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Abstract

A mobile impurity particle immersed in a quantum fluid forms a polaron – a quasiparticle
consisting of the impurity and a local disturbance of the fluid around it. We ask what
happens to a one-dimensional polaron after a kick, i.e. an abrupt application of a force
that instantly delivers a finite impulse to the impurity. In the framework of an integrable
model describing an impurity in a one-dimensional gas of fermions or hard-core bosons,
we calculate the distribution of the polaron momentum established when the post-kick
relaxation is over. A remarkable feature of this distribution is a two-sided power-law
singularity. It emerges due to one of two processes. In the first process, the whole
impulse is transferred to the polaron, without creating phonon-like excitations of the
fluid. In the second process, the impulse is shared between the polaron and the center-
of-mass motion of the fluid, again without creating any fluid excitations. The latter
process is, in fact, a Bragg reflection at the edge of the emergent Brillouin zone. We
carefully analyze the conditions for each of the two processes. The asymptotic form of
the distribution in the vicinity of the singularity is derived.
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1 Introduction

The behavior of an impurity particle propagating in a host media is a paradigmatic problem
in physics. To address this problem, a concept of polaron was introduced by Landau [1] and
Pekar [2] at the down of the quantum theory of condensed matter. A polaron is a quasiparticle
consisting of the impurity along with the local disturbance of the host media cased by the inter-
action between the impurity and host particles. Polaron properties, such as mass or dispersion
relation, can be quite different from that of the bare impurity [3]. The polaron framework can
be universally applied to virtually any combination of impurity particle and host media [4–7].

Current experimental advance in the ultracold atomic gases allows one to create and con-
trol two-component mixtures with large concentration imbalance, thus offering a novel, ex-
tremely flexible platform for studying physics of polarons [8–15]. Importantly, such experi-
ments can be performed in the reduced spatial geometries, where effects of interactions are
more pronounced.

One-dimensional polarons are particularly remarkable. Their distinctive feature is the abil-
ity to move perpetually at zero temperature – an effect reminiscent but not identical to super-
fluidity [16–18]. This effect is universal and stems from the non-trivial spectral edge of any
one-dimensional fluid [19]. It implies that the polaron momentum is a bona-fide quantum
number (at least at zero temperature).

A steadily increasing deal of attention is being attracted by non-equilibrium aspects of the
polaron formation and dynamics [20–46]. Valuable insights into the nonequilibrium polaron
physics [16, 22, 33] come from studies of a one-dimensional integrable model introduced in
1965 by McGuire [47, 48]. Importantly, integrability facilitates non-perturbative analytical
investigation of the strong correlation effects hardly available otherwise.

In this paper, we consider the effect of kicking the polaron in the McGuire model at zero
temperature. In the context of cold atom experiments, the kick can be realized by photon
scattering or absorption, or by moving optical tweezers [49]. On a formal level, the kick
corresponds to applying an external force to the impurity within a short time interval, so that
the impurity acquires a finite impulse. The kick is followed by a relaxation, when the acquired
momentum is shared between the polaron and the excitations of the fluid created by the kick.
The relaxation is effectively over when all created fluid excitations have detached and moved
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Figure 1: A cartoon of the out-of-equilibrium protocol under study. A polaron, ini-
tially in equilibrium, is kicked by an instant application of a force to the impurity.
The kick changes the polaron momentum and creates excitations of the fluid. We
describe the steady state of the polaron after the relaxation is over and all fluid exci-
tations have broken apart.

away from the polaron, see Fig. 1. We calculate and analyze the probability distribution of
the polaron momentum in the thus established (quasi-)steady state.

The rest of the paper is structured as follows. In the next section we provide a concise but
self-contained description of the McGuire model and its Bethe Ansatz solution, with the focus
on the polaron properties. This section is based on the prior literature [47, 50–52]. Original
results are presented in Section 3. There we provide the polaron momentum distribution and
analyze its singularity structure. The last section discusses the implications of the results in a
broader context. Derivations and proofs can be found in the Appendix.

2 McGuire model and its Bethe Ansatz solution

2.1 The model

We use a simple and yet non-trivial integrable model of a polaron. This model was introduced
by McGuire who obtained its Bethe-Ansatz solution in 1965 [47,48]. Later the McGuire model
turned out to represent a specific sector of a more general Yang-Gaudin model [53,54]. Much
later it was realized that the Bethe eigenstates of the McGuire model can be represented as
Slater-like determinants [16, 50, 55]. This discovery opened an avenue for a flurry of exact
results [16,22,33,50–52,56–59]. In the present section we review the McGuire model and its
solution. The exposition mostly follows ref. [51].

McGuire model describes a single impurity particle immersed into a one-dimensional gas
of N spinless fermions (or, equivalently [19], hard-core bosons), the mass of the impurity and
a fermion being the same. Fermions do not interact one with another but interact with the
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impurity. We work in the first quantization, where the Hamiltonian of the model reads

H =
1
2

P2
imp +

1
2

N
∑

j=1

P2
j +

2 pF

α

N
∑

j=1

δ(x j − ximp) . (1)

Here, x j (Pj) is the coordinate (momentum) of the j’th fermion, j = 1, . . . , N , and ximp (Pimp)
is that of the impurity. Translation invariance is imposed by introducing periodic boundary
conditions with the circumference L. Any wave function should be periodic in any coordinate
with the period L and antisymmetric in fermionic coordinates. The number of fermions, N , is
assumed to be odd. The Fermi momentum is defined as pF = π(N−1)/L. We will be interested
in the thermodynamic limit of N , L→∞ with pF being fixed. Only the case of repulsion will
be considered here, which corresponds to a positive interaction strength (2 pF)/α.

The total momentum Ptot = Pimp +
∑N

j=1 Pj is an integral of motion of the model. Its
eigenvalues (denoted by the same symbol Ptot) are quantized with the momentum quantum
2π/L,

Ptot =
2π
L

M , (2)

where M is an integer.

2.2 Bethe Ansatz

The eigenstates of the McGuire model are labelled by N + 2 integers. One of them is M , and
others are organized in an ordered set n = {n1, n2, . . . nN+1}, n1 < n2 < · · · < nN+1 satisfying
the constraint

N+1
∑

l=1

nl ∈ [M , M + N] . (3)

An eigenstate |n, M〉 is given by

|n, M〉=N eiPtot ximp

�

�

�

�

�

�

�

�

�

�

�

�

�

eik1 y1 eik2 y1 ... eikN+1 y1

eik1 y2 eik2 y2 ... eikN+1 y2

. . . .

. . . .
eik1 yN eik2 yN ... eikN+1 yN

e−iδ1 sinδ1 e−iδ2 sinδ2 ... e−iδN+1 sinδN+1

�

�

�

�

�

�

�

�

�

�

�

�

�

, (4)

where N is a normalization constant, y j ≡ (x j− ximp)mod L is the position of the j’th fermion
relative to the position of the impurity, and (N + 1) pseudomomenta kl are fixed by integers
nl up to phase shifts δl ∈ [0,π),

kl =
2π
L

�

nl −
δl

π

�

, l = 1,2, . . . , N + 1 . (5)

The phase shifts δl should be found from Bethe equations. We do not need the complete
set of Bethe equations since in the thermodynamic limit and for eigenstates in the bottom of
the spectrum (whose precise meaning is discussed in the next subsection) the it reduces to a
single equation on an auxiliary but very important variable – polaron rapidity Λ ∈ (−∞,+∞).
This is the equation (8) introduced in the next subsection. It has a single root Λn,M whenever
the constraint (3) is satisfied, and no roots otherwise. The (N + 1) phase shifts are expressed
through this root as

δl =
π

2
− arctan
�

Λn,M −
2π
L
αnl

�

, (6)

up to corrections negligible in the thermodynamic limit.
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Figure 2: Schematic dependence of the polaron energy E , velocity v and rapidity Λ
on the polaron momentum Q. The units of the vertical axis are arbitrary. E(Q) is
shifted by a constant to ensure E(0) = 0.

2.3 Spectrum and a Bethe equation in the thermodynamic limit

The total momentum Ptot and energy Etot of the eigenstate |n, M〉 can be expressed through
the corresponding pseudomomenta,

Ptot =
N+1
∑

l=1

kl , Etot =
1
2

N+1
∑

l=1

k2
l . (7)

In fact, the right hand sides (r.h.s.) of these equations give the expectation values of operators
Ptot and H, respectively, for a state of the form (4) for arbitrary kl , not necessarily the solutions
of Bethe equations. In the thermodynamic limit, one can obtain the sole relevant Bethe equa-
tion on the rapidity by plugging expressions (5),(6) into the first equation (7) and replacing
the sum by the integral. The resulting equation on Λ reads

Q(Λ) =
2π
L

�

M −
N+1
∑

l=1

�

nl −
1
2

�

�

, (8)

where the function Q(Λ) is defined as

Q(Λ)
pF
=

1
πα

�

(Λ+α)arctan (Λ+α)− (Λ−α)arctan (Λ−α) +
1
2

log
1+ (α−Λ)2

1+ (α+Λ)2

�

. (9)

As we discuss in the next subsection, Q(Λ) is interpreted as the polaron momentum. It
is a monotonically increasing function of Λ (see Fig. 2), therefore the equation (8) has at
most one root Λn,M . Further, Q(Λ) ∈ [−pF, pF], which implies that a root exists whenever the
constraint (3) is satisfied.

For a given total momentum, one can define a (momentum-dependent) ground state. Its
energy is denoted by E(Ptot). The latter function constitutes the lower edge of the many-body
spectrum. In the thermodynamic limit, it is periodic with the period 2pF. The spectrum is
therefore divided into Brillouin zones of width 2pF. The main Brillouin zone corresponds to
Ptot ∈ [−pF, pF].

The set n of each ground state consists of consecutive integers. All eigenstates within a
Brillouin zone share the same set n but have different M . The main Brillouin zone corre-
sponds to the set n = {−(N − 1)/2, . . . , (N + 1)/2}. This implies Ptot = Q(Λn,M ) for each
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ground state |n, M〉 from the main Brillouin zone. Other Brillouin zones have total momen-
tum Ptot = Q(Λn,M ) + 2 m pF, where an integer m is the number of the zone. The momentum
shift (2 m pF) corresponds to the center-of-mass motion of the Fermi gas.

We say that an eigenstate is in the bottom of the spectrum whenever its energy differs from
E(Ptot) by a value that is O(1) in the thermodynamic limit. The set n for such an eigenstate
differs from that for a ground state by “particle-hole excitations” whose number is o(N) in the
thermodynamic limit.

2.4 Fermi polaron

The impurity along with the disturbance of the Fermi gas around it is commonly known as
Fermi polaron (another term “depleton” is also used in the one-dimensional context [60–62]).
In the McGuire model the polaron can be characterized in a remarkably precise and rigorous
way. Namely, it turns out that, for any eigenstate in the bottom of the spectrum, any local prop-
erty of the impurity (e.g. its momentum distribution, static correlation function etc) depends
only on the corresponding polaron rapidity. In other words, if the rapidities of two eigenstates
|n, M〉 and |n′, M ′〉 are identical up to finite size corrections, Λn′,M ′ = Λn,M + O(1/N), then
local properties of the impurity in these two states are also identical up to finite size correc-
tions. Therefore one can consistently interpret an eigenstate |n, M〉 as containing a polaron
with the rapidity Λn,M and a certain number of Fermi sea excitations. The latter do not alter
local polaron properties since their density vanishes in the thermodynamic limit.

Ground states is the main Brillouin zone contain only a polaron, without additional exci-
tations of the Fermi sea. For this reason the momentum Q(Λ) and the energy E(Q(Λ)) = E(Λ)
of such ground states are interpreted as the polaron momentum and energy, respectively. The
polaron energy is explicitly given by

E(Λ)
p2

F

=
1
πα
−

1+α2 −Λ2

2πα2

�

arctan (Λ+α) + arctan (Λ−α)
�

+
Λ

2πα2
log

1+ (α−Λ)2

1+ (α+Λ)2
. (10)

A distinct feature of a polaron in one dimension is that it can move perpetually with a
velocity below a critical one (no matter whether the model is integrable or not) [16–18, 22].
The critical velocity does not exceed the speed of sound in the medium hosting the polaron
[17,18]. The velocity operator is defined through the Heisenberg equation as i[H, ximp] and,
for the Hamiltonian (1), coincides with the impurity’s momentum operator Pimp.

In the McGuire model the impurity’s velocity v(Λ) is expressed through the polaron rapidity
as

v(Λ)
vF
= 〈n, M |Pimp|n, M〉=

Λ

α
+

1
2α

log 1+(α−Λ)2
1+(α+Λ)2

arctan(α−Λ) + arctan(α+Λ)
, (11)

where vF = pF is the Fermi velocity, see Fig. 2. One can verify that the polaron velocity satisfies
the usual relation for the group velocity,

v(Λ) =
∂ E
∂Λ

�

∂Q
∂Λ

�−1

=
∂ E
∂Q

. (12)

Explicit formula for the complete velocity distribution of an impurity in a polaron eigenstate
can be found in ref. [52].

Since Q(Λ) is a monotonic function, it can be inverted, Λ = Λ(Q). As a consequence, the
polaron can be unambiguously labelled not only by its rapidity Λ ∈ (−∞,∞) but also by its
momentum Q ∈ [−pF, pF].

6

https://scipost.org
https://scipost.org/SciPostPhys.17.2.063


SciPost Phys. 17, 063 (2024)

3 Polaron after a kick

3.1 Distribution over polaron rapidities after a general quantum quench

A quantum quench initializes a system in an out-of-equilibrium state |in〉. The quench is fol-
lowed by relaxation and, eventually, by establishing a post-quench equilibrium state. The
long-time expectation value O∞ of an observable O can be obtained by averaging the observ-
able over the diagonal ensemble [63]. Specifically, employing our notations for eigenstates,
one obtains

O∞ =
∑

|n,M〉

�

�〈n, M |in〉
�

�

2 〈n, M |O|n, M〉 . (13)

On physical grounds, one expects that a local quench excites only eigenstates in the bot-
tom of the spectrum (numerical verification of this statement for a different local quench in
the same model can be found in refs. [33, 64]). As discussed above, for such states the di-
agonal matrix element of any polaron observable depends only on the polaron momentum,
〈n, M |O|n, M〉=O(Λn,M ). Therefore, it makes sense to rewrite eq. (13) as

O∞ =
∫ ∞

−∞
dQ Γ (Λ)O(Λ) , (14)

where
Γ (Λ) =
∑

|n,M〉

�

�〈n, M |in〉
�

�

2
δ(Λ−Λn,M ) , (15)

is the probability distribution of the equilibrium post-quench state over polaron rapidities.
Eq. (14) allows for a transparent physical interpretation. The post-quench equilibrium

state features a polaron of rapidity Λ with the probability Γ (Λ). In addition, this state contains
Fermi sea excitation that, however, break off far apart from the polaron (since their velocity
always exceeds that of the polaron [17, 18, 65]) and thus have no effect on the observables
related to the impurity.

3.2 Preparing the initial state by kicking the impurity

In the present paper we consider a specific way to prepare the initial out-of-equilibrium state.
It consists of applying a large force F to the impurity over a small time interval τ. We consider
the limit of F →∞, τ→ 0 with the delivered impulse ∆P = Fτ fixed. This may be viewed
as an instant kick applied to the impurity.

We assume that prior to the kick the system is in an eigenstate |n0, M0〉 with the polaron
rapidity Λ0 ≡ Λn0,M0 and momentum Q0 = Q(Λ0). This eigenstate is assumed to belong to
the bottom of the spectrum. Naively, kicking the impurity at time t = 0 can be described by
adding the term −F ximpδ(t/τ) to the Hamiltonian (1). Then the out-of-equilibrium state
immediately after the kick reads

|in〉= ei∆P ximp |n0, M0〉 . (16)

The above simple consideration is not rigorous since the linear potential breaks the trans-
lation invariance and is incompatible with periodic boundary conditions. Nevertheless, eq.
(16) remains correct, provided∆P is an integer of momentum quanta 2π/L which we assume
in what follows. We justify eq. (16) in Appendix A by employing a more elaborate (although
somewhat cumbersome) argument.
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Figure 3: Left: Color plots of ΓQ0→Q for various impulses ∆P. Bragg reflection is
clearly seen for smaller values of ∆P. The bright green color indicates the position
of the singularity. Top right: The range of the initial polaron momentum Q0 and im-
pulse∆P where the post-kick polaron momentum distribution ΓQ0→Q has a two-sided
power law singularity. Points indicate values of Q0 and ∆P chosen for the bottom
right plot. Dashed lines mark the boundaries of the Brillouin zone. Bottom right:
Three typical shapes of ΓQ0→Q as a function of Q (with Q0 = 0 and values∆P specified
in the plot). For ∆P = 0.3pF the kick acts within the main Brillouin zone and ΓQ0→Q
features a sharp singularity at Q = Q0 +∆P. For ∆P = 1.1pF the Bragg reflection
from the Brillouin zone boundary occurs, the singularity at Q = Q0 +∆P − 2pF is
accompanied by a broad maximum on the opposite side of the Brillouin zone. For
∆P = 1.7pF the singularity is absent. The coupling constant is α= 2.

3.3 Polaron momentum distribution after the kick

Here we present the result for the polaron rapidity distribution established as a result of relax-
ation after the kick. We choose to employ a more detailed notation ΓΛ0→Λ for this distribution.
It has the same meaning as Γ (Λ) in eq. (14) but explicitly contains the pre-kick rapidity Λ0.
The new notation highlights its physical meaning: ΓΛ0→Λ is the density of the probability that
the polaron with the initial rapidity Λ0 will acquire the rapidity Λ after the kick with the im-
pulse ∆P.

The explicit expression for the rapidity distribution is the first main result of the present
paper. It reads

ΓΛ0→Λ =
∆P2

(Λ−Λ0)2 Q′(Λ0)
Re

∞
∫

0

d x
π

e−i∆P x det
�

1+ K̂
�

. (17)

Here det
�

1+ K̂
�

is a Fredholm determinant, and the operator K̂ acts on L2[−pF, pF] and has
an integrable kernel

K(q, q′) = (Λ0 −Λ)2
e−i x(q+q′)/2

π
p

(αq/pF −Λ0)2 + 1
p

(αq′/pF −Λ0)2 + 1

e(q)− e(q′)
q− q′

pF , (18)

e(q) =
ei xq − ei xΛpF/αe−x pF/α

αq/pF −Λ− i
−

ei xq

Λ0 −Λ
. (19)
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Note that K̂ depends on x , Λ0, Λ and α as parameters. Note also a shorthand notation
Q′(Λ) = ∂Q/∂Λ introduced in eq.(17).

One can view the Fredholm determinant as a thermodynamic limit of a finite determinant
with matrix elements δi j + (2π/L)K(qi , q j), where qi , q j ∈ [−pF, pF] are quantized momenta
with momentum quantum 2π/L. More details on properties of Fredholm determinants and an
algorithm for their effective numerical computation can be found in ref. [66]. The derivation
of eq. (17) is presented in Appendix B.

Since the polaron momentum Q is a more intuitive quantity compared to the polaron ra-
pidity Λ, we also introduce the polaron momentum distribution ΓQ0→Q. Its physical meaning is
as follows: ΓQ0→Q is the density of the probability that the polaron with the initial momentum
Q0 will acquire the momentum Q after the kick with the impulse ∆P. The two distributions
are related as

ΓQ0→Q = ΓΛ0→Λ/Q
′(Λ) . (20)

Plots of the momentum distribution for various impulses and initial polaron momenta is
shown in Fig. 3. The distribution can feature two related effects, the Bragg reflection from the
edge of the Brillouin zone and power-law singularities. Both of them are discussed in detail
in the next subsection.

The polaron momentum can be hard to measure in the experiment since it is shared be-
tween the impurity and the accompanying disturbance of the Fermi sea. The polaron rapidity
also does not have a direct operational meaning.1 In contrast, the polaron velocity coincides
with the velocity of the impurity and thus can be readily measured. One can straightforwardly
obtain the velocity distribution Γv0→v from the rapidity distribution (17) and expression (11)
for v(Λ), keeping in mind that the latter map is two-to-one and thus folding should be em-
ployed.

To compute the average polaron velocity in the post-quench equilibrium state, one should
convolve v(Λ) with ΓΛ0→Λ according to eq. (14). In practice, the integration in eq. (14) is
performed over a deformed contour in the complex plane, analogously to those ref. [33]. The
result is shown in Fig. 4.

In ref. [33] the average polaron velocity was calculated for a different quench protocol, see
Fig. 4 for comparison. There the initial pre-quench state consisted of the undisturbed gas of
noninteracting fermions and the impurity with the momentum ∆P that did not interact with
the fermions. At t = 0 the interaction between the impurity and the fermions was turned
on. Physically, this quench protocol described the injection of a bare impurity into the ini-
tially undisturbed Fermi sea, with the subsequent dressing of the impurity by excitations that
eventually led to the formation of the polaron. In contrast, in the protocol under study the
polaron exists from the outset, the quench leading in the change of the polaron momentum.
The two protocols generally result in quite different values of the equilibrium polaron velocity,
particularly for larger interactions strength, as can be seen in Fig. 4. At the same time, they
coincide for large values of ∆P exceeding the uncertainty of the impurity momentum in the
polaron state.

3.4 Two-sided power-law singularity of the distribution

The singularity in the distribution ΓQ0→Q is present for the range of parameters depicted in the
top right panel of Fig. 3 and analytically specified below in eq. (25). It can be obtained from

1Note that while the distribution of pseudomomenta kl in the post-quench state can be measured in the free-
expansion experiments [67–70], such measurements can hardly give much information about the polaron since
kl differ from the momenta of noninteracting fermions only by O(1/N) terms, see eq. (5). This is because the
impurity disturbs the otherwise noninteracting Fermi gas only locally. However, we note a related recent ref. [71]
where a small patch of a one-dimensional gas has been instantly cut out, with an access to local properties within
this patch. It remains to be seen whether the latter approach can be helpful to study polarons.
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Figure 4: Steady state polaron velocity established after the kick as a function of the
impulse (solid lines). The initial polaron momentum is Q0 = 0. Different curves
correspond to different coupling constants 2π/α = 3, 6, 10 (from top to bottom).
For comparison, the results for a different quench protocol are shown (dashed lines)
[33], where a bare impurity is injected in the initially undisturbed fluid with the
momentum ∆P.

the asymptotics of the Fredholm determinant, see Appendix C. The result reads

Γ
sing
Q0→Q =























C+
(Q−Qsing)1−(ξ

−
m)2−(ξ+m)2

, Q >Qsing ,

C−
(Qsing −Q)1−(ξ−m)2−(ξ+m)2

, Q <Qsing .

(21)

The position of the singularity Qsing is determined by the value of (Q0 +∆P), namely,

Qsing =Q0 +∆P − 2 m pF , (22)

where the integer m is chosen such that

Qsing ∈ [−pF, pF] . (23)

The exponent of the singularity is constructed from

ξ±m =
1
π

�

arctan(Λ0 ∓α)− arctan(Λ∓α)
�

−m , (24)

where Λ = Λ(Q) and Λ0 = Λ(Q0). The constants C± are given in Appendix C, see eq. (C.7).
The true distribution ΓQ0→Q is close to Γ sing

Q0→Q for polaron momenta in the vicinity of Qsing.
From the mathematical point of view, the singularity (21) is similar in origin to the thresh-

old X-ray singularity [72]. While there is no any threshold here, the amplitudes C± of the left
and right parts of the singularity differ, therefore it resembles two threshold singularities glued
together. We adopt the term two-sided for such type of singularity.

The condition for the existence of the singularity is that the exponent in the asymptotics
(21) is positive,

1− (ξ−m)
2 − (ξ+m)

2 > 0 . (25)

In general, this is a complicated nonlinear condition, see Fig. 3 for illustration. However,
one simple fact about it can be easily obtained: the condition is never satisfied when |m| ≥ 2.
Therefore, in fact only m= 0 or m= ±1 are allowed. Let us discuss these two cases separately.
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When m = 0, the kick acts within the main Brillouin zone, i.e. Q0 +∆P ∈ [−pF, pF]. In
this case the singularity corresponds to the process where the whole impulse of the kick is
transferred to the polaron, with no Fermi sea excitations created. The smaller is the impulse
∆P, the more probability weight is concentrated in the vicinity of the singularity, see Fig. 3.
In the limit of vanishing ∆P, the singularity turns into the delta-function embracing all the
weight, i.e.

ΓQ0→Q
∆P→0
−−−→ δ(Q−Q0) , (26)

see Appendix C for the proof.
When m = ±1, the kick drives the system through the boundary between two Brillouin

zones. In this case the Bragg reflection occurs: The impulse of the kick is shared between the
polaron and the center-of-mass motion of the Fermi sea, the latter acquiring the momentum
±2pF. Again, no Fermi sea excitations are created at Q =Qsing. One can see from Fig. 3 that in
this case the singularity carries a relatively low share of probability weight, with the majority
weight being carried by a broad peak on the opposite side of the Brillouin zone.

4 Discussion and outlook

We have calculated the polaron momentum distribution established after a kick. The kick
can be thought as a limiting case of a more general external driving with the force F applied
to the impurity for the time interval τ, the acquired impulse being given by ∆Pτ = F τ. In
one dimension, such driving in general can lead to Bragg reflection from the boundary of
the emergent Brillouin zone of the fluid, an effect first theoretically predicted for adiabatic
driving [20,60,61] and subsequently observed for a finite driving force in an experiment with
ultracold atoms [11]. We are able to rigorously determine the conditions for Bragg reflection
in our setting. In particular, in contrast to the conventional Bragg reflection from crystals,
here such reflection is operational only between neighbouring Brillouin zones, with the only
available momentum change equal to ±2pF.

In the adiabatic limit of fixed∆P and F =∆P/τ→ 0 the polaron was predicted to experi-
ence Bloch-like oscillations [20, 60, 61] with the polaron momentum Q ≃ F t mod (2pF) (see
also [18,22,73–75]). Adiabatic driving can be emulated by a periodic sequence of small kicks.
Whenever the interval between the kicks exceeds the polaron relaxation time, our result for the
polaron momentum distribution can be applied after each kick. Since in the limit of the small
impulse the distribution approaches the delta-function, see eq. (26), the above simple picture
of Bloch-like oscillations is restored. This is consistent with the fact that Bloch-like oscillations
are particularly robust for polarons that are heavier than the host particles [18,22,76,77] (the
effective mass of the polaron was calculated in [47]; it always exceeds the mass of the host
fermion).

The two-sided power-law singularities that show up in the polaron momentum distribution
correspond to processes where no host medium excitations are created, analogously to such
genuinely solid state effects like X-ray singularities [72] or Mössbauer effect [78]. This high-
lights the peculiarity of one-dimensional fluids that originates from geometrically-enhanced
quantum correlations.

An interesting question for further exploration is to what extent the qualitative picture
established here survives the breakdown of the integrability. We note in this respect that the
results obtained in integrable systems are often quite robust and do not change quantitatively
away from the integrable point [22,79].

From the experimental perspective, it is important to understand to what extent one can
relax the idealized conditions adopted in the present study, most importantly – zero temper-
ature and infinite relaxation time limits. Here we confine ourselves by brief remarks in this
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respect. One expects that for intermediate coupling strengths, α ∼ 1, the equilibration typi-
cally occurs on time scales of a few Fermi times, as confirmed by numerical studies [16, 79].
Analogously, one expects that for temperature well below the Fermi energy all thermal effects
are exponentially suppressed. More refined estimates can be obtained from a quantitative
exploration of the polaron dynamics in the McGuire model at finite times and temperatures,
which constitutes a promising direction for future research.

Finally, we note that it could be interesting to study the dynamics of the attractive polaron
which is known to have a richer phenomenology compared to the repulsive case [52].

A Kick as a quantum quench

In order to rigorously define the kick in the translation-invariant system, one introduces a more
general Hamiltonian

HΦ =
1
2

�

Pimp −Φ
�2
+

1
2

N
∑

j=1

P2
j +

2pF

α

N
∑

j=1

δ(x j − ximp) , (A.1)

depending on the parameter Φ. This Hamiltonian is solvable by Bethe Ansatz for arbitrary
value of Φ (not necessarily an integer of the momentum quantum), with eigenstates |n, M〉Φ of
the form (4) and the equation on the rapidity that can be obtained from eq. (8) by substituting
(2π/L)M = Ptot → Ptot − Φ. If the value of Φ is an integer of momentum quanta 2π/L, the
eigenstates |n, M〉Φ are related to the eigenstates |n, M〉= |n, M〉Φ=0 in a simple way,

|n, M〉Φ = eiΦ ximp |n, M〉 , (A.2)

which can be verified directly by applying HΦ to both sides of the above relation.
The “kick” protocol of impurity preparation described in Section 3.2 corresponds to prepar-

ing the system in an eigenstate of the Hamiltonian HΦ with Φ=∆P and subsequently quench-
ing the value of Φ to zero. In view of the relation (A.2), such quantum quench results in the
state (16).

B Momentum distribution: Derivation

B.1 Preliminary considerations

To lighten the notations we employ the convention,

pF = 1 , (B.1)

throughout the rest of the Appendix. One can always restore pF by dimensionality.
In this section we outline the derivation of the rapidity distribution defined as

Γ (Λ) =
∑

|n,M〉

�

�〈n, M | ei∆P ximp |n0, M0〉
�

�

2
δ(Λ−Λn,M ) , (B.2)

cf. eqs. (15),(16). We use the technique employed earlier to calculate the Green’s function of
the impurity [51,57,80].

It turns convenient to introduce functions k(n,Λ) and δ(n,Λ),

k(n,Λ) =
2π
L

�

n−
δ(n,Λ)
π

�

, δ(n,Λ) =
π

2
− arctan
�

Λ−
2π
L
αn
�

. (B.3)
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They can be used to specify solutions of Bethe equations. Indeed, k(nl ,Λn,M ) = kl and
δ(nl ,Λn,M ) = δl are, respectively, the l ’th Bethe pseudomomentum and phase of the eigenstate
|n, M〉, cf. eqs. (5),(6).

Note that eq. (9) for Q(Λ) is in fact obtained as the thermodynamic limit of

Q(Λ) =
2π
L

(N+1)/2
∑

n=−(N−1)/2

�

1
2
−

1
π
δ(n,Λ)
�

. (B.4)

This equation along with eq. (B.3) imply the identity
N+1
∑

l=1

∂ k
∂Λ
(nl ,Λ) =Q′(Λ) +O(1/N) , Q′(Λ)≡

∂Q(Λ)
∂Λ

, (B.5)

valid for an arbitrary state |n, M〉 from the bottom of the spectrum.
The importance of the quantity ∂ k/∂Λ stems from the identity

∂ k
∂Λ
(nl ,Λn,M ) =

2
L
(sinδl)

2 +O(1/N2) , (B.6)

that follows from the complete set of Bethe equations. Thanks to this identity, ∂ k/∂Λ enters
matrix elements between eigenstates (4).

B.2 Matrix element

The matrix element entering eq. (B.2) is obtained from the determinant representation (4) of
the eigenfunction [50]. It reads

�

�〈n, M | ei∆P ximp |n0, M0〉
�

�

2
= δM ,M0+∆M

�

∆P
Λn,M −Λ0

�2
1

Q′(Λ0)Q′(Λ)
(det D)2

× (Λn,M −Λ0)
2N+2

N+1
∏

l=1

∂ k
∂Λ
(nl ,Λ)

N+1
∏

l=1

∂ k
∂Λ
(n0

l ,Λ0) . (B.7)

Here D is (N + 1)× (N + 1) Cauchy matrix constructed from the two sets of pseudomomenta
corresponding to eigenstates |n0, M0〉 and |n, M〉,

D =











1

k(nl ,Λn,M )− k(n0
l ′ ,Λ0)











l,l ′=1,2,...,(N+1)

. (B.8)

Due to momentum conservation the matrix element is nonzero for a single value of M given
by

M = M0 +∆M , ∆M ≡
L

2π
∆P . (B.9)

It should be reminded that Λ0 ≡ Λn0,M0 .

B.3 From sum over eigenstates to sum over independent integers

The next step is to replace the summation over eigenstates in eq. (B.2) by the summation over
independent integers nl , l = 1,2, . . . . This is done as follows:

∑

|n,M〉

−→
1

(N + 1)!

∑

n1

∑

n2

...
∑

nN+1

θM (n) . (B.10)

Here each nl runs over all integers, M is fixed according to eq. (B.9), the prefactor 1/(N +1)!
accounts for permutations within the set n, the function θM (n) equals 1 provided the con-
straint (3) is satisfied and 0 otherwise, and terms where at least two integers are equal vanish
automatically thanks to the determinant det D in the matrix element (B.7).
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B.4 Handling (det D)2

The Cauchy-Binet theorem allows one to convert (N +1) sums over (det D)2 to a single deter-
minant,

1
(N + 1)!

∑

n1

∑

n2

...
∑

nN+1

δ(Λ−Λn,M ) (det D)2
N+1
∏

l=1

f (nl ,Λn,M )

= δ(Λ−Λn,M ) det











∞
∑

n=−∞

f (n,Λ)
�

k(n,Λ)− k(n0
l ,Λ0)
��

k(n,Λ)− k(n0
l ′ ,Λ0)
�











l,l ′=1,2,...,(N+1)

, (B.11)

where f (n,Λ) is an arbitrary function.

B.5 Factorized representation of δ(Λ−Λn,M)

Since the Bethe equation (8) has a single solution Λ = Λn,M provided n and M satisfy the
constraint (3), and no solutions otherwise, one can rewrite θM (n)δ(Λ−Λn,M ) as follows:

θM (n)δ(Λ−Λn,M ) =

+∞
∫

−∞

d x
2π

Q′(Λ) e
i x

�

N+1
∑

l=1
(k(nl ,Λ)−k(n0

l ,Λ0))−∆P)

�

. (B.12)

Here the momentum conservation and the identity (B.5) has been employed. The exponential
in the integrand can be factorized, which will prove useful in what follows.

B.6 Combining the pieces

We combine eqs. (B.7), (B.5), (B.10), (B.11) and (B.12) to obtain

Γ =
∆P2

(Λ−Λ0)2 Q′(Λ0)
Re

∞
∫

0

d x
π

e−i∆P x detA , (B.13)

where the (N + 1)× (N + 1) matrix A has matrix elements

Al l ′ = (Λ−Λ0)
2

√

√ ∂ k
∂Λ
(n0

l ,Λ0)

√

√ ∂ k
∂Λ
(n0

l ′ ,Λ0

�

e−i x
�

k(n0
l ,Λ0)+k(n0

l′ ,Λ0)
�

/2

×
∞
∑

n=−∞

∂ k
∂Λ
(n,Λ)

ei x k(n,Λ)
�

k(n,Λ)− k(n0
l ,Λ0)
� �

k(n,Λ)− k(n0
l ′ ,Λ0))

. (B.14)

For l ̸= l ′ the second line of the above equation can be reorganized as

e
�

k(n0
l ,Λ0)
�

− e
�

k(n0
l ′ ,Λ0)
�

k(n0
l ,Λ0)− k(n0

l ′ ,Λ0)
, (B.15)

with

e
�

k(n0
l ,Λ0)
�

=
∞
∑

n=−∞

∂ k
∂Λ
(n,Λ)

ei x k(n,Λ)

k(n,Λ)− k(n0
l ,Λ0)

. (B.16)

This function has a nice thermodynamic limit that can be obtained by presenting the sum as
a contour integral, a technique described in refs. [51,80]. The result is given by eq. (19). For
diagonal entries, l = l ′, eq. (B.15) still can be used if interpreted in the l’Hôpital sense, with
extra care required to keep both the O(1) and O(1/N) terms:

Al l = 1+ (Λ−Λ0)
2 e−i xk ∂ k

∂Λ
∂ke(k)
�

�

�

k=k(n0
l ,Λ0)

+O(1/N2) . (B.17)

Combining eqs. (B.13),(B.14),(B.15) and (19) one arrives at eq. (17).
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Figure 5: Comparison of the exact Fredholm determinant (18) (blue) and its asymp-
totic expression (C.1) (magenta) for Λ0 = 0, Λ= 10, α= 3.

C Asymptotic analysis of the singularity

C.1 Asymptotics of the Fredholm determinant

The singularities in the rapidity and momentum distributions stem from the asymptotic be-
havior of det
�

1+ K̂
�

for large x . The latter is given by

det
�

1+ K̂
�

≃
1
∑

m=−1

CΛ0,Λ[ξm]

(2i)(ξ−m)2(−2i)(ξ+m)2
ei x (Q−Q0+2m)

x (ξ−m)2+(ξ+m)2
, x ≫ 1/pF , (C.1)

where ξm is a function given by

ξm(q) =
1
π

�

arctan(Λ0 −αq)− arctan(Λ−αq)
�

−m , (C.2)

ξ±m equals ξm(±1) (which is consistent with the definition (24) in the main text), the functional
CΛ0,Λ[ξ] reads

C[ξ] =
�

G(1− ξ−)G(1+ ξ+)
�2
(2π)ξ

−−ξ+ e−C̃Λ0,Λ[ξ] , (C.3)

with the subscript m in ξm(q), ξ±m omitted for brevity, G(a) is the Barnes function, and

C̃Λ0,Λ[ξ] =

1
∫

−1

dq
ξ(q) cot
�

πξ(q)
�

1+ (Λ−αq)2
−

2α
Λ0 −Λ

1
∫

−1

dqξ(q) +
1
2

1
∫

−1

dq

1
∫

−1

dq′
�

ξ(q′)− ξ(q)
q′ − q

�2

−

1
∫

−1

dq
ξ(−1)2 − ξ(q)2

1+ q
−

1
∫

−1

dq
ξ(1)2 − ξ(q)2

1− q
. (C.4)

The asymptotics (C.1) is derived with the help of the standard soft mode resummation
technique [81–84] (see section 5 in ref. [80] for a pedagogical introduction).

It should be emphasized that we have restricted the summation over m in eq. (C.1) by
three terms m= 0,±1. Only these terms can be relevant for the singularity of the distribution,
as discussed in Section 3.4.

Importantly,
CΛ0,Λ[ξ] = CΛ,Λ0

[−ξ] , (C.5)

thanks to the following property of the Barnes function:

G(1− z) =
G(1+ z)
(2π)z

exp



π

z
∫

0

x cot(πx) d x



 . (C.6)
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We compare the asymptotics (C.1) to the exact Fredholm determinant (18) in Fig. 5. One
can see an excellent agreement for sufficiently large x . High frequency oscillations at small x
that are not captured by the asymptotics (C.1) stem from the term ei xΛpF/αe−|x |pF/α in eq. (19).
They are visible only for large values of Λ.

C.2 Singularity of the momentum distribution

Plugging the asymptotics (C.1) into eq.(17) and performing the integration over x , one obtains
eq. (21) with

C± =
∆P2

(Λ−Λ0)2 Q′(Λ0)Q′(Λ)

Γ
�

1− (ξ−m)
2 − (ξ+m)

2
�

π2(ξ−m)2+(ξ+m)2
CΛ0,Λ[ξm] sin
�

π (ξ∓m)
2
�

. (C.7)

Here Γ (a) is the gamma-function and CΛ0,Λ[ξm], ξm, ξ±m are defined in the previous subsection,
with m chosen to satisfy the condition (23). The latter rule implies that a single term from the
sum in eq. (C.1) contributes to the singularity. Note also that the argument of the gamma-
function is always in the interval (0,1) thanks to the condition (25).

The limit ∆P → 0 deserves a separate consideration. In this limit m = 0, the position of
the singularity Qsing approaches Q0, and ξ0(q),ξ±0 → 0, CΛ0,Λ[ξ0]→ 1. Therefore the Fourier
transform of the asymptotics (C.1) leads to the delta-function,

lim
∆P→0

Γ
sing
Q0→Q =

1
π

Re
i

(Q−Q0 + i0)
= δ(Q−Q0) , (C.8)

where the latter equality is the Plemelj-Sokhotski formula. The normalization condition im-
plies that Γ sing

Q0→Q = ΓQ0→Q in the limit ∆P → 0. This way one arrives at eq. (26).
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