes simpler if we rewrite the
central charge and conformal dimension in terms of variables b and P:

c = 13+ 6b2 + 6b−2 , ∆=
c − 1
24
− P2 . (1.1)

We define the action of the Virasoro–Wick rotation on these parameters as
(

c→ 26− c ,

∆→ 1−∆ ,
⇐⇒

(

b→ i b ,

P → iP .
(1.2)

For particular objects such as fusion kernels or structure constants, the Virasoro–Wick rotation
will also involve simple prefactors and/or permutations of arguments. For the moment, let
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us point out that products of primary fields of the type V (c)∆ V (26−c)
1−∆ are commonly used in

two-dimensional quantum gravity [14] and in string theory [15] in order to build generally
covariant objects. What we want to do with the fields V (c)∆ and V (26−c)

1−∆ is however not to couple

them, but to compare them. In particular, let us consider the fusion kernel F(b)Ps ,Pt

�

P2 P3
P1 P4

�

, which
describes the relation between s- and t-channel four-point conformal blocks on the sphere:

F (b),s−channel
Ps

=

∫

iR

dPt

i
F(b)Ps ,Pt

F (b),t−channel
Pt

. (1.3)

This kernel is determined by solving shift equations, which dictate its behaviour under shifts of
the momentums Ps, Pt , P1, P2, P3, P4 by b or b−1. We find that these shift equations are invariant
under a Virasoro–Wick rotation R, which we define as

RF(b)Ps ,Pt

�

P2 P3
P1 P4

�

:=
Pt

Ps
F(i b)iPt ,iPs

�

iP2 iP1
iP3 iP4

�

. (1.4)

We insist that it is the shift equations that are invariant, not the fusion kernel itself. The
fusion kernel is an even function of the momentums, whereas its image under R is odd in
Ps, Pt . This is a priori puzzling, because the solution of the shift equations is unique, and its
uniqueness does not rely on assumptions of parity [16]. As we will argue in Section 3.1, the
puzzle is solved by realizing that the fusion kernel for c ≤ 1 is not a meromorphic function of
the momentums, and therefore evades the smoothness assumptions that underlie uniqueness.

Notice also that the image of a conformal block under Virasoro–Wick rotation bears no
simple relation to another conformal block. This can be seen by considering the poles of the
conformal block F (c),s−channel

∆ as a function of ∆, which occur at degenerate values ∆ =∆(r,s)
corresponding to momentums

P(r,s) =
1
2

�

br + b−1s
�

, with r, s ∈ N∗ . (1.5)

The value 1 − ∆(i b)(r,s) = ∆
(b)
(r,−s) is not degenerate, because the indices (r,−s) are no longer

positive. The Virasoro–Wick rotation therefore does not map poles to poles, although it acts
nicely on the residues, as can be seen by a straightforward calculation. This is somewhat
analogous to the relation with harmonic analysis on a quantum group, which applies to the
fusion kernel but not to conformal blocks [10,17].

The case c = 25

Finding the fusion kernel for c < 1 is still an open problem, and unfortunately the Virasoro–
Wick rotation (1.4) of the known c > 25 kernel does not provide the solution. However, the
situation is better for c = 1: from the Painlevé VI connection coefficient, we can build not only
the fusion kernel, but also an unphysical object that is odd in Ps, Pt [12]. Under Virasoro–Wick
rotation, this object becomes even. We cannot immediately conclude that it coincides with the
fusion kernel at c = 25, because uniqueness requires continuity in c, and does not apply to
an object that is defined at a single value of c. Nevertheless, numerical comparison with the
Teschner–Vartanov formula at c = 25 shows that there is a coincidence.
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In order to write fusion kernels, we will introduce notations that make their tetrahedral
symmety manifest. The tetrahedron in question, and its geometric data, are:

1

s

2

t

3

4

Name Notation Value

Edges E {1,2, 3,4, s, t}

Pairs of opposite edges P {13,24, st}

Faces F {12s, 34s, 23t, 14t}

Vertices V {14s, 12t, 34t, 23s}

(1.6)

Formulas will involve assigning signs to edges. We use the notations:

• σ ∈ ZE
2 is an assignment of a sign σi ∈ {+,−} for any i ∈ E, and σ ∈ Z f

2 for a triple of
signs on a face f ∈ F .

• σE ,σv ,σ f for products of 6, 3, or 3 signs on all edges, a vertex, or a face.

• σ ∈ ZE
2 |σV = 1 for sign assignments whose products are 1 at each vertex. There are 8

such assignments, and they can be split in two halves according to σE = ±1.

• The indicator function ηi ∈ ZF
2 is ηi( f ) = 1 if the edge i belongs to the face f , and

ηi( f ) = −1 otherwise.

Using these notations, our simpler expression for the c = 25 fusion kernel is

F(c=25)
Ps ,Pt

�

P2 P3
P1 P4

�

=
π2

2i
G(±2Pt)

G(2± 2Ps)

∏

f ∈F

∏

σ∈Z f
2

σ f =ηt ( f )

G
�

1+
∑

j∈ fσ j Pj

�−σ f

×
∑

ε=±

ε
p

d

∏

σ∈ZE
2

σV=1

eG
�

ωε −
1
2

∑

j∈Eσ j Pj

�−σE
, (1.7)

where g(±x) = g(x)g(−x), and eG(x) = G(1+x)
G(1−x) , with G(x) the Barnes G-function. The func-

tions d,ω± are defined by

d = det







1 − cos (2πP2) − cos (2πP3) cos (2πPs)
− cos (2πP2) 1 cos (2πPt) − cos (2πP1)
− cos (2πP3) cos (2πPt) 1 − cos (2πP4)
cos (2πPs) − cos (2πP1) − cos (2πP4) 1






, (1.8)

e2πiω± = −

∑

i j∈P sin (2πPi) sin (2πPj)±
p

d

1
2

∑

σ∈ZE
2

σV=1

σEeπi
∑

j∈E σ j Pj
. (1.9)

In Eq. (1.7), the appearance of the indicator function ηt = −ηs breaks tetrahedral symme-
try, by distinguishing the internal momentums Ps, Pt from the external momentums
P1, P2, P3, P4. That symmetry could be restored by renormalizing conformal blocks [11]. Our
formulas are valid in the natural normalization

F (b),s−channel
∆s

(z) = z∆s−∆1−∆2 (1+O(z)) . (1.10)

The agreement of our expression (1.7) with the Teschner–Vartanov formula boils down to
the integral identity (4.7) for the function eG, which we could test numerically but not prove
analytically.

Our most important numerical tests, done in Python, are found in an ancillary Jupyter
notebook, which accompanies the present text on arXiv.
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Outlook

Our results naturally lead to a few open questions:

1. In the same way as crossing symmetry in known c = 1 CFTs was rederived using the relation
to isomonodromic tau functions [13], can we now find exact solutions of crossing symmetry
at c = 25? To answer this question, it would be helpful to reformulate the analysis
of [13] in terms of connection coefficients, rather than isomonodromic tau functions.
We plan to work on this question in the near future.

2. What are the modular and fusion kernels for c < 1, and are they distributions if b2 /∈ Q?
In 3.1 we suggest an approach to these questions using limits from degenerate cases.
Another approach would be to look for infinite series representations of the kernels as
was done in [18], and to interpret divergent series as distributions. Let us also point out
that for c ≥ 25, the kernels can be viewed as scalar products of blocks from different
channels [19, 20]. If a comparable scalar product could be defined for c ≤ 1, it could
help understand the analytic properties of the kernels.

3. Is there a CFT interpretation of the van Dantzig problem? In probability theory, the van
Dantzig problem consists in finding characteristic functions f

�

t⃗
�

of a set of random vari-
ables t⃗, such that 1

f(i⃗ t)
is also a characteristic function i.e. continuous, bounded and

positive definite [21, 22]. Formally, the transformation f
�

t⃗
�

→ 1
f(i⃗ t)

is similar to the
Virasoro–Wick rotation, whether for the Virasoro fusion kernel (1.4) or for Liouville
structure constants (3.7). Suggestively, a probabilistic construction of Liouville theory
with c > 25 has recently emerged [23].

2 Shift equations and the Virasoro–Wick rotation

In this section, we consider not only the fusion kernel, but also the modular kernel. The
modular kernel is simpler than the fusion kernel since it depends on only 3 momentums. We
will find that the Virasoro–Wick rotation is relevant to the modular kernel as well.

The fusion kernel obeys shift equations that constrain its behaviour under shifts of the type
P → P + b±1, where P ∈ {Ps, Pt , P1, P2, P3, P4}. These shift equations follow from the consis-
tency of changes of bases of five-point sphere conformal blocks, when one of the five fields
is degenerate at level two [10]. Similarly, torus two-point blocks that involve one degenerate
field lead to shift equations for the modular kernel [18].

We will review the shift equations for the kernels, and study their behaviour under the
Virasoro–Wick rotation. In the case of the modular kernel, we will explicitly write the shift
equations. In the case of the fusion kernel, we will adopt a more abstract approach, starting
from the Pentagon identity.

2.1 Case of the modular kernel

Explicit shift equations

The derivation of the shift equations for the modular kernel M(b)Ps ,Pt
[P0] is done explicitly in

[18, Appendix B]. The resulting equations are valid for any c ∈ C. In our notations and

5

https://scipost.org
https://scipost.org/SciPostPhys.17.2.058


SciPost Phys. 17, 058 (2024)

normalization, the equations read
∑

±
Ab(±Ps, P0)e

± b
2 ∂Ps M(b)Ps ,Pt

[P0] = 2cos(2πbPt)M
(b)
Ps ,Pt
[P0] , (2.1a)

∑

±
e±

b
2 ∂Pt Ab(∓Pt , P0)M

(b)
Ps ,Pt
[P0] = 2cos(2πbPs)M

(b)
Ps ,Pt
[P0] , (2.1b)

∑

±
e−b∂P0 Eb(±Ps, Pt , P0)e

± b
2 ∂Ps M(b)Ps ,Pt

[P0] =M(b)Ps ,Pt
[P0] , (2.1c)

∑

±
e±

b
2 ∂Pt Eb(∓Pt , Ps,−P0)e

−b∂P0 M(b)Ps ,Pt
[P0] =M(b)Ps ,Pt

[P0] , (2.1d)

where the coefficients are combinations of Gamma functions,

Ab(Ps, P0) =
Γ (2bPs)Γ (1+ b2 + 2bPs)
∏

± Γ (
1+b2

2 ± bP0 + 2bPs)
, (2.2)

Eb(Ps, Pt , P0) =
1

2π
Γ (2bPs)Γ (1+ b2 + 2bPs)

∏

± Γ (
1
2 −

b2

2 − bP0 ± 2bPt)
∏

± Γ (
1
2 ±

b2

2 − bP0 + 2bPs)
. (2.3)

The fourth equation (2.1d) is not found in [18], and it is in principle redundant, because the
dependence on P0 is already taken care of by the third equation (2.1c). We include the fourth
equation for completeness and for later convenience. We have derived it from the third equa-
tion using the fact that the modular transformation squares to identity,
∫

dPt M(b)Ps ,Pt
[P0]M

(b)
Pt ,P
′
t
[P0] = δ(Ps − P ′t ), and using reflection invariance

M(b)Ps ,Pt
[P0] =M(b)Ps ,Pt

[−P0].

Behaviour under Virasoro-Wick rotation

We will now show that the shift equations are invariant under the transformation

RM(b)Ps ,Pt
[P0] :=

Pt

Ps
M(i b)iPt ,iPs

[iP0] . (2.4)

To do this, we start with the second shift equation (2.1b), where we Virasoro–Wick-rotate the
variables, rename Ps ↔ Pt , and move the shift operator e∓

b
2 ∂Pt past the coefficient function

Ab:
∑

±
Ai b

�

∓iPs − i b
2 , iP0

�

e±
b
2 ∂Ps M(i b)iPt ,iPs

[iP0] = 2cos(2πbPt)M
(i b)
iPt ,iPs

[iP0] . (2.5)

Then we notice that the coefficient function Ab (2.2) obeys the identity

Ai b

�

−iPs − i b
2 , iP0

�

=
Ps

Ps +
b
2

Ab(Ps, P0) . (2.6)

It immediately follows that RM obeys the first shift equation (2.1a). Similarly, the second shift
equation could be deduce from the first, using the same identity for Ab.

Then let us rewrite the fourth shift equation (2.1d) and again Virasoro–Wick-rotate the
variables, rename Ps↔ Pt , and move the shift operators e∓

b
2 ∂Pt and e−b∂ P0 past the coefficient

function Eb:
∑

±
e−b∂P0 Ei b

�

∓iPs − i b
2 , iPt ,−iP0 − i b

�

e±
b
2 ∂Ps M(i b)iPt ,iPs

[iP0] =M(i b)iPt ,iPs
[iP0] . (2.7)
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Then we notice that the coefficient function Eb (2.3) obeys the identity

Ei b

�

−iPs − i b
2 , iPt ,−iP0 − i b

�

=
Ps

Ps +
b
2

Eb(Ps, Pt , P0) . (2.8)

It immediately follows that RM obeys the third shift equation (2.1c). Similarly, the fourth shift
equation could be deduced from the third, using the same identity for Eb.

Solution for c ∈ C\(−∞, 1]

The modular kernel is explicitly known as an integral expression [24,25]:

M(b)Ps ,Pt
[P0] =

p
2

Sb(
Q
2 + P0)

∏

±

Γb(Q± 2Ps)
Γb(±2Pt)

Γb(
Q
2 − P0 ± 2Pt)

Γb(
Q
2 − P0 ± 2Ps)

∫

iR

du
i

e4πiPsu
∏

±,±
Sb

�

Q
4 +

P0
2 ± u± Pt

�

. (2.9)

Here we use the standard notation Q = b + b−1, as well as Barnes’ double Gamma function
Γb(x), and the double Sine function Sb(x) =

Γb(x)
Γb(Q−x) .

It is in principle straightforward to check that the integral expression is indeed a so-
lution of the shift equations. The idea is that the shift equations for the integral follow
from the shift equations for the integrand. In practice, if we write the integral factor as
∫

iR du ϕ(u), then the integrand ϕ(u) obeys equations of the type ϕ(u)k1(u) = ϕ(u+ b)k2(u)
where k1(u), k2(u) are trigonometric functions, as a result of the behaviour of the double Sine
function Sb(x+b)

Sb(x)
= 2 sin(πbx). This leads to

∫

iR du ϕ(u) (k1(u)− k2(u− b)) = 0. (In the
shift u→ u− b, no pole of ϕ crosses the contour of integration.) As a function of u, the factor
k1(u) − k2(u − b) is a linear combination of the three terms

1, e2πi bu, e−2πi bu = 1, e
b
2 ∂Psϕ(u)
ϕ(u) , e−

b
2 ∂Psϕ(u)
ϕ(u) . This results in a shift equation for

∫

iR duϕ(u), which
is equivalent to the first shift equation (2.1a) for the modular kernel.

2.2 Case of the fusion kernel

Shift equations from the Pentagon identity

The fusion kernel was originally derived by Ponsot and Teschner by solving shift equations
[10]. Let us rederive these equations from the Pentagon identity [4]

∫

iR

dP23

i
F(b)P12,P23

� P2 P3
P1 P45

�

F(b)P45,P51

� P23 P4
P1 P5

�

F(b)P23,P34

� P3 P4
P2 P15

�

= F(b)P45,P34

� P3 P4
P12 P5

�

F(b)P12,P51

� P2 P34
P1 P5

�

. (2.10)

Let us focus on the two special cases where the field 2 or 3 is a degenerate field V〈2,1〉 with
a vanishing null vector at level two. Due to the fusion rule V〈2,1〉VP ∼

∑

± VP± b
2
, the integral

over the momentum P23 is replaced with a sum of two terms, and we obtain shift equations.
Renaming the six momentums that remain independent P1, P2, P3, P4, Ps, Pt , and introducing
the signs η,ν ∈ {+,−}, we obtain
∑

ε=±
F(b)Ps ,Pt

�

P2+ε
b
2 P3

P1 P4

�

f(b)η,ε

�

P1 Ps
〈2,1〉 P2

�

f(b)ε,ν
�

P2 P3
〈2,1〉 Pt

�

= F(b)
Ps ,Pt+ν

b
2

� P2 P3

P1+η
b
2 P4

�

f(b)η,−ν

� P1 P4

〈2,1〉 Pt+ν
b
2

�

, (2.11)

∑

ε=±
F(b)Ps ,Pt

�

P2+ε
b
2 P3

P1 P4

�

f(b)η,ε

�

Ps P1
〈2,1〉 P2

�

f(b)ε,ν
�

P2 Pt
〈2,1〉 P3

�

= F(b)
Ps+η

b
2 ,Pt

�

P2 P3+ν
b
2

P1 P4

�

f(b)−η,ν

�

Ps+η
b
2 P4

〈2,1〉 P3

�

, (2.12)

where we introduce degenerate fusion kernels, which are monodromy matrices of hypergeo-
metric Belavin–Polyakov–Zamolodchikov differential equations for four-point functions of the
type



V〈2,1〉VP1
VP2

VP3

�

[4],

f(b)ε,η
�

P1 P2
〈2,1〉 P3

�

:= F(b)
P1+ε

b
2 ,P3+η

b
2

�

P1 P2
〈2,1〉 P3

�

=
Γ (1− 2bεP1)Γ (2bηP3)
∏

± Γ (
1
2 − bεP1 ± bP2 + bηP3)

. (2.13)
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In these formulas, by 〈2,1〉 we really mean a degenerate representation with a vanishing null
vector at level 2. We do not rely on the fact that the corresponding fusion kernel can be
obtained as a limit P → P(2,1) of a fusion kernel for Verma modules. In particular, the fusion
rules of the corresponding primary field V〈2,1〉 are obeyed by definition.

Behaviour under Virasoro–Wick rotation

While the hypergeometric equation does not behave particularly nicely under Virasoro–Wick
rotation, its monodromy matrix does:

f(i b)ε,η
�

iP1 iP2
〈2,1〉 iP3

�

= −εη P1
P3

f(b)η,ε

�

P3 P2
〈2,1〉 P1

�

. (2.14)

Let us use this identity for simplifying the the first shift equation (2.11) with Virasoro–Wick-
rotated variables:
∑

ε=±

1
Pt

F(i b)iPs ,iPt

�

iP2+ε
i b
2 iP3

iP1 iP4

�

f(b)ν,ε

�

Pt P3
〈2,1〉 P2

�

f(b)ε,η
�

P2 Ps
〈2,1〉 P1

�

= 1
Pt+ν

b
2
F(i b)

iPs ,iPt+ν
i b
2

� iP2 iP3

iP1+η
i b
2 iP4

�

f(b)−ν,η

�

Pt+ν
b
2 P4

〈2,1〉 P1

�

.

(2.15)
We compare this with the second shift equation (2.12), where we do the renamings Ps↔ Pt ,
P1↔ P3 and ν↔ η:
∑

ε=±
F(b)Pt ,Ps

�

P2+ε
b
2 P1

P3 P4

�

f(b)ν,ε

�

Pt P3
〈2,1〉 P2

�

f(b)ε,η
�

P2 Ps
〈2,1〉 P1

�

= F(b)
Pt+ν

b
2 ,Ps

�

P2 P1+η
b
2

P3 P4

�

f(b)−ν,η

�

Pt+ν
b
2 P4

〈2,1〉 P1

�

. (2.16)

The degenerate fusion kernels are now the same as in the Virasoro–Wick-rotated equation
(2.15). This shows that the rotation F→ RF (1.4) is compatible with the shift equations, in
the sense that F obeys the second shift equation if and only if RF obeys the first one — and
vice versa.

One should resist the temptation of trying to deduce the Pentagon identity (2.10) at c from
the Pentagon identity at 26− c. While this works at the level of the integrand and right-hand
side, the integration contours at c and 26− c are not related by Virasoro–Wick rotation.

Teschner–Vartanov formula for c ∈ C\(−∞, 1]

Let us write the known solution of the shift equations. We choose the Teschner–Vartanov for-
mula [11] rather than the earlier Ponsot–Teschner formula [10], in order to make tetrahedral
symmetry manifest. This allows us to write a relatively compact expression for the fusion
kernel using the tetrahedral notations (1.6):

F(b)Ps ,Pt

� P2 P3
P1 P4

�

=
Γb(Q± 2Ps)
2Γb(±2Pt)

∏

f ∈F

∏

σ∈Z f
2

σ f =ηt ( f )

Γb

�

Q
2 +
∑

i∈ fσi Pi

�σ f

∫

Q
2+iR

du
i

∏

σ∈ZE
2

σV=1

Sb

�

u+ QσE
4 +

1
2

∑

i∈Eσi Pi

�−σE
,

(2.17)
where we use the same special functions as for the modular kernel (2.9). Apart from notational
differences, our formula differs from [11] because of our use of the natural normalization
(1.10) for conformal blocks.

3 Interpretation of the Virasoro–Wick rotation

In this section we will try to make sense of the Virasoro–Wick rotation, when applied to the
known fusion and modular kernels. We will first discuss the analytic properties of the kernels
in the regime c < 1, where they are not known in closed form. Then we will apply the rotation
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to Liouville theory, and in particular to the crossing and modular equations that relate the
kernels with the structure constants.

We will now reserve the notations F,M for the known fusion and modular kernels, which
are unique solutions of the shift equations for c ∈ C\(−∞, 1]. We will write RF,RM their
images under the rotations (1.4) and (2.4). We will call F̂, M̂ the kernels for c ≤ 1, which
are still unknown (except F̂ for c = 1), and RF̂,RM̂ their images under the rotation. Let us
summarize the domains of definition of these kernels:

Kernels c ≤ 1 c ∈ C\(−∞, 1]∪ [25,∞) c ≥ 25

F,M

RF,RM

F̂, M̂

RF̂,RM̂

(3.1)

3.1 How smooth are the fusion and modular kernels for c < 1?

Argument from uniqueness

For any b ∈ R such that b2 /∈ Q, any continuous function on R that obeys
f (P + b) = f (P + b−1) = f (P) is constant. Under the assumption that it is meromorphic,
the function f is furthermore constant over the complex P-plane. Under the assumption that
f depends continuously on b, we conclude that it is P-independent for any b ∈ R. And if f is
a meromorphic function of b ∈ B (for B ⊂ C an open domain), then it is P-independent for
any b ∈ B.

These statements are the basis for the bootstrap derivation of the Liouville three-point
structure constant [26]. A similar reasoning has been applied to the Virasoro fusion kernel,
originally in [27], with the proof of uniqueness completed in [16]. The outcome is that for
c ∈ C\(−∞, 1], the Ponsot–Teschner kernel F is the unique solution of the shift equations that
is meromorphic in b and in the momentums. And there is every reason to believe that the
modular kernel M is also the unique solution of its own shift equations.

By Virasoro–Wick rotation, it follows that RF and RM are the unique solutions for
c ∈ C\[25,∞), under the same meromorphicity assumptions. However, these solutions can-
not be kernels, because they are odd in Ps and Pt . Since the conformal blocks are even, the
integral in the fusion transformation (1.3) must vanish. As we have checked numerically,
this conclusion holds even for c ≤ 1, in which case the conformal blocks’ poles at degenerate
momentums
�

P(r,s)
�

r,s∈N∗ (1.5) sit on the integration line, and force us to move that line as
iR→ iR+Λ with Λ ∈ R∗ [16, 28]. And even if the integral over Pt did not vanish, the result
could not be an s-channel block, due to parity in Ps.

For c ∈ C\(−∞, 1] ∪ [25,∞), the existence of two solutions of the shift equations is
not a problem. These solutions are unique only if we assume that they are meromorphic on
c ∈ C\(−∞, 1] and c ∈ C\[25,∞) respectively. The core of the uniqueness argument is
indeed the existence of two shifts b and b−1 that are aligned in the complex plane, which
occurs for c ≤ 1 or c ≥ 25:

i

0 1
, , , ,

b ∈ iR ,
c ≤ 1 ,

b2 /∈ R ,
c ∈ C ,

b ∈ R ,
c ≥ 25 .

(3.2)
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Solutions on half-line are then extended to the complex plane by analytic continuation, using
the fact that they are built from the double Gamma function Γb(x), which is meromorphic for
ℑb > 0. We therefore conclude that for c ∈ C\(−∞, 1]∪[25,∞), the fusion kernel is F, while
RF is unphysical.

For c ≤ 1 however, F does not exist, while RF is still odd, and therefore differs from
the fusion kernel F̂. Since RF is meromorphic in momentums, F̂ cannot be meromorphic,
by the uniqueness argument of [16]. (Actually, for b2 /∈ Q, continuity might well suffice for
uniqueness.)

Limit from degenerate cases

For c ≤ 1, the degenerate momentums P(r,s) (1.5) are dense in the imaginary axis, and it is
therefore possible to obtain generic blocks and kernels as limits of degenerate blocks and ker-
nels. Degenerate fusion kernels such as F(b)P2+P(m,n),Pt

�

P2 P3
P(r,s) P4

�

with r, s ∈ N∗ and |m| ∈ r−1−2N
and |n| ∈ s − 1− 2N can be deduced from the known integral formula (2.17), where the in-
tegral reduces to a discrete sum, and the ratios of double Gamma and double Sine functions
reduce to products of Gamma functions. While the original integral formula is only valid for
c ∈ C\(−∞, 1], the resulting expression for the degenerate kernels is therefore valid for all
c ∈ C.

For c ≤ 1, it only remains to take an appropriate r, s, m, n→∞ limit, such that we recover
generic values of the momentums. Taking this limit is an interesting technical challenge. A
similar limit was performed in the case of three-point structure constants of the non-rational
limit of D-series minimal models [29]. In that case, assuming b2 /∈Q, it was found that the limit
structure constants are not smooth functions of momentums, but distributions. This suggests
that the fusion kernel F̂ is also a distribution: not only by analogy, but also because the D-series
structure constants can be written in terms of the fusion kernel [30]. If the structure constants
become distributions in the limit, then the fusion kernel should become a distribution as well.

Conjecture

We therefore conjecture that for c < 1 with b2 /∈ Q, the fusion and modular kernels are not
smooth functions of the momentums, but distributions. In terms of the fusion transformation
of four-point conformal blocks, this means that instead of a single integral (1.3) with a well-
defined kernel, we expect a series of the type

F (b),s−channel
Ps

=
∞
∑

k=1

∫

iR+Λ

dPt

i
F̂(b),kPs ,Pt

F (b),t−channel
Pt

, (3.3)

with an infinite family of kernels F̂(b),kPs ,Pt
which may well be meromorphic functions in the mo-

mentums. The sum of these kernels would be divergent, but it would become convergent after
integration against the t-channel conformal blocks. A divergent series expression of this type
is what emerges for the three-point structure constants in [29], and it is what we would expect
if we took a limit from degenerate cases.

Series representation

Recently, Roussillon has proposed a series representation of the fusion and modular kernels,
which is valid for b2 /∈ Q [31]. If true, this would in particular determine the fusion kernel F̂
for almost all c < 1. We will now argue that these results are consistent with our conjecture.

If the series for F̂ was divergent, it would directly fulfill our expectation (3.3). However,
the series looks convergent for ℜPt > Λ for some Λ ≥ 0, under the mild restriction that b2 is
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not a Liouville number. Proving convergence is not easy, and we proceed under the assumption
that the series is absolutely convergent, leading to a kernel that is meromorphic.

This looks problematic not only for our conjecture, but also for the uniqueness of the kernel.
However, uniqueness would only apply if the kernel was meromorphic over Pt ∈ C, so there is
no contradiction [16]. Our second argument that the kernel is not smooth was based on taking
a limit from degenerate cases. This limit produces a kernel that is even as a function of Pt ,
whereas the series representation is undefined for ℜPt ≤ 0. Again there is no contradiction:
summing the series produces a kernel that obeys the fusion relation (1.3), but differs from
what we would call the physical kernel, a distribution that is even in Pt . In this respect, the
kernel is similar to the diagonal three-point structure constant of [29], which is given by the
divergent sum

C D
P1,P2,P3

∝ 1+ 2
∞
∑

n=1

(−)n
∏3

i=1 cos(2πnbPi)

cos(πnb2)
, (3.4)

where we omit a smooth prefactor. However, the modified structure constant,

eC D
P1,P2,P3

∝ 1+ 2
∞
∑

n=1

(−)n
cos(2πnbP1) cos(2πnbP2)e2πinbP3

cos(πnb2)
, (3.5)

converges in a large domain of values of P3, at the expense of breaking the invariances under
P3→−P3 and P3↔ P1,2. This symmetry breaking is not a problem so long we integrate over
P3 in the context of a correlation function.

3.2 Application to Liouville theory

Since Liouville theory is diagonal and has a continuous spectrum, its structure constants are
closely related to the Virasoro fusion kernel. The bulk three-point structure constant is a special
case of the fusion kernel, while the boundary three-point structure constant coincides with the
fusion kernel up to simple prefactors [27]. Here we will review the crossing and modular
invariance equations of Liouville theory, which involve the bulk three-point structure constant
as well as the fusion and modular kernels. Then we will see what happens to these equations
when we apply the Virasoro–Wick rotation.

Crossing and modular invariance

For c ∈ C\(−∞, 1], there is a field normalization such that the two- and three-point structure
constants of Liouville theory are [4]

B(b)P =
∏

±
Γb(±2P)Γb(Q± 2P) , C (b)P1,P2,P3

=
∏

±,±,±
Γb
�Q

2 ± P1 ± P2 ± P3

�

. (3.6)

For c ≤ 1, the structure constants may be written as

B̂(b)P =
1

4P2B(i b)iP

, Ĉ (b)P1,P2,P3
=

1

C (i b)iP1,iP2,iP3

. (3.7)

These relations between the structure constants for c ≤ 1 and c ≥ 25 give rise to great sim-
plifications when coupling theories with central charges c and 26− c in order to build a two-
dimensional gravity theory [14] or a string theory [32]. Actually, the Virasoro–Wick rotation
unexpectedly shows up as a symmetry of the Virasoro minimal string [32, Section 4.5], which
is built from two coupled Liouville theories: our analysis might be useful to make sense of this
symmetry.
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Since Liouville theory is diagonal, crossing symmetry of the sphere four-point function may
be rewritten as [4]

C (b)P1,P2,Ps
C (b)Ps ,P3,P4

B(b)Ps

F(b)Ps ,Pt

�

P2 P3
P1 P4

�

=
C (b)P2,P3,Pt

C (b)P1,P4,Pt

B(b)Pt

F(b)Pt ,Ps

�

P2 P1
P3 P4

�

. (3.8)

Similarly, modular invariance of the torus one-point function may be rewritten as

C (b)Ps ,Ps ,P0

B(b)Ps

M(b)Ps ,Pt
[P0] =

C (b)Pt ,Pt ,P0

B(b)Pt

M(b)Pt ,Ps
[P0] . (3.9)

In this formulation, crossing symmetry and modular invariance of Liouville theory can be
deduced from the properties of the fusion and modular kernels, after writing the structure
constants in terms of the fusion kernel. This provides the algebraic half of a proof of consistency
of Liouville theory. The analytic half would be to show that the decompositions of correlation
functions into conformal blocks actually converge.

Virasoro–Wick rotation

For c ≤ 1, since Liouville four-point functions are crossing-symmetric [28], the fusion ker-
nel F̂ and the Liouville structure constants (3.7) should obey the same equation (3.8) as for
c ∈ C\(−∞, 1],

Ĉ (b)P1,P2,Ps
Ĉ (b)Ps ,P3,P4

B̂(b)Ps

F̂(b)Ps ,Pt

�

P2 P3
P1 P4

�

=
Ĉ (b)P2,P3,Pt

Ĉ (b)P1,P4,Pt

B̂(b)Pt

F̂(b)Pt ,Ps

�

P2 P1
P3 P4

�

. (3.10)

Since we do not know the kernel F̂, we cannot check this equation. However, if we apply
the Virasoro–Wick rotation to Eq. (3.8), we obtain a relation that involves the rotated fusion
kernel RF (1.4),

Ĉ (b)P1,P2,Ps
Ĉ (b)Ps ,P3,P4

B̂(b)Ps

RF(b)Ps ,Pt

�

P2 P3
P1 P4

�

=
Ĉ (b)P2,P3,Pt

Ĉ (b)P1,P4,Pt

B̂(b)Pt

RF(b)Pt ,Ps

�

P2 P1
P3 P4

�

. (3.11)

Therefore, the Virasoro–Wick rotation yields an equation for RF that is identical to the equa-
tion for F̂. Technically, this is because:

• In the crossing symmetry equation (3.10), the left-hand side kernel is related to the right-
hand side kernel by the same permutation of momentums that appears in the Virasoro–
Wick rotation for the fusion kernel. The Virasoro–Wick rotation therefore exchanges
these kernels, and this compensates the fact that it inverses the structure constants.

• The simple prefactor Pt
Ps

of the rotated fusion kernel cancels the prefactor P2 of the two-
point structure constant.

By the same mechanism, the rotated modular kernel RM (2.4), together with the c ≤ 1 Li-
ouville structure constants, obey a relation that is identical to the modular invariance relation
(3.9):

Ĉ (b)Ps ,Ps ,P0

B̂(b)Ps

RM(b)Ps ,Pt
[P0] =

Ĉ (b)Pt ,Pt ,P0

B̂(b)Pt

RM(b)Pt ,Ps
[P0] . (3.12)
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Therefore, everything works as if we were deducing crossing symmetry of Liouville theory with
c ≤ 1 from Liouville theory with c ≥ 25, except of course that RF and RM are not the actual
fusion and modular kernels for c ≤ 1, but unphysical solutions of the shift equations. While
crossing symmetry equations are very strong constraints on structure constants, they are weak
constraints on fusion kernels, so it is not too surprising that two different kernels obey these
constraints.

4 The c = 25 fusion kernel

Let us start with a special case at c = 1 and c = 25 where all relevant kernels have very simple
expressions [33]. This special case is defined by ∆i =

1
16 for c = 1, and ∆i =

15
16 for c = 25,

with i = 1,2, 3,4. We define the following kernels:

c = 1 c = 25

F̂±Ps ,Pt
= 16P2

t −P2
s e∓2πiPs Pt F±Ps ,Pt

= ±i Pt
Ps

16P2
t −P2

s e±2πiPs Pt

F̂Ps ,Pt
= 16P2

t −P2
s cos(2πPsPt) FPs ,Pt

= − Pt
Ps

16P2
t −P2

s sin(2πPsPt)

RFPs ,Pt
= 16P2

t −P2
s sin(2πPsPt) RF̂Ps ,Pt

= Pt
Ps

16P2
t −P2

s cos(2πPsPt)

(4.1)

Here F±,F, F̂±, F̂ are all kernels that obey the fusion relation (1.3) for this special case, with
F= 1

2

∑

± F± and F̂= 1
2

∑

± F̂±. On the other hand, the odd, unphysical combinations RF and
RF̂ vanish when integrated against conformal blocks. Under the Virasoro–Wick rotation (1.4),
these kernels behave as

RF̂± = ∓iF± . (4.2)

In this section we will see that this picture is valid at c = 1 and c = 25 not only in our special
case, but also for arbitrary values of∆i . However, for generic values, it turns out that only the
kernels F and RF are meromorphic in Pt , Ps: all the rest have branch cuts.

4.1 The c = 1 fusion kernel revisited

Tetrahedral notation

Thanks to the relation between c = 1 conformal blocks and tau functions of the Painlevé
VI equation [34], it is possible to write the c = 1 fusion kernel in terms of the connection
coefficient of that nonlinear differential equation [12]. In order to make the symmetries more
manifest, let us write the resulting expression in our tetrahedral notation (1.6). We also define
the quantities d̂ and ω̂± by Virasoro–Wick-rotating the momentums as Pi → iPi in Eqs. (1.8)
and (1.9). This leads to the two kernels

F̂ε=±Ps Pt

� P2 P3
P1 P4

�

= −π2 Pt

Ps

G(±2iPs)
G(2± 2iPt)

∏

f ∈F

∏

σ∈Z f
2

σ f =−ηt ( f )

G
�

1− i
∑

i∈ fσi Pi

�−σ f 1
p

d̂

∏

σ∈ZE
2

σV=1

eG
�

ω̂ε +
i
2

∑

i∈Eσi Pi

�−σE .

(4.3)
Compared to the original expression of [12], the most substantial change is our redefinition of
ω̂±, which we have shifted by i

2

∑

i∈E Pi . As a result, in the formula for the kernels F̂εPs Pt
as well

as in the definition (1.9) of ω̂±, we have combinations of momentums of the type i
2

∑

i∈E σi Pi .
Notice that ω̂± is only defined modulo integers: this does not affect the kernels, thanks to the
identity eG(x + 1) = − π

sin(πx)
eG(x).
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Fusion, analyticity and parity properties

The existence of two kernels comes from the choice of a branch for the square root
p

d̂. This
square root appears explicitly in the formula for the kernels, and is also present in the definition
(1.9) of ω̂±, which is why we have two such quantities. Both kernels obey non-trivially the
fusion relation (1.3) – as was checked numerically in [12] – where the integration contour
has to be chosen such that it does not intersect the branch cuts, which is done by the shift
iR→ iR+Λ with Λ large enough.

We can define a non-trivial single-valued, meromorphic quantity by adding the two

branches. Since the factor
p

d̂ changes sign, the single-valued combination is 1
2

�

F̂+ − F̂−
�

.
But this combination is zero when integrated against t-channel conformal blocks, because
both kernels satisfy (1.3). In fact, we numerically find that this combination is an odd function
of Ps and Pt , which will turn out to coincide with the image RF of the c = 25 fusion kernel
under Virasoro–Wick rotation.

On the other hand, we find numerically that the combination F̂ = 1
2

�

F̂+ + F̂−
�

is an even
function in Ps and Pt , and we call it the physical fusion kernel at c = 1. Nevertheless, it
obviously still has branch cuts.

For completeness, let us mention also how the kernels transform under the reflections
Pi → −Pi . The tetrahedral symmetry of (4.3) is all about permuting the momentums, but
the behaviour under reflections is far from manifest. The physical fusion kernel 1

2

�

F̂+ + F̂−
�

must be invariant under reflections of all six momentums P1, P2, P3, P4, Ps, Pt , but this need not
apply to the two kernels F̂+ and F̂−. Numerically, we find that F̂+ and F̂− are invariant under
reflections of P1, P2, P3, P4, but under reflections of Ps or Pt we have F̂±→ F̂∓.

4.2 Two different formulas for the c = 25 fusion kernel

Virasoro–Wick rotation of c = 1 kernels

Let us now define two kernels F± at c = 25 from the c = 1 kernels F̂± (4.3) via the relation
(4.2). The Virasoro–Wick rotation involves the permutation 1↔ 3, s↔ t, which leaves the
set of faces F and the condition σV = 1 invariant, but changes ηt( f )↔−ηt( f ). We obtain

Fε=±Ps Pt

� P2 P3
P1 P4

�

=
π2

i
G(±2Pt)

G(2± 2Ps)

∏

f ∈F

∏

σ∈Z f
2

σ f =ηt ( f )

G
�

1+
∑

i∈ fσi Pi

�−σ f ε
p

d

∏

σ∈ZE
2

σV=1

eG
�

ωε −
1
2

∑

i∈Eσi Pi

�−σE . (4.4)

We then define F = 1
2

∑

± F±, which is given by our formula (1.7). The kernel F is now a
meromorphic function of momentums, because we obtain it by summing over the two possible
determinations of

p
d. Moreover, we numerically confirm that it is an even function of the

momentums Ps, Pt since under the corresponding reflections we observe that F±→ F∓.
To finally check that F is indeed the physical fusion kernel at c = 25, we have numerically

tested that it satisfies the fusion relation (1.3).

Comparison with the Teschner–Vartanov formula

Let us specialize the Teschner–Vartanov formula for the fusion kernel (2.17) to the case c = 25
i.e. b = 1. The relevant special functions reduce to combinations of Barnes’ G-function,

Γ1(x) =
(2π)

x−1
2

G(x)
, S1(x) = (2π)

x−1
eG(1− x) . (4.5)
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This leads to

F(b→1)
Ps Pt

� P2 P3
P1 P4

�

=
1

8π2

G(±2Pt)
G(2± 2Ps)

∏

f ∈F

∏

σ∈Z f
2

σ f =ηt ( f )

G
�

1+
∑

i∈ fσi Pi

�−σ f

∫

iR

du
i

∏

σ∈ZE
2

σV=1

eG
�

u+ σE
2 +

1
2

∑

i∈Eσi Pi

�σE .

(4.6)
Comparing with (1.7), we observe that the main prefactors in the two expressions are the
same, as required by tetrahedral symmetry. Then, the equality of the two formulas boils down
to the identity

∫

iR
du
∏

σ∈ZE
2

σV=1

eG
�

u+ σE
2 +

1
2

∑

i∈Eσi Pi

�σE = 4π4
∑

ε=±

ε
p

d

∏

σ∈ZE
2

σV=1

eG
�

ωε −
1
2

∑

i∈Eσi Pi

�−σE . (4.7)

(In the special case P1 = P2 = P3 = P4 =
1
4 , a similar simplification of the Ponsot–Teschner

formula for the fusion kernel was already observed in [12].) We have checked this identity
numerically and there is little doubt that it is true. While an analytic proof is currently lacking,
it could definitely lead to valuable insights, especially if it led to a generalization beyond the
case c = 25. The theory of elliptic hypergeometric integrals [35] may be relevant, since the
Teschner–Vartanov integral is a limit of such integrals.
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