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Abstract

We propose a theory, that we call the mode-shell correspondence, which relates the topo-
logical zero-modes localised in phase space to a shell invariant defined on the surface
forming a shell enclosing these zero-modes. We show that the mode-shell formalism
provides a general framework unifying important results of topological physics, such as
the bulk-edge correspondence, higher-order topological insulators, but also the Atiyah-
Singer and the Callias index theories. In this paper, we discuss the already rich phe-
nomenology of chiral symmetric Hamiltonians where the topological quantity is the chi-
ral number of zero-dimensional zero-energy modes. We explain how, in a lot of cases,
the shell-invariant has a semi-classical limit expressed as a generalised winding number
on the shell, which makes it accessible to analytical computations.
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1 Introduction

The bulk-edge (or bulk-boundary) correspondence is a fundamental concept in topological
physics. Very elegantly, it relates the number of robust gapless boundary modes of a physical
system with a topological invariant defined from the bulk wavefunctions in reciprocal space of
energy gapped materials. For that reason, such boundary states are said to be topological, or
topologically protected. The bulk-edge correspondence was first explicitly introduced in the
context of the quantum Hall effect [1] in order to clarify two interpretations of the quantised
transverse conductance [2, 3]: a bulk interpretation, where the transverse conductivity of an
infinite quantum Hall system was theoretically shown to be proportional to a topological index
of the Bloch bands [4], and an edge interpretation where uni-directional edge states were
expected to exist as bended Landau levels due to edge confinement [5] and were shown to
carry electric charges without dissipation along the boundaries in multi-probe (experimental)
geometries [6,7].

Remarkably, the bulk-edge correspondence turned out to be the key concept that allowed
the rise of topological physics beyond quantum matter. As initiated with photonic crystals
[8–10], it was realized that the validity of the bulk-edge correspondence was much less de-
manding than the quantisation of a response function of the physical system, such as a con-
ductivity. It followed that many experimental platforms, quantum and classical, emerged with
the aim of engineering, probing and manipulating robust boundary modes, for instance, for
robust wave guiding [11] or quantum computing [12, 13]. Another success of the bulk-edge
correspondence is its validity in any dimension. For instance, the observation, through ARPES
measurements, of topologically protected surface states behaving as two-dimensional (2D)
massless Dirac fermions, was a convincing experimental proof of the existence of 3D topo-
logical insulators [14], while no equivalent of a quantised bulk conductivity was available
as an alternative signature. Actually, this success of the bulk-boundary correspondence was
twofold, because those 3D topological insulators also belonged to a different symmetry class
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than that of the quantum Hall effect it was originally conceived. The correspondence still
holds in other symmetry classes and in arbitrary dimension [15–18], but the bulk topological
invariant changes and accordingly, the nature of the boundary modes it describes: massless
Dirac fermions as 2D surface states of 3D topological insulators [14,19], helical Kramers pairs
as 1D edge states of the 2D quantum spin Hall effect [20–22], Majorana quasi-particles as 0D
boundary modes of 1D topological superconducting wires [13], are among the most famous
examples.

Since then, the bulk-edge correspondence has been challenged several times, and had to
adapt to incorporate new phenomenologies that did not fit the standard paradigm. One im-
portant development of the last years was the discovery of higher order topological insulators,
that display a richer hierarchy of boundary modes that are not predicted by the usual bulk-
boundary correspondence. In 3D, such materials can host hinge states or corner states rather
than surface states [23–25]. Another recent fruitful direction is the study of topological modes
in continuous media, mostly motivated by classical wave physics, such as geo- and astrophysi-
cal fluids [26–29], active fluids [30], plasmas [27] but also photonics [31,32]. Of interest was
the apparent failure of the bulk-edge correspondence in the absence of a lattice – and thus
of a compact reciprocal space – that stimulated several extension works [33–40]. One way
to address the problem is to focus on domain-walls made of smooth varying potentials rather
than hard wall boundaries. This fruitful approach allows the description of interface modes, at
the domain wall, whose topological origin is encoded in phase space rather than in reciprocal
space, leading to what we could call a “phase space - interface/domain wall” correspondence.
Similarly to the topological characterization of Weyl nodes in 3D, such a phase space approach
also allows for counting topological modes of 2D systems in a specific valley, as encountered
in various valley-Hall effects or in fluids, by assigning them directly an integer-valued topo-
logical invariant [35, 41–43], without needing to resort to valley Chern numbers (that are
purely defined in k-space) that typically involve half-integer numbers [44–47]. Interestingly,
the combined use of real and reciprocal space is also used to characterize the topology of defect
modes in insulators and superconductors, which constitutes another important generalization
of the bulk-boundary correspondence [48]. A last stimulating development of the bulk-edge
correspondence we would like to mention concerns non-Hermitian systems. This field of re-
search can somehow be traced back to the finding of topological edge states in periodically
driven (Floquet) systems [49–52], quantum walks [53,54], and scattering networks [55,56],
whose full description is ruled by unitary operators, such as evolution operators or scatter-
ing matrices, rather than usual Hermitian Hamiltonians [50, 57]. In that context, the stan-
dard bulk-edge correspondence was also found to fail, but suitable generalizations, with new
topological invariants that account for the periodic dynamics, were then found out in various
symmetry classes [50, 51, 58, 59]. Since more recently, non-Hermitian topology rather more
implicitly designates classical or quantum systems whose dynamics displays topological prop-
erties that are dictated by non-unitary evolutions, whether because of different sources of gain
or loss [60–83].

These numerous upheavals and challenges have continually refined the bulk-edge corre-
spondence’s contours in order to preserve this powerful concept. This evolution goes together
with the difficulty to provide a general formalism encompassing such a rich phenomenology,
while being also both based on sound mathematics and of practical convenience for most physi-
cists. Many proofs of bulk-edge correspondences exist in the literature [2, 3, 38–40, 84–89].
Some of them are based on basic reasonings and elementary math accessible to undergradu-
ates students, but tackle only very specific examples. Other much more advanced proofs gain
in generality but their abstraction prevents the development of a physical intuition. Of course,
the seek for rigor and generality stimulated many mathematical works, besides physics studies;
nothing more legitimate from a field sometimes designated as topological physics, and that bor-
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rows so explicitly from mathematics. Actually, back to the seventies, a series of mathematical
works revealed a somehow similar phenomenology. Of particular importance is the Callias in-
dex theory [90–92] that implies, in our language, that certain operators defined on continuous
infinite (unbounded) spaces, like Rn, exhibit topological modes, similarly to aforementioned
interface states in continuous systems. This theory is itself an extension of the seminal Atiyah-
Singer index theory [93–96] that applies for continuous but compact/bounded spaces, such
as a circle or a torus. Obviously, and in contrast with the bulk-edge correspondence, in such
situations, the topological modes cannot be edge states owing to the absence of boundary in
the system.

The purpose of this article is to shape a theory that generalizes the bulk-edge correspon-
dence in all the possible directions mentioned above. Such a theory must apply to any dimen-
sion, account for discrete and continuous spaces, be independent of translation invariance,
describe both boundary and interface states, as well as higher order hinge or corner states.
It should also capture topological modes which are not purely localized in space, but instead
live in a delimited region of reciprocal space, such as a valley. We call this theory the mode-
shell correspondence. Similarly to index theories, the mode-shell correspondence states the
equality between two integer-valued indices Imodes = Ishell. The first index gives the number
of modes (e.g. edge states) in a certain energy region, while the second one is an invariant
defined an a shell surrounding this mode in phase space (x , k) ∈ R2n where the Hamiltonian
(or more generically the wave operator) is assumed to be gapped. This general and basic
equality is the first brick of the theory. If the two indices can in principle always be computed
numerically, it is illusory to expect them to be computable analytically in general. One may
however hope to have a simpler formulation in systems with some structure. This brings us to
the second step of the theory, which consists in a semiclassical approximation [97] of the shell
invariant Ishell. When such an approximation is possible, Ishell can be expressed as an integral
over the shell. In that limit, one recovers well-known expressions of so-called bulk topological
invariants, such as winding numbers and Chern numbers, but also of less standard invariants
which are nonetheless physically relevant.

In order to keep the presentation intelligible and the article length reasonable, we shall
focus in this paper on Hermitian wave operators with chiral symmetry. More specifically, we
shall even only focus on zero-dimensional zero-energy modes, simply dubbed zero-modes in the
following. Such modes are usually associated to the edge states of 1D systems in the AIII sym-
metry class of the tenfold way classification of topological insulators and superconductors [15].
The zero-dimensional denomination means that those modes are localized in ”every” direction
(with a finite short extension). Here, our aim is not to provide another derivation of the tenfold
way, but rather to extract the many topological aspects of this single and apparently simple
case, through the mode-shell correspondence. Indeed, while those zero-modes are captured
by a single mode index Imodes, the semiclassical expression of Ishell it is equal to changes, de-
pending on the configuration at hand (lattice problem, domain wall, higher-order topological
insulator...). This way, the mode-shell theory generates the ”bulk” invariants in a systematic
way. In this paper, we provide an explicit derivation of the mode-shell correspondence in the
chiral case for zero-modes, and illustrate it with several explicit models.

The outline of the paper is as follows. In section 2, we present a non technical overview
of the mode-shell correspondence. In particular, we introduce the mode invariant Imode for
chiral symmetric systems, and show how it is related to the shell invariant Ishell. We intro-
duce the notion of the symbol Hamiltonian H(x , k) that is a phase space representation of
the operator Hamiltonian Ĥ(x ,∂x) through a Wigner-Weyl transform. We discuss the semi-
classical approximation that simplifies the shell invariant into a general winding number for
arbitrary dimensional systems. Section 3 is dedicated specifically to 1D systems. The mode-
shell correspondence is then derived and illustrated on models for 1D lattices, continuous
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Figure 1: Examples of chiral lattices in a) 1D, b) and c) 2D and d) 3D. The example
c) illustrates a disordered (amorphous) lattice which is still chiral symmetric. The
red/blue dots represent the sites of opposite chirality and the grey links represent the
different couplings between those sites. All these lattices can host topological modes
for well-chosen Hamiltonians.

bounded and continuous unbounded geometries. From there, we show that the mode-shell
correspondence includes the bulk-edge and “phase space -interface/domain wall” correspon-
dences, where zero-energy modes are localized in position x-space at a boundary or an in-
terface, but it also describes a dual situation where the topological modes are localized in
wavenumber k-space, and even an hybrid situation with a confinement in x − k phase space.
Section 4 is devoted to higher dimensional chiral symmetric systems hosting zero-modes whose
topological origin can eventually be reduced to that of the chiral zero-dimensional zero-energy
modes described in section 3. Those cases include (but are not restricted to) weak and higher
order chiral topological insulators.

Other higher dimensional chiral symmetric topological systems are expected from the ten-
fold way classification [15], such as strong chiral topological insulators in 3D. Those are not
discussed in the present paper, but will be treated in the Part II of this work, where the mode-
shell correspondence will be applied to address higher dimensional topologically protected
modes, such as 1D spectral flows of quantum Hall systems, 2D Dirac and 3D Weyl fermions.

2 Overview of the mode-shell correspondence for chiral
symmetric systems

The aim of this section is to introduce, in a non technical way, the mode-shell correspondence
by focusing on the zero-dimensional zero-energy modes of chiral symmetric systems.

2.1 Chiral symmetry and chiral index

In this section, we introduce an index, denoted by Imodes, that counts the number of chiral zero-
energy modes. This index can be used when the Hamiltonian Ĥ has a chiral symmetry, that is,
when there exists a unitary operator Ĉ satisfying the anti-commutation relation Ĥ Ĉ+ Ĉ Ĥ = 0.
This symmetry typically appears when the system is bi-partied in two groups of degrees of
freedom A and B, such that the Hamiltonian only couples A and B. These two groups can,
for example, be two groups of atoms that interact in a lattice through a nearest neighbor
interaction (see Figure 1).
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Chiral symmetry is given by a diagonal operator in the A− B block basis, with coefficients
+1 on A and −1 on B, that is

Ĉ =

�

1A 0
0 −1B

�

, (1)

where 1 denotes the identity operator. We shall call such a basis the chiral basis in the fol-
lowing. The chirality of a mode |ψ〉 then refers to the eigenvalues of the chiral operator; it is
+1 for the modes |ψ〉 satisfying Ĉ |ψ〉 = |ψ〉 and −1 for those satisfying Ĉ |ψ〉 = −|ψ〉. The
chirality is a signature of the polarisation of the modes on the A or B degrees of freedom. In
the chiral basis, the Hamiltonian is off-diagonal

Ĥ =

�

0 ĥ†

ĥ 0

�

, (2)

where the operators ĥ and ĥ† encode the couplings between A and B degrees of freedom. It
follows from (1) and (2) that the identity Ĉ Ĥ + Ĥ Ĉ = 0 is automatically satisfied. A direct
consequence of chiral symmetry is that every eigenstate |ψ〉 of Ĥ with a non-zero eigen-energy
E comes with a chiral symmetric partner Ĉ |ψ〉 of opposite energy −E.

A special attention will be paid on zero-energy modes of chiral symmetric systems (usually
simply dubbed zero-modes). The key point is that those zero-modes are topologically protected
when they are exponentially localized in regions outside of which the Hamiltonian is gapped.
Those regions can for instance correspond to edges, interfaces or defects in real space, and the
zero-modes then correspond to various kinds of boundary states. But we will see that those
regions may also more generally designate a part of phase space (position and wavenumber
space). Here we are concerned with a chiral index that counts algebraically the number of
localized zero-energy modes in those regions, with a sign given by their chirality. In other
words, the chiral index counts the total chirality of the zero-modes and can thus be formally
introduced as

Imodes = # zero-modes of chirality +1−#zero-modes of chirality −1 . (3)

An alternative (although equivalent) definition of the chiral index can be found by using the
off-diagonal structure (2) of Ĥ in the chiral basis, so that the zero-modes |ψ〉 = (|ψ〉A , |ψ〉B)t

must satisfy

Ĥ |ψ〉= 0=

�

ĥ† |ψ〉B
ĥ |ψ〉A

�

. (4)

It follows that the zero-modes |ψ〉 of positive chirality are in bijection with the |ψ〉A in the
kernel of ĥ. The zero modes of negative chirality are as well in bijection with the |ψ〉B in the
kernel of ĥ†. So one can rewrite the index in the commonly used form

Imodes = dimker(ĥ)− dim ker(ĥ†)≡ Ind(ĥ) , (5)

where Ind(ĥ) is known as the analytical index of the operator ĥ.
It is worth stressing here that chiral symmetry is not restricted to lattices, and can also be

encountered when dealing with classical waves in continuous media. Actually, it turns out that
chiral symmetry of the wave operator for fluid models follows from time-reversal symmetry of
the original set of primitive differential equations. This is because primitive equations – basi-
cally momentum conservation and mass conservation – are first order differential equations in
time. Indeed, they yield a relation between fields that are odd with respect to time inversion
t → −t, such as velocity fields v(t)→ −v(−t), and fields that are even with respect to time
reversal, such as pressure fields p(t)→ p(−t). When time-reversal symmetry is satisfied, the
left and right members of those equations must have the same parity under time reversal. But
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because of the first order differentiation of those fields with respect to time, that also changes
sign under time-reversal ∂t →−∂t , the time derivative of the odd fields is only given by even
fields, and vice versa. This automatically creates a bipartition between the physical fields de-
pending on their parity in time, which eventually translates into a chiral symmetry of the wave
operator in phase space. Such a structure appears in geo- and astrophysical fluid dynamics in
the absence of Coriolis force [28, 41] and in plasmas models [27, 29] provided the magnetic
field is off.1

In the rest of the paper, we will develop a theory that applies for both discrete and contin-
uous media, quantum or classical, and we will keep the notation Ĥ when referring to classical
wave operators, that will be assumed to be Hermitian, and even abusively call them “Hamil-
tonians” for the sake of standardizing the notations.

2.2 Role and necessity of a smooth energy filter f (E)

Actually, the definitions (3) and (5) of the chiral index only work in idealized infinite systems
but are difficult to manipulate or to approximate in finite size systems. Indeed, in finite size
systems, the zero-modes of the different regions are always coupled with each other through
exponentially small but non-zero overlapping. This coupling, in general, shifts the energy
of the modes such that, in perfect rigour, one never reaches perfect zero-energy modes. To
overcome this limitation, we introduce a formulation of the chiral index that is continuous in
the coefficients of Ĥ, making it easier to manipulate in practical computations and simulations.

To do so, we first assume the system to be gapped far away from the zero-mode, and
we denote by ∆ > 0 the half-amplitude of the gap [−∆,∆]. Then we define the operator
ĤF = f (Ĥ) where we choose f to be an odd function taking the value −1 for negative gapped
energies E < −∆ and +1 for positive gapped energies E > ∆ with a smooth transition in
the gapless region in between (see Figure 2). This means that ĤF is the operator with the
same eigenmodes as Ĥ but with rescaled energies E −→ f (E). This operation flattens the
gapped bands and hence ĤF can be seen as a flatten Hamiltonian. Then the chiral index can
be formally defined as

Imodes = Tr
�

Ĉ(1− Ĥ2
F )
�

. (6)

To see why (6) is indeed a meaningful definition of the chiral index, we express it in a
common diagonal basis {|ψλ〉} of Ĉ and Ĥ2 (which is always possible since [Ĥ2, Ĉ] = 0 as
{Ĥ, Ĉ}= 0) and we get

Imodes =
∑

λ

Cλ(1− f (Eλ)
2) 〈ψλ|ψλ〉=

∑

λ

Cλ(1− f (Eλ)
2) , (7)

with Cλ and E2
λ

the eigenvalues Ĉ and Ĥ2. The term 1− f (Eλ)2 is identically zero for all the
modes that do not lie in the gap [−∆,∆]. We are thus left with the zero modes we would like
to keep (full circles in figure 2), and a priori other gapless but non-zero modes (hollow circles
in figure 2). As a matter of fact, the latest come by pairs of opposite chirality, due to chiral
symmetry as if |ψ〉 is an eigenmode of both Ĥ2 and Ĉ with eigenvalues E2

λ
and Cλ then H |ψ〉

is also an eigenmode with eigenvalues E2
λ

and −Cλ except when H |ψ〉 = 0. They therefore
cancel out two by two in the sum thanks to the introduction of the chiral operator Ĉ in the
definition of Imodes. The only contributions that remain are those of the zero-energy modes

1Let us stress that in classical waves systems, time-reversal symmetry is just an orthogonal symmetric matrix
which is 1 on even degrees of freedom and −1 on the odds ones. This is different from quantum mechanics
where the Schrödinger equation carries a complex structure and where time-reversal symmetry is encoded as a
complex conjugation or in general as an anti-unitary operator. This may cause confusion when one wants to
apply to classical waves the ten-fold classification [15,16] which was constructed with the quantum version of the
time-reversal symmetry in mind.
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Figure 2: a) Projected energy spectrum denoted Sp(Ĥ) of a typical topological Hamil-
tonian Ĥ. United stripes denote the gapped bulk bands, circles denote the isolated
eigenvalue of modes localised at the edge and red circles denote the topological
zero modes. b) Dispersion relation in the bulk where edge modes cannot be seen.
c) Sketch of a possible smooth flattening function. d-e) Spectrum of the operator
ĤF = f (Ĥ) where the bulk bands are flattened. f) Spectrum of 1− Ĥ2

F , where only
a finite number of non-zero excitations remains: the bulk excitations vanish and the
original zero-modes are dominant.

Ĥ |ψλ〉= 0 that do not allow a valid way to construct a symmetric partner of opposite chirality.
So we end up with Imodes =

∑

λ,Eλ=0 Cλ which is exactly the chirality of the zero-modes.
The two equivalent expressions (3) and (6) of the chiral index Imodes show that the number

of zero-modes of the Hamiltonian Ĥ is a topological quantity: (3) shows that Imodes is an
integer number while (6) shows that it depends continuously of the Hamiltonian. Imodes is
therefore an integer that is stable under smooth variations of the coefficients of Ĥ, hence its
topological nature.

However, as they are written, the different expressions of Imodes count the total number
of zero-modes of Ĥ. This is an issue when dealing with finite size systems, or with numerical
simulations, that involve more than one gapless region (e.g. two edges, multiple corners ...).
In those cases, one is more interested in the chirality of the modes localised in specific sub-
regions of phase space (just counting the zero-modes near an edge/corner/. . . ) than the total
chirality of the zero-modes of the entire system, which is also often trivial. One therefore needs
a cut-off in phase space to obtain this local topological information, a process we now aim at
describing.

2.3 Role and necessity of a phase space filter θ̂Γ

In order to capture the chiral zero-modes in specific regions of phase space, one needs to add,
to the definition of Imodes, a function θ̂Γ that selects the a zero-mode in phase space. (sketched
in red in figure 3). Such a cut-off operator is close to identity over a gapless target region that
encloses the zero-mode, over a typical distance Γ (in green in figure 3), and then drops to zero
away from it, where the Hamiltonian is gapped. We shall later refer to the domain where θ̂Γ
drops as the shell. In this way, the selected zero-modes are localised within the shell, while the
other zero-modes remain outside (in blue in figure 3). A local version of the the chiral index
thus reads

Imodes = Tr
�

Ĉ(1− Ĥ2
F )θ̂Γ

�

, (8)

and which, by construction, counts the chirality of the zero-modes in a selected region of
phase space. More formally, this phase space representation of zero-modes is typically made
possible thanks to a Wigner transform, that we introduce in section 2.5. The red and blue
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Figure 3: Sketches of the Wigner representation of zero-modes (in red/blue depend-
ing of their positive/negative chirality) embedded in different phase spaces with ex-
amples where the zero-modes are localised a) in position but not in wavenumber b)
in wavenumber but not in position c) in position and in wavenumber d) in position
but in a 2D space. The cut-off function θ selects a region that encloses one zero-mode
by taking the value θ ∼ 1 (green), while dismissing the other gapless regions (θ ∼ 0
in white). The transition region where the cut-off goes from one to zero is called the
shell (dark green line).

gapless regions in figure 3 are thus sketches of the amplitude of the Wigner function of the
zero-modes.

Importantly, the quantisation of the index does not strongly depend on the shape of the
shell, nor on how the cut-off operator is explicitly defined, as long as it is close to identity
in the target gapless region (where the Wigner representation of the zero-mode is located)
within the shell and close to zero in the other gapless regions, outside the shell. As we will see
below, the target region, defined in phase space, is in correspondence with the localisation of
the zero-modes, and many situations can be covered by the same local chiral index (8), which
makes it quite general and powerful.

For instance, if we are interested in finding a zero-mode localized in real space, at an
edge of a 1D chain, positioned around x ∼ 0, the cut-off operator should target a region in
phase space which is therefore only constrained in the x direction and not in wavenumber
k. Although a specific expression of the cut-off function is not necessary, the reader can think
of its profile as that a Gaussian θ̂Γ = e−x2/Γ 2

or a Fermi-like function θ̂Γ = (1+ ex2−Γ 2
)−1. In

those expressions, the cut-off parameter Γ determines how large is the selected region. Such
a real-space cut-off is illustrated in figure 3 a) and used in the mode-shell correspondence in
section 3.1 to derive the bulk-boundary correspondence.

Our formalism allows to tackle the dual situation of the previous case on the same
footing, where the zero-modes are now localized in wavenumber, for instance in the slow
varying modes region of a continuous Hamiltonian. Possible cut-off operators then read
θ̂Γ = e∆/Γ

2
≈ e−k2/Γ 2

or θ̂Γ = (1+e−∆−Γ
2
)−1 ≈ (1+ek2−Γ 2

)−1 where∆ is the Laplacian operator,
and the associated target region in phase space is represented in figure 3 b). This formalism
is then similar to the so-called heat kernel approach used in the context of the Atiyah-Singer
index theorem. A model displaying such zero-modes is addressed in section 3.2.

More generally, the zero-modes can also be localised in a mixed way in position/wavenum-
ber and cut-off operators can then be chosen as θ̂Γ = e(−x2+∂ 2

x )/Γ
2
≈ e−(x

2+k2)/Γ 2
or

θ̂Γ = (1+ ex2−∂ 2
x −Γ

2
)−1 ≈ (1+ ex2+k2−Γ 2

)−1 in that case.2 The shell enclosing the target region
in phase space is then typically a circle (figure 3 c) and a corresponding example is shown
in section 3.3.

Finally, this approach can be generalized to higher dimensions, to address zero-modes in
higher-order topological insulators with chiral symmetry. A simple example is that of cor-

2We choose to work with adimensioned models, hence the adimensioned expression in x and k.
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Figure 4: Table summarising the different categories of systems according to two in-
finite limits: a large length limit, where the length L of the system is considered as
infinitely large, and a small length limit where the characteristic distance a between
two sites becomes infinitely small and where therefore the set of possible wavenum-
bers becomes unbounded.

ner states of a two-dimensional system. In that case, cut-off operators can be chosen as
θ̂Γ = e−(x

2+y2)/Γ 2
or θ̂Γ = (1 + ex2+y2−Γ 2

)−1, and the target region in phase space is shown
in figure 3 d). This higher dimensional case, is discussed among others in section 4.

In finite systems, the necessary introduction of a cut-off operator alters the quantisation of
the chiral index, which is no longer exactly an integer. However, in large systems, when the
gapless regions we want to select are far away from each other in phase space and Γ is large, the
correction to an integer value decays exponentially fast with the sizes of the system [98] and
it is reasonable to still talk about quantised index with a satisfying approximation. Moreover
in the limit case of infinite systems, the cut-off parameter Γ can be put to infinity, so that θ̂Γ is
replaced by the identity and we recover the previous exact index (6).

In all those cases, the notion of “large system” should be understood as large compared to
the typical coupling distances of the Hamiltonian Ĥ in phase space. So, if the cut-off operator
acts in position space, we need Ĥ to be short-range in position space, and the system’s size
must be large compared to the typical coupling distance in position. The unbounded limit
L −→∞ in figure 4 satisfies this condition. If the cut-off operator acts in wavenumber space,
we need Ĥ to be short-range in wavenumber space and the lattice wavenumber k0 = 2π/a to
be large compared to typical coupling distance in wavenumber. The continuous limit a −→ 0
in figure 4 satisfies this condition. Also, another reason why we choose f to be a smooth
function in energy is because it is a required property to extend the short-range behaviour in
phase space of Ĥ to ĤF (see Appendix C).

2.4 Mode-shell correspondence

The chiral index we have introduced requires the use of the cut-off operator that embeds a
gapless target region in phase space where zero-modes live. The boundary of this embedding,
namely the shell, plays a crucial role in the theory that we now want to emphasize. This is due
to the fact that, up to a rearrangement of its terms the index Imodes can be shown to be equal
to an invariant Ishell, that essentially depends on the properties of Ĥ on the shell, the region
where the cut-off drops from the identity to zero. This index reads

Ishell = Tr
�

Ĉ θ̂Γ
�

+
1
2

Tr
�

Ĉ ĤF [θ̂Γ , ĤF ]
�

. (9)
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The first term Tr
�

Ĉ θ̂Γ
�

does not depend on Ĥ. It is the polarisation in the number of
degrees of freedoms of positive/negative chirality, weighted by θΓ (x). For example, in a lattice,
this term is just the polarisation in the number of sites of positive/negative chirality (again
weighted by θΓ (x)). In this paper we will mostly deal with situations where the density of
states of positive/negative chirality is balanced and where this term therefore vanishes. If such
density of states does not compensate, then this term is necessary to recover the mode-shell
correspondence [99–101].

The second term, 1
2 Tr

�

Ĉ ĤF [θ̂Γ , ĤF ]
�

, does depend on Ĥ. However, the trace contains
the commutator [ĤF , θ̂Γ ] which vanishes both inside the shell, where θ̂Γ ≈ 1 (any operators
commutes with the identity), and away from the shell since there θ̂Γ ≈ 0. Therefore, the non-
negligible contributions of the trace only come from the shell which is the region where θ̂Γ
goes from the identity to zero. This property explains the appellation of the index Ishell.

The fact that Imodes can be re-expressed into Ishell is proved in a few lines of alge-
bra. In fact it suffices to use the anti-commutation relation with the chirality operator
Ĉ ĤF = Ĉ f (Ĥ) = f (−Ĥ)Ĉ = −ĤF Ĉ (remember that f is an odd function) as well as the
cyclicity of the trace to rearrange the terms in the following order,3 and we get

Imodes = Tr
�

Ĉ θ̂Γ (1− Ĥ2
F )
�

= Tr
�

Ĉ θ̂Γ
�

− Tr
�

Ĉ θ̂Γ Ĥ
2
F

�

= Tr
�

Ĉ θ̂Γ
�

−
1
2

�

Tr
�

Ĥ2
F Ĉ θ̂Γ

�

+ Tr
�

ĤF Ĉ θ̂Γ ĤF

��

= Tr
�

Ĉ θ̂Γ
�

+
1
2

Tr
�

Ĉ ĤF [θ̂Γ , ĤF ]
�

,

(10)

which shows the equality
Imodes = Ishell , (11)

that we call the mode-shell correspondence, as it relates the number of chiral zero-modes to a
property on the shell surrounding those modes in phase space. Because of this equality, we
will use the notation I to denote both indices.

In general, the index I can be computed numerically and is prone to describe the topology
of inhomogeneous or disordered systems since its definition does not rely on any periodicity
assumption. However the shell formulation of the invariant is particularly suitable to semi-
classical approximations [97] in a lot of systems which simplifies its computation and provides
another topological meaning to the index.

2.5 Winding numbers as semi-classical limits of the chiral invariant in phase
space

The index formulation we developed is made at the operator level whereas semi-classical ap-
proximations are usually performed in phase space (x , k) (ħh = 1 in the quantum situations).
The connection between, on one hand, operators such as the cut-off operator θ̂Γ or the Hamil-
tonian Ĥ, and, on the other hand, functions in phase space, is made possible by Wigner-Weyl
calculus. In particular, we will use the Wigner transform of the Hamiltonian operator, defined
as (see Appendix B)

H(x , k) =

∫

R

d x ′


x +
x ′

2

�

�

�

�

Ĥ

�

�

�

�

x −
x ′

2

·

e−ikx ′ , (12)

with k ∈ R when the Hamiltonian Ĥ = H(x ,∂x) is a differential operator that describes a
continuous model, and as

3This derivation can be performed in infinite systems since the cut-off operator makes the trace finite.
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Figure 5: Summary diagram of the mode-shell correspondence. We use a smoothly
flatten version ĤF of the Hamiltonian Ĥ to define two indices: Imodes counting the
chiral number of zero-modes localised in a target gapless region in phase space, a
gapless property of Ĥ, and Ishell measuring gapped properties on the boundary en-
closing the gapless region (namely the shell) and which reduces, in a semi-classical
limit, to a (higher) winding number. Both indices are equal due to the mode-shell
equality (11). The prefactor CD of WD is given in (14).

H(n, k) =
∑

n′




n′
�

� Ĥ |n〉 e−ik(n′−n) , (13)

with periodic parameter k ∈ [0, 2π] to address the discrete case, where the lattice sites (or unit
cells) are labelled by an integer n. Those expressions generalize straightforwardly to higher
dimensions. In both cases, we will refer to H = H(x , k) as the symbol of Ĥ. It is a reduced
operator acting only on the internal degrees of freedom of the systems, but parametrized in
phase space. Similarly, zero-modes can be represented in phase space by a Wigner transform of
their density matrix, leading schematically to the red and blue spots in figure 3. The mapping
of the Hamiltonian Ĥ into a symbol Hamiltonian H(x , k) allows us to express the chiral index
as a generalized winding number, given by an integral over the 2D − 1-dimensional shell in
phase space

I =
S-C lim

−2(D)!
(2D)!(2iπ)D

∫

shell

Trint(U†dU)2D−1 ≡WD , (14)

where D is the dimension of the system, the trace Trint only acts on the internal degrees of
freedom and U(x , k) is a unitary operator that constitutes the off-diagonal component of the
symbol of the flatten Hamiltonian HF =

�

0 U†

U 0

�

that acts on the internal degrees of freedom
of the system. Since, on the shell, the Hamiltonian has no gapless mode, HF has energies
EF = ±1 and can thus be written as HF (x , k) = H(x , k)/

p

H(x , k)2. The notation dU denotes
the 1-differential form in phase space dU =

∑

i(∂x i
U)d x i + (∂ki

U)dki . (U†dU)2D−1 is then a
2D − 1-form which is an anti-symetrised sum of all possible orders of derivatives ∂z j

U in the

product (U†dU)2D−1 where z j is a phase space coordinate (either position or wavenumber).
For a given set of phase space coordinates (z1, . . . , z2D−1), the related component of the form
reads

2D−1
∑

j1,··· , j2D−1=1

ε j1,··· , j2D−1

2D−1
∏

m=1

�

U†∂z jm
U
�

, (15)

where ε j1,··· , j2D−1
is the antisymetrised Levi-Civita tensor with convention +1 for the basis

∏

i dki ∧ d x i . For example, when D = 2, the phase space has 4 dimensions. The form

Tr
�

U†dU
�3

is then a 3-form with 4 components in phase space, which reduces to one com-
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ponent when projecting on the shell. As an instance, the component in d x ∧ dkx ∧ dky reads

Tr
�

U†∂x U[U†∂kx
U , U†∂ky

U] + [U†∂kx
U , U†∂ky

U]U†∂x U
�

, (16)

and similarly for the three others components. We provide an explicit demonstration of the
formula (14) in appendix F.

The formula (14) can be seen as a generalization of the bulk-edge correspondence. When
dealing with bounded one-dimensional (1D) lattices with open boundary conditions, I can be
seen as an edge index that counts the chirality of the zero-modes at one boundary, while W1 is
the usual bulk winding number expressed as an integral over the 1D Brillouin zone in k-space.
However, the formula (14) describes a much richer class of chiral systems that goes well beyond
1D lattices. Indeed, the system of interest can be of higher dimension, discrete or continuous,
bounded or unbounded, and the zero-modes characterized by (14) can be localized in position
(such as edge states), but also in wavenumber space.

The surface of integration, i.e. the shell, is a surface of dimension 2D − 1 that encloses
the chiral zero-mode in phase space of dimension 2D. The shell is therefore always a surface
of odd dimension. This contrasts the celebrated classification of topological insulators where
the chiral symmetric class (AIII) is known to allow topologically non-trivial phases in odd
dimensions only [15]. The fact that our formula (14) predicts the existence of chiral zero-
modes also in even dimension D is because the shell lives in phase space, and is therefore not
restricted to the k-space Brillouin zone.

The formula (14) also includes other previously existing results in topological physics that
differ from the standard bulk-edge correspondence. It includes for example the formula de-
rived by Atyiah and Singer in the 60s [102] for continuous operators when the position mani-
fold is a torus4 and where the shell is therefore the unit sphere in wavenumber space tensored
with the manifold in position space (x , k) ∈Td ×Sd−1. Our formula also includes the formula
proposed by Teo and Kane to classify topological point defects zero-modes [48]. In that case,
the shell consists of the sphere enclosing the zero-modes in position space tensored with the
Brillouin zone (x , k) ∈ Sd−1 ×Td . Finally it also includes the Callias index formula [34, 90]
(also derived by Hornander [91] generalising a result by Fedosov [92]) which deals with de-
fects localised in position space, as in the Teo and Kane’s work, but for continuous operators,
and where the shell is then the phase space sphere (x , k) ∈ S2d−1 (localised in position and
wavenumber). Our general formula (14) thus unifies all these results. The generality of the
formula makes it more flexible and covers for examples the cases with both continuous and
discrete dimensions, which would not fit into any of the previously cited theories.

Note that an equivalent expression of the winding number in (14), can be obtained by
homotopy in terms of h(x , k), the symbol of ĥ, as

WD =
−2(D)!

(2D)!(2iπ)D

∫

shell

Trint(h−1dh)2D−1 . (17)

This expression could be of practical interest since it bypasses the computation of HF .
Finally, we should note that the formula (14) is obtained in a certain semi-classical limit,

hence the subscript “S-C lim” (we shall just write l im in the rest of the paper). This limit is
reached when the variations of the symbol in position x or in wavenumber k become small
compared to the gap of the symbol. This hypothesis can be stated as follow (see appendix (B)
for justification):

4This restriction comes from simplifying hypotheses in the semi-classical expansion. Manifold with curvature
lead to more complex expressions which would require a separate paper.
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Semi-classical hypothesis: For a given symbol H(x , k), its characteristic variation distances
in position dx and wavenumber dk spaces can be estimated through the formula

1/dx/k ∼ ∥∂x/kH(x , k)∥/∆(x , k) , (18)

where∆(x , k) is the gap of the symbol H(x , k). The semi-classical limit is reached asymptotically
near the shell when ε≡ 1/(dx dk)≪ 1.

For example, in 1D lattices, the symbol of the Hamiltonian becomes completely indepen-
dent of position in the bulk, so that 1/dx −→ 0. In most of the examples treated here, we will
have ε = 1/(dx dk) = O(1/Γ ). In other words, (at least) one of the characteristic distances of
variation becomes small for points (x , k) in phase space which are close to the shell. Hence,
the semi-classical approximation becomes exact in the asymptotic limit Γ −→ +∞. This semi-
classical approximation makes the winding number WD in general simpler to calculate than
the original chiral index I, making the formula (14) of practical interest. All those results are
recapped in figure 5.

3 Mode-shell correspondences in 1D spaces

3.1 The bulk-edge correspondence for 1D unbounded chiral lattices

General results

In this section, we discuss the particular case of Hamiltonians on 1D lattices with edges and
show how the usual winding number is obtained as a semi-classical approximation of the shell
index and therefore counts the number of chiral zero energy edge states: a result known as
the bulk-edge correspondence, which is well established for 1D lattices, both physically and
mathematically [99, 100, 103–108]. This derivation will serve as a pedagogical example to
introduce a few key tools and concepts in more details. We shall also treat in parallel the
case of interface zero-modes, in contrast with edge modes. We will therefore assume that the
gapless target region is either an edge, or an interface, located at x ∼ 0, so that the cut-off
operator can be chosen as θ̂Γ = e−x2/Γ 2

. The chirality of zero-modes localised in that region is
given by the shell index (9) with that specific cut-off operator. Let us now show how, under
some assumptions, a semi-classical approximation of this index is made possible and yields a
more familiar and simpler expression.

In the following, n ∈ L is the unit cell index of the lattice, it runs over L = N if we deal
with a lattice with an edge and over L = Z in the case of an interface. We also introduce α
to label the (finite) internal degrees of freedom (e.g. orbital, spin...). We assume the chiral
operator Ĉ to be diagonal in the (n,α) basis and independent of the unit cell, and denote by
Cα the chirality of the internal degrees of freedom. We then use the discrete Weyl transform
(13) where




n′
�

� Ĥ |n〉 is the matrix containing the couplings between the internal degrees of
freedom of the unit cells n and n′. The symbol Hamiltonian H(n, k) we obtain thus acts only
on the internal degrees of freedoms, with parameters (n, k) ∈ L × S1 living on the discrete
phase space. In some sense, this discrete Wigner transform can be seen as a generalisation of
the Bloch transform to non-periodic couplings on a grid.

We then make the following hypothesis: we assume that the Hamiltonian Ĥ is asymptoti-
cally periodic far from the boundary/interface. More precisely, in the case of an edge (L=N),
we assume that the symbol Hamiltonian H(n, k) converges asymptotically to a bulk, (i.e. po-
sition independent) Hamiltonian H+(k) when n −→ +∞. Similarly, in the case of an interface
(L=Z), we ask that the symbol Hamiltonian converges toward two bulk Hamiltonians far to
the left/right of the interface, that is H(n, k) −→ H±(k) when n −→±∞.5

5In general, we only need the weaker assumption 1
dx dk
−→ 0, as defined in (18), to obtain a valid semi-classical

limit which is useful in some cases.
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Let us now estimate the term Tr Ĉ ĤF [θ̂Γ , ĤF ] of the chiral index, with θ̂Γ = e−x2/Γ 2
in the

limit Γ −→ +∞. For that purpose, we first rewrite the trace as an integral in phase space by
using the Moyal ⋆ product between symbols as

Tr ÂB̂ =
1

2π

∑

n

∫ 2π

0

dk Trint(A⋆ B)(n, k) , (19)

where Trint is the trace on the internal degrees of freedom only (see appendix B). We obtain

1
2

Tr Ĉ ĤF [θ̂Γ , ĤF ] =
1

4π

∑

n∈L

∫ 2π

0

dk Trint(C ⋆HF ⋆ [θΓ , HF ]⋆)(n, k) , (20)

where [A, B]⋆ = A ⋆ B − B ⋆ A is the Moyal commutator. Next we take the limit Γ −→ +∞.
As discussed in the previous section, in that limit, θΓ ≈ 1 near the interface/boundary, I is
the topological index describing the chiral number of the zero-modes localised at the inter-
face/boundary. Moreover as Γ −→ +∞, θΓ (n) varies slower and slower with n, so that we
probe a region which is further and further in the bulk where H(n, k) has asymptotically no
dependence in position, by hypothesis. The product of the symbols H(n, k)with θΓ (n) is there-
fore prone to a semi-classical approximation, obtained in the limit Γ −→ +∞.

The leading term of such a semi-classical expansion is obtained by simply replacing all
the Moyal products by standard product A⋆ B ∼ AB, and the Moyal commutator by a Poisson
bracket [A, B]⋆ ∼ i{A, B} (see Appendix B), so that

1
2

Tr
�

Ĉ ĤF [θ̂Γ , ĤF ]
�

=
−1
4iπ

∑

n∈L′

∫ 2π

0

dk Trint( CHF (n, k)δnθΓ (n)∂kHF (n, k)) +O(1/Γ ) , (21)

where δnθΓ (n, k) = θΓ (n+1, k)−θΓ (n, k) is the discrete derivative. Note that we do not have
the term ∂kθΓ (n)δnHF (n, k) in the Poisson bracket because θΓ (n) has no dependence k. As we
will see, this first term of the semi-classical expansion converges already to a finite constant
when Γ −→ +∞. So, the next term of the semi-classical expansion, which must be of smaller
order in Γ , vanishes when Γ −→ +∞ and there is no need to consider them. We will use the
notation =

lim
to mean that an equality is true up to the vanishing of higher order terms in the

limit Γ −→ +∞. Then, since the variation of θΓ (n)mainly comes from the high |n| ≫ 1 region,
we can approximate HF (n, k) by its bulk limit.

Let us focus first on the interface case (L=Z). We substitute HF (n, k) by H+F (k) for n> 0
and by H−F (k) for n< 0 leading to

1
2

Tr
�

Ĉ ĤF [θ̂Γ , ĤF ]
�

=
lim

−1
4iπ

∫ 2π

0

dk Trint

�

C

�

H+F (k)
∑

n>0

δnθΓ (n)∂kH+F (k) +H−F (k)
∑

n<0

δnθΓ (n)∂kH−F (k)

��

. (22)

The sum over n is performed by using
∑

n>0δnθΓ (n) = θΓ (+∞) − θΓ (0) = −1 and
∑

n<0δnθΓ (n) = θΓ (0)− θΓ (−∞) = 1, and we obtain

1
2

Tr
�

Ĉ ĤF [θ̂Γ , ĤF ]
�

=
lim

1
4iπ

∫ 2π

0

dk Trint
�

C
�

H+F (k)∂kH+F (k)−H−F (k)∂kH−F (k)
��

. (23)

Since H2
F = 1 in the bulk, we can introduce the unitaries U± such that

H±F =

�

0 (U±)†

U± 0

�

, (24)
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and rewrite (23) as

1
2

Tr
�

Ĉ ĤF [θ̂Γ , ĤF ]
�

=
lim

1
2iπ

∫ 2π

0

dk Trint
�

(U+)†(k)∂kU+(k)− (U−)†(k)∂kU−(k)
�

, (25)

where we recognize the winding number W ≡ 1
2iπ

∫ 2π
0 dk Tr U†∂kU ∈ Z of the unitary map

k ∈ S1→ U(k) ∈ S1, which leads to

1
2

Tr
�

Ĉ ĤF [θ̂Γ , ĤF ]
�

=
lim

W+
↑ −W−↑ , (26)

with W+
↑ and W−↑ the winding numbers of U+ and U− defined in the bulks far to the positive

and negative sides of the interface respectively, and integrated over the 1D Brillouin zone. The
vertical arrow ↑ specifies the direction of integration in k, from 0 to 2π.

If the lattice has “balanced unit cells”, that is when there is an equal number of degrees
of freedom of positive and negative chirality Cα per unit cell n (

∑

α Cα = 0), this imply that
the terms Tr

�

Ĉ θ̂Γ
�

=
∑

n

∑

α CαθΓ (n) = 0. Therefore, in that case, one recovers the expected
bulk-interface correspondence for 1D chiral chains in the limit Γ −→ +∞

I =
lim

W+
↑ −W−↑ , (27)

which is a particular case of our general formula (14) that we derive through relatively simple
consideration.

Otherwise, if the unit-cell structure is broken at the boundary, this equality must be cor-
rected by the term Tr Ĉ θ̂Γ to account for the chirality of the lattice’s sites [99–101]. The term
Tr Ĉ θ̂Γ is also non-zero when the bulk unit cell is unbalanced in chirality

∑

α Cα ̸= 0. However,
this case is excluded from our theory because it leads to bulk zero-modes that violate the gap
hypothesis (see appendix D).

The case of an edge, rather than an interface, is obtained similarly. The only difference
being that the sum in n runs now over L=N (for a left edge) instead of Z. As a consequence,
the second term in the right hand side of the equation (22) is missing, and we end up with the
bulk-edge correspondence

I =
lim

W+
↑ , (28)

that relates the chirality of zero-energy edge modes, at a given edge, to a winding number in
the bulk of the lattice.

We now illustrate this approach on the seminal example of the dimerized chain: the so-
called Su–Schrieffer–Heeger model.

Example: The Su-Schrieffer-Heeger (SSH) chain

A seminal example of a 1D chiral symmetric lattice model exhibiting zero-energy edge modes,
is that of a 1D dimerised chain, often referred to as the Su-Schrieffer-Heeger (SSH) model
[109] (see figure 6) even though there is an overlap with other types of dimerised model, like
the Shockley chain [110,111]. In any case, the unit cell owns two internal degrees of freedom
denoted A and B (being the even/odd sites n in the SSH case), and the model consists of
nearest neighbour staggered couplings of amplitude t and t ′ between A and B. Let us revisit
this celebrated SSH/Shockley model in the light of the mode-shell correspondence. In fact,
this model is simple enough to be analytically solvable, and we will thus be able to derive the
bulk-edge correspondence explicitly.

The corresponding Hamiltonian Ĥ = ĤSSH reads

Ĥ =
∑

n

t |B, n〉〈A, n|+ t ′ |B, n− 1〉〈A, n|+ h.c. , (29)
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Figure 6: Representation of a SSH chain of N = 10 unit cells delimited in purple.
The left red edge is the gapless region where we want to compute the chiral number
of zero-modes. The right blue edge is the other gapless region of opposite chirality
that is dismissed through the cut-off function θ (x) in green. The dark green zone is
the shell where is evaluated the bulk-index 1

2 Tr
�

Ĉ ĤF [θ̂Γ , ĤF ]
�

since the coefficients
of the trace quickly vanish away from it.

except at the edges where the hopping term t ′ leads to an empty site outside the lattice. In that
case, it is put to zero (open boundary condition). Since this Hamiltonian only couples A sites
with B sites, it is chiral symmetric and the chiral operator reads Ĉ =

∑

n |A, n〉〈A, n|−|B, n〉〈B, n|.
We can therefore define a chiral index I. Then, far in the bulk, the Hamiltonian is invariant
by translation and the Wigner-Weyl transform reduces to a discrete Fourier transform where

H(n, k) =

�

0 t + t ′e−ik

t + t ′eik 0

�

= H(k) , (30)

and whose energy spectrum E is gapped for t ̸= t ′. Next, we want to compute the “flatten”
version of the symbol, HF . To do so, we use the fact that, at first order of the semi-classical
expansion, the symbol of ĤF = f (Ĥ) is simply given by applying directly the function f to
the symbol H(n, k), that is HF = f (H(k)). Moreover, we have chosen f such that, for gapped
states of energy E, we have f (E) = E/

p
E2 so, in the bulk, HF (x , k) = H(x , k)/

p

H(x , k)2.
Therefore, since H2(n, k) = |t + t ′eik|21, we deduce that

HF (k) =
1

|t + t ′eik|

�

0 t + t ′eik

t + t ′e−ik 0

�

. (31)

This allows us to identify U = (t + t ′eik)/|t + t ′e−ik| which is just a unit complex number
here. A direct computation of the winding number W↑ = 1

2iπ

∫

k∈S1 dk Trint(U†(k)∂kU(k))
yields W↑ = +1 for |t ′|> |t| and W↑ = 0 for |t ′|< |t|.

We now turn to the computation of zero-modes localized at a single edge. We thus as-
sume the lattice to be semi-infinite, with no boundary to the right and a left boundary at
n = 0. The zero-modes of this model can be analytically found by searching them of the
form |ψ〉 =

∑

n≥0ψA,n |A, n〉+ψB,n |B, n〉 such that Ĥ |ψ〉 = 0. Combined with the boundary
condition 〈B,−1|ψ〉= 0, we obtain the constraints

〈B, n| Ĥ |ψ〉= tψA,n + t ′ψA,n+1 = 0 , n≥ 0 ,

〈A, n| Ĥ |ψ〉= tψB,n + t ′ψB,n−1 = 0 , n> 0 ,

〈A, 0| Ĥ |ψ〉= tψB,0 = 0 , n= 0 .

(32)

If we remove the pathological case t ′ = 0, this system implies ∀n,ψB,n = 0 and
ψA,n = (

−t
t ′ )

nψA,0. To correspond to an edge mode, this solution must be normalized, which is
only possible when |t ′|> |t|. We deduce that one zero-energy edge mode of positive chirality
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Figure 7: (left) Plot of the topological zero-modes of an SSH chain in real and Fourier
space with t ′ = 1 and t = 0.6 for N = 10 dimers. (right) The absolute value of the
Wigner-Weyl transform is plotted for the same edge mode in phase space. The region
selected by the cut-off is shown in green, and its boundary (the shell), of length Γ
in real space, is highlighted by a dotted line along which the winding number is
integrated.

(i-e: localised on the A sites only) exists for |t ′| > |t|, leading to I = 1, while no edge mode
exists when |t ′| < |t|, leading to I = 0. As a result, in both cases we can check that I =W↑
which is an illustration of the bulk-edge correspondence in a simple but non-trivial example.

Validity of the semi-classical limit

Since the SSH model is invariant by translation far in the bulk, we have 1/dx −→ 0 on the
shell when Γ −→ +∞. Besides, as 1/dk remains bounded because Ĥ is short-range in posi-
tion, it implies 1/(dx dk) −→ 0 and therefore the semi-classical limit becomes exact in the limit
Γ −→ +∞.

3.2 A dual bulk–boundary correspondence in wavenumber space for bounded
continuous systems

General results

In the previous section, we focused on 1D discrete lattices and discussed an example where
the zero-modes are related to a winding number on a shell defined along the k axis at large
x , away from the zero-mode. In the large distance limit the lattice can be seen as infinite, and
the different zero-modes, localized at opposite boundaries decouple, can be treated separately.
Continuous systems are an other kind of systems with an infinite number of degrees of freedom.
This infinity does not come from the the size of the system, but instead from the distance
between two sites/degrees of freedom that becomes infinitesimal (see figure 4). At the Hilbert-
space level, this limit can also be seen as the fast varying functions limit or, in other words,
as the large wavenumber k −→ +∞ limit. In this section, we discuss how we can exploit such
limits to create topologically protected zero-modes which are separated, not in position, but
in wavenumber, and how the mode-shell correspondence captures this situation.

We are concerned with 1D continuous systems, where the physical quantities are encoded
in vector-valued wave-function |ψ(x)〉 = (ψα(x))α where x is a continuous coordinate and
α labels the internal degrees of freedom. These degrees of freedom can, for example, be the
spin or pseudo-spin components of quantum (quasi-)particle, like in the Dirac equation, or be
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a combination of classical fields, like the velocity v(x) and the pressure p(x) in the acoustic
wave equation. As in the previous section, we assume that the time evolution of the wave
function is encoded by a Hamiltonian Ĥ. Because we now deal with continuous system, Ĥ is
in general be differential operator which depends on position x and of some of its derivatives
as Ĥ =

∑

n hn(x)∂ n
x , where hn(x) are operators acting on the internal degrees of freedom.

Similarly to the discrete case, we use a Wigner transform (12) which associates, to an
operator Ĥ, a symbol H(x , k) parameterised in phase space and acting on the internal degrees
of freedom (see Appendix B) where now k ∈ R belongs to the whole real line which is not
a bounded set (contrary to the lattice case where k is reduced to the Brillouin zone [0,2π]).
Therefore, the major difference with the lattice case is that there is not only the limit x −→±∞
(i-e: far away from an interface/edge) to be considered, but also the k −→ ±∞ limit of fast
varying solutions. Since the limit in real space is similar to that discussed previously, we would
like to focus only on the momentum limit.

For that purpose, we consider systems where the position space is bounded. Also, we
choose to consider the position space as a manifold with no edges. For example, the position
space could be a circle (see figure 4), a torus, a sphere, etc..., and the differential operators
in the Hamiltonian Ĥ act on continuous functions defined on those manifolds. Then, if the
Hamiltonian is gapped in the large wavenumber limit (i.e. when acting on fast varying func-
tions) then one can define the chiral index I (8) with θ̂Γ = exp

�

∆/Γ 2
	

, which is referred to
as the heat kernel associated to the Laplacian ∆ on the manifold. As we already saw, this
index is equal to the chirality of zero-modes through the analytical index (5). This framework
is actually that discussed in the celebrated Atiyah-Singer index theorem, as it is described in
the mathematical community [93,95,96]. Here, we focus on the 1D case where the underly-
ing manifold is the circle, and derive the semi-classical winding number associated to chiral
zero-modes. Note that since our position space is a circle, and not just a real line, it implies
some subtleties in the definition of the symbol, the formula (12) being only valid in the real
line case. But, as long as Ĥ is short range compared to the topology of the manifold, we can
always use the definition (12) in a local chart around x to extend it to the circle case.6

In order to derive the semi-classical index, we proceed similarly to the discrete case: We
first express the term Tr

�

Ĉ ĤF [θ̂Γ , ĤF ]
�

of the shell index, in phase space through the trace
identity Tr Â = 1

2π

∫

S
d x
∫

R
dk Trint A(x , k) with an integration in position on the circle. This

operation maps the commutator of operators into the Moyal commutator of their symbols. We
then take the limit Γ →∞ and keep the lower order term in 1/Γ , which amounts to approxi-
mate the Moyal commutator by a Poisson bracket. This Poisson bracket contains only the term
∂kθΓ∂x HF because here the cut-off function θΓ = e−k2/Γ 2

depends only on wavenumber and
not on position. This leads to the expression

I =
lim

1
4iπ

∫ 2π

0

d x

∫ +∞

−∞
dk Trint CHF (x , k)∂kθΓ (k)∂x HF (x , k) . (33)

Next, we perform the integration over k. This is not as simple as the integration over x in the
discrete case where we assumed a bulk (i.e. x independent) limit of the symbol Hamiltonian,

6In particular one can use the geodesic chart to describe the neighborhood of x as a subset of R (see [94] for
a more formalised definition). There is however some problem for curved manifold, the semi-classical expansion
is modified in those cases. Also our proof of the semi-classical invariants in the higher-dimension case relies on
the existence of operators verifying [ai , b j] = δi, j 1 which can only be found when the phase space is Rd ×Rd

or Rd × Td . Therefore our formula (57) will only works in the case where the position manifold is a n-torus
(which has no intrinsic curvature). As the general expression of the symbol index in the Atiyah-Singer theorem
involves the curvature of the manifold, it is not surprising that our formula is limited to the n-torus cases which
are manifolds of zero curvature. We believe there is a way to derive the general Atiyah-Singer theorem using the
fact that any manifold can in fact be embedded in Rm where our semi-classical formula could be applied. But the
derivation of the formula would go beyond the scope of this paper.
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since here HF (x , k) may not be totally independent of k. We can however use the fact that
the right hand side of (33) does not depend of the special shape of θΓ (k) (see appendix F).
Therefore, we can smoothly deform the cut-off function θΓ = exp

�

−k2/Γ 2
�

into the sharper
one θ̃Γ = 1|k|≤Γ such that the derivative ∂kθΓ can be replaced by a δ-Dirac distribution, which
transforms the surface integral in phase space into two line integrals over x at k = ±Γ as

I =
lim

1
4iπ

∫ 2π

0

d x Trint(C(−HF (x , Γ )∂x HF (x , Γ ) +HF (x ,−Γ )∂x HF (x ,−Γ ))) (34)

=
lim

1
2πi

∫ 2π

0

d x Trint
�

−U†(x , Γ )∂x U(x , Γ ) + U†(x ,−Γ )∂x U(x ,−Γ )
�

. (35)

Finally, we obtain that the chiral index is again related to a difference of winding numbers, but
where the integration runs now over position space for large positive/negative wavenumbers,
as depicted by horizontal dashed lines in figure 8. We will thus indicate this “horizontal” line
integral in phase space by horizontal arrows, so that we get

I =
lim
−W+
→ +W−→ , (36)

where ± refers to k = ±Γ . This is a second application of the mode-shell correspondence in
1D where the relation to a difference of winding number W±−→ is a particular case of (14).
It can be seen as dual to the lattice case previously discussed, and in particular, (36) can be
compared to (27). In both cases, the shells correspond to lines in a single subspace, either x
or k, and they both enclose chiral-zero modes in phase space. In the present case, those modes
are “located” in the region of small wavenumber region, while the shell, in the semi-classical
limit, is considered in the region of high wavenumber. The mode-shell correspondence thus
better translates here to a correspondence between different region separated in wavenumber,
rather than to a bulk-edge or bulk-interface correspondence in position. We now illustrate this
correspondence with an example.

Example: 1D Dirac equation with periodic potential and velocity

To illustrate the previous result, we propose the following model of a Dirac Hamiltonian on a
circle

Ĥ(x ,∂x) =

�

0 V (x) + c(x)∂x
V (x)− ∂x c(x) 0

�

, (37)

where the potential V (x) and the local velocity c(x) are bounded and L-periodic functions that
can change sign. The symbol of this operator is obtained by replacing the product of the non-
commuting operators c(x)∂x by the Moyal product of their symbol c(x)⋆ ik = c(x)ik− c′(x)/2
with c′(x)≡ ∂x c(x), that is

H(x , k) =

�

0 V (x) + ikc(x)− c′(x)/2
V (x)− ikc(x)− c′(x)/2 0

�

. (38)

To check if the the semi-classical expression of the shell invariant can be used in the
limit Γ = k → ∞, we evaluate 1/(dx dk) = ∥∂x H(x , k)∥∥∂kH(x , k)∥/∆(x , k)2 that varies
as 1

k |
c′(x)
c(x) | in that limit. The semi-classical criteria 1/(dx dk) ≪ 1 is thus reached, un-

less c(x) vanishes, a situation we consider here. In that case, the term 1/dk acciden-
tally vanishes and we should check the next order term of the semi-classical expansion,
∥∂x∂kH/∆∥c=0 = c′(x)/(V (x) − c′(x)/2)|c=0. This term is not necessary negligible in gen-
eral, and in particular when the amplitude of the potential V (x) is comparable with that of
the gradient of the velocity c′(x) (the gap may even close). One way to make this term small,
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Figure 8: a) Zeros-modes of a discretised version of (37) where continuous deriva-
tives are replaced by their discrete counterparts, with ε = 1/L = 0, 05 and N = 50
sites (containing each two degrees of freedoms A/B) and therefore an inter-site dis-
tance of a = 2π/N . The zero-modes are shown in real space (left) and in wavenum-
ber space (right). Those modes are stationary with an exponentially small error
∥Ĥ |ψ〉 ∥ ∼ 10−9. b) Absolute value of the Wigner-Weyl transform of the different
zero-modes in phase space. The integration contours of the winding numbers cor-
respond to the shell enclosing the low wavenumber zero-modes and are denoted by
two dotted lines.

is to consider a very large periodic system L →∞ such that the gradient of velocity can be
re-expressed as c′(x ′) = c′(x)/L after the rescaling x = Lx ′, and becomes negligible compared
to V (x ′). The small parameter ε ≡ 1/L thus controls the semi-classical limit, when V (x) and
c′(x) are comparable in amplitude. By setting Γ = k ∼ 1/ε→∞, one gets the semi-classical
symbol

H(x , k)≃
�

0 V (x) + ikc(x)
V (x)− ikc(x) 0

�

(39)

(where we have substituted the notation x ′→ x), which is indeed uniformly gapped in phase
space and satisfies 1/(dx dk) ≪ 1 when k →∞. From now, we can set V (x) = cos(x) and
c(x) = sin(x) in the operator (37), and get a semi-classical description in the large system
limit L≫ 1 with (39), where the shell invariant can be expressed as the winding number W→.
Note that the term c′(x)may be kept in the symbol of other models, in particular if c(x) is not
allowed to vanish, as encountered for instance in [28,112], and where the topological number
must be extracted from a slightly more involved symbol Hamiltonian than cannot be obtained
from the operator by simply substituting x → x and ∂x → ik.

To compute the winding numbers W→ for the model above, we introduce the shell
{(x , k), x ∈ [0,2π], k = ±Γ } which consists in two circles in position at fixed k = ±Γ
in a cylindrical phase space. The off diagonal component of the Hamiltonian is just
h(x , k) = cos(x)− iεk sin(x) so one can compute the winding numbers and we find W+

→ = −1
for positive k and W−→ = 1 for negative k (for ε > 0). Therefore, according to the mode-shell
correspondence the total chirality of zero-modes of Ĥ should be I = −(−1) + 1 = 2. One
thus expects the operator Ĥ to have at least two zeros-modes of positive chirality in the rel-
atively slowly varying region. This is indeed the result obtained for numerical simulations of
the model (see Figure 8), where we indeed find 2 zero-modes of positive chirality (i.e. fully
polarized on the A degrees of freedom) and located in the low-wavenumber k ∼ 0 region.
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Due to the discretisation procedure when solving the model numerically, we moreover find
two other zero-modes localised at high wavenumber. Those additional zero-modes have to-
gether a chirality of −2 (i.e. fully polarized on the B degrees of freedom) that balance the
total chirality of zero-modes in this discretised version of the model.

The existence of such topological modes on a manifold of odd dimension (here the 1D-
circle) can be surprising for someone familiar with the Atyah-Singer index theory, where it is
known that elliptic operators on odd manifolds have a trivial topology. We explain why this
fact is actually not incompatible with our result in appendix E.

Remarks on the protection of zero-modes separated in wavenumber space

It is clear that for the finite size topological insulators, such as the SSH chain, boundary modes
localised at opposite edges can hybridise. The coupling between those modes can however be
negligible whenever the lattice is sufficiently long, that is, more precisely, when the character-
istic distance dx of the coupling elements Ĥx ,x ′ in position space remains much smaller than
the size L of the lattice.

Similarly to the example discussed above, the discretisation of a continuous model typically
induces multiple gapless modes which are separated from each other in wavenumber. Using
the duality between wavenumber and position space we can translate the previous criteria of
weak hybridization into wavenumber space, by demanding that the couplings in wavenum-
ber space Ĥk,k′ are short-range and decays with a characteristic distance dk in wavenumber
which is much smaller than the lattice wavenumber k0 = 2π/a of the lattice (where a is the
lattice spacing). Using the Wigner-Weyl transform, this is equivalent to demand that the sym-
bol Hamiltonian H(x , k) varies slowly in position space (see appendix A and B): its typical
variations must evolve over a much larger distance than the inter-site spacing.

One should note that this condition for the non-hybridization of the zero-modes in
wavenumber space is quite different from the position case, and may be difficult to reach
in practice, depending on the physical context of interest. For example, in condensed matter
systems, the introduction of an impurity or a vacancy in the lattice induces variations of the
electronic potential over a characteristic distance equivalent to the size of the lattice and imme-
diately hybridises edge states separated in wavenumber, and thus gap them [113]. Therefore,
condensed matter applications would require a strict limitation of such impurities. In other
physical systems, like in fluid mechanics or in acoustics, the smooth variation of the system’s
parameters in space is probably more naturally realised due to local homogenisation.

3.3 A mixed x − k correspondence in phase space for unbounded continuous
1D systems

In the previous sections, we explained how the topological nature of chiral zero-modes is re-
vealed by isolating them through large gapped regions which surround them either in position
(case of unbounded 1D lattices) or in wavenumber (case of bounded continuous 1D systems).
In the present section, we want to address the mixed case where the modes are surrounded
by a gap region both in position and momentum directions.

For that purpose, let us consider unbounded 1D continuous systems. We will make use
of the continuous Wigner transform (12) to map the Hamiltonian Ĥ to the symbol H(x , k)
acting on internal degrees of freedom, and parameterised in phase space (x , k) ∈ R×R (see
Appendix B). We therefore have to deal with both limits x −→ ±∞ (i.e. far away from an
interface hosting zero-modes) and k −→ ±∞ (i.e. fast varying solutions). We thus consider
a mixed cut-off operator such as θ̂Γ = e−(x

2−∂ 2
x )/Γ

2
of symbol θΓ (x , k) ≈ e−(x

2+k2)/Γ 2
at first

order of the semi-classical expansion. Now, the gap hypothesis means that we assume the
symbol H(x , k) to be gapped both when |x | −→∞ and when |k| −→ +∞ (even for x near the
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interface). For example, H(x , k) =
�

0 x+ik
x−ik 0

�

satisfies such requirement since its spectrum
±
p

x2 + k2 converges uniformly toward infinity for both x −→±∞ and k −→±∞.
We can then derive the semi-classical expression of the chiral invariant by rewriting the

term Tr
�

Ĉ ĤF [θ̂Γ , ĤF ]
�

similarly to the two previous sections (the term Tr Ĉ θ̂Γ vanish to pre-
serve the gap assumption if we have a balanced number of degrees of freedom), that is by
turning the trace into an integral over phase space and then expanding to lowest order in 1/Γ
by assuming that HF (x , k) varies slowly for large |(x , k)|, which leads to

I =
lim

−1
4iπ

∫

R

d x

∫

R

dk Trint(CHF (∂xθΓ∂kHF − ∂kθΓ∂x HF )) . (40)

Note that all the terms of the Poisson bracket appear, in contrast with the winding numbers
previously derived in sections 3.1 and 3.2. If we denote by dA= ∂xAd x+∂kAdk the differential
one-form of the symbol A, the expression (40) can be written in a more compact fashion as

I =
lim

−1
4iπ

∫

R2

Trint(CHF dθΓ ∧ dHF ) , (41)

where ∧ is the usual anti-symmetric wedge product. Moreover since HF (x , k) is assumed to
vary slowly, the integration of dθΓ can be done independently. The integration on the two-
form is then reduced to the integration of a one-form on the circle of radius Γ , which is tangent
to the gradient of θ . This leads to the final result

I =
lim

1
4iπ

∫

S1(Γ )
Trint(CHF dHF ) (42)

=
lim

1
2iπ

∫

S1(Γ )
Trint(U†dU)≡W⟲ , (43)

which is again a winding number, but where the integration runs now over the circle x2+k2 = Γ 2

in phase space instead of the Brillouin zone k ∈ [0,2π] (for discrete unbounded systems) or
the position space x ∈ [0, 2π] (for continuous circular systems). This is therefore a different
semi-classical manifestation of the mode-shell correspondence, where the circle encloses the
zero-mode in phase space.

Example: The Jackiw-Rebbi model

The simplest example of a continuous 1D Hamiltonian operator Ĥ involving both x and ∂x
which is topological is given by the celebrated Jackiw-Rebbi model

Ĥ =

�

0 x − ∂x
x + ∂x 0

�

. (44)

This Hamiltonian can be thought of as a one dimensional Dirac Hamiltonian Ĥ = −i∂xσy with
a linearly varying potential V (x)σx that can be seen as a mass term.7 Such a Hamiltonian
can for instance be obtained in stratified and/or compressible fluids where the pressure and
velocity are additionally coupled through an acoustic-buoyant frequency S(x) = V (x) [28,41]
which changes sign in space. This coupling can have many origins, for example in fluids,
where the sound velocity varies in space and reaches a minimum. We will also see later that
this Hamiltonian can be obtained as a continuous version of an SSH model with slowly varying
couplings.

7Usually the potential is written as V (x)σz but this is equivalent to our model up to a change of basis which
exchanges σz↔ σx .
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Figure 9: a) Amplitude of the zero mode of the Jackiw-Rebbi model in position b)
Wigner-Weyl representation of the zero mode in phase space.

The Hamiltonian (44) is easily diagonalizable by introducing the bosonic creation-
annihilation operators a = (x + ∂x)/

p
2 and a† = (x − ∂x)/

p
2

Ĥ =
p

2

�

0 a†

a 0

�

. (45)

One can then easily check that Ĥ has a unique zero-mode (e−x2/2/
p

2π, 0)t (see figure 9) with
positive chirality in the convention Ĉ =

�

1 0
0 −1

�

.
The symbol of this Hamiltonian has the simple form

H =

�

0 x − ik
x + ik 0

�

, (46)

and its energy spectrum reads ±
p

k2 + x2 which indeed satisfies the gap condition when |x |
or |k| is large. Moreover, the symbol of the flatten Hamiltonian can be computed easily as
HF (x , k) = f (H(x , k)) = H(x , k)/

p

H(x , k)2. By using H(x , k)2 = (x2 + k2)1, we obtain

HF (x , k) =
1

p
x2 + k2

�

0 x − ik
x + ik 0

�

=

�

0 e−iφ

eiφ 0

�

, (47)

which yields the expression for U = eiφ . One can then compute U†dU = idθ so that the
winding number W⟲ = 1

2iπ

∫

S1 Trint(U†dU) gives W⟲ = 1 in agreement with the number of
chiral zero-modes.

Validity of the semi-classical limit

In this example, we have ∂x/kH = σx/y and therefore ∥∂x/kH∥ = 1, which does not decrease
when (x , k) is large. However, because the gap of H(x , k) varies as

p
x2 + k2, our definition of

1/dx/k = ∥∂x/kH(x , k)∥/∆(x , k) yields 1/dx/k = O(1/
p

x2 + k2) and hence 1/(dx dk) −→ 0. So,
this is an example where, even though the variations of the symbol do not vanish at infinity,
we still have an exact semi-classical limit because those variations become small compared to
the gap.

3.4 Discrete approximations of continuous/unbounded topological models

In the previous section, we introduced the topological Hamiltonian (44) which acts on a con-
tinuous system that is unbounded both in position and wavenumber spaces. However, in prac-
tice, there are physical or numerical limitations which impose bounds on the validity of the
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model at high position/wavenumber. It is therefore instructive to study finite versions of such
models with cut-offs in wavenumber and position, i.e. models defined on a lattice of length L
with a lattice spacing a. Such discretizations are not unique and may lead to different lattice
models with different additional zero-modes, and thus different topological characterizations,
all of them captured with the mode-shell correspondence. We discuss this point for different
discretizations of the Jackiw-Rebbi model (44) in this section, that may be skipped at first
reading.

For example, the Hamiltonian (44) can be seen as a continuous limit of a discrete SSH
Hamiltonian with varying coefficients. If one takes the symbol of the discrete SSH model (31)
and replaces the constant coefficients t and t ′ by t ′ = 1/a and t = −1/a+sin(2πx/L)L/(2π),
one obtains a discrete Hamiltonian on a finite lattice of lattice spacing a and length L >> a
with periodic boundary conditions, whose symbol reads

HI(x , k) =

�

0 sin
�2πx

L

� L
2π +

e−ika−1
a

sin
�2πx

L

� L
2π +

eika−1
a 0

�

, (48)

and which, by construction, approximates the Jackiw-Rebbi model in the limit a −→ 0 and
L −→ +∞.

We now want to determine the points (x , k) of phase space where band crossings occur
at zero-energy (see figure 10). Indeed, if such singular points exist and are surrounded by
sufficiently large gapped regions in phase space, their non-zero winding number would be
associated with topologically protected chiral zero-modes at the operator level (see figure 11).
Those points are solution of the equation

sin(2πx/L)L/(2π)+(eika−1)/a = 0 ⇐⇒
�

sin(ak)/a = 0 ,
(cos(ka)− 1)/a+ sin(2πx/L)L/(2π) = 0 .

(49)

This system has the expected solution (x , k) = (0,0) of winding number W⟲ = +1 consistently
with the fact that this model is built in order to approximate the continuous Jackiw-Rebbi
model whose symbol (46) also has this singular point. However, due to the discretisation pro-
cess, we also get another singular point (x , k) = (L/2, 0) = (−L/2, 0) (due to the L periodicity
in x), and whose winding number is found to be W⟲ = −1 (see figure 10). The two winding
numbers therefore sum up to zero as it is expected for finite lattices with equal number of sites
of positive/negative chirality. This is due to the fact the total chiral number of zero modes of
a finite Hilbert space is given by Imodes where the cut-off is the identity θΓ = 1. Therefore
its corresponding shell index (9) must vanish ([1, ĤF ] = 0). The existence of such a second
singular point due to the discretisation process is therefore topologically constrained.

Note that those two singular points are the only existing ones when 4π/(aL) > 1. In the
case 4π/(aL) < 1, two other points also appear at (x , k) = (arcsin(4π/(aL))/(2π)L,π/a)
and (x , k) = (L/2− arcsin(4π/(aL))/(2π)L,π/a) which are also characterized by a non-zero
winding numbers that sum up to zero. For the sake of brevity and simplicity, we shall however
only focus our discussion on the case 4π/(aL)> 1 that yields only two singular points.

In that case, the two chiral zero-modes associated, at the operator level, to these two
degeneracy points of opposite winding numbers, resemble the two edge states of the standard
SSH model with open boundary conditions, in that they are well separated in position space,
around x = 0 and x = L/2, the only difference being that the new system displays smoother
interfaces. Therefore, one can also apply the usual bulk-edge correspondence, by relating the
existence of a topological zero-mode with the difference of Brillouin zone winding numbers
W↑ far to the left/right side of the mode in position space (vertical dashed lines in figure 10).
The two results agree i.e. the value of the winding number W⟲, when the shell circles around
a zero-energy degeneracy point, corresponds to the difference of the Brillouin zone winding
numbers W↑ from each side of the interface (see figure 10).
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Figure 10: (top) Energies of the symbol Hamiltonians for (left) the model HI in the
regime 4π/(aL) > 1, (center) the model HII in the regime La/π > 1 and (right)
the model HIII. (bottom) Position of the gap closing points of in phase space. Those
positions are denoted by a red/blue dot depending on the chirality of the zero-mode
associated to them at the operator level (light color is used for the equivalent periodic
images). The different values of the winding number W is enhanced by a red/blue/-
green color.

One should nevertheless notice that this equivalence is only well established here because
there is no other singular mode in the vertical line (x = 0, k ∈ [0,2π/a]) and so that the circle
surrounding a degeneracy point can be smoothly deformed into two vertical lines along the
Brillouin zone without crossing another band crossing. This is not always the case, and a good
illustration is the following dual model of (48) where position and wavenumber play inverted
roles

HII(x , k) =

�

0 −i sin(ak)
a + i(e−i2πx/L − 1) L

2π

i sin(ak)
a − i(ei2πx/L − 1) L

2π 0

�

. (50)

The Jackiw-Rebbi model is again recovered in the limit a −→ 0, L −→ +∞, but this second
discretized model also exhibits two singular points (in the regime La/π > 1) (x , k) = (0,0) and
(x , k) = (0,π/a)which are now separated in wavenumber space rather than in position space.
The associated chiral zero-modes, at the operator level, are thus only separated in wavenumber
space, unlike the previous discrete model.8 As such, the difference of Brillouin zone winding
numbers W↑ vanishes and is thus unable to detect the existence of chiral zero-modes. This is an
example where the bulk-edge correspondence of a discretized version of a continuous model is
not appropriate to identify chiral zero-modes, while the mixed x − k correspondence, applied
locally in phase space, still is. The difference of position winding numbersW→ along horizontal
lines of positive/negative wavenumber – as in the bounded continuous case of section 3.2 –
however coincides with the value of W⟲, since no low-wavenumber singular points is here to

8As discussed at the end of section 3.2, this makes the zero-modes typically less protected in condensed matter
applications as they can now be mixed due to scattering induced e.g. by impurities, which induces long range
wavenumber couplings in phase space.

26

https://scipost.org
https://scipost.org/SciPostPhys.17.2.060


SciPost Phys. 17, 060 (2024)

Figure 11: Plots of the different zero-modes of the operator associated to the symbol
(left) HI, (center) HII, and (right) HIII with L = 20 and a = 0.4. We plot in red/orange
the modes of positive chirality and in blue/purple the modes of negative chirality
in real space and Fourier space. All those modes are zero-modes in a very good
approximation ∥H |ψ〉 ∥< 10−9.

prevent the deformation of the circle contour into the horizontal one.
Finally, since the topological index only accounts for modes localised both in position and

wavenumber spaces, pairs of spurious zero-modes of opposite chirality separated in either or
both position/wavenumber directions could appear when one studies finite approximations of
a continuous model. A last example where zero-modes appear on both directions is provided
by the model

HIII(x , k) =

�

0 −i sin(ak)
a + sin(2πx/L) L

2π

i sin(ak)
a − sin(2πx/L) L

2π 0

�

, (51)

which again converges to the Jackiw-Rebbi model in the limit L −→ +∞ and a −→ 0, but dis-
plays now 4 singular points in phase space: 2 of winding number W⟲ = +1 at (x , k) = 0
and (x , k) = (L/2,π/a), and 2 of winding number W⟲ = −1 at (x , k) = (L/2,0) and
(x , k) = (0,π/a). Therefore, the only winding numbers that can detect the presence of chiral
zero-modes are the W⟲’s of the mixed x − k mode-shell correspondence, that are evaluated
on (x − k)-circle in phase space, since the position and Brillouin zone winding numbers W→
and W↑ both vanish.

Those three examples illustrate why the mode-shell correspondence is a natural and gen-
eral formalism to describe in a unified fashion the existence of all the topologically protected
chiral zero-modes. The bulk-edge correspondence and the low-high-wavenumber correspon-
dence are just particular cases which, alone, are not always able to predict the existence of
topologically protected chiral zero-modes.

4 Higher dimensional chiral mode-shell correspondences

4.1 Expression of the general chiral index

In the previous sections, we focused on the mode-shell correspondence in systems of dimension
D = 1 since this is where the semi-classical invariant takes the simplest forms. However
the mode-shell correspondence generalizes when chiral zero-modes are embedded in a space
of higher dimension D > 1. While this correspondence can still easily be shown to satisfy
Imodes = Ishell, the main difficulty is to obtain a semi-classical expression of the invariant
Ishell.

To understand why there is a difficulty in higher dimension, let us start in D = 1 dimension,
but take into account the lattice polarisation terms Tr Ĉ θ̂Γ in the mode-shell correspondence
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(11). As we show in appendix D the naive semi-classical expansion of Ishell becomes

Ishell =
∑

α

CαΓ +W+ −W− +O(1/Γ ) , (52)

which contains the expected difference of winding numbers W+ −W− but also a diverging
term in Γ , proportional to

∑

α Cα, which is the chiral polarisation of the sites in the unit cell.
We argue that, in fact, since Ishell is finite under the gap condition, the term

∑

α CαΓ must
vanish through the condition

∑

α Cα = 0.
Actually, this expression is reminiscent of what occurs in higher-dimensional spaces. In-

deed, a naive semi-classical expansion of the shell index for D ⩾ 1 (i.e. with cut-off parameter
Γ −→ +∞), would lead to an expansion of the form

Ishell =
DI
∑

k=1

ckΓ
DI−k +O(1/Γ ) , (53)

where DI is the number of infinite dimensions (in position and in wavenumber) of the problem.
In the 1D case above c0 =

∑

α Cα and c1 = W+ −W−. In general, because the index must
converge toward an integer in the Γ −→ +∞ limit, some cancellations must occur so that
ck = 0 for k < DI and only the term cDI

remains, which turns out to be a (higher dimensional)-
winding number. However it is not easy to prove that ck = 0 for all k < DI , without demanding
that the index much converge toward the integer. More importantly, because we would need
to carry the naive semi-classical expansion of Ishell to a higher order term, in order to capture
the converging component cDI

, the number of terms in the expression of cDI
should rise, which

is difficult to manage and simplify.
In the appendix F, we develop a systematic method to make the cancellations apparent at

the level of the operators. We are therefore able to obtain an operator expression of the shell
index whose semi-classical limit gives directly the coefficient cDI

as the leading term. This
allows us to obtain a meaningful semi-classical expression of the shell index, as a generalized
winding number WD in 2D− 1 dimensions as

Ishell =
lim

−2(D!)
(2D)!(2iπ)D

∫

shell

Trint(U†dU)2D−1 ≡WD , (54)

which is the expression anticipated in the introductory general outlines (14). This is one of
the key results of this paper. We now provide some elements of the proof of this formula to
give some intuition of the result while keeping the more computational intensive part in the
appendix F.

Consider a D-dimensional system whose Hilbert space basis is labelled by Zn×Rm×J1, KK
with n + m = D, where n is the number of discrete dimensions, m is the number of con-
tinuous dimensions and K is the number of internal degrees of freedom. Sub-systems of
Zn ×Rm × J1, KK such as e.g. the discrete and continuous half-planes (N × Z and R+ ×R
respectively) as well as finite lattices, could also be included as we often have a natural way to
extend the sub-system Hamiltonian to a larger system by introducing trivial coefficients with
no inter-site coupling elsewhere.

After assuming this structure, we assign to each continuous dimension i a position opera-
tor x i and a wavenumber operator ∂x i

which satisfy [∂x i
, x i] = 1. Similarly, to each discrete

dimension i is assigned a position operator ni and a translation operator Ti which satisfy
T †

i ni Ti − ni = 1. To treat the continuous and discrete cases in a unified way, we can de-
fine the operator âi as â2 j = x j and â2 j+1 = i∂x j

in the continuous case, and as â2 j = T †
j n j

and â2 j+1 = −iT j in the discrete case, so that we have the single commutation relation
[â2 j+1, â2 j] = i1.
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Since this commutation relation is proportional to the identity, it allows us to use an ”in-
tegration by part trick”. Indeed, similarly to functions, where

∫

d xa(x) = −
∫

d x x∂x a(x), we
also have the following relation for operators

Tr Â= Tr
�

[∂x , x]Â
�

= −Tr
�

x[∂x , Â]
�

. (55)

In the appendix F we use such an integration by part to make some cancellations apparent at
the operator level, and thus obtain another expression of the shell index which reads

I = (−i)D
D!
(2D)!

 

Tr

 

2D
∑

j1... j2D=1

ϵ j1,..., j2D
Ĉ ĤF

2D−1
∏

l=1

[â jl , ĤF ][â2D, θ̂Γ]

!

+
1
2

Tr

 

2D
∑

j1... j2D=1

ϵ j1,..., j2D
Ĉ ĤF

2D
∏

l=1

[â jl , ĤF ][θ̂Γ, ĤF ]

!!

+O(Γ−∞) ,

(56)

where ε j1,··· , j2D
is the antisymetrised Levi-Civita tensor with orientation convention such that

(k1, x1, . . . , kD, xD) is a direct base. O(Γ−∞)means that the equality is valid up to terms which
decay faster than any polynomial in Γ .

The equality (56) can be obtained by assuming only that Ĥ is gapped deep inside the shell.
But if moreover the symbol H(x , k) admits a semi-classical limit when Γ −→ +∞, we can show
that (56) reduces to the simplified expression

Ishell =
lim

D!
(2D)!(−2iπ)D

∫

shell

Trint(CHF (dHF )
2D−1) , (57)

where dHF is now the differential 1-form of HF in phase space which replaces the commutators
[â jl , ĤF ]≈ i∂ jl ĤF in the semi-classical limit, dH2D−1

F is the 2D−1-wedge product of dHF , and
the shell is the 2D− 1 dimensional surface enclosing the zero-mode in phase space. The final
result (54) is then obtained by substituting HF by

HF =

�

0 U†

U 0

�

, (58)

in (57). Note that, by homotopy, this formula can also be transformed into

WD =
−2(D!)

(2D)!(2iπ)D

∫

shell

Trint(h−1dh)2D−1 , (59)

where h(x , k) is the lower off-diagonal block of the symbol H(x , k) (see (2)). The homotopy
invariance is obtained from the smooth deformation of h into U through the homotopic map
ht = h(1− t + t

p
h†h)−1, with t varying from 0 to 1.

In the next two sections, we present different examples of chiral topological systems in
higher (D > 1) dimensions and analyse how the mode-shell correspondence stated above
can be applied to those examples. In order to simplify the analysis, we focus on examples
in D = 2 dimensions. We present two general methods that provide those simple-to-analyse
higher-dimensional examples, combining lower-dimensional examples through tensor product
structures. The first method, that we refer to as the multiplicative tensor product construction
and denote with the symbol ⊠, yields examples of weak insulators, that exhibit a macroscopic
number of boundary states, while the second method, that we refer to as the additive tensor
product construction and denote with the symbol ⊞, provides examples of higher-order insu-
lators that exhibit e.g. corner states (see figure 12). The systems serving as building blocks for
these construction can be discrete or continuous, and of any dimension. Also, those construc-
tions can be combined or used multiple times to create examples in even higher dimension
(see figure 13 for D = 3).
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Figure 12: Sketched of 2D lattices built out of (a) the multiplicative tensor product
construction and (b) the additive tensor product construction, from lower dimen-
sional Hamiltonians HA and HB. The density of the zero-modes is represented in
red/blue depending on their positive/negative chirality; while grey sites denote non
chirality. The thickness of the bounds represent the amplitude of the coupling.

4.2 Chiral Weak-insulators and flat-band topology

One way to engineer topological states in higher dimension is to stack 1D topological systems,
such like SSH chains. We would then have a number of gapless modes growing extensively
with the transverse size (say y) of the sample as it would be equal to the number of copies Ny .
The zero-modes would then gradually form a flat zero-energy band in this transverse direction,
a phenomenon observed experimentally [99,100,103,114].

Such stacked systems result is what is often called “weak topological insulators” in the
literature [114–123]. Stacked versions of 2D quantum spin Hall [20,21,124] or quantum Hall
[125] phases are other 3D examples beyond the chiral. The adjective “weak” was originally
used since the edge states were first expected not to be topologically protected against disorder
or inter-layer couplings [115,116], but it was later realized that they turned out to be robust to
such kinds of perturbations [117–120]making the terminology nowadays a little bit outdated.
Also, a weak topological insulator is usually characterized by a topological index associated to
a reduced Brillouin zone (and thus dubbed weak invariant) in contrast with strong topological
insulators whose (strong) invariants encompass the entire Brillouin zone. We recall that 1D
strong chiral topological insulators are the only strong insulators that are captured by the chiral
index defined in this paper. The mode-shell correspondence with higher-dimensional strong
invariants will be exposed in a follow up paper.

In this section, we analyse chiral weak insulators through the mode-shell correspondence.
To do so, we consider 2D systems, such as those depicted in figure 14 and 15, where the left
and right edges host a macroscopic number of edge modes in the y direction. To select the
leftmost extended edge states, we then choose a cut-off operator which is uniform in the y
direction and localised near the left edge. Next, if the system is such that its bulk is gapped, and
if its upper and lower edges are also gapped, then the invariant I = Tr

�

Ĉ(1− Ĥ2
F )θ̂Γ

�

can be
shown to be quantised as in the 1D case. The only difference with the 1D case is that the index
I is (macroscopically) much larger and depends of the transverse length Ny of the lattice. The
proof of the quantisation of the number of edge modes only requires chiral symmetry and is
insensitive to the presence of disorder or inter-layer couplings, which shows the robustness of
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Figure 13: Sketches of possible of 3D topological systems obtained by applying (left)
twice the additive tensor product construction yielding zero-modes corner states,
(center) both the additive and the multiplicative tensor product construction, pro-
viding an extensive number of zero-modes states localised on hinges, and (right)
twice the multiplicative tensor product construction leading to an extensive number
of zero-modes states localised on surfaces.

those modes.
Let us now compute the shell invariant in phase space using the Wigner-Weyl transform.

One gets

I = 1
2

∑

(x ,y)∈L

∫ 2π

0

dkx

2π

∫ 2π

0

dky

2π
Trint(C ⋆HF ⋆ [θΓ , HF ]⋆) . (60)

The next step is to perform a semi-classical expansion in terms of 1/Γ and keep the dominant
term. To be valid, this approximation requires the Hamiltonian to vary slowly in position
(x , y) (see section 2.5); this is valid in the major part of the shell which is in the bulk as we
have translation invariance in both directions. However, it is invalid near the upper and lower
edges since there the Hamiltonian varies sharply in the y direction. If we were ignoring the
perturbations due to the edges, we would be allowed to perform a semi-classical expansion in
both directions and we would get a bulk index I b ∼ I

I b =
lim

1
2

∫ 2π

0

dky

2π

∫ 2π

0

dkx

2π
Trint(CH b

F i∂kx
H b

F

∑

(x ,y)∈L
δxθΓ (x , y))

=
lim

Ny

∫ 2π

0

dky

2π

∫ 2π

0

dkx

4iπ
Trint(CH b

F∂kx
H b

F ) ,

(61)

where Ny is the number of stacked chains and H b
F is the symbol of ĤF in the bulk. In the right

hand-side of the expression, the term

1
4iπ

∫

kx∈[0,2π],ky=ky0

dkx Trint(CH b
F∂kx

H b
F )≡ Iweak(ky0

) , (62)

is known to be a topological invariant which remains constant when deforming the symbol H b
F

without closing the gap. As a result, it does not depend on the choice of ky0
, so the average

∫ 2π
0 dkx can be replaced by the integration over any line of constant ky in Fourier space. Such
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Figure 14: Two examples of lattices with a macroscopic number of chiral zero-modes
on the left vertical edge. (Left) Stacking of topological chiral SSH chains in the verti-
cal direction with inter-layer couplings that preserve chiral symmetry. (Right) Stack-
ing of staggered trivial and topological SSH chains that preserve chiral symmetry.
This example has the advantage of involving only nearest neighbour interactions
without breaking chiral symmetry. To compute the macroscopic topological index
associated to these lattices, one needs to chose a cut-off which is uniform in the ver-
tical coordinate and decreases only in the horizontal coordinate.

an invariant is sometimes called weak invariant because the integration only runs over a one-
dimensional path while the system is two-dimensional. The bulk invariant then reads

I b = Ny Iweak . (63)

By ignoring the effect of the edges, I b is in principle an approximation of I. To recover I, one
thus needs to add a correction term ∆edge coming from the fact that the actual Hamiltonian
near the edges at y = 0 and y = L y differs from the bulk Hamiltonian, that is

I = I b +∆edge . (64)

This correction can be computed numerically by evaluating I before the semi-classical expan-
sion. Since I, Ny and Iweak are all integers, ∆edge must also be an integer and its specific
value may a priori depend on the boundary conditions. However, since the correction term
only originates from the sites located close to a boundary, this term is bounded and thus cannot
scale with Ny . As a result, even the strangest boundary condition cannot change the fact that
there is a macroscopic number of zero-modes localised on the left edge of the 2D lattice. In
fact even if one has a boundary condition that closes the gap on the upper/lower boundary, the
computation above mostly remains the same and we still have the relation (64). Furthermore,
since the chiral index also reads I = Tr Ĉ(1− Ĥ2

F )θ̂Γ , and since (1− Ĥ2
F ) is only non-zero for

modes of very small energy, it follows that there should be a macroscopic number of very small
energy modes on the left edge. However, I and ∆edge may in that case no longer be integers
and deviate from quantisation. But the massive polarisation of the zero-modes remains. Those
are still protected as long as Iweak ̸= 0 which is guaranteed since Iweak is a bulk topological
invariant which cannot change as long as there is a bulk gap.

It should be noted that weak invariants are also used to prove the existence of edge Fermi
arcs in semi-metals like graphene and Weyl semimetals [103, 125, 126]. If we decide to not
add this example in order to not further lengthen the size of the article, it can be understood
in a similar manner as the previous presentation, the only difference being that we have to
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Figure 15: Phase space representation of the zero-modes (in red and blue) and the
shell (in green) for weak insulators such as depicted in figure 14. In the bulk where
semi-classical limit occurs, the shell invariant can be reduced to a weak invariant
which is a winding number in the kx direction (green arrows) and a multiplicative
constant depending on the y and ky directions.

introduce, in the definition of the index, a cut-off in wavenumber space of the direction tangent
to the edge in order to select the part of the Fourier space where Fermi arcs exists (between
the edge projection of two bulk Dirac/Weyl cones where the bulk gap closes).

Multiplicative tensor product construction ⊠, for chiral weak insulators

In this section, we present a simple but general mathematical procedure to generate such
staking of chiral topological systems. At the Hamiltonian level, it simply consists in defining a
Hamiltonian Ĥ as the tensor product of two lower dimensional gapped Hamiltonians ĤA and
ĤB [127] as

Ĥ = ĤA⊗ ĤB , (65)

where ĤA is chiral symmetric, while ĤB encodes the coupling between the stacked copies. Such
a procedure was recently referred to as “multiplicative topology” in the literature [128–130].
If ĤA and ĤB are Hamiltonians on lattices or continuous spaces of dimension DA and DB, then
Ĥ is a Hamiltonian which acts on a D = DA+ DB dimensional space. Moreover, if we denote
by ĈA, the chiral symmetry operator of ĤA, then Ĥ has the chiral symmetry Ĉ = ĈA⊗1.

Importantly, the spectral properties of Ĥ are entirely determined by those of the sub-
systems ĤA and ĤB. Indeed, if

�

�ψA
n

�

is an eigenbasis of ĤA with energies EA
n and

�

�ψB
m

�

is an
eigenbasis of ĤB with energies EB

m, then
�

�ψA
n

�

⊗
�

�ψB
m

�

is an eigenbasis of Ĥ with energies EA
n EB

m.
In particular the zero-modes of Ĥ are those which are of the form (or a linear combination of)
�

�ψA
n

�

⊗
�

�ψB
m

�

where either
�

�ψA
n

�

or
�

�ψB
m

�

a zero-mode. This means that if ĤB acts on a finite

space with N sites, then for each zero-mode
�

�

�ψA
n0

¶

of ĤA, one can associate N zero-modes of

Ĥ since no matter what is
�

�ψB
m

�

,
�

�

�ψA
n0

¶

⊗
�

�ψB
m

�

remains a zero-mode.

In particular, if ĤA is just the identity operator on a finite lattice of Ny sites, i.e.

ĤB =
∑Ny

j=1 | j〉 〈 j|, then Ĥ = ĤA ⊗ ĤB is just the Hamiltonian of Ny stacked copies of topo-

logical chiral systems described by ĤA with no coupling between the different copies. If IA is
the non-trivial chiral topological index of Ĥ1 with respect to a cut-off operator θ̂Γ , and if ĤB
is gapped, then, as we detail below, one can check that Ĥ has also a well defined topological
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Figure 16: Tensor product structure which generates the model illustrated in figure
14 a) The left model, given by HA is a topological SSH models. The right model,
given by HB, is a 1D chain with some on-site and nearest neighbour couplings.

Figure 17: Tensor product structure which generates the model illustrated in figure
14 b) up to the addition, a posteriori, of inter-layer couplings. The left model, given
by HA is the superposition of a topological and trivial SSH models. The right model,
given by HB, is a trivial chain with constant onsite coupling ĤB =

∑

n |n〉 〈n|= 1.

index I associated to the cut-off operator θ̂Γ ⊗1 which is given by

I = IA× Ny . (66)

We thus naturally end up with a number of chiral zero-modes that grows extensively with the
stacking direction of the system. The zero-modes would then gradually form a zero energy
flat-band in this direction, a phenomenon observed experimentally [99,100,103,114].

Example 1: One can use this multiplicative construction to generate some of the lattices in
the figure 12 and 14. For example, the model described in the left parts of these figures can
be generated from the tensor product of a topological SSH model, i.e. Ĥ1 = ĤSSH given by
(29), with a simple non-chiral model of the form Ĥ2 =

∑

n |n〉 〈n|+t ′′(|n〉 〈n+ 1|+|n+ 1〉 〈n|)/2
which, in the bulk, has the symbol H2(n, k) = 1+t ′′ cos

�

ky

�

and is hence gapped when |t ′′|< 1.
In the multiplicative construction, the t ′′ coefficient then creates vertical couplings between
different SSH layers which preserve chiral symmetry and the existence of topological zero-
modes. The symbol of the tensored Hamiltonian Ĥ = Ĥ1 ⊗ Ĥ2 reads

H(nx , ny , kx , ky) =

�

0 t + t ′eikx

t + t ′e−ikx 0

�

�

1+ t ′′ cos
�

ky

��

, (67)

which is just the symbol of the SSH model multiplied by a scalar constant depending of ky .
Therefore, when computing the weak index Iweak(ky0

) as described by the formula (66), we
obtain that, for |t ′′|< 1, Iweak(ky0

) =W1 with W1 the winding number of the 1D SSH model.
The 1D mode-shell correspondence gives us I1 =W1 and the multiplicative structure implies
I = I1 × Ny . One can therefore verify that at the leading order in Ny we have

I ∼
Ny

Iweak(ky0
)Ny , (68)

which is indeed the result predicted by the mode-shell correspondence. In this system, this
relation is in fact an equality, due to the multiplicative structure which forbids edge corrections
of the formula to occur.

Example 2: One problem one may have with the above example is that nearest neighbour
couplings are forbidden because they would break chiral symmetry. There are models which
do not have this drawback. For example, one could first stack a topological chain with a trivial
SSH chain as depicted in figure 17 and then use the tensor product construction to create a 2D
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stack of this two-layer quasi-1D model. If one adds nearest neighbour interactions between
the layers, one would then obtain the model depicted in the right part of the figure 14. This
inter-layer coupling breaks the multiplicative structure but the existence of chiral zero-modes
only relies on the chiral symmetry and on a gap on the shell, two assumptions which are not
broken by those couplings. So, as long as these inter-layer couplings are not too strong to close
the gap, the macroscopic number of chiral zero-modes on the left edge remains topologically
protected.

4.3 Higher-order chiral insulators

In this section, we discuss how the modes-shell correspondence can be applied to describe
higher-order chiral insulators which exhibit zero-modes localised in more than 1 dimensions.
To generate higher-dimensional chiral topological examples which are simple to study, we
follow a procedure that we call the additive tensor product construction and we refer to it by
the symbol ⊞. We use this method to generate two examples in D = 2: one lattice model
and one continuous model on which we verify, illustrate and discuss the predictions of the
mode-shell correspondence theory.

Additive tensor product construction ⊞ for higher-order chiral insulators

The additive tensor product construction is another procedure [131, 132] by which one can
generate a higher-dimensional topological chiral Hamiltonian Ĥ from two lower dimensional
Hamiltonians Ĥ1 and Ĥ2. It requires that both ĤA and ĤB are chiral symmetric with chiral
operators ĈA and ĈB respectively. A chiral higher dimensional Hamiltonian can then defined
as

Ĥ = ĤA⊗1+ĈA⊗ ĤB , (69)

or equivalently by substituting A by B. If this additive construction seems a little bit more
involved than the multiplicative one, the spectral properties of Ĥ are still determined by those
of Ĥ1 and Ĥ2 since

Ĥ2 = Ĥ2
A ⊗1+1⊗Ĥ2

B + {Ĥ1, Ĉ1} ⊗ Ĥ2 = Ĥ2
A ⊗1+1⊗Ĥ2

B . (70)

Therefore, if
�

�ψA
n

�

is an eigenbasis of ĤA with energies EA
n and

�

�ψB
m

�

is an eigenbasis of ĤB

with energies EB
m, then

�

�ψA
n

�

⊗
�

�ψB
m

�

is the eigenbasis of Ĥ2 with energies (EA
n)

2 + (EB
m)

2, so
that the eigenvalues of Ĥ are ±

Æ

(EA
n)2 + (EB

m)2. It follows that the zero-modes of Ĥ are of the

form
�

�

�ψA
n0

¶

⊗
�

�

�ψB
m0

¶

where
�

�

�ψA
n0

¶

and
�

�

�ψB
m0

¶

are zero-modes respectively of ĤA and ĤB. This

is quite different from the additive construction, since we need here the two Hamiltonians ĤA
and ĤB to have of zero-modes, and not only one of them. As a result, this procedure generates
higher order chiral insulators with few zero-modes, in contrast with weak chiral insulators
(see figure 12). Indeed, if ĤA and ĤB have each a well defined chiral topolgical index IA and
IB (with respect to the cut-off operators θ̂Γ ,A and θ̂Γ ,B), then one can check that Ĥ has also
a well defined chiral index I, associated to the cut-off operator θ̂Γ ,A ⊗ θ̂Γ ,B. We then use the

fact that the chiral polarisation of the zero-modes
�

�

�ψA
n0

¶

⊗
�

�

�ψB
m0

¶

is the product of the chiral

polarisation of each individual mode, which leads to

I = IA× IB . (71)

Of course, since the higher-dimensional Hamiltonian Ĥ is itself chiral symmetric, it can
serves as a new block to apply the procedure again. By induction, we get the more general
formula

Ĥ = Ĥ1 ⊗1⊗(N−1) + Ĉ1 ⊗ Ĥ2 ⊗1⊗(N−2) + · · ·+ Ĉ1 ⊗ · · · ⊗ ĈN−1 ⊗ ĤN , (72)
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of a chiral Hamiltonian resulting from the additive tensor product construction with N chi-
ral symmetric Hamiltonians Ĥ j of chiral symmetry operator Ĉ j and chiral topological index
I j ( j = 1 . . . N). The chiral symmetry operator of Ĥ is then given by the tensor product
Ĉ1 ⊗ · · · ⊗ ĈN , and the zero-modes of Ĥ have a chiral index I = I1 × · · · × IN .

The next two paragraphs are dedicated to two simple illustrations of the additive tensor
product construction in D = 2 and to the analysis of the resulting models through the higher-
dimensional mode-shell correspondence.

Example 1: 2D Jackiw-Rossi model with smooth potentials

We discuss an example of the higher-dimensional mode-shell correspondence for a chiral zero-
mode trapped at a domain wall where the Hamiltonian is smoothly varying. Such a situation
has been studied in the literature in the context of defects modes [48, 133]. It allows for a
full semi-classical limit of the shell index leading to the Teo and Kane formula in the case of
discrete lattice [48] and the Callias index formula in the continuous case [90]. As both discrete
and continuous cases are relatively similar, we made the choice to focus our attention to the
continuous case in this section.

For that purpose, we revisit the Jackiw-Rossi model [134] which follows from the same
construction as the BBH model above: The two-dimensional Jackiw-Rossi Hamiltonian Ĥ is ob-
tained by combining, in perpendicular directions x and y , two one-dimensional Jackiw-Rebbi
Hamiltonians ĤJR introduced in (44), by following the additive tensor product construction,
that is

Ĥ = ĤJR(x ,∂x)⊗1+σz ⊗ ĤJR(y,∂y) , (73)

where σz is the chiral-symmetric operator of the two underlying Jackiw-Rebbi models, and
which, in a more explicit form, reads

Ĥ =







0 y − ∂y x − ∂x 0
y + ∂y 0 0 x − ∂x
x + ∂x 0 0 −(y − ∂y)

0 x + ∂x −(y + ∂y) 0






. (74)

Similarly to the previous example with open conditions, this Hamiltonian has a chiral symme-
try with a chiral operator Ĉ = σz⊗σz . Writing Ĥ2 = Ĥ2

JR(x ,∂x)⊗1+1⊗Ĥ2
JR(y,∂y) implies that

the chiral zero-modes of Ĥ must also be chiral zero-modes of ĤJR(x ,∂x) and ĤJR(y,∂y) on each
part of the tensor product. Those modes must thus be of the form ψx⊗ψy = (e−(x

2+y2)/2, 0, 0, 0)t

where ψ(x) = (e−x2/2, 0)t is the zero-mode of the Jackiw-Rebbi model. Therefore, Ĥ has one
topological zero-mode of chirality +1 and thus I = 1 for the cut-off θ̂Γ = e−(x

2+y2−∂ 2
x −∂

2
y )/Γ

2

which acts here both in position and wavenumber. The corresponding shell is a 3D sphere
enclosing the chiral zero-mode in 4D phase space, as sketched in figure 18.

The symbol H of the Jackiw-Rossi Hamiltonian reads

H =

�

0 x − ikx
x + ikx 0

�

⊗1+σz ⊗
�

0 y − iky
y + iky 0

�

, (75)

from which we deduce

HF =
H

q

x2 + y2 + k2
x + k2

y

= cos(θ )
�

0 e−iφ1

eiφ1 0

�

⊗1+σz ⊗ sin(θ )
�

0 e−iφ2

eiφ2 0

�

,

(76)

where (θ ,φ1,φ2) ∈ [0,π/2]×[0,2π]2 are the Hopf-coordinates of S3. One can then compute
analytically

∫

S3 Trint(CHF dH3
F ) = −12(2π)2 which is exactly the normalisation needed to have

I = 1.
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Figure 18: Amplitude of the zero-modeψx⊗ψy = (e−(x
2+y2)/2, 0, 0, 0)t of the Hamil-

tonian (73) in real space (left) and in Fourier space (center). The cut-off operator
θ̂Γ = e−(x

2+y2−∂ 2
x −∂

2
y )/Γ

2
selects the zero-mode both in position and in wavenumber

directions. It is represented in green and has the form of a 4D-ball in phase space,
with the shell being a 3D sphere (right).

Example 2: The Benalcazar-Bernevig-Hughes (BBH) model with open boundary condi-
tions

Higher-order topological insulators (HOTI) constitute a class of systems where topological
zero-modes are embedded in a higher dimensional phase space. Those zero-modes could then
be trapped at the corners of a material where the trapping potential varies sharply at the
edges [23, 24, 132, 135–138]. The archetypal lattice model describing such a situation is the
Benalcazar, Bernevig, Hughes (BBH) model [23], depicted in figure 19, which essentially con-
sists in ”crossing” arrays of SSH models along the x and y directions such that chiral symmetry
is preserved. The resulting Hamiltonian follows the additive construction and reads

Ĥ = ĤSSH,x ⊗1+σz ⊗ ĤSSH,y , (77)

where σz is the chiral-symmetric operator of the two underlying SSH models, and which, in a
more explicit form, becomes

Ĥ =









0 t + t ′T †
y t + t ′T †

x 0
t + t ′Ty 0 0 t + t ′T †

x
t + t ′Tx 0 0 −(t + t ′T †

y )
0 t + t ′Tx −(t + t ′Ty) 0









, (78)

where Tx =
∑

nx ,ny

�

�nx + 1, ny

� 


nx , ny

�

� and Ty =
∑

nx ,ny

�

�nx , ny + 1
� 


nx , ny

�

� are the transla-
tion operators of one lattice unit along x and y respectively. We also impose open boundary
conditions as in figure 19.

The Hamiltonian Ĥ inherits chiral symmetry from the two underlying chiral symmetric
lower dimensional systems, and its chiral operator reads Ĉ = σz ⊗σz . The chiral zero-modes
of Ĥ can then be easily found: using the additive chiral construction, we know that the zero-
modes of Ĥ must also be zero-modes of ĤSSH,x and ĤSSH,y on each part of the tensor product.
They must therefore be of the formψx⊗ψy whereψx/y is the zero-mode in the x/y direction
of the SSH model. It follows that for |t ′|> |t|, where the SSH models are topological, the BBH
model Ĥ has one topological zero-mode of chirality +1 in its bottom-left corner, and therefore,
it has I = 1 for the cut-off θ̂Γ = e−(x

2+y2)/Γ 2
, which acts in both position directions.

The use of the shell invariant is, however, not as straightforward as in the previous cases.
The reason is that the shell, that encircles the corner of interest (see figure 19), runs not only
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Figure 19: Lattice BBH model with chiral zero-modes of positive/negative chirality
depicted in red/blue. The shell is shown in green, an example of unit cell is shown in
purple. The thickness of the links represents the strength of the coupling. The system
has open boundary conditions with edges given by the horizontal and vertical lines
x = 0, x = L, y = 0, y = L.

over the bulk but also over the sharp edges where the Hamiltonian does not vary smoothly.
Therefore, taking the limit Γ →∞ in the shell invariant does not guarantee the semi-classical
limit in every directions. As a consequence, we cannot derive an expression of the shell index
which is as simple as (54).

We can still simplify partially the expression by using the translation invariance of ĤF in
the direction parallel to each edge. In fact, one can show (see appendix G) that the index can
be written as the sum of two contributions Ishell = Iedge,x +Iedge,y where each contribution is
localised at one of the two edges and where we can use the Fourier transform in the direction
parallel to that edge. In particular, Iedge,x can be written as

Iedge,x =
−1
24π

∫ 2π

0

dkx T̃r
�

C̃ H̃F [d̃, H̃F ]
3
�

, (79)

where the notation ∼ means that the Wigner-Weyl transform is performed in the tangent di-
rection only. The operator d̃ is for example d̃ = ∂x dkx + T †

y ny d y − iTy dky . The expression of
Iedge,x is obtained by switching the x and y coordinates.

Since the semi-classical treatment is invalid in the perpendicular direction to the edge,
Iedge,x (or equivalently Iedge,y) remains cumbersome to manipulate by hand.So we prefer here
to evaluate Iedge,x/y numerically. This also gives us the opportunity to show explicit examples
of numerical codes that compute numerical approximations of the indices. Those can be found
in Appendix G. One of these codes computes the index Imodes directly from the initial formula
(8) while the other one compute Ishell using the formulation with partial semi-classical limit
(79). For lattices of length L = 10 sites, both codes give I = 1 up to a deviation of less than
1%, which validates numerically the mode-shell correspondence for the BBH model.

It should be mentioned that other approaches to tackle higher-order topological insula-
tors are known in the literature where the existence of topological modes is related to a pure
bulk quantity which does not depend on edge termination. This is referred to as “intrinsic”
higher-order topological insulators [139]. In general, such approaches require the existence
additional symmetries, typically of crystalline nature [139–144]. For instance, in [23], it was
shown that, due to the C4 rotational symmetry which is present in the BBH model, the quadru-
ple moment is a topological invariant in the bulk related to the number of corner modes. It
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would be interesting to understand if the shell index can be re-expressed, in an explicit way, as
a pure bulk quantity using such additional symmetry. Since the bulk has more symmetries, we
could expect analytical computation of the shell invariant. However, a strength of the mode-
shell correspondence formalism is to still show the existence of topologically protected zero
modes even for systems without these additional symmetries.

To summarize, we explained how the BBH model is an example of chiral higher-order insu-
lator with one topologically protected zero mode that fits into the mode-shell correspondence
paradigm. This is a case where a full semi-classical limit cannot be obtained and where an-
alytical expressions of the shell invariant are therefore difficult. However we used this last
example to show how the mode and shell invariants can, in general, be computed numeri-
cally. This is a strength of the formalism as, even if the semi-classical limit is useful to obtain
closed analytical expressions for the different pedagogical examples we discussed extensively
throughout this paper, it is not mandatory to address the zero-modes.

5 Conclusion

In this paper, we have proposed a unifying mode-shell correspondence theory, a powerful tool
in topological physics and in particular in the topology of wave operators. This correspon-
dence relates a spectral property of gapless systems in localised regions of phase space – here
the chiral number of zero-modes – to another topological invariant associated to a gapped op-
erator on the shell surrounding this region in phase space. This correspondence is particularly
useful since a semi-classical limit of the shell invariant can be derived in a lot of (but not all)
situations. This limit simplifies the expression of the shell invariant into (higher-dimensional)
winding numbers which are easier to calculate analytically.

We have shown that this correspondence unifies several results in wave topology, from
the bulk-edge correspondence, higher-order topological phases, to the Callias index formula
and the Atiyah-Singer index theory. We provided a wide variety of examples, for discrete and
continuous systems, in one and higher dimensions, to illustrate the mode-shell correspondence
in concrete models. In particular, we showed how the mode-shell correspondence describes
not only zero-energy edge states, but also zero-modes that can be more generally localized
in a region of phase space. We also discussed two systematic methods, dubbed “additive”
and “multiplicative” tensor products constructions, to simply elaborate topological examples
in higher D > 1 dimensions.

In this paper, we focused on the case where the mode index Imodes is the chiral number of
zero-dimensional zero-energy modes, since it already encompasses a rich variety of situations
which deserved a complete study. Similar mode-shell correspondences can be derived in cases
where the mode index is instead the 1D-spectral flow invariant, as for edge states of the 2D
quantum hall effect, or where the index gives the number of 2D-Dirac or 3D-Weyl points, which
can either be localised in wavenumber or be surface states of respectively 3D of 4D-insulators.
Those examples are planned to be addressed in the part II of this work that will establish the
mode-shell correspondence in higher dimensions for chiral and unitary classes.

A Smoothness/fast-decay Fourier duality

In this section, we recall some results about the links between the regularity of a function and
the fast decay of its Fourier transform/series at infinity. These properties are fundamental for
our purpose and are wildly used in the main text to make bridges between the dual behavior
in position and wavenumber spaces.
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Let f be a function of one variable x ∈R, then one can define its Fourier transform f̃ as a
function of the variable k ∈R as

f̃ (k) =

∫

d x f (x)e−ikx . (A.1)

If f is a periodic function with x ∈ [0, 2π], one can associate to f a Fourier series f̃ (k) with
discrete parameter k ∈Z such that

f̃ (k) =
1

2π

∫ 2π

0

d x f (x)e−ikx . (A.2)

Importantly, for both Fourier transforms and series, the smoother f is, the faster f̃ decays
when |k| →∞. The first result of this kind is the Riemman-Lebesge lemma that states that if
f is a continuous integrable function, then its Fourier transform or its Fourier series goes zero
at infinity:

f̃ (k)
|k|−→+∞
−−−−−−→ 0 . (A.3)

Combined with the well-known Fourier transform/series property that ˜(∂x f )(k) = ik f̃ (k)
this lemma implies that if f is a smooth function with N derivatives which are continuous,
then its Fourier transform must decays faster than k−N

f̃ (k) =
1
(ik)N

( ˜∂ N
x f )(k) = O

�

1
kN

�

. (A.4)

Moreover, since the Fourier transform is invertible, this property can be inverted and implies
that if the Fourier transform of a function decays sufficiently fast at infinity, then the initial
function must be smooth (with enough derivatives).

An example of how these considerations can be useful to study the properties of operators
is the following: Let f and g be two periodic functions on [0,2π] and consider the simple
Hamiltonian Ĥ such that

(Ĥ f )(x) = g(x) f (x) . (A.5)

Then, if one rewrites the operator in wavenumber space, we would have instead

(Ĥ f̃ )(k) =
∑

k′
f̃ (k− k′) g̃(k′) , (A.6)

so we see that the multiplication by a function in the initial space translates as a hopping prob-
lem in the dual space, where a hopping of a distance n has a strength ĝ(k). The regularity/fast-
decay is then quite useful since it implies that if g is a smooth function (say C∞) then ĝ(k)
decays fastly, making the dual problem a short-range one (and vice-versa), which constrains a
lot the properties of the dual problem.

These properties are important to relate the short-range behavior of the operator with the
smoothness of the Wigner-Weyl transform, which is the goal of the next appendix.

B Wigner-Weyl transform

B.1 The continuous version

In physics, there are a lot of situations where the relevant information of the system is encoded
by continuous (vector valued) functions of x ∈ Rd , and the properties of the systems are
described by operators which act on this space of function. In those cases, the Wigner-Weyl
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transform is a powerful tool which allows ourselves to map these operators into the simpler
objects which are the (matrix valued) functions on the phase space (x , k) ∈Rd ×Rd .

This transformation can be described as follows. If Â is an operator which acts on a function
f , then we can associate to this operator Â the function A(x , k) which is called the “symbol of
the operator” such that

A(x , k) =

∫

Rd

d x ′d



x + x ′/2
�

� Â
�

�x − x ′/2
�

e−ikx ′ , (B.1)

where



x ′
�

� Â |x〉 is in general called the “kernel” of Â. If one is not comfortable with the
notations of quantum mechanics, the kernel can also be denoted Âx ,x ′ and can be deter-
mined as the value in x ′ of the function Âδx where δx is the Dirac function centered in
x , x ′ −→ δ(x ′ − x). This kernel may not always be a well defined function in x and x ′

(see for example Â = ∂x) but is in general well defined as a distribution. In that case, one
may compute the symbol by first regularising the operator with a parameter ε (for example
Âε =

∫

x(|x〉 〈x + ε| − |x〉 〈x − ε|)/(2ε)), compute the symbol for the regularised operator and
then take the limit ε −→ 0. Using this, one can show that the symbol of ∂x is ik.

Since A(x , k) is defined using a Fourier transform, this formula can be inverted and from
the symbol one can determine the operator Â using the formula




x ′
�

� Â |x〉=
∫

Rd

dkd

(2π)d
A
�

x + x ′

2
, k
�

eik(x ′−x) . (B.2)

These definitions are extended straightforwardly to the case where functions are vectors
with internal degrees of freedom α. The symbol A(x , k) is replaced by a matrix valued
symbol A(x , k) = (Aα,α′(x , k))α,α′ and




x ′
�

� Â |x〉 should now be interpreted as a matrix
(



x ′,α
�

� Â
�

�x ,α′
�

)α,α′ .
A first property associated to this Wigner-Weyl transform is its behavior relative to the

trace. Indeed one can show that

Tr Â=

∫

Rd

d xd Trint 〈x | Â |x〉=
∫

Rd

d xd

∫

Rd

dkd

(2π)d
Trint A(x , k) , (B.3)

where Trint is the reduced trace only over the internal degrees of freedom α.
An other important property of Weyl-Wigner calculus we need to introduce is that dealing

with product of operators. If we define the Moyal ⋆-product of two symbols A⋆A′ as the symbol
of their operator Â◦ Â′, one can verify that such product can be written as

(A⋆ A′)(x , k) =

∫

((Rd )4
d x ′d d x ′′d

dk′d

πd

dk′′d

πd
A(x + x ′, k+ k′) A′(x + x ′′, k+ k′′)ei2(x ′k′′−x ′′k′) .

(B.4)
This formula can be proved by writing the formula of the symbol of Â ◦ Â′ in

function of the kernel



x ′
�

� Â ◦ Â′ |x〉. This kernel can then itself be expanded as



x ′
�

� Â◦Â′ |x〉=
∑

x ′′



x ′
�

� Â
�

�x ′′
� 


x ′′
�

� Â′ |x〉. Finally one uses the inversion formula for



x ′
�

� Â
�

�x ′′
�

and



x ′′
�

� Â′ |x〉, to recover an equation which only includes symbols and which can be reduced
to (B.4) up to some suitable changes of variables in x ′ ,x ′′, k′, k′′.

If the symbols A(x + x ′, k + k′) and A′(x + x ′′, k + k′′) are both smooth in x and k this
expression can then be expanded in terms involving higher order derivatives. To do so, let us
use the Taylor expansion

A(x + x ′, k+ k′) =
j+ j′=n
∑

j, j′=0

∂ j
x ∂

j′

k A(x , k)
x ′ j

j!
k′ j
′

j′!
+ R(x , k) , (B.5)
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where R(x , k) decays faster than ∥(x , k)∥n for x ′ and k′ small. If we substitute this
expansion into the Moyal product, we can write that x ′kei2x ′k′′ = 1

(2i) j ∂k′′e
i2x ′k′′ or

k′ j
′
e−i2x ′′k′ = 1

(−2i) j′
∂x ′′e

−i2x ′′k′ and integrate by part. We then obtain an expansion of the
Moyal product which is

(A⋆ A′)sym(x , k) =
j+ j′=n
∑

j, j′=0

(−1) j

j! j′!(2i) j+ j′
∂ j

x ∂
j′

k A(x , k)∂ j′
x ∂

j
k A′(x , k) + Error , (B.6)

where the error term can be explicitly bounded using the derivatives in n+ 1 in x and n′ + 1
in k of both symbols. From this expansion, one can notice that if both symbols are constant in
x , or in k, then the Moyal product is simplified a lot since it reduces to the simple product of
the symbols (A⋆ A′)(x , k) = A(x)A′(x) or (A⋆ A′)(x , k) = A(k)A′(k).

Importantly, for slow-varying symbols, we can perform a semi-classical expansion of
the Moyal product. For example, if we re-scale the symbols in one of the variables like
Aε(x , k) = A(εx , k) or Aε(x , k) = A(x ,εk) so that the symbols look like almost constant in
that variable in the limit ε −→ 0, then the expansion (B.6) becomes a perturbative expansion
in ε in that limit and we have

(Aε ⋆ A′ε) 1
ε
(x , k) =

j+ j′=n
∑

j, j′=0

(−1) jε j+ j′

j! j′!(2i) j+ j′
∂ j

x ∂
j′

k A(x , k)∂ j′
x ∂

j
k A′(x , k) +O(εn+1) . (B.7)

In particular, we obtain that for slow-varying fields, the product of operators can be replaced
by the product of their symbol at lowest (zeroth) order in ε

(Aε ⋆ A′ε) 1
ε
(x , k) = A(x , k)A′(x , k) +O(ε) . (B.8)

Also, the symbol of a commutator of operators [Â, Â′] is given by the Moyal commutator
[A, B]⋆ ≡ A ⋆ A′ − A′ ⋆ A of their symbols. A useful approximation is obtained in the same
as above by keeping now the first order in ε in the expansion

[Aε, A′ε]⋆, 1
ε
(x , k) = [A(x , k), A′(x , k)]−

ε

2i

�

[∂kA(x , k),∂xA′(x , k)]+ − [∂xA(x , k),∂kA′(x , k)]+
�

+O(ε2)

≡ [A(x , k), A′(x , k)] + εi{A, A′}(x , k) +O(ε2) , (B.9)

where [B, C]+ = BC + CB is just the usual symmetric sum (also called anti-commutator) and
{A, B} the Poisson bracket of the symbols. When A(x , k) and A′(x , k) commutes with each
other (for example when A(x , k) or A′(x , k) is scalar, as it is often the case in the paper), one
recovers the famous result that, at first order in ε, the symbol of the commutator is the Poisson
bracket of the symbols.

Criteria for the semi-classical limit. In order to estimate how good the semi-classical ap-
proximation A ⋆ A′ ∼ AA′ is for two symbols A and A′, one needs to check how small the first
order correction (∂xA∂kA′ − ∂xA∂kA′)(x , k) is compared to the product (AA′)(x , k). If we in-
troduce the quantities 1/dx/k,A(x , k)≡ ∥∂x/kA(x , k)∥∥A−1(x , k)∥, we can define the parameter
ε ≡ 1/(dx ,Adk,A′) + 1/(dk,Adx ,A′) which measures how small is the first order correction com-
pared to the standard product. When ε is small (ε ≪ 1), we can expect the semi-classical
approximation to be good, as higher order corrections (like terms ∂ 2

x A∂ 2
k A′ with higher deriva-

tive) should be even smaller (here of order ε2).9 Vice-versa when ε is not small, there is no
9It is possible to fine-tune examples where in some points of phase space, the first order corrections are small

but not the second order correction. However those examples are not really representative and our simple criteria
will be enough to understand why the semi-classical approximation is valid or not in all situations we encounter
in this paper.
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reason to think that the semi-classical approximation is a good one.
In this paper, we deal with mainly two types of Moyal products: one involving the symbol

of the Hamiltonian with the symbol of the cut-off operator H⋆θΓ , and one with only the symbol
of the Hamiltonian H ⋆ H (in the computation of the flatten Hamiltonian HF ). θΓ can always
be constructed to be slowly varying in the limit Γ −→ +∞ such that 1/dx/k,θΓ = O(1/Γ ), so the
semi-classical approxilation is always valid for the Moyal product H ⋆ θΓ in that limit.

The problematic products that need to be verified are the H ⋆ H ones. There, the semi-
classical criteria is 1/(dx ,H dk,H)≪ 1, which is the criteria given at the end of the section 2.5,
using the fact that if H(x , k) has a gap ∆(x , k), then ∥H−1(x , k)∥= 1/∆(x , k).

B.2 The discrete version

For discrete systems, which are defined on a lattice Zd rather than a continuous space Rd , the
usual Wigner-Weyl transform is not suitable and should instead be replaced by a discrete. If Â
is an operator acting on such a lattice, one can define its discrete symbol A(n, k) as

A(x , k) =
∑

n′∈Zd




n+ n′
�

� Â |n〉 e−ikn′ , (B.10)

where n ∈Zd is a discrete index, and k ∈ [0, 2π]d =Td is the equivalent of the Brillouin zone
parameter.

When defining the discrete transform, one cannot choose a symmetric convention similar
to the continuous one




x + x ′/n
�

� Â
�

�x − x ′/2
�

mainly because if n and n′ are sites of the lattice,
their average (n+ n′)/2 is not guaranteed to be a site of the lattice. Therefore, every discrete
conventions do not have all of the properties of the continuous ones. For example, having
Â= Â† does not imply A†(x , k) = A(x , k).

However, the discrete transform still has good enough properties for the purpose of this
article. The most important property is the fact that it is still a transform which maps, in a one
to one correspondence, operators and symbols in phase space, with an inverse map given by




n′
�

� Â |n〉=
∫

Td

dkd

(2π)d
A(n, k)eik(n′−n) . (B.11)

We also have a trace property which is quite similar to that of the continuous case

Tr Â=
∑

n∈Zd

Trint 〈n| Â |n〉=
∑

n∈Zd

∫

Td

dkd

(2π)d
Trint A(x , k) . (B.12)

The Moyal product associated to this discrete Wigner-Weyl transform is a little bit different
and can be expressed as

(A⋆ A′)(n, k) =
∑

n′∈Zd

∫

(Rd

dk′d

(2π)d
A(n+ n′, k) A′(n, k+ k′)ein′k′ , (B.13)

from which we could also theoretically make a semi-classical expansion when the symbol is
slowly varying in the n direction. Since the expressions become quickly more cumbersome
than in the continuous case, we will focus only on the zeroth and first orders of the expansion.
For that purpose, we recall that if δn f (n) = f (n+ 1)− f (n), then for slowly varying function
f , f (n+ n′) ≈ f (n) +δn f (n)n′ + . . . . If we substitute that expression into the Moyal product
we obtain

(A⋆ A′)(n, k)≈ A(n, k)A′(n, k) + iδnA(n, k)∂kA′(n, k) . (B.14)

43

https://scipost.org
https://scipost.org/SciPostPhys.17.2.060


SciPost Phys. 17, 060 (2024)

As a result, for slowly varying symbols, the leading coefficient of the symbol of a product
of operators is just the product of symbols

AA′(n, k)≈ A(n, k)A′(n, k) , (B.15)

and the first order expansion of the symbol of a commutator is

[A, A′]⋆(n, k)≈ [A(n, k), A′(n, k)] + i
�

δnA(n, k)∂kA′(n, k)− ∂kA(n, k)δnA′(n, k)
�

≈ [A(n, k), A′(n, k)] + i{A, A′}(n, k) ,
(B.16)

which is again just a Poisson bracket when the symbols commute.
Since we only look at the leading coefficients of the semi-classical expansions, these prop-

erties are enough for the purpose of this paper. In particular, the semi-classical limit will be the
same as in the continuous case, up to the fact that the continuous derivatives ∂x are replaced
by discrete derivatives δn.

C Short-range couplings in phase space

In multiple occasions, in the main text, we need the Hamiltonian to be local, meaning that we
are allowed to neglect couplings between different separated regions which are far enough
away from each other in phase space. For this property to hold, we need of course to assume
that the initial Hamiltonian is local i.e. its coefficients in position representation Ĥx ,y = 〈x | Ĥ |y〉
decay exponentially (or algebraically) with the distance |x− y|. The appendices A and B show
us that this is linked to the assumption that the symbol H(x , k) is smooth in the k variable.

The same assumption can also be made in wavenumber, by assuming that Ĥ is local in
wavenumber space, that is Ĥk,k′ = 〈k| Ĥ

�

�k′
�

also decays fast with the distance |k − k′|. Simi-
larly, this is related to the assumption that the symbol H(x , k) is smooth in the x variable.

However, those assumption are not the end of the story because, in our theory, we also need
to manipulate operators which are derived from the flatten Hamiltonian ĤF = f (Ĥ). Actually
the local assumption on Ĥ is transferred to ĤF if f is a smooth function of the energy [145].

In this section we present an idea of the proof of those results. We then explain how
simple continuous systems (the non-relativistic ones) violate such an hypothesis. We finally
argue how short-range behavior can be recovered in such systems if we localise in phase-space.

The idea to transfer short-range behavior from Ĥ to f (Ĥ) is to first use the formula

f (Ĥ) =

∫

d t f̃ (t)ei t Ĥ , (C.1)

where f̃ is the Fourier transform of f and ei t Ĥ is the usual time propagator. Such formula can
be proved using the usual definition of the Fourier transform in a diagonal basis of Ĥ.

This formulation with time propagators allows us to use the well-known result called the
Lieb-Robinson bound, which states that if Ĥx ,y decays exponentially fast, then ei t Ĥ

x ,y is also
bounded by

|ei t Ĥ
x ,y | ≤ et v−|x−y|/d , (C.2)

where v and d are constant which depends on how fast the couplings decays. We also have
equivalent inequalities for algebraic decays. For example it is simple to prove that in general

∥[ei t Ĥ , Â]∥ ≤ t∥[Ĥ, Â]∥ , (C.3)

which implies, when Â= X̂ is the position operator, that |ei t Ĥ
x ,y | ≤ t∥[Ĥ, X̂ ]∥/|x − y|.
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Then, combining those results with the fact that, when f is smooth, f̃ (t) decays quickly,
and therefore, that in the integral

∫

d t f̃ (t)ei t Ĥ only the evolution operators ei t Ĥ with relatively
small t contributes, it is possible to show that f (Ĥ) is also local.

We do not aim at digging too far into mathematical considerations and prefer to remain
voluntarily a bit vague here. However, rigorous results can be found for example in [98,145].
The key result we use is that, when the coefficients of Ĥ decay faster than any polynomial
in position or/and in wavenumber, then the coefficients of f (Ĥ) can also be shown to decay
faster than any polynomial, and it follows that the couplings over long distances can always
be neglected.

Hamiltonians that do not satisfy the Lieb-Robinson bound: Regarding the short range
properties in phase space, it is worth noticing that there are relevant physical Hamiltonians
that do not satisfy any common Lieb-Robinson bound because they do not verify the necessary
hypothesis that ∥[Ĥ, X̂ ]∥ is bounded.

Examples of such Hamiltonians are any non-relativistic Hamiltonians of the form
Ĥ = ∂ 2

x + V (x) which have no naive short range property in position space because
[Ĥ, X̂ ] = 2∂x is not a bounded operator. Moreover if the potential is the harmonic oscilla-
tor V (x) = x2, it can be also shown to not be local in wavenumber for the same reason in the
wavenumber basis.

To understand more intuitively why no usual locality propery can be found, one can look at
the classical limit of such Hamiltonians Ĥ(x , i∂x) −→ H(x , p)where the operator i∂x is replaced
by a classical momentum p and where the Schrödinger equation is replaced by the classical
Hamilton-Jacobi equations for the average position and momentum of the state as

∂t x = ∂pH(x , p) ,

∂t p = −∂x H(x , p) .
(C.4)

For example, if we take the Hamiltonian of a particle in an harmonic potential
H(x , p) = p2/(2m) + kx2/2) we obtain

∂t x = p/m ,

∂t p = −kx .
(C.5)

We can see that there is a priori no bound for how fast the position or the momentum
can change through time because if we start with an initial state of arbitrary high momentum
p, ∂t x = p/m will be large and position can change arbitrary fast, and vice versa if we start
with an initial state of arbitrary high position, because the force F = −kx is proportional to
x , position will also change arbitrary fast. The system is not relativistic so velocities are not
bounded.

The quantum Hamiltonian contains the previous system as a semi-classical limit, therefore
ei t Ĥ could not a forciori have short-range property in space or in wavenumber because it would
imply a bound on how fast position or momentum can change in the classical limit, which does
not exist.

However, in the classical system, it is well known that we can recover a bound on
the rate of change of position/momentum by bounding the initial energy of the system
E = p2/(2m) + kx2/2 ≤ E0. In the mode-shell correspondence, the cut-off θ̂Γ of symbols
θΓ ≈ e−(x

2+p2)/Γ 2
plays a similar role by bounding position and wavenumber as x2 + p2 ≲ Γ 2.

Therefore, in analogy to the classical case, one may be able to obtain a bound (relative to
the cut-off parameter) on how fast information can travel in phase space and therefore obtain
again the short range property necessary in the proof of the mode-shell correspondence.
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Figure 20: Example of a 1D chain with unbalanced unit-cells: the number of A sites
(positive chirality, red) is greater than that of B sites (negative chirality, blue).

We do not want to go into such kinds of technical aspects in our proof of the mode-shell
correspondence but want to signal that this is the kind of difficulties one will have to face if one
wants to prove the mode-shell correspondence with the rigorous standard of the mathematical
community.

D Beyond 1D lattices with balanced unit cells

In our proof of the bulk-edge correspondence, in section 3.1, we make the assumption
of unit cells with a balanced number of degrees of freedom A and B of opposite chirality
∑

α Cα = nA− nB = 0. We discuss here two situations where this assumption is broken.

Unit cells with unbalanced chirality

A first way to break the assumption of balanced unit cells, is to consider crystals where the num-
ber of degrees of freedom of opposite chirality differs in the unit cell, that is

∑

α Cα = nA−nB ̸= 0 ,
as depicted in figure20. In fact, this situation cannot happen in our framework because it is
incompatible with our assumption that the Hamiltonian is gapped far from the edge/interface.

Indeed, under the bulk gap assumption the edge index Imodes is finite and quantised
[98] in the limit Γ −→ +∞. But, at the same time, the general relation (11) gives
us I = Tr

�

Ĉ θ̂Γ
�

+ 1
2 Tr

�

Ĉ ĤF [θ̂Γ , ĤF ]
�

, where, as we show in the main text, the term
1
2 Tr

�

Ĉ ĤF [θ̂Γ , ĤF ]
�

converges to a difference of winding numbers and is therefore a finite
integer. It follows that the last term, Tr

�

Ĉ θ̂Γ
�

, must also be a finite integer. However,

Tr
�

Ĉ θ̂Γ
�

=
∑

n

∑

α Cαe−n2/Γ 2
roughly scales as ∼ (

∑

α Cα)Γ which tends to infinity in the limit
Γ −→ +∞ if

∑

α Cα ̸= 0. This contradiction implies that the unit cells must be balanced
∑

α Cα = 0, and that imbalanced unit cells are already implicitly incompatible with our initial
hypothesis that the Hamiltonian is gapped far away in the bulk.

Disordered chains without unit cells

A second way to not satisfy the balanced unit cell assumption is simply to not having a unit cell.
In physical systems, the translation invariant hypothesis of the bulk is not always satisfied as
there is often disorder that hinder this regularity. One can then wonder what is the relevance
of the semi-classical index in that case.

Let us first remember that the index Ishell from which the semi-classical index is derived
does not require any translation hypothesis to be quantised. Therefore, it remains quantised
under any small/smooth perturbation, as long as the bulk gap is not closed.10 One could thus
first compute the semi-classical index in an idealised system, as it is easier to evaluate, and
then extend the result by continuity.

10Note that the addition of site of positive/negative chirality is always an abrupt perturbation of the system
(there is an additional site or there is not). Therefore the chiral index may not and is not preserved under this
kinds of change of the systems.
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When the disorder becomes too large, that is when the system cannot be in reasonably
well approximated by a translation invariant system, one has no other choice than using the
initial index (8). This can reasonably be done numerically in a finite size system, even if it is a
little bit more time demanding. Typically, if the system has N unit cells and K internal degrees
of freedom, computing the index requires to diagonalise a matrix of size N ×K which compu-
tationally require approximately ≈ O((N ×K)3) numerical operations. This is to be compared
with the semi-classical index which only require to diagonalise M matrices but of reduced size
K (where M is the number of points in the discretisation we make of the Brillouin zone or
phase space). The semi-classical approximation thus allows for reducing the complexity to
O(M × K3) numerical operations, where importantly M is not risen to the power 3.

This is why it is preferable to use the winding number when semi-classical analysis is
possible in the bulk. Still, the computation of the original chiral invariant Imodes remains
viable numerically for 1D systems and is sometimes necessary for strongly disordered systems
(see for example [98] for numerical computations of the index in a disorder system).

E Existence of topological modes on closed manifold of odd
dimension: Less restrictive gap assumption than elliptic
condition

In section 3.2, we mentioned that the mode-shell correspondence intersects Atiyah-Singer in-
dex theory in the case where modes are localised in wavenumber on bounded manifold. We
then presented a 1D example where the manifold is a circle and where we obtained such
modes. Actually, in the literature about the Atiyah-Singer theorem, it is stated that in odd
dimension, the index of any differential operator should be zero. Therefore, it may be surpris-
ing that a model like (37), in D = 1, exists. This apparent contradiction can be explained by
the fact that Atiyah-Singer theorem makes the assumption that Ĥ is elliptic [93,95,96] which
requires that the polynomial expression of the symbol H with highest degree in k, called the
principal symbol Hpr, is invertible (i.e. gapped in our vocabulary) when k ̸= 0.

Indeed, a principal symbol Hpr of order n in k always have the symmetry Hpr(x ,−k) =
(−1)nHpr(x , k) because (−k)n = (−1)nkn. Therefore, when a principal symbol is gapped, we
have the “asymptotic” symmetry HF (x ,−k) =

lim
Hpr,F (x ,−k) = (−1)nHpr,F (x , k) =

lim
(−1)nHF (x , k)

when |k| −→ +∞ and thus U(x ,−k) = (−1)nU(x , k). Substituting this relation in the formula
(36) implies I = −I so that the chiral index vanishes. In the more general case, given by
(14), the shell can be a D-dimensional torus and we obtain in that case I = (−1)DI. We thus
recover the result that the index should vanish in odd dimension.

This conclusion however does not hold for our model (37), because our theory lies on
gap assumption, which is less restrictive than the an elliptic assumption. In particular, the
principal symbol of our model (37) reads Hpr = iεk sin(x)σy (with σy the standard Pauli
matrix), which is not uniformly gapped, because the gap closes for k ̸= 0 in x = 0 and x = π.
The elliptic condition is thus broken. Instead, we have considered the full symbol H(x , p) of
Ĥ that also includes the component of order zero in k and that satisfies our gap assumption
(see (38)). The topological properties of such systems are thus not captured if we impose the
elliptic condition. The gap condition of the full symbol, therefore, allows for more topological
models to exist.
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F Derivation of the semi-classical expression (14) of the shell
index for chiral zero-modes

Here we provide a derivation of the semi-classical expression of the shell index as a generalized
winding number (14) for a chiral symmetric Hamiltonian [ĤF , Ĉ]+ = ĤF Ĉ + Ĉ ĤF = 0 defined
on either a continuous or discrete space.

Mathematical framework and strategy of the demonstration

Let us set to K the number of internal degrees of freedom and let us consider that the space is
continuous in m dimensions, and discrete in n dimensions, so that the total dimension of the
system is m+ n= D. To each continuous dimension j, we assign a position operator x j and a
wavenumber operator ∂x j

which verify [∂x j
, x j] = 1. Similarly, for each discrete dimension j,

we introduce a translation operator T j and a position operator n j which verify T †
j n j T j−n j = 1.

To treat discrete and continuous spaces on the same footing, we introduce the operator â j such
that â2 j = x j and â2 j+1 = i∂x j

in the continuous case and â2 j = T †
j n j and â2 j+1 = −iT j in the

discrete case. This way, we obtain a single commutation relation [â2 j , â2 j+1] = −i1 for both
continuous and discrete spaces.

Next, we introduce a differential form formalism in phase space to automatically anti-
symmetrize our expressions, which will simplify the calculations later. Phase space is spanned
by x j and k j coordinates. Forms on phase space will be decomposed over d x j and dk j , and
their exterior ∧-products that verify the anti-symmetric exterior algebra dz j∧dz i = −dz i∧dz j ,
where z stands for both x and k. We then introduce the operator-valued 1-form

α̂≡
D
∑

j=1

â2 jd x j + â2 j+1dk j , (F.1)

whose square is related to the canonical symplectic form ω=
∑D

j=1 dk j ∧ d x j as

α̂2 = i1ω , (F.2)

from which we deduce

α̂2D = D! iD1ωD , (F.3)

where 1 is there to emphasize that α̂2, and thus any even power of α̂, and in particular α̂2D,
are not operator-valued anymore; they commute with any operator and can even be inserted
into operator-valued expressions for free, a trick we will use below. Instead, those forms are
simply 2-form and 2D-form respectively. In particular, α̂2D has the higher possible rank for
a form in phase space, and has thus only one component proportional to the element basis
dk1 ∧ d x1 ∧ · · · ∧ dkD ∧ d x D. In order to re-express the chiral index Ishell = I, we shall thus
interpret it as the coefficient of the operator-valued differential form ι = IωD that has also
the same unique element basis, so that I is the unique component of this 2D-form. Recalling

I = Tr
�

Ĉ θ̂Γ
�

+
1
2

Tr
�

Ĉ ĤF [θ̂Γ , ĤF ]
�

, (F.4)

one can insert (F.3) into it to get

ι =
(−i)D

D!

�

Tr
�

Ĉ α̂2D θ̂Γ
�

+
1
2

Tr
�

Ĉ α̂2D ĤF [θ̂Γ , ĤF ]
�

�

. (F.5)
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Interestingly, the second term of this expression involves a commutator [θ̂Γ , ĤF ] which takes
non vanishing value only on the shell where, by definition, θ̂ is not constant. We can make
apparent a similar commutator on the first term also, by using the odd trace cyclicity property
for α̂ with an operator Â

Tr
�

α̂ α̂2D−1 Â
�

= −Tr
�

α̂2D−1 Âα̂
�

, (F.6)

where the minus sign is due to the fact that α̂ is a form. One obtains

ι =
(−i)D

D! 2

�

Tr
�

Ĉ α̂2D−1[α̂, θ̂Γ ]
�

+ Tr
�

Ĉ α̂2D ĤF [θ̂Γ , ĤF ]
��

. (F.7)

Now both terms of this expression involve a commutator of the form [Â, θ̂Γ ]. Those com-
mutators peak the value of each trace in regions of phase space where HF is gapped, because
θ̂Γ ≈ 1 or θ̂Γ ≈ 0 where HF is gapless (which leads to a vanishing commutator). Moreover, in
the gapped region of phase space, we have Ĥ2

F ≈ 1. Therefore, all the operators of the forms
(1− Ĥ2

F )B̂[Â, θ̂Γ ] or [1− Ĥ2
F , θ̂Γ ] become quickly negligible when Γ tends to infinity, typically

faster than any power 1/Γ n in Γ (as long as Â and B̂ are local operators in phase space). In
the rest of the proof, all the equalities we write should be understood as approximations up to
these fast decaying corrections.

The strategy of the demonstration is to use such properties to show by induction that

ι =
(−1)l l!2(−i)D

D!(2l)!

�

Tr
�

Ĉ α̂2D−2l ĤF [α̂, ĤF ]
2l−1[α̂, θ̂Γ ]

�

+
1
2

Tr
�

Ĉ α̂2D−2l ĤF [α̂, ĤF ]
2l[θ̂Γ , ĤF ]

�

�

,

(F.8)
for l ≤ D and then apply it for l = D. Then, we expand semi-classically this expression by
taking the limit Γ → ∞ to find the relation between the chiral index and the generalized
winding numbers (14). In the following, we detail the derivation into three steps: (1) the
proof of the initialisation for l = 1, (2) the proof of the induction by deriving the formula for
l + 1 from that for l, and finally (3) perform the semi-classical expansion for l = D.

Initialisation of the induction, l = 1

Initializing the induction amounts to show that

ι = −
(−i)D

D! 2

�

Tr
�

Ĉ α̂2D−2 ĤF [α̂, ĤF ][α̂, θ̂Γ ]
�

+
1
2

Tr
�

Ĉ α̂2D−2 ĤF [α̂, ĤF ]
2[θ̂Γ , ĤF ]

�

�

. (F.9)

To do so, let us start by massaging the first trace in (F.7) to reveal the commutator [α̂, ĤF ].
One can insert ĤF in that expression by using Ĥ2

F ≈ 1 on the shell, where the value of the trace
is picked, and we can write

Tr
�

Ĉ α̂2D−1[α̂, θ̂Γ ]
�

= Tr
�

Ĉ α̂2D−2 Ĥ2
F α̂[α̂, θ̂Γ ]

�

, (F.10)

in that region. Recalling that ĤF anti-commutes with Ĉ and commutes with α̂2, we can use its
cyclicity in the trace to get

Tr
�

Ĉ α̂2D−1[α̂, θ̂Γ ]
�

= −
1
2

Tr
�

Ĉ α̂2D−2 ĤF [α̂[α̂, θ̂], ĤF ]
�

. (F.11)

The commutator in this expression can be expanded by using twice the general identity
[AB, C] = [A, C]B + A[B, C] for operators A, B and C , such that

[α̂[α̂, θ̂], ĤF ] = [α̂, ĤF ][α̂, θ̂Γ] + α̂[[α̂, θ̂Γ], ĤF ] (F.12)

= [α̂, ĤF ][α̂, θ̂Γ] + α̂[[α̂, ĤF ], θ̂Γ] + α̂[α̂, [θ̂Γ, ĤF ]] . (F.13)
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At this stage, the differential form expression of the index now reads

ι =
(−i)D

D! 4

�

−Tr
�

Ĉ α̂2D−2 ĤF ([α̂, ĤF ][α̂, θ̂Γ] + α̂[[α̂, ĤF ], θ̂Γ] + α̂[α̂, [θ̂Γ, ĤF ]])
�

+2 Tr
�

Ĉ α̂2D ĤF [θ̂Γ, ĤF ]
��

,
(F.14)

where the desired term ĤF [α̂, ĤF ][α̂, θ̂Γ] has appeared, together with two other terms that
make the expression apparently more complicated, but that turn out to each other compen-
sate after some additional algebraic manipulations. To see it, let us first focus on the last
term of the first line, of the form α̂[α̂, [θ̂Γ, ĤF ]], that we can rewrite by using the relation
B[A, C] = [A, B]+C − [A, BC]+ with A= α̂, B = ĤF α̂ and C = [θ̂Γ, ĤF ] to get

Tr
�

Ĉ α̂2D−2 ĤF α̂[α̂, [θ̂Γ, ĤF ]]
�

= Tr
�

Ĉ α̂2D−2[α̂, ĤF α̂]+[θ̂Γ, ĤF ]
�

− Tr
�

Ĉ α̂2D−2[α̂, ĤF α̂[θ̂Γ, ĤF ]]+
�

.
(F.15)

The second term actually vanishes exactly. Indeed, by expanding its anti-commutator and
using the commutation between α and the chiral operator Ĉ , we have the two terms

Tr
�

Ĉ α̂2D−2[α̂, ĤF α̂[θ̂Γ, ĤF ]]+
�

= Tr
�

α̂ Ĉ α̂2D−2 ĤF α̂[θ̂Γ, ĤF ]
�

+ Tr
�

Ĉ α̂2D−2 ĤF α̂[θ̂Γ, ĤF ] α̂
�

,

that compensate each other because of the odd-cyclicity of the trace with α̂ (F.6). The anti-
commutator in the remaining term of the right-hand side of (F.15) can in turn be expanded
such as

Tr
�

Ĉ α̂2D−2 ĤF α̂[α̂, [θ̂Γ, ĤF ]]
�

= Tr
�

Ĉ α̂2D−2(α̂ ĤF α̂+Ĥ α̂2)[θ̂Γ, ĤF ]
�

(F.16)

= Tr
�

Ĉ α̂2D−2([α̂, ĤF ] α̂+2ĤF α̂
2)[θ̂Γ, ĤF ]

�

(F.17)

= Tr
�

Ĉ α̂2D−2[α̂, ĤF ] α̂[θ̂Γ, ĤF ]
�

+ 2 Tr
�

Ĉ α̂2D ĤF [θ̂Γ, ĤF ]
�

,
(F.18)

where we have used the commutation of ĤF with α̂2. We thus find that the second term in
the right-hand side of (F.18) exactly compensates the last term in (F.14), so that the form
expression of the index becomes

ι = −
(−i)D

D! 4
Tr
�

Ĉ α̂2D−2(ĤF [α̂, ĤF ][α̂, θ̂Γ] + ĤF α̂[[α̂, ĤF ], θ̂Γ] + [α̂, ĤF ] α̂[θ̂Γ, ĤF ])
�

. (F.19)

Let us now massage the second term in the sum. By using the relation
A[B, C] = [C , A]B + ABC − CAB with A= ĤF α̂, B = [α̂, ĤF ] and C = θ̂Γ, one obtains

Tr
�

Ĉ α̂2D−2 ĤF α̂[[α̂, ĤF ], θ̂Γ]
�

= Tr
�

Ĉ α̂2D−2[θ̂Γ, ĤF α̂][α̂, ĤF ]
�

+ Tr
�

Ĉ α̂2D−2 ĤF α̂[α̂, ĤF ] θ̂Γ
�

− Tr
�

Ĉ α̂2D−2 θ̂Γ ĤF α̂[α̂, ĤF ]
�

,
(F.20)

where the two last terms compensate each other due to the commutation of an even power of
α̂ with θ̂Γ and the cyclicity of the trace. The commutator [C , A]B in the remaining first term
of the (F.20) can then be written as

[C , A]B = (θ̂Γ ĤF α̂−ĤF α̂ θ̂Γ−ĤF θ̂Γ α̂+ĤF θ̂Γ α̂)B (F.21)

= (−[ĤF , θ̂Γ] α̂−ĤF [α̂, θ̂Γ])[α̂, ĤF ] , (F.22)
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such that the form expression of the index reads

ι = −
(−i)D

D! 4
Tr Ĉ α̂2D−2

�

ĤF [α̂, ĤF ][α̂, θ̂Γ]− ĤF [α̂, θ̂Γ][α̂, ĤF ]

− [ĤF , θ̂Γ] α̂[α̂, ĤF ] + [α̂, ĤF ] α̂[θ̂Γ, ĤF ]
�

. (F.23)

This expression can further be simplified since the two first terms, as well as the two last
terms, turn out to be equal on the shell and thus add up. To see it, we use the fact that ĤF
anti-commutes with [α̂, ĤF ] on the shell, which follows from

[α̂, ĤF ]ĤF = α̂ Ĥ2
F − ĤF α̂ ĤF + Ĥ2

F α̂−Ĥ2
F α̂ (F.24)

= −ĤF [α̂, ĤF ] + [α̂, Ĥ2
F ]

︸ ︷︷ ︸

≈0

, (F.25)

where the last term vanishes on the shell where Ĥ2
F ≈ 1. By cyclicty of the trace, we can now

re arrange the second term in (F.23) as

−Tr
�

Ĉ α̂2D−2 ĤF [α̂, θ̂Γ][α̂, ĤF ]
�

= −Tr
�

Ĉ α̂2D−2[α̂, ĤF ]ĤF [α̂, θ̂Γ]
�

, (F.26)

where we have used the odd-cyclicity of the trace with α̂ that provides a minus sign, the
chiral symmetry of ĤF that provides a second minus sign, and the commutation of α̂2D−2

with any operator. The last step consists in using the anti-commutation of ĤF with [α̂, ĤF ] as
announced, that leads to

−Tr
�

Ĉ α̂2D−2 ĤF [α̂, θ̂Γ][α̂, ĤF ]
�

= +Tr
�

Ĉ α̂2D−2 ĤF [α̂, ĤF ][α̂, θ̂Γ]
�

, (F.27)

which coincides with the first term in (F.23). To now show that the third and fourth terms in
(F.23) also add up, we now use the anti-commutation of α̂ with [α̂, ĤF ] which follows from

α̂[α̂, ĤF ] = α̂
2− α̂ ĤF α̂+ĤF α̂

2−ĤF α̂
2 (F.28)

= −[α̂, ĤF ] α̂+[α̂
2, ĤF ]

︸ ︷︷ ︸

=0

, (F.29)

where the last term vanishes because of (F.2). Combining this property with the chiral sym-
metry of ĤF allows us to rewrite the third term in (F.23) as

−Tr
�

Ĉ α̂2D−2[ĤF , θ̂Γ] α̂[α̂, ĤF ]
�

= Tr
�

Ĉ α̂2D−2[α̂, ĤF ] α̂[θ̂Γ, ĤF ]
�

, (F.30)

that corresponds to the last term in (F.23). The form expression of the index thus reads

ι = −
(−i)D

D! 2
Tr
�

Ĉ α̂2D−2(ĤF [α̂, ĤF ][α̂, θ̂Γ] + [α̂, ĤF ] α̂[θ̂Γ, ĤF ])
�

. (F.31)

The first term is the desired one. We thus still have to rearrange the second term to make
apparent a second commutator [α̂, ĤF ], which requires to re-introduce another ĤF in the ex-
pression. As previously, this can be done by using ĤF ≈ 1 on the shell, to get

Tr
�

Ĉ α̂2D−2[α̂, ĤF ] α̂[θ̂Γ, ĤF ]
�

= −Tr
�

Ĉ α̂2D−2 Ĥ2
F α̂[α̂, ĤF ][θ̂Γ, ĤF ]

�

(F.32)

= Tr
�

ĤF Ĉ α̂2D−2 ĤF α̂[α̂, ĤF ][θ̂Γ, ĤF ]
�

, (F.33)

by chiral symmetry. After using the cyclicity of the trace for ĤF , one uses its anti-commutation
with [α̂, ĤF ] together with its anti-commutation with [ĤF , θ̂Γ], that follows from

[θ̂Γ, ĤF ]ĤF = θ̂Γ Ĥ2
F − ĤF θ̂Γ ĤF (F.34)

= Ĥ2
F θ̂Γ−ĤF θ̂Γ ĤF (F.35)

= −ĤF [θ̂Γ, ĤF ] , (F.36)
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and the equality (F.33) becomes

Tr
�

Ĉ α̂2D−2[α̂, ĤF ] α̂[θ̂Γ, ĤF ]
�

= Tr
�

Ĉ α̂2D−2 ĤF α̂ ĤF [α̂, ĤF ] α̂[θ̂Γ, ĤF ]
�

. (F.37)

Comparing (F.32) with (F.33) allows us to express the second term of (F.31) as

Tr
�

Ĉ α̂2D−2[α̂, ĤF ] α̂[θ̂Γ, ĤF ]
�

=
1
2

Tr
�

Ĉ α̂2D−2 ĤF [α̂, ĤF ]
2[θ̂Γ , ĤF ]

�

, (F.38)

which, once inserted in (F.31), completes the derivation of the initialization of the induction
(F.9).

Heredity of the induction

Let us now prove that, if for a given l < n, we have

ι =
(−1)l(l!)2(−i)D

D!(2l)!

�

Tr
�

Ĉ α̂2D−2l ĤF [α̂, ĤF ]
2l−1[α̂, θ̂Γ]

�

+
1
2

Tr
�

Ĉ α̂2D−2l ĤF [α̂, ĤF ]
2l[θ̂Γ, ĤF ]

�

�

(F.39)
– that we shall simply write as

ι = fD(l)(T1 + T2) , (F.40)

for short – where T1 and T2 refer to the two trace terms in (F.39) and fD(l) is the prefactor
– then this expression is also true for l → l + 1. For that purpose, we take advantage of
the same few technical tricks than those previously used: inserting freely α2 and Ĥ2

F in the
trace expressions since a commutator with θ̂Γ fixes the value of the invariant on the shell,
performing trace cyclicities (remembering that those implying α̂ pick a minus sign), and using
various anti-commutation relations, such as that of ĤF with the chiral operator Ĉ , and others
implying α̂, ĤF and θ̂Γ, namely (F.25), (F.29) and (F.36). In particular, (F.25) and (F.29) can
more generally (and more usefully for this section) be written as

[α, ĤF ]
pĤF = (−1)pĤF [α, ĤF ]

p , (F.41)

[α, ĤF ]
p α̂= (−1)p α̂[α, ĤF ]

p , (F.42)

[θ̂Γ, ĤF ]
pĤF = (−1)pĤF [θ̂Γ, ĤF ]

p , (F.43)

for p an integer and under the usual assumptions related to the shell.
Let us now modify the expression (F.39)-(F.40) by first rearranging the terms in the first

trace, T1. By extracting α from α2D−2l , we trivially get a term α̂ ĤF . This is somehow half
the commutator [α̂, ĤF ] which we would like to introduce. To get the second half, ĤFα, we
permute α̂ cyclically to the left. Since these two terms are equal under the trace, T1 becomes

T1 ≡ Tr
�

Ĉ α̂2D−2l ĤF [α̂, ĤF ]
2l−1[α̂, θ̂Γ]

�

=
1
2

Tr
�

Ĉ α̂2D−2l−1[α̂, ĤF ]
2l[α̂, θ̂Γ]

�

. (F.44)

To get the correct term α̂2D−2l−2 ĤF and another commutator [α̂, ĤF ], we can extract again α̂
out of α̂2D−2l−1, and insert Ĥ2

F , so that, from the previous equation,

T1 =
1
2

Tr
�

Ĉ α̂2D−2l−2 ĤF ĤF α̂[α̂, ĤF ]
2l[α̂, θ̂Γ]

�

, (F.45)

where we permute cyclically one of the two ĤF ’s to the left to get

T1 =
1
4

Tr
�

Ĉ α̂2D−2l−2 ĤF (ĤF α̂[α̂, ĤF ]
2l[α̂, θ̂Γ]− α̂[α̂, ĤF ]

2l[α̂, θ̂Γ]ĤF )
�

= −
1
4

Tr
�

Ĉ α̂2D−2l−2 ĤF [α̂[α̂, ĤF ]
2l[α̂, θ̂Γ], ĤF ]

�

, (F.46)
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where a commutator of the form [A1A2A3, B] has appeared. This commutator can be expanded
as

[A1A2A3, B] = [A1, B]A2A3 + A1[A2, B]A3 + A1A2[A3, B] , (F.47)

which leads to

[α̂[α̂, ĤF ]
2l[α̂, θ̂Γ], ĤF ] = [α̂, ĤF ]

2l+1[α̂, θ̂Γ] + α̂ [[α̂, ĤF ]
2l , ĤF ]

︸ ︷︷ ︸

=0

[α̂, θ̂Γ]

+ α̂[α̂, ĤF ]
2l[[α̂, θ̂Γ], ĤF ] , (F.48)

where the term vanishes because of (F.41), and we get

T1 = −
1
4

Tr
�

Ĉ α̂2D−2l−2 ĤF [α̂, ĤF ]
2l+1[α̂, θ̂Γ]

�

−
1
4

Tr
�

Ĉ α̂2D−2l−2 ĤF α̂[α̂, ĤF ]
2l[[α̂, θ̂Γ], ĤF ]

�

≡ U1 + U2 . (F.49)

The first term of this expression, U1, is the desired one for the heredity (up to prefactors). We
thus need to massage the second one that we call U2. Let us first cyclically permute ĤF to the
left in U1. By using its anti-commutation with Ĉ and with [[α̂, θ̂Γ], ĤF ] (which follows again
from Ĥ2

F ≈ 1), this term reads

U2 = −
1
4

Tr
�

Ĉ α̂2D−2l−1 ĤF [α̂, ĤF ]
2l[[α̂, θ̂Γ], ĤF ]

�

. (F.50)

Next, we use the identity [[A, B], C] = [[A, C], B]+[A, [B, C]] with A= α̂, B = θ̂Γ and C = ĤF ,
as

[[α̂, θ̂Γ], ĤF ] = [[α̂, ĤF ], θ̂Γ] + [α̂, [θ̂Γ, ĤF ]] , (F.51)

leaving us with

U2 = −
1
4

Tr
�

Ĉ α̂2D−2l−1 ĤF [α̂, ĤF ]
2l[[α̂, ĤF ], θ̂Γ]

�

−
1
4

Tr
�

Ĉ α̂2D−2l−1 ĤF [α̂, ĤF ]
2l[α̂, [θ̂Γ, ĤF ]]

�

≡ V1 + V2 . (F.52)

The second term, V2, can be split into two terms: one of them compensating T2 exactly, which
simplifies the complete expression of ι, the other one contributing to the heredity on T2. In-
deed,

V2 = −
1
4

Tr
�

Ĉ α̂2D−2l−1 ĤF [α̂, ĤF ]
2l(α̂[θ̂Γ, ĤF ]− [θ̂Γ, ĤF ] α̂)

�

. (F.53)

Using cyclicity of the trace and the usual anti-commutation relation, one can get that

V2 = −
1
4

Tr
�

Ĉ α̂2D−2l−2(α̂ ĤF α̂+ α̂
2 ĤF )[α̂, ĤF ]

2l[θ̂Γ, ĤF ]
�

= −
1
4

Tr
�

Ĉ α̂2D−2l−2(2 α̂2 ĤF − α̂[α̂, ĤF ])[α̂, ĤF ]
2l[θ̂Γ, ĤF ]

�

= −
1
2

Tr
�

Ĉ α̂2D−2l ĤF [α̂, ĤF ]
2l[θ̂Γ, ĤF ]

�

︸ ︷︷ ︸

−T2

+
1
4

Tr
�

Ĉ α̂2D−2l−1[α̂, ĤF ]
2l+1[θ̂Γ, ĤF ]

�

.

(F.54)

Therefore, to sum up,

T1 = −
1
4

Tr
�

Ĉ α̂2D−2l−2 ĤF [α̂, ĤF ]
2l+1[α̂, θ̂Γ]

�

+
1
4

Tr
�

Ĉ α̂2D−2l−1[α̂, ĤF ]
2l+1[θ̂Γ, ĤF ]

�

+ V1 − T2 , (F.55)
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so that, at this stage, the form expression of the index reads

ι =
(−1)l(l!)2(−i)D

D!(2l)!

�

−
1
4

Tr
�

Ĉ α̂2D−2l−2 ĤF [α̂, ĤF ]
2l+1[α̂, θ̂Γ]

�

+
1
4

Tr
�

Ĉ α̂2D−2l−1[α̂, ĤF ]
2l+1[θ̂Γ, ĤF ]

�

+ V1

�

,
(F.56)

where the term T2 has been cancelled out and where

V1 = −
1
4

Tr
�

Ĉ α̂2D−2l−1 ĤF [α̂, ĤF ]
2l[[α̂, ĤF ], θ̂Γ]

�

, (F.57)

must still be modified. We will see below that V1 can be written in two terms proportional to
those already present in (F.56). To do so, we use the generalization of the expansion (F.47)

[A2l+1, B] =
2l
∑

j=0

Aj[A, B]A2l− j , (F.58)

for A= [α̂, ĤF ] and B = θ̂Γ, to deduce, using the usual cyclicity and anti-commutation relation

Tr
�

Ĉ α̂2D−2l−1 ĤF [A
2l+1, B]

�

= Tr

 

Ĉ α̂2D−2l−1 ĤF

2l
∑

j=0

Aj[A, B]A2l− j

!

= Tr

 

Ĉ α̂2D−2l−1 ĤF

2l
∑

j=0

A2l[A, B]

!

= (2l + 1)Tr
�

Ĉ α̂2D−2l−1 ĤF A2l[A, B]
�

, (F.59)

from which V1 becomes

V1 = −
1

4(2l + 1)
Tr
�

Ĉ α̂2D−2l−1 ĤF [[α̂, ĤF ]
2l+1, θ̂Γ]

�

. (F.60)

By permuting θ̂Γ to the right in the first term of this commutator, we can write

V1 = −
1

4(2l + 1)
Tr
�

Ĉ α̂2D−2l−2(θ α̂ ĤF − α̂ ĤF θ̂Γ)[α̂, ĤF ]
2l+1

�

, (F.61)

such that the new commutator [α̂ ĤF , θ̂Γ] can be decomposed following (F.47) such that

V1 = −
1

4(2l + 1)
Tr
�

Ĉ α̂2D−2l−2(−[α̂, θ̂Γ]ĤF − α̂[ĤF , θ̂Γ])[α̂, ĤF ]
2l+1

�

. (F.62)

Finally, by permuting cyclically [α̂, θ̂Γ] and α̂[ĤF , θ̂Γ] to the left, one finds

V1 = −
1

4(2l + 1)

�

Tr
�

Ĉ α̂2D−2l−2 ĤF [α̂, ĤF ]
2l+1[α̂, θ̂Γ]

�

− Tr
�

Ĉ α̂2D−2l−1[α̂, ĤF ]
2l+1[θ̂Γ, ĤF ]

��

,

(F.63)

which is indeed composed of the first two terms of (F.56) up to a prefactor, and we get

ι = −
2l + 2

4(2l + 1)
f (l)

�

Tr
�

Ĉ α̂2D−2l−2 ĤF [α̂, ĤF ]
2l+1[α̂, θ̂Γ]

�

−Tr
�

Ĉ α̂2D−2l−1[α̂, ĤF ]
2l+1[θ̂Γ, ĤF ]

��

, (F.64)
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where the prefactor becomes

−
2l + 2

4(2l + 1)
(−1)l(l!)2(−i)D

D!(2l)!
=
(−1)l+1((l + 1)!)2(−i)D

D!(2(l + 1))!
= fD(l + 1) , (F.65)

which is the desired one for the heredity. Thus at this stage, (F.64) shows the correct prefactor
and the correct expression of first trace for the heredity. We still need to modify the second
trace to complete the proof, which we do by adding H2

F ≈ 1, and then circulating cyclically ĤF
to the left such that

Tr
�

Ĉ α̂2D−2l−2 Ĥ2
F α̂[α̂, ĤF ]

2l+1[θ̂Γ, ĤF ]
�

= −Tr
�

Ĉ α̂2D−2l−2 ĤF α̂ ĤF [α̂, ĤF ]
2l+1[θ̂Γ, ĤF ]

�

,
(F.66)

which allows us to deduce

Tr
�

Ĉ α̂2D−2l−1[α̂, ĤF ]
2l+1[θ̂Γ, ĤF ]

�

= −
1
2

Tr
�

Ĉ α̂2D−2l−2 ĤF [α̂, ĤF ]
2l+2[θ̂Γ, ĤF ]

�

, (F.67)

that we substitute into (F.64)

ι =
(−1)l+1((l + 1)!)2(−i)D

D!(2(l + 1))!

�

Tr
�

Ĉ α̂2D−2l−2 ĤF [α̂, ĤF ]
2l+1[α̂, θ̂Γ]

�

+
1
2

Tr
�

Ĉ α̂2D−2l−2 ĤF [α̂, ĤF ]
2l+2[θ̂Γ, ĤF ]

�

�

, (F.68)

to complete the proof of the heredity.
Now that we have demonstrated the formula (F.8), we can substitute l = D to get the final

expression

ι = iD D!
(2D)!

�

Tr
�

Ĉ ĤF [α̂, ĤF ]
2D−1[α̂, θ̂Γ]

�

+
1
2

Tr
�

Ĉ ĤF [α̂, ĤF ]
2D[θ̂Γ, ĤF ]

�

�

. (F.69)

This is the form expression ι of the shell index I, that we defined as ι = IωD with ω the
symplectic form. We would like to extract I from (F.69) which does not seem to be straight-
forward since the volume element ωD is not apparent in this expression. Still, we can use
the anti-symmetric decomposition of the product of the operator-valued form α̂ with usual
operators Âl with l = {1, . . . , 2D}

2D
∏

l=1

(α̂ Âl) =
2D
∑

j1... j2D=1

ϵ j1,..., j2D

2D
∏

l=1

â jl Âl(−ω)D , (F.70)

with ϵ j1,..., j2D
the antisymmetric Levi-Civita tensor, and â j the components of α̂ as defined in

(F.1), which yields

I = (−i)D
D!
(2D)!

 

Tr

 

2D
∑

j1... j2D=1

ϵ j1,..., j2D
Ĉ ĤF

2D−1
∏

l=1

[â jl , ĤF ][â2D, θ̂Γ]

!

+
1
2

Tr

 

2D
∑

j1... j2D=1

ϵ j1,..., j2D
Ĉ ĤF

2D
∏

l=1

[â jl , ĤF ][θ̂Γ, ĤF ]

!!

.

(F.71)

Semi-classical expression of the shell index

We now derive the semi-classical expression of the shell index, by first applying the trace
formula (B.12) that converts a trace of product of operators into an integral over phase space
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of their Wigner-Weyl symbols, and then taking the limit Γ → ∞. The semi-classical limit
consists in keeping the higher order terms in 1/Γ . In that limit, commutators of operators are
replaced by Poisson brackets of their symbols as [â jl , ĤF ]→ i{a jl , HF}, with x̂ j → x j , ∂x j

→ ik j ,

T̂ j → e−ik j and T̂ †
j n j → eik j n j + eik j/2, and the second trace in (F.71) can be neglected, which

yields

I = D!
(2D)!

�

i
2π

�D 2D+1
∑

j1... j2D=2

ϵ j1,..., j2D
Trint

�

∫

�2D−1
∏

l=1

dkl d x l

�

dk2Dd x2DCHF{a jl , HF}{a2D,θΓ }

�

+O(1/Γ ) , (F.72)

where the integrals run over R as we have assumed continuous coordinates, but should be
understood as

∑

nl∈Z
∫ 2π

0 dkl for lattices. This expression can equivalently be written in a
more compact way with α, the symbol of α̂, which is the differential one-form

α=
D
∑

j

a2 jd x j + a2 j+1dk j , (F.73)

such that

I = D!
(2D)!

�

i
2π

�D ∫

Trint(CHF{α, HF}2D−1{α,θΓ }) +O(1/Γ ) . (F.74)

The Poisson brackets implying the components of α are given by

{a2 j , A}= {x j , A}= ∂k j
A , (F.75)

{a2 j+1, A}= {i2k j , A}= ∂x j
A , (F.76)

in the continuous case, and by

{a2 j , A}= {eik j n j + eik j/2, A}= eik j∂k j
A− i(n j + 1/2)eik j iδn j

A , (F.77)

{a2 j+1, A}= {−ie−ik j , A}= e−ik jδn j
A , (F.78)

in the discrete one, where the expressions look more involved. However we have an anti-
symmetrisation of the coefficients in {a j , }, therefore since we already have a derivative in
δn j

due to the {T j , A} terms, the coefficient in δn j
in the Poisson bracket {T †

j n j , A} are can-
celled (note that θΓ is just a scalar and thus commutes with everything) and we only keep the
coefficient in ∂k j

A. Therefore, we end up with the simplified equation

I = (D)!
(2D)!(−2iπ)D

∫

Trint(CHF (dHF )
2D−1(dθΓ )) +O(1/Γ ) , (F.79)

where dA =
∑

j ∂x j
Ad x i + ∂k j

Adk j (∂x j
should be replaced by the discrete derivative in the

lattice case) is the one-form differential of the symbol A in phase space.
Actually, now that we work with symbols in phase space, we can show that the precise

shape of the cut-off symbol θΓ does not matter as long as it decays far away from the gapless
region where the zero mode seats. Indeed, for any phase space cut-off θ ′Γ such that θ ′Γ − θΓ is
non-zero only in the gapped region of phase space, we have

∫

Trint(CHF (dHF )
2D−1(dθΓ − dθ ′Γ )) = −

∫

Trint(C(dHF )
2D(θΓ − θ ′Γ ))

= −
∫

Trint(CH2
F (dHF )

2D(θΓ − θ ′Γ ))

=
1
2

∫

Trint(CHF [(dHF )
2D(θΓ − θ ′Γ ), HF ])

= 0 ,

(F.80)
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where we have used at the end that HF anticommutes with dHF and commutes with the scalars
θΓ − θ ′Γ . As a consequence, one can replace θΓ by the step-function θΓ = 1B where B is any
volume which contains the gapless region, so that the shell index in the semi-classical limit
becomes

Ishell =
D!

(2D)!(−2iπ)D

∫

shell

Trint(CHF (dHF )
2D−1) , (F.81)

where the shell is the boundary ∂ B of B which encloses the gapless region. Finally, this ex-
pression can be expressed in terms of U , the off-diagonal component of HF =

�

0 U†

U 0

�

, as

Ishell =
−2(D)!

(2D)!(2iπ)D

∫

shell

Trint(U†dU)2D−1 , (F.82)

which is the formula (14) announced in the main text.

G Higher order insulators with hard boundary: Partial
semi-classical limit and numerical programs

In this appendix we want to explain how we can partially simplify the computation of shell
index (56) by doing a partial semi-classical expansion of the invariant and obtain the expres-
sion (79). First let us recall the general expression (56) we obtained for the shell index in the
D-dimensional case without semi-classical hypothesis. This expression

Ishell =
lim

−1
12

�

Tr
�

Ĉ ĤF [α̂, ĤF ]
3[α̂, θ̂Γ ]

�

+
1
2

Tr
�

Ĉ ĤF [α̂, ĤF ]
4[θ̂Γ , ĤF ]

�

�

, (G.1)

where α̂= T †
x nx d x +−iTx dkx + T †

y ny d y +−iTy dky is a one form, and the whole expression
is therefore an anti-symmetrised sum of all types of commutators.

Let’s now try to simplify it assuming that the system is invariant by translation in both
direction in the bulk and invariant in the tangent direction near the edges far away from the
corners. In the above expression, one can first notice that the term Tr

�

Ĉ ĤF [d, ĤF ]4[θ̂Γ , ĤF ]
�

is
always a product of three commutators [Tx , ĤF ] (non zero only near a vertical edge), [Ty , ĤF ]
(non zero only near an horizontal edge) and [θ̂F , ĤF ] (non zero only near the shell). This
three terms are non zero in incompatible regions and the couplings are local, therefore this
term decats to zero in the limit Γ −→ +∞ and we have that

Ishell =
lim

−1
12

Tr
�

Ĉ ĤF [α̂, ĤF ]
3[α̂, θ̂Γ ]

�

. (G.2)

We can then simplify again the expression by noting that a commutator of the form [Tx , ĤF ]
or [Ty , ĤF ]must always be present in the expression of Ishell which imply that the contribution
to the expression are localised in the regions which are on the shell and near an edge (see figure
19). We can then simplifies partially the expression by using the invariance of translation of
ĤF in the direction tangent to each edge. Therefore the index can be written as the sum of
two contributions Ishell = Iedge,x+Iedge,y with each contribution coming from a different edge
where we are able use the Fourier transform in the tangent direction. For example we have
that

Iedge,x =
−1
24π

∫ 2π

0

dkx T̃r
�

C̃ H̃F [α̃, H̃F ]
3
�

, (G.3)

where the ∼ notation denotes here the fact that we do the Wigner-Weyl transform only in one
direction. d̃ can for example be written as α̃= ∂x dkx + T †

y ny d y + Ty dky now. This is indeed
the expression (79) claimed in the main text.
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We then present the numerical programs which compute the invariant. The first one using
the expression of the mode index (8), the second one using the semi-classical limit of the shell
index.

Computation of the index of the model (77) using the formula (8) of the mode index

from scipy import linalg
import numpy as np
#Function computing the operator func(H) for a given operator H
def funm_herm(H, func):

w, v = linalg.eigh(H)
w = func(w)
return (v * w).dot(v.T.conj())

#function which is 0 for negative number and 1 for positive number
def step(x):

return (np.sign(x)+1)/2

#the tanh serve as the smooth transition function in energy
def smoothstep(x):

k=20
return np.tanh(k*x)

#Lenght in site of the lattice
L = 13
#Coupling constants , topological when |t1|>|t|
t=0.6
t1 = 1

#C is the chiral operator , theta the cut -off operator ,
#Id the identity and H the Hamiltonian
Id = np.eye(L*L*4)
H = np.zeros ((L*L*4,L*L*4))
C = np.zeros ((L*L*4,L*L*4))
theta = np.zeros ((L*L*4,L*L*4))

#The degree of freedom which is situated on the i-th site in the x
direction ,

#the j-th site in the y direction
#and which correspond to the k-th degrees of freedom of tha site
#is encoded by the single number i+j*L+k*L**2
for i in range(L):

for j in range(L):
H[i+j*L+0*L**2,i+j*L+1*L**2]=t
H[i+j*L+0*L**2,i+j*L+2*L**2]=t
H[i+j*L+1*L**2,i+j*L+0*L**2]=t
H[i+j*L+1*L**2,i+j*L+3*L**2]=t

H[i+j*L+2*L**2,i+j*L+0*L**2]=t
H[i+j*L+2*L**2,i+j*L+3*L**2]=-t
H[i+j*L+3*L**2,i+j*L+1*L**2]=t
H[i+j*L+3*L**2,i+j*L+2*L**2]=-t

C[i+j*L+0*L**2,i+j*L+0*L**2]=1
C[i+j*L+1*L**2,i+j*L+1*L**2]= -1
C[i+j*L+2*L**2,i+j*L+2*L**2]= -1
C[i+j*L+3*L**2,i+j*L+3*L**2]=1

for k in range (4):
theta[i+j*L+k*L**2,i+j*L+k*L**2] = step(i-L//2)* step(j-L

//2)
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if i < L-1:
H[(i+1)+j*L+0*L**2,i+j*L+2*L**2]= t1
H[(i+1)+j*L+1*L**2,i+j*L+3*L**2]= t1
H[i+j*L+2*L**2,(i+1)+j*L+0*L**2]= t1
H[i+j*L+3*L**2,(i+1)+j*L+1*L**2]= t1

if j < L-1:
H[i+(j+1)*L+0*L**2,i+j*L+1*L**2]= t1
H[i+j*L+1*L**2,i+(j+1)*L+0*L**2]= t1
H[i+(j+1)*L+2*L**2,i+j*L+3*L**2]=-t1
H[i+j*L+3*L**2,i+(j+1)*L+2*L**2]=-t1

#computation of the flatten Hamiltonian H_F
HF = funm_herm(H, smoothstep)

#computation of the index
I = np.trace(C.dot(Id -HF.dot(HF)).dot(theta)).real

Computation of the index of the model (77) using the partial semi-classical limit (79) of
the shell index

from scipy import linalg
import numpy as np
from math import pi
#Function computing the operator func(H) for a given operator H
def funm_herm(H, func):

w, v = linalg.eigh(H)
w = func(w)
return (v * w).dot(v.T.conj())

#function which is 0 for negative number and 1 for positive number
def step(x):

return (np.sign(x)+1)/2

#the tanh serve as the smooth transition function in energy
def smoothstep(x):

k=20
return np.tanh(k*x)

#Commutator of two matrices AB-BA
def com(A,B):

return A.dot(B)-B.dot(A)

#Sum of all antisimetrised combination of A,B,C
#which are ABC+BCA+CAB -ACB -CBA -BAC
def tricom(A,B,C):

return A.dot(com(B,C))+B.dot(com(C,A))+C.dot(com(A,B))

#computation of the flatten Hamiltonian for a given transverse
momentum k

#The degree of freedom which is situated on the i-th site in the
normal direction ,

#and which correspond to the k-th degrees of freedom of tha site
#is encoded by the single number i+k*L
def HF(k):

H = np.zeros ((L*4,L*4), dtype= np.complex128)
for i in range(L):

H[i+0*L,i+1*L]=t+t1*np.exp(-1j*k)
H[i+0*L,i+2*L]=t
H[i+1*L,i+0*L]=t+t1*np.exp(1j*k)
H[i+1*L,i+3*L]=t
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H[i+2*L,i+0*L]=t
H[i+2*L,i+3*L]=-(t+t1*np.exp(-1j*k))
H[i+3*L,i+1*L]=t
H[i+3*L,i+2*L]=-(t+t1*np.exp(1j*k))
if i < L-1:

H[(i+1) +0*L,i+2*L]=t1
H[(i+1) +1*L,i+3*L]=t1
H[i+2*L,(i+1) +0*L]=t1
H[i+3*L,(i+1) +1*L]=t1

return funm_herm(H, smoothstep)

#Lenght in site of the lattice
L = 13
#Coupling constants , topological when |t1|>|t|
t=0.6
t1 = 1

#C is the chiral operator , theta the cut -off operator ,
#Id the identity , H the Hamiltonian
#ni is the diagonal position operator equal to i on the i-th site
#T is the tranlation operator of one unit cell in the normal direction
H = np.zeros ((L*4,L*4))
C = np.zeros ((L*4,L*4))
theta = np.zeros ((L*4,L*4))
T = np.zeros ((L*4,L*4))
ni = np.zeros((L*4,L*4))

for i in range(L):

C[i+0*L,i+0*L]=1
C[i+1*L,i+1*L]=-1
C[i+2*L,i+2*L]=-1
C[i+3*L,i+3*L]=1

for k in range (4):
theta[i+k*L,i+k*L] = step(L//2-i)
ni[i+k*L,i+k*L] = i

if i < L-1:
for k in range (4):

T[i+1+k*L,i+k*L] = 1
#operator T^\ dagger*n_i
T1 = T.T.dot(ni)

#number of point in the discretisation of the tranverse wavenumber
n=50

listek = np.linspace (0,2*pi,n+1)
ListeI = np.zeros((n), dtype= np.complex128)

HF1 = HF(listek [0])
for i in range(n):

HF0 = HF1
HF1 = HF(listek[i+1])
#discretisation of the discrete derivative in k
dHF1 = (HF1 -HF0)*n
dHF2 = com(T1 ,HF0)
dHF3 = com(T,HF0)
#Computation of the density to integrate
Z = C.dot(HF0).dot(tricom(dHF1 ,dHF2 ,dHF3)).dot(theta)
#Integration in the transverse wavenumber k
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ListeI[i] = np.trace(Z*1j).real/n
I = -np.sum(ListeI)/(2*pi)/6
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