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Abstract

Understanding the influence of quenched random potential is crucial for comprehending
the exotic electronic transport of non-Fermi liquid metals near metallic quantum critical
points. In this study, we identify a stable fixed point governing the quantum critical be-
havior of two-dimensional non-Fermi liquid metals in the presence of a random potential
disorder. By performing renormalization group analysis on a dimensional-regularized
field theory for Ising-nematic quantum critical points, we systematically investigate the
interplay between random potential disorder for electrons and Yukawa-type interactions
between electrons and bosonic order-parameter fluctuations in a perturbative epsilon ex-
pansion. At the one-loop order, the effective field theory lacks stable fixed points, instead
exhibiting a runaway flow toward infinite disorder strength. However, at the two-loop
order, the effective field theory converges to a stable fixed point characterized by finite
disorder strength, termed the “disordered non-Fermi liquid (DNFL) fixed point.” Our in-
vestigation reveals that two-loop vertex corrections induced by Yukawa couplings are
pivotal in the emergence of the DNFL fixed point, primarily through screening disorder
scattering. Additionally, the DNFL fixed point is distinguished by a substantial anoma-
lous scaling dimension of fermion fields, resulting in pseudogap-like behavior in the
electron’s density of states. These findings shed light on the quantum critical behavior of
disordered non-Fermi liquid metals, emphasizing the indispensable role of higher-order
loop corrections in such comprehension.
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1 Introduction

Despite significant advancements in the understanding of metallic quantum critical points
(QCPs) [1, 2], the challenge of addressing metallic QCPs in the presence of quenched disor-
der persists. Early renormalization group (RG) studies [3] on this issue applied the Hertz ap-
proach, wherein fermionic degrees of freedom are integrated out to derive an effective bosonic
theory [4,5]. However, this approach proves inadequate in two-dimensional (2D) systems due
to uncontrolled quantum fluctuations associated with Fermi-surface electrons [6-8]. A con-
temporary perspective emphasizes equal treatment of fermionic and bosonic excitations [1].
Recent studies [9, 10] utilizing this modern approach revealed that random potential disor-
der destabilizes the clean non-Fermi liquid (CNFL) fixed point for spin-density-wave quantum
criticality [11, 12]. However, finding a stable fixed point replacing this unstable fixed point,
which we term a “disordered non-Fermi liquid (DNFL) fixed point,” remains unresolved in
these studies.

Identifying a DNFL fixed point is crucial for comprehending anomalous transport proper-
ties near metallic QCPs. For instance, strange metallic behaviors, including linear temperature
dependence of electrical resistivity, are commonly observed in strongly correlated materials
like heavy fermion materials, iron-pnictides, and cuprates [13-15]. Accurate modeling of
these transport properties necessitates consideration of momentum relaxation processes, such
as disorder scattering or Umklapp scattering. Previous studies calculated the temperature de-
pendence of electrical resistivity by incorporating disorder scattering, using either a Boltzmann
equation [16-18] or a memory matrix method [19-21]. A more recent study found a DNFL
fixed point in the vicinity of a CNFL fixed point and derived scaling equations for resistiv-
ity [22], which extends the Finkelstein-type RG analysis [23-26] toward quantum criticality.
Notably, this study considered a matrix-type order parameter field for the large N control-
lability instead of vector-type quantum critical fluctuations. In this respect, the discovery of
a DNFL fixed point will facilitate a reevaluation of these previous approaches and provide a
more robust theoretical foundation for future advancements.

The existence of a Fermi surface in metallic systems presents a formidable challenge in the
quest for the DNFL fixed point. The Fermi surface essentially reduces the effective dimension-
ality of the system to unity [27] or so [6], thereby classifying both interaction and disorder
as “strong” or relevant in the RG sense [9, 10,28]. The strong coupling nature of these inter-
actions hinders the direct application of standard theoretical frameworks, such as the Hertz
theory [4] or the Finkelstein theory [23], which inherently assumes a perturbative nature
of the couplings. This is in stark contrast to the analysis of commonly studied semimetallic
systems [29-32, 32, 33, 33-39], where both couplings are deemed irrelevant or marginally
relevant, at most. Consequently, the establishment of theoretical frameworks capable of effec-
tively addressing both interaction and disorder is imperative to propel advancements in the
pursuit of the DNFL fixed point.

One promising approach to address this challenge is to begin with CNFL fixed points, where
interaction effects can be systematically incorporated [7,8,12,28,40], and then introduce weak
disorder. However, this strategy encounters several obstacles. Firstly, the previous observation
that the disorder causes the theory to flow to strong coupling at the one-loop level [9, 10]
may cast doubt on the viability of solving the problem within the weak disorder framework.
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Secondly, elastic disorder scattering leads to an ultraviolet-infrared (UV-IR) mixing issue [9,
10], potentially challenging the patch description of the Fermi surface [41,42]. Finally, there
is a concern that the weak disorder approach may overlook the disorder-driven localization
effect responsible for Anderson localization [43].

Addressing these challenges, we establish a controlled RG framework tailored for 2D metal-
lic QCPs in the presence of random potential disorder. We employ a dimensional-regularized
field theory developed by Dalidovich and Lee [28], which allows for a systematic perturba-
tive epsilon expansion for Yukawa couplings between electrons and bosonic order-parameter
fluctuations. By reformulating this theory, we develop an RG scheme that facilitates perturba-
tive treatments for both Yukawa couplings and random potential disorder for electrons. Key
technical advancements include:

1. Single Epsilon Expansion Scheme: Tailored for regularizing loop corrections from both
interaction and disorder using a unified epsilon parameter. Refer to Sec. 2.2 for detailed
explanations.

2. Cutoff Regularization Scheme: Implemented to regularize divergent integrals arising
from disorder, effectively avoiding UV-IR mixing. Additional details can be found in
Sec. 2.3.

3. Identification of Critical Two-loop Corrections: These corrections play a key role in the
emergence of the DNFL fixed point. Details are available in Sec. 3.2.

4. Large N Expansion: Employed to control the strong IR enhancement factors originating
from disorder, as detailed in Sec. 3.2.

In our study, we employ an effective two-patch model tailored to Ising-nematic QCPs,
which are observed in various strongly correlated materials such as cuprates [44-51], pnic-
tides [52-61], and ruthenates [62]. Our investigation focuses on the impact of the ran-
dom potential disorder on two scattering channels: one involving small momentum transfer
(lq| < kp) and the other with 2kz-momentum transfer (|q| ~ 2ky). Here, ky denotes the
characteristic Fermi momentum of the two patches in our two-patch model. We assume short-
range correlated disorder potentials characterized by a white-noise Gaussian distribution. Our
focus is specifically on the weak disorder limit, utilizing a ballistic fermion propagator without
an elastic scattering rate and an overdamped boson propagator with ballistic Landau damping
at the CNFL fixed point.

Conducting a two-loop-level RG analysis on this model, we illustrate the appearance of a
DNFL fixed point that governs the universal low-energy physics of 2D non-Fermi metals in the
presence of random potential disorder. Additionally, we calculate various scaling exponents
associated with this fixed point using a systematic epsilon expansion up to two-loop order.

The remainder of this paper is organized as follows. In Sec. 2, we introduce a controllable
RG framework for 2D metallic QCPs, offering insights into crucial technical aspects within
our approach, including the implementation of a single € expansion and a cutoff regulariza-
tion scheme. Moving to Sec. 3, we present the two-loop RG results, while detailed technical
information is deferred to the Appendix. Transitioning to Sec. 4, we explore the robustness
of our results against disorder scattering mechanisms not explicitly considered in our model
and investigate potential applications of our theory to other systems. Finally, in Sec. 5, we
summarize our findings.
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Fermi surface

Patch for y_ Patch for y,

Figure 1: Schematic illustration of a two-patch model used for our renormalization
group (RG) analysis. The blue circle represents the entire Fermi surface, while the
red curved segments depict two antipodal patches incorporated into the effective field
theory. The axes indicate the momentum coordinates of fermions near each patch.
Additionally, the green and magenta arrows represent the transfer of fermions in two
disorder scattering terms: forward and backward disorder scattering, respectively.

2 Model

2.1 Effective field theory

We consider 2D metallic systems in the vicinity of Ising-nematic quantum phase transitions
[44-62]. The scaling behavior of these systems can be described using an effective two-patch
model [7,28]:

dkod k-
(2n)3

dqodzq
(2m)3

dkod®kdged®q ig
@’ UN

— (k)(lko}”o + l5kY1)‘I’ (k)

®(—q)(q + 4% +42)2(a)
—&(Q)¥;(k + gy ¥;(K). €9)

Here, \IJj(k) represents a Nambu spinor given as:

(k
&) = (1;/)_:’((_,3)) : @

and \f/j(k) = \I/]'.i‘(k)yo represents the adjoint of ¥;(k). The gamma matrices associated with
the spinor are defined as yo = oy, y1 = 0y, and v, = 0,, where o, , , are the Pauli matrices.
Y+ j(k) represents fermion fields describing low-energy fermions on the antipodal patches of
the Fermi surface (Fig. 1). These chiral fermions have different energy dispersions, represented
ask, +k}2, and —k, +k}2, for 1, ;(k) and ¢ _ ;(k), respectively. However, their energy dispersion
can be represented with a single term §; = k, + k}z, within the Nambu spinor representation.
j=1,---,N stands for the fermion flavor index. ®(q) represents a scalar boson field for Ising-
nematic order-parameter fluctuations or critical bosons. g represents the Yukawa coupling
between fermions and critical bosons.

The effective field theory in Eq. (1) exhibits two U(1) symmetries: (i) the vector symmetry
with ¥;(k) — eievYZ\I!j(k) and (ii) the axial symmetry with ¥;(k) — eiga\I/j(k). It is essential to

6
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recognize that the presence or absence of y, in the vector and axial symmetry transformations,
respectively, results from expressing the action in the Nambu spinor basis. The vector symme-
try implies the conservation of the total fermion number density, denoted as n = n, +n_.
Here, n, represents the number density of each chiral fermion, defined as:

dkod? k N
f o (WL (0, (0) 3)

Conversely, the axial symmetry signifies the conservation of the difference between the two
fermion number densities, denoted as m =n, —n_.
We introduce two random potential terms for fermions in our effective action as follows

[63]:

dl<0d2kd2 - -
j=

Here, v¢(q) and v;(q) denote forward and backward disorder scattering, respectively, wherein

each term scatters fermions within the same patch or between opposite patches. Notably, v¢(q)

upholds both U(1) symmetries, conserving both n and m, which correspond to separately

preserving n, and n_. However, v;(q) breaks the axial symmetry, conserving only n but not

m.

For disorder averaging, we assume Gaussian white-noise distributions for the random vari-
ables vy (1), specifically (vf/b(r)vf/b(r’)) =06(r— r’)Af/b, where A¢ , represents the vari-
ances of these distributions. Employing the replica trick [64, 65] to perform the disorder av-
erage for S,,,, we obtain the following disorder-averaged action:

R dkod?k dq,d?
S:Z) (20 E B(k)(ikoro +i8kr ) LE(K) + (qz" )3" &(—q)(q3 + % +q2)2(q)
a=0 j=
B [ dkyd?kdqed?q ig . .
"‘az_oj_lf W‘/—‘P(Q)‘P (k+q)y,1%; (k)

R & [ dkod®kdk|dk’d%q /
+ Z ZJ : (2m)8 {_\Ija(k'ﬂl))/l‘l’a(k)\y (k _q)h\ll (k)

Ay - _
+ ?\Djf‘(k + q)\p;*(—k)qu*(k’ + q)w;’(—k’)} . (5)

Here, a,b =0, -+ ,R denote the replica indices introduced for the replica trick. The disorder
average transforms the random potential terms in Eq. (4) into the four-point elastic scattering
terms, represented by A¢ and Ay.

2.2 Dimensional regularization

To establish a controllable RG framework, we adopt a dimensional-regularized theory [28] and
tailor it to address our disorder problem. By extending the codimension of the Fermi surface
from 1 to d — 1, we adjust the fermion kinetic term to ¥ (k)(ikoyo + ik -1, + 8, y1)¥(k),
where k| = (ky,--,kq—p)and v, = (y1,"**,Y4—2) are newly introduced momentum compo-
nents and gamma matrices, respectively All gamma matrices satisfy the Clifford algebra as
Yivjtyjvi =26 withi,j= ,d—1. The other components of Eq. (5) should be adjusted
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accordingly. Consequently, the full action of the (d + 1)-dimensional theory is expressed as:

R N d—2 2 d—2
dkyd®“k,d"k dqoed d?
$=2.2, f Wwa(m(lkomﬂkl 7L+ I8y am) V() + = f ‘“’(Tfkl"@(—q)qiuq)

R d—2 d—2 2
dkod9 2k, d*kdq,d d i
+22J 0 1 qo q,a q 18 <I>(q)\11a(k+q)}fd 1‘I’a(k)

a=0j=1 (2m)2(d+1) JvN
R dkod® 2k, d?kdk}d9 =2k’ d*k'd"2q, d?k
’ Z ZJ 0 - (2m)3d+2 { Tk +@)yaa ¥ ()T (K —q)yg1¥] (k)
a,b=0 j=1
Ay - _
+ SRk + QW —OF (K + q)\l/}l.’(—k’)}, ©

where the irrelevant qg and q}z{ terms are dropped in the bosonic action. Importantly, k| is
exchanged, but k is not in the Ay and A, terms as the disorder scattering is elastic. This
anisotropic characteristic of the disorder scattering disrupts the formal (d — 1)-dimensional
symmetry within the vector space (kg, k) as described in the clean theory [28], resulting in
distinct rates of renormalization for k, and k.

The quadratic part of the action in Eq. (6) is invariant under the following scaling trans-
formation:

ko = 30
k/
k, = f
k/
k. ?’“,
K,
v = ﬁ’
(k) = \P“’(k)
®(q)=b"7 ¥(q"). (7)

Under this scaling, the coupling constants undergo the following transformations:

g=b4yg,

/ 5—2d
Af:b 2 f’

/ 5-2d
AL =b"2 A. (8)

It is crucial to note that all couplings become marginal at the upper critical dimension d = 5/2.
Consequently, a perturbative RG analysis can be conducted by tuning d as:

d=5/2—c¢€, C))

where € serves as a small parameter in the perturbative expansion [28]. Utilizing this expan-
sion parameter, we investigate the scaling behavior of the theory in d < 5/2. Importantly, a
single e parameter suffices for both interaction and disorder [63] due to the anomalous scaling
law [k, ]=2[k,]=1and [E;] = [E,] =1 at the Ising-nematic QCP [28,66] ([x] denotes the
mass d1mens1on of x). For general interacting disordered systems lacking such a law, a double
epsilon expansion scheme is necessary [29-32,32,33,33-39,67,68].
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Figure 2: (a) Schematic illustration of a cutoff-regularization scheme employed
in this study. While the integral region for k, extends to the infinite range
k, € (—o0,00), that for k, extends to the semi-infinite range k, € (—ks, 00).
Here, k; represents a cutoff introduced for regularizing divergent momentum in-
tegrals arising from disorder scattering. (b) Schematic illustration of an alternative
scheme, discussed in Sec. 4.1. While the integral region for k, extends to the infinite
range k, € (—00, 00), that for k, extends to the finite range k, € (—A,A). Here,
A represents a cutoff introduced for regularizing divergent momentum integrals. In
each plot, the red line denotes a Fermi surface segment within the two-patch model.

2.3 Cutoff regularization for disorder scattering

The disorder scattering leads to integrals that necessitate additional cutoff regularization
[Fig. 2(a)]. To illustrate this, we consider the one-loop fermion self-energy diagram result-
ing from the forward disorder scattering [Fig. 3(c)] [63]:

ins [ d9 2k, * dk, —PoYo + (ke +Px + k)41
nilp) =

(2m)d—2 o 27 pg+ki + (ke +p, +k2)2
lAf foo dk I‘(2— )—POY0+(k +Px+k2)}’d 1
ks

(10)

d—2

27 (4m)7 [p3 + (ki +py +k2)2] =

Setting k; — oo from the outset makes the integral divergent for any d since the inte-
grand loses its dependence on k, upon integrating over k,. In this scenario, the dimen-
sional regularization fails, and epsilon poles responsible for renormalization cannot be iso-
lated. On the other hand, adopting a finite value of k; keeps the dimensional regulariza-
tion valid, and the epsilon poles can be determined from the expansion of ¥;(p) given as
Y1 (p) ~ —iApoYo — iBPyYd—1 — iCYy4—1 + O(p?). The coefficients A, B, and C are explicitly
given by:

Ar [ re-4<
A=—— f ag e ——o2
—ky (4n)T(£2+p§) 2
Ap [ (3—d)g2—p? r(z—i)
B =—Wff de V(i)[ d ,
—k¢ (4m)7 (£2+ 2)
1__
=—J 4 o(E)—— ) an
kg (4m) 7 (82 +p 2)
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These expressions result from integrating out k; and converting the k, and k, integrals
into an energy integral over & using a density of states given by

dk v/ k
(&) = f,:c% o T0(E—5y) = zg;f

A, B, and C with respect to € as:

. The epsilon poles can be obtained by expanding

A
:__fﬂ+o(1)’
Ne 4

C= A——kf +0(1), (12)
where S = Wzr(sm)' Importantly, the epsilon poles of A and B, contributing to the beta
functions, are independent of k. This indicates that the resulting beta functions and low-
energy effective theory at the fixed point remain independent of the cutoff scale k. In other
words, a UV-IR mixing does not occur in our regularization scheme. It is worth noting that
the epsilon pole of C proportional to k¢ does not renormalize the theory but merely shifts the
chemical potential. This term should be eliminated with a counterterm [27], and then the
theory remains cutoff-independent.

The absence of UV-IR mixing is attributed to the renormalizability of the theory atd = 5/2.
While integrals formally display cutoff dependence, dimensional analysis dictates that epsilon
poles manifest as dimensionless numerical constants due to the marginal nature of disorder
scattering at d = 5/2 [69]. Consequently, the isolation of epsilon poles remains achievable re-
gardless of the cutoff scale. However, caution is warranted in selecting a cutoff regularization
scheme to avoid altering the upper critical dimension. Specifically, we observed that introduc-
ing a cutoff scale in the k, integral, f i\A dk,,, modifies the upper critical dimension, leading to
UV-IR mixing. Refer to Sec. 4.1 for details.

The other one-loop corrections from disorder scattering (e.g., Fig. 3(f)) share the same
structure as % (p) and undergo similar treatment. However, certain two-loop corrections (e.g.,
Fig. 3(j-k)) necessitate a distinct cutoff regularization scheme. Nevertheless, epsilon poles
persist independently of the cutoff. Refer to Appendix C for further details.

Our regularization scheme is outlined as follows:

1. Introduce a cutoff in divergent momentum integrals arising from disorder scattering.
2. Compute the momentum integrals while maintaining a finite cutoff value.
3. Expand the resulting integrals using an epsilon parameter to extract epsilon poles.

4. Epsilon poles remain cutoff-independent if the cutoff regularization respects the theory’s
renormalizability.

It is noteworthy that we exclude cutoff regularization in the Yukawa coupling, as momentum
integrals stemming from this coupling are convergent.

3 Renormalization group analysis

3.1 Renormalized action and beta functions

We adopt a field-theoretic RG approach where loop corrections are computed order by order
in € [69]. The divergent parts in the limit € — O are absorbed into renormalization factors in

10
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@ (b) © (d) 272

0 o 0 ® 0

Figure 3: Selected Feynman diagrams for two-loop RG analysis. (a) One-loop self-
energy corrections for bosons stemming from the Yukawa coupling. (b-c) One-loop
self-energy corrections for fermions. (d) One-loop vertex corrections for backward
disorder scattering. (e-f) One-loop vertex corrections for forward disorder scatter-
ing. (g) Two-loop vertex corrections for backward disorder scattering. (h-k) Two-
loop vertex corrections for forward disorder scattering. (1) A two-loop boson-self
energy correction leading to diffusive Landau damping. In all diagrams, the solid
and wave lines stand for the fermion and boson propagators, respectively. The single
and double dashed lines represent forward disorder scattering and backward disor-
der scattering, respectively. Refer to the Appendix for the full library of Feynman
diagrams up to two-loop order.

the minimal subtraction scheme. The resulting renormalized action has the same form as the
bare action in Eq. (6) while momenta and fields are renormalized as [28]:

Z
ko=u"kop,
o=Mu Z 0,B
Z
ky=p '3k 5,
1= 7, 1,B
kx:.u‘_lka)
_1
ky:.u’ 2ky,B)
2\ b2\
a _ s o 42 2 a
w2 (2)'(2) .

_d—2
2

(i—)(i—) 24(q).- (13)

The coupling constants of the renormalized action are given by

2d+3  —

1 d—2
e LZo\ 2(Zy\ 2
g=u 2z, Zzzg,z(z—o) (2_1) g5
—€7—1r52 Z2 -2
7.\ —(d=2)
Ay = ,ﬁz;;zg(—Z) App, (14)
A

where g, A¢, and Ay, (g, Af g, and Ay g) denote the renormalized (bare) coupling constants.

11
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The RG flow of the theory is characterized by the beta functions: f, = ai_fu’ B A = T

and f5, = %. Here, u — 0 denotes the low-energy limit. Using the relationship between
the bare and renormalized couplings in Eq. (14), we represent the beta functions as [63]:

_ e_ 1 1_ 3
By=2¢ _§Z+§Z+ZZ_Z+2Y‘P_Y‘§+Y“’ ,

11
/3Af :Af[—ez+§z—§+4yw—nf:|,

11
/3Ab:Ab[—ez+§z—£+4yw—y%]. (15)
Here, z and 2 are the dynamical exponents, v, and y, are the anomalous dimensions of fields,

and yg, YA ™ and y,, are the anomalous dimensions of couplings, respectively. These critical
exponents are defined as

" 91n(Zy/Z,)

z=1 dlnu
14 2In(Z,/Z,)
dlnu
_13InZ,
Tv =3 dlnu’
_170Inz,
Te=75 dlnu’
dlnZz,
s = dlnu’
aanAf
Yo, = ang
BanAf
O (16)

For the computation of the counterterms, we utilize the bare fermion propagator and the
dressed boson propagator, which includes the Landau damping derived from the one-loop
self-energy correction [Fig. 3(a)]. These propagators are expressed as:

Tkovotky 11 +0kYd

GO(k) == P P 2 )
i kg + kL + 5k

Dy(q) = — . 17)
@3 + 825

r(3hrg)?
Here, By = m’

the computation of D;(q). Using these propagators is appropriate in the weak-disorder regime
of our interest: A¢, Ay < Ep, where Ey represents the Fermi energy.

We compute all renormalization factors of Zy, Z1, Zy, Z3, Zg, Za - and Z,, up to two-loop
order [63]. Refer to the Appendix for calculation details. We insert them into Eq. (16) and
solve the resulting equations order-by-order in €. As a result, we obtain the critical exponents

and I'(x) represents the gamma function. Refer to Appendix A for

12
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up to two-loop order as:

-1
z:[1—0.67g+0.5Af+0.5Ab—0.57g2—21ﬁf\ %—21&,\ ]%] ,
z=%14+A;+ A, —20(A; +Ay) g
f b f b N 5

v, =2[0.25A; +0.25A, +0.083%],
v, =0,
Yg=7y>
A2 ~ A 2 ~
Y. —dy, +7|—0.04A; +0.752L 3,54, +5.54,\ £ 45520\ £ |,
Af v Af N Af N
Y., :2[—4g—0.14Af —248%—2.33A; — 114, 1% ] . (18)
Here, &, A;, and A, are defined as:
4
i g3 % Af . Ap
§=———, Ap=—=—, Ap=——. (19)
35V/6nN 2m3T(3) 2m3T(3)

It is noteworthy that y, = 0 is sustained up to the two-loop order while challenged in the third
order, as noted in Ref. [70].
Substituting Eq. (18) into Eq. (15), we finally obtain the beta functions as:

Bz =2 [—0.676 +0.678 +0.17A; +0.17A, +0.578% + 7.3A; 1% +7.3A,

2|0Qz

Ba, =ZA; |:—e +0.333 —0.21A; +0.298* +3.58A; + 5.0A | ]% ]

_3A, [0.255f+0.755b+5.55b\ ]%—uﬁf‘\ %]

- . < . N . % x 18 x4 &
x =2A, | —e +4.335 +0.89A; +0.75A; + 2452 +2.35A; + 11A =+ 22A el
Bx, =% b|: € g £ b g gA¢ AS; b\ N

-1
5:[1—0.67g+0.5Af+0.5Ab—0.57g2—21Af\ ]%—21&,\ %] . (20)

Notably, the beta functions are expanded using an “effective” Yukawa coupling g ~ g4/ 3 de-
viating from a typical factor g2. This modification arises due to an IR enhancement factor of
g~%/3 resulting from Landau damping in the boson propagator [28]. Additionally, certain two-
loop terms involving interaction and disorder in the beta functions exhibit a fractional power

of g as %, exhibiting a more pronounced IR enhancement factor of g_4/ 3. As an illustration,
consider the two-loop vertex correction in Fig. 3(i). After integrating out the fermion propa-

2AZ d-1—1
gators, this vertex correction is expressed as 6 Ay ~ gN—f f dp f dky%(kf, + g2By |I|<k| i ) ,
p Y

where p denotes internal momenta except for k. The extra factor of |k, | in the denominator
introduces an additional factor of g~%/3 during the integration over k,, resulting in a total

enhancement factor of g~#3. Consequently, 6 A ¢ acquires a fractional power of g, expressed

P08 i
as5Af~ N NﬁAf
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Figure 4: (a) RG flow diagram for (¢,N) = (0.1, 00) in the g-Af parameter space
(Ay is set to zero). Here, € = d. — d represents the deviation of the system’s ac-
tual dimension (d) from the upper critical dimension (d. = 5/2), and N represents
the fermion’s flavor number. The green dot at (g, A £)=1(0.093,0) denotes the clean
non-Fermi liquid (CNFL) fixed point [ 28], which becomes destabilized after the intro-
duction of A £ The RG flow culminates in a non-interacting, strong disorder (NISD)
fixed poinEat (g, Af) = (0, 00). (b) RG flow diagram for (¢, N) = (0.5, oo). The red
dot at (§,A¢) = (0.31,0.43) represents a stable disordered non-Fermi liquid (DNFL)
fixed point. The blue dot denotes a saddle point at (g, A £)=1(0.16,1.22) separating
the DNFL fixed point from the NISD fixed point. The CNFL fixed point (the green
dot) is now located at (g, A7) = (0.38,0).

3.2 Disordered non-Fermi liquid fixed point

We commence our analysis by examining the beta functions in an infinite fermion flavor limit
(i.e., N = o0), where the beta functions take on simplified forms:

Bz = i§[—0.67e+0.67§ +0.17A; +0.17A, +o.57g2],

x. = ZA;| —€4+0.338 —0.21A; +0.295% + 3.5 A | —2A,| 0.25A; +0.75A, |,
i, = 8¢ 0.33 —0.21A; +0.293% + 3.5 A [ —2A,[ 0.25A +0.75A,
X, = ZAp| —e+4.333 +0.89A; +0.75A, + 243" + 2.35A;

i, = ZA 4.33g +0.89A; +0.754, +243% +2.3A

-1
7 = [1 —0.67§ +0.5A; +0.5A, —0.57g2] ) (21)

To examine the fixed point structure of these equations, it is crucial to analyze two distinct
cases separately: (i) the small € case (0 < € < €,) and (ii) the large € case (e, < € < 0.5). The
threshold value €. = 0.40 serves as a demarcation point, separating the two cases.

In the scenario of small €, the beta functions yield a single non-Gaussian fixed point, as
illustrated in Fig. 4(a). This fixed point is expressed as:

(8,A7,A;) = (—0.58++/0.34+1.17¢,0,0), (22)

which corresponds to the previously identified CNFL fixed point [28]. The variation of §* with
respect to € is illustrated by a green line in Fig. 5(a). To investigate the stability of this fixed
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point, we utilize linearized beta functions:

B 08
Ba, | =M| 84, | +0(65% 6A% 6A3). (23)

Here, 68, Af, and 5A, represent the deviations of the coupling constants from their fixed
point values, defined as follows:

6§=§-g",

The matrix M incorporates derivatives of the beta functions to the coupling constants:
98 3A; 9A,
| 9Bs,  9Bx,  9Ba;
| 98  8A;  aA,
dBx, 9Pa, 9Pa,
R (22 s GRSy
Substituting Eqgs. (21) and (22) into Eq. (25), we calculate the eigenvalues of M at the CNFL
0.678*+1.14(g*)> —e+0.338*+0.29(g*)? d—e+4.33g*+24(§*)2
_1-0.67g—057(2")> 1-0.678"—0.57(¢") ° 1-0.67*—0.57(g")?>
flow of 68, A, and 6 Ay, in the vicinity of the fixed point. Here, the value of " is specified
in Eq. (22). The negativity of the second eigenvalue signifies the relevance of (‘)'Af, while
5g and 5A, are deemed irrelevant as indicated by their positive eigenvalues. Consequently,
introducing 6 Af destabilizes the CNFL fixed point, ultimately driving the theory towards an
infinite-disorder regime, as depicted in the left top in Fig. 4(a):

(8,45,4;)=(0,00,0), (26)

(25)

fixed point as: which govern the RG

which we term a “non-interacting, strong disorder (NISD) fixed point.” As a result, we deduce
the absence of a stable fixed point in the small € scenario.

In the large € scenario, the beta functions yield three non-Gaussian fixed points, as illus-
trated in Fig. 4(b). One is the unstable CNFL fixed point given by Eq. (22). The other two are
determined by solving the following cubic equation:

g2 +1.073%>—(0.10+1.16€)g + 0.15¢ = 0. 27)

One of the two fixed points corresponds to a DNFL fixed point, which is given by:

1 A
g =—§(1.07+£C+ —0)

EC
Aj: =3.94¢ —3.948* — 3.35(5%)?,
Ar=0. (28)
Here, &, Ay and C are defined as follows:
- -1 J; V3i ’

Ag=1.44+3.48¢,
A, = 3.41+15.22€,

§IA1+,/A§—4A§)
C= :

2

(29
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Figure 5: (a-b) Depiction of the values of § and A ¢ at the three non-Gaussian fixed
points, illustrated in Fig. 4(b), as a function of €. (c-d) Depiction of the values of the
dynamical critical exponent (z) and the anomalous dimension of fermion fields (yq})
at the three fixed points as a function of €.

By substituting Eqgs. (21) and (28) into Eq. (25), it is straightforward to show that all eigen-
values of M have positive real parts, i.e., all perturbations 6 &, SAf, and 6A, are deemed
irrelevant at the fixed point, indicating that this fixed point is stable. The stable nature is also
visible in the RG flow diagram, as depicted by the red dot in Fig. 4(b).

The variations of §* and Ajj with respect to € are illustrated by red lines in Fig. 5(a) and

(b), respectively. Our findings reveal that §* increases as € rises, while A;ﬁ displays an opposing
decreasing trend. One possible explanation for this behavior is that the increase in € leads to
the growth of g&*, followed by a subsequent reduction in AJ’Z due to an amplified screening

effect within the term 3.53A .
The other fixed point is found to be:

1 A
g = —5(1.074- £2C + —0)

g2C
A% =3.94¢ —3.943" —3.35(3")%,
A: =0, G0

where &, Ay, and C are given in Eq. (29). The variations of §* and A;ﬁ with respect to € are
illustrated by blue lines in Fig. 5(a) and (b), respectively. By substituting Egs. (21) and (30)
into Eq. (25), specifically for e = 0.5, we determine the eigenvalues of M as —0.11, 0.45,
and 1.5. The ~corresp01}ding eigenvectors, or scaling fields, are found to be —0.0895 & + 5 A £
0.0476& + 6Af, and A;. Notably, the first scaling field is relevant, while the other two are
irrelevant, indicating the saddle point nature of this fixed point. Consequently, we deduce that
this fixed point represents a demarcation point between the DNFL fixed point from the NISD
fixed point, as depicted by the blue dot in Fig. 4(b), embodying a critical surface separating
these fixed points.
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Based on these discoveries, we conclude that the DNFL fixed point, as presented in Eq. (28),
governs the quantum critical behavior observed in 2D metallic systems near Ising-nematic
QCPs. Furthermore, our investigations reveal that the previously identified CNFL fixed point,
given in Eq. (22), loses stability in the presence of random potential disorder, limiting its
significance to an ideal clean limit. Additionally, considering a large e value (i.e., € = €.,
which encompasses the physical value € = 0.5) proves crucial for comprehending the critical
behavior at the QCPs, despite the formal classification of € as a small expansion parameter.

3.3 Role of two-loop corrections

At the one-loop order, the beta functions, as presented in Eq. (20), are simplified as [63]:
Bz = :zg[ —0.67¢ +0.678 +0.17A; + o.17Ab],
Ba, = zAf[ —€+0.338 —0.21Af] —5Ab[0.25Af + 0.75&,],
Ba, = Mb[ —€e+4.333+0.89A; + 0.75&1,},

-1
Z= [1—0.67g+o.5Af+0.SAb] . (31)

These one-loop beta functions lack the DNFL fixed point for any €, instead exhibiting a runaway
flow to the NISD fixed point. Thus, it is evident that two-loop corrections play a pivotal role
in the emergence of the DNFL fixed point, highlighting the necessity of considering them for
its identification.

To delve deeper into this aspect, we note that among the various two-loop order terms
outlined in Eq. (21), the presence of 3.5§Af in ﬂﬁf is crucial for the screening of Af, as
its absence results in the disappearance of the DNFL fixed point. This pivotal term arises
from two-loop order vertex corrections stemming from the Yukawa coupling, as illustrated in
Fig. 3(h-i). In contrast, the contribution from the one-loop correction, depicted in Fig. 3(e),
does not impact the beta functions due to cancellation with fermion self-energy corrections
(Fig. 3(b)), as dictated by the Ward identity. Consequently, the two-loop corrections represent
the leading screening effect for % ¢ within loop expansions.

For the screening term 3.5 A, to stabilize the DNFL fixed point, an additional condition
of € > €. = 0.40 must be met. To elucidate this, let’s suppose the system at the CNFL fixed
point, where the value of g is given by §* = —0.58 + +/0.34 + 1.17¢. For the screening term
to dominate over the one-loop antiscreening term of —O.21Af, and thus provide an overall

screening effect, ¢ must be large enough to satisfy 3.5(—0.58 + +v/0.34+1.17¢) > 0.21. If
x _ €—0.33§*—0.29(g*)?
f = T —0.21+3.5%*

from setting A, = 0. However, due to the additional screening effect from 0.175} in fB;, the
value of g* is lowered from its CNFL fixed point value. This reduction in * results in further
adjustments to A*, creating a feedback loop. If this adjustment between g* and A}i can bring

Bz = 0, the DNFL fixed point could be stable. Otherwise, the 0.175} term in f; could drive
g* to vanish, leading to a runaway flow towards the NISD fixed point. It turns out that with
€ > €., the necessary adjustments can be achieved, stabilizing the DNFL fixed point.

In contrast, A, begins to acquire the screening effect from the one-loop order correction,
presented in Fig. 3(d). The two-loop corrections, such as Fig. 3(g), primarily enhance this
screening effect. Consequently, the RG flow to A, = 0 appears consistently in both one-loop
and two-loop order analyses.

this condition is met, Af can have a fixed point value: A , as derived
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3.4 Physical quantities at fixed points

3.4.1 Critical exponents

In the limit N — o0, the critical exponents z and v, as presented in Eq. (18), exhibit simplified
forms:

1+Ar+A,
* T 10672 +05A, +0.5A, 05782
0.25A; +0.25A, +0.083>
T 1-0.67g+0.5A; +0.5A, —0.5732"

Y, (32)

Upon substituting Eq. (22) into Eq. (32), we derive the critical exponents at the CNFL fixed
point:

3
- 3-—2¢’

_0.16+0.28¢ —0.28+/0.34 + 1.17¢
o = 326 '

z

(33)

These expressions are illustrated by green lines in Fig. 5(c) and (d), respectively. For d = 2 or
€ = 0.5, these values simplify to:

z=1.5,
v, =0.017. 34)

The critical exponents at the DNFL fixed point can be obtained by substituting Eq. (28) into
Eq. (32), although the resulting expressions are too intricate to be presented. Their values
are depicted by red lines in Fig. 5(c) and (d), respectively. For d = 2 or € = 0.5, these values
simplify to:

z=1.5,
v, =0.13. (35)

Notably, v, = 0.13 at the DNFL fixed point significantly exceeds y = 0.017 at the CNFL
fixed point. This discrepancy arises from the substantial correction contributed by the forward
scattering A 7 at the DNFL fixed point.

3.4.2 Fermion’s density of states

We compute the fermion’s density of states resorting to the following formula [7]:
1 [ d%k . .
N(w)= _Ef WIm[tr{G(lko - w+ lO+,k)}], (36)

where G(k) stands for the full fermion’s Green function. The scaling behavior of G(k) is de-
scribed by the following scaling function:

G(knu':F): g(k0/|5k|z): (37)

2 12
e ||

which can be obtained by solving the Callan-Symanzik equation

[k Vi—Bp-Ve+1-27, |Gll,u, F)=0,
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Table 1: Critical exponents of the Ising-nematic quantum criticality in two-
dimensional metals. The DNFL and CNFL fixed points primarily differ in the ex-
ponent a, which describes the pseudogap-like behavior of the fermion’s density of
states, as defined in Eq. (39). a, 8, v, and 6 represent the critical exponents for
thermodynamic quantities defined in Eq. (43). v and 2z are the correlation length
and dynamical exponents, respectively. For comparison, the exponents for the fermi
liquid (FL) phase are also provided.

| a a p Y o v Z

DNFL 017 —1/2 3/4 1 7/3 1 3/2
CNFL 0.023 —1/2 3/4 1 7/3 1 3/2
FL | 0 - - - - |
— o = 3 — (s X R —(20 8 2@
where ka = Zkoa_ko +ZkJ_ 'VkJ_ +5km, F= (g, Af: Ab) and VF = (§5_§’ ﬁ, E_Ab) Refer
to the Appendix E for the derivation. Substituting Eq. (37) into Eq. (36), we obtain

[e%e) A
1 |w|)
N ~ dk dk ~|wl|®, 38
) f—oo Xf—/\ y|5k|1_zng(|5k|z o 8

where the exponent a is given by

a= (39)

Z
Note that the k,-integral should be regularized with a cutoff A so that it does not contribute
to the scaling [7].

We evaluate the exponent a by utilizing the values of z and Yo in Egs. (34) and (35) for
the CNFL and DNFL fixed points, respectively. At the CNFL fixed point, we obtain a = 0.023,
which is almost indistinguishable from that of an ordinary non-interacting fermion gas, a = 0.
On the other hand, at the DNFL fixed point, we obtain a = 0.17, which is anomalously large
due to the sizable correction from y, = 0.13. As a result, the fermion’s density of states is
substantially suppressed near the Fermi energy as N(w) ~ |w|%17 at the DNFL fixed point.

3.4.3 Thermodynamic quantities

We consider the following additional coupling terms [63]:
5S = J dx[ré*(x) —he(x) —hN(x)], (40)

where r is the tuning parameter for the quantum phase transition, h is an external field, and
N(x) = ¥(x)y;¥(x). Note that h is coupled to both boson field ®(x) and fermion field ¥(x)
since they have the same symmetries [71].
Considering 6S, we find the homogeneity relation of a free energy density
=—(T/V) lnf DUDdeS as

f(r,h)=b"PF(rbY”, b, TH?), (41)

where b is the scaling parameter that scales a system size L as L. — bL or temperature T as
T — b*T. Here, D is the effective scaling dimension of the space-time given as

D=z+(d—2)z+1. (42)
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When counting D, we should ignore momentum coordinate k, since it becomes redundant
when the whole Fermi surface is considered [28]. v = [r] is the correlation length exponent.
¥n = [h] represents the scaling dimension of h. We find y; as y;, = %(D + 1) —y, from the
coupling term for ¢ or y, = 1— 2y from that for W. It turns out that the former has a larger
value than the latter at the DNFL fixed point. This indicates that the former determines the
leading critical behavior, as explicit calculations confirm. Refer to the Appendix E for further
details. Therefore, we conclude y, = %(D +1)—v,.
From Eq. (41), we find thermodynamic quantities showing critical behaviors as

_ 0?2 _
Cv=—ﬁ~| =,
of
—_ 9T (B
m==Z5| ~C,
92f
X=—=|  ~IrlT,
an2|,
h o< |m|°, (43)

where ¢, is the specific heat, m is the Ising-nematic order parameter, and y is the susceptibility.
The exponents are given by

a=2—Dv,
p=S(D-1+2r,),
y=(0-2y,)v,

We evaluate the exponents by focusing on d = 2. Up to two-loop order, we find D = z+1 =5/2,
v=1, and y, = 0. Substituting them into Eq. (44), we obtain a =—1/2, f =3/4, y =1, and
6 = 7/3. The calculated critical exponents are summarized in Table 1.

3.5 DNFL fixed point at a finite N

We expand our RG analysis to finite values of N. Figure 6 showcases our numerical compu-
tation results obtained by solving Eq. (20) numerically. Our findings reveal the persistence of
the DNFL fixed point for N < N,, where N, denotes a threshold value. Beyond this threshold,
the DNFL fixed point destabilizes, and the RG flow exhibits a runaway flow toward the NISD
fixed point. The threshold value N, tends to increase with €, as delineated by the red lines in
each panel of Fig. 6, separating the DNFL and NISD regions.

Within the DNFL region, we observe that for a given N, the value of ¢ at the DNFL fixed
point increases with e [Fig. 6(a)], while the value of A s shows an opposing decreasing trend
[Fig. 6(b)]. These trends align with those observed in the infinite-N case, as illustrated in
Fig. 5(a-b). Furthermore, for a given ¢, the values of g and Af exhibit opposing trends of
increase and decrease, respectively, as N increases. One possible explanation for this behavior
is that the increase in N amplifies the screening effect within the term 7.35f v &/N for g,
leading to a reduction in g. This reductign, in turn, amplifies A; by weakening the screening
term 3.58 A, leading to an increase in Ag.

Additionally, we compute the values of z and y_ at the DNFL fixed point, as presented
in Fig. 6(c-d). Our findings reveal that the value of z increases with an increase in € while
remaining largely unaffected by N [Fig. 6(c)]. Conversely, the value of y_ shows increasing
trends as N increases, while remaining largely unaffected by e [Fig. 6(d)]. Notably, these
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Figure 6: (a-d) Depiction of the values of g, A £, %, and v, at the DNFL fixed point as
a function of (e, N~'/2). Each panel utilizes a color scale to represent the correspond-
ing quantity, with the empty region denoting the absence of the DNFL fixed point,
characterized instead by a runaway RG flow toward the NISD fixed point. The red
line, marking N~'/2 = 0.168¢ — 0.0669, delineates the boundary separating these
two regions.

variations mirror those of § and A £, respectively. These trends suggest that ¢ and A £ are
primary factors in determining the values of z and y , respectively, through the relationship
presented in Eq. (18).

3.6 Stability of DNFL fixed point
3.6.1 Higher-order corrections

It’s important to examine the persistence of the DNFL fixed point against higher-order cor-
rections since its existence may not be guaranteed by taking a small e limit. This contrasts
with the CNFL fixed point, where such a limit can make higher-order corrections arbitrarily
small, ensuring its persistence. However, the existence of the DNFL fixed point relies on the
condition € > €., so the small € limit cannot be taken in this case. Consequently, one must
verify the robustness of the DNFL fixed point by explicitly calculating pertinent corrections in
each order. Here, we explore the stability of the DNFL fixed point against third-loop-order
corrections based on a scenario inferred from our two-loop-order results.

We begin by examining possible three-loop-order corrections computed using the fermion
and boson propagators presented in Eq. (17). We assume that three-loop fermion self-energy
corrections consist exclusively of terms proportional to 3. Terms involving a mix of § and
A ¢ are expected to exhibit strong IR enhancement factors and are therefore disregarded in
the large N limit (see the Appendix C.2 for further discussion). Three-loop-order vertex cor-

rections for forward scattering can be expressed as gAj%. In both cases, pure disorder con-

tributions, A2, are expected to lack epsilon poles (see the Appendices C.2 and D.1 for more
information). Three-loop-order vertex corrections for the Yukawa coupling are disregarded
due to their cancellation with the fermion self-energy contribution.

The boson propagator undergoes alterations due to the two-loop self-energy correction
I

[Fig. 3(1)] as follows: D,(q) = [qy + ngd |q| Hz(q)] where I1,(q) = —ngde e
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Figure 7: (a-b) Depiction of the values of g, Af at the DNFL fixed point as a func-
tion of (cq,c3), for € = 0.5 and ¢; = 0.5. Here, (cy,c3) are the coefficients of the
three-loop order corrections in the beta functions presented in Eq. (45). Each panel
utilizes a color scale to represent the corresponding quantity, with the empty region
denoting the absence of the DNFL fixed point, characterized instead by a runaway RG
flow toward the NISD fixed point. The red line, marking c; = —0.3526¢, —0.6826,
delineates the boundary separating these two regions. (c-d) The minimum threshold
value e, to maintain the DNFL fixed point, plotted against (c,,c3). c; =0and ¢; =1
are utilized for (c) and (d), respectively. The color scale indicates the value of €,
in each panel. The red line delineates the boundary where €, exceeds the physical
value of € = 0.5, indicating the absence of the DNFL fixed point within the physical
reality. The empty region denotes the absence of the DNFL fixed point for any value
of e.

(B4 ~ 0.05) corresponds to diffusive Landau damping [3]. In higher-loop analysis, this mod-
ification might give rise to additional corrections not captured by loop expansions using the
propagators presented in Eq. (17). To assess this effect, we expand D,(q) with respect to

_ o [_ 24 @ laP" : :
I,(q) as Dy(q) = D1() 2. neo| —D1(q)g=A¢By TR The scaling analysis tells us that all
Yy

higher-order terms in the expansion have the same superficial degree of divergence as the
zeroth-order term. This indicates that loop corrections can still be regularized using dimen-
sional regularization. For example, using Dz(q) we find the ﬁrst order fermion self-energy

le

correction from the Yukawa coupling as ©; = Zn 0d [ e /zgl 7 :I , where a,, is a numer-
ical coefficient independent of the coupling constants. Note that the expansion parameter has
a negative power of N. As a result, this correction can be dropped by taking the large N limit,
at least, in the low but intermediate temperature scale.

Based on the above observations, we posit that the beta functions for § and A ¢ at the third

order in the infinite N limit are represented as follows:

2-loop o
/33_10013 _ ﬁg N ZZ loop I:C ~4]
g 1 _gZ—loopClgii 1 _§2—loopclg3 18 s
2-loop
A =2-loop
3-loop _ Ag 2 [ A =3 A2 52 ]
ﬂAf 1 — g2loopc, 33 T 1 —z2loop¢, 53 0.5¢;A78" + CZAfg B fg (45)
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Here, ﬁgz'l(mp and ﬂZ‘lOOp (/3;"100P and /J’Z'IOOP ) denote the two-loop (three-loop) beta functions,
f f

and z%1°°P denotes the dynamical exponent Z found in the two-loop order. The two-loop beta
functions and dynamical exponent are taken from Egs. (21) and (32) with setting Ab =0.In
principle, one can determine the coefficients c;, ¢y, and c3 through three-loop-order calcula-
tions. Here, we investigate the stability of the DNFL fixed point within a weak-perturbation
scenario: |cq],|cal, |c5] < 1.

Figures 7(a-b) illustrate how g* and A? vary as (cq, c3) changes, based on the conditions
3-loo 3-loo
ﬂg P _ ﬂAf P
the magnitude of either c, or c5 increases, likely due to the enhanced screening effect on Ajﬁ.

= 0. Our findings reveal that when ¢, and c5 are positive, A;’Z decreases as

When this change of A} is feed-backed to ﬂgz'IOOP, g* displays an increasing trend due to the

reduction in its screening term 0.175;2. Conversely, when ¢, and c; are negative, the rise of

their magnitude indicates the increase of A;‘; and subsequent reduction in g*. Furthermore,

when |c,| or |c3| becomes too large in the negative range, the DNFL fixed point is destabilized
instead showing runaway flow to the NISD fixed point, as illustrated by white devoid regions
(Fig. 7(a-b)).

Figures 7(c-d) illustrate how the DNFL fixed point becomes destabilized through changes
in €., in response to variations in (cy,c3). Our results show that positive values of ¢, and c;
tend to decrease €., while negative values lead to an increasing trend in .. When |c,| or |c5]
becomes too large in the negative range, €. can exceed the physical value, €,, = 0.5. In this
regime, achieving a balance between A* and g*, as detailed in Sec. 3.3, becomes unattainable
for any € < €,,. Consequently, the DNFL fixed point disappears, indicating a runaway flow
toward the NISD fixed point. It's worth mentioning that additional screening terms, such as
a positive ¢; in /Sz'flmp, can broaden the stability range for the DNFL fixed point, evident from

comparing Figures 7(c) and (d) obtained from different values of c;.

We anticipate that quartic or higher-order corrections in f3 A could have a similar impact.
Their screening or antiscreening nature suggests a corresponding increase or decrease in €.,
particularly when the magnitudes of these corrections are not excessively large. The DNFL
fixed point is likely to remain stable if the overall effect of these corrections is screening.
However, if their effect is antiscreening, it must be weak enough to keep €. < €, The stability
of the DNFL fixed point seems plausible given the relatively low fixed point values of the
coupling parameters—specifically, §* ~ 0.3 and A; ~ 0.4 for e = 0.5. If these coupling values
ensure that higher-order corrections are smaller than the two-loop screening term, the DNFL
fixed point may withstand these additional antiscreening perturbations.

3.6.2 Interpatch disorder scattering

Up to now, our focus has centered on the two-patch model, which incorporates two antipodal
segments among the entire Fermi surface, as depicted in Fig. 1. While this minimal model nat-
urally extends the previous clean model [6] to account for random potential disorder, broad-
ening our approach to encompass the entire Fermi surface becomes crucial for understanding
physical phenomena involving its entirety, such as Cooper pairing [72]. Hence, we now turn
our attention to an extended multi-patch model [72], characterized by a Lagrangian density
given by:

NP NP
— di:
L=>L,+ Y, ci (46)
a=1 a,f=1(a<p)

Here, the indicesa,f =1,---, N, denote N, pairs of antipodal patches across the Fermi surface
[Fig. 7]. The first term in Eq. (46) represents the original Lagrangian, as presented in Eq. (1),
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(@,5) = (4,4)

(a,5) = (5.+)

(a,5) =(3,+)
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(@9 =65 (@) =24

(a,5) = (1,-) (a,8) = (1,4)

(a,5) = (2,-)

(a,5)=(3,-) (a,8) = (5,-)
(a,5) = (4,-)

Figure 8: Schematic illustration of an extended multiple-patch model with inter-
patch disorder scattering. This model comprises N,, pairs of two antipodal patches
(e.g., N, = 6 in this illustration), including the original patches (depicted in red) and
additional segments stemming from the entire Fermi surface (depicted in blue). The
green and magenta arrows represent the original forward (Af) and backward dis-
order scattering (Ap), respectively, while the cyan arrows depict interpatch disorder
scattering (Af /5)

which is replicated for each pair of patches denoted by a. The second term represents a newly
introduced “interpatch disorder scattering" term that mixes fermions from different patches

(a# pB):

== ZZZ = AR AR OV CETNTINCD

a,b= O] 1s,s'=%

N
R OV CE (D)
a,b=0 j=1s=
R N
-2 ZZ Bl G+ @y (T (K =@l (). (47)

a,b=0 j=1s=%

Here, AJ; 5 shift fermions within their respective patch, while A? s transfer fermions from one
to another. These two terms conserve the sum of Fermi momenta of fermions, making their
influence more significant compared to other nonconserving terms for low energy fermions
near the Fermi surface [27].
We investigate the stability of the DNFL fixed point concerning the introduction of inter-
e

patch disorder scattering. Utilizing Eq. (15), we formally express the beta function for A’; 5 as
follows:

ﬂAf,e:A£/§|:—€Z+ -(E-1)+4y, _Yfe] (48)
ap

where the critical exponents z, y_, and y e are defined in Eq. (16). Evaluating these ex-
Bap
ponents generally poses challenges as relevant Feynman diagrams intricately involve fermion

propagators from different patches, not representable in global momentum coordinates. How-
ever, one-loop self-energy diagrams are manageable despite the challenge, as all propagators
are confined within a single patch. Here, we ca}culate §~and v, considering these one-loop
self-energy diagrams. The contributions from g, A¢, and A, are provided in Eq. (18). The rel-

evant diagrams for AJ; /§ resemble Fig. 3(c), leading to the following evaluations up to one-loop
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order in the N — oo limit:

7=[1-0.67§ +0.54; +0.54, +0.58 + 0 (g% A*)]"

’}/q/ 2025£(Af +Ab+Aaﬁ)+O(g2,A2) ) (49)
R 1 f
where we denote A = i) > pta (A ap+ A ﬁ) Utilizing this result, we derive 8 alt as:
foe fie fre
Base = FA, 5 +0.758,5 A0 —y ”Aaﬁ, (50)

where F, the coefficient of the linear term, is given by F = 2(—e +0.33g + 0.755f +0.75A,).
At the CNFL fixed point, F remains large (e.g., F ~ —0.33 for ¢ = 0.40 and F ~ —0.43 for
€ = 0.5), indicating the strong coupling nature of A); g However, at the DNFL fixed point,
its sign reverses or weakens significantly (e.g., F ~ 0.12 for € = 0.40 or F ~ —0.021 for
€ = 0.5), attributed to a large contribution from the anomalous dimension of fermion fields
(4y, ~ A 5 ~ 0.46). This suggests the potential irrelevance of A€ at the DNFL fixed point,

af
maintaining the stability of the DNFL fixed point against their introduction. Nonetheless, as

Y e includes additional linear-order contributions concerning g and A £, the analysis remains
NZ

ap
inconclusive. Identifying the relevance of the interpatch disorder scattering, necessitating the
evaluation of y fe and potentially higher-order RG analysis, represents a significant future
A

ap
research direction.

4 Discussion

4.1 Alternative cutoff regularization scheme

One may employ the following alternative cutoff regularization:

) lAf 4%k, J dk, f“ dk, —PoYo+ (ky +px +k3)74 51)
p)= .
%1 (2m)d-2 n 27 P+ lky |2+ (ky + py +k2)?
3—d
In this scenario, we derive B = %L),d and A = C = 0. The upper critical dimension

(4m) 2 [p3] 2

for the disorder scattering is now d. = 3, distinct from d. = 5/2 for the Yukawa coupling.
Consequently, to determine the e-pole of B, we need to introduce a double epsilon expansion
scheme [38], where d = 3 — € — €, and both € and €. are regarded as small expansion pa-
rameters. Using this scheme, we find B = N(ﬁf = f + O(1). The e-pole now depends on
the UV-cutoff A, resulting in UV-IR mixing as observed in the prior studies of the spin-density-
wave QCP problem [9, 10]. Therefore, our original regularization scheme offers a more ro-
bust framework for capturing the scaling behavior of the system compared to this alternative
scheme without UV-IR mixing, remaining insensitive to cutoff dependencies or microscopic
details.

4.2 Random mass disorder for critical bosons

In this study, our focus has been on the inclusion of random potential terms for fermions.
However, it is important to recognize that random terms for bosons could also be significant
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and warrant consideration [73]. To shed light on how such terms can be incorporated into
our framework, we examine the following random T, disorder [38]:

L3

a,b=1

dkod?kdk! d%k'd?
f 0 0 T pa(k + ) (k)db (K — )@ (K').

(2m)8

This term leads to a first-order boson self-energy correction of the form:

Jdd‘zqidqxdqy 1 N (S—Zd) dq,
2m)d ¢ +g%B4lqli/lg, | 3 2n

Notably, the integral for q, cannot be regularized since the remaining integral is independent
of g,.. One possible solution is to reintroduce the omitted q)z( term in the boson propagator. In
g, dq,dq, 1

(2m)d a2+q2+g2B4lql*1/lqy |
that this correction is UV-finite near d ~ d. = 5/2. However, retaining the q)Z( term might
potentially interfere with the anomalous scaling law described in Eq. (7) at the Ising-nematic
QCP In consideration of this possibility, we tentatively conclude that the influence of random
terms on bosons may not be thoroughly investigated within the limitations of our dimensional
regularization scheme.

this scenario, the self-energy becomes l"f ~ F(%), indicating

4.3 Extension to other quantum phase transitions

Our RG framework is potentially applicable to other metallic quantum critical systems, char-
acterized by an order parameter with zero center-of-mass momentum and critical fluctuations
coupled to a finite density of fermions via a Yukawa coupling. In these systems, the two-patch
model description, combined with a parabolic dispersion, is appropriate, and the dimensional
regularization presented in Egs. (7) and (8) remains valid. Notable examples include itiner-
ant ferromagnetic quantum phase transitions [3], U(1) spin liquids [ 74-78], and the half-filled
Landau level [ 79-83].

As an illustration, consider the case of the U(1) spin liquid [74-77]. In this scenario, the
Yukawa coupling term in the action of Eq. (6) requires modification:

lg I, d a lg
——d(q)¥(k+ 1 Yi(k) » —=
N (¥ (k +q)y 1%} (k) Wi
while the other components remain unchanged [7]. The transition from y4_; to y, in the
vertex alters the sign of the primary screening term 3.5 A finf A Notably, the sign alteration

®(¥ (k + @yl k),

invalidates the screening of A s through this term. Consequently, we speculate that the RG flow
may exhibit a runaway flow to the strong disorder regime, and a DNFL fixed point might not
manifest in this case, at least within the scope of the two-loop order.

5 Conclusion

We have investigated the impact of random potential disorder for fermions on the scaling
behavior of the two-patch model for two-dimensional Ising-nematic quantum critical points.
Employing a controllable renormalization group theory, we systematically incorporate quan-
tum corrections stemming from the random potential and the Yukawa coupling between elec-
trons and bosonic order-parameter fluctuations through a perturbative epsilon expansion. Ex-
tending our analysis beyond the conventional one-loop level to the two-loop order, we have
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unveiled a stable disordered non-Fermi liquid fixed point for the two-patch model and com-
puted critical exponents up to the two-loop order. Our investigation sheds light on the scaling
characteristics of two-dimensional metallic quantum critical points in the presence of random
potential disorder. Furthermore, our findings highlight the essential role of higher-order loop
corrections in elucidating the intricate interplay between quantum criticality and quenched
randomness in two dimensions.
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A One-loop self-energy corrections

Table 2: Feynman diagrams for one-loop self-energy corrections. Here, Ay, A;, and
A, represent the coefficient of the € poles computed from the corresponding Feynman
diagrams (see Eq. (E.10) for the definitions). IT;(q) represents the Landau damping
term for the dressed boson propagator.

Diagram No. BS1-1 FS1-1 FS2-2 FS1-3
Feynman Dia- N LI
gram >ty ety
Renormalization -1 Ay =-g, Ag=—A;, Ag=—A,,

M, (q) =—g*B, %+ °_ 2 _ 14 Y
factors ol Ay =—¢ Ay =—3A¢ Ay =—354
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A.1 Boson self-energy

A.1.1 Feynman diagram BS1-1

The boson self-energy correction in Table 2 BS1-1 is given by

d 1k Siqk —(K+Q)-K
@m)a+ [62, +(K+Q)*][57 +K2]

g2 [ ATk k k)] =2g?
M(g)=—¢ Wtf[)/d—ﬁo( +q)Ya1Go(k)] = 2¢

Integrating over k, and k,, we obtain II;(q) as

dKdk, ([K+ Q|+ [K|)(1— fas _ f _(K+Q)-K)
(2m)d (2k,q,)? + (IK+Ql + [K|[)? 4qu| (2m)d-t K+ QK| J°

Using the Feynman parametrization method [69], we obtain

(@)= J J —2[x(1—x)]2K?
I;(q an | yl (2m)d-1 R2 4+ x(1—x)Q2 °

where K = K+ xQ. Integrating over K, we obtain

2 d—1 3—d 1
QI 1r(35d) ,
L@=—"""—22| dx[x(1-x)]7.
arlg, |(4m) T Jo

m(q) = g*

Integrating over x, we finally obtain

ol _ réEhrEy
47 2n(4m)@d-Di2r(d)”

1((1)——823(1
lg,| °

A.2 Fermion self-energy
A.2.1 Feynman diagram FS1-1

The fermion self-energy correction in Table 2 FS1-1 is given by

s =-4 [ ok rap+ormw=S [ L2k _(P;;j P L AC)
Integrating over k, and k., we obtain %(1) as
(1) J dKdk, —(P+K)-T . ig? J dK —(P+K)-T .
2m) |p+ K||:k2 + g2By |I|(1Li|l ] 3v3N) @Mt py K||:g23d|K|d—1:|1/3

Using the Feynman parametrization method, we obtain

igh® f X3 (1-x) 5 T(4£2) f —(1—x)(P-T)
=—= | d
= 33BN Jo TR (2m)

d+2 °

(K+ xP)+x(1—x)P2] ©
Integrating over K and x, we obtain

5(1) ig*’r(=24)p-1) (! ; xF(1-x0)T is'g43 Pp-T
= — X —
3VIBNIPI Jo T amTrhr(sh)  6V3BIAN e

+0(1),

/ 54/3

/ g
where S = S/3BN”

and B =limg_,5/, B4. Defining § = we finally obtain

(471)3/41"(3/4)

%(1) :—g(iP-I‘).
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A.2.2 Feynman diagram FS1-2

The fermion self-energy correction in Table 2 FS1-2 is given by

dd4+1k d% —povo— (PL+ki) vi+06p4kYd

2(2)=-A ——0o(k Go(p+k i A
RI==8 | Gy Pl Gole+ Bran =18y | G o F e+ o2,

B

where d%k = dk 1dk,dk, . To find renormalization factors, we expand %.(2) for p as

%(2) =i + Zy(ipovo) + Tp(ipL - v1) + Be(i8,p14-1) + O(p?),

where 2, 2, 2}, and X, are, respectively, given by

dk ki -y, +8iyan
(2m)d ki + 62+ p;
[ di%k 1
J @m)dKE +62+p2’
[ qix —2ki;+1; +87 +pg
J @M N 4524 p2]
[ d%k —k]+6,—
J @M 4524 2

2

ZOZAf

Integrating over k|, we obtain

dkydk,  SpyaT(2—9)

20: 5
2 _d
(2m)? (47t) [6k+p0] 2
o dk,dk, re—4%)
a= 2 _ _d >
(2m) (47t)dz_2[52+p(2)]2 2
dk, dk, (462 — 2ap2)T3—9)
ZC:_ f

C® (amy2 [z + 03]

where X, vanishes.
It turns out that these integrals diverge when integrated over k,,k, € (—00,00). For
example, X, is calculated as

JOO dk,dk, T(2—9) :f‘” dk, T1(5%)
oy (2m)2 [51%+p(2)]2_% oo 2T (41)3|py[32

which integral trivially diverges since the integrand is independent of k.. Thus, the dimen-
sional regularization fails in this case. Integrating over k, first does not help, either. The
problem here is that there are infinitely many points of (kx, k,) in the integral region for the
contour Oy = ¢, where c is a constant including ¢ = 0.

Note that this is an artifact of the patch theory. If the whole Fermi surface had been taken
into account, such divergence would have not arisen. In this respect, we regularize the integral
for 33, by introducing a cutoff scale as k, € (—k;, ©0). Then, %, becomes

J.:

B

= dk, r2-$) _ VARG - Dea(i)
J [52 3]2—% B 4m2T(4—d)(—ks)e
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where ¢,4(x) = 2F1(M %, % —xz) isa hypergeometnc function of x. Expanding this

expression with €, we find an e pole as M;/(El)e 2mr(] )ln( Ipol/lkg) + ---. The finite part
7

still diverges in the limit of k; — ©o but an € pole can be extracted out regardless of k.
Then, the problem is whether we can find singular corrections corresponding to € poles

regardless of ky or not in general. For this matter, we consider a general expression for the

integral of f d(kz d)lz f(6y), where the integrand depends on k only with 6. Otherwise, there

would be no divergence associated with k. Converting the momentum integral into an energy
integral, we obtain f_olj dEv(E; ke)f (&), where the density of states is

oE; kf)—J dkf R G SR s
—ky

We split the integral into three parts as follows

oo

oo oo 0
J div(i;kf)f(§)=f dfv(i;kf=0)f(€)+f dé[v(i;kf)—v(i;kf=0)]f(€)+J d&v(&;kp)f (E)
—k; 0 0 —ky

_ 1 (% ke [ £(&) 1 (°
_27:40 dEw/Ef(éHZ—nZL dim+2—7ﬂfkfd€\/5+kff(€)- (A.D)

Power counting tells that only the first term is singular if f (£) has an &-power lower than —1/2.
In fact, most of loop corrections except for 3, satisfy this condition because we are performing
the renormalization group analysis around the upper critical dimension. For example, we

consider 3, where we have f(§) ~ E_%_E. In this case, the first term, foo d& £717¢ is singular

in the e — 0 limit while the second term, foo d& £727¢ is not. As a result, we may find an e
pole by writing the integral as

| S| Smeo-| EvEeon, 2
& T J_ o 2T 0 27T

where the finite part of O(1) depends on k; and may diverge in the limit of k; — o0.
Using Eq. (A.2), we find

o EyaaT2—9)
ZOZAf f_k 27-[2 i)

" a2 Z[e24p2] 2
2a=—Aff dg JE re-49
0

27 amy 224 p3

S=A, J dg f(azggz_mpo)r(:_
0 (4n) = [§2+p§] 2

where we have not used Eq. (A.2) for I, because it gets a singular correction from not only
the first term but also the second term in Eq. (A.1). Integrating over €, we have

(s ra-n)e (Y
Yo = Ap— d("ZfLB—AfSI(km D+0(),
n(4m)s (— k)= €

[Qre2)  Arsvz

Te=—A——4 = +0(1),
n(4m)% |po| 2" e 4
rre24) SvV2
Ec :_Af 5 zd = f +O(1)
27(4m)2 |po| T e 8
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I(3)r(3—d) —2d 5-2d 3—d s
where ¢/ (x) = Ty 21 32d 52d 34 _x2) and S Wzr(s/df)' Defining
Af = ﬁiAf , we finally obtain

(2 Af . Af 5 Af e

=—— —-— )+ = 1)
(2) A (iPovo) e (i6pY4-1) e (ikfyg—1)
A.2.3 Feynman diagram FS1-3
The fermion self-energy correction in Table 2 FS1-3 is given by
di+1k , d%% —PpoYo— (KL —P1) v1—6kpYa
B@)==4y | G6ka)Gylk—p)=iAy | oG :
(2m) (2m) (ky —p1) +5k_p+Po

To find renormalization factors, we expand >(3) for p as

2(3) = iZg + Zu(iPov0) + p(iPL - ¥ 1) + Z(i8p74-1) + O(p?),
where 2, 2, 2}, and X, are, respectively, given by
d% —K| 71 —6kYa-
% =Abf(2 )d ltz le lgzd :
T 1 TPy~ Ok
dik 1

J

Ya == (2m)d k2l+p(2)+51%’

5, = dk —Zkii+ki+5ﬁ+pg,
(2m)d [k2l +p(2) + 51%]2

5 - dik —ki +62—

(2m)d [K% +p2 + 6212

The above expressions are similar to those of %(2). As a result, we obtain

JAVRSS JAVNSS Ay .
%(3) = —?(lpoYo) - §(15p}”d—1) - E(lkad—l),

V2SA,

where A, = 7

B One-loop vertex corrections

B.1 Forward Scattering
B.1.1 Feynman diagram FV1-1

The vertex correction in Table 3 FV1-1 is given as

dd+1k
_ A2
MA)=A J(Z 3

dd+1k Af
2

0(ko)Ya-1Go(k +p1)Yda—1 ® Y4-1Go(—k +Pp2)va—

——A
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Table 3: Feynman diagrams for one-loop self-energy corrections. Here, Ag, A -
and Ax , Tepresent the coefficient of the € poles computed from the corresponding
Feynman diagrams (see Eq. (E.10) for the definition).

Diagram No. FV1-1 FV1-2 FV1-3 Fvl-4 FV1-5 FV1-6
A A B .
Feynman Dia- N 7 hA 2% ,’,""
A A P N N I nn IENCG SECSe
gram N \ L% Sse N\
A A B N
Renormalization _ R _ 3% __ _ 35 —_R& =
factors An; =38y Ap, =—78¢ An, =—By AAf _ZA_; An, Ap Aa, =0
Diagram No. YV1-1 YV1-2 YV1-3 BV1-1 BV1-2 BV1-3
g 3 A Y B
Feynman  Dia- | i Y A T S
gram \ uw \
o e v A N
Renormalization _ < = s _ 1% _ 1% —
factors Ag=—34¢ Ag =Tl Ay =68 Ap, =—38y Ap, =380 An, =0

where D and N are given by

D=[(K+P)*+ 5§+p [(K—Py)%+ 52k+p ],
N = 614p, Yd—1 ® Ogup,Ya—1 — (K+P1) v ® (K—Py) -y
—(K+Py) vy ®b_i4p,Yd—1* Orip, Va1 ® (K—Py) - 7.

In the numerator, there are four terms whose matrices are given by v4_1 ® Y4-1, ¥i ® Yi>
Yi®Y4q—1,and y4_; ®v; withi =1,--- ,d —2. The first two would diverge while the latter two
would vanish after being integrated over K. Among the two non-vanishing terms, the term for
Yd—1 ® Y4—1 gives a renormalization factor for A;. On the other hand, the term for y; ® y; is
an artifact stemming from the generalization of the dimension from d = 2 to general d, and
it should be eliminated by a counterterm. From now on, we focus on the term y;_; ® Y4_;
giving the renormalization factor.
For future use, we define the following quantity:

1
0Ar(a)= lim —trl M(a)ys_1®v4-1|, (B.1)
r(a) m 2 [ (@)y4g-1®74 1]
where {p;} denote external momenta such as p,, p, in M(1). This quantity is directly related

to a renormalization factor, so we just call it a “renormalization factor".
Using Eq. (B.1), we find the renormalization factor 6A¢(1) as

dk, J f‘” dk, (ke + K3k, +K2)

— _ A2
P8 =47 | Gy (U + k22416 (o, + k22413 ]

Scaling variables as k, — |k, |k, and k, — 4/ |k, |k, we obtain

Joo dk, (ke H Rk +K2)

oo 7
SAF(1)=—S4 A2 | dk, k"2 ,
A1) ="5a2 fLO L J_ [(ee +52)2 + 1][(—k, +K2)2 + 1]
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where S;_,=2/ ((47‘5) (d 2)). We point out that p, should be introduced as a lower cutoff

for the infrared convergence. We find an e pole from the k,-integral as
f [:o dk Lki_w 2= % + O(1). The remaining integral is done as
J f (x +y*)(=x+y?) _ V2
ZTE [(x+y2)2+1][(—x +y2)2+1] 16
As a result, we obtain )
()= 4e

B.1.2 Feynman diagram FV1-2
From the vertex correction in Table 3 FV1-2, we find the renormalization factor 6 A(2) as

dk, dk,dk, 52
d—2 2 2"
e | P [5711d]

5A¢(2) = A2

We encounter the same divergence as with %(2). Regularizing the k,-integral with k¢, we

obtain
5A5(2) =—A} dk, J

JOO dk, (ke +k3)
(2 )d -2

[ (ky +k2)2+k2]

To find an € pole, we may set k; = 0 as proven in Eq. (A.2). Scaling variables as k, — |k, |k,
and k, — +/ |k |k,, we have

© dk, (ke +k3)?
f +O(1).

o0
5A7(2) =545 A2 J dkLkd_'J
Po [ (ks +k2)2+1]

d=7/2 — + O(1). The remaining integral

fwdifwd_y C+y? 372
o 2m —wzﬂ[(x+y2)2+1:|2 167

3AfA;
4e

We find an € pole from the k -integral as f dk k|
is done as

As a result, we obtain

5A4(2)=—

B.1.3 Feynman diagram FV1-3

From the vertex correction in Table 3 FV1-3, we find the renormalization factor 6 A f(3) as

dk 0 dk (k +k2)2_ 2
5A5(3) = —24% L J J
3= @)= [k +R22 412 T

Setting k; = 0 and scaling variables as k, — |k |k, and k, — 1/|k| |k,, we have

f‘” dk, (ke +k2)*—1

50;(3) = —254_5A2 J dkLkd__ J
[(ky + k2)2 + 1]
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d-7/2 _

We find an € pole from the k| -integral as f dk k|
is done as

+ O(1). The remaining integral

f f dy (x+y?)?-1 _Q
27[ (x+y2)2+1] 81’

As a result, we obtain

AA
5Ap(3)=———
€

B.1.4 Feynman diagram FV1-4

From the vertex correction in Table 3 FV1-4, we find the renormalization factor 6 A¢(4) as

dk * dk, (ky +k2)2
s L2
Af(4) =—A; (2m)d-2 27-5 [(k. +k2)2+k2]

The integration is the same with 6 A¢(2). As a result, we obtain

30,4,

0A =—
(49 4e

B.1.5 Feynman diagram FV1-5

From the vertex correction in Table 3 FV1-5, we find the renormalization factor 6 A f(5) as

dk
5A;(5)= —2AfAbf (271); - J

The integration is the same with 6A¢(3). As a result, we obtain

Joo dk (k +k2)2— 2
27 [ (k, +k2)2+k2]

ArA,

B.1.6 Feynman diagram FV1-6

From the vertex correction in Table 3 FV1-6, we find the renormalization factor 6 A((6) as

5a(6)=— 25 f f“ dk, (ks +K7)?
! N (2“)‘1 ! [Cey +K2)2 + k2]’ [k2 + g2B, "f,'{d_ll] '
Y

Shifting k, — k, — k}z, and scaling variables as k, — |K|k, and k, — [ngdlKld_l]l/Bky, we
have

25, ,8**A
5Af(6)=—_d 11/3 ff K 8J
B,/”N Ipl

where S;_; = 2/ ((47‘5)‘1_11"(‘1—51)). Integrated over k,, this correction vanishes due to the

J‘” dk K2 —1
2m ) o, 2T [k§+1]2[k§+1/|ky|]’

following identity: f_ozo dx(xxzzﬁl)2 = 0. As a result, we obtain
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B.2 Backward Scattering

B.2.1 Feynman diagram BV1-1
The vertex correction in Table 3 BV1-1 is

dd+1k
(2m)d

Similarly with Eq. (B.1), we define

M(7)=48pAf | 7-=76(ko)Golk —p1)r4—1 ® Golk—p3)ya—1-

1
5A,(a)= lim =t Iy ® Iy |. B.2
y(@= lim o[ M@l ® L (B.2)

Using this formula, we find the renormalization factor 6 A (7) as

§Ay(7)=—40,A dk, Tk (vl
B PTF ) (2m)d-2 271: [(k, +k2)2+k2]

The integration is the same with 6 A¢(2). As a result, we obtain

ApAg

B.2.2 Feynman diagram BV1-2

From the vertex correction in Table 3 BV1-2, we find the renormalization factor 6 A, (8) as

dk
5Ab(8)=—2AbAff Gn )j zf

Scaling variables as k, — |k, |k, and k, — 4/ |k, |k, we have

(] 47
dk, k| ”
Po -

> dk, (ke + k3) (ke +K2) — k]
f 27 [(ky +k2)2 + 12 J[(—hy +Kk2)2 +13 |

foo dk, (ke + k2) (ke —k2) +1

M”(B):zsd‘zA”Aff [k, +k2)2+1][(kx—k§)2+1]'

7/2

We find an € pole from the k, integral as f dk lk . The remaining integral can be

done to give
J f (x+y)(x—y»)+1 _ V2

21 (x+y2)2+1:||:(x—y2)2+1:|_ 8’

As a result, we obtain y
ﬂAbAf

B.2.3 Feynman diagram BV1-3

From the vertex correction in Table 3 BV1-3, we find the renormalization factor 6 A,(9) as

foo dk, (ke +K2)(—k, +k2)—K> 1

(k + k2)2 + KZ][(_kx + ka/)z + KZ] [kfl +g2B, |K|d_1] )

2827,
M) =——5 (Zn)d 1J
Ticy 1
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Scaling variables as k, — |K|k, and k, — [ngd|K|d_1]1/3ky, we have

28, _,g*3A
5A,(9) = 224= 153 b f f
B,/°N Ipl

where Cii = [g?B4|K|*1*/3/|K|. Since Cig, is proportional to g#/3, it remains to be small as
long as the coupling e is small.
Expanding this expression in terms of Cg, we have

2 _ 2 1.4
5A,(9) = 25418 4/3 Abf s BJ x Joo & 1 _ (ks 3)C|K|ky
B o 27 ) oo 27 | K21 +1/1ky 1] [K2+1T°[K2+1/1K, 1]

4/3)3

f‘” dk, (ks +C|K|k2)(k —C|K|k§)+1
27 [(k, + Cpqk2)2 +11°[k2 +1/1k, ]

up to (’)(C |) terms. The second term is proportional to (g
loop correctlons Dropping this term, we have

25, .83, [ s (77 dk
5A,(9) = %J dKK 5" -
B,/"N Ipl —00

We find an € pole from the K integral as fl | dKK 5 5=. The remaining integral is done as

, SO it is comparable to three-

foo dk 1
oo 27 [K2+1][K2+1/lk,I]

1 1
J_ f mx2+1][y2+1/ly]] 3v3

As a result, we obtain

6A,8
5A,(9) = ——b&
B.3 Yukawa coupling

B.3.1 Feynman diagram YV1-1

The vertex correction in Table 3 YV1-1 is

dd+1k
/\/1(10)—7 T

Similarly with Eq. (B.1), we define

——0(ko)va—1Go(k +p1)y4-1Golk + P2)y4—1 -

1
(0 = lim —t 1 B.3
i6g(@)= lim M@y ] (B.3)
Using Eq. (B.3), we find the renormalization factor 6 g(10) as

gAr [ dk, J J°° dk, (ke +k3)*—Kk?

5 - _
8(10) m (27T)d —2 (k +k2)2+k2:|

The integration is the same with 6A¢(3). As a result, we obtain

8 A

6g(10) = _\/N e
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B.3.2 Feynman diagram YV1-2

From the vertex correction in Table 3 YV1-2, we find the renormalization factor 6g(11) as

gAb ko_ J J<oo dk (k +k2)2— 2
VN | (2m)d—2 27[ [(ky +k2)2+k2]

6g(11) =—

The integration is the same with 6 A¢(3). As a result, we obtain

A
52(11) :—\%2—;’.

B.3.3 Feynman diagram YV1-3

From the vertex correction in Table 3 YV1-3, we find the renormalization factor 6g(12) as

0g(12)=— .
s(12) N3/2 (Zﬂ)d 1J 21 f_oo 27 [(k, +k2)2 + K2 [k2 + g2B, M ]
Y

Shifting k, — k, — k}z, and scaling variables as k, — |K|k, and k, — [ngdlKld_l]l/sky, we
have

7/3 [ B oo dk 2 _
5g(12)=—&$31—gj dKK“s“f f Kl .
BYAN3/2 Jiy _ T [k2+1] [k2+1/|k, ]

Integrated over k,., this vanishes. As a result, we obtain

5g(12)=0

C Two-loop self-energy corrections

C.1 Boson Self-energy

C.1.1 Feynman diagram BS2-1
The boson self-energy in Table 4 BS2-1 is given by
ghu2e [ di*1kdd+1

(D)=~ | ~gryaaz tLra-1Go(k +@)a-1 Go(k)a-1 Goya-1Goll +) [Py (k—1)
2g4 2e dd+1kdd+1ZN
—TTN (27)2d+2 le(k D,
where D and N are
=[(K+Q)*+ 512(+q]|:K2 +82[L*+ 62 ][(L+Q)* + 512+q] (C.1a)
N =[6k011q— K- (K+Q)][6;51,q—L- (L+Q)] (C.1b)

—[6k611q + K- (L+Q)|[516ksq +L- K+ Q)]+ 515 —K-L][ 5k 4011 — K+ Q) - (L+Q)].
Integrating over k,, we have

ghu2e [ d4*lkdLdl N1
N (27‘5)2d+1

(1) =— Dy(k—1),

37


https://scipost.org
https://scipost.org/SciPostPhys.17.2.059

SCIl SciPost Phys. 17, 059 (2024)

Table 4: Feynman diagrams for one-loop self-energy corrections. Here, Ay, A;, and
A, represent the coefficient of the € poles computed from the corresponding Feynman
diagrams (see Eq. (E.10) for the definition). I1,(q) represents two-loop corrections
of Landau damping for the dressed boson propagator.

Diagram No. FS2-1 FS2-2 FS2-3 FS2-4
Feynman Dia- ST (Vs .
gram J S B 3 v i
- 52 < ~ 7 o
Renormalization 20 = 8-3321;2, Ay =—0.00006139A%, A, =—0.4461A; \/% Ay =—0.0001228A A,
1=—0. A2 z - A A
A; =—0.001490A R A; =—0.002980A (A
factors Ay =—0.1131g> 1 490A% Ay :—15.75Af\/% 1 f2b
Diagram No. FS2-5 BS2-1 BS2-2 BS2-3

Feynman Dia- e,
gram “

ization| Ao = —0.4461A,,/ £, 4
Renormalization| Ag bV N 1,(q) = (0'6427g)g2udeIQ\

20 1Q243 IM,(q) = —0.05025¢2A, % o)
. - ] 2(q) =—0. g Appt
factors Ay =—15.75A,/ & Y

lqy1? lgy I

I,(q) = —0.05025gA ; u

where D; and N are given by
D, =[(2k,q, +54)* + (K| + K+ Q*][ 67 +L2][512+q +(L+Q)?],

_ _KK+Q) L. K- (K+Q)L-(L+Q)
Nl—(|K|+|K+Q|)|:(1 KIK+ Q| )6151+q L-(L+Q)+ KK+ Q)
_L-(K+Q)K-(L+Q)+K-L(K+Q)-(L+Q)]
K|IK+ Q| KK+ Q|
L-(K+Q) K-L (K+Q)-(L+Q) K-(L+Q)
“2’”‘1”5‘1)[5”‘1( e R oy T )}
Integrating over [,, we obtain

(1) = g4u26Jdekydely/\[2 1

> 2N (2n)2d D, (ky_ly)2+82UEBdlﬁ:i|?;|l’

where D, and N, are given by
Dy =[(2k,q, +54)* + (K| + [K+ QD*][(2L,q, + 6)* + (ILI + L+ Q]?],

K- (K+ Q)) LK (K+Q)L-(L+Q)
K||K+ Q| [K||K+ QI[LI[L+ Q]

_L-(K+QK-(L+Q) K-LK+Q)-(L+Q) L-(L+Q)]
K[K+QILIIL+Q|  [KIK+QILIL+Q [LIL+Q|

N = (K| + K+ QN(IL] + L+ Q|)[(1

L-(K+Q) K-L _(K+Q)-(L+Q)+K-(L+Q))].

+ (2k +6.)(21 +6
(2ky 2y +064)(2L,ay q)[ILIIK+Q| KL [K+QIL+Q| ' IKIL+Q|

Shifting [, as [, — [, + k, and integrating over k,, we have

gtu2e [ dKdLdl, A, 1

N 27m)2d—1 'D_ [K—LJd-1 °
8 (2m) 3 132/ + g2ucBy ]

Hz(l) =
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where D3 and Nj are given by

Dy = q,I[(21,q,)* + (/K| + K+ Q| + |L| + [L+ Q])?], (C.2a)
K-(K+Q) L-(L+Q)

Noa=(K|+|K+OQ|+|Ll+|L+ [(1——)(1——) C.2b

5 = (K| + K+ Q| + L] + [L+ Q]) KK+ 0] LiLQ (C.2b)

_(1_ K-(L+Q))(1_ L-(K+Q)) +(1_ K-L )(1_ (K+Q)-(L+Q))]
KL+ Q| ILIIK+ Q| K| [L| K+QIL+Q| /I’

We may neglect the [,,q, term in the fermionic part since it would give rise to subleading terms

in g. Integrating over [,,, we obtain

4y %€ dKdL N,
1,(1) = - $H f 4

12v/3N | (2m)2d2D,’
where D, and N, are given by

_171/3
Dy =lq,|[gu By K—LI* ] (K| + [K+ Q| + [L| + L+ Q)),

N“:(l |K|TII§IS|)X1‘Tﬁﬁig?)‘(“Ifkﬁigf)(l‘Tﬁﬁiigf)
KLY, K+Q)(1L+Q)
+( |K||L|)( K+ QIIL+ Q) )

Introducing coordinates of K- Q = K|Q|cos 6, L- Q = L|Q|cos 6;, and K- L = KL cos 6y,
where K = |[K|, L = |L|, and cos 8;; = cos ) cos 6; + sin 6, sin 6, cos ¢;, and changing variables
as K = |Q|k and L = |Q|l, we have

10/3 € d—1 o (o] T n T
(1) =8 9 %'QDS 4 — d_gf dkkd—ZJ dzzd—ZJ d@kf d@lf de,
12v/3|q,IB/°N  (4m)d1ny/nl(F)T(F) Jo 0 0 0 0

sind =3 6, sin? =3 6, sin?~* ¢, [(1 _ k+cos b )(1 _ L+cosf )

X

(k+ny +1+1)[k2+ 12— 2kl cos 015 m 2
_(1_ [ cos By + cos Gk)(l— k cos By +C0591)+(1 —cos@kl)(l— kl cos 0y + kcos 0 + 1 cos 6; + 1)] ’
N2 n mnz

where 17 = /k2 + 1 + 2k cos 6, and 1, = 4/12 + 1 + 2l cos 6;. The remaining integrals can be
done numerically to give

.1 .1 - d—4
J ko le dOkJ de{f " VKT sin™? 0, sin™ 6, sin®~* ¢, 1[(1_k+c059k)(1_l+c0591)
(k+m71 +1+n,)[k2+ 12— 2kl cos 013 N P

(1 lcos@kl—i-cosek)(l kcos@kl+cos@l)+(1_cosgkl)(1_klcos@kl+kc039k+lc0591+1)]

up U N17M2
VTr(52)
= —22(-7.723).
(5=
As a result, we obtain
| |d 1
IM,(1) = u(cg)By ] =—0.6427. (C.3)
y

C.1.2 Feynman diagram BS2-2

The boson self-energy in Table 4 BS2-2 is expressed as

dd+1 kdd+1l
W6(k° — 1)t 74-1Go(k + @) a—1Go(k)Y 41 Go(Dy4-1Go(l + )]

dd+1kdd+1l N
=—2g%A;u* f W5(ko - 10)5 )

M,(2) = —g?App*
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where D and N are given in Eq. (C.1). Integrating over k,, [, and l,, where the integration
is the same with IT,(1), we have

g>App* [ dKdLdl, N

5(2) =— 3 (2m)2d—1 &(ko — lO)D_3 >

where D3 and N3 are given by
Ds = lq,I[(2L,q,)* + (K| + [K+ Q| + L] + L+ Q])?],

K-(K+Q))(, L-(L+Q)
IKIK+ Q) Xl |L||L+Q|)

B (1 - %Xl - ﬁ) " (1 - %)(1 B (I|<K++QC)QI'I£L++Q(|2))] '

Integrating over [,,, we obtain

N = (K| + K+ Q| + L] + IL+QI)K1 -

2 2e

A dKdL K-(K+Q) L-(L+Q)
,(2) =~ (2n)zd_35(ko—lo)[(1‘ KK+ Q| (- |L||L+Q|)

(1 (L+Q)X1 L-(K+Q)) ( KLX (K+Q)-(L+Q))]
- ————— (1 1— .
IK|[L+ Q| LK+ Q| |KI[L| K+ QL+ Q|
The second line is odd in K and L, so it vanishes.
Integrating over lo, we have

,(2) __&aum f dko | dky ( _ky-(kp +qy) +ko(ko +qo) )
32'%'2 @ I+ GV 407+ (ko + 40
XJ (1o _Llita)tilere )
@MYL B+ RV + a7+ (k + o)
Using the Feynman parametrization method, we have

f [x(1—x)Y2 [ dk, —2x(1 — x)Q? f —2[x(1—-x)]V2Q2r(44)
dx = = dx
o n (2m)2 &2 + (ko +xq0)2 + x(1—x)Q%  Jo

—d

M1,(4m)4-2)2 (ky + xqo)? +x(1-x)Q2] T
where k; =k, +xq, . The integration for 1, is the same with that for k. Then, we obtain
_28°App% Q1 f dko f f J [x(1 =)y (1= ]I
(47T)d|q |2 0 Y 2 2 ; 2 2 zd '
[(ko +xqg)2 + x(1—x)Q2] ? [(ko + ¥q0)* + y(1 —x)Q2]
Using the Feynman parametrization method, we obtain

zngf;ﬂleI“J dkof J dyf [2(1 —2)]@ D2 x(1—x) VY3 [y(1—y)]V3T(4—d)
(4m)d|qy |? [k2 + (zx(1—x) + (1 —2)y(1— y))Q2 +2(1 —2)(x — y)2q2]

,(2) =

M,(2) =

4—d >

where ky = ko + (zx + (1 —2) y)qo Integratmg over ky, we obtain

28°App*|Ql* d [2(1 = )] VL1 = )] [y(1 = )] °T(7/2— d)

(4 )d+1/2|q |2 X _ _ . 5 _ o y2.277/2—d”
[ =)+ =2y (1= )@ + 51 —2)(x— 2]

The momentum factor can be found as (,uz‘?|Q|4/|q},|2)|Q|2d_7 = u26|Q|2d_3/|qy|2. The re-
maining integral can be done to give

1 1 1
[2(1 —2)]4[x(1 — )]V [y(1—y)]V?
fo dXJ;) dyJO dz 2x(1—x)+(1—-2)y(1—y) = 1.644.

M,(2) =

As a result, we obtain

|Q|2d -3

5>  Bg=0.05025.
g, |

My(2) =—g*A;u*B
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C.1.3 Feynman diagram BS2-3

The boson self-energy in Table 4 BS2-3 is expressed as

dd+1kdd+1l
2€ W5(k0 + lO)tr[GS(_k - q)'}’d_]_ G;(_k)GO(Z)Yd—]_ Go(l + q)]

dd+1 kdd+1l
(27-[)2d+1

,(3) = g2Au

N
:—ZgZAb'uze 5(k0+10)5,

where D and N are given in Eq. (C.1). The integration is the same with I1,(2). As a result,
we obtain
|Q|2d—3

I,(3) = _gZAb.uEBdlq—P: B4 =0.05025. (C.4)
Yy

C.2 Fermion self-energy

In the two-loop order, there are two kinds of diagrams for fermion self-energy correc-
tions: rainbow diagrams and crossed diagrams. The rainbow diagrams are represented as
3, ~ Go(p + k)Gy(p + 1)Gy(p + k), where p is external momentum, and k and [ are loop mo-
menta. For brevity, gamma matrices and boson propagators have been omitted. Since the loop
momenta are “decoupled”, the integrations for k and [ are separately divergent. As a result,
the integral has only a double pole and a simple pole proportional to In p2, where the former
is irrelevant for renormalization and the latter, called nonlocal divergence, is completely can-
celed by one loop counterterms. In other words, there is no simple pole, which contributes
to the beta functions. We are allowed to drop the rainbow diagrams. From now on, we only
focus on the crossed diagrams.

C.2.1 Feynman diagram FS2-1

The fermion self-energy correction in Table 4 FS2-1 is expressed as

4 d+17y. 3d+1
gt [ At kdd
z(D) =13 “Gnyaiz Vi

B E dd+1kdd+1lN

N2 | (el BDl(k)Dl(Z);

Go(k +p)ya—1Go(k + 1+ p)y4—1Go(l + p)y4—1D1(k)D; (1)

where D and N are given by

D=[(K+P)*+ 5}

k+p][(K+ L+ P)2 + 512(+l+p:|[(]“ + P)2 + 512+p] ’ (C.5a)

N= [(K+ P)-T(K+L+P)-T(L+P)-T—(K+P) I'S1pO14p — (K+L+P) TSy 014p (C.5b)
—(L+P) T8y pBitsp | + Va1 | — (K+P) - T(K+L+P) 5y, — (K+L+P) - T(L+P) TSy,

~(K+P)T(L+P) Ty 14 + SicrpOicstipip |-
Integrating over k,, we have

io4 [ dKdk,dd9*1]
(1) =2 SR

N2 WD_lDl(k)Dl(l),
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where D; and N are given by

Dy = 2[K+P||K+L+PI[(IK+P| + [K+L+P|)* + (8, + 20, ky, — 5,)° [(L+P)* + 57, ],
Ny =[(K+P|+[K+L+P){(K+P) T(K+L+P) T(L+P)-T— [K+P|[K+L+P|(L+P)-T}
— (B11p + 21y ky — 5,)814p{ [K+L+P|(K+P) T — [K+P|(K+L+P) T}
+ ¥ g1 [ G1p(IK+ Pl + K+ L+P){ —(K+P) - T(K+L+P) T +|K+P|[K+L+P|}
—(81p+21yk, —8,){IK+L+P|(K+P)-T(L+P)-T—|[K+P|(K+L+P) - T(L+P)-T}].

Integrating over [, we obtain

ig4 [ dKdk,dLdl, \.
Lg Y y Vo
== | ——————===D,(k)D;(I
J e p. DD,

where D, and N, are given by

D, = 4[K+P|[K+L+P|L+P|[([K+P|+ [K+L+P|+[L+P)*+(2l,k, —5,)%],

sz(|K+P|+|K+L+P|+|L+P|)[(K+P)-F(K+L+P)-F(L+P)-F
—|K+P||K+L+P|(L+P)-F—|K+L+P||L+P|(K+P).F+|K+P||L+P|(K+L+P)-l“]
+(21yky—6p)yd_1[|K+P|(K+L+P)-F(L+P)~1"—|K+L+P|(K+P)-1‘(L+P)~1"
+|L+P|(K+P)-F(K+L+P)-1"—|L+P||K+P||K+L+P|].

We rewrite this expression as X(1) = X, + X, where ¥, and X3 are given by

ig" [ dKdk,dLdl, |K7| + |Ky| + K] KKK Ki Ky K

A= N2 2d 2 2 - + —= ——= [D1(k)D; (D),
4N (2m) (2ky 1, = 0p)% + (IKy | + 1K, | + K32 L K [IKLNIKs | Kyl IK|  IKs|
ig4 dekydely (Zk_yly - 6p)yd—l K2K3 K1K3 KlKZ

B = an2 2d 2 2 - —1|D,(k)D, (D),
4N (2m) (2k, 1, — 6,02 + (IK | + |Ky| + K312 | Ko1K 1K |IKs| K 1K,

where we introduced simplified notations as

K, =(K+P)-T, K,=(K+L+P)-T, K;=(L+P)-T, (C.6a)
|K;| =|K+P|, |Ky| = |K+L+P|, |K5| = |L+P]. (C.6b)

We calculate %, first. Integrating over k, and [,, we have

_— ig®3 J dKdL 1 {K1K2K3 K K Kg]

7 272N | R (K T+ KL+ IKGDOKILNE DB | I Gl Kl 1l K|

where we neglected (2k, [, — 51,)2 because it would give rise to subleading terms in g. To find

a renormalization factor, we expand X, with respect to P as 3, = Zgo) + Zgl)(iP -T) + O(P?).
Here, we focus on the term in the integrand, given by

1 [ K K, K, K; N K, Kg}
K|+ Ko + [Ks| LK Ko |IKs] IKq | Kyl Ksl ]

Setting P = 0, we obtain

1 {lleK-l"+|K|2L-l“_K-I‘+(K+L)~I‘_L-I‘}
K| + |[K+ L[+ |L| |K||K+ L|[L| K| |K+ L] L J°
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This is odd in K and L, implying that Z}IE‘O) would vanish after integrated over K and L.
In the leading order of P, we find

1 {(P-r)(|K|2+|L|2+K-rL-r) P-T P-T P-I‘}
K|+ [K+L| + [L] IK|[K+L|[L| K K+L L
1 IL’K-T+ |K°’L-T(K-P (K+L)-P L-P
_IKI+IK+LI+ILI{ |K|[K+ L||L| (IKI2 |K+L|2 ILIZ)
(K-P)(K-T) (K+L)-P(K+L)-T (L-P)L-TI)
E K+LJ? E }
1 K-P (K+L)-P L-P
_(|K|+|K+L|+|L|)2( K| |K+L| |L| )
{|L|2K-r+|K|2L-1"_K.r (K+L)~I‘_L-I‘}
|K||K+ L|[L| K| |K+L| L J°

We simplify this expression as

(P-T)
e

IK|2 + |L|? + |K||L| + K- L— (|K| + |L|)|K + L|
(K| + |L| + [K+ LDIK| L] K + L|

|K|+ L] — |[K+ L] K-L 2|K||L|(|K| + |L| + 2|K + L|) (K-L)?
— 1+ - - b) (C'7)
(K| + L] + [K+L|)?[K+L| IKI[LI/ (K| +[L| + K+ L[)>[K+L]? KJ?|L[>

where we have used the following identities satisfied inside the integral expression

_ _ K@) _ e
(K-T)(L-T)=K-L, (K-P)(K-T)= d-1 (L-P)L-T)= d-1 "
_(P-I)(K-L) _(P-T)(K-L)
(K-PL-D) ===, ([P T) = =
Resorting to Eq. (C.7), we obtain
£ — g% dKdL 1 1 [(d_2)|K|2+|L|2+|K||L|+K~L—(|K|+|L|)|K+L|
4 _2735/31\/2 (2m)24=2 [|K|[L]]d-1/3 (d — 1) (IK[+ |L| + |K+ L)IK||K + L||L|

K| + |L| — |[K+ L] K-L 2|K||L|(|K| + |L| + 2|K+ L|) (K-L)?

— 1 — — . (€8
(IK|+ L] + [K+ L|)*|K + L KL/ (IK|+|L|+[K+L)?K+L]3 K|2|L[2

Next, we calculate Zp. It gives a renormalization factor for 6,,. To find the renormalization

factor, we expand it with respect to 6, as Xp = Zlg)) + Zg)(wpyd_l) + (’)(53). We ignore 21(30)
because it would vanish after integrated over k,, and [,. Then, we have

2(1):g_4 dKdk,dLdl, (2k,1,)*— (K| + K| + |K3])? [ KKy KiKs | KKy —1]D1(k)D1(l)
B 4n? @rP [(2k,1,)2 + (K| + Kyl + K2 LIRIIKs] K [IKs] K [IK
Integrating over k, and [,, we obtain
2(1)__ g8/3 deL 1 |: K2K3 _ K1K3 K1K2 _ ]
B d— d— >
27B2/3N2 (2m)? 2[|K||L|]( VB3R, |+ Kyl + [Ks )2 LIK2lIKs] Ky [IKs] Ky [IKy]

where we neglected (2kyly)2 which would give rise to subleading terms in g. We set P =10
because the renormalization factor is independent of P. Then, we have

1 {(K+L)-I‘(L~I‘)_(K-I‘)(L~I‘)+(K-I‘)(K+L)-F_1}
(IK| + [K+ L[ +[L])? |K+ L|[L| |KI[L| |K|[K+L|
_ K|+ L] — |K+ L] ( E)
(IK|+ L] + [K+ L|)?|K + L] K||L|
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where we used (K- T)(L-T') = K- L in the second line. As a result, we obtain

s ___ 8" dKdL 1 K| + L] — K+ L] (HK'L) (C.9)
P 27BZ/3 (2m)2d=2 [|K||L|]@=1D/3 (|K| + L] + [K + L|)2[K + L| KI|L|

Lastly, we complete the calculation of Egs. (C.8) and (C.9). Introducing coordinates of
K-L=KLcos0 and changing a variable as L = K[, we have

Q o8/3 =} oo - m
== % i’ | dosin®3o
27B [P| 0 0

|:(d—2)1+l+lz+lcos(9—(1+l)'r)_(1+l—n)(1+c059)_21(1+l+2?7)(1—C0529)i|

(d-1) In(1+1+n) (d—1D)A+1+n)2n (d—1)A+1+n)n3
/,8/3 o0 _ “ —
ORLLE Sl f dKK“ds“f an* [ dosint-s gt LA+ c0s6)
27B2°N2 Jppy 0 0 n(1+1+m)

_ 4
(4m)d—1 yar(H l)r(d 2)

4d1

where Q' = and 1 = v1+12+2lcos@. We find an € pole from the K

integral as fIPI dK

J le [1 1+1+0%+1lcosO—(1+Dn 2 (1+1—n)(1+cosH)
+/sin In(1+1+n) 3 (A+1+n)n

= E + O(1). The remaining integrals are done as

I(1+1+2n)(1—cos?6 r(&2
_ 410+ T+2m(1 —cos )]= YT 01120,
3 (1+1+n)n3 r(&2
® (" 46 (1+l—n)(1+cos@)] Vrr(452)
dl 0.03770
f f Vsin 6 n(1+1+n)? r(&h) ( )-
As a result, we obtain
~2 ~2
2(1) = (— 03361)—(1P T)+(—0.1131)- (l5p}fd_1). (C.10)

C.2.2 Feynman diagram FS2-2

The fermion self-energy correction in Table 4 FS2-2 is given by

dd+1kdd+1l
z(2)= AJ% J ————7—0(ko)d(lp)y4-1Go(k + p)y4-1Go(k + L+ p)ya_1Go(l + p)va—1

(27)2d

d9 1 kdd+1] N
— A2 p
_lAff G 0050 5

where D and  are given in Eq. (C.5). Integrating over k,. and [, (the integration is the same
with %(1)), we find

iA?  dKdk,dLdl K|+ K| + K KKK, K, K, K
2A=—f—2d 2 5(ko)5(1o) | 1|2 ] + 1K 2[ L2°3 ——1+—2——3],
4 (2m) (2ky 1, —6,)% + (K| + [Ko| + [K3 )2 [ 1K KLl IKs | IKq] o IKsl K
o 1A2 J dek del 50c)500) (2kyly—5p)yd,1 [ KyKs _ K1K; KK, _1}
B 4 (2m)2d—2 0NN @k, L, — 6,02 + (K | + Kol + 1K D2 [ K, lIKs| 1K [1Ks| 1K1K ’

where %(2) =X, + 25, and K, |K,| with a = 1,2, 3 are given in Eq. (C.6).
Y vanishes upon integrating over (k,, [, ) in the infinite range. Meanwhile, %, is divergent
under the same integral. The divergence comes from the sections given by k, =0 and [, = 0.
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We regularize the integral by avoiding these sections, i.e. constraining the integral range of
k, as f_ozo dk, — f :O dk, + f__;\o dk, and similarly with the [, integral. We ignore &, for
simplicity. Integrating over (k,, [, ) this way, we obtain

s A2
_ A} dKdL
AT 3202 | (2m)2d—4

KKK K, K, K
6(k0)5(lo)(lm[PolyLog(2, 1A%)] - lnA) B M W M 2
|K1|IK,|[Ks| K| IKy| K]

A
VK [+ | +]Ks|

The power-counting

where PolyLog[a, b] is the polylogarithm function and A = As A — O,

Im[PolyLog(Z, IAZ)] becomes Im[PolyLog(Z, IAZ)] ~ A = m

tells that the contribution arising from Im[PolyLog(2, IAZ)] is only finite due to the additional
momentum factor, |K;| + |Ky| + |K3/, in the denominator. Furthermore, the logarithm term,
—mnInA, only gives double poles. Thus, we conclude that the epsilon pole is absent in this
diagram:

>(2)=0. (C.1D)

C.2.3 Feynman diagram FS2-3

The fermion self-energy correction in Table 4 FS2-3 is

2g2Af d9 1k d9+1]

x(3)= N (2 6(lo)Ya-1Go(k +p)ya—1Go(k + 1+ p)ya—1Go(l + p)y4-1D1(k)
zlngf dd+1kdd+1l5 l N
TN (27)2d+1 ( 0)5 ’

where D and N are given in Eq. (C.5). Integrating over k, and L., where the integration is
the same with (1), we have

— ig2A; f dekydezyS(l | K|+ |Ky| + K| [ K1K,Ky —ﬁ—ﬁ+£]1) ®
AT 2d—1 0 —5.)2 2 1
2N (2m) (2kyl, —6p)2 + (IKy | + Kol + K5 D2 [ K [IK,|IKs] Kyl K| |K)

_ ig2A; J‘ dKdk,dLdl, Z 2k, 1, —6p)v4 [ KyK; KiKs KK —1]D ®
B 2N @m)2a-1 T2k, L, — 5,02+ (IKy | + Kol + [K3D2 | KK [Ky[IKs] K I !

Here, %(3) is decomposed into %(3) = X, + Xp, and K, |K,| with a = 1,2,3 are given in
Eq. (C.6). Integrating over [,,, we obtain

. 2
_1Afg dekydL5 lo 1 [ KiK,K; Ky + K, Kj :|
‘A — _ 5
8N (2m)2d—2 |ky|[k§,+g2Bd |I|<]|<d|1] K1 ||KolIK3| Kyl Kyl |Ks)
Y

. . . oo 2_q2 . .
where >y vanishes due to the identity of f_oo dxm = 0. Integrating over k,, we obtain
24 as

_ingg?P dKdL oy 1 [ KKKy Ky | K _Kg]
" 12v3BYAN ) P TV KPEDB KK [Ks| Kl Kl 1Kl ]
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We expand 2, with respect to P as ¥, = 21(40) + Zl(qli(ipoyo) + Z}S%(ip 1 Y1) We do the similar
thing with %, of ¥(1), noticing [, = 0 in this case. Then, we obtain

) _ Apg?? dKdL _ 5(l) [KP+L’+K-L_1 1 1
A 12y3B2N ) (2m)27 KREDALKIK+LIL K] K+L L

_ 2( L] L1 )

OUKPK+L]  IKIK+LP KB [K+LPJ ]
S0 _ A’ dKdL (1) d—3(K2+L2+K-L_i+ 1 _i)
A2 12v3BY°N ) (2m4 [KP2EDB [ d -2 [KIIK+LIL K] K+L] (L

2/K|[L| (K-L)
T @ 2IK+LP (1 - |K|2|L|2)]'

Introducing coordinates of k| -1, = kl cos 8 and scaling variables as | — kl and k, — kk,,
we have

QA , 02/3 oo 1d—4g
D S L RFIVES S e dko dez—
" 120v3B2°N U, 0 (1 +Kk3)d-17/3

[(1+k§+12+lcos6 1,1 1) kz( I . I 1 . 1)]
X - -7 - - ) >
Iny/1+K2 Ji+ie o U P +kgR2 s e (LK P

=)= —122?/1;//31\1 LO dkk 5" JO 143 f dkof —Slzg);i) ~
><[d_g(l+k§+12+lcos(9_ 1 +1_1)_21 1+k§( _cosze)]
d—2 ln\/Tk(z) \/Tk(z) n 1 (d—2)n3 1+kg
where nn = \/1 + k(z) +12+2lcosf. We find an e pole from the k integral as
f dkk™ 5> 4% + O(1). The remaining integrals can be done as

e > T ind—4 1+k2+1%2+1cosb
J dlld‘?’J dkOJ do——- del 3[( 0 1 l_l)
0 0 o (L+ikg)ev/ itk J1+R l
d—3
I 1 1 vrr(52)
—kz( + — + = )] —0.5290),
0 n(1+k2)3/2 3 /—1+k2 (1+k(2))3/2 nS F(dz ) ( )

nd—4 —3(1+kZ+1*+1cos6
J diri- BJ dkOJ do—m 9 3[‘1 3( 0 1 1_1)
(1+k)(—)/ -2\ . /1r J14K l

204/1+ k2 2 Jrr(&2
_ 0(1_cos 9)]: (5 )(—18.68).
(d—2)n3 1+k2 r(%2)
As a result, we obtain
ArVE AT
5(3) = (=0.4461)——2> (ipo o) + (—15.75)—2(ip, - 71). (C.12)
VNe €
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C.2.4 Feynman diagram FS2-4

The fermion self-energy correction in Table 4 FS2-4 is

dd+1kdd+ll
¥(4) = 2AfAbJ o

dkd?l

(k)8 (lo)1a-1Go(k + p)Gy(—k — 1 —p)ya-1Go(—L—p)

(2m)2d D’
where D and N are given by

D =[(K+P)*+ 652

ppl[(K+L+P? 462 | [(L+Py+5% ], (C.13a)

N = [(K +P) - T(K+L+P)-T(L+P) - T—(K+P)-T6_y; »6_,—(K+L+P)-T5,,56,, (C.13b)
—~(L+P) T8 iip | + Yao1| — (K+P) T(K+L+P) - T6__, — (K+L+P) - T(L+P) Ty,
~(K+P) T(L+P) T6_j 1 p + B pdicipdoiop -

Integrating over k, and l,, where the integration is similar with (1), we have

_ iAfAy ( dKdk,dLdl, |K7| + |Ky| + K] K K,K3 Ky K, K3
Ty = 5 0(ko)5(lo) - — et
2 (2m)2d- (—2k, I — 6,2 + (IKy | + 1Ky | + K32 LIK 1Kol IKs | IKq ] Kol K
_iAsA, [ dRdk,dLdl, (—2k,lq—8,)va-1 KKy KKy KKy
B = 5 0(ko)5(lo) = - -1
2 (2m)2d— (—2ky Ig — 8,)% + (1K | + K| + K32 LI K| Ky IKs| K K|

Here, %(4) is decomposed into £(4) = 4 + By with [; = l, +k, +p,. K, and |K,| with
a =1,2,3 are given in Eq. (C.6). There are some differences between these expressions and
those of %.(2), where —2k, [;— 6, appears instead of 2k [, —5,, and some terms in the brackets
differ in sign. However, these differences can be eliminated with variable changes, given by
l,»1l,—k,—py, k, > —k,,k; =k;,and1l; =1, +k;. As a result, we obtain

x(4)=0. (C.14)

C.2.5 Feynman diagram FS2-5

The fermion self-energy correction in Table 4 FS2-5 is

dd+1kdd+1l
%(5) = 2824, “2mpd (ko) 4-1Go(k + p) — Gy(—k — 1 —p)yq-1G;(—1 — p)D; (k)
dd+1kdd+ll N
— 9752
- 21g Ab (27T)2d+1 5(l0)5 )

where D and N are given in Eq. (C.13). Integrating over k, and [,, where the integration is
similar with X(1), we have

o - ig?A, f dekydezyg(lO) K|+ 1Ky + 1K) [ KKK, _ﬁ_ﬁJr&]Dl(k)
2 (2m)2d-1 (—2k, lq — 8,)% + (IKy | + K| + K32 LKL Ko K3 Kl K] 1K ’

. ig?A, dedkydely l (—2kylg—6p)74-1 [ K,Ks KiKs KKy _1]D W

P2 @m2=1 "0 ok Ty — 6,02 + (IKy| + Kol + K2 L K2 lKs] Ky [Ks| Ky 1K !

Here, X(5) is decomposed into %(5) = %, + X5 with l; =1, +k, +py,. K, and |K,| with
a = 1,2,3 are given in Eq. (C.6). Resorting to the following change of variables as
l, »1l,—k,—py, k, &> —k,, k, = k;,and1; — 1, +k;, we find the same expression
as 2(3). As a result, we obtain

ApVE ApE

%(5) = (—0.4461) i (ipoyo) + (—15.75) i

(ipL-r1)- (C.15)

47


https://scipost.org
https://scipost.org/SciPostPhys.17.2.059

SciPost Phys. 17, 059 (2024)

Table 5: Feynman diagrams for two-loop vertex corrections for the forward disorder
scattering Ar. Here, A, represents the coefficient of the € poles computed from the

corresponding Feynman diagrams.

Diagram No. FV2-1

Feynman Dia- \Vi
gram N

Renormalization| 4 =
factors

Diagram No. Fv2-7

Feynman Dia-
gram

Renormalization| 4 =
factors

FV2-4 FVv2-5 FV2-6
" =0 » =0 » =0
FV2-10 Fv2-11 FV2-12
AN SN\, SN

Diagram No. Fv2-13

Feynman Dia-

gram
Renormalization| 4 =
factors o

Diagram No. FV2-19

Feynman Dia-
gram

Renormalization _ X s —
A, =027658;F A, =0

factors

D Two-loop vertex corrections

D.1 Forward scattering
D.1.1 Feynman diagram FV2-1

The vertex correction in Table 5 FV2-1 is given by

dd+1kdd+1l

M(1) =—2Aj;

5A¢(1) =—2A)%

0(ko)d(l)yg—1Go(k + 1+ p1)ra—1Go(l + p1)va—

® ¥3-1Go(k +p2)Ya-1Go(—1 +p2)vd—1 -

Using Eq. (B.1), we find the renormalization factor 6 A¢(1) as

[61i01— (ky +11) -1, |[6:6 4 +ky -1 ]

+(k +1 )2 [e2+ K262+ 62, +12 ]
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Table 6: Feynman diagrams for two-loop vertex corrections for the backward disorder
scattering A,. Here, A, represents the coefficient of the € poles computed from the
corresponding Feynman diagrams.

Diagram No. BV2-1 BV2-2 BV2-3 BV2-4 BV2-5 BV2-6
Feynman Dia- \V i
gram A
Renormalization _ _ _ _ _ Iz
factors A, =0 A, =0 4, =0 4,,=0 4,,=0 A, = —4.162A[\l%
Diagram No. BV2-7 BV2-8 BV2-9 BV2-10 BV2-11 BV2-12

S - LMY, TS S,
Feynman Dia-
gram

> < —_—

Renormalization [z — — — _ 52 —
factors Ay = _4'162Af\lg 40, =0 4, =0 Ay, =0 A, =13:588% 4, 0
Diagram No. BV2-13 BV2-14 BV2-15 BV2-16 BV2-17
Feynman Dia- N w N LN a %
gram
Renormalization — _ A 5 [z - |z _ 52
factors 4, =0 A,, =14084:8 4 - 8.323A,\l% a, = 8.323A,,\l% A,, =5.0568

Integrating over k,, we have

k +1,)1, k1 k; +1,)1 k1
o [ dipdie,d? (kp+ 1]+ (816 — SETHEL) + (81 + 2k, 1,)(5 4 SR + 615 )

f) (2m)2d-1 [(8)+ 2k, 1,)2 +(ky +1, |+ [k, [)2][62+ 1 ][62,+ 12 ]

§A;(1)=-A

Integrating over k,, we obtain

3
SA (1):_ﬁfdkldhdlxdly 1 (515 1_(kl+lL)-1Lkl-1l).
d 4 @m=2 | ([a2+2 62, +2 ]\ 1 [k + 1k

Integrating over [,, we have

3
A (dkpdlidl, | ( (kuli)-ukl-u)

SA(1)= —L
7 %6 | erped i+ U kLI

The integral for [, is divergent near [, = 0. We regularize this integral with a cutoff A as
3
5A,(1) = ﬁf dkydl, f"" U2l k)LL)
0706 | empd ) 2m [ 42U Tk + Ik I

A [ dkydl, ln(1+li/A4)(1+ (kL+ll)-llkl~lL)
64m ) (2m)2d—4 1| lky + 1,010 |k (11, | )
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Introducing coordinates of k| -1, = kl cos 6 and scaling variables as k — [k, we have

QA3 oo oo n )
5a/(1)= o dIZZd‘Gln(lz/A4+1)J ko dOsind_49(1+ cosOkcos6 +1) )
047 Jp, 0 0 kv/1+ 2k cos 0 + k2

The integral for [ gives

0 A4
L dllZd—61n(12/A4+1)=2i€2—% +0(1).

0

. . In(A*/p? . .
The logarithmic term, — n( 26/ P 0), would be cancelled to the counterterm diagram associated

with the one-loop counterterm. As a result, we conclude

D.1.2 Feynman diagram FV2-2

From the vertex correction in Table 5 FV2-2, we find a renormalization factor as
dkd?1 [B111— (k +11) -1, ][5 48+ Ky -1 ]
@R 52, + (e +L2][6%, + )7+ BT

5A¢(2) = —2A3

Integrating over k,, we have

2 g+ k1 one ((g+)1 Lyl
5A,(2) = A2 i, dk,dt (e +1u] + 1 D87 + SR ) + (81 + 2k, 4, + 26206, i — it )
()=

) @ [(81+ 2k, 1 +2K202 + (lky +1, |+ [k 2][67 + 12 )

Integrating over [,., we obtain

5a(2) Jdkldk Ldldl, (Zkyly+2k§)2—(lkll+Iki+lll+llil)2( (kﬁh)-ll)( kl-ll)
! 4 (2m)2d=2 [(Zkyly+2k§)2+(|kl|+|kJ_+1L|+|lJ_|)2]2 [k +1, 1, [k Iy

Introducing the coordinates k, = r cos 6 and [, = sin 6, we rewrite the integral for k, and [,
as

dk,dl; T q = drr 4r*(cos O sin B +cos? 0)? — (k| + |k, +1, |+ 1, D?
0As(2) =

(2m)x=4 ], 27T [4r4(cos 6 sin 0 + cos2 0)2 + (k| + [k, +1;|+[1, 2]
X(l_(kj_+lj_)'ll)(1+ k, - lJ_)
[k +1, 1 % (1 |

Integrated over r, this vanishes. As a result, we obtain

§A4(2)=0

D.1.3 Feynman diagram FV2-3
From the vertex correction in Table 5 FV2-3, we find a renormalization factor as

dikdil  [Srnbg—(ky+1) 1 |[6k8+ky -1 ]

G [82,,+ (e + 12 ][5 +12 [ 6 + B 6, + 2]

5Af(3)=—AfA%f

Integrating over k,, we have

iy dk,d? (I + 1]+ i (815 — SR )+ (814 2k, 1)1 Sl + 55 )

[k +1) [k, | [k, +1) |

(2m)2d-1 [(81+2Kk,1,)2+ (ky +1 |+ [k D2][62+12 |[6%,+12 ]

SAF(3)=—ArA2
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Integrating over k,, we obtain
AAZ [ dk,dil 1 ( 1 1_(kL+ll)-1lkL-lL)
4 (m)2d=2 | [[s2+12 |[62,+2 ]\~ ke +1 [k |
This is the same with 6Af(1). As a result, we obtain
§A4(3)=0. (D.1)

D.1.4 Feynman diagram FV2-4
From the vertex correction in Table 5 FV2-4, we find a renormalization factor as
d9kd?] [ 8161 — (ky +1,) -1, [ 661 +k, -1 |

@rY (52, + G+ 2 ]2 12 J[57 + 2T

SAf(4) =—40: 07

Integrating over k,., we obtain
(k;+1,)1,k, 1 ki1, (ko +1))1
dk, dk, d?1 (kg +10]+ [k (87 — Sl ) + (8, + 2k, 1,)8, (5t + St )

(2m)2d-1 [(81+ 2k, 1,02 + ([k; +1,| + [k, N2 ][62+ 1 ]

— 2
SAF(4)=—2A;A2
Integrating over [, we have

AfAijdkldkydlldly (Zkyly)z—(|kl|+|kL+1l|+|lL|)2 ( _(kJ_+l_L)lJ_)(1_ kJ.IJ_)
d— 2 :
2 (2m)2d=2 [k, 1,02 + (Jkp |+ [k +1,] + 1 D?] ky +1 11y [k [1]

Integrated over ky and ly, this vanishes. As a result, we obtain

§As(4)=0.

D.1.5 Feynman diagram FV2-5

From the vertex correction in Table 5 FV2-5, we find a renormalization factor as

d9kd?] [ 8116161 — (ky +11) - ky 81—k -1, §py—(ky +1,) 1,66
(2m)2 (6% + G+ (53 + 1 J[ o7 +13 J[62, + 12 ]
Integrating over k,., we obtain

e [ a0 D~ ) 1 (R )
! f) (2m- [(8)+ 2, 1,02 + (ke +1, | + [k, )2][62 + 2 |[62,+ 1 ]

§A¢(5) = —4AJ§

Integrating over k,,, we have

3
SA (5)=—ﬁf dk, d9I 516 ( B (kl+1l)-kL)_
d 2 ) Cma2) 62+ |[62,+2 ]\ Ikp +1L[k]
Integrating over [,, we obtain

3
Ar (dk,dldl, I, |

6Af(5):? (2m)2d-3 Ilyl[l;"‘li](l

Integrating over [,, we have

ke +1J_)'kj_)
[k +1, |k, |

A [ dk,dl, ln(1+li/A“)(1 (ky +1J_)’kj_)
32m | (2m)2d—4 I lky +1 k.| /J°
We drop this correction because it does not give a simple pole responsible for renormalization.

As a result, we obtain
0As(5)=0. (D.2)
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D.1.6 Feynman diagram FV2-6

From the vertex correction in Table 5 FV2-6, we find a renormalization factor as

5 f dkd?1 [ 816181 — (ke +11) ki 61—k -1 S — (k +11) -1 8,16,
f 2d 2 :
(27) (6% + (kL + 12 ][07 + K (67 + 1 ]

§A4(6) =—4A

Integrating over k,, we have

5 (6) = o [ Badhydt P+ L+ D1~ sy ) + 51+ 26,105 Ce it
fAO) =28y - 5
(2m)2d-1 [(81+ 2k, 1,)2 + (Jk, +1, |+ [k, [)2][62+12]

Integrating over [,, we obtain

5Af(6)=—A_J§ ddekydl_ldly (2k,1,)% — (k| + [k +1, |+ [1,])?
2 (27'5)211 2 I:(Zkyly)2+(|kl|+|kl+lj_|+|1J_|)2:|2
x(l_(kj_+l¢)~kl kJ-.IJ—_(kJ_+lJ_).lJ_)-

e+ 10k TR e+ 1L

Integrated over ky and ly, this vanishes. As a result, we obtain

D.1.7 Feynman diagram FV2-7
From the vertex correction in Table 5 FV2-7, we find a renormalization factor as

d9kd?1 [ 611661 — (ky +1)) -k 63—k -1 5p— (kg +1,) -1, 645
(2m)> [65,+ @ +12][60 + 13 J[67 + 1 ][ 62, + 1 ]

50(7) = —4A]%Ab

Integrating over k,, we have

(k +1,)k (ky +1,)1 k1
dk, dk, d?1 815 (Iky +111+ [k [)(1— FRE ) + (8 + 2k, L)6y (S — 5 )
(2m)2d-1 [(51+ 2k, 1, )2+ (k. +1, ]+ [k )2][62+12 ][62,+12 ]

5Ap(7) = —ZA]%Ab

Integrating over k,, we obtain

AZAy [ dk,d 515 ( _(kJ_+1J_)'kJ_)
2 ) @22 |82+ ][6%,+ ] ky +10 01k, | /)

We drop this correction because it does not give a simple pole responsible for renormalization.
As a result, we obtain
§A4(7)=0.

D.1.8 Feynman diagram FV2-8
From the vertex correction in Table 5 FV2-8, we find a renormalization factor as
20 d9kd? 611661 —ky - (ky +11)6 31—k, -1y 8 —1, - (ky +1,)8 |64
=D d 2 :

(2m)? (S + (ke +1 2 ][87 + K4 (62 + 1 ]

5A(8)=—4A
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Integrating over k,, we have

(k,+1) )k (k,+1))1 k1
dk, dk,d?1 8% (lky 11|+ [y (1 — EE ) + (8, + 2k, 1,06y S — )

(2m)2d-1 [(81+ 2K, 1,)2 + (k. +1,| + [k, )2][ 62, + 2 T

50:(8)= —ZAJ%AI,

Integrating over [,, we obtain

AZA, dkydk,dldl, (2K D, +202) —(lky |+ [l + 13| +[1.])?

d— 2
2 (2m)2d-2 [(2ky 1y +212)2 + (k| + [k +10 [ +[1.)2]

x(l_(kj_+lj_)'ki_kj_'lj_ +(kJ_+1J_)'1J_)
ky + 10k | kgl Ry +1 1]

Integrated over ky and ly, this vanishes. As a result, we obtain
6Af(8)=0.
D.1.9 Feynman diagram FV2-9
From the vertex correction in Table 5 FV2-9, we find a renormalization factor as

d9kd?l [Ginb 81—k - (ky +1)8;—k; -1, 8y —1; - (ky +1,)54 ]
d 2 :
(2m)? [67,+ 0 +12][62, + K] ][67 +17 ]

5Ap(9) =—4Ar A

Integrating over k,., we have

k;+1 )k k1 k, +1,)1
ik, die, d?1 521k +10 |+ [k (1 + fESR ) + (81 + 2k, 1, + 2628 (5t + St )

(2m)2t [(81+ 2K, 1, +2k2)2 + (Jk +1, | + [k, N2][62 + 2 T

5Af(9)=2AfA§f

Integrating over [,, we obtain

AfA%Jdkidkydlldly (2ky Ly +2k2)% — (I | + [k +1 [+ 1)
d— 2
2 (2mP42 [(2k, 1, +2K2)2 + (k| + [y +10[+[1,1)2]

(1+(ki+lj_)'kJ__ ki -1) _(kJ_+1J_)'1J_)
ky +1 (ke | (ko[ [k + 101

Integrated over ky and ly, this vanishes. As a result, we obtain

D.1.10 Feynman diagram FV2-10
From the vertex correction in Table 5 FV2-10, we find a renormalization factor as

4g2A)20 d4t1kqd+ly [ 61416101 — (K+L) - K&; — K- L&y — (K+L) - L5, |6

( —
N (2m)2d+1 0[5ﬁ+l+(K+L)2][5]2{+K2}[612+L2][631+L2][k§+ngd|I|(,|<i|1]

§A4(10) =

Integrating over k,, we obtain

2822 f dKdk,d"*1 55 4(JK+L|+ |K|)(1 - —f;‘:fl)‘;j) + 515,1(—“";}3 — ‘f—;)

5A(10) = — 5(1 —,
! N (2m)2d (67 + K+ LI+ [KD2 ][ 67 + 12 ][ 62 + L2]0k2 + g2B,4 ]
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where we have neglected k, [, in the fermionic part since it would give rise to subleading terms
in g. Integrating over [,, we have

5AF(10) = —

2g*A% f dKdk,dLdl, (203)* — 2ILI(/K| + [K+ L] +[L])
0 —
N (2m)2d-1 [k;+g23d"|‘,‘;|1][(21§)2+(|1<|+|1<+L|+|L|)2][(2z§)2+4|L|2]

X[ K|+ [K+1L] (1_(K+L)-K)+ |L| ((K+L)-L_K-L)]
(K| + [K+L| +[L]) [K+L|K| J  (K[+[K+L|+ L)\ [K+L|Ll [K|L|

Integrating over k, and [,, we obtain

Y dKdL  6(1y) 1

3v3B)°N J 2mP4=3 KD /SILI(K] + [K+ L] + [L]) + 2[L| /TR + K+ L]+ L]

y K|+ |K+L| (1_(K+L)-K)+ |L| ((K+L)-L_K'L)
K|+ [K+L| + |L| IK+LIK| /Kl +[K+L|+ LI\ [K+L|IL|  [KILI/]

§A(10) =

Introducing coordinates as k; -1, = Kl cos 0, and scaling variables as | — Kl and k, — KKk,
we get

Q 4/3A2 o) oo oo T
f 10d—31 d—3 dk . d—a 1
oA (10)=—f dKK s J dll f —f dOsin“" 0 ——
! 3n«/§B;/3N | 0 o (1+k2)E=D/E |, V2ln+2ly7m
x[ —l( B 1+k®>+1cosH ) L( [ +cos6 __cosf )]
n VI+IEVI+k2+12+2lcosf/) N\VI+kZ+[2+2lcos® VI+k2/])

andn = vV1+k2+1++v1+k2+12+2lcos@. We find an €

_ 4
where 0 = s A &)

pole from the K integral as f - dKK
numerically as

< a7 dk " _ 1 n—1 1+k%+1cosf
did=s ———— | dOsin®*6 [ (1— )
J;) L (1+k2)(d1)/6J; Va2ln+2lymL 7 V1+k24/1+k2+12+2lcosB
+£( [+ cos0 __cosf )]_ ﬁf(d%?’)
VI+k2+12+2[lcosf v1+k2 r(42)

10d 31

% + O(1). The remaining integral can be done

(0.4415).

As a result, we obtain
5A4(10) = (1.7951) L= A8 (D.3)
€

D.1.11 Feynman diagram FV2-11
From the vertex correction in Table 5 FV2-11, we find a renormalization factor as
48207 [ qd+1gqd+y [61118k81 — (K+L) - Loy — K- Ly — (K+L) - K5, 5,

0 — .
N e racrLp][ag +ie]lo; + Tk + g2, B
p4

5AF(11) = — =
k+l1

Integrating over k,, we get

B = f PTG TRAL U < DRACYAL )
s == 0 .
N (2m)> [(81+ 2k, 1,)2 + (K+ L + [KD2][ 57 + L2 (K2 + g2B4 -1
Integrating over [,., we obtain
sasan =52 f dKdk,drdl,  5(1y) [ K] + K+ L] + L] (1-GrD:)
! 2N (2m)2d-1 kz+ngd\Kl“ LI[(2k,1,)2 + (/K| + [K+ L| + |L])2] K+ LK

(2k, 1, )* — (K| + [K+L| + |L|)? ( _(K+L)-L+K-L_(K+L)-K)]
[(2k )2+(|K|+|K+L|+|L|)2] IK+L{L| KL [K+L[[K]|
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Integrating over k, and [, we have

gz/BAJ%

5, (11) = — dKdL 5(1y) ( B (K+L)-K)'

12v3B23N ) (2mP243 JL[KPADAELT K+ LK]

Introducing coordinates as k; -1, = Kl cos 8 and scaling variables as [ — K[ and ky — Kk, we
obtain

Q 2/3A2 %) - %) oo k i
5Af(11)=——2/f3f dKK4d313f dlld_”'f d—d_lj 40 sint™ 0
127v/3B;°N Jip| 0 o (1+k2)7 Jo

x(l— 1+ k?+1cos6 )
VItRRCVI+k2+12+2lcosf /)

4d—13

We find an € pole from the K integral as f;lo dKK 3 = 4% + O(1). The remaining integral
can be done numerically as

e8] o8] b3 2 T d=3
J dzzd“f LMJ desind*“e(l— 1+ Kk Flcost )= ‘/—d(j ) (4.934).
0 o (1+k2)7F Jo V1+k2v/1+k2+12+ 2l cosH r'(%%)

As a result, we obtain
ArAr /3

D.4
/e (D-4)

5A;(11) = (—4.162)

D.1.12 Feynman diagram FV2-12
From the vertex correction in Table 5 FV2-12, we find a renormalization factor as
4g%A% [ a9 kd? ] _ [ 8118181 — K- (K+1)5 — K- L& —L- (K+1)5_, |5

. —.
N (27)2d+1 [62,, +(K+L)>][62, +K2][62 +L2]2[k§ + g2By |I|<’|<i\1]

5A,(12) = —

Integrating over k,, we obtain

|K+L||K] K] |K+L|
5A,(12) = —

2g2A2 J dKdk,d*11 _ SP(IK+LI+KD(1+ G ) + (81 + 2k, 1, + 2k2)5 (3 + SEE)
]

2d 0 2 1"
(2m) [(81+ 2k, 1, +2Kk2)2 + (IK+ L + [K2][67 + 12 ] [k2 + g2By ‘I‘(,'{yl

Integrating over [, we get

g*A? [ dKdk,dLdl, 5(1,)
2N

§A;(12) = K| + [K+L| +|L| ]( (K+L)-K)

2d—1 d-1 [
(2m) k2 + g2B, IIf)(yl |LI[(2k,1,)2 + (K| + [K + L| + |L|)2 K+ L[K|

. (2ky 1, )% — (IK| + [K+L| +[L])? ( (K+L)-L_K~L_(K+L)-K)]
[(2k,1,)% + (K| + K+ L] + [L])2]" K+LjL| KL [K+L|K /[’

where we have ignored the k}z, terms in the fermionic part since they would give rise to sub-
leading terms in g. Integrating over k,, and [,,, we have

5a.(12) = SN dKdL  5(l,) ( (K+L)~K)
P vy ) e LIKEEDA T K+ LK)

The term of |L|~}[K|~2(@~1/3 does not give rise to an € pole, so we drop it. Then, we have

g?3n? dKdL &6(l,) (K+L)-K

2d+1 °

SA(12) =
d 12v3B2°N ) (272473 L] |k 4 1)K|*S
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Integrating over K, we obtain

_gPA P -0 [ dL —4r(%%)
541(12)= ———3; iy | eoee? =
12v/3B;°N (3)r(¢) (4m) 7 IL|[x(1 —x)L2] ®
B g2/3A% _41—'(%) J dT(l X)% OodLLMng
12¢/3B2°N (4m)i-2/T(452) ) J,

We find an € pole from the L integral as f pzo dLL*s" = % + O(1). The remaining integral
can be done as

1 e
fdxx6(1 D _ VT o).
0

r(hrdsd) 242
As a result, we obtain
2\/—
SAF(12) = (— 4162) E (D.5)
d fre

D.1.13 Feynman diagram FV2-13
From the vertex correction in Table 5 FV2-13, we find a renormalization factor as

d9kd1 [xi6 —2(ky +1;)-1,6;— 12 514116 ko
@m2 52 4k, +1))2][8%, +1][62+ 1]

§Af(13) =—2A3 f

Integrating over k,, we obtain

[k +1, |

dikdl,dl, (67 —1)(1ky +1 |+ [ky ) +2(8, + 2k, L, +2k2)5 S
d— > .
@ (6 + 2k, 1, +2K2)2 + (e, +1y | + [k 2][52+ 12 ]

§A;(13) =

Integrating over [, we get

§A;(13) =

dekldk vl dl, (2ky Ly +2k3)% — (ky | + [k + 1]+ 1, )? ( _(kL+ll)-lL)
2 ) @ (kL 4222+ (k) + kg A1 L2 kLI

Integrated over ky and ly, this vanishes. As a result, we obtain

§A£(13)=0.

D.1.14 Feynman diagram FV2-14
From the vertex correction in Table 5 FV2-14, we find a renormalization factor as

d9kd 91 [6x162 —2(ky +1;) 1,6, — 12 541 |6k

@rY (52, + G+ ][5 12 57 + 2T

5A:(14) = 2A3

Integrating over k,, we have

‘ L1 (kg +1,)1
5A;(14) =—A3 dk, dk,d?1 (67 —13)(Iky +1. |+ [k ) +2(8; + 2k, [, )81 35T
f 2d—1 i
(27) [(51+2k,1,)2 + (Jky +1; |+ [k )2][62 +12 ]
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Integrating over [,., we get

Afﬁ dk dk,dl;dl, (2k,1,)*— (K, |+ [k +1;|+][1;])?

5A(14) = —— =
f 2 (2m)2d=2 [(2K,1,)2 + (ko |+ |k, +lj_|+|lj_|)2:|2
((1-frlL)
ky +1p /1]

Integrated over ky and ly, this vanishes. As a result, we obtain

D.1.15 Feynman diagram FV2-15
From the vertex correction in Table 5 FV2-15, we find a renormalization factor as
d9kdq] [ 81162, —2(ky +11) 1,6 1 —13 541 |6x

@rY (52, + G+ 12 ][52 +18 )62 + 2]

_ 2
5A;(15) = —2A,A2

Integrating over k,, we have

dkldkyddl (531 — li)(lkj_ +1, |+ |k )+2(6;+ 2kyly)5—1 (kltj-lifi)llll

d— 2
(2m)2d-1 [(81+ 2k, 1,)2 + ([ky +1 | + [k N2][ 62, + 1]

_ 2
SAF(15) = —As AL

Integrating over [,., we obtain
ApA; f dk, dk,dl;dl, (2k,l, +203)* = (ko |+ [ky +1 ]+ 1 ])?
2d—2 2
2 (27) [(2k, 1, +212) + (I, | + [k +1, ]+ [1,1)2]

(ky +1¢)'1¢)
X144 ———"7——].
( [k +1, (1]

§AF(15)=—

Integrated over ky and ly, this vanishes. As a result, we obtain

§A¢(15)=0.

D.1.16 Feynman diagram FV2-16
From the vertex correction in Table 5 FV2-16, we find a renormalization factor as
) d9kdi] [Sin6F —2(ky +11) -1 6;—12 5141 |65

A .
) @mA 52 1 +1 ][+ k2 52+ ]

§Af(16) =—2A

The integration is the same with 6 A¢(14). As a result, we obtain

D.1.17 Feynman diagram FV2-17
From the vertex correction in Table 5 FV2-17, we find a renormalization factor as
d9kdi] [ G162 —2(ky +11) 1, 6, — 1 61416 4

@rY (5, + e+ )32 18 )67 + 2]

Ay

5§A:(17)= —2A§

The integration is the same with 6A¢(13). As a result, we obtain

§A4(17)=0.
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D.1.18 Feynman diagram FV2-18

From the vertex correction in Table 5 FV2-18, we find a renormalization factor as

d9kdd] [ 811162, —2(ky +11) 1,6 1 —12 541 |65

@2 52, + (ky +1 262 +1 6%, + BT

5AF(18) = —2A7

The integration is the same with 6 A¢(15). As a result, we obtain

5A£(18)=0.

D.1.19 Feynman diagram FV2-19
From the vertex correction in Table 5 FV2-19, we find a renormalization factor as
ZgZA)% ddt1kdd+y [614162 —2(K+1L) - L& — L2531 |6y

6(ky) 177
N (2m)2d+1 0 [5i+l+(K+L)2][5ik+Kz][512+L2]2[l§+ngd |L||zi|1]

Integrating over k,, we get

(K+L)-L
5 (19) = &A% [ gKraH (67 —LA)(IK+L| + [K|) + 2(8; + 2k, L, + 2k2)8) gy
£(19)=

2d 0 2 d-1q°
N (2m) [(8,+2k, L, +2k2)2 + (K +L| + [KI)2][ 62 + 12][12 + 2B, ‘Ll'lyl ]

Integrating over [,., we have

ng)%dedkydely 5(ky) (2,1, +2k2)? — (K| + [K+L| + L|)? ( _(K+L),L)
2N @m0t 12 1 g2, = [(2ky 1, +2k2)2 + (K| + K+ 1 + L2 T K+ LJIL|

We may ignore k, 1, since it would give rise to subleading terms in g. Integrating over k, and
[, we obtain

y}
5a, (102 STAT [ dKdL__6(ko) 1 (1- G0y
T 43BN ) @ @D (K + K+ L+ [LP2 K+ L)
Introducing coordinates as K- L =Kl cos 8, K = Lk, and [, = Ll, we have
Qg4/3A2 %) 3 %) [ dl m
5Af(19):_—1/f3f dLL10d631J dkkd—?*f WJ d6 sin~6
247+/3B}°N Jj, 0 o (1+02) 0
« 1 (1_ 1+1%+kcosf )
[«/1+lz+k+«/1+12+k2+2kc059]3/2 VIT2V1+12+k2+2kcosf/

10d—31

We find an € pole from the K integral as f;r dLL & = % + O(1). The remaining integral
can be done numerically as

oo oo dl T 1
dkkd_sf —f dOsini™* 0
L o (1+12)d-n/6 J [1/1+12+k+1/1+12+k2+2kc059:|3/2

x(l 1412 +kcosb ) VTI(2)

— = (—0.5439).
VI+12V1+12+k2+2kcosO r(42)

As a result, we obtain
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D.1.20 Feynman diagram FV2-20

From the vertex correction in Table 5 FV2-20, we find the renormalization factor as

28207 [ gd+igqd+y [ 611167 — 2(K+L) - L&) — L2854 |y,

N (27)2d+1 0 [51%+1 N (K+L)2][5ﬁ +K2][5l2 +L2]2[lf, + g2B, “]‘z;l] .

Integrating over k,, we have

5,(20) = g>n% J dekydd+116 0 (82 —L2)(IK+L| + [K]) + 28y + 2k, 1, )5; St .
N (2m)* [(81+ 2k, 1,)2 + (K+ L] + [KD2][ 57 + L2712 + g2B4 {7 ]
Integrating over [,, we obtain
6Af(20)=_g2AJ%J’dekydely 5(lo) _ (2k,1,)? — (/K| + [K+ L] + [L])? ( _(K+L).L).
2N @rPA 12 4 g2B, M [(2K, 1,02 + (K| + K+ 1)+ L2\ K+ LIIL

Integrated over k,, and [, this vanishes. As a result, we obtain

§A£(20)=0.

D.1.21 Feynman diagram FV2-21

From the vertex correction in Table 5 FV2-21, we find a renormalization factor as

2g2A% dd+1kdd+ll
N (27’[)2d+1

[6k+1531 —2L- (K —+ L)E,l _ L25k+1:|5k
[52,+ K+ Lp][67 + K2][6%, + L2 T[22 + 6284 M ]

&(ko)

§Ap(21) =~

Integrating over k,, we have

5o £ f aKdk,d*11 (8%~ L2)(IK+L| + [K|) +2(8, + 2k, 1, )5 4
f - d 0 2 =
N (2m)? [(81+2k,1,)2 + (IK+ LI+ [K|)2][62, + 12][12 + g2B, ‘Ll',yll

Integrating over [, we get

51— nggdedkydezy 5(ko) (2ky L, +213)" — (K| + [K+ L] +[L])> ( (K+L).L)
f —_ .

2N @rP 12 4 g2y Mot [(2ky 1, +212)2 + (K] + K+ 1)+ L2 "\ KLY
Integrated over ky and ly, this vanishes. As a result, we obtain

D.2 Backward scattering

D.2.1 Feynman diagram BV2-1

From the vertex correction in Table 6 BV2-1, we find a renormalization factor as
d9kd 1 [Bxnb1— (k +1) 1) |[ 66, +ky -1, ]

@rP [z, + G+ 12 )[57 18 )67 + 2]

SA,(1) :—4A§Ab

The integration is the same with 6A¢(4). As a result, we obtain

5A,(1)=0.
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D.2.2 Feynman diagram BV2-2

From the vertex correction in Table 6 BV2-2, we find a renormalization factor as

2Abf dkd?1 [ G111 — (kp +11) -1, J[648y + Ky -1, ]

P @ a2 +12][6%, vie a2+ 2T

5A,(2) = —2A

The integration is the same with 6A¢(2). As a result, we obtain

5A,(2)=0.

D.2.3 Feynman diagram BV2-3
From the vertex correction in Table 6 BV2-3, we find a renormalization factor as

d9kd?1 [G1nb 11—k - (ky +1)8;— k) 1) 8y —1; - (ky +1,)54 ]

(@2ny [62,+ 0, +1,)2][62, +1¢ ][62 + 2 T

5A,(3)= —4A]%Ab

The integration is the same with 6A¢(9). As a result, we obtain
5A,(3)=0.
D.2.4 Feynman diagram BV2-4

From the vertex correction in Table 6 BV2-4, we find a renormalization factor as

d9kd? [6116k01— Kk - (ky +1,)8;—ky -1, 51— 1, - (ky +1,)5,]6
d 2 :
(2m)? (63, + Gk +1)2][67 +13 |[67 +17 ]

5A,(4) =—4A§Ab

The integration is the same with 6 A¢(6). As a result, we obtain
5Ab(4) =0.
D.2.5 Feynman diagram BV2-5
From the vertex correction in Table 6 BV2-5, we find a renormalization factor as

d9kd?l [ w661 —Kky - (ky +1,)5 31—k -1 8y —1) - (k. +1,)8, |64
2d 2 '
@) (57 + e 1705 K% )

50p(5) =—4A; A7

The integration is the same with 6A¢(8). As a result, we obtain

5A,(5)=0.

D.2.6 Feynman diagram BV2-6
From the vertex correction in Table 6 BV2-6, we find a renormalization factor as

4g°Ap Ay [ d41kddH] [6116_161 — K- (K+L)5; — K- L6y — L (K+L)5_ |5,

N (2m)2d+1 0 [512<+1+(K+L)2][5Ek+1(2]|:512 +L2:|2[k§ + g2By IIT;LT] .

6A,(6)=—

The integration is the same with 6A¢(12). As a result, we obtain
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D.2.7 Feynman diagram BV2-7

From the vertex correction in Table 6 BV2-7, we find a renormalization factor as

5A,(7) = 4g20¢ Ay [ ddHlkddty [ 6141661 — K- (K+L)5, — K- L&)y —L- (K+L)5, |5,
bl/i) = 2d+1 2 [Kld-17 "
N (2m) (6%, ++L2][57 + K2 ][87 + L2 ] [K2 + 2By I ]

The integration is the same with 6A¢(11). As a result, we obtain

D.2.8 Feynman diagram BV2-8
From the vertex correction in Table 6 BV2-8, we find a renormalization factor as

d9kd?1 [8xn1616 1 —11 - (ky +1.)8—1; - (ky +1;)8_1—12 541 )5y
o R FR Y [N R Coes

Integrating over k,., we obtain

5A5(8) =—4A%A,

dk, dk,d?1 (5151 =1 )(ky + 11|+ [k [) + (8; + 2k, 1, )(8y + 5_) S
(2m)2d-1 [(51+ 2k, 1,02+ (Jky +1, |+ 1k, )2][62 +12 ][62,+12 ]

5A,(8) =—2A§Abf

Integrating over k., we get

AZAL [ dk,dil 5617
2 ) e lsp+1n (6% + 1]

6A(8)=—

Integrating over [, we have
AZAy (dkydl dl, |1
2d—3 4 127"
8 (2m) L[ +12 ]
We drop this correction because it does not give a simple pole. As a result, we obtain

5A,(8)=0. (D.7)

6A,(8) =

D.2.9 Feynman diagram BV2-9

From the vertex correction in Table 6 BV2-9, we find a renormalization factor as

4g20¢ A dd+1kdd+1l5(k ) [6141616 1 —L- (K+L)5; —L- (K+L)5_; — L2541 |5y
N (2m)2d+1 0 (62, +(K+L)y2][62 +K2][62 +12][62, +L2][lz+ngd |]Jllljll]

0AL(9)=—

Integrating over k, k,, and l,,, we have

6A(9) = SN (2m)2d~ 2 1, |[l4+L2][12+ngd |LJd— 1]

where the integration is the same with 6 A;(8). We may ignore the l§ term in the fermionic
part since it would give rise to subleading terms in g. Integrating over [,, we obtain

g2PAA, [ dkidL 1
12\/§B§/3N (27-E)2d -3 | |2d+1 .
We drop this correction because it does not give a simple pole. As a result, we obtain

5A,(9)=0. (D.8)

0AL(9) =
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D.2.10 Feynman diagram BV2-10

From the vertex correction in Table 6 BV2-10, we find a renormalization factor as

d9kdd] [Brnbi+ky - (ky +1)](6:6 4 — 1) + 21}2,[1& 1y Gy —1p - (ky +1,)5 ]

(2m)> (60 + e+ 12 ][ 55+ 17 J[o7 + 1 ][ 62, +17 ]

5A,(10) = —2A%4A,

Integrating over k., we get
. f dk, dk,d1 1
P ) @mR (5,4 2Kk, 1,2+ (ko +1 |+ [k, 2][62 + B [62,+ ]

k-1 + (M*‘h)'h)]
Ryl ] ey +1g (1]

5A,(10) = —A?

(kp+11) -k,
[k +1, 01k, |

x[(515_, —)(Jky +1, [+ |kl|)(1 + ) +212(5, + 2kyzy)|1l|(

Integrating over k,, we obtain

5A,(10) = —

AZAy [ dk,dil 616~ ( (k. +1J_)'kj_)
4 (2m)2d=2 1 [[62 +12 |[62,+12] ky +1, 01k, | J°

Integrating over [, we have

5A,(10) =

AfDy [ dkpdldl, 1y ( (kuu)-ki)
g | @ e\ kL))

We drop this correction because it would give only a double pole. As a result, we obtain

5A,(10)=0. (D.9)

D.2.11 Feynman diagram BV2-11
From the vertex correction in Table 6 BV2-11, we find a renormalization factor as

2g4Ab dd+lkdd+ll N

5 -
MOD=""" | “Grpe? (62, + e D[, + (K+ L2][62 + K] 6%, + 7]

Dy (k)D, (D),

where N is given by

N = 81416116161 + K- L(K+ L)* — (8141 + 6_11)5 K- (K+1L)
— (Byes1 + 6_11)8kL - (K+ L) — 554 (K+ L)* — 51415 4K - L.

We may ignore k, and [, in the fermionic part since they would give rise to subleading terms
in g. Then, we have

sajan=-260 [ E K Al DD, 1),
[(ke + 12+ R+ L2 K2 + K212 +12]
where N” is given by
N’ = (ky + 1)k, L, + K- LK+ L) + k, L (K+ L) + (k, + [,)’K- L.
Integrating over k, and l,, we obtain
4 dKdk,dLdl .
oo = f @ O R i) PP
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Integrating over k, and [, we get

5A,(11) 283 A, dKdL 1 ( K-L )
b = = = = — .
272Nz ) (27472 k| 5HL T K+ LI(K| + K+ L)+ L)\ KIIL]
Introducing coordinates as K+ L = KL cos 6 and scaling K as K = Lk, we have
/ 8/3 i 4d—13 i 2d—5 T —_
§A,(11) = mgz—/sAl’f dLL*5 f dkk*5 | deosin® 36 1—cosf ,
27B;°N3 Jip| 0 0 v1+k2+2kc059(1+k+v1+k2+2kc039)
[A— 4 . .
where Q' = Wyt We find an € pole from the L integral as
f ;lo dLL*3" = 4% + O(1). The remaining integral is numerically done as
oo ~ T _ r a2
J dkk”ssj 6 sin?3 6 1~ cos6 = ﬁd( 2 ) (2.264).
0 0 V1+k2+2kcosO(1+k+v1+k2+2kcos6) r(4h
As a result, we obtain
52
5A,(11) = (13.58)A, 5 (D.10)

-
D.2.12 Feynman diagram BV2-12

From the vertex correction in Table 6 BV2-12, we find a renormalization factor as
dkdd] [k =k - (ky +11)](8:8 1 —15) = 202[ 8yl - (ky +11) + Sk -1 ]

(2m) (6% +1c Il ok, + G+ 1267 + R )62, + ]

5A,(12) = —4A)%Ab

Integrating over k,, we obtain

2027,  dk,dk,d’l 1
5A,(12) = —— >
N3 (2m)2=1 [(8y+ 2k, 1, )2+ (kg +1, | + [k )2][62+12 ][62,+12 ]
(ky +1)) -k ki-1 (kg +1)-1
x| (516 =)(k, +1, |+ |k (1——)+2126+2kl 1 (— )
[(‘ e G T T D A A e e 2 W T R e W

Integrating over k,, we have

AZAL [ dk. di 56_—12 k, +1,)-k
5A,(12) = —— 1 101~ 1) (_(L 1) J_)'

2 (2m)2d=2 11 [[62 +12 ][ 62, +12 ] ko +1 [k, |

Integrating over [,., we get

A2Ay [ dk,dl,dl 1 k, +1,)-k
5A,(12) = f Lalyaly 1] ]( (k; +1;) J_)'

4 ) e ]V kL
We drop this correction because it would give only a double pole. As a result, we obtain

5A,(12)=0. (D.11)

D.2.13 Feynman diagram BV2-13

From the vertex correction in Table 6 BV2-13, we find a renormalization factor as

dedd] [ =k - (ky +11)](8:5 1 —15) = 202[ 8yl - (ky +11) + Sk -1 ]

(2m)> (67 + 1 {67, + G + 12 ][ 57 + 1 ][ 6% + 1 ]

5A,(13) = —4A; A7

The integration is the same with 6Ay(12). As a result, we obtain

5A,(13)=0.
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D.2.14 Feynman diagram BV2-14

From the vertex correction in Table 6 BV2-14, we find a renormalization factor as

482N ¢ A J 91k dd+1] [61811— K- (K+1)](8,6_—L%) = 212[ 4L - (K+L) + 63 K- L]

Vo) e T e e, ot e ]l + 211K + e R ]

k+1

Integrating over k,, we have

5A,(14) =

2g2AfAbJ dkdkydd+116(l ) 1
0 d—
N (2m)x [62+ (IK+L|+ K)2][67 +L2][ 52 + L2][k2 + g2B4 "l(,‘(y‘l]

(K+L)-K) K-L (K+L)-L
5151 —L)([K+L| + K (1—— +2125 L(— + ) ,
X[(‘ e S P A A G T R ¥

where we have neglected the k[, term since it would give rise to subleading terms in g.
Integrating over [, [, and k,, we obtam

Xty
5a, 14y £0AB [ dRAL__5(L) [ V2 (1 Gem x)
P 6vaBlAN ) @S K@D | (K| + K+ L+ L)Y\ IK+LIK

VIKl+ |K+L|+ L] — \/2|L|( (K+L)-K K-L (K+L)~L)]
(IK| + [K+L|)? —|L|? [K+L|K| |[K|[L| [K+L|[L|

Introducing coordinates as K- L = KL cos 6 and scaling variables as L = Kl and ky, = Kk, we
have

Q 4/3A A oo § o) (e} dk T
5A,(14) = g—f/gl’f KK F J dll"HJ — % | dosinio
67v/3B,°N Jp, 0 o (1+k2)s Jo

X[ V2 (1_1+k2+1cos9)_(J1+k2+l+n)1/2—m(1_ cos 6 )(1+l—«/1+k2)]
VIWT+EkZ+1+1) V1+k2n (W1+k24+n)2—12 V1+k2 n ’

where n = V1+k2+12+2lcos@. We find an e pole from the L integral as
f . dLLF = % + O(1). The remaining integral are done numerically as

oo o0 T 5

J d”Hf dk__ dQSind_49|: V2 (1 1+k +lcos€)
0 o (1+k2)s Jo VI(VI+kZ+1+n) V1+k2n

_(1/1+k2+l+7))1/2—\/ﬂ(1_ cos 0 )(1+l—1/1+k2
(VI+k2+n)2—12 V1+Kk2 n

As a result, we obtain

J_F(T)

r(&2) -

)] =(0.6926)————

5A,(14) = (1.408)A, fg.

D.2.15 Feynman diagram BV2-15

From the vertex correction in Table 6 BV2-15, we find a renormalization factor as

5A,(15) =

4g2AfAded+1kdd+ll [6181r1 —K- (K+1)](8,6_—1*) —22[ 6L+ (K+L) + 1K L]
N @m0 52y [ 2+ R+L2][87 +12][82 +17][12 + ¢2B4 ] '

Integrating over k,, k,, and [, we get

ngfAdeKdelyS(k) IL| ( _(K+L)-K)
4N (2m)2d—2 11, 1[0 +12][12 + g2B, 1] K+ L||K]

5A,(15) =
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where the integration is the same with 6 A,(12). We may neglect the l§ term since it would
give rise to subleading terms in g. Integrating over l,,, we have

28NN KL &(k K+L)-K
6Ab(15)=g £ 2% dKd (o)(l_( +1) )

6v382°N | P B\ KA LK

Introducing coordinates as K- L = KL cos 6 and scaling variables as K = Lk and [, = LI, we
obtain

0T SLTNY N s [0 o rm )
5A,(15) = g—;cBbJ dLL™S SJ dkkd‘sf dlj d0sin?0 — (1— k+ cos 0 )
67385 N Jin 0 0 0 (1+12)7 V1+k2+12+ 2kcos 6

We find an € pole from the L integral as f ;lo dLL*3" = % + O(1). The remaining integral

can be done numerically as

d

[e%e] [e3e] T F;3
f dkkd‘3J di f d0sin?™4— 1 (1— k+cosb )=(4.935)%.
0 0 0 (1+12)% V1+k2+12+2kcos6 r(5=)

As a result, we obtain
Arv/8
VNe

5A,(15) = (8.323)A, (D.12)

D.2.16 Feynman diagram BV2-16
From the vertex correction in Table 6 BV2-16, we find a renormalization factor as
4g2A2 [ gd+iggd+ly [6101— K- (K+L)](5,6_ —LZ)—21§[5kL (K+L)+ 84K L]

N @rye T (52 ke ][5, + (+ L] + 12162, + 1212 + g2, ]

5A,(16) = —

The integration is the same with 6§ A;(15). As a result, we obtain

5A,(16)=0.

D.2.17 Feynman diagram BV2-17

From the vertex correction in Table 6 BV2-17, we find a renormalization factor as

440, J d411qd+1 [ 8181 — K- (K+1)](6,6_; —L?) —2z§[5kL “(K+L)+ 8, K- L]Dl(k)Dl(l)

N2 (2m)2d+2 [62+K2][62,,+ (K+L)2][ 67 +12][ 6% +12]

We may ignore k, and [, in the fermionic part since they would give subleading terms in g.
Then, we have

2N d+17, 7d+1 k.(k,+1.)—K - (K+L
4g de kdd+1] (ke +1)—K- (K+1) D, (K)D; (D).

N2 ) @rpt [ 4 K] (ky + L2+ (K LR][12 +12]

Integrating over k, and [,, we get

4 dKdk,Ldl .
g'Ay yLdly 1 ( (K+L) K)
0A,(17) = 1-— D;(k)Dy(1).
(=7 f (T E ST G e At
Integrating over k, and [,,, we obtain
4g8/3A dkdl 1 K+1L)-K
648,(17) = g2/3 ° 2d—2 o d-1 — d+2 ( = ) )
27B2°N2 ) (27P472 K|S L5 (JK] + K+ L] + L) K+ L||K]|
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Introducing coordinates as K- L = KL cos 8 and scaling variables as K = Lk, we have

4’ g8BA, [ s [ s (7 1 k + cos 6
§A,(17)= =8 20 | grp** | a5 | desind e (1— cos )
|P| 0 0

2732/3 1+k++1+k2+2kcos6 VI+k2+2kcosh) '

We find an € pole from the L integral as f |;|o - % + O(1). The remaining integral

are done numerically as

° s [ r(&2
f dkk™s" | dosin?6 ! (1 . Kcosh ) _Jm d( 2 (0.4213).
o 0 1+k+v1+k2+2kcosB V1 +k2+2kcos® E=3)
The remaining integration is the same with 6A;(11). As a result, we obtain
gZ
0A,(17) =(5.056)A,=. (D.13)
€

E Derivation of critical exponents

E.1 Critical exponents for fermion and boson fields

Here, we derive the Callan-Symanzik equations and define the critical exponents for the cor-
relation functions. We first consider the following correlation function:

({1, F) = (B(k) Uk (K1) ) (E.1)

where F = (g, A £ A}). In a renormalized theory, the correlation function is expressed as

G ({k; 1, F,) = p 1G22 226 (k) B, (E.2)

bare

where Gﬁ’e”n”)({kl +},u,F.) and Gg;;z)({ki}, F) represent the renormalized and bare correlation

functions, respectively. Here, {k; .} are scaled momenta, F, are renormalized coupling con-
(m,n)

stants, and [G] = m[¥] + n[®]+z +2(d —2) + 3 5. Using the fact dGb‘"e = 0, we obtain the
following Callan-Symanzik equation for G(™ ")({kl 1 u,FL):

ren.

[Zki Vi, — B Ve—m([®]1+7,)—n([®]+7,)—D ]Gﬁ’:n”)({k },u,F) = (E.3)

where the derivative expressions are defined as k-V; = zk, ai + 2k -V, + 6k a"é— and

(3 35 34 A '3 A 5% ), and the beta function is written in the vector form as 8z = (8, B4 A B,

and DSC =z+2(d—2)+3 5. The critical exponents in the Callan-Symanzik equations are defined
as

=14 31H(ZO/Zz)’
dlnu
F—14 3111(21/22)’
dlnu
_dInz,
Yo = dlnu’
®  Jlnu’ )
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where Z, ; 5 5 are the renormalization factors that relate the bare and scaled momenta as

Z Z 1
kor=n7ko,  Kip=poke, ke =pke,  ky=ptky (E.5)
2 2

We next consider another type of correlation function given by
Gk}, (b B) = ()7 ¥(ka) - B )7 a0 ¥ k)b (k1)) (E.6)

where y ;) represent the gamma matrices for the corresponding coupling constants, i.e. ¥4
for § and A ¢ or the identity matrix I, for A,. With a similar consideration for GV ({k;},F),
we obtain the Callan-Symanzik equation for G ({k;}, {ru;}F) as

l
[Zki-vki—ﬁp-vp—m(mm)—n([<1>]+n,)—Dsc+ZYL?§)]G(“’m)({ki},{yum},u,F) =0.
i j=1

(E.7)

Here, Y;V;E;) Zy1,2,3 are the anomalous dimension of the coupling constants are defined as
dlnz,
Yg= >
dlnu
Jdln ZAf
YAf - a ln‘u >
JdIln ZAf
= , E.8
ra, dlnu (£8)

where Z,, Zx,, and Z ; are the renormalization factors that relate the bare and renormalized
coupling constants as

€ 1 d-2 3
Ze8 = W 2(Z0/22)2(Z1/25) % 2575 8o,
Za, Dy =21/ 22) 222 Ap
Zp, Ay = .U_E(Zl/zz)d_zzzzAb,O' (E.9)

We finally compute the critical exponents for the correlation functions, which are defined
in Egs. (E.4) and (E.8), which are given in Egs. (17) and (18) in the main text. We note that
in the epsilon expansion the renormalization factors are given in the following forms:

A 1
ZO:1+—°+O(—2),
€ €

Af 1
Z =1+—L+0=),
Af € (62)
A
1
z, =1+ﬁ+0(—2). (E.10)
b €
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Inserting Eq. (E.10) into Egs. (E.4) and (E.8) solving the resulting equations order by order in
€, we obtain the following expressions:

2= (1+F Va4, —4A,)) ",
z = 2(1 —F- VF(AO —Al)),
1_
Yo = _EZF VA,
— 1 &
v, =—5FF Veds,
Yg == _EF . VFAg N
Y., =—FF Veda,,
'}/Ab =—zF- VFAAb . (E-]-l)
To obtain Eq. (E.11), we should note that the coupling constants have the u-factors in front
of them as ;ﬁeg, ,u%EAf, and u¢A,, which we have ignored in the loop correction compu-

tations, for simplicity. To find Ag, A, As, A3, Ag, Ap . and Ap,, We gather all corresponding
contributions from Sec. A, C, B, and D. As a result, we obtain

B

— pe A A 52 A A g
Ag=—g—A;—A;—0542° — 04547\ - —0.454,\ -,

N . x4l & < 1| &
A, =—5—0.5452—16A:\| = —16A,\| =,
1 g g F\N b\ N

Ay =—0.5A; —0.5A;—-0.11%%,

A3 R
—_— A A ~2 5 A A
AAf = —Af — Ay —0.75A—f—0.23g +2.1gAf —4.2Af N —4.2A—f N,

Ap, =63 +0.14A, + 1832 + 1.45A, +8.34,\ ]%, (E.12)

where A, = A, and A3 = 0. Inserting Eq. (E.12) into Eq. (E.11), we obtain the critical expo-
nents in Egs. (17) and (18) in the main text.
E.2 Critical exponents for thermodynamic quantities

Here, we explicitly compute the critical exponents for thermodynamic quantities, which are
given in Eq. (37) in the main text with a heuristic argument. We start with the order parameter
m for the Ising-nematic order, which is defined as,

= (®(x)+N(x)) = m® + m® | (E.13)

where mM and m® represent the fermion and boson contribution given as
m = (¢(x)) ,
m® = (j(x)) = f

D

k
Gy a6 (O], (E14)

By solving the Callan-Symanzik equation for m™", which is given by

1
|:,u8“+/5F~VF+5(D—1+y¢):|m(1)=0, (E.15)
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we obtain the scaling behavior of m? as

m® ~ M—%(D—Hr@) ~ (—=r)2P7147,) (E.16)

To find the scaling behavior of m'®, we consider the Callan-Symanzik equations for a fermion
Green’s function G(k) = <\I/(k)\i!(k)>, which is given by

[k VP Vet+1—7, |Gk, F) =0. (E.17)
The solution is represented as

G(k,u,F) = g(ko/16x ). (E.18)

ple| G T

Using this expression, we find the scaling behavior of m® as

dPk 1 k r
@) 0 ~ (=) P=147,,) E.19
m (2n)D|5k|1—mg(|6k|z’|5k|1/v) (=)™ (E.19)

Using the values of D =5/2, v, =0, and y_ = 0.24 at the DNFL fixed point, we obtain
m ~ (—r)”, m® ~ (_r)1-97” . (E.20)

We note that the bosonic contribution m‘") is much larger than the fermionic contribution m?
near the critical point 7 ~ 0. This observation justifies ignoring the coupling of the external
field with fermionic excitations.

We next compute the susceptibility for Ising-nematic order parameter, which is defined as

_*f
X= 32

= f dPx (@(x)®(0) + N(x)N(0)) = y P + 4@ (E.21)
h—0

where y( and y® represent the fermion and boson contribution given as
x= f d”x (¢ (x)¢(0)) = lim D(k),
@ = [ 2% ticericon = [ 2K Geevic—r
XY= x (j(x)j(0)) = P (j(k)j(=k)) - (E.22)

To find the scaling behavior of y(1), we consider the Callan-Symanzik equations for a boson
Green’s function D(k) = (¢ (k)¢ (—k)), which is given by

[k Vi —Be Ve+1—7v, |D(k,u,F)=0. (E.23)

The solution is represented as

1

D(k,u,F) = ————
ule |k_y |2(1—Yq,)

d(ko/lky|*). (E.24)

Using this expression, we find the scaling behavior of y) as

1 k r

M — 5 0 —v(1-7,)

x+ =lim d( , ) ~|r| 8/, (E.25)
k—0 |ky|2(1_y<b) |ky|22 |ky|2/v
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To find the scaling behavior of x(z), we consider the Callan-Symanzik equations for the corre-
lation function G® (k) = (j(k)j(—k)), which is given by

[k-Vk—ﬂF-VF+2+y’A";]G(2)(k) =0, (E.26)

where y™ =y —2y_. The solution is represented as
Af Af v

1 k r
G (k) = (2)( L, ) (E.27)
0= T ¢ o o

Using this expression, we find the scaling behavior of x(z) as

d’k 1 k (D-2-y7)
X(Z):J g(z)( o _T )~|r|v Ta?, (E.28)

@l 5 775 I 15

Using the value of yzi = —0.50 at the DNFL fixed point, we find

O~ @~ (E.29)

We note that the bosonic contribution y ) is again much larger than the fermionic contribution
@ near the critical point r ~ 0. This observation again justifies ignoring the coupling of the
external field with fermionic excitations.

F Ward identity

The effective field theory of Eq. (4) has a U(1) symmetry, given by ¥;(k) — eiQV\IJJ-(k). Asso-
ciated with this symmetry, we derive the Schwinger-Dyson equation for (1(x)v(0)) and find
the following identity

G '(p)

Opy (ED

Iy_1(p,0) =
where I;_;(p +q, q) is the irreducible vertex function resulting from (j;_;(x")y(x)4(0)), and
G(p) is the fully renormalized fermion propagator. j;_; = 1y 41 is the conserved current
related to the U(1) symmetry in the (d — 1) direction. The Ward identity of Eq. (E1) implies
that the vertex function for y4_; and the fermion kinetic energy should be renormalized at
the same rate. For the fermion-boson Yukawa coupling, where bosons are coupled to j;_;
conserved currents, this equation implies the following relation

which should be preserved in all loop corrections.
There is a similar identity for forward disorder scattering. To figure it out, we define
ySAS = Ys; —)/Z“ , where YSAS (yZ“ ) is the anomalous dimension involved with a single (multiple)
f f VALY
scattering process. For example, in Table 3, the Feynman diagrams labeled as “FV1-3", “FV1-
5", and “FV1-6" fall into the single scattering process while those labeled as “FV1-1", “FV1-2"

and “FV1-4" fall into the multiple scattering process. Only }/SAS is subject to the Ward identity
f

because the forward scattering acts effectively as a vertex function for y,_; only in the single
scattering process. Then, the Ward identity in Eq. (F1) implies another relation,

e =4ry, (E3)

Af

which should be preserved in all loop corrections.
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