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Abstract

Understanding the influence of quenched random potential is crucial for comprehending
the exotic electronic transport of non-Fermi liquid metals near metallic quantum critical
points. In this study, we identify a stable fixed point governing the quantum critical be-
havior of two-dimensional non-Fermi liquid metals in the presence of a random potential
disorder. By performing renormalization group analysis on a dimensional-regularized
field theory for Ising-nematic quantum critical points, we systematically investigate the
interplay between random potential disorder for electrons and Yukawa-type interactions
between electrons and bosonic order-parameter fluctuations in a perturbative epsilon ex-
pansion. At the one-loop order, the effective field theory lacks stable fixed points, instead
exhibiting a runaway flow toward infinite disorder strength. However, at the two-loop
order, the effective field theory converges to a stable fixed point characterized by finite
disorder strength, termed the “disordered non-Fermi liquid (DNFL) fixed point.” Our in-
vestigation reveals that two-loop vertex corrections induced by Yukawa couplings are
pivotal in the emergence of the DNFL fixed point, primarily through screening disorder
scattering. Additionally, the DNFL fixed point is distinguished by a substantial anoma-
lous scaling dimension of fermion fields, resulting in pseudogap-like behavior in the
electron’s density of states. These findings shed light on the quantum critical behavior of
disordered non-Fermi liquid metals, emphasizing the indispensable role of higher-order
loop corrections in such comprehension.
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1 Introduction

Despite significant advancements in the understanding of metallic quantum critical points
(QCPs) [1, 2], the challenge of addressing metallic QCPs in the presence of quenched disor-
der persists. Early renormalization group (RG) studies [3] on this issue applied the Hertz ap-
proach, wherein fermionic degrees of freedom are integrated out to derive an effective bosonic
theory [4,5]. However, this approach proves inadequate in two-dimensional (2D) systems due
to uncontrolled quantum fluctuations associated with Fermi-surface electrons [6–8]. A con-
temporary perspective emphasizes equal treatment of fermionic and bosonic excitations [1].
Recent studies [9, 10] utilizing this modern approach revealed that random potential disor-
der destabilizes the clean non-Fermi liquid (CNFL) fixed point for spin-density-wave quantum
criticality [11, 12]. However, finding a stable fixed point replacing this unstable fixed point,
which we term a “disordered non-Fermi liquid (DNFL) fixed point,” remains unresolved in
these studies.

Identifying a DNFL fixed point is crucial for comprehending anomalous transport proper-
ties near metallic QCPs. For instance, strange metallic behaviors, including linear temperature
dependence of electrical resistivity, are commonly observed in strongly correlated materials
like heavy fermion materials, iron-pnictides, and cuprates [13–15]. Accurate modeling of
these transport properties necessitates consideration of momentum relaxation processes, such
as disorder scattering or Umklapp scattering. Previous studies calculated the temperature de-
pendence of electrical resistivity by incorporating disorder scattering, using either a Boltzmann
equation [16–18] or a memory matrix method [19–21]. A more recent study found a DNFL
fixed point in the vicinity of a CNFL fixed point and derived scaling equations for resistiv-
ity [22], which extends the Finkelstein-type RG analysis [23–26] toward quantum criticality.
Notably, this study considered a matrix-type order parameter field for the large N control-
lability instead of vector-type quantum critical fluctuations. In this respect, the discovery of
a DNFL fixed point will facilitate a reevaluation of these previous approaches and provide a
more robust theoretical foundation for future advancements.

The existence of a Fermi surface in metallic systems presents a formidable challenge in the
quest for the DNFL fixed point. The Fermi surface essentially reduces the effective dimension-
ality of the system to unity [27] or so [6], thereby classifying both interaction and disorder
as “strong” or relevant in the RG sense [9, 10, 28]. The strong coupling nature of these inter-
actions hinders the direct application of standard theoretical frameworks, such as the Hertz
theory [4] or the Finkelstein theory [23], which inherently assumes a perturbative nature
of the couplings. This is in stark contrast to the analysis of commonly studied semimetallic
systems [29–32, 32, 33, 33–39], where both couplings are deemed irrelevant or marginally
relevant, at most. Consequently, the establishment of theoretical frameworks capable of effec-
tively addressing both interaction and disorder is imperative to propel advancements in the
pursuit of the DNFL fixed point.

One promising approach to address this challenge is to begin with CNFL fixed points, where
interaction effects can be systematically incorporated [7,8,12,28,40], and then introduce weak
disorder. However, this strategy encounters several obstacles. Firstly, the previous observation
that the disorder causes the theory to flow to strong coupling at the one-loop level [9, 10]
may cast doubt on the viability of solving the problem within the weak disorder framework.
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Secondly, elastic disorder scattering leads to an ultraviolet-infrared (UV-IR) mixing issue [9,
10], potentially challenging the patch description of the Fermi surface [41,42]. Finally, there
is a concern that the weak disorder approach may overlook the disorder-driven localization
effect responsible for Anderson localization [43].

Addressing these challenges, we establish a controlled RG framework tailored for 2D metal-
lic QCPs in the presence of random potential disorder. We employ a dimensional-regularized
field theory developed by Dalidovich and Lee [28], which allows for a systematic perturba-
tive epsilon expansion for Yukawa couplings between electrons and bosonic order-parameter
fluctuations. By reformulating this theory, we develop an RG scheme that facilitates perturba-
tive treatments for both Yukawa couplings and random potential disorder for electrons. Key
technical advancements include:

1. Single Epsilon Expansion Scheme: Tailored for regularizing loop corrections from both
interaction and disorder using a unified epsilon parameter. Refer to Sec. 2.2 for detailed
explanations.

2. Cutoff Regularization Scheme: Implemented to regularize divergent integrals arising
from disorder, effectively avoiding UV-IR mixing. Additional details can be found in
Sec. 2.3.

3. Identification of Critical Two-loop Corrections: These corrections play a key role in the
emergence of the DNFL fixed point. Details are available in Sec. 3.2.

4. Large N Expansion: Employed to control the strong IR enhancement factors originating
from disorder, as detailed in Sec. 3.2.

In our study, we employ an effective two-patch model tailored to Ising-nematic QCPs,
which are observed in various strongly correlated materials such as cuprates [44–51], pnic-
tides [52–61], and ruthenates [62]. Our investigation focuses on the impact of the ran-
dom potential disorder on two scattering channels: one involving small momentum transfer
(|q | ≪ kF ) and the other with 2kF -momentum transfer (|q | ≈ 2kF ). Here, kF denotes the
characteristic Fermi momentum of the two patches in our two-patch model. We assume short-
range correlated disorder potentials characterized by a white-noise Gaussian distribution. Our
focus is specifically on the weak disorder limit, utilizing a ballistic fermion propagator without
an elastic scattering rate and an overdamped boson propagator with ballistic Landau damping
at the CNFL fixed point.

Conducting a two-loop-level RG analysis on this model, we illustrate the appearance of a
DNFL fixed point that governs the universal low-energy physics of 2D non-Fermi metals in the
presence of random potential disorder. Additionally, we calculate various scaling exponents
associated with this fixed point using a systematic epsilon expansion up to two-loop order.

The remainder of this paper is organized as follows. In Sec. 2, we introduce a controllable
RG framework for 2D metallic QCPs, offering insights into crucial technical aspects within
our approach, including the implementation of a single ε expansion and a cutoff regulariza-
tion scheme. Moving to Sec. 3, we present the two-loop RG results, while detailed technical
information is deferred to the Appendix. Transitioning to Sec. 4, we explore the robustness
of our results against disorder scattering mechanisms not explicitly considered in our model
and investigate potential applications of our theory to other systems. Finally, in Sec. 5, we
summarize our findings.
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Figure 1

Backward scattering

Forward scattering

Figure 1: Schematic illustration of a two-patch model used for our renormalization
group (RG) analysis. The blue circle represents the entire Fermi surface, while the
red curved segments depict two antipodal patches incorporated into the effective field
theory. The axes indicate the momentum coordinates of fermions near each patch.
Additionally, the green and magenta arrows represent the transfer of fermions in two
disorder scattering terms: forward and backward disorder scattering, respectively.

2 Model

2.1 Effective field theory

We consider 2D metallic systems in the vicinity of Ising-nematic quantum phase transitions
[44–62]. The scaling behavior of these systems can be described using an effective two-patch
model [7,28]:

S0 =
N
∑

j=1

∫

dk0d2k
(2π)3

Ψ̄ j(k)
�

ik0γ0 + iδkγ1

�

Ψ j(k)

+
1
2

∫

dq0d2q
(2π)3

Φ(−q)
�

q2
0 + q2

x + q2
y

�

Φ(q)

+
N
∑

j=1

∫

dk0d2kdq0d2q
(2π)6

i g
p

N
Φ(q)Ψ̄ j(k+ q)γ1Ψ j(k) . (1)

Here, Ψ j(k) represents a Nambu spinor given as:

Ψ j(k) =

�

ψ+, j(k)
ψ†
−, j(−k)

�

, (2)

and Ψ̄ j(k) = Ψ
†
j (k)γ0 represents the adjoint of Ψ j(k). The gamma matrices associated with

the spinor are defined as γ0 = σy , γ1 = σx , and γ2 = σz , where σx ,y,z are the Pauli matrices.
ψ±, j(k) represents fermion fields describing low-energy fermions on the antipodal patches of
the Fermi surface (Fig. 1). These chiral fermions have different energy dispersions, represented
as kx+k2

y and−kx+k2
y forψ+, j(k) andψ−, j(k), respectively. However, their energy dispersion

can be represented with a single term δk = kx + k2
y within the Nambu spinor representation.

j = 1, · · · , N stands for the fermion flavor index. Φ(q) represents a scalar boson field for Ising-
nematic order-parameter fluctuations or critical bosons. g represents the Yukawa coupling
between fermions and critical bosons.

The effective field theory in Eq. (1) exhibits two U(1) symmetries: (i) the vector symmetry
with Ψ j(k)→ eiθvγ2Ψ j(k) and (ii) the axial symmetry with Ψ j(k)→ eiθaΨ j(k). It is essential to
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recognize that the presence or absence of γ2 in the vector and axial symmetry transformations,
respectively, results from expressing the action in the Nambu spinor basis. The vector symme-
try implies the conservation of the total fermion number density, denoted as n = n+ + n−.
Here, n± represents the number density of each chiral fermion, defined as:

n± =
N
∑

j=1

∫

dk0d2k
(2π)3
¬

ψ†
±, j(k)ψ±, j(k)
¶

. (3)

Conversely, the axial symmetry signifies the conservation of the difference between the two
fermion number densities, denoted as m= n+ − n−.

We introduce two random potential terms for fermions in our effective action as follows
[63]:

Sran =
N
∑

j=1

∫

dk0d2kd2q
(2π)5
¦

v f (q)Ψ̄ j(k+ q)γ1Ψ j(k) + vb(q)Ψ̄ j(k+ q)Ψ∗j (−k)
©

. (4)

Here, v f (q) and vb(q) denote forward and backward disorder scattering, respectively, wherein
each term scatters fermions within the same patch or between opposite patches. Notably, v f (q)
upholds both U(1) symmetries, conserving both n and m, which correspond to separately
preserving n+ and n−. However, vb(q) breaks the axial symmetry, conserving only n but not
m.

For disorder averaging, we assume Gaussian white-noise distributions for the random vari-
ables v f /b(r ), specifically 〈v f /b(r )v f /b(r ′)〉= δ(r − r ′)∆ f /b, where ∆ f /b represents the vari-
ances of these distributions. Employing the replica trick [64, 65] to perform the disorder av-
erage for Sran, we obtain the following disorder-averaged action:

S =
R
∑

a=0

N
∑

j=1

∫

dk0d2k
(2π)3

Ψ̄a
j (k)
�

ik0γ0 + iδkγ1

�

Ψa
j (k) +

1
2

∫

dq0d2q
(2π)3

Φ(−q)(q2
0 + q2

x + q2
y)Φ(q)

+
R
∑

a=0

N
∑

j=1

∫

dk0d2kdq0d2q
(2π)6

i g
p

N
Φ(q)Ψ̄a

j (k+ q)γ1Ψ
a
j (k)

+
R
∑

a,b=0

N
∑

j=1

∫

dk0d2kdk′0d2k ′d2q

(2π)8

§∆ f

2
Ψ̄a

j (k+ q)γ1Ψ
a
j (k)Ψ̄

b
j (k
′ − q)γ1Ψ

b
j (k
′)

+
∆b

2
Ψ̄a

j (k+ q)Ψa∗
j (−k)Ψ̄ b∗

j (k
′ + q)Ψ b

j (−k′)
ª

. (5)

Here, a, b = 0, · · · , R denote the replica indices introduced for the replica trick. The disorder
average transforms the random potential terms in Eq. (4) into the four-point elastic scattering
terms, represented by ∆ f and ∆b.

2.2 Dimensional regularization

To establish a controllable RG framework, we adopt a dimensional-regularized theory [28] and
tailor it to address our disorder problem. By extending the codimension of the Fermi surface
from 1 to d − 1, we adjust the fermion kinetic term to Ψ̄(k)(ik0γ0 + ik⊥ · γ⊥ + iδkγ1)Ψ(k),
where k⊥ = (k1, · · · , kd−2) and γ⊥ = (γ1, · · · ,γd−2) are newly introduced momentum compo-
nents and gamma matrices, respectively. All gamma matrices satisfy the Clifford algebra as
γiγ j+γ jγi = 2δi j with i, j = 0, · · · , d−1. The other components of Eq. (5) should be adjusted
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accordingly. Consequently, the full action of the (d + 1)-dimensional theory is expressed as:

S =
R
∑

a=0

N
∑

j=1

∫

dk0dd−2k⊥d2k
(2π)d+1

Ψ̄a
j (k)
�

ik0γ0 + ik⊥ · γ⊥ + iδkγd−1

�

Ψa
j (k) +

1
2

∫

dq0dd−2q⊥d2q
(2π)d+1

Φ(−q)q2
yΦ(q)

+
R
∑

a=0

N
∑

j=1

∫

dk0dd−2k⊥d2kdq0dd−2q⊥d2q
(2π)2(d+1)

i g
p

N
Φ(q)Ψ̄a

j (k+ q)γd−1Ψ
a
j (k)

+
R
∑

a,b=0

N
∑

j=1

∫

dk0dd−2k⊥d2kdk′0dd−2k ′⊥d2k ′dd−2q⊥d2k

(2π)3d+2

§∆ f

2
Ψ̄a

j (k+ q)γd−1Ψ
a
j (k)Ψ̄

b
j (k
′ − q)γd−1Ψ

b
j (k
′)

+
∆b

2
Ψ̄a

j (k+ q)Ψ∗aj (−k)Ψ̄∗bj (k
′ + q)Ψ b

j (−k′)
ª

, (6)

where the irrelevant q2
0 and q2

x terms are dropped in the bosonic action. Importantly, k⊥ is
exchanged, but k0 is not in the ∆ f and ∆b terms as the disorder scattering is elastic. This
anisotropic characteristic of the disorder scattering disrupts the formal (d − 1)-dimensional
symmetry within the vector space (k0, k⊥) as described in the clean theory [28], resulting in
distinct rates of renormalization for k0 and k⊥.

The quadratic part of the action in Eq. (6) is invariant under the following scaling trans-
formation:

k0 =
k′0
b

,

k⊥ =
k ′⊥
b

,

kx =
k′x
b

,

ky =
k′y
p

b
,

Ψa
j (k) = b

2d+3
4 Ψa

j
′(k′) ,

Φ(q) = b
2d+3

4 Φ′(q′) . (7)

Under this scaling, the coupling constants undergo the following transformations:

g ′ = b
5−2d

4 g ,

∆′f = b
5−2d

2 ∆ f ,

∆′b = b
5−2d

2 ∆b . (8)

It is crucial to note that all couplings become marginal at the upper critical dimension d = 5/2.
Consequently, a perturbative RG analysis can be conducted by tuning d as:

d = 5/2− ε , (9)

where ε serves as a small parameter in the perturbative expansion [28]. Utilizing this expan-
sion parameter, we investigate the scaling behavior of the theory in d < 5/2. Importantly, a
single ε parameter suffices for both interaction and disorder [63] due to the anomalous scaling
law [kx] = 2[ky] = 1 and [E f ] = [Eb] = 1 at the Ising-nematic QCP [28,66] ([x] denotes the
mass dimension of x). For general interacting disordered systems lacking such a law, a double
epsilon expansion scheme is necessary [29–32,32,33,33–39,67,68].
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Figure 2

(a) (b)

kx

ky

+Λ

−Λ

+∞−∞

kx

ky

−kf

−∞

+∞

+∞

Figure 2: (a) Schematic illustration of a cutoff-regularization scheme employed
in this study. While the integral region for ky extends to the infinite range
ky ∈ (−∞,∞), that for kx extends to the semi-infinite range kx ∈ (−k f ,∞).
Here, k f represents a cutoff introduced for regularizing divergent momentum in-
tegrals arising from disorder scattering. (b) Schematic illustration of an alternative
scheme, discussed in Sec. 4.1. While the integral region for kx extends to the infinite
range kx ∈ (−∞,∞), that for ky extends to the finite range ky ∈ (−Λ,Λ). Here,
Λ represents a cutoff introduced for regularizing divergent momentum integrals. In
each plot, the red line denotes a Fermi surface segment within the two-patch model.

2.3 Cutoff regularization for disorder scattering

The disorder scattering leads to integrals that necessitate additional cutoff regularization
[Fig. 2(a)]. To illustrate this, we consider the one-loop fermion self-energy diagram result-
ing from the forward disorder scattering [Fig. 3(c)] [63]:

Σ1(p) =
i∆ f

N

∫

dd−2k⊥
(2π)d−2

∫ ∞

−k f

dkx

2π

∫ ∞

−∞

dky

2π

−p0γ0 + (kx + px + k2
y)γd−1

p2
0 + k2

⊥ + (kx + px + k2
y)2

=
i∆ f

N

∫ ∞

−k f

dkx

2π

∫ ∞

−∞

dky

2π

Γ (2− d
2 )

(4π)
d−2

2

−p0γ0 + (kx + px + k2
y)γd−1

�

p2
0 + (kx + px + k2

y)2
�

d−2
2

. (10)

Setting k f → ∞ from the outset makes the integral divergent for any d since the inte-
grand loses its dependence on ky upon integrating over kx . In this scenario, the dimen-
sional regularization fails, and epsilon poles responsible for renormalization cannot be iso-
lated. On the other hand, adopting a finite value of k f keeps the dimensional regulariza-
tion valid, and the epsilon poles can be determined from the expansion of Σ1(p) given as
Σ1(p) ≈ −iAp0γ0 − iBpxγd−1 − iCγd−1 +O(p2). The coefficients A, B, and C are explicitly
given by:

A= −
∆ f

N

∫ ∞

−k f

dξ ν(ξ)
Γ (2− d

2 )

(4π)
d−2

2
�

ξ2 + p2
0

�2− d
2

,

B = −
∆ f

N

∫ ∞

−k f

dξ ν(ξ)

�

(3− d)ξ2 − p2
0

�

Γ (2− d
2 )

(4π)
d−2

2
�

ξ2 + p2
0

�3− d
2

,

C =
∆ f

N

∫ ∞

−k f

dξ ν(ξ)
Γ (1− d

2 )

(4π)
d−2

2
�

ξ2 + p2
0

�2− d
2

. (11)
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These expressions result from integrating out k⊥ and converting the kx and ky integrals
into an energy integral over ξ using a density of states given by

ν(ξ) =
∫∞
−k f

dkx
2π

∫∞
−∞

dky
2π δ(ξ−δk) =

p
ξ+k f

2π2 . The epsilon poles can be obtained by expanding

A, B, and C with respect to ε as:

A= −
∆ f

Nε
S
p

2
4
+O(1) ,

B = −
∆ f

Nε
S
p

2
8
+O(1) ,

C =
∆ f

Nε
S
p

2
8

k f +O(1) , (12)

where S = 2
(4π)5/4Γ (5/4) . Importantly, the epsilon poles of A and B, contributing to the beta

functions, are independent of k f . This indicates that the resulting beta functions and low-
energy effective theory at the fixed point remain independent of the cutoff scale k f . In other
words, a UV-IR mixing does not occur in our regularization scheme. It is worth noting that
the epsilon pole of C proportional to k f does not renormalize the theory but merely shifts the
chemical potential. This term should be eliminated with a counterterm [27], and then the
theory remains cutoff-independent.

The absence of UV-IR mixing is attributed to the renormalizability of the theory at d = 5/2.
While integrals formally display cutoff dependence, dimensional analysis dictates that epsilon
poles manifest as dimensionless numerical constants due to the marginal nature of disorder
scattering at d = 5/2 [69]. Consequently, the isolation of epsilon poles remains achievable re-
gardless of the cutoff scale. However, caution is warranted in selecting a cutoff regularization
scheme to avoid altering the upper critical dimension. Specifically, we observed that introduc-
ing a cutoff scale in the ky integral,

∫ Λ

−Λ dky , modifies the upper critical dimension, leading to
UV-IR mixing. Refer to Sec. 4.1 for details.

The other one-loop corrections from disorder scattering (e.g., Fig. 3(f)) share the same
structure asΣ1(p) and undergo similar treatment. However, certain two-loop corrections (e.g.,
Fig. 3(j-k)) necessitate a distinct cutoff regularization scheme. Nevertheless, epsilon poles
persist independently of the cutoff. Refer to Appendix C for further details.

Our regularization scheme is outlined as follows:

1. Introduce a cutoff in divergent momentum integrals arising from disorder scattering.

2. Compute the momentum integrals while maintaining a finite cutoff value.

3. Expand the resulting integrals using an epsilon parameter to extract epsilon poles.

4. Epsilon poles remain cutoff-independent if the cutoff regularization respects the theory’s
renormalizability.

It is noteworthy that we exclude cutoff regularization in the Yukawa coupling, as momentum
integrals stemming from this coupling are convergent.

3 Renormalization group analysis

3.1 Renormalized action and beta functions

We adopt a field-theoretic RG approach where loop corrections are computed order by order
in ε [69]. The divergent parts in the limit ε→ 0 are absorbed into renormalization factors in

10

https://scipost.org
https://scipost.org/SciPostPhys.17.2.059


SciPost Phys. 17, 059 (2024)

(a) (d)(b)

(e)

(c)

(f) (g)

(j)

(h)

(k)(i) (l)

⊗

Figure 3

Figure 3: Selected Feynman diagrams for two-loop RG analysis. (a) One-loop self-
energy corrections for bosons stemming from the Yukawa coupling. (b-c) One-loop
self-energy corrections for fermions. (d) One-loop vertex corrections for backward
disorder scattering. (e-f) One-loop vertex corrections for forward disorder scatter-
ing. (g) Two-loop vertex corrections for backward disorder scattering. (h-k) Two-
loop vertex corrections for forward disorder scattering. (l) A two-loop boson-self
energy correction leading to diffusive Landau damping. In all diagrams, the solid
and wave lines stand for the fermion and boson propagators, respectively. The single
and double dashed lines represent forward disorder scattering and backward disor-
der scattering, respectively. Refer to the Appendix for the full library of Feynman
diagrams up to two-loop order.

the minimal subtraction scheme. The resulting renormalized action has the same form as the
bare action in Eq. (6) while momenta and fields are renormalized as [28]:

k0 = µ
−1 Z2

Z0
k0,B ,

k⊥ = µ
−1 Z2

Z1
k⊥,B ,

kx = µ
−1kx ,B ,

ky = µ
− 1

2 ky,B ,

Ψa
j (k) = µ

2d+3
4 Z
− 1

2
2

�

Z2

Z0

�− 1
2
�

Z2

Z1

�− d−2
2

Ψa
j,B(k) ,

Φ(q) = µ
2d+3

4 Z
− 1

2
3

�

Z2

Z0

�− 1
2
�

Z2

Z1

�− d−2
2

ΦB(q) . (13)

The coupling constants of the renormalized action are given by

g = µ−
ε
2 Z−1

g Z2Z
1
2

3

�

Z2

Z0

�− 1
2
�

Z2

Z1

�− d−2
2

gB ,

∆ f = µ
−εZ−1

∆ f
Z2

2

�

Z2

Z1

�−(d−2)
∆ f ,B ,

∆b = µ
−εZ−1

∆b
Z2

2

�

Z2

Z1

�−(d−2)
∆b,B , (14)

where g,∆ f , and∆b (gB,∆ f ,B, and∆b,B) denote the renormalized (bare) coupling constants.
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The RG flow of the theory is characterized by the beta functions: βg ≡
∂ g
∂ lnµ , β∆ f

≡ ∂∆ f

∂ lnµ ,

and β∆b
≡ ∂∆b
∂ lnµ . Here, µ→ 0 denotes the low-energy limit. Using the relationship between

the bare and renormalized couplings in Eq. (14), we represent the beta functions as [63]:

βg = g
�

−
ε

2
z̄ +

1
2

z +
1
4

z̄ −
3
4
+ 2γ

Ψ
− γg + γΦ

�

,

β∆ f
=∆ f

�

− εz̄ +
1
2

z̄ −
1
2
+ 4γ

Ψ
− γ

∆ f

�

,

β∆b
=∆b

�

− εz̄ +
1
2

z̄ −
1
2
+ 4γ

Ψ
− γ

∆b

�

. (15)

Here, z and z̄ are the dynamical exponents, γ
Ψ

and γ
Φ

are the anomalous dimensions of fields,
and γg , γ∆ f

, and γ∆b
are the anomalous dimensions of couplings, respectively. These critical

exponents are defined as

z = 1+
∂ ln(Z0/Z2)
∂ lnµ

,

z̄ = 1+
∂ ln(Z1/Z2)
∂ lnµ

,

γ
Ψ
=

1
2
∂ ln Z2

∂ lnµ
,

γ
Φ
=

1
2
∂ ln Z3

∂ lnµ
,

γg =
∂ ln Zg

∂ lnµ
,

γ∆ f
=
∂ ln Z∆ f

∂ lnµ
,

γ∆b
=
∂ ln Z∆ f

∂ lnµ
. (16)

For the computation of the counterterms, we utilize the bare fermion propagator and the
dressed boson propagator, which includes the Landau damping derived from the one-loop
self-energy correction [Fig. 3(a)]. These propagators are expressed as:

G0(k) =
1
i

k0γ0 + k⊥ · γ⊥ +δkγd−1

k2
0 + k2

⊥ +δ
2
k

,

D1(q) =
1

q2
y + g2Bd

|Q|d−1

|qy |

. (17)

Here, Bd =
Γ ( 3−d

2 )Γ (
d
2 )

2

2π(4π)(d−1)/2Γ (d) , and Γ (x) represents the gamma function. Refer to Appendix A for
the computation of D1(q). Using these propagators is appropriate in the weak-disorder regime
of our interest: ∆ f ,∆b≪ EF , where EF represents the Fermi energy.

We compute all renormalization factors of Z0, Z1, Z2, Z3, Zg , Z∆ f
, and Z∆b

up to two-loop
order [63]. Refer to the Appendix for calculation details. We insert them into Eq. (16) and
solve the resulting equations order-by-order in ε. As a result, we obtain the critical exponents
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up to two-loop order as:

z̄ =

�

1− 0.67 g̃ + 0.5∆̃ f + 0.5∆̃b − 0.57 g̃2 − 21∆̃ f

√

√ g̃
N
− 21∆̃b

√

√ g̃
N

�−1

,

z = z̄

�

1+ ∆̃ f + ∆̃b − 20(∆̃ f + ∆̃b)

√

√ g̃
N

�

,

γ
Ψ
= z̄
�

0.25∆̃ f + 0.25∆̃b + 0.08 g̃2
�

,

γ
Φ
= 0 ,

γg = γΨ ,

γ
∆ f
= 4γ

Ψ
+ z̄

�

−0.04∆̃ f + 0.75
∆̃2

b

∆̃ f
− 3.5 g̃∆̃ f + 5.5∆̃ f

√

√ g̃
N
+ 5.5

∆̃2
b

∆̃ f

√

√ g̃
N

�

,

γ
∆b
= z̄

�

−4 g̃ − 0.14∆̃ f − 24 g̃2 − 2.3 g̃∆̃ f − 11∆̃b

√

√ g̃
N

�

. (18)

Here, g̃, ∆̃ f , and ∆̃b are defined as:

g̃ =
g

4
3

3
2
3
p

6πN
, ∆̃ f =

∆ f

2π
5
4 Γ (1

4)
, ∆̃b =

∆b

2π
5
4 Γ (1

4)
. (19)

It is noteworthy that γ
Φ
= 0 is sustained up to the two-loop order while challenged in the third

order, as noted in Ref. [70].
Substituting Eq. (18) into Eq. (15), we finally obtain the beta functions as:

β g̃ = z̄ g̃

�

−0.67ε+ 0.67 g̃ + 0.17∆̃ f + 0.17∆̃b + 0.57 g̃2 + 7.3∆̃ f

√

√ g̃
N
+ 7.3∆̃b

√

√ g̃
N

�

,

β∆̃ f
= z̄∆̃ f

�

−ε+ 0.33 g̃ − 0.21∆̃ f + 0.29 g̃2 + 3.5 g̃∆̃ f + 5.0∆̃ f

√

√ g̃
N

�

− z̄∆̃b

�

0.25∆̃ f + 0.75∆̃b + 5.5∆̃b

√

√ g̃
N
− 11∆̃ f

√

√ g̃
N

�

,

β∆̃b
= z̄∆̃b

�

−ε+ 4.33 g̃ + 0.89∆̃ f + 0.75∆̃b + 24 g̃2 + 2.3 g̃∆̃ f + 11∆̃ f

√

√ g̃
N
+ 22∆̃b

√

√ g̃
N

�

,

z̄ =

�

1− 0.67 g̃ + 0.5∆̃ f + 0.5∆̃b − 0.57 g̃2 − 21∆̃ f

√

√ g̃
N
− 21∆̃b

√

√ g̃
N

�−1

. (20)

Notably, the beta functions are expanded using an “effective” Yukawa coupling g̃ ∼ g4/3, de-
viating from a typical factor g2. This modification arises due to an IR enhancement factor of
g−2/3 resulting from Landau damping in the boson propagator [28]. Additionally, certain two-
loop terms involving interaction and disorder in the beta functions exhibit a fractional power

of g̃ as
p

g̃
p

N
, exhibiting a more pronounced IR enhancement factor of g−4/3. As an illustration,

consider the two-loop vertex correction in Fig. 3(i). After integrating out the fermion propa-

gators, this vertex correction is expressed as δ∆ f ∼
g2∆2

f
N

∫

dp
∫

dky
f (p)
|ky |

�

k2
y + g2Bd

|K |d−1

|ky |

�−1
,

where p denotes internal momenta except for ky . The extra factor of |ky | in the denominator
introduces an additional factor of g−2/3 during the integration over ky , resulting in a total
enhancement factor of g−4/3. Consequently, δ∆ f acquires a fractional power of g̃, expressed

as δ∆ f ∼
g2/3∆2

f
N ∼

p
g̃
p

N
∆2

f .
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Figure 4
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Figure 4: (a) RG flow diagram for (ε, N) = (0.1,∞) in the g̃-∆̃ f parameter space
(∆̃b is set to zero). Here, ε = dc − d represents the deviation of the system’s ac-
tual dimension (d) from the upper critical dimension (dc = 5/2), and N represents
the fermion’s flavor number. The green dot at ( g̃, ∆̃ f ) = (0.093, 0) denotes the clean
non-Fermi liquid (CNFL) fixed point [28], which becomes destabilized after the intro-
duction of ∆̃ f . The RG flow culminates in a non-interacting, strong disorder (NISD)
fixed point at ( g̃, ∆̃ f ) = (0,∞). (b) RG flow diagram for (ε, N) = (0.5,∞). The red
dot at ( g̃, ∆̃ f ) = (0.31, 0.43) represents a stable disordered non-Fermi liquid (DNFL)
fixed point. The blue dot denotes a saddle point at ( g̃, ∆̃ f ) = (0.16, 1.22) separating
the DNFL fixed point from the NISD fixed point. The CNFL fixed point (the green
dot) is now located at ( g̃, ∆̃ f ) = (0.38,0).

3.2 Disordered non-Fermi liquid fixed point

We commence our analysis by examining the beta functions in an infinite fermion flavor limit
(i.e., N →∞), where the beta functions take on simplified forms:

β g̃ = z̄ g̃

�

− 0.67ε+ 0.67 g̃ + 0.17∆̃ f + 0.17∆̃b + 0.57 g̃2

�

,

β∆̃ f
= z̄∆̃ f

�

− ε+ 0.33 g̃ − 0.21∆̃ f + 0.29 g̃2 + 3.5 g̃∆̃ f

�

− z̄∆̃b

�

0.25∆̃ f + 0.75∆̃b

�

,

β∆̃b
= z̄∆̃b

�

− ε+ 4.33 g̃ + 0.89∆̃ f + 0.75∆̃b + 24 g̃2 + 2.3 g̃∆̃ f

�

,

z̄ =

�

1− 0.67 g̃ + 0.5∆̃ f + 0.5∆̃b − 0.57 g̃2

�−1

. (21)

To examine the fixed point structure of these equations, it is crucial to analyze two distinct
cases separately: (i) the small ε case (0< ε≤ εc) and (ii) the large ε case (εc < ε≤ 0.5). The
threshold value εc = 0.40 serves as a demarcation point, separating the two cases.

In the scenario of small ε, the beta functions yield a single non-Gaussian fixed point, as
illustrated in Fig. 4(a). This fixed point is expressed as:

�

g̃∗, ∆̃∗f , ∆̃∗b
�

=
�

− 0.58+
p

0.34+ 1.17ε, 0, 0
�

, (22)

which corresponds to the previously identified CNFL fixed point [28]. The variation of g̃∗ with
respect to ε is illustrated by a green line in Fig. 5(a). To investigate the stability of this fixed
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point, we utilize linearized beta functions:




β g̃
β∆̃ f

β∆̃b



= M





δ g̃
δ∆̃b
δ∆̃b



+O(δ g̃2,δ∆̃2
f ,δ∆̃2

b) . (23)

Here, δ g̃, δ∆̃ f , and δ∆̃b represent the deviations of the coupling constants from their fixed
point values, defined as follows:

δ g̃ = g̃ − g̃∗ ,

δ∆̃ f = ∆̃ f − ∆̃∗f ,

δ∆̃b = ∆̃b − ∆̃∗b . (24)

The matrix M incorporates derivatives of the beta functions to the coupling constants:

M =











∂ β g̃

∂ g̃
∂ β g̃

∂ ∆̃ f

∂ β g̃

∂ ∆̃b
∂ β∆̃ f

∂ g̃

∂ β∆̃ f

∂ ∆̃ f

∂ β∆̃ f

∂ ∆̃b
∂ β∆̃b
∂ g̃

∂ β∆̃b

∂ ∆̃ f

∂ β∆̃b

∂ ∆̃b











�

�

�

�

�

�

�

�

��

g̃,∆̃ f ,∆̃b

�

=
�

g̃∗,∆̃∗f ,∆̃∗b

�

. (25)

Substituting Eqs. (21) and (22) into Eq. (25), we calculate the eigenvalues of M at the CNFL

fixed point as: 0.67 g̃∗+1.14( g̃∗)2

1−0.67 g̃∗−0.57( g̃∗)2 , −ε+0.33 g̃∗+0.29( g̃∗)2

1−0.67 g̃∗−0.57( g̃∗)2 , and −ε+4.33 g̃∗+24( g̃∗)2

1−0.67 g̃∗−0.57( g̃∗)2 , which govern the RG

flow of δ g̃, δ∆̃ f , and δ∆̃b in the vicinity of the fixed point. Here, the value of g̃∗ is specified
in Eq. (22). The negativity of the second eigenvalue signifies the relevance of δ∆̃ f , while
δ g̃ and δ∆̃b are deemed irrelevant as indicated by their positive eigenvalues. Consequently,
introducing δ∆̃ f destabilizes the CNFL fixed point, ultimately driving the theory towards an
infinite-disorder regime, as depicted in the left top in Fig. 4(a):

�

g̃∗, ∆̃∗f , ∆̃∗b
�

=
�

0,∞, 0
�

, (26)

which we term a “non-interacting, strong disorder (NISD) fixed point.” As a result, we deduce
the absence of a stable fixed point in the small ε scenario.

In the large ε scenario, the beta functions yield three non-Gaussian fixed points, as illus-
trated in Fig. 4(b). One is the unstable CNFL fixed point given by Eq. (22). The other two are
determined by solving the following cubic equation:

g̃3 + 1.07 g̃2 − (0.10+ 1.16ε) g̃ + 0.15ε= 0 . (27)

One of the two fixed points corresponds to a DNFL fixed point, which is given by:

g̃∗ = −
1
3

�

1.07+ ξC +
A0

ξC

�

,

∆̃∗f = 3.94ε− 3.94 g̃∗ − 3.35( g̃∗)2 ,

∆̃∗b = 0 . (28)

Here, ξ, A0 and C are defined as follows:

ξ=
−1+
p

3i
2

,

A0 = 1.44+ 3.48ε ,

A1 = 3.41+ 15.22ε ,

C =
3

√

√

√A1 +
q

A2
1 − 4A3

0

2
. (29)
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Figure 5
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Figure 5: (a-b) Depiction of the values of g̃ and ∆̃ f at the three non-Gaussian fixed
points, illustrated in Fig. 4(b), as a function of ε. (c-d) Depiction of the values of the
dynamical critical exponent (z) and the anomalous dimension of fermion fields (γ

Ψ
)

at the three fixed points as a function of ε.

By substituting Eqs. (21) and (28) into Eq. (25), it is straightforward to show that all eigen-
values of M have positive real parts, i.e., all perturbations δ g̃, δ∆̃ f , and δ∆̃b are deemed
irrelevant at the fixed point, indicating that this fixed point is stable. The stable nature is also
visible in the RG flow diagram, as depicted by the red dot in Fig. 4(b).

The variations of g̃∗ and ∆̃∗f with respect to ε are illustrated by red lines in Fig. 5(a) and

(b), respectively. Our findings reveal that g̃∗ increases as ε rises, while ∆̃∗f displays an opposing
decreasing trend. One possible explanation for this behavior is that the increase in ε leads to
the growth of g̃∗, followed by a subsequent reduction in ∆̃∗f due to an amplified screening

effect within the term 3.5 g̃∆̃ f .
The other fixed point is found to be:

g̃∗ = −
1
3

�

1.07+ ξ2C +
A0

ξ2C

�

,

∆̃∗f = 3.94ε− 3.94 g̃∗ − 3.35( g̃∗)2 ,

∆̃∗b = 0 , (30)

where ξ, A0, and C are given in Eq. (29). The variations of g̃∗ and ∆̃∗f with respect to ε are
illustrated by blue lines in Fig. 5(a) and (b), respectively. By substituting Eqs. (21) and (30)
into Eq. (25), specifically for ε = 0.5, we determine the eigenvalues of M as −0.11, 0.45,
and 1.5. The corresponding eigenvectors, or scaling fields, are found to be −0.089δ g̃ +δ∆̃ f ,
0.047δ g̃ + δ∆̃ f , and ∆̃b. Notably, the first scaling field is relevant, while the other two are
irrelevant, indicating the saddle point nature of this fixed point. Consequently, we deduce that
this fixed point represents a demarcation point between the DNFL fixed point from the NISD
fixed point, as depicted by the blue dot in Fig. 4(b), embodying a critical surface separating
these fixed points.
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Based on these discoveries, we conclude that the DNFL fixed point, as presented in Eq. (28),
governs the quantum critical behavior observed in 2D metallic systems near Ising-nematic
QCPs. Furthermore, our investigations reveal that the previously identified CNFL fixed point,
given in Eq. (22), loses stability in the presence of random potential disorder, limiting its
significance to an ideal clean limit. Additionally, considering a large ε value (i.e., ε ≥ εc ,
which encompasses the physical value ε = 0.5) proves crucial for comprehending the critical
behavior at the QCPs, despite the formal classification of ε as a small expansion parameter.

3.3 Role of two-loop corrections

At the one-loop order, the beta functions, as presented in Eq. (20), are simplified as [63]:

β g̃ = z̄ g̃

�

− 0.67ε+ 0.67 g̃ + 0.17∆̃ f + 0.17∆̃b

�

,

β∆̃ f
= z̄∆̃ f

�

− ε+ 0.33 g̃ − 0.21∆̃ f

�

− z̄∆̃b

�

0.25∆̃ f + 0.75∆̃b

�

,

β∆̃b
= z̄∆̃b

�

− ε+ 4.33 g̃ + 0.89∆̃ f + 0.75∆̃b

�

,

z̄ =

�

1− 0.67 g̃ + 0.5∆̃ f + 0.5∆̃b

�−1

. (31)

These one-loop beta functions lack the DNFL fixed point for any ε, instead exhibiting a runaway
flow to the NISD fixed point. Thus, it is evident that two-loop corrections play a pivotal role
in the emergence of the DNFL fixed point, highlighting the necessity of considering them for
its identification.

To delve deeper into this aspect, we note that among the various two-loop order terms
outlined in Eq. (21), the presence of 3.5 g̃∆̃ f in β∆̃ f

is crucial for the screening of ∆̃ f , as
its absence results in the disappearance of the DNFL fixed point. This pivotal term arises
from two-loop order vertex corrections stemming from the Yukawa coupling, as illustrated in
Fig. 3(h-i). In contrast, the contribution from the one-loop correction, depicted in Fig. 3(e),
does not impact the beta functions due to cancellation with fermion self-energy corrections
(Fig. 3(b)), as dictated by the Ward identity. Consequently, the two-loop corrections represent
the leading screening effect for ∆̃ f within loop expansions.

For the screening term 3.5 g̃∆̃ f to stabilize the DNFL fixed point, an additional condition
of ε > εc = 0.40 must be met. To elucidate this, let’s suppose the system at the CNFL fixed
point, where the value of g̃ is given by g̃∗ = −0.58+

p
0.34+ 1.17ε. For the screening term

to dominate over the one-loop antiscreening term of −0.21∆̃ f , and thus provide an overall
screening effect, ε must be large enough to satisfy 3.5(−0.58 +

p
0.34+ 1.17ε) > 0.21. If

this condition is met, ∆̃ f can have a fixed point value: ∆̃∗f =
ε−0.33 g̃∗−0.29( g̃∗)2

−0.21+3.5 g̃∗ , as derived

from setting β∆̃ f
= 0. However, due to the additional screening effect from 0.17∆̃∗f in β g̃ , the

value of g̃∗ is lowered from its CNFL fixed point value. This reduction in g̃∗ results in further
adjustments to ∆̃∗f , creating a feedback loop. If this adjustment between g̃∗ and ∆̃∗f can bring

β g̃ = 0, the DNFL fixed point could be stable. Otherwise, the 0.17∆̃∗f term in β g̃ could drive
g̃∗ to vanish, leading to a runaway flow towards the NISD fixed point. It turns out that with
ε > εc , the necessary adjustments can be achieved, stabilizing the DNFL fixed point.

In contrast, ∆̃b begins to acquire the screening effect from the one-loop order correction,
presented in Fig. 3(d). The two-loop corrections, such as Fig. 3(g), primarily enhance this
screening effect. Consequently, the RG flow to ∆̃b = 0 appears consistently in both one-loop
and two-loop order analyses.
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3.4 Physical quantities at fixed points

3.4.1 Critical exponents

In the limit N →∞, the critical exponents z and γ
Ψ
, as presented in Eq. (18), exhibit simplified

forms:

z =
1+ ∆̃ f + ∆̃b

1− 0.67 g̃ + 0.5∆̃ f + 0.5∆̃b − 0.57 g̃2
,

γ
Ψ
=

0.25∆̃ f + 0.25∆̃b + 0.08 g̃2

1− 0.67 g̃ + 0.5∆̃ f + 0.5∆̃b − 0.57 g̃2
. (32)

Upon substituting Eq. (22) into Eq. (32), we derive the critical exponents at the CNFL fixed
point:

z =
3

3− 2ε
,

γ
Ψ
=

0.16+ 0.28ε− 0.28
p

0.34+ 1.17ε
3− 2ε

. (33)

These expressions are illustrated by green lines in Fig. 5(c) and (d), respectively. For d = 2 or
ε= 0.5, these values simplify to:

z = 1.5 ,

γ
Ψ
= 0.017 . (34)

The critical exponents at the DNFL fixed point can be obtained by substituting Eq. (28) into
Eq. (32), although the resulting expressions are too intricate to be presented. Their values
are depicted by red lines in Fig. 5(c) and (d), respectively. For d = 2 or ε = 0.5, these values
simplify to:

z = 1.5 ,

γ
Ψ
= 0.13 . (35)

Notably, γ
Ψ
= 0.13 at the DNFL fixed point significantly exceeds γ

Ψ
= 0.017 at the CNFL

fixed point. This discrepancy arises from the substantial correction contributed by the forward
scattering ∆̃ f at the DNFL fixed point.

3.4.2 Fermion’s density of states

We compute the fermion’s density of states resorting to the following formula [7]:

N(ω) = −
1
π

∫

d2k
(2π)d

Im
�

tr
�

G(ik0→ω+ i0+, k)
	

�

, (36)

where G(k) stands for the full fermion’s Green function. The scaling behavior of G(k) is de-
scribed by the following scaling function:

G(k,µ, F) =
1

µ2γ
Ψ |δk |1−2γ

Ψ

g(k0/|δk |z) , (37)

which can be obtained by solving the Callan-Symanzik equation
�

k ·∇k −βF ·∇F + 1− 2γ
Ψ

�

G(k,µ, F) = 0 ,
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Table 1: Critical exponents of the Ising-nematic quantum criticality in two-
dimensional metals. The DNFL and CNFL fixed points primarily differ in the ex-
ponent a, which describes the pseudogap-like behavior of the fermion’s density of
states, as defined in Eq. (39). α, β , γ, and δ represent the critical exponents for
thermodynamic quantities defined in Eq. (43). ν and z are the correlation length
and dynamical exponents, respectively. For comparison, the exponents for the fermi
liquid (FL) phase are also provided.

a α β γ δ ν z

DNFL 0.17 −1/2 3/4 1 7/3 1 3/2
CNFL 0.023 −1/2 3/4 1 7/3 1 3/2

FL 0 - - - - - 1

where k ·∇k ≡ zk0
∂
∂ k0
+ z̄k⊥ ·∇k⊥+δk

∂
∂ δk

, F ≡ ( g̃, ∆̃ f , ∆̃b) and∇F ≡
�

2
3
∂
∂ g̃ , ∂

∂ ∆̃ f
, ∂
∂ ∆̃b

�

. Refer

to the Appendix E for the derivation. Substituting Eq. (37) into Eq. (36), we obtain

N(ω)∼
∫ ∞

−∞
dkx

∫ Λ

−Λ
dky

1

|δk |1−2γ
Ψ

g
�

|ω|
|δk |z

�

∼ |ω|a , (38)

where the exponent a is given by

a =
2γ

Ψ

z
. (39)

Note that the ky -integral should be regularized with a cutoff Λ so that it does not contribute
to the scaling [7].

We evaluate the exponent a by utilizing the values of z and γ
Ψ

in Eqs. (34) and (35) for
the CNFL and DNFL fixed points, respectively. At the CNFL fixed point, we obtain a = 0.023,
which is almost indistinguishable from that of an ordinary non-interacting fermion gas, a = 0.
On the other hand, at the DNFL fixed point, we obtain a = 0.17, which is anomalously large
due to the sizable correction from γ

Ψ
= 0.13. As a result, the fermion’s density of states is

substantially suppressed near the Fermi energy as N(ω)∼ |ω|0.17 at the DNFL fixed point.

3.4.3 Thermodynamic quantities

We consider the following additional coupling terms [63]:

δS =

∫

dd+1 x
�

rΦ2(x)− hΦ(x)− hN(x)
�

, (40)

where r is the tuning parameter for the quantum phase transition, h is an external field, and
N(x) = Ψ̄(x)γ1Ψ(x). Note that h is coupled to both boson field Φ(x) and fermion field Ψ(x)
since they have the same symmetries [71].

Considering δS, we find the homogeneity relation of a free energy density
f ≡ −(T/V ) ln
∫

DΨDΦe−S as

f (r, h) = b−D f (r b1/ν, hb yh , T bz) , (41)

where b is the scaling parameter that scales a system size L as L → bL or temperature T as
T → bz T . Here, D is the effective scaling dimension of the space-time given as

D = z + (d − 2)z̄ + 1 . (42)
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When counting D, we should ignore momentum coordinate ky since it becomes redundant
when the whole Fermi surface is considered [28]. ν = [r] is the correlation length exponent.
yh = [h] represents the scaling dimension of h. We find yh as yh =

1
2(D + 1) − γ

Φ
from the

coupling term for Φ or yh = 1− 2γ
Ψ

from that for Ψ. It turns out that the former has a larger
value than the latter at the DNFL fixed point. This indicates that the former determines the
leading critical behavior, as explicit calculations confirm. Refer to the Appendix E for further
details. Therefore, we conclude yh =

1
2(D+ 1)− γ

Φ
.

From Eq. (41), we find thermodynamic quantities showing critical behaviors as

cv ≡ −
∂ 2 f
∂ r2
∼ |r|−α ,

m≡ −
∂ f
∂ h

�

�

�

�

h→0
∼ (−r)β ,

χ ≡
∂ 2 f
∂ h2

�

�

�

�

h→0
∼ |r|−γ ,

h∝ |m|δ , (43)

where cv is the specific heat, m is the Ising-nematic order parameter, and χ is the susceptibility.
The exponents are given by

α= 2− Dν ,

β =
ν

2
(D− 1+ 2γ

Φ
) ,

γ= (1− 2γ
Φ
)ν ,

δ =
D+ 1+ 2γ

Φ

D− 1− 2γ
Φ

. (44)

We evaluate the exponents by focusing on d = 2. Up to two-loop order, we find D = z+1= 5/2,
ν= 1, and γ

Φ
= 0. Substituting them into Eq. (44), we obtain α= −1/2, β = 3/4, γ= 1, and

δ = 7/3. The calculated critical exponents are summarized in Table 1.

3.5 DNFL fixed point at a finite N

We expand our RG analysis to finite values of N . Figure 6 showcases our numerical compu-
tation results obtained by solving Eq. (20) numerically. Our findings reveal the persistence of
the DNFL fixed point for N < Nc , where Nc denotes a threshold value. Beyond this threshold,
the DNFL fixed point destabilizes, and the RG flow exhibits a runaway flow toward the NISD
fixed point. The threshold value Nc tends to increase with ε, as delineated by the red lines in
each panel of Fig. 6, separating the DNFL and NISD regions.

Within the DNFL region, we observe that for a given N , the value of g̃ at the DNFL fixed
point increases with ε [Fig. 6(a)], while the value of ∆̃ f shows an opposing decreasing trend
[Fig. 6(b)]. These trends align with those observed in the infinite-N case, as illustrated in
Fig. 5(a-b). Furthermore, for a given ε, the values of g̃ and ∆̃ f exhibit opposing trends of
increase and decrease, respectively, as N increases. One possible explanation for this behavior
is that the increase in N amplifies the screening effect within the term 7.3∆̃ f

p

g̃/N for g̃,
leading to a reduction in g̃. This reduction, in turn, amplifies ∆̃ f by weakening the screening
term 3.5 g̃∆̃ f , leading to an increase in ∆̃ f .

Additionally, we compute the values of z and γ
Ψ

at the DNFL fixed point, as presented
in Fig. 6(c-d). Our findings reveal that the value of z increases with an increase in ε while
remaining largely unaffected by N [Fig. 6(c)]. Conversely, the value of γ

Ψ
shows increasing

trends as N increases, while remaining largely unaffected by ε [Fig. 6(d)]. Notably, these
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Figure 6

(a) (b)

(c) (d)

DNFL

DNFL

DNFL

DNFL

NISD NISD

NISDNISD

γΨz

g̃ Δ̃f

Figure 6: (a-d) Depiction of the values of g̃, ∆̃ f , z, and γ
Ψ

at the DNFL fixed point as
a function of (ε, N−1/2). Each panel utilizes a color scale to represent the correspond-
ing quantity, with the empty region denoting the absence of the DNFL fixed point,
characterized instead by a runaway RG flow toward the NISD fixed point. The red
line, marking N−1/2 = 0.168ε − 0.0669, delineates the boundary separating these
two regions.

variations mirror those of g̃ and ∆̃ f , respectively. These trends suggest that g̃ and ∆̃ f are
primary factors in determining the values of z and γ

Ψ
, respectively, through the relationship

presented in Eq. (18).

3.6 Stability of DNFL fixed point

3.6.1 Higher-order corrections

It’s important to examine the persistence of the DNFL fixed point against higher-order cor-
rections since its existence may not be guaranteed by taking a small ε limit. This contrasts
with the CNFL fixed point, where such a limit can make higher-order corrections arbitrarily
small, ensuring its persistence. However, the existence of the DNFL fixed point relies on the
condition ε > εc , so the small ε limit cannot be taken in this case. Consequently, one must
verify the robustness of the DNFL fixed point by explicitly calculating pertinent corrections in
each order. Here, we explore the stability of the DNFL fixed point against third-loop-order
corrections based on a scenario inferred from our two-loop-order results.

We begin by examining possible three-loop-order corrections computed using the fermion
and boson propagators presented in Eq. (17). We assume that three-loop fermion self-energy
corrections consist exclusively of terms proportional to g̃3. Terms involving a mix of g̃ and
∆̃ f are expected to exhibit strong IR enhancement factors and are therefore disregarded in
the large N limit (see the Appendix C.2 for further discussion). Three-loop-order vertex cor-
rections for forward scattering can be expressed as g̃∆̃2

f . In both cases, pure disorder con-

tributions, ∆̃3
f , are expected to lack epsilon poles (see the Appendices C.2 and D.1 for more

information). Three-loop-order vertex corrections for the Yukawa coupling are disregarded
due to their cancellation with the fermion self-energy contribution.

The boson propagator undergoes alterations due to the two-loop self-energy correction

[Fig. 3(l)] as follows: D2(q) =
�

q2
y + g2Bd

|q |d−1

|qy |
−Π2(q)
�−1

, where Π2(q) = −g2∆̃ f B̃d
|q |2d−3

|qy |2
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Figure 7

(a) (b)

(c) (d)

DNFL

DNFL

DNFL

DNFL

NISD NISD

NISDNISD

g̃ Δ̃f

ϵcϵc

Figure 7: (a-b) Depiction of the values of g̃, ∆̃ f at the DNFL fixed point as a func-
tion of (c2, c3), for ε = 0.5 and c1 = 0.5. Here, (c2, c3) are the coefficients of the
three-loop order corrections in the beta functions presented in Eq. (45). Each panel
utilizes a color scale to represent the corresponding quantity, with the empty region
denoting the absence of the DNFL fixed point, characterized instead by a runaway RG
flow toward the NISD fixed point. The red line, marking c3 = −0.3526c2 − 0.6826,
delineates the boundary separating these two regions. (c-d) The minimum threshold
value εc to maintain the DNFL fixed point, plotted against (c2, c3). c1 = 0 and c1 = 1
are utilized for (c) and (d), respectively. The color scale indicates the value of εc
in each panel. The red line delineates the boundary where εc exceeds the physical
value of ε = 0.5, indicating the absence of the DNFL fixed point within the physical
reality. The empty region denotes the absence of the DNFL fixed point for any value
of ε.

(B̃d ≃ 0.05) corresponds to diffusive Landau damping [3]. In higher-loop analysis, this mod-
ification might give rise to additional corrections not captured by loop expansions using the
propagators presented in Eq. (17). To assess this effect, we expand D2(q) with respect to

Π2(q) as D2(q) = D1(q)
∑∞

n=0

�

− D1(q)g2∆̃ f B̃d
|q |2d−3

|qy |2

�n
. The scaling analysis tells us that all

higher-order terms in the expansion have the same superficial degree of divergence as the
zeroth-order term. This indicates that loop corrections can still be regularized using dimen-
sional regularization. For example, using D2(q), we find the first-order fermion self-energy

correction from the Yukawa coupling as Σ1 = g̃ −iP·γ
ε

∑∞
n=0 an

�

∆̃ f

N1/2 g̃1/2

�n
, where an is a numer-

ical coefficient independent of the coupling constants. Note that the expansion parameter has
a negative power of N . As a result, this correction can be dropped by taking the large N limit,
at least, in the low but intermediate temperature scale.

Based on the above observations, we posit that the beta functions for g̃ and ∆̃ f at the third
order in the infinite N limit are represented as follows:

β
3-loop
g̃ =

β
2-loop
g̃

1− z̄2-loopc1 g̃3
+

z̄2-loop

1− z̄2-loopc1 g̃3

�

c1 g̃4
�

,

β
3-loop
∆̃ f

=
β

2-loop
∆̃ f

1− z̄2-loopc1 g̃3
+

z̄2-loop

1− z̄2-loopc1 g̃3

�

0.5c1∆̃ f g̃3 + c2∆̃
2
f g̃2 + c3∆̃

3
f g̃
�

. (45)
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Here, β2-loop
g̃ and β2-loop

∆̃ f
(β3-loop

g̃ and β3-loop
∆̃ f

) denote the two-loop (three-loop) beta functions,

and z̄2-loop denotes the dynamical exponent z̄ found in the two-loop order. The two-loop beta
functions and dynamical exponent are taken from Eqs. (21) and (32) with setting ∆̃b = 0. In
principle, one can determine the coefficients c1, c2, and c3 through three-loop-order calcula-
tions. Here, we investigate the stability of the DNFL fixed point within a weak-perturbation
scenario: |c1|, |c2|, |c3|< 1.

Figures 7(a-b) illustrate how g̃∗ and ∆̃∗f vary as (c2, c3) changes, based on the conditions

β
3-loop
g̃ = β3-loop

∆̃ f
= 0. Our findings reveal that when c2 and c3 are positive, ∆̃∗f decreases as

the magnitude of either c2 or c3 increases, likely due to the enhanced screening effect on ∆̃∗f .

When this change of ∆̃∗f is feed-backed to β2-loop
g̃ , g̃∗ displays an increasing trend due to the

reduction in its screening term 0.17∆̃∗f . Conversely, when c2 and c3 are negative, the rise of

their magnitude indicates the increase of ∆̃∗f and subsequent reduction in g̃∗. Furthermore,
when |c2| or |c3| becomes too large in the negative range, the DNFL fixed point is destabilized
instead showing runaway flow to the NISD fixed point, as illustrated by white devoid regions
(Fig. 7(a-b)).

Figures 7(c-d) illustrate how the DNFL fixed point becomes destabilized through changes
in εc , in response to variations in (c2, c3). Our results show that positive values of c2 and c3
tend to decrease εc , while negative values lead to an increasing trend in εc . When |c2| or |c3|
becomes too large in the negative range, εc can exceed the physical value, εph = 0.5. In this
regime, achieving a balance between ∆̃∗f and g̃∗, as detailed in Sec. 3.3, becomes unattainable
for any ε ≤ εph. Consequently, the DNFL fixed point disappears, indicating a runaway flow
toward the NISD fixed point. It’s worth mentioning that additional screening terms, such as
a positive c1 in β3-loop

∆̃ f
, can broaden the stability range for the DNFL fixed point, evident from

comparing Figures 7(c) and (d) obtained from different values of c1.
We anticipate that quartic or higher-order corrections in β∆̃ f

could have a similar impact.
Their screening or antiscreening nature suggests a corresponding increase or decrease in εc ,
particularly when the magnitudes of these corrections are not excessively large. The DNFL
fixed point is likely to remain stable if the overall effect of these corrections is screening.
However, if their effect is antiscreening, it must be weak enough to keep εc ≤ εph. The stability
of the DNFL fixed point seems plausible given the relatively low fixed point values of the
coupling parameters—specifically, g̃∗ ≈ 0.3 and ∆̃∗f ≈ 0.4 for ε= 0.5. If these coupling values
ensure that higher-order corrections are smaller than the two-loop screening term, the DNFL
fixed point may withstand these additional antiscreening perturbations.

3.6.2 Interpatch disorder scattering

Up to now, our focus has centered on the two-patch model, which incorporates two antipodal
segments among the entire Fermi surface, as depicted in Fig. 1. While this minimal model nat-
urally extends the previous clean model [6] to account for random potential disorder, broad-
ening our approach to encompass the entire Fermi surface becomes crucial for understanding
physical phenomena involving its entirety, such as Cooper pairing [72]. Hence, we now turn
our attention to an extended multi-patch model [72], characterized by a Lagrangian density
given by:

L=
Np
∑

α=1

Lα +
Np
∑

α,β=1(α<β)

Ldis
αβ . (46)

Here, the indices α,β = 1, · · · , Np denote Np pairs of antipodal patches across the Fermi surface
[Fig. 7]. The first term in Eq. (46) represents the original Lagrangian, as presented in Eq. (1),
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Figure 6

Δb

Δf,e
αβ

Δf

(α, s) = (1,+)

(α, s) = (2,+)

(α, s) = (3,+)

(α, s) = (1,−)

(α, s) = (6,+)

(α, s) = (5,+)
(α, s) = (4,+)

(α, s) = (6,−)(α, s) = (2,−)

(α, s) = (3,−)
(α, s) = (4,−)

(α, s) = (5,−)

Figure 8: Schematic illustration of an extended multiple-patch model with inter-
patch disorder scattering. This model comprises Np pairs of two antipodal patches
(e.g., Np = 6 in this illustration), including the original patches (depicted in red) and
additional segments stemming from the entire Fermi surface (depicted in blue). The
green and magenta arrows represent the original forward (∆ f ) and backward dis-
order scattering (∆b), respectively, while the cyan arrows depict interpatch disorder
scattering (∆ f ,e

αβ
).

which is replicated for each pair of patches denoted by α. The second term represents a newly
introduced “interpatch disorder scattering" term that mixes fermions from different patches
(α ̸= β):

Ldis
αβ = −

R
∑

a,b=0

N
∑

j=1

∑

s,s′=±

∆
f
αβ

2N
ψ

a,†
α,s, j(k+ q)ψa

α,s, j(k)ψ
b,†
β ,s′, j(k

′ − q)ψb
β ,s′, j(k

′)

−
R
∑

a,b=0

N
∑

j=1

∑

s=±

∆e
αβ

2N
ψ

a,†
α,s, j(k+ q)ψa

β ,s, j(k)ψ
b,†
β ,s̄, j(k

′ − q)ψb
α,s̄, j(k

′)

−
R
∑

a,b=0

N
∑

j=1

∑

s=±

∆e
αβ

2N
ψ

a,†
α,s̄, j(k+ q)ψa

β ,s, j(k)ψ
b,†
β ,s, j(k

′ − q)ψb
α,s̄, j(k

′) . (47)

Here, ∆ f
αβ

shift fermions within their respective patch, while ∆e
αβ

transfer fermions from one
to another. These two terms conserve the sum of Fermi momenta of fermions, making their
influence more significant compared to other nonconserving terms for low energy fermions
near the Fermi surface [27].

We investigate the stability of the DNFL fixed point concerning the introduction of inter-
patch disorder scattering. Utilizing Eq. (15), we formally express the beta function for ∆ f ,e

αβ
as

follows:

β
∆

f ,e
αβ

=∆ f ,e
αβ

�

−εz̄ +
1
2
(z̄ − 1) + 4γ

Ψ
− γ

∆
f ,e
αβ

�

, (48)

where the critical exponents z̄, γ
Ψ
, and γ

∆
f ,e
αβ

are defined in Eq. (16). Evaluating these ex-

ponents generally poses challenges as relevant Feynman diagrams intricately involve fermion
propagators from different patches, not representable in global momentum coordinates. How-
ever, one-loop self-energy diagrams are manageable despite the challenge, as all propagators
are confined within a single patch. Here, we calculate z̄ and γ

Ψ
considering these one-loop

self-energy diagrams. The contributions from g̃, ∆̃ f , and ∆̃b are provided in Eq. (18). The rel-

evant diagrams for∆ f ,e
αβ

resemble Fig. 3(c), leading to the following evaluations up to one-loop
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order in the N →∞ limit:

z̄ =
�

1− 0.67 g̃ + 0.5∆̃ f + 0.5∆̃b + 0.5∆̃ +O
�

g̃2, ∆̃2
��−1

,

γ
Ψ
= 0.25z̄
�

∆̃ f + ∆̃b + ∆̃αβ
�

+O
�

g̃2, ∆̃2
�

, (49)

where we denote ∆̃= 1
2π5/4Γ ( 1

4 )

∑

β ̸=α

�

∆
f
αβ
+∆e

αβ

�

. Utilizing this result, we derive β
∆

f ,e
αβ

as:

β
∆

f ,e
αβ

≃ F∆ f ,e
αβ
+ 0.75∆̃αβ∆

f ,e
αβ
− γ

∆
f ,e
αβ

∆
f ,e
αβ

, (50)

where F , the coefficient of the linear term, is given by F = z̄(−ε+0.33 g̃ +0.75∆̃ f +0.75∆̃b).
At the CNFL fixed point, F remains large (e.g., F ≈ −0.33 for ε = 0.40 and F ≈ −0.43 for
ε = 0.5), indicating the strong coupling nature of ∆ f ,e

αβ
. However, at the DNFL fixed point,

its sign reverses or weakens significantly (e.g., F ≈ 0.12 for ε = 0.40 or F ≈ −0.021 for
ε = 0.5), attributed to a large contribution from the anomalous dimension of fermion fields
(4γ

Ψ
∼ ∆̃ f ≈ 0.46). This suggests the potential irrelevance of ∆ f ,e

αβ
at the DNFL fixed point,

maintaining the stability of the DNFL fixed point against their introduction. Nonetheless, as
γ
∆

f ,e
αβ

includes additional linear-order contributions concerning g̃ and ∆̃ f , the analysis remains

inconclusive. Identifying the relevance of the interpatch disorder scattering, necessitating the
evaluation of γ

∆
f ,e
αβ

and potentially higher-order RG analysis, represents a significant future

research direction.

4 Discussion

4.1 Alternative cutoff regularization scheme

One may employ the following alternative cutoff regularization:

Σ1(p) =
i∆ f

N

∫

dd−2k⊥
(2π)d−2

∫ ∞

−∞

dkx

2π

∫ Λ

−Λ

dky

2π

−p0γ0 + (kx + px + k2
y)γd−1

p2
0 + |k⊥|2 + (kx + px + k2

y)2
. (51)

In this scenario, we derive B =
∆̃ f
N

2ΛΓ ( 3−d
2 )

(4π)
d−2

2 [p2
0]

3−d
2

and A= C = 0. The upper critical dimension

for the disorder scattering is now dc = 3, distinct from dc = 5/2 for the Yukawa coupling.
Consequently, to determine the ε-pole of B, we need to introduce a double epsilon expansion
scheme [38], where d = 3 − ε − ετ and both ε and ετ are regarded as small expansion pa-

rameters. Using this scheme, we find B =
∆̃ f

N(ε+ετ)
2Λp
π
+O(1). The ε-pole now depends on

the UV-cutoff Λ, resulting in UV-IR mixing as observed in the prior studies of the spin-density-
wave QCP problem [9, 10]. Therefore, our original regularization scheme offers a more ro-
bust framework for capturing the scaling behavior of the system compared to this alternative
scheme without UV-IR mixing, remaining insensitive to cutoff dependencies or microscopic
details.

4.2 Random mass disorder for critical bosons

In this study, our focus has been on the inclusion of random potential terms for fermions.
However, it is important to recognize that random terms for bosons could also be significant

25

https://scipost.org
https://scipost.org/SciPostPhys.17.2.059


SciPost Phys. 17, 059 (2024)

and warrant consideration [73]. To shed light on how such terms can be incorporated into
our framework, we examine the following random Tc disorder [38]:

−
Γ

2

R
∑

a,b=1

∫

dk0d2kdk′0d2k ′d2q

(2π)8
Φa(k+ q)Φa(k)Φb(k′ − q)Φb(k′) .

This term leads to a first-order boson self-energy correction of the form:

Γ

∫

dd−2q⊥dqx dqy

(2π)d
1

q2
y + g2Bd |q |d−1/|qy |

∼ Γ
�

5− 2d
3

�

∫

dqx

2π
.

Notably, the integral for qx cannot be regularized since the remaining integral is independent
of qx . One possible solution is to reintroduce the omitted q2

x term in the boson propagator. In

this scenario, the self-energy becomes Γ
∫ dd−2q⊥dqx dqy

(2π)d
1

q2
x+q2

y+g2Bd |q |d−1/|qy |
∼ Γ (4−d

3 ), indicating

that this correction is UV-finite near d ≈ dc = 5/2. However, retaining the q2
x term might

potentially interfere with the anomalous scaling law described in Eq. (7) at the Ising-nematic
QCP. In consideration of this possibility, we tentatively conclude that the influence of random
terms on bosons may not be thoroughly investigated within the limitations of our dimensional
regularization scheme.

4.3 Extension to other quantum phase transitions

Our RG framework is potentially applicable to other metallic quantum critical systems, char-
acterized by an order parameter with zero center-of-mass momentum and critical fluctuations
coupled to a finite density of fermions via a Yukawa coupling. In these systems, the two-patch
model description, combined with a parabolic dispersion, is appropriate, and the dimensional
regularization presented in Eqs. (7) and (8) remains valid. Notable examples include itiner-
ant ferromagnetic quantum phase transitions [3], U(1) spin liquids [74–78], and the half-filled
Landau level [79–83].

As an illustration, consider the case of the U(1) spin liquid [74–77]. In this scenario, the
Yukawa coupling term in the action of Eq. (6) requires modification:

i g
p

N
Φ(q)Ψ̄a

j (k+ q)γd−1Ψ
a
j (k)→

i g
p

N
Φ(q)Ψ̄a

j (k+ q)γ0Ψ
a
j (k) ,

while the other components remain unchanged [7]. The transition from γd−1 to γ0 in the
vertex alters the sign of the primary screening term 3.5 g̃∆̃ f in β∆̃ f

. Notably, the sign alteration

invalidates the screening of ∆̃ f through this term. Consequently, we speculate that the RG flow
may exhibit a runaway flow to the strong disorder regime, and a DNFL fixed point might not
manifest in this case, at least within the scope of the two-loop order.

5 Conclusion

We have investigated the impact of random potential disorder for fermions on the scaling
behavior of the two-patch model for two-dimensional Ising-nematic quantum critical points.
Employing a controllable renormalization group theory, we systematically incorporate quan-
tum corrections stemming from the random potential and the Yukawa coupling between elec-
trons and bosonic order-parameter fluctuations through a perturbative epsilon expansion. Ex-
tending our analysis beyond the conventional one-loop level to the two-loop order, we have
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unveiled a stable disordered non-Fermi liquid fixed point for the two-patch model and com-
puted critical exponents up to the two-loop order. Our investigation sheds light on the scaling
characteristics of two-dimensional metallic quantum critical points in the presence of random
potential disorder. Furthermore, our findings highlight the essential role of higher-order loop
corrections in elucidating the intricate interplay between quantum criticality and quenched
randomness in two dimensions.
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A One-loop self-energy corrections

Table 2: Feynman diagrams for one-loop self-energy corrections. Here, A0, A1, and
A2 represent the coefficient of the ε poles computed from the corresponding Feynman
diagrams (see Eq. (E.10) for the definitions). Π1(q) represents the Landau damping
term for the dressed boson propagator.

Diagram No. BS1-1 FS1-1 FS2-2 FS1-3

Feynman Dia-
gram

Renormalization
factors

Π1(q) = −g2Bd
|Q|d−1

|qy |
A0 = − g̃,
A1 = − g̃

A0 = −∆̃ f ,
A2 = −

1
2∆̃ f

A0 = −∆̃b,
A2 = −

1
2∆̃b
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A.1 Boson self-energy

A.1.1 Feynman diagram BS1-1

The boson self-energy correction in Table 2 BS1-1 is given by

Π1(q) = −g2

∫

dd+1k
(2π)d+1

tr
�

γd−1G0(k+ q)γd−1G0(k)
�

= 2g2

∫

dd+1k
(2π)d+1

δk+qδk − (K+Q) ·K
�

δ2
k+q + (K+Q)2
��

δ2
k +K2
� .

Integrating over kx and ky , we obtain Π1(q) as

Π1(q) = g2

∫

dKdky

(2π)d
(|K+Q|+ |K|)
�

1− (K+Q)·K
|K+Q||K|

�

(2kyqy)2 + (|K+Q|+ |K|)2
=

g2

4|qy |

∫

dK
(2π)d−1

�

1−
(K+Q) ·K
|K+Q||K|

�

.

Using the Feynman parametrization method [69], we obtain

Π1(q) =
g2

4π|qy |

∫ 1

0

d x

∫

dK
(2π)d−1

−2[x(1− x)]
1
2 K̃2

K̃2 + x(1− x)Q2
,

where K̃= K+ xQ. Integrating over K, we obtain

Π1(q) = −
g2|Q|d−1Γ (3−d

2 )

2π|qy |(4π)
d−1

2

∫ 1

0

d x[x(1− x)]
d−2

2 .

Integrating over x , we finally obtain

Π1(q) = −g2Bd
|Q|d−1

|qy |
, Bd =

Γ (3−d
2 )Γ (

d
2 )

2

2π(4π)(d−1)/2Γ (d)
.

A.2 Fermion self-energy

A.2.1 Feynman diagram FS1-1

The fermion self-energy correction in Table 2 FS1-1 is given by

Σ(1) = −
g2

N

∫

dd+1k
(2π)d+1

γd−1G0(p+ k)γd−1D1(k) =
i g2

N

∫

dd+1k
(2π)d+1

−(P+K) · Γ+δp+kγd−1

δ2
p+k + (P+K)2

D1(k) .

Integrating over kx and ky , we obtain Σ(1) as

Σ(1) =
i g2

2N

∫

dKdky

(2π)d
−(P+K) · Γ

|P+K|
�

k2
y + g2Bd

|K|d−1

|ky |

�
=

i g2

3
p

3N

∫

dK
(2π)d−1

−(P+K) · Γ

|P+K|
�

g2Bd |K|d−1
�1/3

.

Using the Feynman parametrization method, we obtain

Σ(1) =
i g4/3

3
p

3B1/3
d N

∫ 1

0

d x
x−

1
2 (1− x)

d−7
6 Γ ( d+2

6 )

Γ (1
2)Γ (

d−1
6 )

∫

dK
(2π)d−1

−(1− x)(P · Γ)
�

(K+ xP) + x(1− x)P2
�

d+2
6

.

Integrating over K and x , we obtain

Σ(1) = −
i g4/3Γ (5−2d

6 )(P · Γ)

3
p

3B1/3
d N |P|

5−2d
3

∫ 1

0

d x
x

d−4
3 (1− x)

d−2
2

(4π)
d−1

2 Γ (1
2)Γ (

d−1
6 )
= −

iS′g4/3

6
p

3B1/3N

P · Γ
ε
+O(1) ,

where S′ = 2
(4π)3/4Γ (3/4) and B = limd→5/2 Bd . Defining g̃ = S′g4/3

6
p

3B1/3N
, we finally obtain

Σ(1) = −
g̃
ε
(iP · Γ) .
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A.2.2 Feynman diagram FS1-2

The fermion self-energy correction in Table 2 FS1-2 is given by

Σ(2) = −∆ f

∫

dd+1k
(2π)d

δ(k0)γd−1G0(p+ k)γd−1 = i∆ f

∫

dd k
(2π)d

−p0γ0 − (p⊥ + k⊥) · γ⊥ +δp+kγd−1

p2
0 + (p⊥ + k⊥)2 +δ2

p+k

,

where dd k ≡ dk⊥dkx dky . To find renormalization factors, we expand Σ(2) for p as

Σ(2) = iΣ0 +Σa(ip0γ0) +Σb(ip⊥ · γ⊥) +Σc(iδpγd−1) +O(p2) ,

where Σ0, Σa, Σb, and Σc are, respectively, given by

Σ0 =∆ f

∫

dd k
(2π)d

−k⊥ · γ⊥ +δkγd−1

k2
⊥ +δ

2
k + p2

0

,

Σa = −∆ f

∫

dd k
(2π)d

1

k2
⊥ +δ

2
k + p2

0

,

Σb = −∆ f

∫

dd k
(2π)d

−2k2
⊥,i + k2

⊥ +δ
2
k + p2

0
�

k2
⊥ +δ

2
k + p2

0

�2 ,

Σc = −∆ f

∫

dd k
(2π)d

−k2
⊥ +δ

2
k − p2

0
�

k2
⊥ +δ

2
k + p2

0

�2 .

Integrating over k⊥, we obtain

Σ0 =∆ f

∫

dkx dky

(2π)2
δkγd−1Γ (2−

d
2 )

(4π)
d−2

2
�

δk + p2
0

�2− d
2

,

Σa = −∆ f

∫

dkx dky

(2π)2
Γ (2− d

2 )

(4π)
d−2

2
�

δ2
k + p2

0

�2− d
2

,

Σc = −∆ f

∫

dkx dky

(2π)2

�

6−2d
4−d δ

2
k −

2
4−d p2

0

�

Γ (3− d
2 )

(4π)
d−2

2
�

δ2
k + p2

0

�3− d
2

,

where Σb vanishes.
It turns out that these integrals diverge when integrated over kx , ky ∈ (−∞,∞). For

example, Σa is calculated as
∫ ∞

−∞

dkx dky

(2π)2
Γ (2− d

2 )
�

δ2
k + p2

0

�2− d
2

=

∫ ∞

−∞

dky

2π

Γ (3−d
2 )

(4π)
1
2 |p0|3−d

,

which integral trivially diverges since the integrand is independent of ky . Thus, the dimen-
sional regularization fails in this case. Integrating over ky first does not help, either. The
problem here is that there are infinitely many points of (kx , ky) in the integral region for the
contour δk = c, where c is a constant including c = 0.

Note that this is an artifact of the patch theory. If the whole Fermi surface had been taken
into account, such divergence would have not arisen. In this respect, we regularize the integral
for Σa by introducing a cutoff scale as kx ∈ (−k f ,∞). Then, Σa becomes

∫ ∞

−k f

dkx

2π

∫ ∞

−∞

dky

2π

Γ (2− d
2 )

�

δ2
k + p2

0

�2− d
2

=

p
πΓ (2− d

2 )Γ (
5
2 − d)φd

� |p0|
|k f |

�

4π2Γ (4− d)(−k f )ε
,
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where φd(x) ≡ 2F1

�5−2d
4 , 7−2d

4 , 5−d
2 ,−x2
�

is a hypergeometric function of x . Expanding this

expression with ε, we find an ε pole as
p

2
2πΓ ( 1

4 )ε
−
p

2
2πΓ ( 1

4 )
ln (−|p0|/|k f |) + · · · . The finite part

still diverges in the limit of k f →∞ but an ε pole can be extracted out regardless of k f .
Then, the problem is whether we can find singular corrections corresponding to ε poles

regardless of k f or not in general. For this matter, we consider a general expression for the

integral of
∫ dkx dky

(2π)2 f (δk), where the integrand depends on k only with δk. Otherwise, there
would be no divergence associated with k. Converting the momentum integral into an energy
integral, we obtain

∫∞
−k f

dξν(ξ; k f ) f (ξ), where the density of states is

ν(ξ; k f ) =

∫ ∞

−k f

dkx

2π

∫ ∞

−∞

dky

2π
δ(ξ−δk) =

1
2π2

q

ξ+ k f .

We split the integral into three parts as follows
∫ ∞

−k f

dξν(ξ; k f ) f (ξ) =
∫ ∞

0

dξν(ξ; k f = 0) f (ξ) +

∫ ∞

0

dξ[ν(ξ; k f )− ν(ξ; k f = 0)] f (ξ) +

∫ 0

−k f

dξν(ξ; k f ) f (ξ)

= 1
2π2

∫ ∞

0

dξ
p

ξ f (ξ) +
k f

2π2

∫ ∞

0

dξ
f (ξ)
Æ

ξ+ k f +
p

ξ
+

1
2π2

∫ 0

−k f

dξ
q

ξ+ k f f (ξ) . (A.1)

Power counting tells that only the first term is singular if f (ξ) has an ξ-power lower than−1/2.
In fact, most of loop corrections except for Σ0 satisfy this condition because we are performing
the renormalization group analysis around the upper critical dimension. For example, we
considerΣa where we have f (ξ)∼ ξ−

3
2−ε. In this case, the first term,

∫∞
dξξ−1−ε, is singular

in the ε→ 0 limit while the second term,
∫∞

dξξ−2−ε, is not. As a result, we may find an ε
pole by writing the integral as

∫ ∞

−k f

dkx

2π

∫ ∞

−∞

dky

2π
f (δk) =

∫ ∞

0

dξ
2π2

p

ξ f (ξ) +O(1) , (A.2)

where the finite part of O(1) depends on k f and may diverge in the limit of k f →∞.
Using Eq. (A.2), we find

Σ0 =∆ f

∫ ∞

−k f

dξ
2π2

q

ξ+ k f
ξγd−1Γ (2−

d
2 )

(4π)
d−2

2
�

ξ2 + p2
0

�2− d
2

,

Σa = −∆ f

∫ ∞

0

dξ
2π2

p

ξ
Γ (2− d

2 )

(4π)
d−2

2
�

ξ2 + p2
0

�2− d
2

,

Σc = −∆ f

∫ ∞

0

dξ
2π2

p

ξ

�

6−2d
4−d ξ

2 − 2
4−d p2

0

�

Γ (3− d
2 )

(4π)
d−2

2
�

ξ2 + p2
0

�3− d
2

,

where we have not used Eq. (A.2) for Σ0 because it gets a singular correction from not only
the first term but also the second term in Eq. (A.1). Integrating over ε, we have

Σ0 =∆ f

(k f γd−1)φ′d
� |p0|
|k f |

�

π(4π)
d
2 (−k f )

5−2d
2

=
∆ f

ε

S
p

2
8
(k f γd−1) +O(1) ,

Σa = −∆ f
Γ (3

4)Γ (
5−2d

4 )

π(4π)
d
2 |p0|

5−2d
2

= −
∆ f

ε

S
p

2
4
+O(1) ,

Σc = −∆ f
Γ (3

4)Γ (
5−2d

4 )

2π(4π)
d
2 |p0|

5−2d
2

= −
∆ f

ε

S
p

2
8
+O(1) ,
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where φ′d(x) =
Γ ( 1

2 )Γ (
3
2−d)

Γ (3−d) 2F1

�3−2d
4 , 5−2d

4 , 3−d
2 ,−x2
�

and S = 2
(4π)5/4Γ (5/4) . Defining

∆̃ f =
p

2S∆ f
4 , we finally obtain

Σ(2) = −
∆̃ f

ε
(ip0γ0)−

∆̃ f

2ε
(iδpγd−1) +

∆̃ f

2ε
(ik f γd−1) .

A.2.3 Feynman diagram FS1-3

The fermion self-energy correction in Table 2 FS1-3 is given by

Σ(3) = −∆b

∫

dd+1k
(2π)d

δ(k0)G
∗
0(k− p) = i∆b

∫

dd k
(2π)d

−p0γ0 − (k⊥ − p⊥) · γ⊥ −δk−pγd−1

(k⊥ − p⊥)2 +δ2
k−p + p2

0

.

To find renormalization factors, we expand Σ(3) for p as

Σ(3) = iΣ0 +Σa(ip0γ0) +Σb(ip⊥ · γ⊥) +Σc(iδpγd−1) +O(p2) ,

where Σ0, Σa, Σb, and Σc are, respectively, given by

Σ0 =∆b

∫

dd k
(2π)d

−k⊥ · γ⊥ −δkγd−1

k2
⊥ + p2

0 −δ
2
k

,

Σa = −∆b

∫

dd k
(2π)d

1

k2
⊥ + p2

0 +δ
2
k

,

Σb =∆b

∫

dd k
(2π)d

−2k2
⊥,i + k2

⊥ +δ
2
k + p2

0

[k2
⊥ + p2

0 +δ
2
k]

2
,

Σc = −∆b

∫

dd k
(2π)d

−k2
⊥ +δ

2
k − p2

0

[k2
⊥ + p2

0 +δ
2
k]

2
.

The above expressions are similar to those of Σ(2). As a result, we obtain

Σ(3) = −
∆̃b

ε
(ip0γ0)−

∆̃b

2ε
(iδpγd−1)−

∆̃b

2ε
(ik f γd−1) ,

where ∆̃b =
p

2S∆b
4 .

B One-loop vertex corrections

B.1 Forward Scattering

B.1.1 Feynman diagram FV1-1

The vertex correction in Table 3 FV1-1 is given as

M(1) =∆2
f

∫

dd+1k
(2π)d

δ(k0)γd−1G0(k+ p1)γd−1 ⊗ γd−1G0(−k+ p2)γd−1

= −∆2
f

∫

dd+1k
(2π)d

δ(k0)
N
D

,
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Table 3: Feynman diagrams for one-loop self-energy corrections. Here, Ag , A∆ f
,

and A∆ f
represent the coefficient of the ε poles computed from the corresponding

Feynman diagrams (see Eq. (E.10) for the definition).

Diagram No. FV1-1 FV1-2 FV1-3 FV1-4 FV1-5 FV1-6

Feynman Dia-
gram

Renormalization
factors

A∆ f
= π

4 ∆̃ f A∆ f
= −3

4∆̃ f A∆ f
= −∆̃ f A∆ f

= −3
4
∆̃2

b

∆̃ f
A∆ f
= −∆̃b A∆ f

= 0

Diagram No. YV1-1 YV1-2 YV1-3 BV1-1 BV1-2 BV1-3

Feynman Dia-
gram

Renormalization
factors

Ag = −3∆̃ f Ag = π∆̃ f Ag = 6 g̃ A∆b
= −1

2∆̃ f A∆b
= −1

2∆̃b A∆b
= 0

where D and N are given by

D =
�

(K+ P1)
2 +δ2

k+p1

��

(K− P2)
2 +δ2

−k+p2

�

,

N = δk+p1
γd−1 ⊗δ−k+p2

γd−1 − (K+ P1) · γ⊗ (K− P2) · γ

− (K+ P1) · γ⊗δ−k+p2
γd−1 +δk+p1

γd−1 ⊗ (K− P2) · γ .

In the numerator, there are four terms whose matrices are given by γd−1 ⊗ γd−1, γi ⊗ γi ,
γi ⊗γd−1, and γd−1⊗γi with i = 1, · · · , d−2. The first two would diverge while the latter two
would vanish after being integrated over K. Among the two non-vanishing terms, the term for
γd−1 ⊗ γd−1 gives a renormalization factor for ∆ f . On the other hand, the term for γi ⊗ γi is
an artifact stemming from the generalization of the dimension from d = 2 to general d, and
it should be eliminated by a counterterm. From now on, we focus on the term γd−1 ⊗ γd−1
giving the renormalization factor.

For future use, we define the following quantity:

δ∆ f (a)≡ lim
{pi}→0

1
4

tr
�

M(a)γd−1 ⊗ γd−1

�

, (B.1)

where {pi} denote external momenta such as p1, p2 in M(1). This quantity is directly related
to a renormalization factor, so we just call it a “renormalization factor".

Using Eq. (B.1), we find the renormalization factor δ∆ f (1) as

δ∆ f (1) = −∆2
f

∫

dk⊥
(2π)d−2

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)(−kx + k2

y)
�

(kx + k2
y)2 + k2

⊥

��

(−kx + k2
y)2 + k2

⊥

� .

Scaling variables as kx → |k⊥|kx and ky →
p

|k⊥|ky , we obtain

δ∆ f (1) = −Sd−2∆
2
f

∫ ∞

p0

dk⊥k
d− 7

2
⊥

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)(−kx + k2

y)
�

(kx + k2
y)2 + 1
��

(−kx + k2
y)2 + 1
� ,
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where Sd−2=2/((4π)
d−2

2 Γ ( d−2
2 )). We point out that p0 should be introduced as a lower cutoff

for the infrared convergence. We find an ε pole from the k⊥-integral as
∫∞

p0
dk⊥kd−7/2

⊥ = 1
ε +O(1). The remaining integral is done as

∫ ∞

−∞

d x
2π

∫ ∞

−∞

d y
2π

(x + y2)(−x + y2)
�

(x + y2)2 + 1
��

(−x + y2)2 + 1
� = −

p
2

16
.

As a result, we obtain

δ∆ f (1) =
π∆ f ∆̃ f

4ε
.

B.1.2 Feynman diagram FV1-2

From the vertex correction in Table 3 FV1-2, we find the renormalization factor δ∆ f (2) as

δ∆ f (2) = −∆2
f

∫

dk⊥
(2π)d−2

∫

dkx dky

(2π)2
δ2

k
�

δ2
k + k2

⊥

�2 .

We encounter the same divergence as with Σ(2). Regularizing the kx -integral with k f , we
obtain

δ∆ f (2) = −∆2
f

∫

dk⊥
(2π)d−2

∫ ∞

−k f

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)

2

�

(kx + k2
y)2 + k2

⊥

�2 .

To find an ε pole, we may set k f = 0 as proven in Eq. (A.2). Scaling variables as kx → |k⊥|kx

and ky →
p

|k⊥|ky , we have

δ∆ f (2) = −Sd−2∆
2
f

∫ ∞

p0

dk⊥k
d− 7

2
⊥

∫ ∞

0

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)

2

�

(kx + k2
y)2 + 1
�2 +O(1) .

We find an ε pole from the k⊥-integral as
∫∞

p0
dk⊥kd−7/2

⊥ = 1
ε +O(1). The remaining integral

is done as
∫ ∞

0

d x
2π

∫ ∞

−∞

d y
2π

(x + y2)2
�

(x + y2)2 + 1
�2 =

3
p

2
16π

.

As a result, we obtain

δ∆ f (2) = −
3∆ f ∆̃ f

4ε
.

B.1.3 Feynman diagram FV1-3

From the vertex correction in Table 3 FV1-3, we find the renormalization factor δ∆ f (3) as

δ∆ f (3) = −2∆2
f

∫

dk⊥
(2π)d−2

∫ ∞

−k f

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)

2 − k2
⊥

�

(kx + k2
y)2 + k2

⊥

�2 .

Setting k f = 0 and scaling variables as kx → |k⊥|kx and ky →
p

|k⊥|ky , we have

δ∆ f (3) = −2Sd−2∆
2
f

∫ ∞

p0

dk⊥k
d− 7

2
⊥

∫ ∞

0

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)

2 − 1
�

(kx + k2
y)2 + 1
�2 .
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We find an ε pole from the k⊥-integral as
∫∞

p0
dk⊥kd−7/2

⊥ = 1
ε +O(1). The remaining integral

is done as
∫ ∞

0

d x
2π

∫ ∞

−∞

d y
2π

(x + y2)2 − 1
�

(x + y2)2 + 1
�2 =
p

2
8π

.

As a result, we obtain

δ∆ f (3) = −
∆ f ∆̃ f

ε
.

B.1.4 Feynman diagram FV1-4

From the vertex correction in Table 3 FV1-4, we find the renormalization factor δ∆ f (4) as

δ∆ f (4) = −∆2
b

∫

dk⊥
(2π)d−2

∫ ∞

−k f

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)

2

�

(kx + k2
y)2 + k2

⊥

�2 .

The integration is the same with δ∆ f (2). As a result, we obtain

δ∆ f (4) = −
3∆b∆̃b

4ε
.

B.1.5 Feynman diagram FV1-5

From the vertex correction in Table 3 FV1-5, we find the renormalization factor δ∆ f (5) as

δ∆ f (5) = −2∆ f∆b

∫

dk⊥
(2π)d−2

∫ ∞

−k f

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)

2 − k2
⊥

�

(kx + k2
y)2 + k2

⊥

�2 .

The integration is the same with δ∆ f (3). As a result, we obtain

δ∆ f (5) = −
∆ f ∆̃b

ε
.

B.1.6 Feynman diagram FV1-6

From the vertex correction in Table 3 FV1-6, we find the renormalization factor δ∆ f (6) as

δ∆ f (6) = −
2g2∆ f

N

∫

dK
(2π)d−1

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)

2 −K2

�

(kx + k2
y)2 +K2
�2�

k2
y + g2Bd

|K|d−1

|ky |

�

.

Shifting kx → kx − k2
y and scaling variables as kx → |K|kx and ky → [g2Bd |K|d−1]1/3ky , we

have

δ∆ f (6) = −
2Sd−1 g4/3∆ f

B1/3
d N

∫ ∞

|p|
dKK

2d−8
3

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π

k2
x − 1

�

k2
x + 1
�2�

k2
y + 1/|ky |
�

,

where Sd−1 = 2/((4π)d−1Γ ( d−1
2 )). Integrated over kx , this correction vanishes due to the

following identity:
∫∞
−∞ d x x2−1

(x2+1)2 = 0. As a result, we obtain

δ∆ f (6) = 0 .
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B.2 Backward Scattering

B.2.1 Feynman diagram BV1-1

The vertex correction in Table 3 BV1-1 is

M(7) = 4∆b∆ f

∫

dd+1k
(2π)d

δ(k0)G0(k− p1)γd−1 ⊗ G0(k− p3)γd−1 .

Similarly with Eq. (B.1), we define

δ∆b(a)≡ lim
{pi}→0

1
4

tr
�

M(a)I2×2 ⊗ I2×2

�

. (B.2)

Using this formula, we find the renormalization factor δ∆b(7) as

δ∆b(7) = −4∆b∆ f

∫

dk⊥
(2π)d−2

∫ ∞

−k f

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)

2

�

(kx + k2
y)2 + k2

⊥

�2 .

The integration is the same with δ∆ f (2). As a result, we obtain

δ∆b(7) = −
3∆b∆̃ f

ε
.

B.2.2 Feynman diagram BV1-2

From the vertex correction in Table 3 BV1-2, we find the renormalization factor δ∆b(8) as

δ∆b(8) = −2∆b∆ f

∫

dk⊥
(2π)d−2

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)(−kx + k2

y)− k2
⊥

�

(kx + k2
y)2 + k2

⊥

��

(−kx + k2
y)2 + k2

⊥

� .

Scaling variables as kx → |k⊥|kx and ky →
p

|k⊥|ky , we have

δ∆b(8) = 2Sd−2∆b∆ f

∫ ∞

p0

dk⊥k
d− 7

2
⊥

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)(kx − k2

y) + 1
�

(kx + k2
y)2 + 1
��

(kx − k2
y)2 + 1
� .

We find an ε pole from the k⊥ integral as
∫∞

p0
dk⊥kd−7/2

⊥ = 1
ε . The remaining integral can be

done to give
∫ ∞

−∞

d x
2π

∫ ∞

−∞

d y
2π

(x + y2)(x − y2) + 1
�

(x + y2)2 + 1
��

(x − y2)2 + 1
� =
p

2
8

.

As a result, we obtain

δ∆b(8) =
π∆b∆̃ f

ε
.

B.2.3 Feynman diagram BV1-3

From the vertex correction in Table 3 BV1-3, we find the renormalization factor δ∆b(9) as

δ∆b(9) = −
2g2∆b

N

∫

dK
(2π)d−1

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)(−kx + k2

y)−K2

�

(kx + k2
y)2 +K2
��

(−kx + k2
y)2 +K2
�

1
�

k2
y + g2Bd

|K|d−1

|ky |

�
.
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Scaling variables as kx → |K|kx and ky → [g2Bd |K|d−1]1/3ky , we have

δ∆b(9) =
2Sd−1 g4/3∆b

B1/3
d N

∫ ∞

|p|
dKK

2d−8
3

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π

(kx + C|K|k
2
y)(kx − C|K|k

2
y) + 1

�

(kx + C|K|k2
y)2 + 1
�2�

k2
y + 1/|ky |
�

,

where C|K| = [g2Bd |K|d−1]2/3/|K|. Since C|K| is proportional to g4/3, it remains to be small as
long as the coupling e is small.

Expanding this expression in terms of C|K|, we have

δ∆b(9) =
2Sd−1 g4/3∆b

B1/3
d N

∫ ∞

|p|
dKK

2d−8
3

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π





1
�

k2
x + 1
��

k2
y + 1/|ky |
� −

(k2
x − 3)C2

|K|k
4
y

�

k2
x + 1
�3�

k2
y + 1/|ky |
�



 ,

up to O(C4
|K|) terms. The second term is proportional to (g4/3)3, so it is comparable to three-

loop corrections. Dropping this term, we have

δ∆b(9) =
2Sd−1 g4/3∆b

B1/3
d N

∫ ∞

|p|
dKK

2d−8
3

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π
1

�

k2
x + 1
��

k2
y + 1/|ky |
� .

We find an ε pole from the K integral as
∫∞
|p| dKK

2d−8
3 = 3

2ε . The remaining integral is done as

∫ ∞

−∞

d x
2π

∫ ∞

−∞

d y
2π

1
�

x2 + 1
��

y2 + 1/|y|
� =

1

3
p

3
.

As a result, we obtain

δ∆b(9) =
6∆b g̃
ε

.

B.3 Yukawa coupling

B.3.1 Feynman diagram YV1-1

The vertex correction in Table 3 YV1-1 is

M(10) =
i g∆ f
p

N

∫

dd+1k
(2π)d

δ(k0)γd−1G0(k+ p1)γd−1G0(k+ p2)γd−1 .

Similarly with Eq. (B.1), we define

iδg(a)≡ lim
{pi}→0

1
2

tr
�

M(a)γd−1

�

. (B.3)

Using Eq. (B.3), we find the renormalization factor δg(10) as

δg(10) = −
g∆ f
p

N

∫

dk⊥
(2π)d−2

∫ ∞

−k f

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)

2 − k2
⊥

�

(kx + k2
y)2 + k2

⊥

�2 .

The integration is the same with δ∆ f (3). As a result, we obtain

δg(10) = −
g
p

N

∆̃ f

2ε
.
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B.3.2 Feynman diagram YV1-2

From the vertex correction in Table 3 YV1-2, we find the renormalization factor δg(11) as

δg(11) = −
g∆bp

N

∫

dk⊥
(2π)d−2

∫ ∞

−k f

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)

2 − k2
⊥

�

(kx + k2
y)2 + k2

⊥

�2 .

The integration is the same with δ∆ f (3). As a result, we obtain

δg(11) = −
g
p

N

∆̃b

2ε
.

B.3.3 Feynman diagram YV1-3

From the vertex correction in Table 3 YV1-3, we find the renormalization factor δg(12) as

δg(12) = −
g3

N3/2

∫

dK
(2π)d−1

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π

(kx + k2
y)

2 −K2

�

(kx + k2
y)2 +K2
�2�

k2
y + g2Bd

|K|d−1

|ky |

�

.

Shifting kx → kx − k2
y and scaling variables as kx → |K|kx and ky → [g2Bd |K|d−1]1/3ky , we

have

δg(12) = −
Sd−1 g7/3

B1/3
d N3/2

∫ ∞

|p|
dKK

2d−11
3

∫ ∞

−∞

dkx

2π

∫ ∞

−∞

dky

2π

k2
x − 1

�

k2
x + 1
�2�

k2
y + 1/|ky |
�

.

Integrated over kx , this vanishes. As a result, we obtain

δg(12) = 0 .

C Two-loop self-energy corrections

C.1 Boson Self-energy

C.1.1 Feynman diagram BS2-1

The boson self-energy in Table 4 BS2-1 is given by

Π2(1) = −
g4µ2ε

N

∫

dd+1kdd+1l
(2π)2d+2

tr
�

γd−1G0(k+ q)γd−1G0(k)γd−1G0(l)γd−1G0(l + q)
�

D1(k− l)

= −
2g4µ2ε

N

∫

dd+1kdd+1l
(2π)2d+2

N
D

D1(k− l) ,

where D and N are

D =
�

(K+Q)2 +δ2
k+q

��

K2 +δ2
k

��

L2 +δ2
l

��

(L+Q)2 +δ2
l+q

�

, (C.1a)

N =
�

δkδk+q −K · (K+Q)
��

δlδl+q − L · (L+Q)
�

(C.1b)

−
�

δkδl+q +K · (L+Q)
��

δlδk+q + L · (K+Q)
�

+
�

δkδl −K · L
��

δk+qδl+q − (K+Q) · (L+Q)
�

.

Integrating over kx , we have

Π2(1) = −
g4µ2ε

N

∫

dd+1kdLdl y

(2π)2d+1

N1

D1
D1(k− l) ,
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Table 4: Feynman diagrams for one-loop self-energy corrections. Here, A0, A1, and
A2 represent the coefficient of the ε poles computed from the corresponding Feynman
diagrams (see Eq. (E.10) for the definition). Π2(q) represents two-loop corrections
of Landau damping for the dressed boson propagator.

Diagram No. FS2-1 FS2-2 FS2-3 FS2-4

Feynman Dia-
gram

Renormalization
factors

A0 = −0.3361 g̃2,
A1 = −0.3361 g̃2

A2 = −0.1131 g̃2

A0 = −0.00006139∆̃2
f ,

A1 = −0.001490∆̃2
f

A0 = −0.4461∆̃ f

Ç

g̃
N ,

A1 = −15.75∆̃ f

Ç

g̃
N

A0 = −0.0001228∆̃ f ∆̃b,
A1 = −0.002980∆̃ f ∆̃b

Diagram No. FS2-5 BS2-1 BS2-2 BS2-3

Feynman Dia-
gram

Renormalization
factors

A0 = −0.4461∆̃b

Ç

g̃
N ,

A1 = −15.75∆̃b

Ç

g̃
N

Π2(q) = (0.6427 g̃)g2µεBd
|Q|d−1

|qy |
Π2(q) = −0.05025g2∆̃ f µ

2ε |Q|
2d−3

|qy |2
Π2(q) = −0.05025g2∆̃bµ

2ε |Q|
2d−3

|qy |2

where D1 and N1 are given by

D1 =
�

(2kyqy +δq)
2 + (|K|+ |K+Q|)2

��

δ2
l + L2
��

δ2
l+q + (L+Q)2
�

,

N1 = (|K|+ |K+Q|)
�

�

1−
K · (K+Q)
|K||K+Q|

�

δlδl+q − L · (L+Q) +
K · (K+Q)L · (L+Q)
|K||K+Q|

−
L · (K+Q)K · (L+Q)
|K||K+Q|

+
K · L(K+Q) · (L+Q)
|K||K+Q|

�

+ (2kyqy +δq)

�

δl+q

�

L · (K+Q)
|K+Q|

−
K · L
|K|

�

+δl

�

(K+Q) · (L+Q)
|K+Q|

−
K · (L+Q)
|K|

�

�

.

Integrating over lx , we obtain

Π2(1) = −
g4µ2ε

2N

∫

dKdky dLdl y

(2π)2d

N2

D2

1

(ky − l y)2 + g2µεBd
|K−L|d−1

|ky−l y |

,

where D2 and N2 are given by

D2 =
�

(2kyqy +δq)
2 + (|K|+ |K+Q|)2

��

(2l yqy +δq)
2 + (|L|+ |L+Q|)2

�

,

N2 = (|K|+ |K+Q|)(|L|+ |L+Q|)
�

�

1−
K · (K+Q)
|K||K+Q|

�

+
K · (K+Q)L · (L+Q)
|K||K+Q||L||L+Q|

−
L · (K+Q)K · (L+Q)
|K||K+Q||L||L+Q|

+
K · L(K+Q) · (L+Q)
|K||K+Q||L||L+Q|

−
L · (L+Q)
|L||L+Q|

�

+ (2kyqy +δq)(2l yqy +δq)

�

L · (K+Q)
|L||K+Q|

−
K · L
|K||L|

−
(K+Q) · (L+Q)
|K+Q||L+Q|

+
K · (L+Q)
|K||L+Q|

�

�

.

Shifting l y as l y → l y + ky and integrating over ky , we have

Π2(1) = −
g4µ2ε

8N

∫

dKdLdl y

(2π)2d−1

N3

D3

1

l2
y + g2µεBd

|K−L|d−1

|l y |

,
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where D3 and N3 are given by

D3 = |qy |
�

(2l yqy)
2 + (|K|+ |K+Q|+ |L|+ |L+Q|)2

�

, (C.2a)

N3 = (|K|+ |K+Q|+ |L|+ |L+Q|)
��

1−
K · (K+Q)
|K||K+Q|

��

1−
L · (L+Q)
|L||L+Q|

�

(C.2b)

−
�

1−
K · (L+Q)
|K||L+Q|

��

1−
L · (K+Q)
|L||K+Q|

�

+
�

1−
K · L
|K||L|

��

1−
(K+Q) · (L+Q)
|K+Q||L+Q|

��

.

We may neglect the l yqy term in the fermionic part since it would give rise to subleading terms
in g. Integrating over l y , we obtain

Π2(1) = −
g4µ2ε

12
p

3N

∫

dKdL
(2π)2d−2

N4

D4
,

where D4 and N4 are given by

D4 = |qy |
�

g2µεBd |K− L|d−1
�1/3
(|K|+ |K+Q|+ |L|+ |L+Q|) ,

N4 =
�

1−
K · (K+Q)
|K||K+Q|

��

1−
L · (L+Q)
|L||L+Q|

�

−
�

1−
K · (L+Q)
|K||L+Q|

��

1−
L · (K+Q)
|L||K+Q|

�

+
�

1−
K · L
|K||L|

��

1−
(K+Q) · (L+Q)
|K+Q||L+Q|

�

.

Introducing coordinates of K ·Q = K |Q| cosθk, L ·Q = L|Q| cosθl , and K · L = K L cosθkl ,
where K = |K|, L = |L|, and cosθkl = cosθk cosθl + sinθk sinθl cosφl , and changing variables
as K = |Q|k and L = |Q|l, we have

Π2(1) = −
g10/3µε|Q|d−1(µ/|Q|)

2ε
3

12
p

3|qy |B
1/3
d N

4

(4π)d−1π
p
πΓ ( d−2

2 )Γ (
d−3

2 )

∫ ∞

0

dkkd−2

∫ ∞

0

dlld−2

∫ π

0

dθk

∫ π

0

dθl

∫ π

0

dφl

×
sind−3 θk sind−3 θl sind−4φl

(k+η1 + l +η2)[k2 + l2 − 2kl cosθkl]
d−1

6

��

1−
k+ cosθk

η1

��

1−
l + cosθl

η2

�

−
�

1−
l cosθkl + cosθk

η2

��

1−
k cosθkl + cosθl

η1

�

+ (1− cosθkl)
�

1−
kl cosθkl + k cosθk + l cosθl + 1

η1η2

��

,

where η1 =
p

k2 + 1+ 2k cosθk and η2 =
p

l2 + 1+ 2l cosθl . The remaining integrals can be
done numerically to give
∫ ∞

0

dk

∫ ∞

0

dl

∫ π

0

dθk

∫ π

0

dθl

∫ π

0

dφl

p
kl sin−

1
2 θk sin−

1
2 θl sind−4φl

(k+η1 + l +η2)[k2 + l2 − 2kl cosθkl]
1
4

��

1−
k+ cosθk

η1

��

1−
l + cosθl

η2

�

−
�

1−
l cosθkl + cosθk

η2

��

1−
k cosθkl + cosθl

η1

�

+ (1− cosθkl)
�

1−
kl cosθkl + k cosθk + l cosθl + 1

η1η2

��

=
p
πΓ ( d−3

2 )

Γ ( d−2
2 )

(−7.723) .

As a result, we obtain

Π2(1) = −g2µε(c g̃)Bd
|Q|d−1

|qy |
, c = −0.6427 . (C.3)

C.1.2 Feynman diagram BS2-2

The boson self-energy in Table 4 BS2-2 is expressed as

Π2(2) = −g2∆ f µ
2ε

∫

dd+1kdd+1l
(2π)2d+1

δ(k0 − l0)tr
�

γd−1G0(k+ q)γd−1G0(k)γd−1G0(l)γd−1G0(l + q)
�

= −2g2∆ f µ
2ε

∫

dd+1kdd+1l
(2π)2d+1

δ(k0 − l0)
N
D

,
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where D and N are given in Eq. (C.1). Integrating over kx , lx , and l y , where the integration
is the same with Π2(1), we have

Π2(2) = −
g2∆ f µ

2ε

8

∫

dKdLdl y

(2π)2d−1
δ(k0 − l0)

N3

D3
,

where D3 and N3 are given by

D3 = |qy |
�

(2l yqy)
2 + (|K|+ |K+Q|+ |L|+ |L+Q|)2

�

,

N3 = (|K|+ |K+Q|+ |L|+ |L+Q|)
�

�

1−
K · (K+Q)
|K||K+Q|

��

1−
L · (L+Q)
|L||L+Q|

�

−
�

1−
K · (L+Q)
|K||L+Q|

��

1−
L · (K+Q)
|L||K+Q|

�

+
�

1−
K · L
|K||L|

��

1−
(K+Q) · (L+Q)
|K+Q||L+Q|

�

�

.

Integrating over l y , we obtain

Π2(2) = −
g2∆ f µ

2ε

32|qy |2

∫

dKdL
(2π)2d−3

δ(k0 − l0)

�

�

1−
K · (K+Q)
|K||K+Q|

��

1−
L · (L+Q)
|L||L+Q|

�

−
�

1−
K · (L+Q)
|K||L+Q|

��

1−
L · (K+Q)
|L||K+Q|

�

+
�

1−
K · L
|K||L|

��

1−
(K+Q) · (L+Q)
|K+Q||L+Q|

�

�

.

The second line is odd in K and L, so it vanishes.
Integrating over l0, we have

Π2(2) = −
g2∆ f µ

2ε

32|qy |2

∫ ∞

−∞

dk0

2π

∫

dk⊥
(2π)d−2

�

1−
k⊥ · (k⊥ + q⊥) + k0(k0 + q0)
q

k2
⊥ + k2

0

p

(k⊥ + q⊥)2 + (k0 + q0)2

�

×
∫

dl⊥
(2π)d−2

�

1−
l⊥ · (l⊥ + q⊥) + k0(k0 + q0)
q

l2⊥ + k2
0

p

(l⊥ + q⊥)2 + (k0 + q0)2

�

.

Using the Feynman parametrization method, we have
∫ 1

0

d x
[x(1− x)]−1/2

π

∫

dk⊥
(2π)d−2

−2x(1− x)Q2

k̃2
⊥ + (k0 + xq0)2 + x(1− x)Q2

=

∫ 1

0

d x
−2[x(1− x)]1/2Q2Γ (4−d

2 )

Π2(4π)(d−2)/2
�

(k0 + xq0)2 + x(1− x)Q2
�

4−d
2

,

where k̃⊥ = k̃⊥ + xq⊥. The integration for l⊥ is the same with that for k⊥. Then, we obtain

Π2(2) = −
2g2∆ f µ

2ε|Q|4

(4π)d |qy |2

∫ ∞

−∞

dk0

2π

∫ 1

0

d x

∫ 1

0

d y
[x(1− x)]1/2[y(1− y)]1/2Γ (4−d

2 )
2

�

(k0 + xq0)2 + x(1− x)Q2
�

4−d
2
�

(k0 + yq0)2 + y(1− x)Q2
�

4−d
2

.

Using the Feynman parametrization method, we obtain

Π2(2) = −
2g2∆ f µ

2ε|Q|4

(4π)d |qy |2

∫ ∞

−∞

dk0

2π

∫ 1

0

d x

∫ 1

0

d y

∫ 1

0

dz
[z(1− z)](2−d)/2[x(1− x)]1/2[y(1− y)]1/2Γ (4− d)
�

k̃2
0 + (zx(1− x) + (1− z)y(1− y))Q2 + z(1− z)(x − y)2q2

0

�4−d
,

where k̃0 = k0 + (zx + (1− z)y)q0. Integrating over k0, we obtain

Π2(2) = −
2g2∆ f µ

2ε|Q|4

(4π)d+1/2|qy |2

∫ 1

0

d x

∫ 1

0

d y

∫ 1

0

dz
[z(1− z)](2−d)/2[x(1− x)]1/2[y(1− y)]1/2Γ (7/2− d)
�

(zx(1− x) + (1− z)y(1− y))Q2 + z(1− z)(x − y)2q2
0

�7/2−d
.

The momentum factor can be found as (µ2ε|Q|4/|qy |2)|Q|2d−7 = µ2ε|Q|2d−3/|qy |2. The re-
maining integral can be done to give
∫ 1

0

d x

∫ 1

0

d y

∫ 1

0

dz
[z(1− z)]−1/4[x(1− x)]1/2[y(1− y)]1/2

zx(1− x) + (1− z)y(1− y)
= 1.644 .

As a result, we obtain

Π2(2) = −g2∆̃ f µ
2εB̃d
|Q|2d−3

|qy |2
, B̃d = 0.05025 .
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C.1.3 Feynman diagram BS2-3

The boson self-energy in Table 4 BS2-3 is expressed as

Π2(3) = g2∆bµ
2ε

∫

dd+1kdd+1l
(2π)2d+1

δ(k0 + l0)tr
�

G∗0(−k− q)γd−1G∗0(−k)G0(l)γd−1G0(l + q)
�

= −2g2∆bµ
2ε

∫

dd+1kdd+1l
(2π)2d+1

δ(k0 + l0)
N
D

,

where D and N are given in Eq. (C.1). The integration is the same with Π2(2). As a result,
we obtain

Π2(3) = −g2∆̃bµ
εB̃d
|Q|2d−3

|qy |2
, B̃d = 0.05025 . (C.4)

C.2 Fermion self-energy

In the two-loop order, there are two kinds of diagrams for fermion self-energy correc-
tions: rainbow diagrams and crossed diagrams. The rainbow diagrams are represented as
Σr ∼ G0(p+ k)G0(p+ l)G0(p+ k), where p is external momentum, and k and l are loop mo-
menta. For brevity, gamma matrices and boson propagators have been omitted. Since the loop
momenta are “decoupled", the integrations for k and l are separately divergent. As a result,
the integral has only a double pole and a simple pole proportional to ln p2, where the former
is irrelevant for renormalization and the latter, called nonlocal divergence, is completely can-
celed by one loop counterterms. In other words, there is no simple pole, which contributes
to the beta functions. We are allowed to drop the rainbow diagrams. From now on, we only
focus on the crossed diagrams.

C.2.1 Feynman diagram FS2-1

The fermion self-energy correction in Table 4 FS2-1 is expressed as

Σ(1) =
g4

N2

∫

dd+1kdd+1l
(2π)2d+2

γd−1G0(k+ p)γd−1G0(k+ l + p)γd−1G0(l + p)γd−1D1(k)D1(l)

=
i g4

N2

∫

dd+1kdd+1l
(2π)2d+2

N
D

D1(k)D1(l) ,

where D and N are given by

D=
�

(K+ P)2 +δ2
k+p

��

(K+ L+ P)2 +δ2
k+l+p

��

(L+ P)2 +δ2
l+p

�

, (C.5a)

N=
�

(K+ P) · Γ(K+ L+ P) · Γ(L+ P) · Γ− (K+ P) · Γδk+l+pδl+p − (K+ L+ P) · Γδk+pδl+p (C.5b)

−(L+ P) · Γδk+pδk+l+p

�

+ γd−1

�

− (K+ P) · Γ(K+ L+ P) · Γδl+p − (K+ L+ P) · Γ(L+ P) · Γδk+p

−(K+ P) · Γ(L+ P) · Γδk+l+p +δk+pδk+l+pδl+p

�

.

Integrating over kx , we have

Σ(1) =
i g4

N2

∫

dKdky dd+1l

(2π)2d+1

N1

D1
D1(k)D1(l) ,
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where D1 and N1 are given by

D1 = 2|K+ P||K+ L+ P|
�

(|K+ P|+ |K+ L+ P|)2 + (δl+p + 2l y ky −δp)
2
��

(L+ P)2 +δ2
l+p

�

,

N1 =
�

(|K+ P|+ |K+ L+ P|)
¦

(K+ P) · Γ(K+ L+ P) · Γ(L+ P) · Γ− |K+ P||K+ L+ P|(L+ P) · Γ
©

− (δl+p + 2l y ky −δp)δl+p

¦

|K+ L+ P|(K+ P) · Γ− |K+ P|(K+ L+ P) · Γ
©�

+ γd−1

�

δl+p(|K+ P|+ |K+ L+ P|)
¦

− (K+ P) · Γ(K+ L+ P) · Γ+ |K+ P||K+ L+ P|
©

− (δl+p + 2l y ky −δp)
¦

|K+ L+ P|(K+ P) · Γ(L+ P) · Γ− |K+ P|(K+ L+ P) · Γ(L+ P) · Γ
©�

.

Integrating over lx , we obtain

Σ(1) =
i g4

N2

∫

dKdky dLdl y

(2π)2d

N2

D2
D1(k)D1(l) ,

where D2 and N2 are given by

D2 = 4|K+ P||K+ L+ P||L+ P|
�

(|K+ P|+ |K+ L+ P|+ |L+ P|)2 + (2l y ky −δp)
2
�

,

N2 = (|K+ P|+ |K+ L+ P|+ |L+ P|)
�

(K+ P) · Γ(K+ L+ P) · Γ(L+ P) · Γ

− |K+ P||K+ L+ P|(L+ P) · Γ− |K+ L+ P||L+ P|(K+ P) · Γ+ |K+ P||L+ P|(K+ L+ P) · Γ
�

+ (2l y ky −δp)γd−1

�

|K+ P|(K+ L+ P) · Γ(L+ P) · Γ− |K+ L+ P|(K+ P) · Γ(L+ P) · Γ

+ |L+ P|(K+ P) · Γ(K+ L+ P) · Γ− |L+ P||K+ P||K+ L+ P|
�

.

We rewrite this expression as Σ(1) = ΣA+ΣB, where ΣA and ΣB are given by

ΣA =
i g4

4N2

∫

dKdky dLdl y

(2π)2d

|K1|+ |K2|+ |K3|
(2ky l y −δp)2 + (|K1|+ |K2|+ |K3|)2

�

K1K2K3

|K1||K2||K3|
−

K1

|K1|
+

K2

|K2|
−

K3

|K3|

�

D1(k)D1(l) ,

ΣB =
i g4

4N2

∫

dKdky dLdl y

(2π)2d

(2ky l y −δp)γd−1

(2ky l y −δp)2 + (|K1|+ |K2|+ |K3|)2

�

K2K3

|K2||K3|
−

K1K3

|K1||K3|
+

K1K2

|K1||K2|
− 1

�

D1(k)D1(l) ,

where we introduced simplified notations as

K1 = (K+ P) · Γ , K2 = (K+ L+ P) · Γ , K3 = (L+ P) · Γ , (C.6a)

|K1|= |K+ P| , |K2|= |K+ L+ P| , |K3|= |L+ P| . (C.6b)

We calculate ΣA first. Integrating over ky and l y , we have

ΣA =
i g8/3

27B2/3
d N2

∫

dKdL
(2π)2d−2

1
(|K1|+ |K2|+ |K3|)(|K||L|)(d−1)/3

�

K1K2K3

|K1||K2||K3|
−

K1

|K1|
+

K2

|K2|
−

K3

|K3|

�

,

where we neglected (2ky l y −δp)2 because it would give rise to subleading terms in g. To find

a renormalization factor, we expand ΣA with respect to P as ΣA = Σ
(0)
A +Σ

(1)
A (iP · Γ ) +O(P2).

Here, we focus on the term in the integrand, given by

1
|K1|+ |K2|+ |K3|

�

K1K2K3

|K1||K2||K3|
−

K1

|K1|
+

K2

|K2|
−

K3

|K3|

�

.

Setting P= 0, we obtain

1
|K|+ |K+ L|+ |L|

�

|L|2K · Γ+ |K|2L · Γ
|K||K+ L||L|

−
K · Γ
|K|
+
(K+ L) · Γ
|K+ L|

−
L · Γ
|L|

�

.
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This is odd in K and L, implying that Σ(0)A would vanish after integrated over K and L.
In the leading order of P, we find

1
|K|+ |K+ L|+ |L|

�

(P · Γ)(|K|2 + |L|2 +K · ΓL · Γ)
|K||K+ L||L|

−
P · Γ
|K|
+

P · Γ
|K+ L|

−
P · Γ
|L|

�

−
1

|K|+ |K+ L|+ |L|

�

|L|2K · Γ+ |K|2L · Γ
|K||K+ L||L|

�

K · P
|K|2

+
(K+ L) · P
|K+ L|2

+
L · P
|L|2

�

−
(K · P)(K · Γ)
|K|3

+
(K+ L) · P(K+ L) · Γ

|K+ L|3
−
(L · P)(L · Γ)
|L|3

�

−
1

(|K|+ |K+ L|+ |L|)2

�

K · P
|K|
+
(K+ L) · P
|K+ L|

+
L · P
|L|

�

×
�

|L|2K · Γ+ |K|2L · Γ
|K||K+ L||L|

−
K · Γ
|K|
+
(K+ L) · Γ
|K+ L|

−
L · Γ
|L|

�

.

We simplify this expression as

(P · Γ)
(d − 1)

�

(d − 2)
|K|2 + |L|2 + |K||L|+K · L− (|K|+ |L|)|K+ L|

(|K|+ |L|+ |K+ L|)|K||L||K+ L|

−
|K|+ |L| − |K+ L|

(|K|+ |L|+ |K+ L|)2|K+ L|

�

1+
K · L
|K||L|

�

−
2|K||L|(|K|+ |L|+ 2|K+ L|)
(|K|+ |L|+ |K+ L|)2|K+ L|3

�

1−
(K · L)2

|K|2|L|2

�

�

, (C.7)

where we have used the following identities satisfied inside the integral expression

(K · Γ)(L · Γ) = K · L , (K · P)(K · Γ) =
|K|2(P · Γ)
(d − 1)

, (L · P)(L · Γ) =
|L|2(P · Γ)
(d − 1)

,

(K · P)(L · Γ) =
(P · Γ)(K · L)
(d − 1)

, (L · P)(K · Γ) =
(P · Γ)(K · L)
(d − 1)

.

Resorting to Eq. (C.7), we obtain

Σ
(1)
A =

g8/3

27B2/3
d N2

∫

dKdL
(2π)2d−2

1
[|K||L|](d−1)/3

1
(d − 1)

�

(d − 2)
|K|2 + |L|2 + |K||L|+K · L− (|K|+ |L|)|K+ L|

(|K|+ |L|+ |K+ L|)|K||K+ L||L|

− |K|+ |L| − |K+ L|
(|K|+ |L|+ |K+ L|)2|K+ L|

�

1+
K · L
|K||L|

�

−
2|K||L|(|K|+ |L|+ 2|K+ L|)
(|K|+ |L|+ |K+ L|)2|K+ L|3

�

1−
(K · L)2

|K|2|L|2

�

�

. (C.8)

Next, we calculate ΣB. It gives a renormalization factor for δp. To find the renormalization

factor, we expand it with respect to δp as ΣB = Σ
(0)
B +Σ

(1)
B (iδpγd−1) +O(δ2

p). We ignore Σ(0)B
because it would vanish after integrated over ky and l y . Then, we have

Σ
(1)
B =

g4

4N2

∫

dKdky dLdl y

(2π)2d

(2ky l y)2 − (|K1|+ |K2|+ |K3|)2
�

(2ky l y)2 + (|K1|+ |K2|+ |K3|)2
�2

�

K2K3

|K2||K3|
−

K1K3

|K1||K3|
+

K1K2

|K1||K2|
− 1

�

D1(k)D1(l) .

Integrating over ky and l y , we obtain

Σ
(1)
B = −

g8/3

27B2/3
d N2

∫

dKdL
(2π)2d−2

1
�

|K||L|
�(d−1)/3

(|K1|+ |K2|+ |K3|)2

�

K2K3

|K2||K3|
−

K1K3

|K1||K3|
+

K1K2

|K1||K2|
− 1

�

,

where we neglected (2ky l y)2 which would give rise to subleading terms in g. We set P = 0
because the renormalization factor is independent of P. Then, we have

1
(|K|+ |K+ L|+ |L|)2

�

(K+ L) · Γ(L · Γ)
|K+ L||L|

−
(K · Γ)(L · Γ)
|K||L|

+
(K · Γ)(K+ L) · Γ
|K||K+ L|

− 1

�

=
|K|+ |L| − |K+ L|

(|K|+ |L|+ |K+ L|)2|K+ L|

�

1+
K · L
|K||L|

�

,
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where we used (K · Γ)(L · Γ) = K · L in the second line. As a result, we obtain

Σ
(1)
B = −

g8/3

27B2/3
d N2

∫

dKdL
(2π)2d−2

1
[|K||L|](d−1)/3

|K|+ |L| − |K+ L|
(|K|+ |L|+ |K+ L|)2|K+ L|

�

1+
K · L
|K||L|

�

. (C.9)

Lastly, we complete the calculation of Eqs. (C.8) and (C.9). Introducing coordinates of
K · L= K L cosθ and changing a variable as L = Kl, we have

Σ
(1)
A =

Ω′g8/3

27B2/3
d N2

∫ ∞

|P|
dKK

4d−13
3

∫ ∞

0

dll
2d−5

3

∫ π

0

dθ sind−3 θ

×

�

(d − 2)
(d − 1)

1+ l + l2 + l cosθ − (1+ l)η
l η (1+ l +η)

−
(1+ l −η)(1+ cosθ )
(d − 1)(1+ l +η)2η

−
2l(1+ l + 2η)
�

1− cos2 θ
�

(d − 1)(1+ l +η)2η3

�

,

Σ
(1)
B = −

Ω′g8/3

27B2/3
d N2

∫ ∞

|P|
dKK

4d−13
3

∫ ∞

0

dll
2d−5

3

∫ π

0

dθ sind−3 θ
(1+ l −η)(1+ cosθ )

η (1+ l +η)2
,

where Ω′ ≡ 4
(4π)d−1

p
πΓ ( d−1

2 )Γ (
d−2

2 )
and η =

p
1+ l2 + 2l cosθ . We find an ε pole from the K

integral as
∫∞
|P| dK

4d−13
3 = 3

4ε +O(1). The remaining integrals are done as

∫ ∞

0

dl

∫ π

0

dθ
p

sinθ

�

1
3

1+ l + l2 + l cosθ − (1+ l)η
l η (1+ l +η)

−
2
3
(1+ l −η)(1+ cosθ )
(1+ l +η)2η

−
4
3

l(1+ l + 2η)
�

1− cos2 θ
�

(1+ l +η)2η3

�

=
p
πΓ ( d−2

2 )

Γ ( d−1
2 )

(−0.1120) ,

∫ ∞

0

dl

∫ π

0

dθ
p

sinθ

�

(1+ l −η)(1+ cosθ )
η (1+ l +η)2

�

=
p
πΓ ( d−2

2 )

Γ ( d−1
2 )

(0.03770) .

As a result, we obtain

Σ(1) = (−0.3361)
g̃2

ε
(iP · Γ) + (−0.1131)

g̃2

ε
(iδpγd−1) . (C.10)

C.2.2 Feynman diagram FS2-2

The fermion self-energy correction in Table 4 FS2-2 is given by

Σ(2) =∆2
f

∫

dd+1kdd+1l
(2π)2d

δ(k0)δ(l0)γd−1G0(k+ p)γd−1G0(k+ l + p)γd−1G0(l + p)γd−1

= i∆2
f

∫

dd+1kdd+1l
(2π)2d

δ(k0)δ(l0)
N
D

,

where D and N are given in Eq. (C.5). Integrating over kx and lx (the integration is the same
with Σ(1)), we find

ΣA =
i∆2

f

4

∫

dKdky dLdl y

(2π)2d−2
δ(k0)δ(l0)

|K1|+ |K2|+ |K3|
(2ky l y −δp)2 + (|K1|+ |K2|+ |K3|)2

�

K1K2K3

|K1||K2||K3|
−

K1

|K1|
+

K2

|K2|
−

K3

|K3|

�

,

ΣB =
i∆2

f

4

∫

dKdky dLdl y

(2π)2d−2
δ(k0)δ(l0)

(2ky l y −δp)γd−1

(2ky l y −δp)2 + (|K1|+ |K2|+ |K3|)2

�

K2K3

|K2||K3|
−

K1K3

|K1||K3|
+

K1K2

|K1||K2|
− 1

�

,

where Σ(2) = ΣA+ΣB, and Ka, |Ka| with a = 1,2, 3 are given in Eq. (C.6).
ΣB vanishes upon integrating over (ky , l y) in the infinite range. Meanwhile,ΣA is divergent

under the same integral. The divergence comes from the sections given by ky = 0 and l y = 0.
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We regularize the integral by avoiding these sections, i.e. constraining the integral range of
ky as
∫∞
−∞ dky →
∫∞
Λ

dky +
∫ −Λ
−∞ dky and similarly with the l y integral. We ignore δp for

simplicity. Integrating over (ky , l y) this way, we obtain

ΣA =
i∆2

f

32π2

∫

dKdL
(2π)2d−4

δ(k0)δ(l0)
�

Im
�

PolyLog(2, IA2)
�

−π ln A
�

�

K1K2K3

|K1||K2||K3|
−

K1

|K1|
+

K2

|K2|
−

K3

|K3|

�

,

where PolyLog[a, b] is the polylogarithm function and A = Λp
|K1|+|K2|+|K3|

. As A → 0,

Im
�

PolyLog(2, IA2)
�

becomes Im
�

PolyLog(2, IA2)
�

≈ A2 = Λ2

|K1|+|K2|+|K3|
. The power-counting

tells that the contribution arising from Im
�

PolyLog(2, IA2)
�

is only finite due to the additional
momentum factor, |K1| + |K2| + |K3|, in the denominator. Furthermore, the logarithm term,
−π ln A, only gives double poles. Thus, we conclude that the epsilon pole is absent in this
diagram:

Σ(2) = 0 . (C.11)

C.2.3 Feynman diagram FS2-3

The fermion self-energy correction in Table 4 FS2-3 is

Σ(3) =
2g2∆ f

N

∫

dd+1kdd+1l
(2π)2d+1

δ(l0)γd−1G0(k+ p)γd−1G0(k+ l + p)γd−1G0(l + p)γd−1D1(k)

=
2i g2∆ f

N

∫

dd+1kdd+1l
(2π)2d+1

δ(l0)
N
D

,

where D and N are given in Eq. (C.5). Integrating over kx and lx , where the integration is
the same with Σ(1), we have

ΣA =
i g2∆ f

2N

∫

dKdky dLdl y

(2π)2d−1
δ(l0)

|K1|+ |K2|+ |K3|
(2ky l y −δp)2 + (|K1|+ |K2|+ |K3|)2

�

K1K2K3

|K1||K2||K3|
−

K1

|K1|
−

K2

|K2|
+

K3

|K3|

�

D1(k) ,

ΣB =
i g2∆ f

2N

∫

dKdky dLdl y

(2π)2d−1
δ(l0)

(2ky l y −δp)γd−1

(2ky l y −δp)2 + (|K1|+ |K2|+ |K3|)2

�

K2K3

|K2||K3|
+

K1K3

|K1||K3|
−

K1K2

|K1||K2|
− 1

�

D1(k) .

Here, Σ(3) is decomposed into Σ(3) = ΣA + ΣB, and Ka, |Ka| with a = 1,2, 3 are given in
Eq. (C.6). Integrating over l y , we obtain

ΣA =
i∆ f g2

8N

∫

dKdky dL

(2π)2d−2
δ(l0)

1

|ky |
�

k2
y + g2Bd

|K|d−1

|ky |

�

�

K1K2K3

|K1||K2||K3|
−

K1

|K1|
+

K2

|K2|
−

K3

|K3|

�

,

where ΣB vanishes due to the identity of
∫∞
−∞ d x x2−a2

(x2+a2)2 = 0. Integrating over ky , we obtain
ΣA as

ΣA =
i∆ f g2/3

12
p

3B2/3
d N

∫

dKdL
(2π)2d−3

δ(l0)
1

|K|2(d−1)/3

�

K1K2K3

|K1||K2||K3|
−

K1

|K1|
+

K2

|K2|
−

K3

|K3|

�

.
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We expand ΣA with respect to P as ΣA = Σ
(0)
A +Σ

(1)
A,1(ip0γ0)+Σ

(1)
A,2(ip⊥ ·γ⊥). We do the similar

thing with ΣA of Σ(1), noticing l0 = 0 in this case. Then, we obtain

Σ
(1)
A,1 =

∆ f g2/3

12
p

3B2/3
d N

∫

dKdL
(2π)2d−3

δ(l0)
|K|2(d−1)/3

�

K2 + L2 +K · L
|K||K+ L||L|

−
1
|K|
+

1
|K+ L|

−
1
|L|

− k2
0

�

|L|
|K|3|K+ L|

+
|L|

|K||K+ L|3
−

1
|K|3

+
1

|K+ L|3

�

�

,

Σ
(1)
A,2 =

∆ f g2/3

12
p

3B2/3
d N

∫

dKdL
(2π)2d−3

δ(l0)
|K|2(d−1)/3

�

d − 3
d − 2

�

K2 + L2 +K · L
|K||K+ L||L|

−
1
|K|
+

1
|K+ L|

−
1
|L|

�

−
2|K||L|

(d − 2)|K+ L|3

�

1−
(K · L)2

|K|2|L|2

�

�

.

Introducing coordinates of k⊥ · l⊥ = kl cosθ and scaling variables as l → kl and k0→ kk0,
we have

Σ
(1)
A,1=

Ω∆ f g2/3

12π
p

3B2/3
d N

∫ ∞

p0

dkk
4d−13

3

∫ ∞

0

dlld−3

∫ ∞

0

dk0

∫ π

0

dθ
sind−4 θ

(1+ k2
0)(d−1)/3

×
�

�1+ k2
0 + l2 + l cosθ

lη
q

1+ k2
0

−
1
q

1+ k2
0

+
1
η
−

1
l

�

− k2
0

�

l
η(1+ k2

0)3/2
+

l

η3
q

1+ k2
0

−
1

(1+ k2
0)3/2

+
1
η3

�

�

,

Σ
(1)
A,2=

Ω∆ f g2/3

12π
p

3B2/3
d N

∫ ∞

p0

dkk
4d−13

3

∫ ∞

0

dlld−3

∫ ∞

0

dk0

∫ π

0

dθ
sind−4 θ

(1+ k2
0)(d−1)/3

×
�

d − 3
d − 2

�1+ k2
0 + l2 + l cosθ

lη
q

1+ k2
0

−
1
q

1+ k2
0

+
1
η
−

1
l

�

−
2l
q

1+ k2
0

(d − 2)η3

�

1−
cos2 θ

1+ k2
0

�

�

,

where η =
q

1+ k2
0 + l2 + 2l cosθ . We find an ε pole from the k integral as

∫∞
p0

dkk
4d−13

3 = 3
4ε +O(1). The remaining integrals can be done as

∫ ∞

0

dlld−3

∫ ∞

0

dk0

∫ π

0

dθ
sind−4 θ

(1+ k2
0)(d−1)/3

�

�1+ k2
0 + l2 + l cosθ

lη
q

1+ k2
0

−
1
q

1+ k2
0

+
1
η
−

1
l

�

− k2
0

�

l
η(1+ k2

0)3/2
+

l

η3
q

1+ k2
0

−
1

(1+ k2
0)3/2

+
1
η3

�

�

=

p
πΓ
� d−3

2

�

Γ
� d−2

2

� (−0.5290) ,

∫ ∞

0

dlld−3

∫ ∞

0

dk0

∫ π

0

dθ
sind−4 θ

(1+ k2
0)(d−1)/3

�

d − 3
d − 2

�1+ k2
0 + l2 + l cosθ

lη
q

1+ k2
0

−
1
q

1+ k2
0

+
1
η
−

1
l

�

−
2l
q

1+ k2
0

(d − 2)η3

�

1−
cos2 θ

1+ k2
0

�

�

=

p
πΓ
� d−3

2

�

Γ
� d−2

2

� (−18.68) .

As a result, we obtain

Σ(3) = (−0.4461)
∆̃ f
p

g̃
p

Nε
(ip0γ0) + (−15.75)

∆̃ f
p

g̃
p

Nε
(ip⊥ · γ⊥) . (C.12)
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C.2.4 Feynman diagram FS2-4

The fermion self-energy correction in Table 4 FS2-4 is

Σ(4) = 2∆ f∆b

∫

dd+1kdd+1l
(2π)2d

δ(k0)δ(l0)γd−1G0(k+ p)G∗0(−k− l − p)γd−1G∗0(−l − p)

= 2i∆ f∆b

∫

dd kdd l
(2π)2d

N
D

,

where D and N are given by

D =
�

(K+ P)2 +δ2
k+p

��

(K+ L+ P)2 +δ2
−k−l−p

��

(L+ P)2 +δ2
−l−p

�

, (C.13a)

N =
�

(K+ P) · Γ(K+ L+ P) · Γ(L+ P) · Γ− (K+ P) · Γδ−k−l−pδ−l−p − (K+ L+ P) · Γδk+pδ−l−p (C.13b)

−(L+ P) · Γδk+pδ−k−l−p

�

+ γd−1

�

− (K+ P) · Γ(K+ L+ P) · Γδ−l−p − (K+ L+ P) · Γ(L+ P) · Γδk+p

−(K+ P) · Γ(L+ P) · Γδ−k−l−p +δk+pδ−k−l−pδ−l−p

�

.

Integrating over kx and lx , where the integration is similar with Σ(1), we have

ΣA =
i∆ f∆b

2

∫

dKdky dLdl y

(2π)2d−2
δ(k0)δ(l0)

|K1|+ |K2|+ |K3|
(−2ky l̃d −δp)2 + (|K1|+ |K2|+ |K3|)2

�

K1K2K3

|K1||K2||K3|
−

K1

|K1|
−

K2

|K2|
+

K3

|K3|

�

,

ΣB =
i∆ f∆b

2

∫

dKdky dLdl y

(2π)2d−2
δ(k0)δ(l0)

(−2ky l̃d −δp)γd−1

(−2ky l̃d −δp)2 + (|K1|+ |K2|+ |K3|)2

�

K2K3

|K2||K3|
+

K1K3

|K1||K3|
−

K1K2

|K1||K2|
− 1

�

.

Here, Σ(4) is decomposed into Σ(4) = ΣA + ΣB with l̃d = l y + ky + py . Ka and |Ka| with
a = 1,2, 3 are given in Eq. (C.6). There are some differences between these expressions and
those ofΣ(2), where −2ky l̃d−δp appears instead of 2ky l y−δp and some terms in the brackets
differ in sign. However, these differences can be eliminated with variable changes, given by
l y → l y − ky − py , ky →−ky , k⊥→ k⊥, and l⊥→ l⊥ + k⊥. As a result, we obtain

Σ(4) = 0 . (C.14)

C.2.5 Feynman diagram FS2-5

The fermion self-energy correction in Table 4 FS2-5 is

Σ(5) = 2g2∆b

∫

dd+1kdd+1l
(2π)2d+1

δ(k0)γd−1G0(k+ p)− G∗0(−k− l − p)γd−1G∗0(−l − p)D1(k)

= 2i g2∆b

∫

dd+1kdd+1l
(2π)2d+1

δ(l0)
N
D

,

where D and N are given in Eq. (C.13). Integrating over kx and lx , where the integration is
similar with Σ(1), we have

ΣA =
i g2∆b

2

∫

dKdky dLdl y

(2π)2d−1
δ(l0)

|K1|+ |K2|+ |K3|
(−2ky l̃d −δp)2 + (|K1|+ |K2|+ |K3|)2

�

K1K2K3

|K1||K2||K3|
−

K1

|K1|
−

K2

|K2|
+

K3

|K3|

�

D1(k) ,

ΣB =
i g2∆b

2

∫

dKdky dLdl y

(2π)2d−1
δ(l0)

(−2ky l̃d −δp)γd−1

(−2ky l̃d −δp)2 + (|K1|+ |K2|+ |K3|)2

�

K2K3

|K2||K3|
+

K1K3

|K1||K3|
−

K1K2

|K1||K2|
− 1

�

D1(k) .

Here, Σ(5) is decomposed into Σ(5) = ΣA + ΣB with l̃ y = l y + ky + py . Ka and |Ka| with
a = 1, 2,3 are given in Eq. (C.6). Resorting to the following change of variables as
l y → l y − ky − py , ky → −ky , k⊥ → k⊥, and l⊥ → l⊥ + k⊥, we find the same expression
as Σ(3). As a result, we obtain

Σ(5) = (−0.4461)
∆̃b
p

g̃
p

Nε
(ip0γ0) + (−15.75)

∆̃b
p

g̃
p

Nε
(ip⊥ · γ⊥) . (C.15)
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Table 5: Feynman diagrams for two-loop vertex corrections for the forward disorder
scattering ∆ f . Here, A

∆ f
represents the coefficient of the ε poles computed from the

corresponding Feynman diagrams.

Diagram No. FV2-1 FV2-2 FV2-3 FV2-4 FV2-5 FV2-6

Feynman Dia-
gram

Renormalization
factors

A
∆ f
= 0 A

∆ f
= 0 A

∆ f
= 0 A

∆ f
= 0 A

∆ f
= 0 A

∆ f
= 0

Diagram No. FV2-7 FV2-8 FV2-9 FV2-10 FV2-11 FV2-12

Feynman Dia-
gram

Renormalization
factors

A
∆ f
= 0 A

∆ f
= 0 A

∆ f
= 0 A

∆ f
= 1.795∆̃ f g̃ A

∆ f
= −4.162∆̃ f

√

√ g̃
N

A
∆ f
= −4.162

∆̃2
b

∆̃ f

√

√ g̃
N

Diagram No. FV2-13 FV2-14 FV2-15 FV2-16 FV2-17 FV2-18

Feynman Dia-
gram

Renormalization
factors

A
∆ f
= 0 A

∆ f
= 0 A

∆ f
= 0 A

∆ f
= 0 A

∆ f
= 0 A

∆ f
= 0

Diagram No. FV2-19 FV2-20 FV2-21

Feynman Dia-
gram

Renormalization
factors

A
∆ f
= 0.2765∆̃ f g̃ A

∆ f
= 0 A

∆ f
= 0

D Two-loop vertex corrections

D.1 Forward scattering

D.1.1 Feynman diagram FV2-1

The vertex correction in Table 5 FV2-1 is given by

M(1) = −2∆3
f

∫

dd+1kdd+1l
(2π)2d

δ(k0)δ(l0)γd−1G0(k+ l + p1)γd−1G0(l + p1)γd−1

⊗ γd−1G0(k+ p2)γd−1G0(−l + p2)γd−1 .

Using Eq. (B.1), we find the renormalization factor δ∆ f (1) as

δ∆ f (1) = −2∆3
f

∫

dd kdd l
(2π)2d

�

δk+lδl − (k⊥ + l⊥) · l⊥
��

δkδ−l + k⊥ · l⊥
�

�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
l + l2⊥
��

δ2
−l + l2⊥
� .
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Table 6: Feynman diagrams for two-loop vertex corrections for the backward disorder
scattering∆b. Here, A∆b

represents the coefficient of the ε poles computed from the
corresponding Feynman diagrams.

Diagram No. BV2-1 BV2-2 BV2-3 BV2-4 BV2-5 BV2-6

Feynman Dia-
gram

Renormalization
factors

A
∆b
= 0 A

∆b
= 0 A

∆b
= 0 A

∆b
= 0 A

∆b
= 0 A

∆b
= −4.162∆̃ f

√

√ g̃
N

Diagram No. BV2-7 BV2-8 BV2-9 BV2-10 BV2-11 BV2-12

Feynman Dia-
gram

Renormalization
factors

A
∆b
= −4.162∆̃ f

√

√ g̃
N

A
∆b
= 0 A

∆b
= 0 A

∆b
= 0 A

∆b
= 13.58 g̃2 A

∆b
= 0

Diagram No. BV2-13 BV2-14 BV2-15 BV2-16 BV2-17

Feynman Dia-
gram

Renormalization
factors

A
∆b
= 0 A

∆b
= 1.408∆̃ f g̃ A

∆b
= 8.323∆̃ f

√

√ g̃
N

A
∆b
= 8.323∆̃b

√

√ g̃
N

A
∆b
= 5.056 g̃2

Integrating over kx , we have

δ∆ f (1) = −∆3
f

∫

dk⊥dky dd l

(2π)2d−1

(|k⊥ + l⊥|+ |k⊥|)
�

δlδ−l −
(k⊥+l⊥)·l⊥k⊥·l⊥
|k⊥+l⊥||k⊥|

�

+ (δl + 2ky l y)
�

δ−l
(k⊥+l⊥)·l⊥
|k⊥+l⊥|

+δl
k⊥·l⊥
|k⊥|

�

�

(δl + 2ky l y)2 + (|k⊥ + l⊥|+ |k⊥|)2
��

δ2
l + l2⊥
��

δ2
−l + l2⊥
� .

Integrating over ky , we obtain

δ∆ f (1) = −
∆3

f

4

∫

dk⊥dl⊥dlx dl y

(2π)2d−2

1

|l y |
�

δ2
l + l2⊥
��

δ2
−l + l2⊥
�

�

δlδ−l −
(k⊥ + l⊥) · l⊥k⊥ · l⊥
|k⊥ + l⊥||k⊥|

�

.

Integrating over lx , we have

δ∆ f (1) =
∆3

f

16

∫

dk⊥dl⊥dl y

(2π)2d−3

|l⊥|
|l y |
�

l4
y + l2⊥
�

�

1+
(k⊥ + l⊥) · l⊥k⊥ · l⊥
|k⊥ + l⊥||l⊥||k⊥||l⊥|

�

.

The integral for l y is divergent near l y = 0. We regularize this integral with a cutoff Λ as

δ∆ f (1) =
∆3

f

16

∫

dk⊥dl⊥
(2π)2d−4

∫ ∞

Λ

dl y

2π
2|l⊥|

|l y |
�

l4
y + l2⊥
�

�

1+
(k⊥ + l⊥) · l⊥k⊥ · l⊥
|k⊥ + l⊥||l⊥||k⊥||l⊥|

�

=
∆3

f

64π

∫

dk⊥dl⊥
(2π)2d−4

ln (1+ l2⊥/Λ
4)

|l⊥|

�

1+
(k⊥ + l⊥) · l⊥k⊥ · l⊥
|k⊥ + l⊥||l⊥||k⊥||l⊥|

�

.
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Introducing coordinates of k⊥ · l⊥ = kl cosθ and scaling variables as k→ lk, we have

δ∆ f (1) =
Ω∆3

f

64π

∫ ∞

p0

dll2d−6 ln (l2/Λ4 + 1)

∫ ∞

0

dk

∫ π

0

dθ sind−4 θ

�

1+
cosθ (k cosθ + 1)

k
p

1+ 2k cosθ + k2

�

.

The integral for l gives
∫ ∞

p0

dll2d−6 ln (l2/Λ4 + 1) =
1

2ε2
−

ln (Λ4/p2
0)

2ε
+O(1) .

The logarithmic term, − ln (Λ4/p2
0)

2ε , would be cancelled to the counterterm diagram associated
with the one-loop counterterm. As a result, we conclude

δ∆ f (1) = 0 .

D.1.2 Feynman diagram FV2-2

From the vertex correction in Table 5 FV2-2, we find a renormalization factor as

δ∆ f (2) = −2∆3
f

∫

dd kdd l
(2π)2d

�

δk+lδl − (k⊥ + l⊥) · l⊥
��

δ−kδl + k⊥ · l⊥
�

�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
−k + k2

⊥

��

δ2
l + l2⊥
�2 .

Integrating over kx , we have

δ∆ f (2) =∆
3
f

∫

dk⊥dky dd l

(2π)2d−1

(|k⊥ + l⊥|+ |k⊥|)
�

δ2
l +

(k⊥+l⊥)·l⊥k⊥·l⊥
|k⊥+l⊥||k⊥|

�

+ (δl + 2ky l y + 2k2
y)δl

�

(k⊥+l⊥)·l⊥
|k⊥+l⊥|

− k⊥·l⊥
|k⊥|

�

�

(δl + 2ky l y + 2k2
y)2 + (|k⊥ + l⊥|+ |k⊥|)2

��

δ2
l + l2⊥
�2 .

Integrating over lx , we obtain

δ∆ f (2) =
∆3

f

4

∫

dk⊥dky dl⊥dl y

(2π)2d−2

(2ky l y + 2k2
y)

2 − (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2
�

(2ky l y + 2k2
y)2 + (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2

�2

�

1−
(k⊥ + l⊥) · l⊥
|k⊥ + l⊥||l⊥|

��

1+
k⊥ · l⊥
|k⊥||l⊥|

�

.

Introducing the coordinates ky = r cosθ and l y = sinθ , we rewrite the integral for ky and l y
as

δ∆ f (2) =
∆3

f

4

∫

dk⊥dl⊥
(2π)2d−4

∫ 2π

0

dθ
2π

∫ ∞

0

drr
2π

4r4(cosθ sinθ + cos2 θ )2 − (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2
�

4r4(cosθ sinθ + cos2 θ )2 + (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2
�2

×
�

1−
(k⊥ + l⊥) · l⊥
|k⊥ + l⊥||l⊥|

��

1+
k⊥ · l⊥
|k⊥||l⊥|

�

.

Integrated over r, this vanishes. As a result, we obtain

δ∆ f (2) = 0 .

D.1.3 Feynman diagram FV2-3

From the vertex correction in Table 5 FV2-3, we find a renormalization factor as

δ∆ f (3) = −∆ f∆
2
b

∫

dd kdd l
(2π)2d

�

δk+lδ−l − (k⊥ + l⊥) · l⊥
��

δkδl + k⊥ · l⊥
�

�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
l + l2⊥
��

δ2
−l + l2⊥
� .

Integrating over kx , we have

δ∆ f (3) = −∆ f∆
2
b

∫

dk⊥dky dd l

(2π)2d−1

(|k⊥ + l⊥|+ |k⊥|)
�

δlδ−l −
(k⊥+l⊥)·l⊥k⊥·l⊥
|k⊥+l⊥||k⊥|

�

+ (δl + 2ky l y)
�

δl
(k⊥+l⊥)·l⊥
|k⊥+l⊥|

+δ−l
k⊥·l⊥
|k⊥|

�

�

(δl + 2ky l y)2 + (|k⊥ + l⊥|+ |k⊥|)2
��

δ2
l + l2⊥
��

δ2
−l + l2⊥
� .
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Integrating over ky , we obtain

δ∆ f (3) = −
∆ f∆

2
b

4

∫

dk⊥dd l
(2π)2d−2

1

|l y |
�

δ2
l + l2⊥
��

δ2
−l + l2⊥
�

�

δlδ−l −
(k⊥ + l⊥) · l⊥k⊥ · l⊥
|k⊥ + l⊥||k⊥|

�

.

This is the same with δ∆ f (1). As a result, we obtain

δ∆ f (3) = 0 . (D.1)

D.1.4 Feynman diagram FV2-4

From the vertex correction in Table 5 FV2-4, we find a renormalization factor as

δ∆ f (4) = −4∆ f∆
2
b

∫

dd kdd l
(2π)2d

�

δk+lδl − (k⊥ + l⊥) · l⊥
��

δkδl + k⊥ · l⊥
�

�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
l + l2⊥
�2 .

Integrating over kx , we obtain

δ∆ f (4) = −2∆ f∆
2
b

∫

dk⊥dky dd l

(2π)2d−1

(|k⊥ + l⊥|+ |k⊥|)
�

δ2
l −

(k⊥+l⊥)·l⊥k⊥·l⊥
|k⊥+l⊥||k⊥|

�

+ (δl + 2ky l y)δl

�

k⊥·l⊥
|k⊥|
+ (k⊥+l⊥)·l⊥
|k⊥+l⊥|

�

�

(δl + 2ky l y)2 + (|k⊥ + l⊥|+ |k⊥|)2
��

δ2
l + l2⊥
�2 .

Integrating over lx , we have

δ∆ f (4) = −
∆ f∆

2
b

2

∫

dk⊥dky dl⊥dl y

(2π)2d−2

(2ky l y)2 − (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2
�

(2ky l y)2 + (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2
�2

�

1−
(k⊥ + l⊥) · l⊥
|k⊥ + l⊥||l⊥|

��

1−
k⊥ · l⊥
|k⊥||l⊥|

�

.

Integrated over ky and l y , this vanishes. As a result, we obtain

δ∆ f (4) = 0 .

D.1.5 Feynman diagram FV2-5

From the vertex correction in Table 5 FV2-5, we find a renormalization factor as

δ∆ f (5) = −4∆3
f

∫

dd kdd l
(2π)2d

�

δk+lδkδl − (k⊥ + l⊥) · k⊥δl − k⊥ · l⊥δk+l − (k⊥ + l⊥) · l⊥δk

�

δ−l
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
l + l2⊥
��

δ2
−l + l2⊥
� .

Integrating over kx , we obtain

δ∆ f (5) = −2∆3
f

∫

dk⊥dky dd l

(2π)2d−1

δlδ−l(|k⊥ + l⊥|+ |k⊥|)
�

1− (k⊥+l⊥)·k⊥
|k⊥+l⊥||k⊥|

�

+ (δl + 2ky l y)δ−l

�

(k⊥+l⊥)·l⊥
|k⊥+l⊥|

− k⊥·l⊥
|k⊥|

�

�

(δl + 2ky l y)2 + (|k⊥ + l⊥|+ |k⊥|)2
��

δ2
l + l2⊥
��

δ2
−l + l2⊥
� .

Integrating over ky , we have

δ∆ f (5) = −
∆3

f

2

∫

dk⊥dd l
(2π)2d−2

δlδ−l

|l y |
�

δ2
l + l2⊥
��

δ2
−l + l2⊥
�

�

1−
(k⊥ + l⊥) · k⊥
|k⊥ + l⊥||k⊥|

�

.

Integrating over lx , we obtain

δ∆ f (5) =
∆3

f

8

∫

dk⊥dl⊥dl y

(2π)2d−3

|l⊥|
|l y |
�

l4
y + l2⊥
�

�

1−
(k⊥ + l⊥) · k⊥
|k⊥ + l⊥||k⊥|

�

.

Integrating over l y , we have

δ∆ f (5) =
∆3

f

32π

∫

dk⊥dl⊥
(2π)2d−4

ln (1+ l2⊥/Λ
4)

|l⊥|

�

1−
(k⊥ + l⊥) · k⊥
|k⊥ + l⊥||k⊥|

�

.

We drop this correction because it does not give a simple pole responsible for renormalization.
As a result, we obtain

δ∆ f (5) = 0 . (D.2)
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D.1.6 Feynman diagram FV2-6

From the vertex correction in Table 5 FV2-6, we find a renormalization factor as

δ∆ f (6) = −4∆3
f

∫

dd kdd l
(2π)2d

�

δk+lδkδl − (k⊥ + l⊥) · k⊥δl − k⊥ · l⊥δk+l − (k⊥ + l⊥) · l⊥δk

�

δl
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
l + l2⊥
�2 .

Integrating over kx , we have

δ∆ f (6) = −2∆3
f

∫

dk⊥dky dd l

(2π)2d−1

δ2
l (|k⊥ + l⊥|+ |k⊥|)

�

1− (k⊥+l⊥)·k⊥
|k⊥+l⊥||k⊥|

�

+ (δl + 2ky l y)δl

�

(k⊥+l⊥)·l⊥
|k⊥+l⊥|

− k⊥·l⊥
|k⊥|

�

�

(δl + 2ky l y)2 + (|k⊥ + l⊥|+ |k⊥|)2
��

δ2
l + l2⊥
�2 .

Integrating over lx , we obtain

δ∆ f (6) = −
∆3

f

2

∫

dk⊥dky dl⊥dl y

(2π)2d−2

(2ky l y)2 − (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2
�

(2ky l y)2 + (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2
�2

×
�

1−
(k⊥ + l⊥) · k⊥
|k⊥ + l⊥||k⊥|

+
k⊥ · l⊥
|k⊥||l⊥|

−
(k⊥ + l⊥) · l⊥
|k⊥ + l⊥||l⊥|

�

.

Integrated over ky and l y , this vanishes. As a result, we obtain

δ∆ f (6) = 0 .

D.1.7 Feynman diagram FV2-7

From the vertex correction in Table 5 FV2-7, we find a renormalization factor as

δ∆ f (7) = −4∆2
f∆b

∫

dd kdd l
(2π)2d

�

δk+lδkδ−l − (k⊥ + l⊥) · k⊥δ−l − k⊥ · l⊥δk+l − (k⊥ + l⊥) · l⊥δk

�

δl
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
l + l2⊥
��

δ2
−l + l2⊥
� .

Integrating over kx , we have

δ∆ f (7) = −2∆2
f∆b

∫

dk⊥dky dd l

(2π)2d−1

δlδ−l(|k⊥ + l⊥|+ |k⊥|)
�

1− (k⊥+l⊥)·k⊥
|k⊥+l⊥||k⊥|

�

+ (δl + 2ky l y)δl

�

(k⊥+l⊥)·l⊥
|k⊥+l⊥|

− k⊥·l⊥
|k⊥|

�

�

(δl + 2ky l y)2 + (|k⊥ + l⊥|+ |k⊥|)2
��

δ2
l + l2⊥
��

δ2
−l + l2⊥
� .

Integrating over ky , we obtain

δ∆ f (7) = −
∆2

f∆b

2

∫

dk⊥dd l
(2π)2d−2

δlδ−l

|l y |
�

δ2
l + l2⊥
��

δ2
−l + l2⊥
�

�

1−
(k⊥ + l⊥) · k⊥
|k⊥ + l⊥||k⊥|

�

.

We drop this correction because it does not give a simple pole responsible for renormalization.
As a result, we obtain

δ∆ f (7) = 0 .

D.1.8 Feynman diagram FV2-8

From the vertex correction in Table 5 FV2-8, we find a renormalization factor as

δ∆ f (8) = −4∆2
f∆b

∫

dd kdd l
(2π)2d

�

δk+lδkδ−l − k⊥ · (k⊥ + l⊥)δ−l − k⊥ · l⊥δk+l − l⊥ · (k⊥ + l⊥)δk

�

δ−l
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
−l + l2⊥
�2 .
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Integrating over kx , we have

δ∆ f (8) = −2∆2
f∆b

∫

dk⊥dky dd l

(2π)2d−1

δ2
−l(|k⊥ + l⊥|+ |k⊥|)

�

1− (k⊥+l⊥)·k⊥
|k⊥+l⊥||k⊥|

�

+ (δl + 2ky l y)δ−l

�

(k⊥+l⊥)·l⊥
|k⊥+l⊥|

− k⊥·l⊥
|k⊥|

�

�

(δl + 2ky l y)2 + (|k⊥ + l⊥|+ |k⊥|)2
��

δ2
−l + l2⊥
�2 .

Integrating over lx , we obtain

δ∆ f (8) = −
∆2

f∆b

2

∫

dk⊥dky dl⊥dl y

(2π)2d−2

(2ky l y + 2l2
y)

2 − (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2
�

(2ky l y + 2l2
y)2 + (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2

�2

×
�

1−
(k⊥ + l⊥) · k⊥
|k⊥ + l⊥||k⊥|

−
k⊥ · l⊥
|k⊥||l⊥|

+
(k⊥ + l⊥) · l⊥
|k⊥ + l⊥||l⊥|

�

.

Integrated over ky and l y , this vanishes. As a result, we obtain

δ∆ f (8) = 0 .

D.1.9 Feynman diagram FV2-9

From the vertex correction in Table 5 FV2-9, we find a renormalization factor as

δ∆ f (9) = −4∆ f∆
2
b

∫

dd kdd l
(2π)2d

�

δk+lδ−kδl − k⊥ · (k⊥ + l⊥)δl − k⊥ · l⊥δk+l − l⊥ · (k⊥ + l⊥)δ−k

�

δl
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
−k + k2

⊥

��

δ2
l + l2⊥
�2 .

Integrating over kx , we have

δ∆ f (9) = 2∆ f∆
2
b

∫

dk⊥dky dd l

(2π)2d−1

δ2
l (|k⊥ + l⊥|+ |k⊥|)

�

1+ (k⊥+l⊥)·k⊥
|k⊥+l⊥||k⊥|

�

+ (δl + 2ky l y + 2k2
y)δl

�

k⊥·l⊥
|k⊥|
+ (k⊥+l⊥)·l⊥
|k⊥+l⊥|

�

�

(δl + 2ky l y + 2k2
y)2 + (|k⊥ + l⊥|+ |k⊥|)2

��

δ2
l + l2⊥
�2 .

Integrating over lx , we obtain

δ∆ f (9) =
∆ f∆

2
b

2

∫

dk⊥dky dl⊥dl y

(2π)2d−2

(2ky l y + 2k2
y)

2 − (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2
�

(2ky l y + 2k2
y)2 + (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2

�2

×
�

1+
(k⊥ + l⊥) · k⊥
|k⊥ + l⊥||k⊥|

−
k⊥ · l⊥
|k⊥||l⊥|

−
(k⊥ + l⊥) · l⊥
|k⊥ + l⊥||l⊥|

�

.

Integrated over ky and l y , this vanishes. As a result, we obtain

δ∆ f (9) = 0 .

D.1.10 Feynman diagram FV2-10

From the vertex correction in Table 5 FV2-10, we find a renormalization factor as

δ∆ f (10) = −
4g2∆2

f

N

∫

dd+1kdd+1l
(2π)2d+1

δ(l0)

�

δk+lδkδl − (K+ L) ·Kδl −K · Lδk+l − (K+ L) · Lδk

�

δ−l
�

δ2
k+l + (K+ L)2
��

δ2
k +K2
��

δ2
l + L2
��

δ2
−l + L2
�

[k2
y + g2Bd

|K|d−1

|ky |
]

.

Integrating over kx , we obtain

δ∆ f (10) = −
2g2∆2

f

N

∫

dKdky dd+1l

(2π)2d
δ(l0)

δlδ−l(|K+ L|+ |K|)
�

1− (K+L)·K
|K+L||K|

�

+δlδ−l

�

(K+L)·L
|K+L| −

K·L
|K|

�

�

δ2
l + (|K+ L|+ |K|)2

��

δ2
l + L2
��

δ2
−l + L2
�

[k2
y + g2Bd

|K|d−1

|ky |
]

,
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where we have neglected ky l y in the fermionic part since it would give rise to subleading terms
in g. Integrating over lx , we have

δ∆ f (10) = −
2g2∆2

f

N

∫

dKdky dLdl y

(2π)2d−1
δ(l0)

(2l2
y)

2 − 2|L|(|K|+ |K+ L|+ |L|)
�

k2
y + g2Bd

|K|d−1

|ky |

��

(2l2
y)2 + (|K|+ |K+ L|+ |L|)2

��

(2l2
y)2 + 4|L|2
�

×
�

|K|+ |K+ L|
(|K|+ |K+ L|+ |L|)

�

1−
(K+ L) ·K
|K+ L||K|

�

+
|L|

(|K|+ |K+ L|+ |L|)

�

(K+ L) · L
|K+ L||L|

−
K · L
|K||L|

�

�

.

Integrating over ky and l y , we obtain

δ∆ f (10) =
g4/3∆2

f

3
p

3B1/3
d N

∫

dKdL
(2π)2d−3

δ(l0)
|K|(d−1)/3

1
p

2|L|(|K|+ |K+ L|+ |L|) + 2|L|
p

|K|+ |K+ L|+ |L|

×
�

|K|+ |K+ L|
|K|+ |K+ L|+ |L|

�

1−
(K+ L) ·K
|K+ L||K|

�

+
|L|

|K|+ |K+ L|+ |L|

�

(K+ L) · L
|K+ L||L|

−
K · L
|K||L|

�

�

.

Introducing coordinates as k⊥ · l⊥ = Kl cosθ , and scaling variables as l → Kl and k0 → Kk,
we get

δ∆ f (10) =
Ωg4/3∆2

f

3π
p

3B1/3
d N

∫ ∞

|P|
dKK

10d−31
6

∫ ∞

0

dlld−3

∫ ∞

0

dk
(1+ k2)(d−1)/6

∫ π

0

dθ sind−4 θ
1

p
2lη+ 2l

p
η

×
�

η− l
η

�

1−
1+ k2 + l cosθ

p
1+ k2

p
1+ k2 + l2 + 2l cosθ

�

+
l
η

�

l + cosθ
p

1+ k2 + l2 + 2l cosθ
−

cosθ
p

1+ k2

�

�

,

where Ω ≡ 4
(4π)d−2

p
πΓ ( d−2

2 )Γ (
d−3

2 )
and η =

p
1+ k2 + l +

p
1+ k2 + l2 + 2l cosθ . We find an ε

pole from the K integral as
∫∞
|P| dKK

10d−31
6 = 3

5ε +O(1). The remaining integral can be done
numerically as
∫ ∞

0

dlld−3

∫ ∞

0

dk
(1+ k2)(d−1)/6

∫ π

0

dθ sind−4 θ
1

p
2lη+ 2l

p
η

�

η− l
η

�

1−
1+ k2 + l cosθ

p
1+ k2

p
1+ k2 + l2 + 2l cosθ

�

+
l
η

�

l + cosθ
p

1+ k2 + l2 + 2l cosθ
−

cosθ
p

1+ k2

�

�

=
p
π Γ ( d−3

2 )

Γ ( d−2
2 )

(0.4415) .

As a result, we obtain

δ∆ f (10) = (1.7951)
∆ f ∆̃ f g̃

ε
. (D.3)

D.1.11 Feynman diagram FV2-11

From the vertex correction in Table 5 FV2-11, we find a renormalization factor as

δ∆ f (11) = −
4g2∆2

f

N

∫

dd+1kdd+1l
(2π)2d+1

δ(l0)

�

δk+lδkδl − (K+ L) · Lδk −K · Lδk+l − (K+ L) ·Kδl

�

δl
�

δ2
k+l + (K+ L)2
��

δ2
k +K2
��

δ2
l + L2
�2
[k2

y + g2Bd
|K|d−1

|ky |
]

.

Integrating over kx , we get

δ∆ f (11) = −
2g2∆2

f

N

∫

dKdky dd+1l

(2π)2d
δ(l0)

δ2
l (|K+ L|+ |K|)
�

1− (K+L)·K
|K+L||K|

�

+ (δl + 2ky l y)δl

�

(K+L)·L
|K+L| −

K·L
|K|

�

�

(δl + 2ky l y)2 + (|K+ L|+ |K|)2
��

δ2
l + L2
�2
[k2

y + g2Bd
|K|d−1

|ky |
]

.

Integrating over lx , we obtain

δ∆ f (11) = −
g2∆2

f

2N

∫

dKdky dLdl y

(2π)2d−1

δ(l0)

k2
y + g2Bd

|K|d−1

|ky |

�

|K|+ |K+ L|+ |L|
|L|
�

(2ky l y)2 + (|K|+ |K+ L|+ |L|)2
�

�

1−
(K+ L) ·K
|K+ L||K|

�

+
(2ky l y)2 − (|K|+ |K+ L|+ |L|)2
�

(2ky l y)2 + (|K|+ |K+ L|+ |L|)2
�2

�

1−
(K+ L) · L
|K+ L||L|

+
K · L
|K||L|

−
(K+ L) ·K
|K+ L||K|

�

�

.
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Integrating over ky and l y , we have

δ∆ f (11) = −
g2/3∆2

f

12
p

3B2/3
d N

∫

dKdL
(2π)2d−3

δ(l0)
|L||K|2(d−1)/3

�

1−
(K+ L) ·K
|K+ L||K|

�

.

Introducing coordinates as k⊥ · l⊥ = Kl cosθ and scaling variables as l → Kl and k0→ Kk, we
obtain

δ∆ f (11) = −
Ωg2/3∆2

f

12π
p

3B2/3
d N

∫ ∞

|P|
dKK

4d−13
3

∫ ∞

0

dlld−4

∫ ∞

0

dk

(1+ k2)
d−1

3

∫ π

0

dθ sind−4 θ

×
�

1−
1+ k2 + l cosθ

p
1+ k2

p
1+ k2 + l2 + 2l cosθ

�

.

We find an ε pole from the K integral as
∫∞
|P| dKK

4d−13
3 = 3

4ε +O(1). The remaining integral
can be done numerically as
∫ ∞

0

dlld−4

∫ ∞

0

dk

(1+ k2)
d−1

3

∫ π

0

dθ sind−4 θ

�

1−
1+ k2 + l cosθ

p
1+ k2

p
1+ k2 + l2 + 2l cosθ

�

=
p
π Γ ( d−3

2 )

Γ ( d−2
2 )

(4.934) .

As a result, we obtain

δ∆ f (11) = (−4.162)
∆ f ∆̃ f
p

g̃
p

Nε
. (D.4)

D.1.12 Feynman diagram FV2-12

From the vertex correction in Table 5 FV2-12, we find a renormalization factor as

δ∆ f (12) = −
4g2∆2

b

N

∫

dd+1kdd+1l
(2π)2d+1

δ(l0)

�

δk+lδ−kδl −K · (K+ L)δl −K · Lδk+l − L · (K+ L)δ−k

�

δl
�

δ2
k+l + (K+ L)2
��

δ2
−k +K2
��

δ2
l + L2
�2�

k2
y + g2Bd

|K|d−1

|ky |

�

.

Integrating over kx , we obtain

δ∆ f (12) =
2g2∆2

b

N

∫

dKdky dd+1l

(2π)2d
δ(l0)

δ2
l (|K+ L|+ |K|)
�

1+ (K+L)·K
|K+L||K|

�

+ (δl + 2ky l y + 2k2
y)δl

�

K·L
|K| +

(K+L)·L
|K+L|

�

�

(δl + 2ky l y + 2k2
y)2 + (|K+ L|+ |K|)2

��

δ2
l + L2
�2
[k2

y + g2Bd
|K|d−1

|ky |
]

.

Integrating over lx , we get

δ∆ f (12) =
g2∆2

b

2N

∫

dKdky dLdl y

(2π)2d−1

δ(l0)

k2
y + g2Bd

|K|d−1

|ky |

�

|K|+ |K+ L|+ |L|
|L|
�

(2ky l y)2 + (|K|+ |K+ L|+ |L|)2
�

�

1+
(K+ L) ·K
|K+ L||K|

�

+
(2ky l y)2 − (|K|+ |K+ L|+ |L|)2
�

(2ky l y)2 + (|K|+ |K+ L|+ |L|)2
�2

�

1+
(K+ L) · L
|K+ L||L|

−
K · L
|K||L|

−
(K+ L) ·K
|K+ L||K|

�

�

,

where we have ignored the k2
y terms in the fermionic part since they would give rise to sub-

leading terms in g. Integrating over ky and l y , we have

δ∆ f (12) =
g2/3∆2

b

12
p

3B2/3
d N

∫

dKdL
(2π)2d−3

δ(l0)
|L||K|2(d−1)/3

�

1+
(K+ L) ·K
|K+ L||K|

�

.

The term of |L|−1|K|−2(d−1)/3 does not give rise to an ε pole, so we drop it. Then, we have

δ∆ f (12) =
g2/3∆2

b

12
p

3B2/3
d N

∫

dKdL
(2π)2d−3

δ(l0)
|L|

(K+ L) ·K

|K+ L||K|
2d+1

3

.
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Integrating over K, we obtain

δ∆ f (12) =
g2/3∆2

b

12
p

3B2/3
d N

∫ 1

0

d x
x−

1
2 (1− x)

2d−5
6

Γ (1
2)Γ (

2d+1
6 )

∫

dL
(2π)d−2

δ(l0)
−4Γ (7−d

6 )

(4π)
d−1

2 |L|
�

x(1− x)L2
�

1−d
6

=
g2/3∆2

b

12
p

3B2/3
d N

−4Γ (7−d
6 )

(4π)d−2
p
πΓ ( d−2

2 )

∫ 1

0

d x
x

d−4
6 (1− x)

3d−6
6

Γ (1
2)Γ (

2d+1
6 )

∫ ∞

p0

d LL
4d−13

3 .

We find an ε pole from the L integral as
∫∞

p0
d LL

4d−13
3 = 3

4ε +O(1). The remaining integral
can be done as

∫ 1

0

d x
x

d−4
6 (1− x)

3d−6
6

Γ (1
2)Γ (

2d+1
6 )

=
p
π

2
p

2
+O(ε) .

As a result, we obtain

δ∆ f (12) = (−4.162)
∆ f ∆̃

2
b

p

g̃

∆̃ f
p

Nε
. (D.5)

D.1.13 Feynman diagram FV2-13

From the vertex correction in Table 5 FV2-13, we find a renormalization factor as

δ∆ f (13) = −2∆3
f

∫

dd kdd l
(2π)2d

�

δk+lδ
2
l − 2(k⊥ + l⊥) · l⊥δl − l2⊥δk+l

�

δ−k
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
−k + k2

⊥

��

δ2
l + l2⊥
�2 .

Integrating over kx , we obtain

δ∆ f (13) =∆3
f

∫

dd kdl⊥dl y

(2π)2d−1

(δ2
l − l2⊥)(|k⊥ + l⊥|+ |k⊥|) + 2(δl + 2ky l y + 2k2

y)δl
(k⊥+l⊥)·l⊥
|k⊥+l⊥|

�

(δl + 2ky l y + 2k2
y)2 + (|k⊥ + l⊥|+ |k⊥|)2

��

δ2
l + l2⊥
�2 .

Integrating over lx , we get

δ∆ f (13) =
∆3

f

2

∫

dk⊥dky dl⊥dl y

(2π)2d−2

(2ky l y + 2k2
y)

2 − (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2
�

(2ky l y + 2l2
y)2 + (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2

�2

�

1−
(k⊥ + l⊥) · l⊥
|k⊥ + l⊥||l⊥|

�

.

Integrated over ky and l y , this vanishes. As a result, we obtain

δ∆ f (13) = 0 .

D.1.14 Feynman diagram FV2-14

From the vertex correction in Table 5 FV2-14, we find a renormalization factor as

δ∆ f (14) = −2∆3
f

∫

dd kdd l
(2π)2d

�

δk+lδ
2
l − 2(k⊥ + l⊥) · l⊥δl − l2⊥δk+l

�

δk
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
l + l2⊥
�2 .

Integrating over kx , we have

δ∆ f (14) = −∆3
f

∫

dk⊥dky dd l

(2π)2d−1

(δ2
l − l2⊥)(|k⊥ + l⊥|+ |k⊥|) + 2(δl + 2ky l y)δl

(k⊥+l⊥)·l⊥
|k⊥+l⊥|

�

(δl + 2ky l y)2 + (|k⊥ + l⊥|+ |k⊥|)2
��

δ2
l + l2⊥
�2 .
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Integrating over lx , we get

δ∆ f (14) = −
∆3

f

2

∫

dk⊥dky dl⊥dl y

(2π)2d−2

(2ky l y)2 − (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2
�

(2ky l y)2 + (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2
�2

×
�

1−
(k⊥ + l⊥) · l⊥
|k⊥ + l⊥||l⊥|

�

.

Integrated over ky and l y , this vanishes. As a result, we obtain

δ∆ f (14) = 0 .

D.1.15 Feynman diagram FV2-15

From the vertex correction in Table 5 FV2-15, we find a renormalization factor as

δ∆ f (15) = −2∆ f∆
2
b

∫

dd kdd l
(2π)2d

�

δk+lδ
2
−l − 2(k⊥ + l⊥) · l⊥δ−l − l2⊥δk+l

�

δk
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
−l + l2⊥
�2 .

Integrating over kx , we have

δ∆ f (15) = −∆ f∆
2
b

∫

dk⊥dky dd l

(2π)2d−1

(δ2
−l − l2⊥)(|k⊥ + l⊥|+ |k⊥|) + 2(δl + 2ky l y)δ−l

(k⊥+l⊥)·l⊥
|k⊥+l⊥|

�

(δl + 2ky l y)2 + (|k⊥ + l⊥|+ |k⊥|)2
��

δ2
−l + l2⊥
�2 .

Integrating over lx , we obtain

δ∆ f (15) = −
∆ f∆

2
b

2

∫

dk⊥dky dl⊥dl y

(2π)2d−2

(2ky l y + 2l2
y)

2 − (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2
�

(2ky l y + 2l2
y)2 + (|k⊥|+ |k⊥ + l⊥|+ |l⊥|)2

�2

×
�

1+
(k⊥ + l⊥) · l⊥
|k⊥ + l⊥||l⊥|

�

.

Integrated over ky and l y , this vanishes. As a result, we obtain

δ∆ f (15) = 0 .

D.1.16 Feynman diagram FV2-16

From the vertex correction in Table 5 FV2-16, we find a renormalization factor as

δ∆ f (16) = −2∆2
f∆b

∫

dd kdd l
(2π)2d

�

δk+lδ
2
l − 2(k⊥ + l⊥) · l⊥δl − l2⊥δk+l

�

δk
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
l + l2⊥
�2 .

The integration is the same with δ∆ f (14). As a result, we obtain

δ∆ f (16) = 0 .

D.1.17 Feynman diagram FV2-17

From the vertex correction in Table 5 FV2-17, we find a renormalization factor as

δ∆ f (17) = −2∆2
f∆b

∫

dd kdd l
(2π)2d

�

δk+lδ
2
l − 2(k⊥ + l⊥) · l⊥δl − l2⊥δk+l

�

δ−k
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
−k + k2

⊥

��

δ2
l + l2⊥
�2 .

The integration is the same with δ∆ f (13). As a result, we obtain

δ∆ f (17) = 0 .
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D.1.18 Feynman diagram FV2-18

From the vertex correction in Table 5 FV2-18, we find a renormalization factor as

δ∆ f (18) = −2∆3
b

∫

dd kdd l
(2π)2d

�

δk+lδ
2
−l − 2(k⊥ + l⊥) · l⊥δ−l − l2⊥δk+l

�

δk
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
−l + l2⊥
�2 .

The integration is the same with δ∆ f (15). As a result, we obtain

δ∆ f (18) = 0 .

D.1.19 Feynman diagram FV2-19

From the vertex correction in Table 5 FV2-19, we find a renormalization factor as

δ∆ f (19) = −
2g2∆2

f

N

∫

dd+1kdd+1l
(2π)2d+1

δ(k0)

�

δk+lδ
2
l − 2(K+ L) · Lδl − L2δk+l

�

δ−k
�

δ2
k+l + (K+ L)2
��

δ2
−k +K2
��

δ2
l + L2
�2�

l2
y + g2Bd

|L|d−1

|l y |

�

.

Integrating over kx , we get

δ∆ f (19) =
g2∆2

f

N

∫

dKdd+1l
(2π)2d

δ(k0)
(δ2

l − L2)(|K+ L|+ |K|) + 2(δl + 2ky l y + 2k2
y)δl

(K+L)·L
|K+L|

�

(δl + 2ky l y + 2k2
y)2 + (|K+ L|+ |K|)2

��

δ2
l + L2
�2�

l2
y + g2Bd

|L|d−1

|l y |

�

.

Integrating over lx , we have

δ∆ f (19) =
g2∆2

f

2N

∫

dKdky dLdl y

(2π)2d−1

δ(k0)

l2
y + g2Bd

|L|d−1

|l y |

(2ky l y + 2k2
y)

2 − (|K|+ |K+ L|+ |L|)2
�

(2ky l y + 2k2
y)2 + (|K|+ |K+ L|+ |L|)2

�2

�

1−
(K+ L) · L
|K+ L||L|

�

.

We may ignore ky l y since it would give rise to subleading terms in g. Integrating over ky and
l y , we obtain

δ∆ f (19) = −
g4/3∆2

f

24
p

3B1/3
d N

∫

dKdL
(2π)2d−3

δ(k0)
|L|(d−1)/3

1
(|K|+ |K+ L|+ |L|)3/2

�

1−
(K+ L) · L
|K+ L||L|

�

.

Introducing coordinates as K · L= Kl cosθ , K = Lk, and l0 = Ll, we have

δ∆ f (19) = −
Ωg4/3∆2

f

24π
p

3B1/3
d N

∫ ∞

p0

d LL
10d−31

6

∫ ∞

0

dkkd−3

∫ ∞

0

dl
(1+ l2)(d−1)/6

∫ π

0

dθ sind−4 θ

×
1

�p
1+ l2 + k+

p
1+ l2 + k2 + 2k cosθ

�3/2

�

1−
1+ l2 + k cosθ

p
1+ l2
p

1+ l2 + k2 + 2k cosθ

�

.

We find an ε pole from the K integral as
∫∞
|P| d LL

10d−31
6 = 3

5ε +O(1). The remaining integral
can be done numerically as
∫ ∞

0

dkkd−3

∫ ∞

0

dl
(1+ l2)(d−1)/6

∫ π

0

dθ sind−4 θ
1

�p
1+ l2 + k+

p
1+ l2 + k2 + 2k cosθ

�3/2

×
�

1−
1+ l2 + k cosθ

p
1+ l2
p

1+ l2 + k2 + 2k cosθ

�

=
p
π Γ ( d−3

2 )

Γ ( d−2
2 )

(−0.5439) .

As a result, we obtain

δ∆ f (19) = (0.2765)∆ f
∆̃ f g̃

ε
. (D.6)
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D.1.20 Feynman diagram FV2-20

From the vertex correction in Table 5 FV2-20, we find the renormalization factor as

δ∆ f (20) = −
2g2∆2

f

N

∫

dd+1kdd+1l
(2π)2d+1

δ(l0)

�

δk+lδ
2
l − 2(K+ L) · Lδl − L2δk+l

�

δk
�

δ2
k+l + (K+ L)2
��

δ2
k +K2
��

δ2
l + L2
�2�

l2
y + g2Bd

|L|d−1

|l y |

�

.

Integrating over kx , we have

δ∆ f (20) = −
g2∆2

f

N

∫

dKdky dd+1l

(2π)2d
δ(l0)

(δ2
l − L2)(|K+ L|+ |K|) + 2(δl + 2ky l y)δl

(K+L)·L
|K+L|

�

(δl + 2ky l y)2 + (|K+ L|+ |K|)2
��

δ2
l + L2
�2�

l2
y + g2Bd

|L|d−1

lky |

�

.

Integrating over lx , we obtain

δ∆ f (20) = −
g2∆2

f

2N

∫

dKdky dLdl y

(2π)2d−1

δ(l0)

l2
y + g2Bd

|L|d−1

|l y |

(2ky l y)2 − (|K|+ |K+ L|+ |L|)2
�

(2ky l y)2 + (|K|+ |K+ L|+ |L|)2
�2

�

1−
(K+ L) · L
|K+ L||L|

�

.

Integrated over ky and l y , this vanishes. As a result, we obtain

δ∆ f (20) = 0 .

D.1.21 Feynman diagram FV2-21

From the vertex correction in Table 5 FV2-21, we find a renormalization factor as

δ∆ f (21) = −
2g2∆2

b

N

∫

dd+1kdd+1l
(2π)2d+1

δ(k0)

�

δk+lδ
2
−l − 2L · (K+ L)δ−l − L2δk+l

�

δk
�

δ2
k+l + (K+ L)2
��

δ2
k +K2
��

δ2
−l + L2
�2�

l2
y + g2Bd

|L|d−1

|l y |

�

.

Integrating over kx , we have

δ∆ f (21) = −
g2∆2

b

N

∫

dKdky dd+1l

(2π)2d
δ(k0)

(δ2
−l − L2)(|K+ L|+ |K|) + 2(δl + 2ky l y)δ−l

(K+L)·L
|K+L|

�

(δl + 2ky l y)2 + (|K+ L|+ |K|)2
��

δ2
−l + L2
�2�

l2
y + g2Bd

|L|d−1

|l y |

�

.

Integrating over lx , we get

δ∆ f (21) = −
g2∆2

b

2N

∫

dKdky dLdl y

(2π)2d−1

δ(k0)

l2
y + g2Bd

|L|d−1

|l y |

(2ky l y + 2l2
y)

2 − (|K|+ |K+ L|+ |L|)2
�

(2ky l y + 2l2
y)2 + (|K|+ |K+ L|+ |L|)2

�2

�

1+
(K+ L) · L
|K+ L||L|

�

.

Integrated over ky and l y , this vanishes. As a result, we obtain

δ∆ f (21) = 0 .

D.2 Backward scattering

D.2.1 Feynman diagram BV2-1

From the vertex correction in Table 6 BV2-1, we find a renormalization factor as

δ∆b(1) = −4∆2
f∆b

∫

dd kdd l
(2π)2d

�

δk+lδl − (k⊥ + l⊥) · l⊥
��

δkδl + k⊥ · l⊥
�

�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
l + l2⊥
�2 .

The integration is the same with δ∆ f (4). As a result, we obtain

δ∆b(1) = 0 .

59

https://scipost.org
https://scipost.org/SciPostPhys.17.2.059


SciPost Phys. 17, 059 (2024)

D.2.2 Feynman diagram BV2-2

From the vertex correction in Table 6 BV2-2, we find a renormalization factor as

δ∆b(2) = −2∆2
f∆b

∫

dd kdd l
(2π)2d

�

δk+lδl − (k⊥ + l⊥) · l⊥
��

δ−kδl + k⊥ · l⊥
�

�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
−k + k2

⊥

��

δ2
l + l2⊥
�2 .

The integration is the same with δ∆ f (2). As a result, we obtain

δ∆b(2) = 0 .

D.2.3 Feynman diagram BV2-3

From the vertex correction in Table 6 BV2-3, we find a renormalization factor as

δ∆b(3) = −4∆2
f∆b

∫

dd kdd l
(2π)2d

�

δk+lδ−kδl − k⊥ · (k⊥ + l⊥)δl − k⊥ · l⊥δk+l − l⊥ · (k⊥ + l⊥)δ−k

�

δl
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
−k + k2

⊥

��

δ2
l + l2⊥
�2 .

The integration is the same with δ∆ f (9). As a result, we obtain

δ∆b(3) = 0 .

D.2.4 Feynman diagram BV2-4

From the vertex correction in Table 6 BV2-4, we find a renormalization factor as

δ∆b(4) = −4∆2
f∆b

∫

dd kdd l
(2π)2d

�

δk+lδkδl − k⊥ · (k⊥ + l⊥)δl − k⊥ · l⊥δk+l − l⊥ · (k⊥ + l⊥)δk

�

δl
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
l + l2⊥
�2 .

The integration is the same with δ∆ f (6). As a result, we obtain

δ∆b(4) = 0 .

D.2.5 Feynman diagram BV2-5

From the vertex correction in Table 6 BV2-5, we find a renormalization factor as

δ∆b(5) = −4∆ f∆
2
b

∫

dd kdd l
(2π)2d

�

δk+lδkδ−l − k⊥ · (k⊥ + l⊥)δ−l − k⊥ · l⊥δk+l − l⊥ · (k⊥ + l⊥)δk

�

δ−l
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
−l + l2⊥
�2 .

The integration is the same with δ∆ f (8). As a result, we obtain

δ∆b(5) = 0 .

D.2.6 Feynman diagram BV2-6

From the vertex correction in Table 6 BV2-6, we find a renormalization factor as

δ∆b(6) = −
4g2∆ f∆b

N

∫

dd+1kdd+1l
(2π)2d+1

δ(l0)

�

δk+lδ−kδl −K · (K+ L)δl −K · Lδk+l − L · (K+ L)δ−k

�

δl
�

δ2
k+l + (K+ L)2
��

δ2
−k +K2
��

δ2
l + L2
�2�

k2
y + g2Bd

|K|d−1

|ky |

�

.

The integration is the same with δ∆ f (12). As a result, we obtain

δ∆b(6) = 0 .
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D.2.7 Feynman diagram BV2-7

From the vertex correction in Table 6 BV2-7, we find a renormalization factor as

δ∆b(7) = −
4g2∆ f∆b

N

∫

dd+1kdd+1l
(2π)2d+1

δ(l0)

�

δk+lδkδl −K · (K+ L)δl −K · Lδk+l − L · (K+ L)δk

�

δl
�

δ2
k+l + (K+ L)2
��

δ2
k +K2
��

δ2
l + L2
�2�

k2
y + g2Bd

|K|d−1

|ky |

�

.

The integration is the same with δ∆ f (11). As a result, we obtain

δ∆b(7) = 0 .

D.2.8 Feynman diagram BV2-8

From the vertex correction in Table 6 BV2-8, we find a renormalization factor as

δ∆b(8) = −4∆2
f∆b

∫

dd kdd l
(2π)2d

�

δk+lδlδ−l − l⊥ · (k⊥ + l⊥)δl − l⊥ · (k⊥ + l⊥)δ−l − l2⊥δk+l

�

δk
�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
l + l2⊥
��

δ2
−l + l2⊥
� .

Integrating over kx , we obtain

δ∆b(8) = −2∆2
f∆b

∫

dk⊥dky dd l

(2π)2d−1

(δlδ−l − l2⊥)(|k⊥ + l⊥|+ |k⊥|) + (δl + 2ky l y)(δl +δ−l)
(k⊥+l⊥)·l⊥
|k⊥+l⊥|

�

(δl + 2ky l y)2 + (|k⊥ + l⊥|+ |k⊥|)2
��

δ2
l + l2⊥
��

δ2
−l + l2⊥
� .

Integrating over ky , we get

δ∆b(8) = −
∆2

f∆b

2

∫

dk⊥dd l
(2π)2d−2

δlδ−l − l2⊥
|l y |
�

δ2
l + l2⊥
��

δ2
−l + l2⊥
� .

Integrating over lx , we have

δ∆b(8) =
∆2

f∆b

8

∫

dk⊥dl⊥dl y

(2π)2d−3

|l⊥|
|l y |
�

l4
y + l2⊥
� .

We drop this correction because it does not give a simple pole. As a result, we obtain

δ∆b(8) = 0 . (D.7)

D.2.9 Feynman diagram BV2-9

From the vertex correction in Table 6 BV2-9, we find a renormalization factor as

δ∆b(9) = −
4g2∆ f∆b

N

∫

dd+1kdd+1l
(2π)2d+1

δ(k0)

�

δk+lδlδ−l − L · (K+ L)δl − L · (K+ L)δ−l − L2δk+l

�

δk
�

δ2
k+l + (K+ L)2
��

δ2
k +K2
��

δ2
l + L2
��

δ2
−l + L2
��

l2
y + g2Bd

|L|d−1

|l y |

�
.

Integrating over kx , ky , and lx , we have

δ∆b(9) =
g2∆ f∆b

8N

∫

dk⊥dLdl y

(2π)2d−2

|L|

|l y |
�

l4
y + L2
��

l2
y + g2Bd

|L|d−1

|l y |

�
,

where the integration is the same with δ∆b(8). We may ignore the l4
y term in the fermionic

part since it would give rise to subleading terms in g. Integrating over l y , we obtain

δ∆b(9) =
g2/3∆ f∆b

12
p

3B2/3
d N

∫

dk⊥dL
(2π)2d−3

1

|L|
2d+1

3

.

We drop this correction because it does not give a simple pole. As a result, we obtain

δ∆b(9) = 0 . (D.8)
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D.2.10 Feynman diagram BV2-10

From the vertex correction in Table 6 BV2-10, we find a renormalization factor as

δ∆b(10) = −2∆2
f∆b

∫

dd kdd l
(2π)2d

�

δk+lδk + k⊥ · (k⊥ + l⊥)
�

(δlδ−l − l2⊥) + 2l2
y

�

k⊥ · l⊥δk+l − l⊥ · (k⊥ + l⊥)δk

�

�

δ2
k+l + (k⊥ + l⊥)2

��

δ2
k + k2

⊥

��

δ2
l + l2⊥
��

δ2
−l + l2⊥
� .

Integrating over kx , we get

δ∆b(10) = −∆2
f∆b

∫

dk⊥dky dd l

(2π)2d−1

1
�

(δl + 2ky l y)2 + (|k⊥ + l⊥|+ |k⊥|)2
��

δ2
l + l2⊥
��

δ2
−l + l2⊥
�

×
�

(δlδ−l − l2⊥)(|k⊥ + l⊥|+ |k⊥|)
�

1+
(k⊥ + l⊥) · k⊥
|k⊥ + l⊥||k⊥|

�

+ 2l2
y(δl + 2ky l y)|l⊥|

�

k⊥ · l⊥
|k⊥||l⊥|

+
(k⊥ + l⊥) · l⊥
|k⊥ + l⊥||l⊥|

�

�

.

Integrating over ky , we obtain

δ∆b(10) = −
∆2

f∆b

4

∫

dk⊥dd l
(2π)2d−2

δlδ−l − l2⊥
|l y |
�

δ2
l + l2⊥
��

δ2
−l + l2⊥
�

�

1+
(k⊥ + l⊥) · k⊥
|k⊥ + l⊥||k⊥|

�

.

Integrating over lx , we have

δ∆b(10) =
∆2

f∆b

8

∫

dk⊥dl⊥dl y

(2π)2d−3

|l⊥|
|l y |
�

l4
y + l2⊥
�

�

1+
(k⊥ + l⊥) · k⊥
|k⊥ + l⊥||k⊥|

�

.

We drop this correction because it would give only a double pole. As a result, we obtain

δ∆b(10) = 0 . (D.9)

D.2.11 Feynman diagram BV2-11

From the vertex correction in Table 6 BV2-11, we find a renormalization factor as

δ∆b(11) = −
2g4∆b

N2

∫

dd+1kdd+1l
(2π)2d+2

N
�

δ2
k+l + (K+ L)2
��

δ2
−k−L + (K+ L)2
��

δ2
k +K2
��

δ2
−L + L2
�D1(k)D1(l) ,

where N is given by

N = δk+lδ−k−lδkδ−l +K · L(K+ L)2 − (δk+l +δ−k−l)δ−lK · (K+ L)

− (δk+l +δ−k−l)δkL · (K+ L)−δkδ−l(K+ L)2 −δk+lδ−k−lK · L .

We may ignore ky and l y in the fermionic part since they would give rise to subleading terms
in g. Then, we have

δ∆b(11) = −
2g4∆b

N2

∫

dd+1kdd+1l
(2π)2d+2

N ′
�

(kx + lx)2 + (K+ L)2
�2�

k2
x +K2
��

l2
x + L2
�

D1(k)D1(l) ,

where N ′ is given by

N ′ = (kx + lx)
2kx lx +K · L(K+ L)2 + kx lx(K+ L)2 + (kx + lx)

2K · L .

Integrating over kx and lx , we obtain

δ∆b(11) =
g4∆b

2N2

∫

dKdky dLdl y

(2π)2d

1
|K+ L|(|K|+ |K+ L|+ |L|)

�

1−
K · L
|K||L|

�

D1(k)D1(l) .
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Integrating over ky and l y , we get

δ∆b(11) =
2g8/3∆b

27B2/3
d N2

∫

dKdL
(2π)2d−2

1

|K|
d−1

3 |L|
d−1

3 |K+ L|(|K|+ |K+ L|+ |L|)

�

1−
K · L
|K||L|

�

.

Introducing coordinates as K · L= K L cosθ and scaling K as K = Lk, we have

δ∆b(11) =
2Ω′g8/3∆b

27B2/3
d N3

∫ ∞

|P|
d LL

4d−13
3

∫ ∞

0

dkk
2d−5

3

∫ π

0

dθ sind−3 θ
1− cosθ

p
1+ k2 + 2k cosθ

�

1+ k+
p

1+ k2 + 2k cosθ
� ,

where Ω′ ≡ 4
(4π)d−1

p
πΓ ( d−1

2 )Γ (
d−2

2 )
. We find an ε pole from the L integral as

∫∞
|P| d LL

4d−13
3 = 3

4ε +O(1). The remaining integral is numerically done as

∫ ∞

0

dkk
2d−5

3

∫ π

0

dθ sind−3 θ
1− cosθ

p
1+ k2 + 2k cosθ

�

1+ k+
p

1+ k2 + 2k cosθ
� =
p
π Γ ( d−2

2 )

Γ ( d−1
2 )

(2.264) .

As a result, we obtain

δ∆b(11) = (13.58)∆b
g̃2

ε
. (D.10)

D.2.12 Feynman diagram BV2-12

From the vertex correction in Table 6 BV2-12, we find a renormalization factor as

δ∆b(12) = −4∆2
f∆b

∫

dd kdd l
(2π)2d

�

δkδk+l − k⊥ · (k⊥ + l⊥)
�

(δlδ−l − l2⊥)− 2l2
y

�

δkl⊥ · (k⊥ + l⊥) +δk+lk⊥ · l⊥
�

�

δ2
k + k2

⊥

��

δ2
k+l + (k⊥ + l⊥)2

��

δ2
l + l2⊥
��

δ2
−l + l2⊥
� .

Integrating over kx , we obtain

δ∆b(12) = −
2∆2

f∆b

N3

∫

dk⊥dky dd l

(2π)2d−1

1
�

(δl + 2ky l y)2 + (|k⊥ + l⊥|+ |k⊥|)2
��

δ2
l + l2⊥
��

δ2
−l + l2⊥
�

×
�

(δlδ−l − l2⊥)(|k⊥ + l⊥|+ |k⊥|)
�

1−
(k⊥ + l⊥) · k⊥
|k⊥ + l⊥||k⊥|

�

+ 2l2
y(δl + 2ky l y)|l⊥|

�

−
k⊥ · l⊥
|k⊥||l⊥|

+
(k⊥ + l⊥) · l⊥
|k⊥ + l⊥||l⊥|

�

�

.

Integrating over ky , we have

δ∆b(12) = −
∆2

f∆b

2

∫

dk⊥dd l
(2π)2d−2

δlδ−l − l2⊥
|l y |
�

δ2
l + l2⊥
��

δ2
−l + l2⊥
�

�

1−
(k⊥ + l⊥) · k⊥
|k⊥ + l⊥||k⊥|

�

.

Integrating over lx , we get

δ∆b(12) =
∆2

f∆b

4

∫

dk⊥dl⊥dl y

(2π)2d−3

|l⊥|
|l y |
�

l4
y + l2⊥
�

�

1−
(k⊥ + l⊥) · k⊥
|k⊥ + l⊥||k⊥|

�

.

We drop this correction because it would give only a double pole. As a result, we obtain

δ∆b(12) = 0 . (D.11)

D.2.13 Feynman diagram BV2-13

From the vertex correction in Table 6 BV2-13, we find a renormalization factor as

δ∆b(13) = −4∆ f∆
2
b

∫

dd kdd l
(2π)2d

�

δkδk+l − k⊥ · (k⊥ + l⊥)
�

(δlδ−l − l2⊥)− 2l2
y

�

δkl⊥ · (k⊥ + l⊥) +δk+lk⊥ · l⊥
�

�

δ2
k + k2

⊥

��

δ2
k+l + (k⊥ + l⊥)2

��

δ2
l + l2⊥
��

δ2
−l + l2⊥
� .

The integration is the same with δ∆b(12). As a result, we obtain

δ∆b(13) = 0 .
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D.2.14 Feynman diagram BV2-14

From the vertex correction in Table 6 BV2-14, we find a renormalization factor as

δ∆b(14) = −
4g2∆ f∆b

N

∫

dd+1kdd+1l
(2π)2d+1

δ(k0)

�

δkδk+l −K · (K+ L)
�

(δlδ−l − L2)− 2l2
y

�

δkL · (K+ L) +δk+lK · L
�

�

δ2
k +K2
��

δ2
k+l + (K+ L)2
��

δ2
l + L2
��

δ2
−l + L2
��

k2
y + g2Bd

|K|d−1

|ky |

�
.

Integrating over kx , we have

δ∆b(14) = −
2g2∆ f∆b

N

∫

dkdky dd+1l

(2π)2d
δ(l0)

1
�

δ2
l + (|K+ L|+ |K|)2

��

δ2
l + L2
��

δ2
−l + L2
��

k2
y + g2Bd

|K|d−1

|ky |

�

×
�

(δlδ−l − L2)(|K+ L|+ |K|)
�

1−
(K+ L) ·K
|K+ L||K|

�

+ 2l2
yδl|L|
�

−
K · L
|K||L|

+
(K+ L) · L
|K+ L||L|

�

�

,

where we have neglected the ky l y term since it would give rise to subleading terms in g.
Integrating over lx , l y and ky , we obtain

δ∆b(14) =
g4/3∆ f∆b

6
p

3B1/3
d N

∫

dKdL
(2π)2d−3

δ(l0)
|k|(d−1)/3

� p
2

(|K|+ |K+ L|+ |L|)
p

|L|

�

1−
(K+ L) ·K
|K+ L||K|

�

−
p

|K|+ |K+ L|+ |L| −
p

2|L|
(|K|+ |K+ L|)2 − |L|2

�

1−
(K+ L) ·K
|K+ L||K|

−
K · L
|K||L|

+
(K+ L) · L
|K+ L||L|

�

�

.

Introducing coordinates as K · L = K L cosθ and scaling variables as L = Kl and k0 = Kk, we
have

δ∆b(14) =
Ωg4/3∆ f∆b

6π
p

3B1/3
d N

∫ ∞

p0

dKK
10d−31

6

∫ ∞

0

dlld−3

∫ ∞

0

dk

(1+ k2)
d−1

6

∫ π

0

dθ sind−4 θ

×
� p

2
p

l(
p

1+ k2 + l +η)

�

1−
1+ k2 + l cosθ
p

1+ k2η

�

−
(
p

1+ k2 + l +η)1/2 −
p

2l

(
p

1+ k2 +η)2 − l2

�

1−
cosθ
p

1+ k2

��

1+
l −
p

1+ k2

η

�

�

,

where η =
p

1+ k2 + l2 + 2l cosθ . We find an ε pole from the L integral as
∫∞

p0
d LL

10d−31
6 = 3

5ε +O(1). The remaining integral are done numerically as

∫ ∞

0

dlld−3

∫ ∞

0

dk

(1+ k2)
d−1

6

∫ π

0

dθ sind−4 θ

� p
2

p
l(
p

1+ k2 + l +η)

�

1−
1+ k2 + l cosθ
p

1+ k2η

�

−
(
p

1+ k2 + l +η)1/2 −
p

2l

(
p

1+ k2 +η)2 − l2

�

1−
cosθ
p

1+ k2

��

1+
l −
p

1+ k2

η

�

�

= (0.6926)
p
πΓ ( d−3

2 )

Γ ( d−2
2 )

.

As a result, we obtain

δ∆b(14) = (1.408)∆b
∆̃ f g̃

ε
.

D.2.15 Feynman diagram BV2-15

From the vertex correction in Table 6 BV2-15, we find a renormalization factor as

δ∆b(15) = −
4g2∆ f∆b

N

∫

dd+1kdd+1l
(2π)2d+1

δ(k0)

�

δkδk+l −K · (K+ L)
�

(δlδ−l − L2)− 2l2
y

�

δkL · (K+ L) +δk+lK · L
�

�

δ2
k +K2
��

δ2
k+l + (K+ L)2
��

δ2
l + L2
��

δ2
−l + L2
��

l2
y + g2Bd

|L|d−1

|l y |

�
.

Integrating over kx , ky and lx , we get

δ∆b(15) =
g2∆ f∆b

4N

∫

dKdLdl y

(2π)2d−2
δ(k0)

|L|

|l y |
�

l4
y + L2
��

l2
y + g2Bd

|L|d−1

|l y |

�

�

1−
(K+ L) ·K
|K+ L||K|

�

,
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where the integration is the same with δ∆b(12). We may neglect the l4
y term since it would

give rise to subleading terms in g. Integrating over l y , we have

δ∆b(15) =
g2/3∆ f∆b

6
p

3B2/3
d N

∫

dKdL
(2π)2d−3

δ(k0)

|L|
2d+1

3

�

1−
(K+ L) ·K
|K+ L||K|

�

.

Introducing coordinates as K · L = K L cosθ and scaling variables as K = Lk and l0 = Ll, we
obtain

δ∆b(15) =
Ωg2/3∆ f∆b

6π
p

3B2/3
d N

∫ ∞

|P|
d LL

4d−13
3

∫ ∞

0

dkkd−3

∫ ∞

0

dl

∫ π

0

dθ sind−4 θ
1

(1+ l2)
2d+1

6

�

1−
k+ cosθ

p
1+ k2 + l2 + 2k cosθ

�

.

We find an ε pole from the L integral as
∫∞
|P| d LL

4d−13
3 = 3

4ε +O(1). The remaining integral
can be done numerically as
∫ ∞

0

dkkd−3

∫ ∞

0

dl

∫ π

0

dθ sind−4 θ
1

(1+ l2)
2d+1

6

�

1−
k+ cosθ

p
1+ k2 + l2 + 2k cosθ

�

= (4.935)
p
πΓ ( d−3

2 )

Γ ( d−2
2 )

.

As a result, we obtain

δ∆b(15) = (8.323)∆b
∆̃ f
p

g̃
p

Nε
. (D.12)

D.2.16 Feynman diagram BV2-16

From the vertex correction in Table 6 BV2-16, we find a renormalization factor as

δ∆b(16) = −
4g2∆2

b

N

∫

dd+1kdd+1l
(2π)2d+1

δ(k0)

�

δkδk+l −K · (K+ L)
�

(δlδ−l − L2)− 2l2
y

�

δkL · (K+ L) +δk+lK · L
�

�

δ2
k +K2
��

δ2
k+l + (K+ L)2
��

δ2
l + L2
��

δ2
−l + L2
��

l2
y + g2Bd

|L|d−1

|l y |

�
.

The integration is the same with δ∆b(15). As a result, we obtain

δ∆b(16) = 0 .

D.2.17 Feynman diagram BV2-17

From the vertex correction in Table 6 BV2-17, we find a renormalization factor as

δ∆b(17) = −
4g4∆b

N2

∫

dd+1kdd+1l
(2π)2d+2

�

δkδk+l −K · (K+ L)
�

(δlδ−l − L2)− 2l2
y

�

δkL · (K+ L) +δk+lK · L
�

�

δ2
k +K2
��

δ2
k+l + (K+ L)2
��

δ2
l + L2
��

δ2
−l + L2
� D1(k)D1(l) .

We may ignore ky and l y in the fermionic part since they would give subleading terms in g.
Then, we have

δ∆b(17) =
4g4∆b

N2

∫

dd+1kdd+1l
(2π)2d+2

kx(kx + lx)−K · (K+ L)
�

k2
x +K2
��

(kx + lx)2 + (K+ L)2
��

l2
x + L2
�D1(k)D1(l) .

Integrating over kx and lx , we get

δ∆b(17) =
g4∆b

N2

∫

dKdkyLdl y

(2π)2d

1
|L|(|K|+ |K+ L|+ |L|)

�

1−
(K+ L) ·K
|K+K||K|

�

D1(k)D1(l) .

Integrating over ky and l y , we obtain

δ∆b(17) =
4g8/3∆b

27B2/3
d N2

∫

dkdl
(2π)2d−2

1

|K|
d−1

3 |L|
d+2

3 (|K|+ |K+ L|+ |L|)

�

1−
(K+ L) ·K
|K+ L||K|

�

.

65

https://scipost.org
https://scipost.org/SciPostPhys.17.2.059


SciPost Phys. 17, 059 (2024)

Introducing coordinates as K · L= K L cosθ and scaling variables as K = Lk, we have

δ∆b(17) =
4Ω′g8/3∆b

27B2/3
d N2

∫ ∞

|P|
d LL

4d−13
3

∫ ∞

0

dkk
2d−5

3

∫ π

0

dθ sind−3 θ
1

1+ k+
p

1+ k2 + 2k cosθ

�

1−
k+ cosθ

p
1+ k2 + 2k cosθ

�

.

We find an ε pole from the L integral as
∫∞
|P| d LL

4d−13
3 = 3

4ε +O(1). The remaining integral
are done numerically as

∫ ∞

0

dkk
2d−5

3

∫ π

0

dθ sind−3 θ
1

1+ k+
p

1+ k2 + 2k cosθ

�

1−
k+ cosθ

p
1+ k2 + 2k cosθ

�

=
p
π Γ ( d−2

2 )

Γ ( d−1
2 )

(0.4213) .

The remaining integration is the same with δ∆b(11). As a result, we obtain

δ∆b(17) = (5.056)∆b
g̃2

ε
. (D.13)

E Derivation of critical exponents

E.1 Critical exponents for fermion and boson fields

Here, we derive the Callan-Symanzik equations and define the critical exponents for the cor-
relation functions. We first consider the following correlation function:

G(m,n)({ki},F)≡



Ψ̄(k1) · · ·Ψ(km)Φ(km+1) · · ·
�

, (E.1)

where F= ( g̃, ∆̃ f , ∆̃b). In a renormalized theory, the correlation function is expressed as

G(m,n)
ren. ({ki,r},µ,Fr) = µ

−[G]Z−m/2
Ψ Z−n/2

Φ G(m,n)
bare ({ki},F) , (E.2)

where G(m,n)
ren. ({ki,r},µ,Fr) and G(m,n)

bare ({ki},F) represent the renormalized and bare correlation
functions, respectively. Here, {ki,r} are scaled momenta, Fr are renormalized coupling con-

stants, and [G] = m[Ψ] + n[Φ] + z + z̄(d − 2) + 3
2 . Using the fact

dG(m,n)
bare

dµ = 0, we obtain the

following Callan-Symanzik equation for G(m,n)
ren. ({ki,r},µ,Fr):

�

∑

i

ki ·∇ki
− βF · ∇F −m
�

[Ψ] + γ
Ψ

�

− n
�

[Φ] + γ
Φ

�

− Dsc

�

G(m,n)
ren. ({ki},µ,F) = 0 , (E.3)

where the derivative expressions are defined as k ·∇k ≡ zk0
∂
∂ k0
+ z̄k⊥ ·∇k⊥ + δk

∂
∂ δk

and

∇F ≡ (
2
3
∂
∂ g̃ , ∂

∂ ∆̃ f
, ∂
∂ ∆̃b
), and the beta function is written in the vector form as βF ≡ (β g̃ ,β∆̃ f

,β∆̃b
),

and Dsc = z+ z̄(d−2)+ 3
2 . The critical exponents in the Callan-Symanzik equations are defined

as

z = 1+
∂ ln(Z0/Z2)
∂ lnµ

,

z̄ = 1+
∂ ln(Z1/Z2)
∂ lnµ

,

γ
Ψ
=
∂ ln Z2

∂ lnµ
,

γ
Φ
=
∂ ln Z3

∂ lnµ
, (E.4)
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where Z0,1,2,3 are the renormalization factors that relate the bare and scaled momenta as

k0,r = µ
Z0

Z2
k0 , k⊥,r = µ

Z1

Z2
k⊥ , kx ,r = µkx , ky,r = µ

1
2 ky . (E.5)

We next consider another type of correlation function given by

G(m,n)({ki}, {γµ( j)},F)≡



Ψ̄(k1)γµ(1)Ψ(k2) · · · Ψ̄(km−1)γµ(l)Ψ(km)φ(km+1) · · ·
�

, (E.6)

where γµ( j) represent the gamma matrices for the corresponding coupling constants, i.e. γd−1

for g̃ and ∆̃ f or the identity matrix I2 for ∆̃b. With a similar consideration for G(m,n)({ki},F),
we obtain the Callan-Symanzik equation for G(m,n)({ki}, {γµ( j)},F) as

�

∑

i

ki ·∇ki
−βF ·∇F−m
�

[Ψ]+γ
Ψ

�

−n
�

[Φ]+γ
Φ

�

−Dsc+
l
∑

j=1

γver
µ( j)

�

G(n,m)({ki}, {γµ( j)},µ,F) = 0 .

(E.7)
Here, γver

µ( j) Z0,1,2,3 are the anomalous dimension of the coupling constants are defined as

γg =
∂ ln Zg

∂ lnµ
,

γ∆ f
=
∂ ln Z∆ f

∂ lnµ
,

γ∆b
=
∂ ln Z∆ f

∂ lnµ
, (E.8)

where Zg , Z∆b
, and Z∆ f

are the renormalization factors that relate the bare and renormalized
coupling constants as

Zg g = µ−
ε
2 (Z0/Z2)

1
2 (Z1/Z2)

d−2
2 Z2Z

1
2

3 g0 ,

Z∆ f
∆ f = µ

−ε(Z1/Z2)
d−2Z2

2∆ f ,0 ,

Z∆b
∆b = µ

−ε(Z1/Z2)
d−2Z2

2∆b,0 . (E.9)

We finally compute the critical exponents for the correlation functions, which are defined
in Eqs. (E.4) and (E.8), which are given in Eqs. (17) and (18) in the main text. We note that
in the epsilon expansion the renormalization factors are given in the following forms:

Z0 = 1+
A0

ε
+O
�

1
ε2

�

,

Z1 = 1+
A1

ε
+O
�

1
ε2

�

,

Z2 = 1+
A2

ε
+O
�

1
ε2

�

,

Z3 = 1+
A3

ε
+O
�

1
ε2

�

,

Zg = 1+
A0

ε
+O
�

1
ε2

�

,

Z
∆ f
= 1+

A
∆ f

ε
+O
�

1
ε2

�

,

Z
∆b
= 1+

A
∆b

ε
+O
�

1
ε2

�

. (E.10)
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Inserting Eq. (E.10) into Eqs. (E.4) and (E.8) solving the resulting equations order by order in
ε, we obtain the following expressions:

z̄ =
�

1+ F · ∇F(A1 − A2)
�−1

,

z = z̄
�

1− F · ∇F(A0 − A1)
�

,

γ
Ψ
= −

1
2

z̄F · ∇FA2 ,

γ
Φ
= −

1
2

z̄F · ∇FA3 ,

γg = −z̄F · ∇FAg ,

γ
∆ f
= −z̄F · ∇FA∆ f

,

γ
∆b
= −z̄F · ∇FA∆b

. (E.11)

To obtain Eq. (E.11), we should note that the coupling constants have the µ-factors in front
of them as µ

2
3ε g̃, µ

2
3ε∆̃ f , and µε∆̃b, which we have ignored in the loop correction compu-

tations, for simplicity. To find A0, A1, A2, A3, Ag , A∆ f
, and A∆b

, we gather all corresponding
contributions from Sec. A, C, B, and D. As a result, we obtain

A0 = − g̃ − ∆̃ f − ∆̃ f − 0.54 g̃2 − 0.45∆̃ f

√

√ g̃
N
− 0.45∆̃b

√

√ g̃
N

,

A1 = − g̃ − 0.54 g̃2 − 16∆̃ f

√

√ g̃
N
− 16∆̃b

√

√ g̃
N

,

A2 = −0.5∆̃ f − 0.5∆̃ f − 0.11 g̃2 ,

A∆ f
= −∆̃ f − ∆̃b − 0.75

∆̃2
b

∆̃ f
− 0.23 g̃2 + 2.1 g̃∆̃ f − 4.2∆̃ f

√

√ g̃
N
− 4.2

∆̃2
b

∆̃ f

√

√ g̃
N

,

A∆b
= 6 g̃ + 0.14∆̃ f + 18 g̃2 + 1.4 g̃∆̃ f + 8.3∆̃b

√

√ g̃
N

, (E.12)

where Ag = A2 and A3 = 0. Inserting Eq. (E.12) into Eq. (E.11), we obtain the critical expo-
nents in Eqs. (17) and (18) in the main text.

E.2 Critical exponents for thermodynamic quantities

Here, we explicitly compute the critical exponents for thermodynamic quantities, which are
given in Eq. (37) in the main text with a heuristic argument. We start with the order parameter
m for the Ising-nematic order, which is defined as,

m≡ −
∂ f
∂ h

�

�

�

�

h→0
= 〈Φ(x) + N(x)〉= m(1) +m(2) , (E.13)

where m(1) and m(2) represent the fermion and boson contribution given as

m(1) = 〈φ(x)〉 ,

m(2) = 〈 j(x)〉=
∫

dDk
(2π)D

tr[γd−1G(k)] . (E.14)

By solving the Callan-Symanzik equation for m(1), which is given by
�

µ∂µ + βF · ∇F +
1
2
(D− 1+ γ

Φ
)
�

m(1) = 0 , (E.15)
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we obtain the scaling behavior of m(1) as

m(1) ∼ µ−
1
2 (D−1+γ

Φ
) ∼ (−r)

ν
2 (D−1+γ

Φ
) . (E.16)

To find the scaling behavior of m(2), we consider the Callan-Symanzik equations for a fermion
Green’s function G(k) =




Ψ(k)Ψ̄(k)
�

, which is given by

�

k · ∇k − βF · ∇F + 1− γ
Ψ

�

G(k,µ,F) = 0 . (E.17)

The solution is represented as

G(k,µ,F) =
1

µγΨ |δk|1−γΨ
g(k0/|δk|z) . (E.18)

Using this expression, we find the scaling behavior of m(2) as

m(2) ∼
∫

dDk
(2π)D

1

|δk|1−γΨ
g
�

k0

|δk|z
,

r
|δk|1/ν

�

∼ (−r)ν(D−1+γ
Ψ
) . (E.19)

Using the values of D = 5/2, γ
Φ
= 0, and γ

Ψ
= 0.24 at the DNFL fixed point, we obtain

m(1) ∼ (−r)ν , m(2) ∼ (−r)1.97ν . (E.20)

We note that the bosonic contribution m(1) is much larger than the fermionic contribution m(2)

near the critical point r ≈ 0. This observation justifies ignoring the coupling of the external
field with fermionic excitations.

We next compute the susceptibility for Ising-nematic order parameter, which is defined as

χ ≡
∂ 2 f
∂ h2

�

�

�

�

h→0
=

∫

dD x 〈Φ(x)Φ(0) + N(x)N(0)〉= χ(1) +χ(2) , (E.21)

where χ(1) and χ(2) represent the fermion and boson contribution given as

χ(1) =

∫

dD x 〈φ(x)φ(0)〉= lim
k→0

D(k) ,

χ(2) =

∫

dD x 〈 j(x) j(0)〉=
∫

dDk
(2π)D

〈 j(k) j(−k)〉 . (E.22)

To find the scaling behavior of χ(1), we consider the Callan-Symanzik equations for a boson
Green’s function D(k) = 〈φ(k)φ(−k)〉, which is given by

�

k · ∇k − βF · ∇F + 1− γ
Φ

�

D(k,µ,F) = 0 . (E.23)

The solution is represented as

D(k,µ,F) =
1

µγΦ |ky |2(1−γΦ )
d(k0/|ky |2z) . (E.24)

Using this expression, we find the scaling behavior of χ(1) as

χ(1) = lim
k→0

1

|ky |2(1−γΦ )
d
�

k0

|ky |2z
,

r
|ky |2/ν

�

∼ |r|−ν(1−γΦ ) . (E.25)
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To find the scaling behavior of χ(2), we consider the Callan-Symanzik equations for the corre-
lation function G(2)(k) = 〈 j(k) j(−k)〉, which is given by

�

k · ∇k − βF · ∇F + 2+ γms
∆ f

�

G(2)(k) = 0 , (E.26)

where γms
∆ f
= γ

∆ f
− 2γ

Ψ
. The solution is represented as

G(2)(k) =
1

|δk|
2+γms

∆ f

g(2)
�

k0

|δk|z
,

r
|δk|1/ν

�

. (E.27)

Using this expression, we find the scaling behavior of χ(2) as

χ(2) =

∫

dDk
(2π)D

1

|δk|
2+γms

∆ f

g(2)
�

k0

|δk|z
,

r
|δk|1/ν

�

∼ |r|
ν(D−2−γms

∆ f
)
. (E.28)

Using the value of γms
∆ f
= −0.50 at the DNFL fixed point, we find

χ(1) ∼ |r|−ν , χ(2) ∼ |r|ν . (E.29)

We note that the bosonic contribution χ(1) is again much larger than the fermionic contribution
χ(2) near the critical point r ≈ 0. This observation again justifies ignoring the coupling of the
external field with fermionic excitations.

F Ward identity

The effective field theory of Eq. (4) has a U(1) symmetry, given by Ψ j(k)→ eiθvΨ j(k). Asso-
ciated with this symmetry, we derive the Schwinger-Dyson equation for 〈ψ(x)ψ̄(0)〉 and find
the following identity

Γd−1(p, 0) =
∂ G−1(p)
∂ px

, (F.1)

where Γd−1(p+q, q) is the irreducible vertex function resulting from 〈 jd−1(x ′)ψ(x)ψ̄(0)〉, and
G(p) is the fully renormalized fermion propagator. jd−1 ≡ ψ̄γd−1ψ is the conserved current
related to the U(1) symmetry in the (d − 1) direction. The Ward identity of Eq. (F.1) implies
that the vertex function for γd−1 and the fermion kinetic energy should be renormalized at
the same rate. For the fermion-boson Yukawa coupling, where bosons are coupled to jd−1
conserved currents, this equation implies the following relation

γg = 2γψ , (F.2)

which should be preserved in all loop corrections.
There is a similar identity for forward disorder scattering. To figure it out, we define

γss
∆ f
≡ γ

∆ f
−γms

∆ f
, where γss

∆ f
(γms
∆ f

) is the anomalous dimension involved with a single (multiple)

scattering process. For example, in Table 3, the Feynman diagrams labeled as “FV1-3", “FV1-
5", and “FV1-6" fall into the single scattering process while those labeled as “FV1-1", “FV1-2" ,
and “FV1-4" fall into the multiple scattering process. Only γss

∆ f
is subject to the Ward identity

because the forward scattering acts effectively as a vertex function for γd−1 only in the single
scattering process. Then, the Ward identity in Eq. (F.1) implies another relation,

γss
∆ f
= 4γψ , (F.3)

which should be preserved in all loop corrections.
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