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Abstract

Mean-field theories have proven to be efficient tools for exploring diverse phases of mat-
ter, complementing alternative methods that are more precise but also more computa-
tionally demanding. Conventional mean-field theories often fall short in capturing quan-
tum fluctuations, which restricts their applicability to systems with significant quantum
effects. In this article, we propose an improved mean-field theory, density-matrix mean-
field theory (DMMFT). DMMFT constructs effective Hamiltonians, incorporating quan-
tum environments shaped by entanglements, quantified by the reduced density matri-
ces. Therefore, it offers a systematic and unbiased approach to account for the effects
of fluctuations and entanglements in quantum ordered phases. As demonstrative exam-
ples, we show that DMMFT can not only quantitatively evaluate the renormalization of
order parameters induced by quantum fluctuations, but can also detect the topological
quantum phases. Additionally, we discuss the extensions of DMMFT for systems at fi-
nite temperatures and those with disorders. Our work provides an efficient approach
to explore phases exhibiting unconventional quantum orders, which can be particularly
beneficial for investigating frustrated spin systems in high spatial dimensions.
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1 Introduction

Frustrated Hubbard and Heisenberg models [1–3] have continued to capture research at-
tention over the last half-century due to their potential to host various intriguing quantum
phases [4–8], as well as their relevance to high-Tc superconductors [9] and their applications
in quantum computations [10]. Determining the ground states of these models is often a
challenging task.

Exact approaches frequently encounter limitations posed by the exponential wall. In ex-
act diagonalization (ED), the dimension of the Hilbert space increases exponentially with
the system size. In density-matrix renormalization group (DMRG) [11], while the area law
provides relief from the exponential wall issue for gapped systems in one spatial dimension
(d = 1), exponential scaling challenges remain for gapless systems or in higher dimensions
(d ≥ 2) [12–14]. On the other hand, quantum Monte Carlo (QMC) methods are less con-
strained by system size. Nevertheless, the notorious sign problem often plagues fermionic
systems and frustrated magnetic systems [15,16].

Approximation methods, serving as complements to exact approaches, prove to be useful
and efficient tools for exploring various phases of a system. Conventional mean-field the-
ories (MFTs) already provide insights into non-trivial effects arising from the interactions,
such as the formation of local moments in metals [17], and the BCS theory for the super-
conductivity [18]. Conventional MFTs achieve simplification by neglecting the fluctuations;
consequently, they tend to exhibit a bias towards ordered states and overlook nuanced effects
stemming from the fluctuations.

Beyond conventional MFTs, various approximations have been proposed for fermionic sys-
tems [19–25]. In dynamical mean-field theory (DMFT), a lattice model is mapped to a local
impurity model, and the effective action is constructed using Green’s functions as dynamical
mean fields [19]. This allows DMFT to capture the quantum features of the metal-insulator
transitions [20]. While DMFT precisely describes systems in infinite dimensions, the compu-
tational demands of solving the local impurity problems with continuous baths necessitate
ongoing efforts to simplify DMFT further. Recently, a quantum embedding method called den-
sity matrix embedding theory (DMET) has been introduced to enhance the efficiency of DMFT
by taking the advantage of the frequency-independent local density matrix [21]. More re-
cently, another simplification of DMFT known as variational discrete action theory (VDAT) ha
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been proposed. VDAT utilizes sequential product density matrices to variationally determine
ground states [22–25].

Despite of the successes of DMFT and its simplifications for fermionic systems, a gap re-
mains in methods beyond semiclassical mean-field approximations for spin systems. Although
employing the Holstein-Primakoff transformation [26] allows spins to be mapped to bosons,
to which the DMFT may be adapted in principle, the transformation is nonlinear, and the semi-
classical large-S expansion becomes less controllable for S = 1/2 in the quantum limit, posing
challenges for semiclassical methods applied to quantum spins. Similar challenges may be en-
countered with alternative methods. For instance, in the Schwinger boson representation [27],
one needs to set N = 2 for the quantum limit after a saddle-point mean-field approximation
with large N .

In this article, we propose a generalized mean-field method beyond conventional MFTs,
which we call density-matrix mean-field theory (DMMFT). DMMFT constructs effective Hamil-
tonians, incorporating quantum environments shaped by entanglements quantified by reduced
density matrices without presuming semiclassical orders. Therefore, it offers an unbiased ap-
proach to account for the effects of fluctuations and entanglements in quantum ordered phases.
In contrast to QMC and DMFT, DMMFT is generically applicable to systems of fermions, bosons,
as well as spins, regardless of frustrations. More importantly, by gauging the quantum fluctua-
tions with the reduced DM, DMMFT can detect not only symmetry-breaking phases in Landau’s
paradigm but also topological phases with the help of entanglement spectra. Our work pro-
vides an efficient approach to explore phases that exhibit unconventional quantum orders.
Particularly, it fills the gap left by the MFTs in studying quantum ordered phases in frustrated
spin systems, where semiclassical methods become less controllable in the quantum limit, and
QMC methods fail due to the sign problem.

Regarding DMMFT as a generalized cluster MFT, it is noteworthy that there are alternative
cluster based methods used for studying quantum spin systems, such as the cluster variation
method (CVM) and the linked-cluster expansion (LCE). Following Kikuchi’s early study of the
Ising model [28], CVM has also been extended for studying the quantum Heisenberg mod-
els [29–31]. CVM decomposes the entropic contribution to the free energy in terms of the
cluster entropies that depends only on the reduced DMs over the clusters. It becomes precise
when considering clusters up to the size of the entire system [32]. CVM provides a system-
atic framework for analyzing various cluster mean-field approximations, as demonstrated in
Ref. 29. Examined from the perspective of CVM, DMMFT includes the high-order cluster cor-
rections containing essential information of quantum fluctuations beyond conventional MFTs.
Similarly, LCE also decomposes the corrections to physical observables into a series of terms
depending on the clusters [33–38]. Early developments of the LCE treated the expansion
of the free energy perturbatively in temperature, limiting its effectiveness to high tempera-
tures [33–35]. Improvements have been made by extending LCE to calculate cluster physical
observables non-perturbatively in temperature, also known as numerical LCE [36–38], which
has been applied to some interesting frustrated quantum magnets [39, 40]. Complementing
LCE below the critical temperature, where long-range order develops, DMMFT does not suffer
from convergence problems and can be more computationally efficient, as it does not require
summation over a large number of clusters.

The rest of the article is organized as follows. In Sec. 2, we present the generic formulation
of DMMFT. The mean-field equations of DMMFT are derived in parallel to those of conven-
tional MFTs. Moreover, we demonstrate that DMMFT becomes equivalent to conventional
MFTs when the hyperparameter that gauges quantum fluctuations is minimized. In Sec. 3,
we apply the DMMFT to two demonstrative examples, 1) the Affleck-Khomoto-Lieb-Tasaki
(AKLT) model [41–43], and 2) the antiferromagnetic Heisenberg model on triangular lattices
(AFHTL) [44–58]. (Cf. Ref. 50 and references therein for a more comprehensive introduc-
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tion to the frustrated Heisenberg models.) In the AKLT model, DMMFT is able to identify the
topological ground states through their entanglement spectra. In the AFHTL, DMMFT reveals
that quantum fluctuations not only renormalize the order parameters but also shift the phase
boundaries. In Sec. 4, we compare DMMFT with DMRG and DMFT, as well as cluster-based
methods CVM and LCE. Additionally, we discuss the extensions of DMMFT for systems at finite
temperatures and those with disorders. In Sec. 5, we draw conclusions and discuss potential
avenues for future research. To aid readers in understanding and applying DMMFT, appendices
formulating the iterative algorithm for solving DMMFT equations and providing pseudocodes
implementing DMMFT for the AFHTL are presented in Append. A and B, respectively.

2 Density-matrix mean-field theory

In this section, we formulate DMMFT for a generic Hamiltonian. Let I = {i} denote the set of
all sites. On each site, there is a collection of local operators Oi = {Oαi }. A generic Hamiltonian
composed of local operators can be organized as follows

H[OI] =
∑

c∈C
Hc[Oc] +
∑

(c,c′)

Hc,c′[Oc ,Oc′] +
∑

(c,c′,c′′)

Hc,c′,c′′[Oc ,Oc′ ,Oc′′] + . . . , (1)

where C = {c} is a partition of I, and OS = ∪i∈SOi is the collection of local operators over
the sites within a set S. In Eq.(1), Hc depends only on the local operators within cluster
c, while Hc,c′ , Hc,c′,c′′ , . . . describe the inter-cluster couplings. For systems with finite-range
interactions, there exist proper partitions such that interactions involve only a finite number
of clusters.

Conventional MFTs isolate a local cluster from the system and couple it to an effective en-
vironment, where the environment is assumed to be classical, and the correlated fluctuations
between the cluster and the environment are neglected. DMMFT improves the conventional
mean-field approximation by including the essential quantum fluctuations in the environment,
where the reduced DM is used to gauge the quantum fluctuations and select Hilbert subspaces
approximating the effective environment. In this section, we shall formulate DMMFT for the
Hamiltonian in Eq.(1) without making additional assumptions about the specific local opera-
tors or the microscopic details of coupling terms. Therefore, DMMFT is a method generically
applicable to fermions, bosons, as well as spins, irrespective of the presence of frustrations.

In the following subsections, we begin by reviewing the conventional mean-field approxi-
mation in Sec. 2.1. Then, we develop the mean-field equations and self-consistency conditions
of DMMFT in parallel to those of conventional MFTs in Sec. 2.2. Following this, in Sec. 2.3,
we conduct a comprehensive comparison between the DMMFT and the conventional MFTs.
Within this comparison, we identify a hyperparameter, nc , that interpolates the DMMFT and
the conventional MFTs. Particularly, when nc = 1, attaining its minimal value, DMMFT be-
comes equivalent to the conventional MFTs.

2.1 Conventional mean-field approximation

We first review the approximations employed in conventional MFTs before delving into the
development of DMMFT. In conventional MFTs, the mean-field decoupling localizes the oper-
ator products to individual Hilbert subspaces by neglecting the correlated fluctuations. More
precisely, for an operator product Oαi Oβj acting on the Hilbert spaceHi⊗H j , the conventional
mean-field approximation decouples it as follwos

Oαi Oβj ≈ Oαi 〈O
β
j 〉+ 〈O

α
i 〉O

β
j − 〈O

α
i 〉〈O

β
j 〉 , (2)
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where the terms on the right-hand side act on the subspaceHi orH j , or trivially as an additive

c-number. Consequently, the correlated fluctuations 〈δOαi δOβj 〉 = 〈O
α
i Oβj 〉 − 〈O

α
i 〉〈O

β
j 〉 vanish

in this approximation. Alternatively, from the perspective of the quantum states, since the op-
erator product factorizes in product states, 〈φi|⊗〈φ j|Oαi Oβj |φi〉⊗|φ j〉= 〈φi|Oαi |φi〉〈φ j|O

β
j |φ j〉,

conventional MFTs implicitly assume the product structure of the states and neglect quantum
entanglements.

Keeping this consideration in mind, we formulate the conventional mean-field approxima-
tion for the generic Hamiltonian in Eq.(1) as follows. Given a cluster c, let C′c = ∪c′ be the
collection of clusters connected to c, referred to as the environment surrounding c. The asso-
ciated Hilbert spaces areHc andHC′c for the cluster and the environment, respectively, where
HS = ⊗i∈SHi for a set of sites S. Retaining the terms within the extended cluster c̄ = c ∪ C′c ,
the local Hamiltonian is

H[Oc̄] = Hc[Oc] +Hc,C′c [Oc ,OC′c ] +HC′c [OC′c ] ,

Hc,C′c [Oc ,OC′c ] =
∑

(c,c′):c′∈C′c

Hc,c′[Oc ,Oc′] +
∑

(c,c′,c′′):c′,c′′∈C′c

Hc,c′,c′′[Oc ,Oc′ ,Oc′′] + . . . , (3)

HC′c [OC′c ] =
∑

c′∈C′c

Hc′[Oc′] +
∑

(c′,c′′):c′,c′′∈C′c

Hc′,c′[Oc′ ,Oc′′] + . . . ,

where Hc is the Hamiltonian of the focused cluster c, HC′c is the Hamiltonian of the environment
C′c , and Hc,C′c represents the couplings between the cluster c and its environment C′c . If the
target state can be approximated by a product state locally, i.e.,

|φc̄〉 ≈ |φMF
c̄ 〉= |φc〉 ⊗ |φC′c 〉 , (4)

a local effective Hamiltonian for the cluster c can be obtained by substituting the operators
overHC′c with their expectation values in |φC′c 〉, i.e.,

H(c)MF[Oc] = Hc[Oc] + 〈φC′c |Hc,C′c [Oc ,OC′c ]|φC′c 〉+ 〈φC′c |HC′c [OC′c ]|φC′c 〉 , (5)

which acts only on the Hilbert subspace Hc . One solves |φc〉 as an eigenstate with respect to
the effective Hamiltonian H(c)MF for each cluster c locally. If one further assumes that the target
state of the entire system can also be approximated by a product state, i.e.,

|ΦMF〉= ⊗c|φc〉 , (6)

then, for each extended cluster, |φC′c 〉= ⊗c′∈C′c |φc′〉. Therefore, Eq.(4), Eq.(5), and Eq.(6) form
a closed set of coupled mean-field equations for conventional MFTs.

The mean-field equations can often be further simplified when systems have additional
symmetries. If the partition C = {c} respects certain symmetries of the system, there exist
symmetry transformations relating the clusters Tc′,c : c 7→ c′. A symmetric mean-field Ansatz
state can be constructed simply as |ΦMF〉 = ⊗c Tc,c0

|φc0
〉. Particularly, for a translationally

invariant state, all |φc〉 can be chosen to be the same state |φc0
〉 in the local Hilbert spaceHc0

.
Thus, the coupled mean-field equations for the clusters reduce to a single set of self-consistent
mean-field equations for |φc0

〉.
The major assumption in the conventional MFTs, as described above, is that the target

states can be approximated by product states [Eqs.(4) and (6)], which, nevertheless, is not
justified a priori. For many ordered states, the correlated fluctuations arising from the quan-
tum entanglements are not negligible, particularly at short range. Prototypically, in frustrated
magnetic systems and symmetry-protected topologically ordered systems, such quantum fluc-
tuations and quantum entanglements play essential roles. Therefore, improved treatments of
quantum fluctuations and entanglements are necessary for a better understanding of emerging
quantum ordered phases.
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2.2 Density-matrix mean-field approximation

The simplifications achieved in conventional MFTs stem from the separability, which reduces
the challenging task of studying the total Hamiltonian H over an exponentially large Hilbert
spaceHC to the more manageable task of studying the local Hamiltonians H(c)MF over localHc .
However, it is not necessary for a system to be in a product state for two local subsystems to
be separable. The assumptions of the product states [Eqs.(4) and (6)] can thus be relaxed.
More precisely, for gapped systems, the correlated fluctuations 〈δOαi δOβj 〉 → 0 as |i− j| →∞.
The absence of long-range entanglements ensures separability, allowing the local physics to be
approximated with effective local systems. However, the short-range entanglements encode
the quantum fluctuations, demanding a more faithful treatment.

Instead of using Eq.(2) for mean-field decoupling, it is instructive to recognize that the
entanglement of a local cluster with an (infinite or finitely large) environment can always be
faithfully reproduced within a finite extension of the cluster. More precisely, consider a generic
state |Ψ〉 ∈ HC . The entanglement of the state |Ψ〉 over the cluster c and the rest of the system
C\c can be characterized by the reduced DM

ρc = TrC\c|Ψ〉〈Ψ| . (7)

The entanglement is controlled by Hc than HC\c provided DHc
< DHC\c

, where DH denotes
the dimension of the Hilbert spaceH . According to the purification theorem [59], there exists
a state |Ψ̃〉 in H̃ =Hc ⊗ H̃c̃ such that Trc̃|Ψ̃〉〈Ψ̃| = ρ̃c is equivalent to ρc , and the dimension
of the Hilbert subspace H̃c̃ is bounded by D̃E

c = ⌈exp(SEc)⌉, where

SEc = −Trc [ρc ln(ρc)] , (8)

is the entanglement entropy and ⌈q⌉ represents the smallest integer larger than or equal to q.
In this context, DMMFT seeks for an effective Hamiltonian H̃(c)MF over some H̃ (to be specified
below), such that the reduced DM of the state obtained from the the Hamiltonian,

ρMF
c = Trc̃|φ̃〉〈φ̃| , (9)

well approximates the reduced DM of the target state ρc = TrC\c|Φ〉〈Φ|.
Instead of using Eq.(4), DMMFT assumes that for systems without long-range entanglements,

H̃ can be found as a Hilbert subspace of Hc̄ over the extended cluster c̄. Mathematically, there
exists a homomorphism

Π= Idc ⊗ΠC′c : H̃ →Hc̄ , (10)

and its pseudo-inverse Π† :Hc̄ → H̃ which acts as a projector.
To avoid confusion, it is essential to emphasize that the H̃ constructed in DMMFT differs

from that in DMET. The purification theorem only ensures the existence of H̃ with its dimen-
sion bounded by D̃E

c from below. In DMET, an optimal H̃ with the lowest possible dimension
is employed, but this comes at the cost of a less straightforward construction of the embed-
ding Hamiltonian. In contrast, DMMFT can intuitively construct an effective Hamiltonian by
restricting the Hamiltonian for the extended cluster to H̃ , i.e.,

H̃(c)MF[Oc , ÕC′c ] = Π
†H[Oc̄]Π , (11)

where the local operators in ÕC′c are given by

Õβj =Π
†
C′c

Oβj ΠC′c , ∀ j ∈ C′c . (12)

The reduced DM of the target state is approximated by ρMF
c [Eq.(9)] for an eigenstate |φ̃〉 of

H̃(c)MF.
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Reciprocally, for each ρc , we can construct the local projectors Πc as follows. Let
¦

λ
(c)
i , |λ(c)i 〉
©

be the spectral decomposition of ρc , with the state vectors arranged in decreasing

order according to their eigenvalues, i.e., λ(c)i ≥ λ
(c)
j , ∀ i < j. Define

Πc =
nc
∑

i=1

|λ(c)i 〉〈λ
(c)
i | , (13)

where nc ≤ DHc
is a cut-off parameter. For the extended cluster c̄ = c ∪ C′c , we choose

ΠC′c = ⊗c′∈C′cΠc′ . (14)

Parallel to the mean-field equations for the conventional MFTs, Eqs.(9) – (14) constitute
a closed set of coupled mean-field equations for the DMMFT. In the presence of symmetries,
the mean-field equations can be further simplified. Specifically, for a translationally invariant
target state |Φ〉, the reduced DMs of the local clusters are all identical to the same reduced
DM ρc0

, and so are the projectors. Consequently, the coupled mean-field equations for the
clusters reduce to a single set of self-consistent mean-field equations for ρc0

. The procedures
for implementing the DMMFT algorithm are outlined in the Appendices.

2.3 Comparison of the mean-field approximations

Comparing conventional MFT with DMMFT, we find that the cut-off parameter nc in Eq.(13)
can be regarded as a hyperparameter interpolating between DMMFT and conventional MFT.
To demonstrate this point, we first observe that when DHC′c

= 1, DMMFT becomes equivalent

to a conventional MFT. If the ground state is a product state [Eq.(6)], the local reduced DM of
cluster c is ρc = |φc〉〈φc|. The expectation values of the local observables agree

〈Oαi 〉c = 〈φc|Oαi |φc〉= Trc(ρcO
α
i ) . (15)

Moreover, sinceΠ= Idc⊗(⊗c′ |φc〉〈φc|), H̃ is isomorphic toHc , and the effective Hamiltonians
H̃(c)MF are identical to H(c)MF under this isomorphism.

Furthermore, from Eq.(14), we have DHC′c
=
∏

c′∈C′c
nc′ . Therefore, we may take nc as

a hyperparameter interpolating between conventional MFT and DMMFT. When nc = 1 (set
to its minimal value), DMMFT simply reduces to conventional MFT, which underestimates
the quantum fluctuations. When nc = DHc

(set to its maximal value), DMMFT describes a
collection of (overlapped) extended cluster c̄, which overestimate the quantum fluctuations
compared to the infinite system in the thermodynamic limit. Thus, as nc increases from 1 to
DHc

, an increasing amount of quantum fluctuations is included.
Since nc gauges the amount of quantum fluctuations included in DMMFT, ranging from

underestimation to overestimation, it seems reasonable to expect an optimal value for nc .
This leads to the following conjecture.

Conjecture. The optimal choice of the hyperparameters is given by

n∗c = D̃E
c = ⌈exp(SEc)⌉ . (16)

Although we do not have a mathematical proof for this conjecture, it does not undermine
the practicality of DMMFT Particularly, one may use nc = D̃E

c as a rule-of-thumb and treat nc
as a variational hyperparameter.

It is easy to observe that ρc generically has non-vanishing entanglement entropy whenever
DHC′c

> 1. This short-range entanglement is precisely what DMMFT captures beyond conven-
tional MFTs. Consequently, DMMFT is expected to detect short-range entangled topological
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phases with a properly chosen nc . In Sec. 3.1, we demonstrate with the AKLT model that
DMMFT can indeed detect the topological ground states through the entanglement spectra
without being biased to the symmetry-breaking states.

Lastly, we comment on the separability in DMMFT. In contrast to Eq.(6) used in conven-
tional MFTs, DMMFT does not assume the product structure of the state. Instead, DMMFT
adopts a weaker form of separability characterized by

ρ(2)c1,c2
= TrC\(c1∪c2)|Φ〉〈Φ| ≈ ρc1

⊗ρc2
, (17)

for any two clusters c1 and c2 that are not connected.

3 Applications

In this section, we apply the DMMFT to two demonstrative examples, the AKLT model and the
AFHTL, that have been extensively studied in the literature. The AKLT model was historically
proposed to confirm Haldane’s conjecture regarding antiferromagnetic spin-1 chains [41–43].
One notable feature of the AKLT model is that its ground state has a closed analytic form.
Nevertheless, we choose the AKLT model as our illustrative example not solely because of its
known ground state wave function, but primarily due to its intriguing property that the ex-
pectations of local moments, and consequently the usual Néel order parameter (alternating
magnetization), vanish in the ground state [42,43]. This property challenges the ability of con-
ventional MFTs to detect the orders borne in the ground states of the AKLT model. Moreover,
despite proposals suggesting that topological orders in one dimension can be characterized by
nonlocal order parameters, such as string order [60, 61], it is still desirable to identify local
features that can distinguish topological ordered states from disordered or topologically trivial
states, especially at the mean-field level. In Sec. 3.1, we demonstrate that DMMFT can cor-
rectly detect the topological ground states based on the reduced DM and the entanglement
spectra. All local observables that can serve as order parameter can be straightforwardly cal-
culated with respect to the reduced DM according to Eq.(15). Nevertheless, the entanglement
spectra reveal additional information beyond conventional MFTs, reflecting the quantum na-
ture of orders. It is important to emphasize that the order in the ground states of the AKLT
model is a generic feature of this exotic topological phase, which is not restricted to the special
point of the AKLT model, but persists upon perturbations that do not close the gap. The exact
ground state wave function of the AKLT model is used here only as a convenient benchmark
for quantitative comparisons.

The AFHTL serves as a prototypical model for studying frustrated magnetism. Inspired by
Fazekas and Anderson’s pioneering study [5], various intriguing phases have been proposed to
potentially exist in the AFHTL due to its frustrations. [6,14,62–68]. In Sec. 3.2, we apply the
DMMFT to the simplest case of the AFHTL, which includes only nearest-neighbor couplings and
easy-axis anisotropy. Even in this simplest case, the ground state of the system exhibits a non-
collinear three-sublattice order, reminiscent of the semiclassical Néel state. However, the order
parameters are subjected to significant renormalization due to the cooperative interactions be-
tween quantum fluctuations and frustration-induced noncollinearity [44–46]. Additionally, we
report on the magnetization of the AFHTL in a longitudinal magnetic field, which has been
extensively studied in both classical and quantum contexts [47–57]. Notably, quantum fluctu-
ations play a non-trivial role in stabilizing the ordered states in the AFHTL [56–58]. For quan-
titative comparison, we compute the magnetization curve using the state-of-the-art technique,
DMRG. Our DMMFT results show good agreement with DMRG. It is important to emphasize
that the simple AFHTL, with only nearest-neighbor couplings and easy-axis anisotropy in a lon-
gitudinal external magnetic field, serves as a robust benchmark because it has been extensively
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studied using various methods and confirmed in the literature. Nevertheless, DMMFT is not
limited to the simple AFHTL. It is capable of detecting stripe phases in the more complicated
J1-J2 AFHTL [14], as well as resonating valence bond phases with dimerized spins [5]. We
would highlight DMMFT as a generic and unbiased approach to characterizing diverse phases
with both classical and quantum orders.

3.1 Affleck-Kennedy-Lieb-Tasaki model

We apply the DMMFT to the AKLT model. The AKLT model is a one-dimensional spin-1 chain
defined by the Hamiltonian

HAKLT =
∑

i

P(S=2)
i,i+1 =
∑

i

1
2

�

Si · Si+1 + β(Si · Si+1)
2 + γ
�

, (18)

where β describes the biquadratic coupling and γ is an additive constant. The operators Si
are spin-1 operators with representations in the Sz-basis given by

S x
i =

1
p

2





0 1 0
1 0 1
0 1 0



 , S y
i =

1
p

2





0 −i 0
i 0 −i
0 i 0



 , Sz
i =





1 0 0
0 0 0
0 0 −1



 . (19)

The coefficients β and γ are determined by the condition that each term in the Hamiltonian
is a projector to the Hilbert subspace of total spin S = 2. More precisely, when β = 1/3, and
γ= 2/3,

P(S=2)
i,i+1 (x) =

1
2
(x + β x2 + γ) =

¨

1 , x = 1 ,

0 , x = −1,−2 ,
(20)

where x = Si · Si+1 = 1,−1,−2 in total spin sectors H (S=2,1,0)
{i,i+1} respectively. By construction,

HAKLT describes antiferromagnetic nearest neighbor couplings, penalizing neighboring spins
only when they are in S = 2 states.

The ground state of the AKLT model is exactly known and showcases non-trivial topological
order. Notably, it features spin-1/2 edge states (fractional to spin-1) and exhibits a four-fold
degeneracy for an open chain [43]. This topological characteristic persists even for β < 1

3
deviating from the special point of the AKLT model, provided the gap does not close [60,61].
Moreover, the Néel order vanishes in the ground state, rendering conventional MFTs ineffective
in distinguishing it from a trivial paramagnetic phase. Nevertheless, by utilizing reduced DMs
and entanglement spectra, DMMFT effectively identifies the topological ground state.

Let us consider a two-site cluster c located in the bulk of an infinite chain. By
translational symmetry, any two-site cluster c within the chain shares the same reduced
DM ρ(2)c . The spectrum of this two-site reduced DM is exactly known and given by
eigρ(2)c =
�1

3 , 2
9 , 2

9 , 2
9 , 0, 0, 0, 0, 0
	

. Furthermore, upon tracing out one of the sites within
the cluster, we obtain the single-site reduced DM whose spectrum is exactly known,
eigρ(1)c =
�1

3 , 1
3 , 1

3

	

.
We apply the DMMFT to the AKLT model, focusing on the two-site cluster c and solving

the reduced DM ρ(2)c self-consistently using the mean-field equations as described in Sec. 2.2.
Specifically, the reduced DM is computed over an extended cluster that includes the left and
right nearest-neighbor two-site clusters adjacent to c. The associated Hilbert space is denoted
as H̃c̄ = H̃l⊗Hc⊗H̃r , where H̃l,r ∼ Πc(Hc) are the Hilbert subspaces selected by the reduced
DM, as defined in Eq.(13). We set the cut-off parameter nc = 4 for our calculations.

In Fig. 1, the spectra of the two-site and single-site reduced DMs are presented. Blue cir-
cles represent the exact values, while red dots depict the results obtained using DMMFT. The
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Figure 1: Spectra of the two-site and single-site reduced DMs for the AKLT model.
The eigenvalues {λ(n)i } of the reduced DM ρ(n)c , indexed by i in decreasing order,
are plotted. Blue circles represent the exact values, and red dots denote the DMMFT
results. Error bars are used to indicate the deviations of the DMMFT results from the
exact values.

spectrum of the two-site reduced DM obtained with the DMMFT reasonably aligns with the ex-
act values [Fig. 1(a)], notably capturing the correct degeneracies. The entanglement entropy
of the two-site cluster evaluated by DMMFT is SE(2)c,MF = 1.58. Although it is slightly larger

than the exact value SE(2)c,exact = 1.3689, this discrepancy is expected due to the cut-off pa-

rameter nc chosen, which is marginally larger than exp(SE(2)c,exact) = 3.9310. Fig. 1(b) displays
the spectrum of the single-site reduced DM, where the DMMFT results align excellently with
the exact values. The single-site entanglement entropy SE(1)c = 1.0986 = ln(3) also matches.
Furthermore, the expectation values of two spins within the cluster 〈Sα1,2〉 = Trc(Sα1,2ρc) both
vanish. This indicates that the ground states found by DMMFT are not biased towards the
semiclassical Néel states, which is consistent with the exact results.

3.2 Antiferromagnetic Heisenberg model on triangular lattices

We apply the DMMFT to another illustrative example, the simple AFHTL. The Hamiltonian for
the AFHTL including nearest-neighbor anisotropic exchange interactions is given by

HAFH =
∑

(i, j)

�

Jx y

�

S x
i S x

j + S y
i S y

j

�

+ JzSz
i Sz

j

�

=
∑

(i, j)

J
�

A
�

S x
i S x

j + S y
i S y

j

�

+ Sz
i Sz

j

�

,
(21)

where Jz and Jx y denote the strengths of longitudinal and transverse exchange interactions,
respectively. For antiferromagnetic couplings, the model is more conveniently parameterized
with J = Jz > 0 and A= Jx y/Jz . The phases of the system depend solely on the dimensionless
parameter A that specifies the exchange anisotropy. Our focus is on the easy-axis case, i.e.,
0≤A≤ 1. The two extreme values of A are: 1) A= 0, where the transverse exchange terms
vanish (often referred to as the Ising limit), and 2) A = 1, where the exchange interactions
exhibit full rotational symmetry (often referred to as the Heisenberg limit). Both limits have
been extensively investigated in the literature. Particularly, in the Ising limit, quantum fluc-
tuations are additionally introduced by a transverse magnetic field, and the sign problem of
the diagonal (longitudinal) frustrations can be mitigated in QMC simulations [58,69]. On the
other hand, in the Heisenberg limit, the system orders in the so-called 120◦-Néel state, which
has been confirmed by various numerical methods [44–46].
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While the phase diagram of the AFHTL in a longitudinal external magnetic field is gener-
ally bounded by the Ising and Heisenberg limits for a generic anisotropy parameter 0<A< 1,
detailed computations of its quantum phases remain challenging, particularly due to the QMC
sign problem when A ̸= 0. Previous studies, such as those in Refs. 52, 53, have examined
the magnetization using large-size cluster mean-field theory (belonging to the class of conven-
tional MFTs) with a scaling scheme. Additionally, Ref. 47 and Ref. 49 have reported studies of
the magnetization using ED, and Ref. 48 has presented a phase diagram obtained with DMRG.
These previous investigations provide comprehensive insights into the behavior of the AFHTL
in a magnetic field and serve as valuable benchmarks for understanding its quantum phase
diagram.

Below, we present our investigation of the AFHTL using DMMFT. To benchmark our find-
ings, we also performed a calculation using the state-of-the-art technique, DMRG. Our results
obtained with DMMFT are compared both to DMRG calculations and to results reported in the
literature. Remarkably, we observe quantitative agreement between the DMMFT results and
those obtained from more sophisticated methods. Notably, this alignment is achieved using a
small cluster of just three lattice sites in DMMFT, underscoring its efficiency and accuracy in
characterizing the AFHTL.

The Hamiltonian describing the AFHTL in a longitudinal external field includes both ex-
change interactions and Zeeman couplings,

HAFH,Z = HAFH +HZ , (22)

where HZ = −
∑

i gµBhzSz
i . In our DMMFT calculations, we fix the gyromagnetic factor as

gµB = 1 and hz is measured in the corresponding natural units.
Four distinct phases emerge in the AFHTL with generic easy-axis anisotropy under a longi-

tudinal external magnetic field. These phases are the coplanar “Y”-shaped phase, the collinear
up-up-down (UUD) phase, the coplanar “V”-shaped phase, and the collinear polarized phase,
which appear in increasing order of hz . All these phases are compatible with the partitioning
of the lattice into three-site clusters and with the translational symmetries inherent to these
clusters. A simple order parameter distinguishing these phases is the magnetization along the
easy axis, i.e.,

M z
c =
∑

i∈c

Sz
i = Sz

A+ Sz
B + Sz

C , (23)

where the subscript i = A, B, C labels the three sublattice sites within the cluster c. The
polarized and UUD phases are characterized by magnetization plateaux at M z

c = M z
c,(s) and

M z
c = M z

c,(s)/3, respectively, where M z
c,(s) =

3
2 is the saturation magnetization of the cluster. The

“V”-shaped phase lies between the UUD and polarized phases, while the “Y”-shaped phase oc-
curs at low fields. Another distinguishing order parameter characterizing the non-collinearity
of the “Y”-shaped phase is the vector chirality,

κV =
8

3
p

3
(SA× SB + SB × SC + SC × SA) , (24)

where the normalization factor is chosen such that |κV | = 1 for the 120◦-Néel state of S = 1
2

spins without being renormalized by quantum fluctuations.
Despite that all four phases are homologous to their corresponding semiclassical Néel or-

dered states, quantum fluctuations play crucial roles in the “Y”-shaped and UUD phases. No-
tably, quantum fluctuations lift the accidental degeneracies within the semiclassical ground
state manifold, a phenomenon known as quantum order-by-disorder [56,57]. Moreover, these
fluctuations significantly renormalize both the magnitudes of the ordered spins and the corre-
sponding order parameters [44–46].

11

https://scipost.org
https://scipost.org/SciPostPhys.17.2.062


Select SciPost Phys. 17, 062 (2024)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
Vector chirality

(a)

h
c1

h
c2

h'
c2

DMMFT

CMFT

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5
Magnetization

(b)

h
c1

h
c2

h'
c2

DMMFT

CMFT

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2
Entanglement Entropy

(c)

h
c1

h
c2

h'
c2

DMMFT

CMFT

Figure 2: Phase diagram of AFHTL in a longitudinal magnetic field (A = 0.9). (a)
Vector chirality. (b) Magnetization. (c) Entanglement entropy. Red dots represent
DMMFT results, while blue curves depict conventional mean-field theory (CMFT)
results. Vertical dashed lines indicate phase boundaries. The critical field hc1 distin-
guishes the “Y”-shaped phase from the UUD phase, where DMMFT and CMFT agree.
The critical field hc2 distinguishes the UUD phase from the “V”-shaped phase. Deter-
mined from the magnetization curves, the value of hc2 (blue) from CMFT exhibits a
discernible difference compared to h′c2 (red) from DMMFT.

In our DMMFT calculations, we select an extended cluster c̄ comprising of four three-
lattice clusters arranged with periodic boundary conditions. The use of periodic boundary
conditions helps minimize boundary effects, as the Hilbert subspaces selected by the reduced
DM are sensitive to boundary conditions, as observed in DMRG studies [70]. The geometry
and implementation details of DMMFT for the AFHTL are elaborated in Append. B, where
pseudocode is also provided.

In Fig. 2, we present the dependence of vector chirality, magnetization, and entanglement
entropy of the ground states of AFHTL (with anisotropy parameter A= 0.9) on the longitudi-
nal magnetic field. The results are calculated using DMMFT (red) and the conventional MFT
(blue). The cut-off parameter nc , which interpolates between conventional MFT and DMMFT
as discussed in Sec. 2.3, is set to nc = 4 for DMMFT and nc = 1 for conventional MFT.

In Fig. 2(a), the vector chirality calculated using conventional MFT decreases monotoni-
cally as hz increases in the “Y”-shaped phase and vanishes in the UUD and “V”-shaped phases.
In sharp contrast, the vector chirality calculated using DMMFT does not decrease monotoni-
cally in the “Y”-shaped phase. Notably, the vector chirality at hz = 0 in DMMFT is only about
30% of that in conventional MFT. The discrepancy reflects the renormalization of the ordered
spins due to the quantum fluctuations. Upon closer examination of the magnitude of the or-
dered spins, for a small anisotropy A = 0.9, we find |〈S〉| = 0.269± 0.014. This value, only
about 50% of S = 1

2 , aligns with expectations based on previously reported values [44–46].
Given that κV scales as S2, a reduction factor of approximately 25% is expected for the magni-
tude of the vector chirality at hz = 0. The curves of DMMFT and conventional MFT converge as
hz increases, both vanishing beyond hc1 (the critical field separating the “Y”-shaped and UUD
phases, determined from the magnetization curves). With stronger hz , the spins align closer
to the easy axis, and the effect of quantum fluctuations weakens, which is clearly evidenced
by the monotonically decreasing entanglement entropy in the “Y”-shaped phase as shown in
Fig. 2(c). Thus, the suppression of the quantum fluctuations and the alignment of the spins
towards the collinear UUD configuration by the longitudinal magnetic field jointly lead to the
non-monotonic dependence of the vector chirality |κV | on hz .

In Fig. 2 (b), notable differences are evident in the magnetization curves predicted by
DMMFT and conventional MFT. Specifically, DMMFT shows a nonlinear magnetization curve
at low fields in the “Y”-shaped phase and a wider plateau supporting the UUD phase. To bench-
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Figure 3: (a) Cylindrical geometry YCNy -Nx of a triangular lattice used for DMRG
calculations. Translucent sites and bonds represent the extended triangular lattice
under the periodic boundary condition. Sites in the tensor string are labeled by num-
bers in orange. (b) Magnetization curve of the AFHTL in longitudinal magnetic field
(A= 0.9). The results from CMFT (blue dots), DMMFT (red dots), and DMRG (black
circles) are overlaid. The inset provides a zoomed-in view of the transition between
the UUD phase and the “V”-shaped phase.

mark our results, we also perform a calculation of the magnetization using the state-of-the-art
technique DMRG [71]. We consider a triangular lattice with Nx×Ny sites, as shown in Fig. 3(a).
We impose the periodic boundary condition along y-direction, effectively wrapping the trian-
gular lattice into a cylinder with its axis parallel to the x-direction. (The translucent sites and
bonds represent the extended triangular lattice under the periodic boundary condition to aid
visualization.) Since one edge of the triangular lattice is parallel to the y-direction, we refer
to this geometry as YCNy -Nx , following the convention used in the literatures [62,63,66,67],
where Ny is the circumference, and Nx is the length of the cylinder. A tensor string winds
through the system helically as is = Ny(nx − 1) + ny , where is labels the site in the tensor
string [shown as orange numbers in Fig. 3(a)], and nx and ny are integer coordinates of the
sites in the x- and y-directions.

Fig. 3(b) shows the magnetization curve calculated with DMRG for YC6-30 and bond di-
mension of Db = 400 (black circles), overlaid with the results of conventional MFT (blue
dots) and DMMFT (red dots). The DMRG results are in excellent agreement with the DMMFT
results, confirming the nonlinear magnetization at low field. Additionally, a self-consistency
check for the choice of nc = 4 in DMMFT can be confirmed from the entanglement entropy in
the “Y”-shaped phase. At hz = 0, we have SEc ≈ 1.8 ln(2). Therefore, D̃E

c = ⌈exp(SEc)⌉= 4.
On the other hand, as hz surpasses hc2, the system transitions towards the “V”-shaped

phase, deviating from the 1
3 magnetization plateau of the UUD phase. Fig. 2(b) shows a dis-

cernible difference in the critical field determined from the magnetization curves in DMMFT
(h′c2 ≈ 2.2) and in conventional MFT (hc2 ≈ 2.0). Notably, the field range stabilizing the UUD
phase is larger in DMMFT compared to conventional MFT. Although the UUD configuration is
homologous to its semiclassical counterpart, quantum fluctuations contribute significantly to
stabilize the UUD phase [52, 54]. Especially in the Heisenberg limit, the UUD phase is stable
only hz = hc2 =

1
3h(s)z = 1.5 (where h(s)z is the saturation field) in the classical phase diagram.

However, it extends to a finite field range due to quantum fluctuations in the quantum phase
diagram. A similar effect of quantum fluctuations is also anticipated when A < 1. Since nc
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used in DMMFT is larger than that in conventional MFT, incorporating more quantum fluctu-
ations, a larger field range (h′c2 > hc2) that stabilizes the UUD phase is expected.

To provide a quantitative comparison, we further compare the value of hc2 obtained from
DMMFT to those estimated from our DMRG results and those inferred from the literature.
The inset of Fig. 3(b) provides a zoomed-in view of the transition between the UUD phase
and the “V”-shaped phase. Our DMRG results indicate h∗c2 ≈ 2.06, which falls between the
hc2 of conventional MFT and h′c2 of DMMFT. Few precise values of hc2 for A = 0.9 have
been reported in the literature [47–49, 52, 53]. Inferring from the reported values of hc2 for
the isotropic Heisenberg model, we conclude that the h∗c2 estimated from our DMRG results
may slightly underestimate the critical field, probably due to the finite-size effect of Ny = 6
along the transverse direction of the cylinder [compared to Fig. 1 in Ref. 48 and Fig. 7(a)
in Ref. 53 for scaling to thermodynamic limit]. Conversely, h′c2 estimated from our DMMFT
results may slightly overestimate the critical field due to our choice of nc = 4, which is larger
than the speculated optimal n∗c = 2 estimated from the entanglement entropy. This choice
includes too many quantum fluctuations, favoring the UUD phase. Moreover, as hz drives the
system deeper into the “V”-shaped phase, the magnetization curve obtained from our DMRG
calculation gradually converges towards that of DMMFT.

In conclusion, our study of the AFHTL demonstrates the systematic improvements achieved
by DMMFT over conventional MFT. Remarkably, even with a small cluster of just three lattice
sites, DMMFT attains precision comparable to that of large system sizes calculated using DMRG
or conventional MFT plus scaling. This underscores the efficiency and effectiveness of DMMFT
in capturing the effects of quantum fluctuations.

4 Discussions

In Sec. 4.1, we conduct a comparative analysis of DMMFT with DMRG, DMFT, CVM, and LCE.
Additionally, in Sec.4.2, we extend the DMMFT for systems at finite temperatures, and in
Sec. 4.3, we extend the DMMFT for systems with disorders.

4.1 Comparisons with alternative methods

4.1.1 Comparison with density-matrix renormalization group

We first compare DMMFT with DMRG. The construction of the effective Hamiltonian in both
methods appears similar, as both use the reduced DM to select a significant Hilbert subspace
with respect to the target state. This resemblance between the DMMFT and the infinite DMRG
is most pronounced when the spatial dimension d = 1, as illustrated in the AKLT model in
Sec. 3.1. The primary difference lies in where the Hilbert space H̃ =Hc ⊗ H̃c̃ is chosen. In
DMMFT, the projector ΠC′c is iteratively optimized solely over the Hilbert space HC′c without
changing the cluster size of the environment. Conversely, in infinite DMRG, the environment
is constructed iteratively over the Hilbert space of the semi-infinite chains. When gauged by
quantum entanglement, the dimension of the Hilbert subspace selected for constructing the
effective Hamiltonian is bounded by D̃E

c [Eq.(16)] in both cases. Since D̃E
c is bounded by the

size of the cluster c, DMRG can feasibly select a finite significant Hilbert subspace without being
hindered by the infinite size of the environment asymptotically. In contrast, DMMFT assumes
that the significant Hilbert subspace resides withinHC′c , which is a reasonable approximation,
especially for short-range entangled systems. Disregarding practical constraints and assuming
the chosen cluster size is larger than the typical entanglement range, DMMFT and DMRG are
equivalent in d = 1.
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The advantages of DMMFT become more significant in higher dimensions, d ≥ 2. In
DMRG, a d-dimensional system is compactified into a quasi-one-dimensional system, where
an artificial one-dimensional string of clusters winds through the system, as illustrated in
Fig. 3(a). Consequently, even for short-range entangled systems, artificial long-range entan-
glements emerge for sites that are physically close but distant along the string. The entan-
glement between physically neighboring clusters scales exponentially with N d−1

⊥ , where N⊥
represents the linear scale of the system along the transverse directions. In contrast, DMMFT
makes use of the separability [Eq.(17)] to study local problems over extended clusters without
introducing artificial long-range entanglements arising from the transverse dimensions. From
this perspective, DMMFT can be viewed as a mean-field approximation of DMRG and proves
particularly advantageous for studying short-range entangled systems in higher dimensions.

4.1.2 Comparison with dynamical mean-field theory

We proceed to compare DMMFT with DMFT. In DMFT, designed for fermionic systems, the
effective action is constructed over a local cluster, using the single-particle Green’s function
as a dynamical mean-field to capture the fluctuations [19, 20]. This local problem, entailing
a dynamical mean-field, is subsequently mapped to an effective impurity model and solved
using ED or QMC kernels [19]. Unlike the Anderson impurity model tailored for fermions,
devising an equivalent impurity model for spins is not straightforward. Furthermore, even if
a spin impurity model consistent with the principles of DMFT could be formulated, efficiently
solving it would remain challenging. Constructing a generic spin impurity (if not impossible)
can introduce significant frustrations, which leads to the failure of the QMC kernel due to the
sign problem. Additionally, achieving an accurate representation of the environment requires
incorporating a large number of spins beyond those in the local cluster, which causes the ED
kernel to rapidly encounter the exponential wall. A simplification of DMFT proposed in DMET
for fermionic systems involves utilizing the local density matrix, a static observable, instead of
the dynamical Green’s function [21]. While a formal generalization of DMET to spin systems
is feasible, the challenge lies in identifying a suitable reference wave-function that facilitates
straightforward Schmidt decomposition and the construction of the embedding Hamiltonian.
In contrast, in DMMFT, the reduced DM is naturally defined for many-body states, making
DMMFT generally applicable to fermions, bosons, as well as spins.

An alternative approach to investigating the ground state of a quantum many-body sys-
tem is to work directly with the wave function. One example is the Gutzwiller method, which
uses Gutzwiller wave function as a variational Ansatz [72–75]. The Gutzwiller approximation
can be viewed as a quantum embedding approach in a unified perspective with DMFT and
DMET [76]. More recently, the VDAT has been proposed to address the shortcomings of the
Gutzwiller approximation and simplify the computational complexity of DMFT. In VDAT, the
variational Ansatz is the sequential product density matrix, evaluated via the discrete action
theory [22,23]. The VDAT Ansatz is controlled by an integral parameter N , and it is asymptot-
ically exact as N tends to infinity, although it also becomes more computationally demanding.
VDAT has been shown to yield accurate ground state wave functions for fermionic systems,
even with N as small as 3 [24,25]. However, it faces challenges when applied to spin systems.
While constructing the sequential product density matrix for the spin system is straightforward,
the absence of Wick’s theorem for spin systems presents a challenge in efficiently applying dis-
crete action theory to evaluate the Ansatz.

Moreover, integrating wave function approaches with DMMFT raises the question of de-
termining a global state from reduced density matrices of local clusters. This challenge is
recognized as the quantum marginal problem [77]. Finding a general solution to this problem
is currently beyond the scope of this paper and remains an open and challenging research
question [78].
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It is particularly important to address the issue of lattice symmetries when comparing
DMMFT with cluster extensions of DMFT. The problem of maintaining lattice symmetry is
shared not only by DMFT but by all cluster approaches formulated in real space. In cluster
extensions of DMFT, this challenge arises because the approximate self-energy might not pre-
serve the underlying lattice symmetry, leading to inconsistencies if artificial periodization is
not appropriately imposed [79]. In contrast, DMMFT works with local static Hamiltonians,
which allows for a more straightforward imposition of symmetrization. Let G = g denote
a subgroup of symmetry transformations of the lattice that one would enforce, and denote
the representations of g over H̃ as g̃. Then, the mean-field Hamiltonian in Eq. (11) can be
symmetrized as

H̃(c)MF,Symm =
1
|G|

∑

g∈G

g̃ H̃(c)MF g̃−1 . (25)

Given that the reduced DM is constructed from the eigenstates of the Hamiltonian, it should
naturally respect the corresponding symmetries inherited from the symmetrized Hamiltonian
H̃(c)MF,Symm.

4.1.3 Comparison with cluster variation method

CVM is a variational method that minimizes the free energy,

F[ρ] = Tr(ρH) + kB TTr[ρ ln(ρ)] , (26)

with respect to the density matrix ρ. In Eq. (26), ρ is the many-body DM for the entire system,
kB is the Boltzmann constant, and T is the temperature. For a Hamiltonian consisting of terms
with finite-range interactions, it is sufficient to know up to n-point reduced DM,

ρ(n)({i1, i2, . . . , in}) = TrI\{i1,i2,...,in}ρ , (27)

to evaluate the energetic contribution Tr(ρH) to the free energy, where the set {i1, i2, . . . , in}
supports of the terms in the Hamiltonian. For example, in Heisenberg models with exchange
interactions and Zeeman couplings, only ρ(n=2)(i1, i2) is required, where the distance |i1 − i2|
is bounded by the interaction range of the Hamiltonian.

The key idea of CVM is to use cluster entropies to evaluate the entropic contribution
Tr[ρ ln(ρ)] to the free energy. The cluster entropies rely only on the reduced DMs support-
ing the clusters and are expected to decay rapidly when the linear size of the clusters ex-
ceeds the correlation length of the system [32]. The cluster approximation involves selecting
a truncation in cluster size. A particular choice of truncation for models with Heisenberg
exchange interactions is at the second order, i.e., n = 2, which is also known as the pair ap-
proximation [29–31]. In this approach, the variational equations, along with the consistency
conditions of the reduced DM, lead to the effective mean-field Hamiltonians of conventional
MFTs [30, 31] and the separability ρ(n=2)(i, j) = ρ(n=1)(i)⊗ ρ(n=1)( j) for |i − j| exceeds the
interaction range [29].

The separability in CVM arises as a consequence of the absence of long-range interactions
and the truncation at n = 2. However, quantum fluctuations can manifest as entanglements
over longer ranges, inherently determined by the nature of quantum states. In this sense,
DMMFT improves upon CVM with pair approximation by considering the quantum entan-
glements over the range of the extended cluster and determining the reduced DM ρc self-
consistently, up to n= |c|.

Another question worth mentioning is whether the mean-field equations derived in Sec. 2
can be derived from the perspective of CVM. As demonstrated in Ref. 29, conventional mean-
field theories [30, 31] can be derived as special cases of CVM with pair approximation and
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constant-coupling approximation. Different choices of consistency conditions can lead to dif-
ferent conventional MFTs [30, 31]. In this article, we have derived the mean-field equations
for DMMFT by assuming the separability for distant clusters. However, whether separability
can emerge as a natural consequence of alternative approximations beyond pair approxima-
tion, as demonstrated for conventional MFTs in CVM in Ref. 29), remains an open question.
We do not have an answer to this question and leave it for future research.

4.1.4 Comparison with linked-cluster expansion

LCE is another cluster-based method used for analyzing quantum spin systems [33–37, 39,
40]. Beyond conventional MFTs, LCE accounts for corrections from quantum and thermal
fluctuations represented as a series expansion in xn, where x = HI/(kB T ) and HI is part of
the Hamiltonian describing the fluctuations [33–35]. Considering the series as a perturbative
expansion ordered by the power n, x can exceed the radius of convergence of the series at
sufficiently low temperatures, which poses a challenge for convergence in LCE.

This obstacle is better addressed by numerical LCE, where physical observables are calcu-
lated still in the same basis as in LCE but not perturbatively in temperature [36,37]. Then, it
is the correlation length, instead of the temperature, that determines the convergence of the
series. Consequently, numerical LCE can converge at a lower temperature than perturbative
LCE. However, if long-range order develops at low temperature, and the correlation length
becomes larger than the cut-off scale of the cluster sizes, the convergence is no longer guaran-
teed [38]. Resummation algorithms, such as Wynn’s algorithm, Brezinski’s algorithm [80], and
Euler’s transformation [81], have been developed to accelerate the convergence of numerical
LCE [38].

In DMMFT, the cluster partition is fixed at the beginning, eliminating the need for summa-
tions over various configurations of the clusters. Although the size of the clusters in DMMFT
and numerical LCE both set the cut-off scale for the correlated fluctuations, DMMFT does not
suffer from convergence problems even if long-range order develops at low temperatures be-
cause no explicit summations are required. Moreover, practical applications of numerical LCE
often involve handling a large number of large clusters of various sizes (often solved by ED),
which can be computationally demanding. In this regard, DMMFT can outperform LCE in
computational efficiency, particularly at low temperatures.

4.2 Systems at finite temperatures

The extension of DMMFT for systems at finite temperatures is straightforward. In Eq.(9),
we use the ground state of the effective Hamiltonian over the extended cluster to compute
the reduced DM. At finite temperatures, assuming local thermal equilibrium, we can average
the reduced DMs of the eigenstates weighted by the Boltzmann distribution. Specifically, let
{Eα, |φ̃α〉} be the eigensystems of H̃(c)MF. Then, the thermally averaged reduced DM is given by

�

ρMF
c

�

T =
∑

α

wαρ
α
c ,

wα =
exp[−Eα/(kB T )]
∑

β exp[−Eβ/(kB T )]
,

ραc = Trc̃|φ̃α〉〈φ̃α| ,

(28)

where the square bracket with a subscript T indicates the thermal average. As discussed in
Sec. 2.3, when DHC′c

= 1, DMMFT reduces to the conventional MFTs at zero temperature. It is

straightforward to verify that since
�

ρMF
c

�

T ∼ exp[−H̃(c)MF/(kB T )]when DHC′c
= 1, the extension

of DMMFT according Eq.(28) also aligns with the conventional MFTs at finite temperatures.
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However, it is worth noting that the thermal averaging in Eq.(28) does not fully capture
all thermal fluctuations. Specifically, at low temperatures, it is often the gapless long wave
length modes (Goldstone modes) that dominate the thermal fluctuations. However, due to
the mean-field approximation inherent in DMMFT, these thermal fluctuations are frozen by
the assumption of translational symmetry. Therefore, similar to all other mean-field methods,
DMMFT tends to underestimate the impact of thermal fluctuations at finite temperatures.

4.3 Systems with disorders

Disorders are inherent in experiments and have the potential to significantly alter the nature
of delicate quantum phases, even in minute quantities, especially within frustrated systems.
Hence, integrating disorders into the DMMFT framework is crucial.

In the presence of the disorders, the Hamiltonian of the extended cluster undergoes direct
modification, denoted as

H[Oc̄]→ H(δ)[Oc̄] , (29)

where the superscript δ labels the types of the disorders. However, the process of averaging
over disorders is more intricate than the thermal average discussed in Sec. 4.2.

Consider a straightforward scenario involving a single magnetic vacancy within the cluster
c, where there can either be no vacancies or one vacancy on a site i ∈ c. In this case, we denote
δ ∈∆ = {0} ∪ c, where δ = 0 signifies no vacancies in the cluster c. The probability measure
of the disorder configurations is P∆(δ)dδ. Analogous to Eq.(28), it is intuitive to define an
average over the disorders as

�

ρMF
c

�

∆,ann =

∫

∆

ρ(δ)c P∆(δ)dδ ,

ρ(δ)c = Trc̃|φ̃(δ)〉〈φ̃(δ)| ,
(30)

where φ̃(δ) is the ground state of the effective Hamiltonian H̃(c),(δ)MF , and the square bracket with
a subscript ∆ indicates the average over the disorder configurations. The physical meaning
of
�

ρMF
c

�

∆,ann so-defined requires further clarification. When
�

ρMF
c

�

∆,ann is used to set the
effective environment C′c = {c

′} for the cluster c, each c′ is already averaged over various
disorder configurations according to Eq.(30). In other words, the disorders are annealed, hence
the subscript “ann” in Eq.(30).

In experiments, magnetic vacancies often exhibit behavior more akin to static disorders
than fluctuating disorders, particularly when the vacancies do not thermally migrate. Such
disorders are often referred to as quenched disorders, in contrast to the annealed disorders.
In the case of quenched disorders, we consider all possible disorder configurations over the
extended cluster c̄. Let c̄ consist of ν simple clusters, including the focused cluster c and ν−1
clusters in the environment. Assuming the simple clusters are identical, all possible disorder
configurations of the quenched disorders form a set ∆ = ∆ν = {(δ1,δ2, . . . ,δν)}. We derive
coupled mean-field equations for {ρ(δ)c }∆ . Once {ρ(δ)c }∆ is solved, the expectation values of
local observables averaged over the quenched disorders are calculated as

[〈Oαi 〉]∆,quen =

∫

∆

Trc

�

Oαi ρ
(δ)
c

�

P∆(δ)(d
νδ) , (31)

where P∆(δ)(dνδ) is the probability measure over the configuration space of the quenched dis-
orders∆. In the special case where each vacancy is independent and subjected to an identical
distribution P∆(δ)dδ, P∆(δ)(dνδ) =

∏ν
n=1 P∆(δn)dδn.

In real systems, the effects of disorders can be more complicated. For instance, there
can be clusters of vacancies due to lower formation free energy, and the probability measure
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of the vacancies may not take a simple product form. Moreover, disorders can manifest as
inhomogeneity in the samples, especially when scale of the probe is small, and the effects
of disorders are not self-averaged in the experiments. Despite the complications of disorders
arising in real systems, DMMFT can, in principle, be adapted to include these disorder effects
accordingly.

5 Conclusion

In this study, we introduced a generalized mean-field approach, DMMFT, specifically de-
signed to capture quantum fluctuations beyond conventional MFTs. DMMFT combines the
strengths of DMRG and DMFT, and stands out as an efficient and unbiased method applica-
ble to fermions, bosons, and spins, even in the presence of frustrations. A notable feature of
DMMFT is its capability to discern topological phases, enabled by its utilization of the reduced
DM, as demonstrated with the example of the AKLT model in Sec. 3.1. Furthermore, DMMFT
can achieve precision comparable to DMRG, even with a small cluster, as demonstrated with
the example of the AFHTL in Sec. 3.2. Additionally, DMMFT seamlessly extends to systems
at finite temperatures and incorporates disorders. In conclusion, DMMFT provides an effec-
tive tool for exploring phases exhibiting unconventional quantum orders and is particularly
beneficial for investigating frustrated spin systems in high spatial dimensions.
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A Iterative algorithm for mean-field equations

In Section 2.2, we established a closed set of coupled mean-field equations for DMMFT, de-
lineated by Eqs. (9) to (14). In this section, we present an iterative algorithm, detailed in
Table 1, to achieve self-consistent numerical solutions.

There are several important considerations to keep in mind. In Step 0, although a stable
self-consistent solution should be independent of the initial values, providing an initial guess
close to the self-consistent solution often aids in convergence. An empirical approach is to
start with a trivial ρc that can be constructed from solutions of conventional MFTs. In Step 0’,
a linear interpolation of the reduced DM,

ρ(n+1)
c = (1−α)ρ(n)c +αρ(n,new)

c , (A.1)

can be employed for updating ρc . Here, ρ(n)c represents the reduced DM used in Step 0 at the
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Table 1: DMMFT implementation steps.

Step number Step description
0 Initialize a set of trial reduced DMs {ρc}c∈C .

For each cluster c:
1 Diagonalize ρc , and construct Πc according to Eq.(13).
2 Use Eq.(14) to construct ΠC′c .
3 Use Eq.(10) to construct Π.
4 Use Eq.(11) to construct H̃(c)MF.
5 Diagonalize H̃(c)MF and select the target state |φ̃c〉.
6 Calculate new ρc according to Eq.(9).
0’ Use new {ρc}c∈C to update the trial reduced DMs ,

and repeat steps 1 – 6 until convergence.

n-th iteration, and ρ(n,new)
c is the new reduced DM obtained in Step 0’, The learning rate α

varies in the range (0, 1). Larger values of α lead to a more rapid update, while smaller values
tend to stabilize the iterative process.

Finally, the hyperparameter nc used in Eq.(13) in Step 1 can be compared to
D̃E

c = ⌈exp(SEc)⌉, where the entanglement entropy is calculated according to Eq.(8). It is
important to note that setting nc = 1 should recover the results of conventional MFTs.

B Pseudocodes for Heisenberg model

In this Appendix section, we describe the implementation of DMMFT for the AFHTL as dis-
cussed in Sec. 3.2.

We partition the triangular lattice into clusters, each comprising three lattice sites, as shown
in Fig. 4. The hexagons represent the Wigner-Seitz cells of the three-lattice clusters, which are
compatible with the symmetries of the underlying triangular lattice. The central cluster c
is highlighted in orange. We choose an extended cluster c̄ comprising of four three-lattice
clusters {c; c′1, c′2, c′3} with periodic boundary conditions. Fig. 4 depicts the extended cluster in
a periodically extended scheme, where clusters in C′c are duplicated under periodic translations
ai . Bonds depicted with solid lines indicate intra-cluster couplings contained in Hc , while those
with dashed lines indicate inter-cluster couplings contained in Hc,C′c . For visual clarity, Fig. 4
abbreviates some coupling bonds.

Now, we proceed to describe the pseudocode for DMMFT.
First, we define the local degrees of freedom. For the AFHTL, each site contains a quantum

spin of S = 1
2 . We define the spin operators Sαi ,α = x , y, z and the identity operator for each

site as follows.

1 ’# Code Block 1: define the physical site: S=1/2 #’
2 % length of the spin
3 slen = 1.0/2.0;
4 % dimension of local Hilbert space
5 dimHi = 2;
6 % define local operators
7 idiop = eye(dimHi);
8 sxop = [0.0, 1.0; 1.0, 0.0]* slen;
9 syop = [0.0, -1.0j; 1.0j, 0.0]* slen;

10 szop = [1.0, 0.0; 0.0, -1.0]* slen;
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c’3

Figure 4: Extended cluster with the periodic boundary condition. The hexagons rep-
resent the Wigner-Seitz cells of the three-lattice clusters compatible with the sym-
metries of the underlying triangular lattice. The central cluster c is highlighted in
orange. Three neighboring clusters C′c = {c

′
1, c′2, c′3} are duplicated under periodic

translations ai . Bonds depicted with solid lines indicate intra-cluster couplings con-
tained in Hc , while dashed lines indicate inter-cluster couplings contained in Hc,C′c .
For visual clarity, not all coupling bonds are shown.

Next, we define the local operators for the clusters shown in Fig. 4. These local opera-
tors for cluster c are constructed from the site operators using the tensor product, and then
represented in matrix form using the function kron().

1 ’# Code Block 2: define local operators for cluster c #’
2 % number of sites in c
3 nsite = 3;
4 % dimension of the cluster Hilbert space
5 dimHc = dimHi^nsite;
6

7 idcop = eye(dimHc);
8 opclist = {idcop};
9

10 for isite in c:
11 % construct siaop as tensor products of idiop ’s saop
12 % for example: s1xop = kron(sxop ,kron(idiop ,idiop))
13 opclist.append(siaop);
14 end for % isite

Using the local operators, we construct the Hamiltonian Hc , which includes intra-cluster
exchange interactions and Zeeman couplings, according to their definitions as follows.

1 ’# Code Block 3: construct Hamiltonian of intracluster couplings #’
2 Hamc = zeros(dimHc);
3 % add exchange interactions
4 for ibond in c:
5 i,j = vertex(ibond);
6 Hamc = Hamc + sum_a Ja*siaop*sjaop;
7 end for % ibond
8 % add Zeeman couplings
9 for isite in c:

10 Hamc = Hamc - sum_a ha*siaop;
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11 end for % ibond

Then, we define the operators for the extended cluster c̄.

1 ’# Code Block 4: define operators for the extended cluster cbar #’
2 % number of clusters in cbar
3 ncbar = 4;
4 % dimension of the cluster Hilbert space
5 dimHcbar = dimHc*dimHcp ^(ncbar -1); % cf. Eq.(10)
6

7 idcbarop = eye(dimHcbar);
8 opcbarlist = {idcbarop };
9

10 % construct spin operators
11 for isite in cbar:
12 % construct siabarop as tensor products of idcop ’s siaop
13 % for example: s1xbarop = kron(s1xop ,kron(idcop ,kron(idcop ,idcop))

)
14 opcbarlist.append(siabarop);
15 end for % isite
16

17 % construct Hamiltonian operator with intra - and inter -cluster terms
18 Hamcbar = sum_c Hamc + sum_{c,cp} Hamccp;

Finally, we solve the mean-field equations self-consistently. We use the iterative method to
solve the mean-field equations, following the steps described in Append. A.

1 ’# Code Block 5: Iterative solver #’
2 ’> step 0: initialization <’
3 rhoc = reduced DM from classical spin configurations
4

5 % configure iteration process
6 % learning rate
7 alearn = 0.6;
8 % cut -off dimension , n_c
9 dimHcp = 4;

10

11 % start iterations
12 while (not converge):
13 ’> step 1: construct Projc [Eq .(13)] <’
14 evec_rhoc , eval_rhoc = eig(rhoc);
15 Projc = zeros(dimHc ,nc);
16 for istate in largest n_c evals of rhoc:
17 Projc.append(evec_rhoc(istate));
18 end for % istate
19

20 ’> step 2: construct ProjCp [Eq.(14)] <’
21 for ic in C’:
22 ProjCp = kron(ProjCp ,Projc)
23 end for % ic
24 ’> step 3: construct Proj [Eq.(10)] <’
25 Proj = kron(idcop ,ProjCp);
26

27 ’> step 4: construct effective Hamiltonian [Eq .(11)] <’
28 Ham_MFeff = Proj ’* Hamcbar*Proj;
29

30 ’> step 5: find ground state of Ham_MFeff <’
31 evec_Ham , eval_Ham = eig(Ham_MFeff);
32 phicbar = state in evec_Ham with lowest energy;
33 rhocbar = phicbar*phicbar ’;
34

35 ’> step 6: calculate new rhoc [Eq.(9)] <’
36 rhoc_new = partially tracing rhocbar over {c’};
37
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38 ’> step 0: update rhoc [Eq .(29)] <’
39 rhoc = (1-alearn)*rhoc + alearn*rhoc_new;
40 check convergence;
41

42 end while % iteration

The pseudocode provided above serves only to demonstrate the step-by-step implementa-
tion of DMMFT. Various optimizations can enhance memory and time efficiency. For example,
one may use the Lanczos algorithm in Code Block 5, line 14 and line 31, since not the
full spectra of ρc and H̃(c)MF are used.
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