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Abstract

We study the ferromagnetic transverse-field Ising model with quenched disorder at T = 0
in one and two dimensions by means of stochastic series expansion quantum Monte
Carlo simulations using a rigorous zero-temperature scheme. Using a sample-replication
method and averaged Binder ratios, we determine the critical shift and width exponents
νs and νw as well as unbiased critical points by finite-size scaling. Further, scaling of
the disorder-averaged magnetisation at the critical point is used to determine the order-
parameter critical exponent β and the critical exponent νav of the average correlation
length. The dynamic scaling in the Griffiths phase is investigated by measuring the local
susceptibility in the disordered phase and the dynamic exponent z′ is extracted. By ap-
plying various finite-size scaling protocols, we provide an extensive and comprehensive
comparison between the different approaches on equal footing. The emphasis on effec-
tive zero-temperature simulations resolves several inconsistencies in existing literature.
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1 Introduction

Quantum phase transitions have been an integral subject of interest in the field of quantum
many-body physics for a long time (for reviews on this topic see Refs. [1,2]). Driven solely by
quantum fluctuations, they are defined as non-analytic points in the ground-state properties
of quantum systems and are therefore only defined strictly at zero temperature [1, 2]. Fur-
ther, each quantum-critical point at zero temperature influences a finite-temperature quantum-
critical region in which thermal and quantum fluctuations compete [1,2]. One of the paradig-
matic models to study quantum phase transitions is the transverse-field Ising model (TFIM).
The critical behaviour of the TFIM has already been intensively studied on a wide variety of
geometries (for some examples see Ref. [3–7]) and various extensions like long-range interac-
tions [8–13] or coupling to light [14,15] have been applied to this model to investigate their
effect on quantum systems.

Another extension to the TFIM is quenched disorder, which refers to a random choice of
couplings that are constant in time. Quenched disorder is motivated as an inevitable ingredi-
ent of any condensed matter system since variations in the couplings might occur by accident,
e. g. due to imperfections in the fabrication process [16, 17] or on purpose, e. g. through the
replacement of atoms in a compound [18–23]. It has been found that quenched disorder has a
great impact on phase transitions, in particular on quantum phase transitions [24]. In the lat-
ter, Griffiths singularities [18,19,25,26] with exponentially diverging timescales emerge more
easily due to the perfectly correlated disorder in imaginary time [24]. The Harris criterion
predicts whether a critical point is stable under the influence of disorder [27]. If the critical
exponent ν violates the inequality ν > 2/d (with d the spatial dimension of the system), the
criticality is expected to change with respect to the clean system without disorder [24].
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In the case of the TFIM with random transverse field and/or Ising couplings (RTFIM) on the
linear chain or square lattice, the disorder is relevant and the universality class changes under
the influence of disorder [28]. Moreover, due to rare strong fluctuations of the disorder, the
model exhibits Griffiths singularities [25, 26] and shows activated scaling with exponentially
diverging timescales [28]. From a renormalisation group (RG) point of view, this behaviour
can be traced back to the fact that the critical behaviour is controlled by an infinite-disorder
fixed point (IDFP) [28–30]. Beyond the one-dimensional RTFIM, no analytical results are
known to study quantum criticality of the RTFIM and numerical approaches have to be em-
ployed. A method directly adjusted to the problem is the strong-disorder renormalisation
group (SDRG) [28,31–36] approach, which is used to study the RTFIM in several dimensions.
This approach is well suited to study the criticality, since the SDRG scheme gets exact at the
critical point if an IDFP exists [28,30]. There are also several (quantum-) Monte-Carlo studies
considering the RTFIM [37–40]. All numerical methods suffer from the fact, that averaging
over a huge amount of disorder realisations is required, leading to a large computational ef-
fort. Moreover, convergence is not necessarily improved with increasing system size since the
RTFIM is not self-averaging in the vicinity of the critical point [27, 41]. Additionally, finite-
temperature methods, e. g. the quantum Monte Carlo studies mentioned above including this
work, suffer from the fact that the typical energy scale is decreasing exponentially with the
system size.

In this work, we use the stochastic series expansion (SSE) quantum Monte Carlo (QMC)
method introduced by A. Sandvik for TFIMs [42–45] to investigate the RTFIM on the linear
chain and the square lattice. We apply various finite-size scaling techniques in order to extract
unbiased estimates for the critical point and the critical exponents. We compare these methods
and work out which subtleties have to be considered for disordered systems in comparison
to pure systems. Therefore, with this work we aim to provide a large scale comprehensive
comparison on which finite-size scaling methods are suitable (or not) when a system is affected
by disorder or more specifically when a quantum critical point is attracted to an IDFP.

In Sec. 2, we introduce the RTFIM and summarize the effect of disorder on the quan-
tum criticality (in comparison to the pure model) by reviewing analytical results for the one-
dimensional RTFIM and giving an overview of recent results on the RTFIM in two dimensions.
These phenomena are understood using the theoretical concept of an IDFP. In Sec. 3, we intro-
duce the SSE QMC method, which is used to study the RTFIM in this paper. This is followed
by Sec. 4, where we present the finite-size scaling techniques that work best, which are then
applied to the data in Sec. 5. Besides the primary techniques to extract the critical point and
critical exponents in Sec. 5.1 and 5.2, we also investigate the temperature convergence in
Sec. 5.3. Finally, we conclude the paper in Sec. 6.

2 Random transverse-field Ising model

The Hamiltonian of the RTFIM is given by

H =
∑

〈i, j〉

Ji, jσ
z
iσ

z
j −
∑

i

hiσ
x
i , (1)

where σz/x
i are the Pauli matrices, describing spins 1/2 located on lattice sites i. The nearest-

neighbour Ising coupling strengths Ji, j and field strengths hi are sampled according to

Ji, j ∈ U(−1,0) , hi ∈ U(x ,h) , (2)

with U(a,b) denoting a uniform probability distribution on the interval [a, b], x being a param-
eter to tune the disorder in the transverse field and the control parameter h being the upper
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bound to the transverse field. In this work, we consider two different types of disorder: Bond-
disorder abbreviated by h-fix, where x = h, i. e. there is no disorder in the transverse field, and
bond- and field-disorder abbreviated by h-box, where x = 0, i. e. hi ∈ [0, h] uniformly. For the
ferromagnetic systems discussed in this paper (Ji, j < 0 ∀i, j), the RTFIM exhibits an ordered
phase, when the field strengths hi are much smaller than the bond strengths |Ji, j| and a disor-
dered phase, when the hi are much larger than the |Ji, j|. The two phases can be distinguished
by a Z2-symmetry. The order parameter associated with the spontaneous symmetry breaking
at the phase transition is the z-magnetisation

m=
1
N

∑

i

σz
i . (3)

In the thermodynamic limit, the order parameter is finite in the ordered phase and vanishes
in the disordered phase. However, since we investigate the RTFIM using a finite-temperature
statistical method on disordered lattices, we have to introduce several types of averaging. We
denote the thermodynamic average by 〈. . . 〉 and the average over disorder configurations by
[. . . ]. Furthermore in finite systems the ground state is a mixed state of positive and negative
magnetisation eigenstates, which causes 〈m〉 to vanish not just in the disordered but also in
the ordered phase. Therefore the order parameter we actually consider is 〈m2〉 for a single
disorder configuration and

�

〈m2〉
�

for the averaged system.
Unlike the transverse-field Ising chain without quenched disorder [3, 46, 47], the RTFIM

on a chain can no longer be solved analytically due to the lack of translation symmetry. Nev-
ertheless, using a Jordan-Wigner transformation, the following condition can be derived for
the bond and field strengths Ji j and hi at the quantum phase transition [48]

∏

i

hi =
∏

i

�

�Ji,i+1

�

� . (4)

This relation is exact up to a neglected boundary term, that vanishes in the thermodynamic
limit (see Ref. [48] or App. B). However, this equation cannot be used to make any statements
about the universality class of the critical point. The Harris criterion [27] states, that the
critical point of a clean system is stable against disorder, if the associated critical exponent ν
is larger than 2/d, where d is the dimension of the system. If the Harris criterion is fulfilled,
disorder does not affect the critical exponents. In the case of the one- and two-dimensional
RTFIM, the Harris-criterion is violated which implies a change of the universality class with
respect to the clean system and self-averaging is no longer provided in the vicinity of the
critical point [41, 49]. The SDRG [31] technique is particularly suitable for investigating the
critical behaviour of disordered systems. D. S. Fisher was able to show that the SDRG method
becomes exact at the critical point if the disorder increases infinitely under renormalisation
[28]. One speaks of an IDFP, where the disorder dominates statistical fluctuations coming
from temperature or quantum uncertainty. Rare regions, i. e. strongly coupled spin clusters,
have an O(1) contribution to observables even in infinite systems, so that a distinction must be
made between average and typical observables [33]. Typical and average correlation lengths
may also diverge differently at the critical point [29, 50], e. g. the correlation lengths can be
defined as

ξ−1
av = lim

|i− j|→∞
−

log
�

〈σiσ j〉
�

|i − j|
, ξ−1

typ = lim
|i− j|→∞

−
�

log〈σiσ j〉
|i − j|

�

, (5)

where [. . . ] denotes the average over disorder realisations. Furthermore, rare regions show
singular behaviour with exponentially small energy gaps in the ordered and disordered phase
also away from the critical point, leading to a Griffiths phase [25, 26]. These exponentially

4

https://scipost.org
https://scipost.org/SciPostPhys.17.2.061


SciPost Phys. 17, 061 (2024)

small energy gaps, equivalent to exponentially long timescales, also influence the singular
behaviour close to the critical point leading to an exponential dependence between the char-
acteristic timescale ξτ (characteristic energy scale ∆) and the correlation length ξ

logξτ ∼ ξψ −→ ξτ ∼ 1/∆∼ exp
�

c ,ξψ
�

, (6)

called activated scaling [29]. Since the dynamic critical exponent z defined by the algebraic
power-law ξτ ∼ ξz does not comply with this definition and the exponential scaling is stronger
than the common algebraic scaling, it is often referred to as z =∞. For the RTFIM on a chain,
analytic SDRG results state that the average correlation length diverges with an exponent
νav = 2, whereas the typical correlation length diverges with an exponent νtyp = 1 at the
phase transition [28]. The order parameter critical exponent is found to be β = (3−

p
5)/2

and the critical exponent of the activated dynamic scaling is given by ψ = 1/2 [28]. Besides
the SDRG method, there are also other works on the one-dimensional RTFIM using Monte
Carlo methods [37] or free-fermion techniques [51, 52] which are in good agreement. The
finite-size analysis of the distribution of pseudo-critical points PL(hc) in Ref. [52] is discussing
two more critical exponents νs/w describing the shift of the mean and the width of PL(hc). They
are determined to be νs = 1 and νw = 2 and identified with νtyp/av [34,52]. Furthermore, the
distribution of energy gaps in the Griffiths phase can be used to define a dynamic exponent
z′ locally, which is finite in the Griffiths phase and diverges when approaching the quantum
critical point [51].

The situation is less clear for the RTFIM in two dimensions. SDRG results indicate that the
two-dimensional model is also attracted to an IDFP under renormalisation [32,34–36,53,54].
Note that this approach does not provide an analytical result in two dimensions (in comparison
to the chain), but requires a numerical treatment [34,35]. QMC results support the hypothesis
of an IDFP by reproducing the same behaviour of the distribution of energy gaps as in the
one-dimensional model [38, 39]. However, there is a recent QMC study indicating that only
the RTFIM with disorder of type h-box is attracted to the IDFP, whereas for the model with
disorder of type h-fix there are indications that the transition is of 2D transverse-field Ising spin
glass universality [40]. The SDRG results agree well with each other and the probably most
precise results for the critical exponents extracted from finite-size scaling of the distribution
of critical points and the magnetic moment are νs = νw = 1.24 and β = 1.22 [35]. The
energy gap compared to the correlation length is showing activated scaling with an exponent
ψ= 0.48 [35] and the typical correlation length scales with an exponent νtyp = 0.64 [36]. In
terms of the location of the critical point, there are different values in literature: On the one
hand, SDRG predicts hc = 5.37 for h-box-type disorder [35] (other SDRG studies are consistent
with this result [36,53,54]). On the other hand, world-line QMC studies predict two different
values hc = 4.2 [38,39] and hc = 7.52 [40].

3 Stochastic series expansion quantum Monte Carlo

The stochastic series expansion (SSE) approach is a quantum Monte Carlo (QMC) method
based on a high-temperature expansion of the partition function used to simulate a finite
amount of spins at a finite temperature. The method has been pioneered by A. Sandvik [13,
42–45] and is based on the idea to lift the configuration space from solely spin states to also
include so-called operator sequences. In order to set up a SSE QMC sampling, the Hamiltonian
of the RTFIM has to be decomposed into a sum of operators

H = −
N
∑

i=1

i
∑

j=0

Hi, j + c , (7)
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together with a suitable computational basis {|α〉}, where c is a constant shift that does not
change the physics. The operators Hi, j must be chosen to have only non-negative entries in
the matrix representation in the computational basis. In addition, the operators need to fulfil
the non-branching rule, i. e. acting on a basis state does not create superpositions of basis
states. A suitable way to set up a SSE QMC sampling for arbitrary TFIMs, is to choose the
z-basis {|α〉} = {|σz

1, ...σz
N 〉} as a computational basis and decompose the Hamiltonian into

the operators

H0,0 = 1 , Hi,0 = hi (σ
+
i +σ

−
i ) , (8)

Hi,i = hi , Hi, j = |Ji, j| − Ji, j σ
z
iσ

z
j , (9)

for i, j ≥ 1 and j < i, where H0,0 is introduced for algorithmic reasons only and is not part
of H. In the SSE approach, the partition function is expanded in powers of βH, the trace
over the operators is executed in the chosen computational basis {|α〉} and the decomposed
Hamiltonian is inserted into the partition function

Z = Tr(e−βH) =
∑

{|α〉}

∞
∑

n=0

βn

n!
〈α|

�

N
∑

i=1

i
∑

j=0

Hi, j

�n
|α〉 (10)

=
∑

{|α〉}

∞
∑

n=0

∑

{Sn}

βn

n!
〈α|

n
∏

l=1

Hi(l), j(l) |α〉 . (11)

We introduce sequences Sn containing the product of n operators and sum over all possible
choices of Sn. Since it is convenient for computer simulations if all sequences are of the same
length, the sum over n is truncated at a sufficiently large length L, which is determined dy-
namically during the simulation. Sequences with n < L are padded to length L with trivial
operators H0,0 [44, 45]. This procedure is justified by the observation that sequences longer
than a certain L∼ βN only have an exponentially small contribution to the partition function,
leading to an exponentially small truncation error [45,55]. Taking into account a combinato-
rial factor considering the L−n inserted trivial operators, the partition function can be written
as

Z =
∑

{|α〉}

∑

{SL}

βn

n!
n!(L− n)!

L!
〈α|

L
∏

l=1

Hi(l), j(l) |α〉=
∑

ω∈Ω
π(β ,ω) . (12)

We can define an SSE configuration space Ω = {|α〉} × {SL}, consisting of the computational
basis {|α〉} of the model and the set of sequences {SL}, which are an additional dimension that
can be associated with a discretised imaginary time. The configuration space Ω is sampled
using Markov chain Monte Carlo. The simulation starts with an initial configuration ω0 that
is constantly updated. During the updates, the operator sequence SL and the state |α〉 are
changed in accordance to their weight π(β ,ω). A full Monte Carlo step consists of two types
of updates, namely the diagonal and off-diagonal update which are alternately executed. In
the diagonal update, the sequence SL is traversed while propagating the state

|α(p)〉=
p
∏

l=1

Hi(l), j(l)|α〉 . (13)

In every step p, constant operators Hi,i and Ising operators Hi, j can be exchanged by triv-
ial operators H0,0 and vice versa based on the Metropolis-Hastings algorithm [56, 57]. The
proposal probability to insert a non-trivial operator Hi, j is given by

q(Hi, j) =
Mi j

∑

i hi + 2
∑

i ̸= j |Ji, j|
, with Mi j = 〈α(p)|Hi, j|α(p)〉 , (14)
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and is, in contrast to the pure nearest-neighbour TFIM, different for each operator. The pro-
posal probability to insert a trivial operator is always 1. The probabilities to accept the ex-
change of an operator are given by

P(H0,0→Hi, j) =min

�

1,
β
�∑

hi + 2
∑

|Ji, j|
�

L− n

�

, (15)

P(Hi, j →H0,0) =min

�

1,
L− n+ 1

β
�∑

hi + 2
∑

|Ji, j|
�

�

. (16)

Because only diagonal operators are exchanged, the sequence SL and its weight can change
during the diagonal update but the state |α〉 remains the same. On the other hand, in the off-
diagonal update, the sequence SL as well as the state |α〉 can change. By exchanging constant
operators Hi,i with field operators Hi,0 and vice versa, whole clusters of spins can be flipped
without changing the weightπ(β ,ω) of the configuration. This is done via the quantum cluster
update discussed in Ref. [44]. For an in-depth explanation on the setup of an SSE for the TFIM
we recommend Refs. [13,44,45,55].

3.1 Observables

Diagonal observables can be measured during the diagonal Monte Carlo updates. In the fol-
lowing, the Monte Carlo average is denoted by 〈. . . 〉MC and the thermal average by 〈. . . 〉. The
statistics of diagonal observables can be improved by measuring them at every intermediate
state in the operator sequence

〈O〉= 1
Z

∑

ω∈Ω
π(β ,ω)

1
L

L−1
∑

l=0

〈α(l)|O |α(l)〉=:

®

1
L

L−1
∑

l=0

〈α(l)|O |α(l)〉
¸

MC

, (17)

because every cyclic permutation of the operator sequence is a valid configuration with the
same weight π(β ,ω) due to the cyclic property of the trace [45]. We focus mostly on the
measurement of the order parameter, i. e. the moments of the z-magnetisation, since it is an
easily accessible diagonal observable and can be used for various methods of data analysis.
The squared magnetisation is given by

〈m2〉=

®

1
N2

�

N
∑

i=1

σz
i

�2
¸

. (18)

Besides diagonal observables at a single imaginary time, also imaginary-time integrated corre-
lations can be calculated by summing over contributions from every step in the sequence SL.
The squared imaginary-time integrated magnetisation is defined as

〈m2
int〉=

*

�

1
β

∫ β

0

m(τ) dτ

�2+

=
1
Z

∑

ω∈Ω
π(β ,ω)

1
L2

�L−1
∑

l=0

〈α(l)|
1
N

N
∑

i=1

σz
i |α

(l)〉

�2

. (19)

We will use this quantity to determine the critical point via the imaginary-time integrated
Binder ratio Vint and compare with the results of Ref [40] in App. C. Furthermore, also correla-
tion functions can be calculated using SSE [45] (for a detailed derivation see Ref. [13]). In this
work we want to investigate the distribution of the local susceptibility to access the dynamic
scaling in the Griffiths phase (see Sec. 4.4). As a special case of the correlation function, this
observable can be calculated by

χi,local =

∫ β

0

〈σz
i (τ)σ

z
i (0)〉 dτ=

*

β

n(n+ 1)

�

n+

� n−1
∑

p=0

σz
i,p

�2 �
+

MC

, (20)

7

https://scipost.org
https://scipost.org/SciPostPhys.17.2.061


SciPost Phys. 17, 061 (2024)

100 101 102 103
0.0

0.2

0.4

0.6

0.8

1.0
[m

2 (
)]

/[
m

2 (
m

ax
)]

Lmin = 6
Lmax = 20

100 101 102 103

0.000

0.001

[m
2 (

N
(1

)
M

C)
]

[m
2 (

N
(2

)
M

C)
]

Figure 1: Temperature dependence of the averaged magnetisation at h = hc = 1
for the h-box RTFI chain measured during the beta doubling procedure. As soon
as the temperature is smaller than the finite energy gap, the magnetisation curves
converge. In the inset the difference of the averaged magnetisation measured in the
first and second set of NMC Monte Carlo steps is shown. Since there are only statistical
deviations, the system is equilibrated.

where σz
i,p is the spin state measured at propagation step p in the sequence iterating only over

the n non-trivial operators.

3.2 Convergence to zero temperature

The SSE approach is a finite-system and finite-temperature QMC algorithm to sample ther-
mal averages of observables. In order to study the quantum criticality of the RTFIM with this
method, the simulation has to be performed at sufficiently low temperature for thermal fluctu-
ations to be negligible. As a finite energy gap is ensured in any finite system close to the phase
transition, one can, in principle, always find a temperature that is low enough to suppress
excitations and effectively sample zero-temperature observables. An efficient and controlled
way to cool the system down is the beta doubling method introduced by A. Sandvik [58] (see
Refs. [10, 11, 13] for further adaptions). The inverse temperature β = 1/T is doubled in ev-
ery step until the desired temperature is reached. In every beta doubling step, the system is
updated by two sets of NMC Monte Carlo steps, followed by a check whether the length of
the sequence L is still sufficient. In the next β-step, we set the initial sequence to two copies
of the sequence from the previous step glued together, since L ∼ β . If the system has been
sufficiently cooled, observables like the squared magnetisation in Fig. 1 converge to a constant
value. In order to observe the convergence, observables are measured in every step. Further-
more, equilibration can be checked by comparing the observables measured during the two
sets within a doubling step [58] (see inset of Fig. 1). For conventional scaling, the dependency
on the linear system size L of the convergence can be estimated from the dynamic exponent
z. However, in the case of activated scaling, the energy gap does no longer close with L−z

but closes exponentially (see Eq. (6)). Furthermore, the energy gap varies significantly from
disorder configuration to disorder configuration since the distribution of energy gaps decays
algebraically (see Eq. (32)), causing different disorder configurations to converge in tempera-
ture at different β values. Since controlling the temperature dependence and equilibration of

8

https://scipost.org
https://scipost.org/SciPostPhys.17.2.061


SciPost Phys. 17, 061 (2024)

each disorder realisation separately is impractical, one has to be extremely careful about being
converged in temperature. Besides checking the convergence of the squared magnetisation,
we also evaluate the temperature dependence of all observables considering the previous tem-
perature steps of the beta doubling and compare the finite-size scaling results within these last
temperature steps. It turns out, that even if the magnetisation is converged in temperature,
composed observables like Binder ratios and distributions of critical points are more sensitive
to the finite temperature requiring even more cooling. Observables like a local susceptibility
that have an explicit dependency on the temperature are even more affected by finite tem-
perature and may not converge at all. We will discuss this issue on the basis of our results
in Sec. 5.3. For the results shown in this work we empirically determined the required tem-
perature for each model and had to cool down systems to up to β = 217. It turned out that
the defining properties for the needed temperature are the linear length scale and the type of
disorder we considered, e. g. h-box disorder seemed to give smaller energy gaps and required
therefore a lower temperature than h-fix. Lower temperature comes with the drawback of
longer simulation time and increased memory demand, since the length of the operator se-
quence SL is proportional to β . However, it turned out that investigating a more extreme type
of disorder results in faster convergence towards the IDFP critical exponents and is therefore
worth the additional computational effort (see Sec. 5).

3.3 Disorder average and Sobol sequences

A crucial part of the evaluation of observables in systems with disorder is averaging. Since both
the one- and two-dimensional RTFIM violate the Harris criterion, they are not self-averaging
in the vicinity of the critical point [27,41,49], which is the region we are interested in. There-
fore, it is not necessarily ensured that observables measured on large L systems are averaging
significantly faster in disorder configurations than small L systems. In general, it is hard to
determine a minimal amount of disorder configurations and to estimate meaningful errors on
data points. To check if our observables are converged we use the bootstrapping method to
estimate the variance of, e. g. intersections of Binder ratios.

Another degree of freedom is the choice of the number of Monte Carlo steps. For averaged
observables, the general rule is that the number of Monte Carlo steps should be kept small in
favor of more disorder realisations in the same time [58]. Even though an individual disorder
realisation itself is poorly averaged in terms of Monte Carlo steps, the average over many dis-
order averages makes up for that by sampling different areas of the Monte Carlo configuration
space. In practice, the lower bound for NMC is reached when the system does no longer equili-
brate [58]. This is checked during the beta doubling method (see inset of Fig. 1). Empirically,
it turned out that NMC < 100 is sufficient for our models. Even for the evaluation of quantities
that directly depend on sample-dependent observables (see Sec. 4.2), we did not increase NMC
since statistical inaccuracies on each sample-dependent observable vanish in the limit of many
samples in a distribution.

The disorder configuration space for both h-fix and h-box is a high-dimensional space
Is = [0,1]s, where s is the number of random bonds Ji, j or the number of random bonds
and random fields hi respectively. In order to use the available computing time as efficiently
as possible, it is important to already choose a representative set of samples in the disorder
configuration space, i. e. more generally speaking an integral of a high-dimensional space,

∫

Is

f (u) du≈
1
N

∑

i∈P

f (x i) , (21)

should be approximated as good as possible by a set P={x1, . . . , xn} of samples x i ∈ Is=[0, 1]s.
The common choice is to use a pseudo-random number generator. A possibility to sample
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Pseudo random numbers Sobol sequences

Figure 2: Example for a set of two-dimensional random numbers (left) and Sobol
sequences (right). This would correspond to the disorder configuration space of a
two-spin system with h-fix disorder. In general the dimension of the disorder config-
uration space is the number of bonds for h-fix disorder and the number of bonds plus
the number of sites for h-box disorder.

the disorder configuration space more evenly (see Fig. 2) is to use quasi-random numbers in-
stead [59–61]. Quasi-random numbers are sequences with a low discrepancy. The discrepancy
of a set P,

Dn(P) = sup
B∈J

�

�

�

�

(#x i ∈ B)
n

−λs(B)

�

�

�

�

, with J =

¨ s
∏

i=1

[ai , bi)

«

, (22)

is defined such, that the discrepancy of a set is smallest if the proportion of points x i in ev-
ery subspace B is equal to the measure of the subspace λs(B). A set with a low discrepancy
minimises holes in the s-dimensional space Is and all lower-dimensional faces of Is. A typical
choice for a low-discrepancy sequence that can be generated very efficiently by a computer and
performs well for high-dimensional configurations spaces are Sobol sequences [62]. In App. A
we elaborate on the advantage of the use of Sobol sequences instead of pseudo-random num-
bers. Note, that we do not use Sobol sequences for the Markov chain Monte Carlo sampling,
but only for the sampling of the disorder configuration space.

4 Data analysis for disordered systems

A primary result of the RG study of quantum phase transitions in pure systems is finite-size
scaling, which describes how certain observables behave in dependence of the system size and
allows one to extract critical points and exponents from observables measured for different
system sizes [28,63–69]. For a pure system the general scaling form of an observable O in the
vicinity of a quantum phase transition (T = 0) is given by

O(r, L) = L−ω/ν fO(r L1/ν) , (23)

where r = (h − hc) is the control parameter, ω the critical exponent of the observable with
respect to the control parameter r and fO a scaling function. Eq. (23) holds for a pure sys-
tem with the same shifting and rounding exponent (see Ref. [70] for an introduction to shift-
ing and rounding exponents in pure systems). However, this scaling form describes only the
leading behaviour. In addition, there are corrections to finite-size scaling [68] which are usu-
ally notoriously hard to fit. These corrections turn out to be strong in systems with disor-
der [35, 40, 51, 71]. In general, one obtains distributions of observables instead of individual
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values. To be able to apply the finite-size scaling forms as described above, the disorder must
be averaged at one point. At which step of the process exactly to average over disorder real-
isations is another degree of freedom, which can also have an influence on the scaling of an
observable. In this work, we use several Binder ratios, a sample-replication method and the
scaling of the averaged magnetisation to determine the position of the critical point and criti-
cal exponents ν and β . There are further methods in literature, that also provide estimates for
the critical point and exponents which, however, turned out to be less precise for the systems
we investigated. We will discuss these methods in App. C.

4.1 Intersections of Binder ratios

A common method to determine the position of the critical point are the intersections of Binder
ratios V [68]. These are defined by the ratio of the second and fourth moment of the mag-
netisation

V =
1
2

�

3−
〈m4〉
〈m2〉2

�

. (24)

For scalar order parameters, the ratio 〈m4〉/〈m2〉2 is modified by the constants presented above
in order to have V = 1 in the ordered phase and V = 0 in the disordered phase. The importance
of Binder ratios comes from the fact that

V (r, L) = fV (r L1/ν) , (25)

is independent of L at the critical point r = 0, since the scaling powers of the moments of
the order parameter cancel. Therefore, the intersections of V (L) can be used to determine
the critical point. In the case of systems with quenched disorder, there are various ways to
define the Binder ratio, depending on the stage at which the average over the disorder is
taken [37,39,40,71,72]. Two reasonable choices are

V1 =
1
2

�

3−

�

〈m4〉
�

[〈m2〉]2

�

, V2 =
1
2

��

3−
〈m4〉
〈m2〉2

��

, (26)

where [. . . ] denotes the disorder average. The stage at which the disorder average is taken
is not just a numerical finesse, but the averaging has an essential influence on the subleading
scaling behaviour (see Fig. 3). In App. C we will elaborate on more possible definitions for
Binder-like ratios (see e. g. Ref. [72] and [73]) including imaginary-time integrated Binder
ratios [39, 40, 74]. Since the corrections to finite-size scaling are very prominent in systems
with disorder (see also Ref. [71]), the Binder ratios do not intersect almost perfectly at the
critical point like for the pure system [68]. Instead, the region where the curves for differ-
ent system sizes intersect is very broad (see Fig. 3). In order to determine the intersection
points of the curves with high accuracy, very good data quality is required, i. e. averaging over
a large number of disorder configurations. With increasing system size, the Binder ratios in-
tersect shallower, which makes it even more difficult to determine the intersection point when
there are statistical inaccuracies. We expect the intersections to scale with increasing system
size towards the critical point. The functional dependence of the scaling is, to the best of our
knowledge, not known. We assume a very general algebraic dependence, which is in agree-
ment with our data shown in Sec. 5. There is, however, a theory for the scaling of intersections
of Binder ratios for pure systems by Ref. [75], which we also applied to our data. Unfortu-
nately, this does not seems to fully capture the corrections of the systems investigated in this
work. We elaborate on this in App. C in more detail.
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Figure 3: Binder ratios V1 and V2 for the h-box RTFIM on a square lattice using
different linear system sizes L. Even though both Binder ratios are calculated from
the same magnetisation curves, they intersect at different positions, i. e. are affected
by different corrections.

4.2 Sample-replication method

A sample-replication method [35,52,76] is used to determine the position of the critical point
for each realisation of the quenched disorder. The magnetisation 〈m2(h, L)〉 of a certain system
and also the magnetisation 〈m2(h, 2L)〉 of the doubled system1 are calculated. Then the ratio
of the magnetisations,

Φ(h, L) =
〈m2(h, L)〉
〈m2(h, 2L)〉

, (27)

is calculated as a function of the control parameter h. Φ(h, L) is 1 in the ordered phase and 1/2
in the disordered phase. The pseudo-critical point is defined at the point where the ratio drops
down (see Fig. 5 (left)). Since Φ(h, L) does not drop sharply, especially for small systems, the
point of the drop is determined by fitting a Fermi-distribution-like function,

f (r̃, a) =
1
2

�

1
1+ exp(ar̃)

+ 1
�

, (28)

to Φ(h, L). The control parameter is r̃ = log(h)− log(h̃c), where h̃c is the sample-dependent
pseudo-critical point and a is a free parameter depending on the “rounding” of the curves.
Eq. (28) is an empirical choice that turned out to be suitable since it captures the step-function
like behaviour for large system sizes (a→∞) as well as the rounded curves of smaller system
sizes. For this method we use the logarithmic control parameter r̃ instead of h − h̃c. In the
thermodynamic limit, this choice does not play a role for scaling, but for small system sizes this
choice has proven to be advantageous. One motivation for this is that for the one-dimensional
RTFIM it is known that the distribution of pseudo-critical points is approximately a log-normal
distribution (see Eq. (4)). For the two-dimensional system, there are no analytical results for
the form of the distribution. However, in numerical studies such as [35] or this work, the

1We define a doubled system as a system, where we connect two copies of the original system as depicted in
Fig. 4.
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Figure 4: The doubled system consists of two copies of the original system which
are periodically connected. In one dimension the periodic boundary conditions for
a doubled system are trivial. The periodic coupling of the doubled system in two
dimensions resulting in an isotropic lattice with alternating pattern of the original
and copied system is shown here.

1.4 1.6 1.8 2.0
log(h)

0.5

1.0

(h
,L

=
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log(hc)

P L
(lo

g(
h c

))

Lmin = 4
Lmax = 20

PL = 20(log(hc))

Figure 5: Left: The ratio Φ(h, L = 20) is shown for many disorder realisations (grey
curves) for the h-box RTFIM on the square lattice. Every curve drops at its sample-
dependent critical point from 1 to 0.5. The distribution of pseudo-critical points is
obtained by determining the position of the drop-off for each curve. Right: The
distribution of pseudo-critical points is shown for different system sizes.
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distribution also looks similar to a log-normal or normal distribution (see Fig. 5 (right)). From
the obtained distributions of pseudo-critical points, critical shift and width exponents νs and
νw and the critical point hc can be extracted by finite-size scaling using the mean and the
standard deviation [52]

�

log(h̃c(L))
�

PL(log(h̃c))
= log(hc) + A · L−1/νs , σ(PL(log(h̃c))) = B · L−1/νw . (29)

4.3 Scaling of the average magnetisation

A common finite-size scaling technique to extract or verify critical exponents and critical points
is a data collapse (see e. g. Ref. [10, 11]). This method rescales observables of different sys-
tem sizes, e. g. magnetisation curves, with respect to both their amplitude and position. Both
shifting and rounding can be tackled by this approach and all rescaled curves should lie on
top of each other in the relevant scaling window [70] (see Eq. (23)). However, it turned out,
that this method performs poorly for the RTFIM using small system sizes (see App. C). Since
corrections to scaling are strong, it seems a single fit cannot capture the right exponents using
this method. In order to keep the influence of corrections to scaling as low as possible, we
consider the scaling of the magnetisation directly at the critical point r = 0, i. e. we only fit
the critical exponent of the observable

�

〈m2(r = 0, L)〉
�

∼ L−2β/νav . (30)

On the other hand, we also want to fit the average correlation length exponent νav. Therefore,
we expand the scaling form of the magnetisation (see Eq. (23)) close to the critical point and
consider the observable

1−

�

〈m2(r = δ)〉
�

[〈m2(r = 0)〉]
= 1−

f (0) + ∂ f
∂ δ |δ=0δL1/νav +O(δ2)

f (0)
∼ L−1/νav , (31)

where the exponent ω/νav = 2β/νav cancels out in first order and we can therefore only
extract the average correlation length exponent νav. The separate consideration of the two
finite-size effects has proven to be more fruitful in this work, as corrections are now dealt with
individually.

4.4 Dynamic scaling

Because of the strong influence of rare regions, especially in the disordered phase, the distri-
bution of energy gaps,

P(∆)∼∆
d
z′ −1 , (32)

has an algebraic tail for small energies ∆ [50]. This follows directly from the exponential
relation between typical length scales and energy gaps (see Eq. (6)). Since the exponent
relates energy and length scales, it is denoted by z′, even though z is not defined for critical
points governed by the IDFP. Instead of calculating the energy gap directly, we determine the
local susceptibility as described in Eq. (20). The local susceptibility can be rewritten in terms
of energy gaps by evaluating the integral over imaginary time:

χi,local =

∫ β

0

〈σz
i (τ)σ

z
i (0)〉 dτ=

∫ β

0

1
Z

∑

|α〉,|γ〉

〈α|eH(τ−β)σz
i e−Hτ|γ〉〈γ|σz

i |α〉 dτ (33)

=
1
Z

∑

|α〉≠|γ〉

1
Eγ − Eα

�

e−βEα − e−βEγ
�

|〈α|σz
i |γ〉|

2 (34)

=
2
Z

∑

|α〉≠|γ〉

|〈α|σz
i |γ〉|

2

Eγ − Eα
e−βEα ∼

1
∆

, (35)
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Figure 6: Distribution of the local susceptibility for the h-box (left) and h-fix (right)
RTFIM on the square lattice. The distributions show an exponential tail in the Grif-
fiths phase. From the slope of the exponential tail, the exponent z′ is determined.
Outside the Griffiths phase (right figure for h= 1.80), the distribution has a Gaussian
form.

which is for small temperatures indirectly proportional to the energy gap ∆= E1− E0. Analo-
gous to the exponential tail of small energy gaps, we expect to observe an exponential tail in
the limit of large local susceptibilities. In Fig. 6 you can see the exponential tail of the distribu-
tion of the local susceptibility in the Griffiths phase. Outside the Griffiths phase the distribution
has the form of a normal distribution. This behaviour can be used to roughly determine the
phase boundary between the Griffiths phase and the paramagnetic phase. Considering the
distribution of log(χlocal), we get access to the exponent z′ [38,39,51]

log
�

P(logχi,local)
�

∼ −
d
z′

logχi,local , (36)

i. e. the dynamic scaling in the Griffiths phase. The point where z′ diverges can be used to
determine hc and the point where dynamic scaling disappears can be used to determine the
phase boundary of the Griffiths phase (if it exists). However, finite temperature plays a huge
role for this method, as we will point out in Sec. 5.3.

5 Results

This section is structured as follows: The finite-size scaling methods introduced in the previ-
ous section are now applied to both the one- and two-dimensional RTFIM. First, we use the
intersections of Binder ratios to accurately determine the critical point hc . Then the sample-
replication method is used to validate the position of the critical point as well as to determine
the shift and width exponents νs and νw. To extract the critical exponents β and νav, we
consider the averaged magnetisation at the critical point, whose position we determined from
the previous methods. We first show our results for the one-dimensional RTFIM in Sec. 5.1,
which we can compare with the exact RG results [28], several numerical studies [34,37,52,71]
and results using the Jordan-Wigner method described in App. B. In Sec. 5.2 we turn to the
two-dimensional model applying the same methods as in one dimension and furthermore in-
vestigate the dynamic scaling via the local susceptibility. Finally, in Sec. 5.3, we want to stress
the importance of temperature effects. The raw data used for the presented results as well as
processed data are provided in Ref. [77].
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Figure 7: Intersections of neighboring Binder ratios (L and L−2) are determined for
h-fix (left) and h-box (right) disorder on the one-dimensional RTFIM. Both definitions
of the Binder ratio V1 and V2 do not intersect at a single point, but are influenced by
corrections to scaling. The faded data points are the intersection points from simula-
tion with higher temperature (×2, ×4 and ×8 with decreasing saturation) measured
during the beta doubling procedure. The solid and dashed lines are algebraic and
1/L fits to the data points respectively.

5.1 One-dimensional chain

For the RTFIM on the linear chain we considered system sizes in the range L = 6 to L = 20.
For better comparison we simulate the same linear system sizes that we can achieve in two
dimensions with sufficient convergence in temperature and number of disorder realisations.
A verification for the validity of our methods and our results including data for larger system
sizes is given in App. A. We reach temperature convergence using the beta doubling method
introduced in Sec. 3.2 with βmax = 212 for h-fix disorder and βmax = 210 for h-box disorder. For
the sample-replication method, where we also have to simulate the same system with twice
the linear extent, we have to cool down the system even more: βmax = 215 for h-fix disorder
and βmax = 217 for h-box disorder. We see, that the convergence in temperature is not a
linear process for the RTFIM, but an exponential one. The finite-size gap determining our
minimal temperature is dominated by activated scaling, which seems to be more extreme for h-
box than h-fix. For the sample-replication method at least 3800 disorder realisations have been
computed for each system size. For the Binder techniques and scaling of the magnetisation,
where higher accuracy is necessary, at least 160000 disorder realisations have been computed
for each system size. Furthermore, for the latter, different disorder realisations are taken for
every point in the grid of the control parameter h.

In Fig. 7 the intersections t(L, L − 2) of the Binder ratios V1 and V2 are depicted for h-
fix and h-box disorder. In contrast to pure systems, the Binder ratios do not intersect at almost
a single point but are shifted with their system size L. This shifting has also been investigated
in Ref. [71] for the antiferromagnetic RTFI chain. However, it is not clear with which functional
dependency the intersections scale. The scaling of the intersections cannot be explained using
the standard scaling function of the magnetisation but originates presumably from corrections
to scaling. We elaborate on the possible form of these corrections in App. C applying the
framework described in Ref. [75]. In Ref. [71], the scaling of the Binder intersections was
assumed to be 1/L, which also fits our data quite well (see dashed lines in Fig. 7). However,
with regard to the results of the two-dimensional system, where this seems to be no longer
given, we decided to choose the fit more general as an algebraic fit. The fits are shown in
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Figure 8: Sample-replication method applied to the linear chain with h-fix (left)
and h-box (right) disorder. From algebraic fits to the curves hc and the exponents
νs and νw are extracted. The faded data points are the pseudo-critical points from
simulation with higher temperature (×2, ×4 and ×8 with decreasing saturation)
measured during the beta doubling procedure.

Fig. 7 (solid lines) and result in critical points hc(V1) = 0.340 and hc(V2) = 0.345 for h-fix and
hc(V1) = 0.975 and hc(V2) = 1.038 for h-box. This is fairly close to the literature values
hc = 1/e ≈ 0.368 and hc = 1 [48] considering the very small system sizes we computed.
The varying results for the two definitions V1/2 of the Binder ratio show the relevance of the
freedom at which point the average over an observable is taken. There are more possible
choices to define the Binder ratio mentioned in App. C, which led to critical points that are
less in line with the literature values. In Fig. 7 one can also see the influence of the finite
temperature, as we have calculated the intersection points for each of the last four temperature
steps in the beta doubling. It turned out that the finite temperature still has a strong impact
on the Binder ratios and their intersections, although the averaged magnetisation curves are
already converged.

In Fig. 8 one can see the mean and standard deviation of the distribution of sample depen-
dent pseudo-critical points for the h-fix and h-box RTFI chain. The mean value is expected to
scale towards the respective critical point with a shifting exponent νs, the standard deviation
is expected to decay with a width exponent νw. Both exponents and the critical point were
extracted using algebraic fits and are shown in Tab. 1. Considering Eq. (4) the same quantity
can be calculated by looking at the distribution of

log(h̃c(L)) =
1
L

�

log

�

∏

i

�

�Ji,i+1

�

�

�

− log

�

∏

i

hi

��

, (37)

leading to a width exponent νw = 2. However,
�

log(h̃c(L))
�

using Eq. (37) does not depend
on L, since we average over a sum of independent random numbers. We attribute the L-

Table 1: Critical points and exponents extracted from the distribution of pseudo-
critical points of the RTFI chain compared with literature values.

literature h-fix h-box
hc 1/e ≈ 0.368 (h-fix), 1 (h-box) [48] 0.365 0.996
νs 1 [52] 0.995 0.692
νw 2 [52] 2.023 2.118
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Figure 9: Using a linear fit, we can extract the exponent β/νav from the averaged
magnetisation at the critical point h = hc for the h-fix (left) and h-box (right) RTFI
chain. Furthermore, we use the observable defined in Eq. (31) to determine the
critical exponent νav from the same data. The faded data points are from the same
simulation at higher temperature (×2, ×4 and ×8 with decreasing saturation) mea-
sured during the beta doubling procedure.
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Figure 10: Critical exponents β/νav and νav of the RTFI chain extracted from linear
fits to log(

�

〈m2(hc)〉
�

) and the derivative of the magnetisation defined in Eq. (31).
Here, data for larger system sizes generated by the Jordan-Wigner method described
in App. B is used. We use successively larger system sizes to see the L-dependency of
the critical exponents. In the inset the same data points are presented on 1/L scale,
where L denotes the largest system size considered for each data point.
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dependency of
�

log(h̃c(L))
�

in our data to the neglected boundary term in the derivation of
Eq. (4) [48]. The same shifting has been found in Ref. [52] using a different choice for the
Ising coupling strengths Ji,i+1. Our finding of a very subtle shift for the h-box model is in
agreement with the results of Ref. [34] observing almost no shift at all for the same model.
The exponents using the model with h-fix disorder seem to agree better with the literature than
the h-box model. However, we are cautious in interpreting these results to imply that the h-
fix model converges faster to the correct exponents. One reason is the more extreme disorder of
the h-box model leading to more problems regarding convergence in temperature and number
of disorder realisations. In addition, in the case of irrelevant disorder, one would expect the
shifting exponent νs to continue to correspond to the clean exponent ν = 1 and the width
exponent νw to correspond to the central limit theorem (CLT), i. e. νw = 2/d = 2 [27,52]. This
means that in one dimension it is difficult to distinguish whether one has converged against
the exponents of the IDFP or is still dominated by the pure/CLT exponents. For the two-
dimensional square lattice, where νs and νw are expected to be different from the pure/CLT
exponents, we can see that νw of the h-fix model converges only very slowly from the CLT
exponent to the IDFP exponent.

Given the averaged magnetisation at the critical point
�

〈m2(h= hc)〉
�

in a double loga-
rithmic plot over the system size L (see Fig. 9), we can extract the exponent β/νav through a
linear fit. We use the derivative of the magnetisation defined in Eq. (31) to extract the expo-
nent νav in the same way (see insets of Fig. 9). Although the last four temperature steps are
again displayed, they are hardly visible. Compared to the intersections of Binder ratios, tem-
perature convergence is much easier to achieve in this case. The extracted exponents of the
magnetisation β/νav = 0.108 for h-fix and β/νav = 0.165 for h-box deviate from the literature
value (3−

p
5)/4≈ 0.191. Also the exponent νav = 2 is not well met with our extracted values

νav = 1.290 for h-fix and νav = 1.384 for h-box. It is noticeable that the exponents using
h-box are closer to the literature values than for h-fix. This is in agreement with our results
in two dimensions and the results of Ref. [35] and strengthens our hypothesis that models
with more extreme disorder converge faster towards the IDFP exponents. Looking carefully at
Fig. 9, one can see that the linear fit does not perfectly suit the behaviour of the data points. A
deviation from linear behaviour indicates that corrections to the scaling form are present. We
want to assess whether these corrections become less when we increase the system size. There-
fore the magnetisation is computed for larger system sizes and with higher precision using the
Jordan-Wigner method described in App. B. In Fig. 10 we compute the exponents again for
successively larger sets of system sizes and observe an L-dependency towards the analytically
known critical exponents. We see that the convergence is a lot slower for h-fix than for h-box.
In the inset of Fig. 10 the same exponents are presented on an 1/L scale to demonstrate that
the exponents seem to converge towards the correct exponent.

5.2 Two-dimensional square lattice

As for the one-dimensional case, we considered linear system sizes in the range L = 6 to
L = 20 also for the two-dimensional RTFIM on the square lattice. Based on the experience
we have gained from the one-dimensional model and the results from Ref. [35], we expect
that the model with h-box disorder converges faster in system size L towards the right ex-
ponents. Therefore we invested more computational effort for the study of the h-box than
the h-fix model. For the sample-replication method, for which we simulate up to 800 spins,
we have to cool down to βmax = 215 for the h-box model and βmax = 212 for the h-fix model.
Here, at least 1700 disorder realisations have been computed for each system size. Considering
the h-box model, for the averaged magnetisation, at minimum 11000 disorder realisations at
βmax = 211 have been calculated for each system size. For the Binder techniques at least 31000
disorder realisations per system size at βmax = 212 have been computed. Again, different dis-
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Figure 11: Intersections of neighbouring Binder ratios (L with L−2) are determined
for h-fix (left) and h-box (right) disorder on the square lattice RTFIM. As in the one-
dimensional case, also for the two-dimensional system the Binder ratio V1 and V2
do not intersect at a single point, but are impacted by corrections to scaling. The
faded data points are the intersection points from simulation with higher temperature
(×2, ×4 and ×8 with decreasing saturation) measured during the beta doubling
procedure. The solid and dashed lines are algebraic and 1/L fits to the data points
respectively.
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Figure 12: Sample-replication method applied to the RTFIM on the square lattice
with h-box disorder. Left: The critical point hc and the exponents νs and νw are ex-
tracted from algebraic fits to the curves. The faded data points are the pseudo-critical
points from simulation with higher temperature (×2, ×4 and ×8 with decreasing
saturation) measured during the beta doubling procedure. Right: To observe the
L-dependency of the critical point and exponents, smaller system sizes are stepwise
excluded and fits are performed for the remaining data points. The solid lines in-
dicate the critical point determined using the intersections of Binder ratios and the
exponents νs and νw from Ref. [35].
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Figure 13: Equivalent figure to Fig. 12 for the RTFIM on the square lattice with h-
fix disorder. Left: Algebraic fits to the mean and standard deviation of PL(log(h̃c)).
Right: L-dependency of the critical point and exponents. The solid lines indicate the
critical point determined using the intersections of Binder ratios and the exponents
νs and νw from Ref. [35].

order realisations are taken for every point in the grid of the control parameter h. In the case
of the h-fix model we were able to reuse the data, that we computed for the sample-replication
method.

In Fig. 11 we apply the method described for the one-dimensional chain to the Binder
ratios V1 and V2 of the two-dimensional model. Here, the assumption of an 1/L scaling of the
intersections is no longer in line with the data (see dashed lines in Fig. 11). Fitting an algebraic
function to the data (solid lines in Fig. 11), we get hc(V1) = 1.5653 and hc(V2) = 1.5654 for the
h-fix model and hc(V1) = 7.300 and hc(V2) = 7.184 for the h-box model. This is in agreement
with a recent quantum Monte Carlo study [40] but neither with SDRG studies [35,36,53,54]
nor with the earlier Monte Carlo study [39]. The deviation from the SDRG results can be
explained since the SDRG method can predict universal quantities like critical exponents very
precisely but does not necessarily predict the “true" critical point as microscopic details are
lost in the renormalisation process. The deviation from the earlier Monte Carlo study may
be explained by temperature effects (see Sec. 5.3). In App. C we address the imaginary-time
integrated binder ratios that were used in Ref. [40] to determine the critical point.

In Fig. 12 the results for the sample-replication method applied to the h-box model on
the square lattice are shown. Algebraic fits lead to hc = 8.197, νs = 2.33 and νw = 1.408.
However, as also pointed out in Ref. [35], both exponents are still L-dependent, because of
corrections to scaling. To assess the L-dependency, we stepwise exclude the smallest system
and perform the fits again (see Fig. 12 (right)). Using this procedure, we see that the exponents
seem to converge to the exponents determined in several RG studies [35, 36, 78], although
the error bars calculated using the bootstrapping technique are quite large. The direction of
the convergence, i. e. overestimating the exponents for small system sizes, is also consistent
with the results from Ref. [35]. Furthermore, also the critical point shifts towards the value
we extracted using the intersections of Binder ratios (see Fig. 12 (right)). PL(log(h̃c)) for
h-fix disorder is evaluated in Fig. 13. One can see that the convergence of νw towards the
expected value is slower or even hardly visible compared to the h-box model being consistent
with Ref. [35]. It seems like νw for the h-fix model is dominated by the central limit theorem,
i. e. νw = 2/d = 1. The exponent νs is affected by a large error, while the critical point coincides
well with our estimate using the Binder techniques and the value predicted by Ref. [40].
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Figure 14: Using a linear fit, we can extract the exponent β/νav from the averaged
magnetisation at the critical point hc ≈ 1.565 and h = hc ≈ 7.25 obtained from the
Binder methods for the h-fix (left) and h-box (right) RTFIM on the square lattice.
Furthermore, we use the observable defined in Eq. (31) to determine the critical
exponent νav from the same data. The faded data points are from the same simulation
at higher temperature (×2, ×4 and ×8 with decreasing saturation) measured during
the beta doubling procedure.

In Fig. 14 the averaged magnetisation at the critical point
�

〈m2(h= hc)〉
�

is scaled for the
two-dimensional RTFIM. On the basis of the results extracted for the intersection of Binder
ratios, we assume the critical points to be hc ≈ 7.25 for the h-box model and hc ≈ 1.565 for
the h-fix model. The extracted critical exponents for the h-box model are shown in Tab. 2 and
compared with literature values. Both our values for β/νav and νav for the h-box model are
compatible with the results of the SDRG and QMC studies available to far (see Tab. 2). Like νs
and νw before, also the critical exponent νav seems to be slightly overestimated compared to
the SDRG results being in agreement with the sample-replication method. For the h-fix model
we receive β/νav = 0.578 and νav = 0.787.

By successively removing smaller system sizes from the fit (see Fig. 15) we see, however,
a strong L-dependence in the h-fix exponents. In contrast, the exponents for the h-box model
seem to be less affected by finite-size corrections. Analogous to the results in one dimension
(compare Fig. 10), the hypothesis arises that there is a finite-size crossover for weak disorder
like the h-fix model, in which the exponents change from the ones of the pure system to the
IDFP exponents of the disordered system. However, only looking at comparably small system
sizes, we cannot rule out that the exponents converge towards different values as suggested by
Choi et al [40]. We observe that the critical exponents extracted by scaling the averaged mag-
netisations are not completely stable under variation of the critical point but change slightly in
a continuous way. Inaccuracies in the assumed location of the critical points lead to deviations
in the critical exponents. Since the different methods we used to predict the critical point

Table 2: Critical exponents extracted from the averaged magnetisation of the h-
box RTFIM on the square lattice by finite-size scaling compared with literature values,
mostly obtained by SDRG using significantly larger system sizes.

[32] [54] [79] [35] [36] [78] [40] this work
β/νav 1.0 1.01 0.96 0.982 0.94 0.909
νav 1.07 1.2 1.24 1.3 1.2 1.6 1.335
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Figure 15: Critical exponents β/νav and νav of the h-fix and h-box RTFIM on the
square lattice extracted from linear fits to log(

�

〈m2(hc)〉
�

) and the derivative of the
magnetisation defined in Eq. (31). Smaller system sizes are successively excluded
to see the L-dependency of the critical exponents. For comparison the results of
Ref. [40] and [35] are depicted by solid lines. In the inset the same data points are
presented on 1/Lmin scale, where Lmin denotes the smallest system size considered
for each data point.

determine the same value within reasonable accuracy, we are confident that also the critical
exponents are not affected by a large error. As in the one-dimensional case, convergence in
the temperature does not seem to be a problem either for this method (see faded data points
in Fig. 14).

From the distribution of the local susceptibility (see e. g. Fig. 6), the exponent d/z′ is
extracted from the linear slope of the exponential tail when double-logarithmically displayed
[38,39,51]. The ratio d/z′ is shown in Fig. 16 for both the h-box and h-fix RTFIM on the square
lattice. For both disorder types, the exponent approaches 0 at a certain point, corresponding
to activated scaling, i.e. z =∞ at the critical point. The estimate of the critical point gained
from the condition d/z′ = 0 is prone to both finite-size and temperature effects (see Sec. 5.3).
In one dimension for both h-box and h-fix (not shown here, see e. g. Ref. [51]), the conver-
gence looks similar to the two-dimensional h-box model. The two-dimensional h-fix model
shows a different type of convergence (compare Fig. 16). In a recent QMC study [40], it was
pointed out that there may be a fundamental difference between the h-box and h-fix model
since the critical exponents of the latter were rather connected to the 2D transverse-field Ising
spin glass universality class than the universality class of the IDFP. However, the presence of
the exponential tail in the local susceptibility (see Fig. 6 (right)) hints towards an IDFP. It is
striking that d/z′ in Fig. 16 (left) does not converge to zero at the critical point, as we expect
from the previous analysis, but rather to the point predicted by Refs. [38, 39] using the same
technique. The reason for the inconsistency in the location of the critical point is not only a
lack of extrapolation in L in Fig. 16, but also the strong temperature effects, analysed in the
following section.
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Figure 16: Exponent d/z′ extracted from the distribution of the local susceptibility
for the h-box (left) and h-fix (right) RTFIM on the square lattice. For both models z′

diverges at the critical point, whose position is affected by strong finite-size and tem-
perature effects (see Sec. 5.3). However, the convergence behaviour seems different
from the data.
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Figure 17: The mean of the distribution of pseudo-critical points extracted using the
sample-replication method (SRM) is shown for a large range in temperature. For
comparison, the critical point extracted using the intersections of Binder ratios V1
and V2 is displayed. The inset shows a cutout for very small temperatures on a log
scale.

5.3 Temperature effects

During our simulations we observed that the influence of temperature is much more impor-
tant than we anticipated. In pure systems, when the relation between the typical energy and
length scale is algebraic, the convergence to zero temperature of a system of length L can be
estimated by βmin ∼ 1/∆∼ Lz . In many cases (e. g. O(N) symmetry breaking quantum phase
transitions [2]), z is one and therefore the relation is linear. However, activated scaling in-
troduces exponential behaviour to the convergence in temperature. To better understand the
convergence, we computed the distribution of critical points in a wide range of temperatures
using the sample-replication method. The mean critical point for the same set of system sizes
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Figure 18: Left: The temperature dependence of the exponent d/z′ for the L = 20
h-box RTFIM on the square lattice is shown. The pseudo-critical point defined by
d/z′ = 0 strongly depends on T = 1/β . Right: The pseudo-critical points defined by
d/z′ = 0 for various L and β are extrapolated to L =∞ and T = 0. Data points with
higher temperature are displayed with decreasing saturation. The pseudo-critical
points are extrapolated to L =∞ in the inset. In the main plot the temperature-
dependent pseudo-critical points are displayed.

used before is shown in Fig. 17. For large temperatures the curves look as if they would cross
with the x-axis at approximately hc = 4.2 being consistent with the result of Ref. [38, 39].
However, it stands out that close to T = 0, we see exponential behaviour, that looks funda-
mentally different than the behaviour for large T . In the inset you can see a cutout of our data
at very small temperatures on a logarithmic scale. Even though we cooled the systems down
to 1/T = β = 215, one may argue that the largest system sizes are not perfectly converged yet.
This very unusual temperature behaviour shows how important it is to cool down the system
in a controlled manner.

The distribution of local susceptibilities is even more affected by temperature effects. In
Fig. 18 (left) the exponent d/z′ is shown for the L = 20 h-box model for different tempera-
tures. Although other observables are converged in temperature at this point, d/z′ is obviously
not. It follows that this observable is not well suited to determine the critical point at com-
parable temperatures. This may explain the discrepancy between the critical points extracted
in Refs. [38,39] and the critical point determined in this work or in the study of Ref. [40]. In
Fig. 18 (right) we attempt to extrapolate the points d/z′(L,β) = 0 to the limit L =∞ and
β =∞. First, we extrapolate to L→∞ using an algebraic fit (inset of Fig. 18 (right)). Then
we plot the resulting temperature-dependent critical point over the temperature (main plot
of Fig. 18 (right)). We see that the dependence of the critical point on temperature extracted
with this method is non-trivial and hard to extrapolate. However, it seems that the critical
point in the limit of large L and small T tends to shift towards larger values, which is in line
with our previous results.

6 Conclusion

We investigate the critical behaviour of the RTFIM with different types of disorder in one
and two dimensions using the SSE QMC approach. In order to determine zero-temperature
properties, we use a rigorous scheme for cooling down and check the convergence in tem-
perature for all observables separately. Due to exponentially small energy gaps, temperature
must be kept at very low values up to 1/T = β = 217. The non-self-averaging nature of the

25

https://scipost.org
https://scipost.org/SciPostPhys.17.2.061


SciPost Phys. 17, 061 (2024)

IDFP [27, 28, 41, 49, 80] poses a great challenge for any numerical simulation of finite sys-
tems. The data presented in this work demanded extensive simulations in the order of 106

CPU-hours.
From the generated data critical points and exponents were extracted by various finite-size

scaling approaches. We exploited the behaviour of Binder ratios to determine an accurate esti-
mate of the critical points. Furthermore, a sample-replication method was employed to obtain
the distribution of pseudo-critical points of finite systems. By analysing the scaling properties
of the distribution, the exponents νs and νw as well as the critical point hc were derived. The
averaged magnetisation is used to determine the exponents β/νav and νav.
We also discussed the strong temperature dependence of observables like the local suscepti-
bility, which is used to determine the dynamic exponent z′. Besides the strong temperature
dependence caused by activated scaling, we found corrections to finite-size scaling depending
on the type of disorder. We conclude that it is beneficial to choose the type of disorder as
strong as possible to converge to the exponents of the IDFP already on smaller finite systems.
In one dimension, we gauged the quality of our methods and results with previous analyti-
cal [28] and numerical findings [52] of quantum critical properties. For the two-dimensional
RTFIM on the square lattice with h-box disorder, the obtained critical exponents are in line
with results from other numerical studies [32,35,36,40,54,78,79]. For the same model with
h-fix disorder we observe strongly system-size dependent critical exponents, which is in line
with our findings in one dimension. The exponents tend to converge towards the ones of the
2D-IDFP determined by SDRG studies [32,35,36,54,78]. However, in our analysis we cannot
rule out, whether they might converge towards a different set of critical exponents being part
of a different universality class as indicated by Ref. [40]. We provide an unbiased estimate for
the location of the critical point and resolve the inconsistency of varying values in literature,
which originates from an insufficient temperature convergence of observables.

We stress that our analysis is able to capture quantum critical properties well. It is not
restricted in terms of dimension and lattice geometry as long as no sign problem exists in the
SSE QMC. For the RTFIM, this even includes geometrically frustrated interactions. It would
therefore be highly interesting to investigate the effects of quenched disorder on order-by-
disorder [4–6, 81] and disorder-by-disorder [4, 5, 7, 82] mechanisms, which are intriguing
physical phenomena arising in frustrated systems due to extensive ground-state spaces yield-
ing novel states of quantum matter. In a similar spirit, also the interplay of long-range inter-
actions and quenched disorder in low-dimensional, potentially frustrated quantum magnets is
a promising future research direction. In both cases, our understanding is still in its infancy
and novel physical phenomena are expected to arise.
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A Verification

A.1 Sample-replication method: Comparison with analytic results

Numerical methods should always be compared with analytical methods in order to identify
any implementation errors. The implementation of the SSE quantum Monte Carlo method
itself was verified with exact diagonalisation. Besides that, we would also like to check the
method we use to determine sample-dependent pseudo-critical points. To verify the sample-
replication method, we have the opportunity to compare with the analytic result from Ref. [48]
for the one-dimensional RTFIM, i. e. the relation stated in Eq. (4) leading to Eq. (37), which
is only valid at the critical point. Note that in the derivation of Eq. (4) a boundary term is
neglected, which vanishes in the thermodynamic limit. For finite systems the prediction using
Eq. (37) is therefore expected to slightly deviate from the true pseudo-critical point. In Fig. 19
we use 20 sets of bond- and field-strengths {Ji,i+1, hi} and determine the pseudo-critical point
both using the sample-replication method with data generated by SSE QMC and by inserting
into Eq. (37). It can be seen that the pseudo-critical points of the different methods coincide
quite well. The deviations between the data points are easily explained. Statistical fluctua-
tions appear since we do not focus on high accuracy single curves in our simulation, i.e. large
numbers of Monte Carlo steps, but rather aim to simulate as many disorder realisations as
possible. In the end, averaging over disorder realisations will also average over statistical in-
accuracies [58]. Besides this, there is also a systematic shift visible in the data, which becomes
smaller as the system size increases (comparing L = 6 (left) with L = 20 (right) in Fig. 19). We
expect this to be the contribution of the neglected boundary term in the derivation of Eq. (4),
which leads to the shifting of

�

log(h̃c(L))
�

elaborated on in the main body of the paper. This is
consistent with the assumption that the contribution from the boundary term vanishes for very
large system sizes. However, it cannot be ruled out that our numerical protocol to determine
the pseudo-critical point from Φ(h, L) leads to an additional error that disappears in the limit
of large systems, as Φ(h, L) is less rounded with increasing L.
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Figure 19: Sample-dependent pseudo-critical points extracted using the sample-
replication method (SRM) for the h-box RTFIM on the linear chain. We can compute
the same critical points using Eq. (37) and the bond- and field- strengths {Ji,i+1, hi}
used for the simulation.
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Figure 20: Magnetisation at a single value of h for the h-box RTFI chain (upper
plots) and the h-box RTFIM on a square lattice (lower plots) using pseudo-random
numbers and Sobol sequences for the bond- and field- strengths {Ji, j , hi}. Every data
point is averaged over 128 disorder configurations. The magnetisation simulated
using Sobol sequences converges faster in the number of samples than simulated with
pseudo-random numbers. With increasing dimension of the disorder configuration
space (here: s = 12, 40,108,1200) the advantage of the Sobol sequences seems to
decrease, but is still present.

A.2 Advantage of Sobol sequences

The discrepancy of a low-discrepancy sequence of N samples is limited by [61,83]

DN < cs
log(N)s

N
, (A.1)

where s is the dimension of the configuration space and cs is a constant dependent of the
actual sequence. One expects that low-discrepancy sequences perform particularly well for
small s with a convergence of approximately ∼ 1/N compared to ∼ 1/

p
N for pseudo-random

numbers. Sobol sequences are low-discrepancy sequences that also perform well in higher
dimensional spaces [61]. While the advantage of quasi-random numbers compared to pseudo
random numbers for the integration of functions in s-dimensional spaces is generally known
[61], it is difficult to estimate the advantage it has on the observables we are interested in.
In Fig. 20 we present the magnetisation of the h-box RTFI chain and the h-box RTFIM on the
square lattice for a fixed h each. Each data point is averaged over 128 disorder configurations
drawn from Sobol sequences or pseudo random numbers. Besides that the simulation time
and number of Monte Carlo steps is the same for both sets. We see that the magnetisation of
Sobol sequences converges faster than for pseudo random numbers for all systems. However,
the advantage decreases with the dimension of the configuration space. Note that only very
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Figure 21: Critical point determined from Eq. (37) using a pseudo-random number
generator and Sobol sequences for the bond- and field- strengths {Ji,i+1, hi}. Every
data point is averaged over 128 disorder configurations. We see that observables
simulated by using Sobol sequences converge much faster in the number of samples
than simulated with pseudo-random numbers.

few configurations were averaged here. With increasing N the difference should become even
clearer. In Fig. 21 we show the pseudo-critical points

�

log(h̃c(L))
�

for the h-box RTFI chain
calculated using Eq. (37). The same comparison could have been made with data generated
by SSE and the sample-replication method, however, in order to exclude influence by further
statistical errors and not to waste simulation time, we limit ourselves to Eq. (37). Every data
point is averaged over 128 disorder realisations. We observe that in the case when the bond-
and field-strength {Ji,i+1, hi} are drawn from Sobol sequences, the critical points converge
much faster than when drawn from a pseudo-random number generator. It is striking that the
advantage does not visibly decrease, when we increase the system size, i. e. the dimension of
the disorder configuration space (see Fig. 21 (right)).

10 20 30 40
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0.34

t(L
,L
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V2

10 20 30 40
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0.8

0.9
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Figure 22: Intersections of neighboring Binder ratios (L and L − 2) are determined
for h-fix (left) and h-box (right) disorder of the one-dimensional RTFIM. Here larger
system sizes are evaluated than in the main body of the paper. Therefore we use
the method described in App. B to calculate Binder ratios from magnetisation curves
very efficient. The solid and dashed lines are algebraic and 1/L fits to the data points
respectively.

29

https://scipost.org
https://scipost.org/SciPostPhys.17.2.061


SciPost Phys. 17, 061 (2024)

6-40 10-40 14-40 18-40 22-40
L

0.35

0.36

0.37

0.38

0.39
h c

hc(V1)
hc(V2)

6-40 10-40 14-40 18-40 22-40
L

1.00

1.02

1.04
hc(V1)
hc(V2)

6-20 10-24 14-28 18-32 22-36
L

0.32

0.35

0.38

0.41

0.44

h c

hc(V1)
hc(V2)

6-20 10-24 14-28 18-32 22-36
L

0.96

1.00

1.04

1.08
hc(V1)
hc(V2)

Figure 23: Using the data points shown in Fig. 22, we analyse the L-dependency of
the critical point hc extracted by this method. The solid line indicated the expected
critical point for the respective system [48], i. e. the h-fix chain (left) and h-box chain
(right). In the upper plots smaller system sizes are successively removed from the
fits, in the lower plots a set of 8 system sizes is considered for every fit.

A.3 Results for the one-dimensional model on larger system sizes

To verify the results for the one-dimensional model with small system sizes L = 6−20 presented
in the main body of the paper, we have additionally simulated larger systems L = 6− 40. To
exclude any influence of temperature, the data for the larger system sizes is not determined
by the SSE QMC method, but by the Jordan-Wigner method, which is introduced in App. B.
Every data point is averaged over at least 200000 disorder realisations. In Fig. 22 one can
see the intersections t(L, L − 2) of the Binder ratios V1 and V2 for the h-fix and h-box RTFI
chain. The extrapolation leads to hc(V1) = 0.346 and hc(V2) = 0.353 for the h-fix model and
hc(V1) = 0.998 and hc(V2) = 1.023 for the h-box model. These values are consistent with the
results we obtained using smaller system sizes and are even closer to the exact values hc = 1/e
and hc = 1. We further analyse the L-dependency of the extracted critical points in Fig. 23 in
two different ways by successively excluding smaller systems. We can see that the deviation to
the exact critical point decreases with increasing system size in the case of the h-fix model. In
the case of the h-box model the convergence is less clearly seen. However, the critical points
nevertheless seem to be consistent with hc = 1. It is also noticeable that the error on the fit
increases with increasing system size, although the number of disorder realisations is the same
for all system sizes. This is due to the fact that the binder ratios intersect more shallowly with
increasing system size, which leads to a greater statistical error.
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B Jordan-Wigner calculation of correlation functions for the 1D-
RTFIM

As first described in Ref. [46], one can solve the one-dimensional TFIM by applying a Jordan-
Wigner transformation [84]. The resulting quadratic fermionic Hamiltonian can be diago-
nalised in momentum space using a Bogoliubov transformation. When disorder is present, the
problem for a TFIM on a chain with N sites only reduces to a Bogoliubov transformation in
real space. This was first utilised in Ref. [51] to numerically study the RTFIM. We repeat the
most important steps.

B.1 Diagonalising the Hamiltonian

First, the spin operators are mapped to hardcore-boson operators with the Matsubara-Matsuda
transformation [85]

σi
z = a†

i + ai , (B.1)

σi
x = 1− 2a†

i ai . (B.2)

Next one applies the Jordan-Wigner transformation to fermionic operators ci

a†
i = c†

i exp



−iπ
i−1
∑

j=1

c†
j c j



 . (B.3)

In the representation of fermionic operators, the TFIM takes the form

H = −
N
∑

i=1

hi

�

1− 2c†
i ci

�

−
N−1
∑

i=1

Ji(c
†
i − ci )(c

†
i+1+ ci+1)+ JN (c

†
N − cN )(c

†
1+ c1)exp [iπN ] , (B.4)

where N =
∑N

i=1 c†
i ci is the number of fermions. Hence, in the sector of even parity

exp [iπN ] = 1. Introducing

Ψ† = (c†
1, c†

2, . . . , c†
N , c1, c2, . . . , cN ) , (B.5)

which satisfies fermionic anti-commutation relations

{Ψ†
i ,Ψ j }= δi j , and {Ψ†

i ,Ψ†
j }= 0 , (B.6)

one can write the Hamiltonian as
H = Ψ†H̃Ψ , (B.7)

where H̃ is a 2× 2 block matrix

H̃ =

�

A −B
B −A

�

. (B.8)

The matrix elements are

Ai,i = hi ,

Ai,i+1 = Ai+1,i = Ji/2 ,

Bi,i+1 = −Bi+1,i = Ji/2 .

(B.9)

The energies of H can now be easily obtained by diagonalising

H̃ = V †DV . (B.10)
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We assume ordering of eigenvalues in ascending order. The eigenvalues in D come in pairs of
equal magnitude but different sign. The corresponding eigenvectors in V are complex conju-
gates of another. We define εµ as the N positive energies in D and operators γ†

µ equal to the
eigenvectors in V with positive energies. Then one can write the Hamiltonian in the normal
form

H =
N
∑

µ=1

εµ(γ
†
µγµ − γµγ

†
µ) , (B.11)

and the ground-state energy is

E0 = −
N
∑

µ=1

εµ , (B.12)

in the even-parity sector.

B.2 Spin-spin correlations

The calculation of spin-spin correlation functions demands more effort. Inserting the Jordan-
Wigner transformation, we get

Ci, j ≡
¬

σz
iσ

z
j

¶

=

*

(c†
i + ci )exp



−iπ
j−1
∑

l=1

c†
l cl



 (c†
j + c j )

+

, (B.13)

where 〈. . . 〉 denotes ground-state averaging. Apart from Ref. [51], a good description for the
evaluation of this expectation value is given in Ref. [86]. Defining

Al = c†
l + cl ,

Bl = c†
l − cl ,

(B.14)

one finds

Ci, j =



Bi

�

Ai+1Bi+1 · · ·A j−1B j−1

�

A j

�

. (B.15)

Using Wick’s theorem, this can be decomposed into a sum of products of two-point correlations
[51,86]. One needs




AiA j

�

= δi j ,



BiB j

�

= −δi j ,



BiA j

�

= −



A jBi

�

=: Gi, j ,

(B.16)

to evaluate
Ci, j = detX i, j , (B.17)

with
X i, j

s,r = Gi−1+s, j+r , (B.18)

and s = r = 1, . . . , j − i. To express Gi, j by the eigenvectors V , we need the N × N blocks

V =

�

V11 V12
V21 V22

�

. (B.19)

Then
Gi, j = 1− 2 V12 (V12 + V21)

† = −(V12 − V21)(V12 − V21)
† , (B.20)

is a product of unitaries and also unitary. This way one can calculate m2.
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B.3 Four-point correlations

To calculate Binder ratios with the Jordan-Wigner approach, one needs the four-point corre-
lation functions

Ci, j,k,l ≡
¬

σz
iσ

z
jσ

z
kσ

z
l

¶

. (B.21)

Those were not calculated in Ref. [51] and, to the best of our knowledge, this is done for the
first time here for the RTFIM. In fermion operators Ci, j,k,l takes the form

Ci, j,k,l =

*

(c†
i + ci )exp



−iπ
j−1
∑

r=1

c†
r cr



 (c†
j + c j )(c

†
k + ck)exp

�

−iπ
l−1
∑

s=k

c†
s cs

�

(c†
l + cl )

+

=



Bi

�

Ai+1Bi+1 · · ·A j−1B j−1

�

A jBk (Ak+1Bk+1 · · ·Al−1Bl−1)Al

�

. (B.22)

When one compares this with Eq. (B.15), it becomes apparent that this expression can again
be expressed as a determinant of a matrix, i. e.

Ci, j,k,l = det Y =

�

Y11 Y12
Y21 Y22

�

, (B.23)

with

Y i, j,k,l
11,s,r = Gi−1+s, j+r , for s = r = 1, . . . , j − i ,

Y i, j,k,l
22,s,r = Gk−1+s,k+r , for s = r = 1, . . . , l − k ,

(B.24)

and

Y i, j,k,l
12,s,r = Gi−1+s,k+r , for s = 1, . . . , j − i , r = 1, . . . , l − k ,

Y i, j,k,l
22,s,r = Gk−1+s,i+r , for s = 1, . . . , l − k , r = 1, . . . , j − i .

(B.25)

All that is left is the evaluation of determinants to obtain m4.

B.4 Evaluation of determinants

Diagonalisation of H̃ and calculation of Gi, j only has complexity of O(N3). Evaluation of one
determinant for Ci, j itself has complexity O(N3). A naive calculation of m2 would thus have
O(N5) complexity. If one performs a LU decomposition of X i, j without pivoting, one does not
only obtain Ci, j but also Ci,s for i < s < j. This way, the complexity reduces to only O(N4).
Here, one has to note that it is not a priori clear if the LU decomposition without pivoting
is stable. Stability is given if all leading principal minors are non-zero or, from a numerical
perspective, not too small. Since we are close to criticality, correlations fall off slowly and
this condition is fulfilled for almost all disorder configurations. A naive calculation of m4

has complexity O(N7). Using LU decompositions we end up with complexity O(N6). The
theoretical complexity can be improved further using rank-1 updates for the LU-factorisation.
For m2 one only needs one full LU decomposition then and N−2 rank-1 updates of complexity
O(N2). Similarly, for m4 the performance can be improved by one factor of N . However, for
the system sizes considered in our paper, this performance gain did not show up. The reason
is that the runtime of LU decomposition was strongly dominated by the N2-term. Because of
that we used the LU routines for our calculations. If one is interested in very large systems,
usage of rank-1 updates will become beneficial.

33

https://scipost.org
https://scipost.org/SciPostPhys.17.2.061


SciPost Phys. 17, 061 (2024)

0.34 0.36 0.38 0.40
h

0.88

0.90

0.92
V
′

Lmin = 6
Lmax = 20

8 12 16 20
L

0.34

0.36

0.38

t(L
,L

2)

Figure 24: Left: V ′ for different system sizes for the h-fix RTFI chain. Right: In-
tersections of V ′ scaled to L → ∞. The critical point in the thermodynamic limit
hc = 1/e is indicated by a straight line. The faded data points are the intersection
points from simulation with higher temperature (×2, ×4 and ×8 with decreasing
saturation) measured during the beta doubling procedure.

C Further finite-size scaling methods for disordered systems

C.1 Binder ratios

Besides the definitions of V1 and V2, which we considered in the main body of the article,
there are more ways to define Binder-like ratios, that should intersect at the critical point. In
Ref. [72], V ′ was defined as

V ′ =
1
2

�

3−

�

〈m4〉
�

[〈m2〉2]

�

, (C.1)

choosing a different approach of averaging. Note that for pure systems there would be no
difference between V ′ and V1 or V2. V ′ is depicted in Fig. 24 (left) for the h-fix RTFI chain, the
extracted intersection points t(L, L − 2) are shown in the right part of the figure. We use the
same raw data for V ′ as we did for V1 and V2. Scaling the intersections to L →∞ massively
overestimates the critical point. Even worse, we see that most of the intersections lie above the
critical point and scale towards higher values. Assuming monotonic scaling, these intersection
points are not compatible with the analytically known critical point hc = 1/e. Another way to
define a Binder-like quantity is given in Ref. [73] by

U1 =

�

〈|m|〉2
�

[〈|m|〉]2
. (C.2)

Note that U1 is always equal to 1 in a pure system and can therefore only be defined for disor-
dered systems. Analogous to V ′, we present U1 in Fig. 25 (left) using the same data set. On the
right, the respective intersection points are depicted together with the expected critical point
hc = 1/e. Scaling to L→∞ does again not provide a compatible critical point, however, this
time we cannot rule out that scaling for larger systems changes in a monotonous way towards
the right critical point.
To conclude, we again want to stress the importance of averaging for disordered systems. Even
though these definitions of Binder ratios seem to be similar, they show completely different
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Figure 25: Left: U1 for different system sizes for the h-fix RTFI chain. Right: In-
tersections of U1 scaled to L →∞. The critical point in the thermodynamic limit
hc = 1/e is indicated by a straight line. The faded data points are the intersection
points from simulation with higher temperature (×2, ×4 and ×8 with decreasing
saturation) measured during the beta doubling procedure.

scaling behaviour and may also lead to different estimates for the critical point in the thermo-
dynamic limit. Furthermore, the right choice seems to be model dependent as the definitions
presented above lead to improved results for the site-diluted Heisenberg models in Ref. [72],
but failed in the case of the RTFI chain. It is an open question which type of averaging is
beneficial for which model. Therefore, the best approach is to compare with analytical results
when possible. We also looked at V ′ and U1 for the two-dimensional RTFIM (not shown here)
and received estimates for the critical point in the same order of magnitude compared with
the methods presented in the main part of the article. However, since the verification in one
dimension failed, we did not include these results here.

C.1.1 Imaginary-time integrated Binder ratio

So far, we used in our evaluation the τ = 0 magnetisation to calculate observables. As stated
in Sec. 3.1, we have also access to imaginary time integrated observables with the SSE QMC
method. Using Eq. (19), we can define an imaginary-time integrated Binder ratio as follows

Vint = 1−
�

〈m4
int〉

3〈m2
int〉2

�

. (C.3)

We choose the constant differently here to better compare with the results of Ref. [40] scaling
only the amplitude of the data points. In contrast to the Binder ratios considered so far, we
do not expect this quantity to intersect at the critical point, but all curves plotted over inverse
temperature β should have the same (universal) amplitude at the critical point [39, 40]. In
Fig. 26 Vint is presented for several values of h. The condition that the maxima of all curves
have the same value is fulfilled best at h= 8.892 (lower right plot), which is far away from the
critical point we extract using the methods in the main body of the article. As for any other
observable we discussed, we also assume for Vint that there are strong corrections to scaling.
In Ref. [40] the maximum of their two largest system sizes L = 32 and L = 36 was compared
to determine the critical point to be hc = 7.52, since smaller systems are affected stronger by
finite-size corrections. Comparing our largest system sizes L = 18 and L = 20 would lead
to a critical point of approximately hc = 7.780 (see lower left plot). For comparison we also
displayed the curves for h = 7.224, which is close to the critical point we claim in this work,
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Figure 26: The imaginary time integrated Binder ratio Vint is shown for different val-
ues of h for the h-box RTFIM on the square lattice. One would expect the maximum
of the curves to be independent of the system size at the critical point.

and h= 7.502, which is close to the critical point claimed in Ref. [40] in the upper two plots of
Fig. 26. Both seem to not fulfil the condition of having the same maximum value. We therefore
conclude that probably our system sizes are too small to determine an accurate estimate for
the critical point using this method. However, it is questionable if increasing the linear system
sizes by a factor of two would solve this problem.

C.2 Data collapse

As already described in the main section, it turned out that a data collapse is not the optimal
method for determining the critical point and the critical exponents for the RTFIM on small
systems. Nevertheless, we would like to briefly introduce the method and present the results
we get from it for our data. For this purpose, we use the data for the h-box RTFI chain up
to L = 40, which were determined using the Jordan-Wigner method (see App. B). Following
Eq. (23), in this method the function

m2(r, L) = L−2β/ν fm2(r L1/ν) , (C.4)

is fitted to the magnetisation curves
�

〈m2(r, L)〉
�

for all L simultaneously. The scaling function
fm2 is assumed to be a polynomial of degree 4. Whether the data collapse fits the data well
can be shown by rescaling

�

〈m2(r, L)〉
�

with a factor of L2β/ν in y-direction and a factor of
L1/ν in x-direction. Since we analyse averaged magnetisation curves, we assume ν = νav.
Applying this procedure to our data in the range of the small system sizes investigated in the
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Figure 27: Left: Data collapse for the h-box RTFI chain fixing the exponents
νav = 2,β = (3 −

p
5)/2 and the critical point hc = 1 using small system sizes

L = 6 − 20. Right: Fitting results from the data collapse method for free param-
eters νav,β and hc. To see the L-dependency of the exponents and critical point we
perform the data collapse for different sets of system sizes L.

main part, i. e. L = 6− 20, leads to critical exponents β = 0.190, νav = 1.36 and the critical
point hc = 0.935. This is rather far away from the known values in one dimension. In Fig. 27
(left) the rescaled magnetisation curves for L = 6−20 are shown using the correct exponents
νav = 2,β = (3 −

p
5)/2 and the correct critical point hc = 1. One can see that the data

points do not collapse to one curve, but deviate especially for the smaller system sizes. Using
the larger system sizes up to L = 40 we can determine the L-dependency of the critical point
and exponents (see Fig. 27 (right)). Therefore we successively exclude smaller system sizes
and include larger system sizes and perform the data collapse for each set of system sizes. We
observe that the critical point is captured quite well with the method, but the critical exponents
only converge very slowly towards the correct values.

C.3 Corrections to scaling

Since corrections are prominent in the systems investigated in this work, we want to identify
the leading corrections to scaling and apply them to our data. For pure systems, Ref. [75]
provides a framework to extract and fit the leading corrections to observables. The idea is
based on the fact that the free energy density f can be described by a generalised homogeneous
function (GHF) close to the critical point [63–65] and thermodynamic observables which are
derived from it are also GHFs [65]. This is the basis of the standard finite-size scaling theory
for pure systems. Besides the relevant couplings, there are also irrelevant couplings present in
f , that vanish in the limit of large L. The approach of Ref. [75] takes into account the leading
irrelevant coupling, i.e. the irrelevant coupling with largest exponent ymax := −φ/ν to obtain
a modified version of Eq. (23):

O(r, L) = L−ω/ν(1+ cL−θ ) fO(r L1/ν − d L−φ/ν) , (C.5)

where θ = min(φ/ν, 1), and c and d are non-universal constants. Following this form, the
intersections of Binder ratios t i(L, nL) are no longer independent of L, but scale as follows [75]

t(L, nL) =
cq0

q1

�

1− n−θ

n1/ν − 1

�

L−1/ν−θ − d

�

1− n−φ/ν

n1/ν − 1

�

L−(1+φ)/ν , (C.6)
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Figure 28: Intersections of binder ratios V1 and V2 for the h-box RTFI chain. Eq. (C.7)
is fitted to the data point fixing hc = 1 and ν = 2 for two different values of the
correction exponents φ.

where q0 and q1 are further non-universal constants. For the intersection of neighbouring
system sizes t(L, L − 2), we can rewrite Eq. (C.6) to

t(L, L − 2) =
cq0

q1

 

1−
� L−2

L

�−θ

� L−2
L

�1/ν − 1

!

L−1/ν−θ − d

 

1−
� L−2

L

�−φ/ν

� L−2
L

�1/ν − 1

!

L−(1+φ)/ν . (C.7)

It goes without saying that this form is way too complex to fit it to data without risking overfit-
ting. Therefore, we applied Eq. (C.7) to the data for V1 and V2 for the h-box RTFI chain fixing
all known constants, i. e. hc = 1 and ν = νav = 2. Interestingly enough we receive φ ≈ 1
using V1 and φ ≈ 2 using V2. In Fig. 28 you can see fits with fixed φ = 1 and φ = 2 which
only match the behaviour of one binder ratio each. It is striking that the choice of averaging
influences the scaling power of the leading irrelevant coupling.
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