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Abstract

We introduce a novel class of two-dimensional non-unitary rational conformal field the-
ories (RCFTs) whose modular data are identical to the generalized Haagerup-Izumi
modular data. Via the bulk-boundary correspondence, they are related to the three-
dimensional non-unitary Haagerup topological field theories, recently constructed by a
topological twisting of three-dimensional ' = 4 rank-zero superconformal field theories
(SCFTs), called S-fold SCFTs. We propose that, up to the overall factors, the half-indices
of the rank-zero SCFTs give the explicit Nahm representation of four conformal charac-
ters of the RCFTs including the vacuum character. Using the theory of Bantay-Gannon,
we can successfully complete them into the full admissible conformal characters of the
RCFTs.
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1 Introduction

A characteristic property of (2+1)-dimensional topological matters is the presence of chiral
gapless states on their boundary. It is well-studied that, when a topological phase in the bulk
can be described by a unitary topological quantum field theory (TQFT), the universal behaviors
of gapless boundary states can be captured by a two-dimensional unitary rational conformal
field theory (RCFT). This connection is often referred to as the bulk-boundary correspondenc
[1,2]. A prominent example is the correspondence between the three-dimensional Chern-
Simons theories and the two-dimensional Wess-Zumino-Witten (WZW) models. The Chern-
Simons theories are low-energy effective theories for certain quantum Hall systems, typical
many-body systems with a mass gap.

The bulk-boundary correspondence however becomes less clear in non-unitary cases, pri-
marily due to the limited understanding of the physical nature of the non-unitary TQFTs. Math-
ematically, the non-unitary TQFTs can be defined in a manner nearly identical to the unitary
ones with certain unitarity conditions being relaxed. In particular, the bulk observables in both
theories are encoded in rigid mathematical structure known as the modular tensor category
(MTC) [3,4]. However, the manifestation of a non-unitary TQFT equipped with MTC in a
physical system has been a formidable challenge until the recent proposals [5, 6].

Specifically, it was argued that a family of non-unitary TQFTs can be realized as a topo-
logical twisting of an exotic class of three-dimensional N' = 4 superconformal field theories
(SCFTs), called the rank-zero theories. Those rank-zero theories can be characterized by the
absence of both Coulomb and Higgs branches, and have an isolated vacuum. Despite the
extensive studies of the landscape of the three-dimensional N/ = 4 SCFTs, this class of ex-
otic SCFTs has largely remained unexplored. This is essentially because most of them are not
connected to weakly-coupled UV theories with manifest A" = 4 supersymmetry by RG flows.
Rather, their N' = 4 supersymmetry is accidental in the infrared limit, namely their SUSY get
enhanced dynamically.

In three dimensions, the N' = 4 SUSY is the minimal SUSY that admits a topological twist-
ing. When a given theory is topologically twisted, the spin-statistics theorem is no longer valid
and the unitarity becomes violated. For the theories of rank zero, the topological twisting
results in genuine (semi-simple) TQFTs associated with MTC. Thus, one can expect that the
topologically twisted N = 4 rank-zero theories physically realizes the non-unitary TQFTs. We
summarize the chains of correspondences in the following diagram:

top’l twisting bulk-boundary

Rank-zero SCFT | ———— | Non-unitary TQFT | ——— | Non-unitary RCFT

In the present work, we examine the non-unitary version of bulk-boundary correspondence
for the S-fold SCFTs, defined in (1), as concrete examples. As demonstrated in [7], the topo-
logical twisting of such S-fold SCFTs gives rise to the TQFTs with modular data generalizing
the non-unitary Haagerup-Izumi modular data. For this reason, we refer to them as the gener-
alized Haagerup TQFTs. Is there a boundary RCFT corresponding to a generalized Haagerup
TQFT? To see this, we utilize the so-called Riemann-Hilbert method [8, 9] to explicitly con-
struct the conformal characters compatible with a given generalized Haagerup-Izumi modular
data. Herein, the half-index computation of the aforementioned rank-zero theories play a key
role in making this approach effective. Note that the central charge read off from the vacuum
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conformal character is always negative, which is consistent with the fact that the modular data
of our interest give negative quantum dimensions. It strongly supports that there exist non-
unitary RCFTs associated with the Haagerup TQFTs, and suggests that the non-unitary version
of the bulk-boundary correspondence actually does work.

The rest of the paper is organized as follows. In section 2, we introduce the S-fold SCFTs
labeled by an integer k > 3 and its topologically twisted theories. We also propose a dual
field theory description of the SCFTs in terms of Abelian gauge fields. We review the com-
putation of modular data of the topologically twisted theories and explain why we call them
generalized non-unitary Haagerup TQFTs. In section 3, we introduce generalized non-unitary
Haagerup RCFTs, which live on the boundary of the TQFTs. From the computation of half-
indices using the Abelian dual description, we propose fermionic sum representations of some
characters of the non-unitary RCFTs. We then verify that the characters can be completed into
full admissible RCFT characters by using either modular linear differential equation (MLDE)
or Riemann-Hilbert method. We present the full characters up to k = 11 but the analysis can
be in principle extended to arbitrarily higher k. In appendix, we give a derivation of the dual
Abelian description using 3D-3D correspondence.

2 3D S-fold SCFTs and generalized non-unitary Haagerup TQFTs

2.1 S-fold SCFT S,

Here we introduce two UV descriptions of the S-fold SCFTs. One is using T[SU(2)] theory
which is the conventional one. The other is based on A/ = 2 Abelian gauge fields coupled to
chiral multiplets. The Abelian description will be used in defining the generalized Haagerup
RCFTs, the main hero of this paper, and computing the half-indices, which give characters of
the RCFTs .

2.1.1 From T[SU(2)] theory
We define the S-fold superconformal field theory (SCFT) S; by

_ T[SU(2)]
SU(Z);“ag (D
:= (Gauging diagonal SU(2) of T[SU(2)] theory

with /' = 3 Chern-Simons term of level k).

Skl

The T[SU(2)] theory is a 3D N = 4 SQED with two hypermultiplets [10]. The theory has
manifest U(1) x SU(2) flavor symmetry which is enhanced to SU(2) x SU(2) in the infra-red
(IR). By gauging the diagonal SU(2) with non-zero Chern-Simons level k, we have the S-fold
theory. The gauging breaks the N' =4 SUSY to N = 3 but the N/ = 4 SUSY is restored in the
IR and the theory flows to an non-trivial N' = 4 SCFT (resp. direct product of ' = 4 SCFTs) in
the IR when |k| > 4 (resp. |k| = 3). Both Coulomb and Higgs branches of the T[SU(2)] theory
are lifted during the gauging and the S-fold SCFT has trivial Higgs and Coulomb branches and
such a N/ = 4 theory is called 3D N = 4 rank-zero theory [6]. Refer to [11-17] for recent
studies on the theory.

2.1.2 Dual Abelian description

The S-fold SCFT S, can be obtained from a twisted compactification of 6D (2,0) theory of A;
type on a 3-manifold, once-punctured torus bundle with a monodromy element
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¢ = ST* € SL(2,7) [18]. Using the 3D-3D correspondence, we propose following dual de-
scription for the S-fold SCFT [19, 20],

{SD N =2 U(1)% gauge theory coupled to two chirals &,_; 5, k=3, @)
k =

(U(1)1r<:k_1 coupled to r chirals ®,_; _, with Wy, = ST o ) , k=4.

..... m=1 m

See Appendix A for a detailed derivation. Here &, is a chiral multiplet whose charge under
the b-th U(1) gauge symmetry is 6,,Q, with

Qq = { B 3)

The mixed Chern-Simons level K for the N'= 2 U(1)" gauge theory is given by"

20k—=2) 0 2 4 6 2(k —3)
0 2 2 2 2 2
2 2 4 4 4 4
K=| 4 2 4 6 6 6 @)
6 2 4 6 8 8
\2c_3) 2 4 6 & 2k—2))

Op’s in the superpotential W, are gauge-invariant 1/2 BPS monopole operators (more pre-
cisely, chiral primary multiplets containing the monopole operators):

O — {‘/(_1,—2,2) > k = 4’
=1 —
; ‘/(_1,_1,01(_5,—1,2) P k>5 ,

Om=2 =V(0,2,-1,0, )15
Om=3 =V(0,-1,2,-1,0,_5) » 5

On=g = ‘/(0,0,—1,2,—1,0k—6) ’

Om:r—l = ‘/(0,0:0:“"_1’2’_1) )
n

—~—
Here 0, =0,0,...,0 and V;,—(y,, . m,) denotes the 1/2 BPS bare monopole operator with flux
m. The charge g, under the a-th U(1) gauge symmetry of the monopole operator is

r 2

1 Q>
qa(vm)ZZ(Kab_§5abQ§)mb_7lma|: (6)

b=1

and one can confirm the gauge invariance of the superpotential W,,. The 2nd monopole
operator O,,—, is also 1/2 BPS since it is purely electric or magnetic for each U(1) factor in
the gauge group.

The dual description has only manifest N' = 2 supersymmetry which is expected to be
enhanced to NV = 4 in the IR. For k > 4, the superpotential deformation breaks the U(1)"
topological symmetries (of U(1)" gauge symmetry) to U(1), symmetry whose charge A is

A=(r—1)M;+ My +2M3+3My+...+(r—1)M,. )

!Here we use "U(1)_,, quantization” of the chiral multiplet, i.e. we turn on background CS level —1/2 for the
U(1) symmetry of ®. In the usual convention, the (UV effective) mixed CS level is K, — %5a Q2.

4
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Here M, is the charge of U(1) topological symmetry for a-th U(1) gauge symmetry. The theory
also has U(1)g R-symmetry which can be mixed with the U(1), flavor symmetry. Let the R-
charge at the general mixing be

R,=R,_g+ VA, (8)

with a mixing parameter v € R. We choose a reference R-charge R,_ to be the superconformal
R-charge of the IR SCFT. Under the SUSY enhancement, the U(1)z x U(1), is expected to be
enhanced to SO(4)g ~ SU(2). x SU(2)y R-symmetry with the following embedding

R, =S +I)+ v (S —JH). 9
Here Jg /M denotes the Cartan generator of SU(2)¢,y normalized as J; € Z/2.

SUSY partition functions The squashed 3-sphere partition function [21,22] of the S in (2)
is (following the conventions in [23])

d'z
Zgs(m,v) = ~7w(Z,m,v), where Z=(Z,Z5,...,Z,), and
b (2mh)=

Z'KZA+2W ((r—1)Zy+ Y1 aZqpq )\ 2
In(Z,m, v) = exp ( o B [ [vn@iz., (O
a=1

h
with W=m+(in+ 5)(1}—1).

Here i = 2mib? with the squashing parameter b. m is a rescaled real mass parameter,
b x (real mass), of the U(1), symmetry and v is the R-symmetry mixing parameter in (9).2
Using the following asymptotic expansion of the quantum dilogarithm function vz [25],

logyx(Z) l %Liz(e_z) - % log(1 — e_Z) +0(h), an

the integrand can be expanded perturbatively in # as follows

o 1
logZ(Z, m, v) _0 EWO(Z’ m, v)+W;(Z,m, v)+ O(h), where

’ r—1
W, = ZLiz(e_QaZa) + %ZTKZ +(m+in(v—1)) ((r —-1)Z; + Zazaﬂ) s (12)

a=1 a=1
1 r 1 r—1
Wi=—3 glog(l —e Wla) S0=1 ((r -1z, +;aza+l) :

Using the first two coefficients W, and W}, the supersymmetric partition function Z, ) on

M, ,, degree p bundle over genus g Riemann surface %,, with p € 2Z can be computed in

2The overall additive constant of v is fixed by requiring that the round 3-sphere partition function
|ngzl(m =0, v)| is minimized at v = 0 [24]. Actually, the |ngzl(m =0, v)| is invariant under a sign change of v
which is related to the self-mirror property of the T[SU(2)] and is related to the Z, Weyl-symmetry, M, « —M,,
of the SL(2,C) Chern-Simons theory in (A.4) through a 3D-3D relation (A.5).
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the following way [23, 26,27]

Z(gp)(m, v) = Z (Ho(m, »))¥ " (Fo(m,v))P,  where

z2€Sy p(m,v)
Bethe-vacua : Sgp(m,v) = {z : exp(07, Wodlz—togz =1, b=1,..., r}

=2 a3)

Handle gluing operator : H,(m, v) = g%t(aza 9z, Wo) e M |z—>10gza ,

WO - Za ZaaZaWO - mamWO)

Fibering operator : F,(m, v) = exp (— 2
i

Z—logz®

For p € 27, there are two distinct supersymmetric backgrounds, vz = 0 or vz = % in [27],
depending on the spin-strucuture along the fiber [S'] direction. The above twisted partition
function corresponds to the spin-structure with anti-periodic boundary condition (v = %).
Especially when p = 0, the partition function can be identified with the twisted index Z, on a
Riemann surface X, [28-31],

Ig(n: V) = TrH(Zg;v)(_l)RvnA = Z(g,p:O) (m = IOg mn, V) . (14)

We use the U(1)g, R-symmetry for the topological twisting on %,. Thus, the twisted index
is well-defined only when the mixing parameter v satisfies the following Dirac quantization
condition

R,(2—2g)eZ. (15)

The twisted partition functions Z, .y for Sy theory were computed in [6,7] using the field
theory description given in (1). One can check that they agree with the twisted partition
functions given in (12) and (13). The non-trivial matches of various SUSY partition functions
support the proposed IR duality between (1) and (2).

2.2 Generalized Haagerup TQFTs

In [6], they study the non-unitary semi-simple topological field theories (TQFTs), TFT_[7 ]
and TFT_[7T], associated to a 3D N = 4 rank-0 SCFT 7. The two TQFTs are believed to
be identical with the topologically twisted theories using SU(2)y and SU(2); R-symmetry
respectively. In 3D, N = 4 (8 supercharges) is the minimal number of SUSY for a topological
twisting. Being of rank-0 is important for the topologically twisted theory to be a genuine
semi-simple TQFT which supports a rational chiral algebra on the boundary. For N' = 4 SCFTs
of non-zero rank, the topologically twisted theories are non-semisimple and the corresponding
2D chiral algebras are generically logarithmic instead of rational [32,33]. Unitarity is broken
in the topological twisting procedure. From all these considerations, topologically twisted
N = 4 rank-0 SCFTs seem to provide a natural physical realization of non-unitary semi-simple
TQFTs.

There have been several previous works realizing non-unitary TQFTs in physical (2+1)D
systems. In [34], they obtained non-unitary TQFTs from M5 branes wrapped on some non-
hyperbolic 3-manifolds. Later it is found that all such systems flow to 3D rank-zero SCFTs in the
IR [35]. In [36], they consider 3D N = 2 gauge theories whose half-indices give the characters
of non-unitary minimal models. The gauge theories also turned out to experience non-trivial
SUSY enhancement and flow to 3D rank-0 SCFTs in the IR. So these realizations are actually
equivalent to ours. In [37], they realize non-unitary TQFTs from a non-trivial S L_reduction
of 4D Argyres-Douglas theories. There is also an attempt to understand the bulk dual of a
non-unitary minimal model M (3, 5) using a candidate bulk ground state wave function called

6
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Table 1: Basic dictionaries of (rank-0 SCFT)/(non-unitary TQFTs) correspondence.
See more dictionaries in [6].

TFT.[T] Rank-0 SCFT T
a : simple object | Bethe-vacuum z* € Sgp(m =0, v =+£1)
S2, of TFT. H'(m=0,v=+1)
7 of TFT, %

Gaffnian state [38]. We need further study to check whether these realizations are eventually
equivalent to ours or not.
In the (rank-0 SCFT)/(non-unitary TQFTs) correspondence, it is claimed that®

(Zgpn(m=0,v=+1)of T)=Z[TFT.[T]on M, ,]. (16)

According to the claim, taking the degenerate limit, (m, v) — (0,+1) or (m, v) — (0,—1), on
the BPS partition functions is somehow equivalent to the procedure of topological twisting,
using SU(2) or SU(2)y R-symmetry. The equivalence is manifest for the SUSY backgrounds
with p = 0 but is not quite obvious for general Z, ). Notice that the Dirac quantization
condition (15) is automatically met in the degenerate limits since

R,.y=2J{ €ZandR,. =2/ €Z. (17)

Combining the localization result for Z, ,) in (13) with the following general formula for
(2+1)D bosonic TQFT

Z[TQFTon My, ]= D0 (Sea)® *(Tea),

a : simple objects

we have the basic dictionaries in Table 1. In the table, (S,s, T,p) are modular matrices and
the simple object @ = 0 corresponds to the trivial one. Among Bethe-vacua in S, the one
2% corresponding to the trivial simple object is chosen to satisfy the following consistency

condition

| D H | =D 82, Taa] = (STS)ool = (TTIST g0l = 100l = [Heol V2. (18)
a a

Here we use the SL(2,Z) relations S2 = (ST)® = C where the charge conjugation C is an
identity matrix in our case. Using the relations in the above table and (18), one can obtain
partial information on the modular data of the non-unitary TQFTs, TFT.. Imposing general
consistency conditions on the top of the partial information, we obtain following consistent

3The two partition functions have subtle overall phase factors depending on 3-manifold framing, background
Chern-Simons level of U(1); symmetry and etc. We will not keep track of all these subtle choices and the equality
should be understood as an equality up to an overall phase factor.
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modular data (k > 3) [7]*
(Sap of TFT_[S])

[ (—1)kao o as (—1)ka3 —a; a4 _al"'(_l)k_3a1 a; —ap dg--- (_1)k+2a2\
a

) 0 as ds a a; a; --- a; —dp —Adg—dy - —dy
as as aQp Qo a a; a; --- a; ap g as --- as
(—Dkasa ao (—1*ay |—a;a; —ay -+ (1) 3ay| —ay ay —ay -+ (1) la
343 0 0 14— 1 20y —0dy 2
—a a |a; —a
a a |ap a
—a a; |a —a 1jm
1 1 (41 1 2a1 COSkT2 0
= : I : 1<i,j<k-3 5

(—D*3a; a; |a; (1) 3q;

as —dz|dy  —ay
—ap; —ay|dy as B
— — ijm
a a, |a a un
2 2|a2 2 0 2a,cos 175
: I : 1<i,j<k+1
K(—l)kﬂaz —daz|dz (—1)k+laz j

(Typ of TFT_[Si]) = 645 €xp (2ni(ha — 26—4)) , with

2 2
fl:{k—i_z) > ,k+2: A ,B— }_k—i__z(mOdl)a and
4 4 " 4(k—2) A=1,...,k—3 4(k +2) B=1,...k+1 4
¢=—(6k+11) (mod 24). (19)

They are square matrices of dimension (2k + 2). Here we introduce

1 1 1 1 1 1
V8(k—2) " Vak+2) V2k=2) V2(k+2) V/8k—2) \/8(k+2)) '

(ao, a, ay, 03) = (

Bethe-vacuum to loop operator map Generally, the Hilbert-space of a bosonic 3D TQFT on
a two-torus T2 can be given as follows

H(T?)=Span{|a) : «a=0,1,...,n—1}, with |a)=f?0’1)|0). (21)

For our case, i.e. when the TQFT is TFT_[S, ], the state |a) can be identified with the Bethe-
vacuum z* € Sgp(m = 0, v = —1) in (13). The trivial vacuum |a = 0) is identified with the
Bethe-vacuum z*~ satisfying the relation in (18). Here ‘é?p,q) is the quantum loop operator of
anyon type a supported on a (p, q)-cycle on the two-torus. From the analysis, we expect that
there is a natural one-to-one map between the Bethe-vacua and the types of loop operators. We
claim that the first four simple objects (or Bethe-vacua) in TFT_[S; ] correspond to following
loop operators

: Trivial loop operator 1,

: Topological defect £%2 associated to the Z, 1-form symmetry,

: SUSY Wilson loop £V with gauge charge Qy =(r—1,1,2,...,r—1),
: L5 LV

(22)

QR R K R
I
w N = O

“The modular data presented here is slightly different from the one in [7]. We exchanged a =0 «» a =1 and
permutated other a’s from the previous one. Generally, an exchange of the vacuum a = 0 and a # 0 could give
an inconsistent modular data with some negative fusion coefficients. In our case, however, both are consistent
modular data. The two consistent choices of modular data are related to the ambiguity of choosing the z*=° from
the relation in (18) due to the fact that |H,_,| = |H,_;|. At the level of RCFT characters, two choices are simply
related to each other by exchanging y,—, <= x,-1 and permutating other y,’s accordingly.

8
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The map for a = 0 is obvious. The modular data has Z, 1-form symmetry generated by an
anyon a = 1. The symmetry is originated from the Z, center subgroup of SU(2) gauge theory
in (1) or from the Z, = {£1} subgroup of the first U(1) gauge group in the dual Abelian theory
(2). The 1-form symmetry defines a codimension 2 topological defect, which is the L%, To

understand the map for a = 2, consider the action of loop operators LAf‘l 0) 01 the basis

N Sﬁa
£P la) = —a). (23)
(1,0) Sou

w

The supersymmetric Wilson loop LAZ(LO)

vacua as follows [31]

with gauge charge Q =(Q;,...,Q,) acts on the Bethe-

/:’g’o)la) = (l_[ zgﬂ |Z_>Za) la) . 24)

a=1

For the case when Q =Q,, = (r—1,1,2,...,r — 1), one can check that

r S
[ Te%lom | = (ﬂ with § = 2) . (25)
a=1 SOa

From (23), (24) and (25), we have the map for a = 2. Finally, the map for a = 3 follows from
the fusion rule £*~! %« £%72 = £ which can be read off from the S-matrix using Verlinde’s
formula. We also tried to find the map for other Bethe-vacua but were not successful in several
attempts.

Gauging the Z, 1-form symmetry The Z, 1-form symmetry has non-trivial 't Hooft anomaly
for odd k. It follows from the fact that the topological spin h, of the symmetry generating
anyon a = 1 is :I:}‘ (mod 1) instead of 0 or % [39]. The 1-form symmetry is non-anomalous
for k € 2Z. In the Abelian UV description in (2), gauging the 1-form symmetry is equivalent
to rescaling the first U(1) gauge field A to 3. Then, the mixed CS level becomes Qi‘gb which
is not properly quantized for odd k. It means that there is an obstruction of the gauging, i.e.
a’t Hooft anomaly, for odd k. The ‘t Hooft anomay in the UV description (1) using T[SU(2)]
theory was found in [40]. Using the Z; 1-form symmetry, we define the Z, gauged S-fold

theory S as

Sk

_ Zy > ke2Z,

S =1 sS04 26

k R ke4z+1. (26)
Zy®

Here /Z, denotes gauging the Z, 1-form symmetry. Here A’ZEZ is a topological field theory with

anomalous Z, 1-form symmetry generated by an anyon with topological spin ﬂ:%. Then, the
diagonal Z, 1-form symmetry is non-anomalous and thus can be gauged. The AjZZZ is expected
to have two simple objects, a = 0 and a = 1, related to each other by the Z, 1-form symmetry
and has following S-matrix

(S-matrix of AZ) = % G _11) . 27

Let TFT_[§k] be the non-unitary TQFT associated to the gk:

TET_[S¢] ke2z
~ Zz > >
TEFT_[S; ] := < TFT_[S;]®AE 28
= % ,  ke4z*1. =
2
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The gauged Z, 1-form symmetry is fermionic for k € 4Z and bosonic otherwise. Thus, the
topological theory TFT_[§k] after the gauging is fermionic (i.e. spin TQFT) when k € 4Z and
bosonic (i.e. non-spin TQFT) otherwise. The modular data, S and T, for the bosonic TQFT
TFT_[S,] is given as follows [7]

For ke€4Zs, %1,

[ ap ds a I —a - T4y \
a3 ao al oo al az DY a2
a; 4
aii
5 2a, cos 755 0
S = \/E 1<i,j<k;3 5
a a T
. . 4ij
S 0 2a, cos 75
k4l
\ 1<i,j<&t )
—ap dp
T = e 5 di 2mido,0, 2 B
=e 24 diag|exp| 27mi —_— —_—
o (k—2) A=1,---,k%3’ (k+2) B 1’...,’%1 ’

c=(1£1)(mod 8).
They are square matrices of dimension (k + 1).

For k € 4221 + 2,

( 2a0 2a3 2a1 s 2a1 a, a, — 2Cl2 e — 2(12 —ay —ay \
2a3 2a0 2a1 e 2a1 a; a, 2a2 v 2a2 as; ds
2(11 2a1
: i |4a;cos<- 2a;J,_1 2a1J,_4 0 0
24, 244 1<i,j<n—1
_ a; a; ZalJZ_l b1,+ bl,— O Z:FZ _21‘6
5= 20,1} by b LI P
a1 Q1dnq 1,- 1,+ 25 203
—2a2 2a2
- 0 0 4a, cos 2= 2a,J, 2a,7,
_2a, 2a, 1<i,j<n
il il
—dy dy 0 2@ _Zﬁ 2612,]}; b2’+ bz’_
— i i"
\ ay Aoy _Zﬁ EWe 2a2,]In bz’_ b2’+ }
~ i A? ne2 B2 n+1%2
T= 6_22_4diag|:exp (2m' {0, 0, > . - , . (30)
(4n) A=1,,n—1 4 4(n+1) B=1,,n 4
They are square matrices of dimension (kzﬁ). Here we define
k—2
n:T) J,{:(_l)la_l)“.a(_l)n))
by =(-1)"a; £ , and b,y =(—1)""ta,+-—=.
1, %3 2 2, 2%F75 /2

For k = 4m?> +4m+3 (m € Zs), the modular data, (S,T), is related to the generalized
Haagerup-Izumi modular data D“=2Hg,,,,; [41] by a Hecke (or Galois conjugate) transfor-
mation. The specific form of Galois conjugation [42,43] is given by

(S of D*=2Hg,,,,; in [41]) = TPS 1 TPSTPS?,

_ ~5 (32)
(T of D*=?Hg,,,,; in [41]) = T?,
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up to permutations, for p =2 and p = sz_S When k = 4m? + 4m + 3, the conductor N of the
modular matrices, i.e. the minimal positive integer such that TV =1, is N = (k + 2)(k — 2)
and p is a multiplcative inverse of p in Z/NZ. Especially when m = 1, the D= Hg,, ., is
the modular data of original Haagerup TQFT with 12 simple objects. The Haggerup TQFT has
drawn much attentions since it serve as an example of 3D extoic unitary TQFTs, which can not
be realized as a Chern-Simons theory or its discrete gauging. The modular data D“Hgs,,, 1
provides a two-parameter generalization of the Haagerup TQFT’s modular data, parametrized
by m > 0 and w € Z/((2m + 1)Z). Our TFT_[S;] and TFT_[§k] can be regarded as (non-
unitary) generalized Haagerup TQFTs. The modular data of TFT_[S, ] for k = 8 is equivalent
to one of rank 10 fermionic modular data found in [44].

3 Generalized non-unitary Haagerup RCFTs and their characters

Let us consider the Haagerup TQFT on a solid torus with a consistent holomorphic boundary
condition B. The solid torus is equivalently D, x S* where D, is a disk and 8D, = S'. A TQFT
equipped with MTC has various loop operators associated with the anyons. We insert a loop
operator £* running around the circle S* at the center of D,. Upon the boundary condition, let
us denote by {y,(7)} the expectation value of the loop operators. Here y,(7) is the partition
function on D, x S with no loop operator insertion, and 7 is the complex modulus of the
boundary two-torus T2 =S! x S!. Given the modular data S and T (19) in the bulk, one can
argue that {y,(7)} should obey the transformation rules below,

Xa(T+1)= Z Tapxp(7),
3

(33)
2a(=1/7) = Sup (7).
B

In other words, {y,(7)}, which is referred to as the partition vectors, form a vector-valued
modular form under the SL(2,7Z).

On the boundary of TQFT, there exists a chiral current that defines a certain chiral algebra.
Each partition vector y,(7) can be often understood as the character of the chiral algebra.
More precisely, the Hilbert space of the TQFT on D, becomes the vacuum representation of
the chiral algebra. When a loop operator £ is placed at the center of D,, the quantization
then leads to the equivalence between the Hilbert space and a highest weight representation
of the chiral algebra other than the vacuum. As a remark, this chirality is reflected in the the
holomorphic dependence of {y,(7)} on the complex modulus 7.

One expects that a chiral algebra living on the boundary includes the Virasoro algebra,
and {y,(7)} can be identified as the conformal characters of a putative rational CFT (RCFT).
Indeed, the Haagerup TQFT is likely to have the Virasoro algebra on the boundary. This is
because the holomorphic twist of the 3D supersymmetric theories gives a stress tensor on
the boundary when the bulk theory is topological [45]. It is therefore interesting to see if
the candidate characters {y,(7)} obtained from the Haagerup TQFT can be regarded as the
conformal characters of 2D RCFTs. We will refer them as to the Haagerup RCFTs, denoted by
Rk.

Obviously, the consistent modular transformation of such candidate conformal characters
{x«(7)} does not guarantee that the putative RCFT exists. What else should {y,(7)} satisfy
to convince that the Haagerup RCFTs exist?
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In the limit T — i©c0, each candidate conformal character y,(7) can be expanded in powers

of ¢ = e*™7 as

2@ =q""5 D a(n)q", (34)

n
where the leading exponent can be identified as the central charge of the putative RCFT and
the conformal weight h, of the chiral primary. One can also argue that the conformal weight
of the chiral primary equals to the statistical spin of the loop operator in the bulk modulo
integer. The salient feature of conformal characters of a consistent rational CFT is that each
Fourier coefficient a,(n) in (34) is non-negative integer-valued. This is because a,(n) counts
the number of states of given conformal weight.

The integrality of Fourier coefficients a,(n) requires that the set of candidate characters
X«(q) is a representation of SL(2,Zy) for a certain N, which is known as the integrality theo-
rem [46,47] or the congruence property in the modular tensor category [42]. The integrality
theorem plays a key role in classifying the space of bosonic RCFTs [48], and it has been further
generalized to the fermionic theories recently [49, 50]. As expected, one can show that the
conformal weights together with modular matrices (19) are indeed consistent to a reducible
representation of SL(2,Zy). However, the non-negative coefficients are not guaranteed yet.

The present work aims to explicitly construct the conformal characters that transform as
a vector-valued modular form (vvmf) with the Haagerup modular data (19) and have non-
negative integer Fourier coefficients. Given such conformal characters, we strongly suspect
that the Haagerup RCFTs R, actually exist. Their existence also implies that the Haagreup
TQFTs have consistent modular tensor categories beyond the mere modular data. In fact, one
can view the full 2D Haagerup RCFTs R as the Haagerup TQFTs TFT_[S; ] on an interval.

3.1 UV Abelian gauge theory and the half-index

We can utilize the aforementioned UV Abelian gauge theory (2) leading to the Haagerup TQFT
to obtain the explicit g-expansion of a few candidate conformal characters.

To do so, we first need to translate the consistent holomorphic boundary condition B of the
TQFT to a supersymmetric boundary condition in the UV Abelian gauge theory S on D, x S!.
We propose that® the boundary condition B in the IR can be described by a simple SUSY
boundary condition in S, which sets any chiral multiplet {¢, v+, F} to a deformed Dirichlet
boundary condition (D),

¢lo=c, Yila =0, (35)
with a non-zero constant c, and any vector multiplet {A,,, A1, 0, D} to a Dirichlet boundary
condition (D),

AytAl,=0, D|;=0, A_|,=0. (36)

Given the above SUSY boundary condition (35) and (36), denoted by B’ = (D,, D) collectively,
the half-index can be defined as [51-54]

Ry | .
IB'(Q: UB V) = TrH [(‘DRVCITJUBWA] > (37)

where # is the Hilbert space of a given SCFT on the disk, and the circle S* can be understood
as the temporal circle. Specifically, the half-index of the SCFT S (2) is given by [54]

1 1nl K. 1,1 70— 1)m1+2(a Dmg
Zs(@n )= 5= 207" Kl (—g2)" 1] ]_[(q “umetlg) o, (38)
O m

SVerifying whether the UV boundary condition flows to an IR SCFT boundary condition compatible with the
topological twisting is a highly non-trivial task. Consistent RCFT characters are obtained, as we will see below,
from the half-indices associated with the boundary condition B’ = (D,, D). This may imply that B’ is compatible
with the topological twisting.

12
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where the magnetic fluxes m = (m;, m,,...,m,) are quantized, i.e., m, € Z for all a. The K
matrix and the gauge charges Q, are given by (4) and (3). We remark that the R-charges of
chiral multiplets should be zero. Otherwise, the R-charge would not be compatible with (35).
The Pochhammer symbols are defined by

k—1 k
=] [a—q"0),  @c=(@r=] Ja-qm. (39)
n=0 n=1

One can further simplify the half-index (38) into

q%mT~K~m —(r—l)ml—zr:(a—l)ma
a=1 .

Tg(gn M= ). [(=q>) 0] (40)

= (q)Zml (q)m2 cee (q)mr

Some of supersymmetric loop operators £* (22) in the SCFT S; flow to the loop operators

in the Haagerup TQFT TFT_[S,]. The insertion of £%(S') placed at the center of D, corre-

sponds to adding to Sy a certain static source at the center. In the presence of £*(S!), the
half-index thus becomes

Ry | -

T8(g,m, v) = Tryga [ (-1)0rq 7 o], (41)

where H* denotes the Hilbert space of S, on D, with the source. Using the SUSY localization
technique, one can compute the half-indices (41) exactly:

q%mT-K-m —(r—l)ml—zr:(a—l)ma
a=1

[(=¢?)'n] :

Iy '(g,m, ) =

b mZZ:,” (q)Zml(q)m2 cee (q)mr
NN 2
zgm em —(r—1)m;— Y. (a—1)m,

: [q(—q%)v‘ln] = ,  (42)

Ial:2 o, —
)= 2 o

q%mT-KAm

]—(r—l)ml— HCEILY

Ia/=3 o, —
E@n= 2, o o

Here Z and Z’ are defined as

[a(—q2)"'n

r r—1
2=(2s) ., 2'=(Zs0+ %) ®(Z) - (43)
The half-integer values of the U(1) flux m; can be explained by the fact that the static sources
corresponding to £~ 13(S1) carry the half-integral monopole charge. Note also that, since the
chiral multiplet ®; has the U(1) charge Q; = 2, the half-integral flux m; also obeys the Dirac
quantization condition properly.
We propose that the above half-indices (38) and (42) in the degenerate limit ¥ — —1 and
1n — +1 agree with the first four characters y,(q), x1(q), x2(q), and y3(q) of the non-unitary
Haagerup RCFT

.
T Km+(r—1)my + Y (a—1)m,

oA, q a=1
7o(@) =4 n; (@Dom, @Dy - (D,

.
AT Km+(r—1)my + Y (a—l)ma—@

_ A] q a=1
n(@=a mZZ Do, Dy - @Dy, (44)

1.7
qim -K-m
(@) =g* ,
2209)=q n;(q)zml(q)mz...(q)mr

1. T . (r=1)
XS(Q):qA3 Z q2™ K-m——
mez’ (q)Zml (q)m2 e (q)mr ’
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up to the prefactors g®. The exponents A, = —c/24 and A, = h, — /24, and they account
for the ground state energies in the corresponding Hilbert spaces H and H*. From the bulk
computation of modular data in (19), we can determine them only modulo 1 and they are
given by

6k+11 1 1 6k+11
24 7 247 24 24

The connection between the half-indices of three-dimensional A/ > 2 gauge theories and
the conformal characters of two-dimensional CFTs has been explored in numerous recent stud-
ies. For instance, it was shown in [54] that the conformal characters of the G, WZW models
with k > 0 agrees with the half-indices of 3D A = 2 pure G, Chern-Simons theories where
h denotes the dual Coxeter number of G. In fact, the 3D SUSY theories flow to the pure
bosonic G; Chern-Simons theories in the infrared limit.The relation between the characters of
2D logarithmic CFTs and the half-indices of 3D ' = 2 theories has been studied in [55-57].
More recently, Virasoro characters of the non-unitary minimal models are obtained from the
half-indices of 3D A/ = 4 rank-0 SCFTs [36]. Our proposal is parallel to these ideas.

Armed with the above four characters (44), we obtain in the next Section the explicit g-
expansion of all conformal characters {y,(q)} (a =0,1,..,2k + 1) of the Haagerup RCFTs R
with 3 < k < 11 using two well-known methods.

Moreover, given such characters, one can express the conformal characters ¥, (q) of the Z,
orbifold RCFT R, the boundary RCFT for the Z, gauged TQFT TFT_[S,] (28), as follows:

(Ap, A1, A5, A3) = ( ) (mod 1). (45)

Fork€4Z (a=2,.,k/4and =(k+4)/4,..,k/2)

.
Lol Km+(r—1)m + Y (a—=1)m,

a=1

>

Sy _ Ao d
Xo(@) = xo(@ + x1(9) =¢ me;Z’ (@Dam, (@D, - - (@Drm,

LT Km
71(0) = 22(@) + 25(@) = g™ 9’ , (46)
71(@) = x2(0) + x3(q) =4 me;g/ @ DD
(@) = 220+1(D) + Xics3-24(0) 5
Xp(@) = 22546 (@) + X5k 5 5p(a)-
Forke€4Z+2 (a=2,.,(k—2)/4and = (k+10)/4,...(k+2)/2)
%mT~K-m+(r—1)m1+ Zr: (a—1)m,
(% = =+ = gQo d . 5
Zo(@) = 20(Q) + 21(0) =4 mEZZGBZ/ .
1T Km
~ q2
71(@) = x2(0) + x3(q) = ¢ ,
mEZZGBZ' (Q)Zml (q)m2 e (q)mr (47)

Xa(@) = x2a+1(@) + Xi+3-24(2)
X1 (@ =xe3(@) = x5 000,

760 = Xk 10p—3(D) + Xk 5 _55(a)
Xx2(0) = Xk 5(q) = a1 (q) -

Note that the characters j, and j¥; above are expressed as a fermionic sum, also known as
Nahm sums [58-63] after rescaling m; to %ml. It provide a new infinite series of modular
forms in the Nahm sum representation.
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Forke€e4Z+1 (a=2,.,(k—1)/2and g =(k+1)/2,..,k)

70(@) = 20(@) 25 (@ + 11( @25 (@),

710 = 225 (@ + x3(@) 2y (@),

7a(@) = Xikra—24(D 25 (D) + 120 @7 (@),
28(@) = X3k+2—2ﬁ(Q)X(:)t(Q) + Xzﬁ(Q)XiE(Q)-

Here xgtl(q) are the conformal characters of a RCFT corresponding to the bulk theory A;z
in (26).

(48)

3.2 Modular linear differential equation

A simple and practical approach to construct a vector-valued modular form is the method of
holomorphic modular boostrap, which is also known as the modular linear differential equa-
tion (MLDE). A general form of d-th order MLDE can be expressed as

d—1
[pd +>° ¢S(T)Ds:|f(’c') =0, (49)

s=0
where ¢,(7) are weakly holomorphic modular forms of weight 2(d —s). Here the s-th order
derivative D° is defined as

DS - D25_2D25_4 e Do N (50)
where D, is the Serre derivative
1 d t
D,=————E , 51
= omidr 12227 (1)

that maps a modular form of weight t to a modular form of weight t + 2. E,(7) denotes the
Eisenstein series of weight two. Since (49) is invariant under the modular transformation, one
can argue that its d independent solutions have to transform as a d-dimensional vector-valued
modular function under SL(2,7Z).

There are two useful parameters that provides a organizing principle to explore the space
of solutions to MDLEs. One of them is the number of independent solutions d, and the other is
the so-called Wronskian index [ that constrains the number of allowed singularities of the the
coefficients ¢, (7) in the fundamental domain. For a given [, one can determine ¢ (7) with
finitely many unknown parameters, which makes the MLDE method highly practical. Note
that one can also desrcribe the Wronskian index [ as

d—1
d(d—1)
[=———=—6 A 52
> ZO 0 (52)

where A; are the leading exponents of the solutions in the limit ¢ — 0. For more details,
please see [64] and the reference therein.

The question is then how to pin down the MLDEs whose solutions can be identified as the
conformal characters of the Haagerup RCFTs. To this end, we demand that the above four
conformal characters (44) are solutions to the MLDE. Since the Fourier coefficients of such
characters are all specified, the finitely many parameters fixing the coefficients ¢,(7) become
rigid unless the value of the Wronskian index [ changes.

However the MLDE approach to our problem has a small drawback. There is no physi-
cal input to fix the value of the Wronskian index [ a priori. The bulk description, either the
Haagerup TQFTs or their SCFTs, only provides the values of A; modulo integer. We thus have
to examine the space of possible MLDEs by scanning over different values of [ until the solu-
tions give rise to a vvmf that only admits non-negative integer Fourier coefficients. One can
then regard this vvmf as the conformal characters associated with the bulk TQFTs.
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Example To demonstrate this procedure, let us construct the conformal characters of the
orbifold Haagerup RCFT R, with k = 6.

Since TFT_ [§k 6] is a non-spin TQFT, the putative RCFT of our interest has to be bosonic.
It has seven conformal characters ¥,(7) (47), but only five are independent. This is because
the charge conjugation matrix C = 52 where S is the modular S-matrix (30)

( V24l v2-1 Y2 V2 11 _1
Z Z 4 4 2 7 I \
V221 Y241 1 11 1 1
4 4 242 2v2 2 4 4
1 1 __¥ii __igi 0o = ___i
2¢2 242 2v2 2v2 22 22
S = 4 1 1 1 gt _i_ (53)
- 2v2 2«{5 2V2 242 2¢2 242 g
1 1 0 0 0 1 1
2 2 2 2
1 1 i i 1 1-iv2  14iv2
Z Z 272 272 2 4 4
\ 1 1 i i _ 1 1+iv2 1-iv2
Z Z W2 242 2 4 Z

exchanges y, <= %3 and )5 <> X, and thus those characters become degenerate,
X2(7) = x3(7) and ¥5(7) = ¥e(7).
From (47), one can also read off the explicit g-expansion of the first two characters

- %mT.Klm+4m1+m2+2m3+3m4+4m5
Zo =g 1
wsaz @2m (D, (Dmy (Dm, (D (54)
=q50(1 +q2+2q3+3q4+4q5+7q6+8q7+14q8+18q9+...) ,
and
LT Km
~ X q2™
=9
ez (@am, (@D, (Dmy (D, (D (55)

= g% (1429 +4q> + 6% + 11¢* + 16¢° + 25¢° + 36q” + 54¢° + 76¢° +...)

where the K matrix (4) is

8 0 2 4 6
02 2 2 2
K=| 2 2 4 4 4 (56)
4 2 4 6 6
6 2 4 6 8

Here the exponents are Aq = A, and A; = A,. Note that the descendants of each character
only carry integral conformal weights relative to that of the primary. This is consistent with
the fact that the orbifold with k = 6 is bosonic.

To construct the rests of the conformal characters, we have to determine an MLDE. Since
there are five independent conformal characters, the order of the MLDE is fixed by five, d = 5.
Let us start the exploration with the lowest value of the Wronskian index [ = 0, and see if the

solutions have non-negative integer Fourier coefficients. The most general MLDE with d =5
and [ = 0 can be described as

[DS + Uq E4(T)D? + uyEg(t)D? + M3E§(T)'D + ,u4E4(T)E6(T)]f(T) =0, (57)
where E4(7) and Eg(7) are the Eisenstein series of weight four and six. We then require that

either (54) or (55) is a solution to the MLDE (57), which fixes the parameters uniquely as

u 65 _ 965 1265
Mi="Ta4 M7 93040 M7 73317760 M4 T 3081312

(58)
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Having fixed the MLDE completely, we solve (57) using the Frobenius method to obtain the
candidate conformal characters in powers of q,

%o(q@) = qg_‘s* (1 +q?2+2¢3 +3¢* +4¢° +7¢° + 8q7 + 14¢® + 18¢° + ) ,
71(@) = q % (1+2q +4¢> +6¢% + 11¢* + 16¢° + 25¢° + 367 + 54¢° +76¢° +...) ,
72(q) = 7s(q) = ¢ (1+q+3¢*+4¢>+7¢* +10q° +17¢° +23¢” +35¢° +...) ,
14(q@) = qﬁ (1 +2q 43¢+ 6¢° +9¢* + 14¢° + 22¢°% + 32¢7 + 46¢° + .. ) ,
25(q) = 76(q) = qé_‘l* (1 +q+2q2+3¢%+6q*+8¢° +13¢° +18q” +27¢% + .. ) .
We can see that all exponents are rational-valued and agree with (30), and that Fourier co-

efficients are non-negative integer-valued. One can also show numerically that, under the
modular transformation 7 — —1/7,

6
To(=1/7)= > 8up7p(7), (59)
B=0

with the modular S-matrix S (53). In the numerical check, we choose the value of T near i
so that both q := €™ and § := e2>™(-1/7) are small. Thus, we can conclude that (??) are the
very conformal characters of the orbifold.

Several remarks are in order. Relying on our experiences with the lower values of k, we
propose that the candidate characters of the orbifold ﬁk for k € 4Z, + 2 have the leading
exponents as follows,

~ k—2 n> k—2 k—2 m* k+2 k+2 1
Aa: ) 0’ ) ) 5 ) 5 A (60)
4 k—2 16 16 k+2 16 16 24
~——
n=12,.,(k—6)/4 m=1,2,.,(k—2)/4

It implies that, as k increases, the values of d and [ grow rapidly, making the MLDE approach
less practical. In addition, the MLDE technique applied to the Haagerup RCFTs shares the
same challenges with their Z, orbifolds. Notice that the c.¢ := —24 x min,{A,} is always 1,
which is expected to be also true for the R;s.

To address this challeges, we shall employ an alternative method to construct a vvmf based
on a given modular data and four characters (44) in what follows.

3.3 Riemann-Hilbert method

It was shown in [8,65-67] that there exists a characteristic matrix Z(7) that describes the space
of vvmfs for a given modular data such as S and T matrices. More precisely, each column of
=Z(7) becomes a generator that transforms as a given d-dimensional representation of SL(2, Z).
Any such vvmf {£,(7)} can thus be expressed as

£a(7) =Eap(T)P5(i(7)), (61)
where Pg ( j (T)) are polynomials of the Klein j-function,

1728E3(7)

=4 2
E3(t)—EZ(7) (62)

j(7)

This approach is known as the theory of Bantay and Gannon [8], which is also referred to as
the Riemann-Hilbert method in the literature.
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The analytic construction of the matrix Z(7) needs two constant matrices, denoted by A
and y. We first briefly discuss the constraints on the pair of two matrices. A is a diagonal
matrix with

exp [27‘CiA] =T, (63)
and satisfies the relation below
7d 1 2 i
TrTA=——+-TrS+ ——Re|e s Tr(ST)|. 64
T 22 T 373 [e r( )] (64)

Here S and T are given d x d modular S- and T-matrices. We define two d x d matrices B, and
Bs,

31 1
By,=——A———(y+[Ay],
2 72 1728()( (A x]) s
41

At —— (r+[A 2D,

B3 = —
72 1728

to describe the conditions that the other constant matrix y should obey,

1 1 2
Bz(Bz—E):O, BB(B3_§)(BB_§):O' (66)

Given two constant matrices A and y, let a d x d matrix Z(7) be expanded in powers of q as
(o]

() =q" ) =lnlq", (67)
n=0

with Z[0] =1, and Z[1] = .

One can show that any vvmf transforming as a given representation of SL(2,Z) can be
generated by the columns of Z(7), when the other matrices Z[n] in (67) satisfy the recursion
relation below,

n—1
n=(n]+[A,2[n]] =D Elil{fuiA+ gui (1 +[A 2D}, (68)

i=0

where f; and g; are defined as

. A(D) N, o
—984 | ——= = 2q",
AR) N n
Eio(t) nzz(;gnq '
Here A(7) is the modular discriminant,
E3 _E2
A7) = M (70)

1728

For the sake of self-containedness, let us briefly sketch the key ideas of the Bantay-Gannon
method. When a given modular representation admits a diagonal T matrix, it was proven
that there always exists the bijective exponent A that must obey the trace formula (64). By
bijective exponent, we mean that any vvmf y,(7) for the given modular representation can be
expressed in powers of q as

Za(D)=q" > by(n)g", (71)

nez
n>—oo
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where the principal part b,(n) with n < 0 uniquely determines the rest of the coefficients
b,(n) with n > 0. Suppose that each column of Z(7) defined in (67) transforms as a vvmf for
the given modular matrices. One can then argue that

E4(T)Ee(T)
A(T)

DE(7) = E(DP(j(1), (72)
where the polynomial matrix ‘@ is

P(j(r) =((r)—984)A+ x +[A, x1. (73)

Notice that the both sides of (72) are vvmfs that share the same principal part. The bijective
exponent A guarantees that they should be equal. The recursion relation (68) follows directly
from (72). Since each column of Z(t) has a simple principal part, one can easily read off the
polynomials of (61) such that the principal part of £ ,(7) matches that of a character y,(7) of
our interest. Again, the bijective A implies that y,(7) has to agree with & (7).

For a given modular data, it is rather non-trivial to determine the two constant matrices
A and y solving (66) in general. As we will see shortly, the known explicit g-expansions of
four characters (44) plays a crucial role in further constraining the matrix y, and make the
Riemann-Hilbert method higly effective. It eventually leads us to determine the characteristic
matrix Z(7) completely. Once =(7) is obtained, it is straightforward to construct the conformal
characters of the Haagerup RCFTs.

The Haagerup RCFT R;—4 To illustrate, let us describe the procedure for determining the
conformal characters of the Haagerup RCFT R, with k = 4 via the Riemann-Hilbert method.

Given the modular matrices (19), the conformal characters {y,(7)} of R\—4 transform as a
ten-dimensional representation of SL(2,Z). Thus, one can describe them in terms of a 10 x 10
characteristic matrix =(7). To generate =(7), it is essential to construct two constant matrices
A and y. We elaborate on how to determine them in what follows.

The constant matrix A should be compatible with the modular T-matrix (63) and its trace
is constrained to be equal to —5 due to (64). Our choice of A is

13 1 1 13 11 7 2 3
A:d __)__7__5__)__)_1)__)__:__)0 . 74
15112%(2424242412 838) 74
Each eigenvalue of A is equal to the leading exponent A, of each character y,(7) modulo
integer. In fact, solving the modular crossing equation numerically,

Xa(_l/T):ZSaﬁXﬂ(T)) (75)
B

one can read off the exponent A, of each character. In particular, the exponents of the first
four characters are given by

11 47 1 11

Ay = — A, = -~ - - .
07 9g° 17 o4 27 oy 37 04

(76)

The next is to determine another constant matrix y that solves the conditions (66). To
this end, we first note that there exists two pairs of conformal characters, ( 20(7), )(3(7)) or

( x1(7), )(2(7)), whose conformal weights differ by an integer. For each pair, any linear combi-
nation of two characters remains an eigenvector of the modular T-matrix T. One can also see
that the combinations

20(7T) + x3(7), 21(7) + x2(7), (77)
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together with y,4(7) transform among themselves and decouple from the rests under the S
transformation. This implies that the modular S-matrix can be block-diagonalized as follows

— 771 Sl
S=U ( s, )U, (78)

where each block becomes a congruence representation of SL(2,7Z),

101 _ 1
2 2 i/ﬁ
1 1
Si=1 2 2 5| (79)
1 1
vz v Y
and
(L 1 1 1 _1 _1 _L\
s GO CHRS GO RN CRN |
I T A A T R .
2= \{E i/E 243 23{5 V3 zlﬁ 243
L L o —L o L 0
S A TR (S S B
G N
V6 V6 2 24/3 2v3 2

Hence, {y,(7)} of our interest should be in a reducible representation rather than an irre-
ducible representation. Accordingly, the constant matrix y can be described as

—y(* U 81
4 ( Xz) ) (81)

where y; and y, are 3 x 3 and 7 x 7 matrices. One can express y explicitly as

[ X110 X12 X1,3 Xa1  X15 X16 X1,7 X18 X1,9 X1,10 \
X231 X22 X322 X31 X225 X26 X2,7 X28 X2,9 X210
X31  X32 X2,2 X201 X25 —X26 —X2,7 —X28 —X29 X210
X41  X1,3 X1,2 X111 X155 —X16 —X1,7 —X1,8 —X1,9 —X1,10
Xs51  X52 Xs5,2 X51  X55 0 0 0 0 0

X61 Xe2 —Xe2 ~—Xe1 O Xee Xe7  Xes  Xe9  Xealo
X710 X72 —X72 —TX7.1 X7.6 X7,7 X7.8 X7,9 X7,10
Xs1 X822 TXs2 TXs1 X8,6 X8,7 X838 X8,9 X8,10
X911  Xo2 TX92 X921 X9,6 X9,7 X9,8 X9,9 X9,10 ]
\ X101 X102 —X102 —X101 X106 X107 X108 X109 X10,10

. (82)

oS O O O

For the sake of later convenience, we demand that the conformal characters {y,(7)} is
identified as the the third column of Z(7). Based on the parameterization (82) with the expo-

nents (76) estimated numerically, this requirement fixes the four unknown parameters by the
four characters (44),

x13=1, 232=0, X22=1, X12=1. (83)
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Given (74) and (82), one can express the solution to (66) as

_ 32x

221 1 1 52 X15 Yos X1,7 X18 X1,9 0
756 756 44928 5616717 3564118 297
s2(25+7%2) 1 0 52(25-58) —22y,5 R TS T o2 0
756 756 44928 561671, 3564%18 297
52(25—-28) o 1 52(25+28) —22y5 o 2 2 - 0
32x
52 1 1 221 X15 Yoz —X17 —X18 —X19 0
e _me _me  mw G o 0 o
X = 756762 ’ ’ 756762 24x17 62 27%18%6,2 10762 5
—Tx 62  TXe62 x 0 —12 35x Téx Yon X610
12285 35x _ 35x _ 12285 0 1120x 63 189218 _ 210710 0
21,7 2){1,7 2){1,7 21,7 X1,7%6,2 X7 21,7
24960 __160x 160x 24960 0 160x 256217 4 _ 320110 0
X18 27018 271018 X18 ng%)({)e’z 81312,8 1404 X18
19656 19656 X9,2 X1,7 X18
e X9,2 —X9,2 T e 0 5 5 —87 0
21,9 > > 21,9 26,2 X X
94068710, _ 94068710,2 0 98370x102  6952¥17%10,2 297182102 330%10,2 0
x X10,2 X10,2 x X62 5x 40x X2

where x = y; 9¥9 2. One can then compute the characteristic matrix Z(7) using the recursion
relation (68), which leads to the conformal characters

(1) = %(1+54—x +108—x 2.,....)
X0 q 54 q 54 q >
n(D)=q% (1+q+2¢>+3¢>+-),

XZ(T)zq_z%*(1+q+3q2+4q3+7q4+---),

(r)= %(1+54+x +108+x 2, )
23\T)=q 54 4 sz 4 ,

2048
x4(7)=— q%(1+2q+3q2+6q3+9q4+-~),
X15 (84)
25(1) =262 (1+2q +4q° +64° + -+ ) = x610%102 (4 +2¢* +3¢° +5¢* +---),
35
x6(T)=— X qé (1+q+2q2+3q3+6q4+-~-),
2%1,7
160x

x7(7) = ¢ (1+q+22+4¢3 +6¢* +---),

27x18
2s(7) =_X9,2q§ (1+q+3q2—|-4q3 +7q4+...) ,
X9(T) :_)ho,zq(l +2q+3q2+5q3 +) ]

Since the first four characters should agree with (44), one can easily fix a parameter x

as x = 54. Demanding all g-expansion coefficients are non-negative integers, the left-over
parameters in y can be fixed completely by solving the modular crossing equation (75) nu-
merically. To be concrete, the constant matrix y is

( 221 1 1 52 —2048 1728 —945 320 —54 0 \
2028 1 0 572 45056 —44928 —19656 —4224 —297 O
572 0 1 2028 45056 44928 19656 4224 297 O
52 1 1 221 —2048 —1728 945 —320 54 0
v = —-26 1 1 26 —22 0 0 0 0 0 (85)
14 -1 1 -14 0 —12 12 -10 -10 -1 |’
-13 -1 1 13 0 64 —63 —-64 —-12 0
78 -1 1 —78 0 —27 —756 4 54 0
—-364 —1 1 364 0 —5760 —2912 1664 —87 O
\ 1742 -1 1 —1742 0 —98370 24332 44 —330 O }

21
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and thus the conformal characters of the Haagerup RCFT R;_, are

XO(T)ZQ%_}‘(1+q2+q3+3q4+3q5+6q6+...)’
Xl(T):qg_‘?‘(1+Q+2q2+3q3+4q4+6q5+10q6+---),
22(1) =q % (1+q+3¢% +4¢° +7¢* +10¢° +17¢° +---) ,
23(7) =% (1+2q+3¢2 +5¢° +9¢* +13¢° +20¢° + - -- ),
%a(7) = q1% (1429 +3¢7 +6¢° +9¢* + 14¢° +22¢° +---) , (86)
x5(0)=q°(1+q+2¢*+3¢° +5¢* +8¢° + 12¢° +---) ,
26(t) =q% (1+q+2¢> +3¢° +6q" +8¢° + 13¢5 +---)
1(0) =g} (1+q+20% +4¢° + 6 +9¢° +14¢° + ),
25(0) =3 (1+q+3¢% +4¢% + 7¢* +10¢° + 16¢° + - ) ,
29(7) =q(1+2q+3¢> +5¢°+8¢* +12¢° +18¢° +---) .

The characters coincide with characters of bosonoic theory of supersymmetric N/ = 1 minimal
model SM(2,12):

SM(2,12)

21,1 (@) = xo(@) + x1(q),
Xfllz()z’lz)(Q) = x6(q) + x5(q), (87)
SM(2,12)

Xas (@ =x2a)+x3(q).
NS characters of A/ = 1 supersymmetric Virasoro minimal model SM(P,Q) are given as
(1<r<Pl1<s<Qwithr—se27)
_1/2,
Xisr],\s/[)(RQ) — qh—c/24( q( ): q)oo (q(nZPQ+n(Qr—Ps))/2 _q(nP+r)(nQ+s)/2) ., with
oo nez
p - @Qr—Ps)?—(P—Q)’ o3[, 2r-0
= ~5q )

8PQ ’ S 2
As a final remark, we propose that y4(7), x5(7), x7(7), and yo(7) can be summarized as
1

_1 K
x4(7) = 5 me;z' (@D2m, (@, (D,

%mT~K-m+(1,O,O)~m

(88)

m’-Km+(1,—1,-1)m+

J

q
= (@am, (D, (@D,

1.7
qim -K-m+(1,1,2)m+1/3
x7(7) = Z
mezZaz! (Q)Zml(Q)mz(q)mg

1mT-K-m+(1,0,0)m

xs(7) =
(89)

5

q
mez’ (q)Zml (q)mz(q)m3 '

The matrix K is given in (4) with k = 4. It is noteworthy here that five among six modular
4 2 1

forms studied in [63] withA=| 2 2 o | are present as the above conformal characters y,(7)
1 01

with the summation range slightly modified.

To present the results for other values of k concisely, we only provide essential data A, y
that generate the characteristic matrix Z(7). One can always read off the conformal characters
from the third column of Z(7) and confirm that their g-expansion coefficients are always non-
negative integers.

Xo(T) =

22
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The Haagerup RCFT R;—3 The two constant matrices are given by

—10
—65
65
10
—8
1

, 19 1 1 19 119 101 71 29
A =diag {——,——,——,——,——,——,——,——} ,
24 24”24’ 24 120" 120° 120° 120
and

(—171 1 1 —-76 210 —120 45
19304 2 1 7448 —46760 —17030 —2520
7448 1 2 19304 46760 17030 2520
| =76 1 1 171 —210 120  —45
= 19 -1 1 -19 21 —6 12
56 -1 1 56 56 —131  —56
494 —1 1 —494 —780 —1014 277
—4256 —1 1 4256 —23200 3585 672

12
61 )

(90)

(oD

The third column of Z(7) gives conformal characters of R;—3, which agree perfectly with the
conformal characters of a product of two non-unitary minimal models M(3,5) ® M(2,5),

m%+m1 +m%+m2

r@=q5 > 1

N N b
My E€Z>0,MyELs>q (Q)Zml(Q)mz

23
x1(t)=q* Z 4

1
my€Z>g+5,MyEZx(

pE=¢% >

N N b
M1 €Zso,MyELs (q)Zml(q)mz

5 q
BO=F DL e

2 2 _3
mi+my+ms+my—3

(q)Zml (q)mz

2 2
m1+m2

2,2 1
mi+m;—z

1
My €Z>g+5,MyEZ>(

1
x4(7)=q™ Z .

N N B
My €Zsq,MyEZLs>q (q)Zml(q)mz

19
XS(T) = q120 Z q

N N
mIGZZO’mZEZEO (q)Zml (q)m2

49 q
x6(7) =q™ Z W’

2 2
mi+my+m;

24 02
m{+m;+my

2, .2 _1
mi+m,+my—z

m1€ZZO+%,m2€ZZO

" q
H@=a" > o

2 2_3
my+my+ms—3

1
my€Z>g+5,MaEZL>(

23

(92)
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The Haagerup RCFT R;—_5 The data are given by

A= dlag{— 7 1 1 7 23 17 169 151 121 79 25 127

24> 24> 24> 24> 24> 24> 168> 168> 168> 168 168 168>
—62 1 1 —15 —11178 2430 9555 —5152 1701 —280 7 —2184
134 1 0 34 48600 8262 —43316 —21350 —5950 —714 —14 —7735
34 0 1 134 48600 8262 43316 21350 5950 714 14 7735
—-15 1 1 —62 —11178 2430 —9555 5152 —1701 280 —7 2184
-7 1 1 -7 23 —34 0 0 0 0 0 0
| 20 1 1 20 —552 -—187 0 0 0 0 0 0
x= 5 -1 1 -5 0 0 13 -2 -1 -10 -3 —22 |
-2 -1 1 2 0 0 52 —27 —50 —25 —2 26
12 -1 1 —12 0 0 156 —450 —152 46 5 —78
—-30 -1 1 30 0 0 —1300 —2976 798 153 —10 —338
75 —1 1 =75 0 0 —28900 —5250 6375 —850 6 5746
—-14 0 0 14 0 0 —468 225 —-50 —6 6 —179

and the characters are

2o=q% (1+@*+®+2¢" +2¢° +5¢° +---)

21=q% (1+q+2¢>+3¢° +4q* +64° +9¢° +---),

22 =q 7 (1+q+2¢*+4¢° +6¢* +9¢° + 14¢° +---)
1z 2 3 4 5 6

13 =q% (1+2q+3¢>+5¢° +8q* +12¢° +19¢° +---) ,

2a=q7 (1+q+3¢>+4¢> +8¢* +11¢° +18¢5 +---),,
-z 2 3 4 5 6

15=q24(1+2q+3q +5q° +8q" +13q° +19¢q +-~),

(93)
_1
X6 =q 168 (1+q+2q2+3q3+5q4+7q5+12q6+---) R
17
x7=q168 (1 +q+2q2+3q3+5q4+8q5+12q6+--~) ,
xg—ql (1+q+2q2+3q3+6q4+8q5+13q6+--~),
xg_ql 5 (1+q+2¢2+4¢3 +6q% +9¢° +14¢5 +---)
Y10=" (1+q+3¢2+4¢> +7¢* +10¢° +16¢° +---) ,
_9
211 =% (1+2q+3¢*+5¢>+8¢* +12¢° + 18¢° +---) .
The Haagerup RCFT R;_¢ We present two constant matrices below,
1 1 _ 1 _47 _19 23 97 _11 _73 _13 _25 _ 11 _ 49
A = diag {~355,~25.~ 2>~ 35> 38> 29~ 38> ~ 95> 1B 0>~ 34> 86> 13— 06> }
1 1 1 0 —48128 13376 —1024 41600 —22464 7488 —1300 64 —22592 960
1 1 0 1 48128 13376 1024 —41600 —22592 —7488 —1300 —64 —22464 —960
1 0 1 1 48128 13376 1024 41600 22592 7488 1300 64 22464 960
0 1 1 1 -—48128 13376 —1024 —41600 22464 —7488 1300 —64 22592 —960
-1 1 1 -1 o0 0 23 0 0 0 0 0 0 0
1 1 1 1 0 —247 0 0 0 0 0 0 0 0
|l -1 11 -1 431 o 253 0 0 0 0 0 0 0
=1 .11 -1 o 0 0 -2 16 —14 o -7 -16 -17 |’
0 -1 1 0 0 0 0 48 -7 —40 —26 -8 —15 8
1 -11 -1 0 0 0 147  —240 —182 0 12 240 35
-1 -1 1 1 0 0 0 0 —2048 0 273 0 —2048 O
1 =11 -1 0 0 0  —8625 —9200 4575 0 —69 9200 322
-1 0 0 1 0 0 0 —48 -15 40 26 8 -7 -8
0 0 0 O 0 0 0 —3675 1792 —441 0 21 1792 256

24
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and characters are

A= dlag{ 24,

—86
10380
1476
-9
-19
56
—494
4256
7
—20
85
—344
1735
—8924
189

[
LLLL Ll rrooro

-1
0

onqg—i(1+q2+q3+2q4+2q5+4q6+---),
xl:qg_‘st(1+q+2q2+3q3+4q4+6q5+9q6+~-),
22 =q 7 (1+q+2q>+3¢3 +6¢* +8¢° +13¢° +---) ,
z 2 3 4 5 6

13=q24(1+2q+3q +5q° +8q" +12q° + 18¢q +---),
x4:q%(1+q+2q2+4q3+6q4+10q5+15q6+---),
25 =% (1+q+3¢> +4¢% + 7¢* +10¢° +17¢° +---)
26 =% (1+2q+3¢>+5¢° +8¢* +12¢° +18¢5 + ),

—5 2 3 4 5 6 ©4)
X7=4 96(1+q+2q +3q°+59" +7q° +11q +-~),
L
Xs=(q™m (1+q+2q2+3q3+5q4+7q5+12q6+---) ,
23
X9 =q% (1+q+2q2+3q3+5q4+8q5+12q6+~--) ,
u
x10=9% (1+q+2q9*+3¢° +6q* +8¢° +13¢° +--+),
71
X11 =% (1+q+2q2+4q3+6q4+9q5+14q6+---) ,
_3
x12=9q2 (1+q+3¢*+4¢> +7¢* +10¢° + 16¢° +--- ),
213 =q% (1+2q+3¢>+5¢° +8q* +12¢° +18¢° +---) .
The Haagerup RCFT Ry;—, Two constant matrices are
1l _lo_ 19 10171 _ 2 _73 _67 19 _43 _25 _1 _49 _19
4’ 24> 24> 120° 120° 120° 120> 72> 72> 24> 72> 72> 24> 72> 72}
0o -9 —210 120 —45 10 162 —135 85 —36 9 -1 45 -9
0 1476 46760 17030 2520 65 —40176 —23301 —8924 -1953 —180 —1 —3816 —63
1 10380 46760 17030 2520 65 40176 23301 8924 1953 180 1 3816 63
0 -86 —210 120 —45 10 —162 135 —85 36 -9 1 45 9
1 =19 21 —6 -12 -8 0 0 0 0 0 0 0 0
1 56 56 —-131 56 1 0 0 0 0 0 0 0 0
1 —494 —-780 —1014 277 12 0 0 0 0 0 0 0 0
1 4256 —23200 3585 672 —61 0 0 0 0 0 0 0 0
1 =7 0 0 0 0 7 -5 7 —8 -5 -1 =20 =7 |’
1 20 0 0 0 0 32 —2 —20 —29 =12 -1 -8 1
1 -85 0 0 0 0 162 —-135 —162 36 9 1 45 -9
1 344 0 0 0 0 304 —1279 344 195 40 -1 —384 2
1 —1735 0 0 0 0 —2138 —7285 1735 764 —100 —1 1618 13
1 8924 0 0 0 0 —40176 -—23301 17828 —1953 —180 2 —3816 —63
0 -—189 0 0 0 0 —735 112 189 —140 35 0 —31 20
0 2808 0 0 0 0 —19760 9984 —2808 260 40 0 2080 -—61

—2808

0

25
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and the characters are

The Haagerup RCFT Rj_g

A = diag {—

148
1302
154
21
—14
13
—78
364
—1742
8
-7
28
—62
224
=777
20
—210
1260

13
24>

[ L
coo L L L L Ll rrooro

CoOOHRRRHRRHRHRARHOROO

),

q24 (1+q+2q +3¢° +4q* +6¢° +9¢° +-

xozqg_‘g*(1+q2+q3+2q4+2q5+---
X1= )
xzzq_ﬂ(1+q+2q +3q +5q +8q +12q + .-

).
).

= g7 (1+2q +3¢ +5¢° +8¢* + 12¢° + 18¢° + - --

X3
1
xa=q™ (1+q+2¢*+3¢>+6q* +8¢> +14¢° +---),
19
x5 =q™ (1+q+2¢*+4¢> +6¢* +9¢° + 14¢° +--) ,
49
%6 =q™ (1+q+3¢*+4¢° +7q¢* +10¢° + 16¢° + - -- ),
91
x7—qﬁ(1+2q+3q2+5q3+8q4+12q5+18q6+---), 95)
—q 7 (14+q+2¢>+3¢3 +5¢* +7¢° +11¢5 +---)
Xs=4( qT2q q q q q >
X9=q% (1+q+2q2+3q3+5q4+7q5+11q6+~--) )
5
X10=q%* (1+q+2q2+3q3+5q4+7q5+12q6+~--) )
29
211 =97 (1+q+2¢*+3¢>+5¢* +8¢° +12¢° +--+),
47
x12=97 (1+q+2q*+3¢° +6q* +8¢° +13¢° +--+),
23
X13 =q?* (1+q+2q2+4q3+6q4+9q5+14q6+---) )
7 (1+q +3¢% +4¢° + 7¢* + 10¢° + 16 64+..1)
X14=4g7 q o9 q q q q )
2is=q7 (1+2q+3¢2+5¢° +8¢* +12¢° +18¢° +---) .
The seed data A and y are
1 1 13 7 2 3 61 113 49 77 5 17 49 53
—3 324~ L 8550~ 65— 120, 60> —130- T3> 130> 50> 120> 80} >
21 —1728 945 320 54 0 1440 —1035 560 —210 48 -5 560 =70 0
154 44928 19656 4224 297 0 —38720 —23870 —10080 —2695 —352 —10 —10080 —440 O
1302 44928 19656 4224 297 0 38720 23870 10080 2695 352 10 10080 440 0
148 —1728 945 =320 54 0 —1440 1035 —560 210 —48 5 —560 70 0
—14 —12 12 -10 -10 -1 0 0 0 0 0 0 0 0 0
13 64 —63 —64 —-12 0 0 0 0 0 0 0 0 0 0
—78 —27 —756 4 54 0 0 0 0 0 0 0 0 0 0
364 —5760 —2912 1664 —87 O 0 0 0 0 0 0 0 0 0
—1742 —98370 24332 44 330 O 0 0 0 0 0 0 0 0 0
—8 0 0 0 0 0 —10 4 -7 0 —6 -2 -7 -14 -1 |°
7 0 0 0 0 0 32 4 —16 —22 —-16 -3 —-16 —4 0
—28 0 0 0 0 0 111 —54 —133 —56 -1 2 112 2 -1
62 0 0 0 0 0 384 —770 —448 77 64 2 —448 —63 0
—224 0 0 0 0 0 —45 —4970 20 880 2 —-10 20 210 0
777 0 0 0 0 0 —13344 -21987 9744 1078 —496 4 9744 —504 0
—20 0 0 0 0 0 —123 —68 119 —56 5 4 —126 16 1
210 0 0 0 0 0 —4928 1254 672 —616 160 —6 672 73 0
—1260 0 0 0 0 0 —84843 44100 —13475 1848 15 —4 13524 784 1
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and characters are

The Haagerup RCFT R;—9

A = diag {—2—74, -

=)

O HRE KR HOO R

-1

0
0
1
0
1
1
1
1
1
0
1
1
1
1
1
1
0
0
0
0

1
24>

xozqg_i(1+q2+q3+2q4+2q5+4q6+---),

xlzq%(l+q+2q2+3q3+4q4+6q5+9q6+~--)

X2=q_2i4(1+q+2q2+3q3+5q4+7q5+12q6+...),

43 =q%(1+2q+3¢>+5¢° +8q*+12¢° +18¢° +--+),
ya=1+q+2¢%>+3¢%+5¢*+8¢° +12¢°+---,

XS:q%(l+q+2q2+3q3+6q4+8q5+13q6+...),

X6 =3 (1+q+2q%+4¢> +6¢* +9¢° + 14¢° +---),

}57:q%(1+q+3q2+4q3+7q4+10q5+16q6+...)’
¥s =q(1+2q+3¢%+5¢>+8q* +12¢° +18¢° +---),

2o =q % (1+q+2q*+3¢3 +5¢* +7¢° +11¢° +--) ,

;(10=q%(1+q+2q2+3q3+5q4+7q5+11q6+--~),

y11=q0(1+q+2¢%+3¢3+5¢* +7¢° +11¢° +---),

xu=q%(1+q+2q2+3q3+5q4+7q5+12q6+---),

)(13=q%(1+q+2q2+3q3+5q4+8q5+12q6+---),

)(14zq%(l+q+2q2+3q3+6q4+8q5+13q6+'--),

Y15 =q®(1+q +2¢> +4q% +6¢* +9¢° + 14¢° +--+),

Y16 = (1+q+3q*+4¢> + 7q* + 10¢° + 16¢° +---),

Y17 =q® (1+2q+3q%+5¢% +8¢* +12¢° + 18¢° +---).

1 7

T 2407 24

—9555

169

168>

5152
21350
21350

5152

-2

—-27
—450
—2976
—5250

=)

ocoocooocooo

Two constant matrices are presented below,

_1s1 ;1
168> 1682
—1701 280
5950 714
5950 714
—1701 280
-1 —10
—50 —25
—152 46
798 153
6375 —850
—50 —6
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

79

25

127

269

251 221 179

125

155

168>

Ococoococoococooocoo

168>

2184
7735
7735
2184
—22
26
—78
—338
5746
—-179

168>

8184
—37532
37532
—8184
0

coc oo

—1268
—24507
—372

27

2642

—5610
—24101
24101
5610
0

cocooo

2
12
—36
—457
—3220
—16284
—38
—201
8010
255

264> 264> 264

> 264

2860 —1012 220 —22

—11154 —3410
11154 3410
—2860 1012
0 0
0 0
0 0
0 0
0 0
0 0
0 —4
—14 -19
—91 —64
—416 —33
—780 656
3536 2431
39 —4
702 —366
1365 —2100
—130 46

—594
594
—220
0

0
0
0
0
0

-2
—14
—14

64
131

—376
—11

54
615
—10

59 245
> 264> 264
4895
—33 —20658
33 20658
22 —4895
0 0
0 0
0 0
0 0
0 0
0 0
—4 -17
-7 —38
2 127
9 —104
—14 2513
—31 12512
6 13
9 —1242
—42 11100
1 110

> 264>

—550
—1617
1617
550
0

coc oo

(96)
_ 53 203
264> 264J >

11 —1892
—22 —6798
22 6798
—11 1892

0 0

0 0

0 0

0 0

0 0

0 0

-5 —18
—2 14
—1 —62
—8 125
16 —206
—32 —766

4 12

2 —396
—11 5180
10 —141
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and characters are

xozq% (1+q2+q3+2q4+2q5+4q6+---

X1=

),

q24 (1+q+2q +3¢° +4q* +6¢° +9¢° +-

=)

)(2=q_2_4(1+q+2q +3q +5q +7q +11q +---

23 =q7 (1+29+3¢%+5¢° +8q" +12¢° + 18¢5 + - --

Xa

x5=q11_678(1+q+2q2+3q3+5q4+8q5+12q6+---

x6=qf4_678(1+q+2q2+3q3+6q4+8q5+13q6+---

&
X7 =q1%8

14
Xg = (q1%8

209
Xo=q™8

xlozq_m(1+q+2q +3q +5q +7q +11q + .-

(1+q+2¢*+4¢>+6q* +9¢° +14¢° + -

(1+q+3¢*+4¢>+7q¢* +10q° + 16q° + -
(142q+3¢*+5¢° +8¢* +12¢° +18¢° +-

Xllzq% (1+q+2q2+3q3+5q4+7q5+11q6+'

112—q264 (1+q+2¢> +3¢®+5¢* +7¢° +11¢° + - -

xlg—qz (1+q+2q2+3q3+5q4+7q5+11q6+---

139
X14 = q 2%
205
X15 = q**
283
)(16—6126

(1+q+2q2+3q3+5q4+7q5+12q6+---
(1+q+2¢*+3¢®+5¢* +8¢° +12¢° + - -
(1+q+2¢*+3¢®+6q*+8¢° +13¢° +---

)(17—q26 (1+q+2q2+4q3+6q4+9q5+14q6+---

)(18—q2
X19=4(

| |"°‘
= AR
Ao

 (
2

The Haagerup RCFT Ry-1¢

A = diag {—2%‘, -

1 00
0 10
0 0 1
0 00
-1 1 1
0 1 1
-1 1 1
111
-1 1 1
1 00
X = 0 00
1 11
0 -1 1
1 11
0 -1 1
1 -1 1
-1 -1 1
1 11
-1 0 0
0 00
-1 0 0
0 00

1 1 1 97
29> 734> 29> 96

0 —41600 22464 —7488

0 41600 22592 7488

0 41600 22592 7488

1 —41600 22464 -—7488
-1 -2 16 —14

0 48 -7 —40
-1 147 —240 —182

1 0 —2048 0
—1 —8625 —9200 4575

1 —48 —15 40

0 —3675 1792  —441
-1 0 0 0

0 0 0 0
-1 0 0 0

0 0 0 0
-1 0 0 0

1 0 0 0
-1 0 0 0

1 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

—i5»

For k =10, A and y become

11

1300

73 _13
96> 24>
—64 22592
64 22464
64 22464
—64 22592
=7 -16
-8 -15
12 240
0 —2048
—69 9200
8 -7
21 —1792
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

25
96>

—960
960
960

—960
-17

8
—35
0
322
-8
256
0

coococoococooooo

11 49 49 _ 23
1207967 48> 24>
36288 —24300 12000
—36288 —24300 —12000
36288 24300 12000
—36288 24300 —12000
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
-7 0 -2
21 0 -1
81 0 77
320 276  —352
770 —2048 —1001
0 -11178 0
21252 —47104 18952
320 —276 352
7371 0 2925
—21 23 1
3045 2048 —999

28

41
8>

—4104
—4158
4158
4104
0

coooo

—12
—54
—87
330
2430
4554
—100
—1728
—22
320

1+q+3q¢*+4q> +7¢* +10¢° + 16¢° + - -

=q_ﬁ(1+q+2q2+3q3+5q4+7q5+12q6+---

).

).
).

14+2q+3q%+5¢>+8q* +12¢° +18¢° +--

)

)

).
).

J

),

)

b

17 25 _7 _1
24> 748> 2407 48>
864 —84 0 —4158
—864 —84 0 —4104
864 84 0 4104
—864 84 0 4158
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
—13 0o -1 -10
-19 -7 -1 =22
—27 0 0 54
32 20 0 -—100
209 0 -1 =330
0 =77 0 2430
—-1819 0 0 —4554
—32 20 0 —87
351 0 0 1728
19 -7 1 —-12
—53 0 1 -320

17
24>

160
—160
160
—160

17

—24300
—24300
24300
24300
0

cocoocoocoo

N
]

—276
2048
—11178
47104
—276

—2048

23

78> 24>

97)

25

285>

864
—864
864
—864
0

0
0
0
0
0
0
1

6
27
32
—66
0
506
—32
351
—6
222
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and the characters are

onqg_z‘(1+q2+q3+2q4+2q5+4q6+...)

21=q% (1+q+2¢2+3¢3 +4¢* +6¢° +9¢°5 +---)
}(2=q_2_4(1+q+2q +3¢% +5¢* +7¢° +11¢°+---),
23 =q% (1+29+3¢>+5¢° +8q" +12¢° + 18¢5 +---)
2= % (1+q+2° +3° +5¢ +7¢° +11¢°+ ),
Xs:qiz(lJququ +3¢> +5¢* +7¢° +12¢° +---),

88

26 =q% (1+q+2¢>+3¢° +5¢* +8¢° +12¢°+---)

27 =q% (1+q+2¢>+3¢° +6q* +8¢° +13¢° +---),
Xs—q9

(
X9 =4d (

210=07% (1+2q+3q% +5¢° +8q* +12¢° +18¢° + ),

-
j

EN

B

1+q+2q%+4¢° +6¢* +9¢° +14¢° +---) ,

le

1+q+3¢> +4q> +7q* +10¢° +16¢°+---) ,

(98)
)(11=q_‘%8 (1+q+2q2+3q3+5q4+7q5+11q6+...),

Y12 =7 (1+q+2¢*+3¢>+5¢* +7¢° +11¢° +---

7

213 =q% (1+q+2¢*+3¢> +5¢* +7¢° +11¢° + - --

-:-l\]

y1a=q% (1+q+2¢*>+3¢>+5q¢* +7¢° +11q° + - -

X15s =q*®

183

(S

r16=q% (14+q+2¢>+3¢>+5¢* +7¢° +12¢° +---),
ﬂ
X17=4q% ,

(s

X18 =q* 1+q+2q2+3q3+6q4+8q5+13q6+...
X19—q48
)(20—@12
)(21=qW (1+2q+3q2+5q3+8q4+12q5+18q6+...)_

13

)
)
)
1+q+2¢>+3¢° +5¢* +7¢° +11¢° +---) ,
)
)
)
)

(
(
(
(
(1+q+2¢*+3¢>+5q* +8¢° +12¢° +---
(
(1+q+2q*+4¢> +6q* +9¢° +14¢° +---
“

1+q+3q%+4¢° +7¢* +10¢° +16¢° +---)

The Haagerup RCFT R;—1; Finally, the two constant matrices for k =11 are

A=diag{-13,—L L 1o 7 67 19 4 25 1 49 19 39 301 71 29 175 109 3 28 sl 37 23 85
> 24> 24> 24> 72> 72> 24> 72> 72> 24> 72> 72> 312> 312> 312> 312> 312> 312> 312> 312> 312> 312> 312> 312J) >
=70 0 0 -7 —162 135 —85 36 -9 1 —45 9 141 —-112 86 —58 28 -8 1 —64 16 -2 44 -8
8132 1 0 772 40176 23301 8924 1953 180 1 3816 63 —35300 —24304 —12772 -—4825 —1204 —150 —4 —8480 —584 -5 —4180 —59
772 0 1 8132 40176 23301 8924 1953 180 1 3816 63 35300 24304 12772 4825 1204 150 4 8480 584 5 4180 59
-7 0o 0 -70 —162 135 —85 36 -9 1 —45 9 —141 112 —86 58 —28 8 -1 64 —16 2 —44 8
-7 1 1 -7 7 -5 7 -8 -5 -1 =20 -7 0 0 0 0 0 0 0 0 0 0 0 0
20 1 1 20 32 -2 —20 —29 =12 -1 -8 1 0 0 0 0 0 0 0 0 0 0 0 0
—85 1 1 —85 162 —135 —162 —36 9 1 45 -9 0 0 0 0 0 0 0 0 0 0 0 0
344 1 1 344 304 —1279 —344 195 40 -1 384 2 0 0 0 0 0 0 0 0 0 0 0 0
-1735 1 1 -1735 -—2138 —7285 1735 764 —100 -1 1618 13 0 0 0 0 0 0 0 0 0 0 0 0
8924 1 1 8924 —40176 -23301 17828 —1953 —180 2 —3816 —63 0 0 0 0 0 0 0 0 0 0 0 0
—189 0 0 -189 —735 112 189 —140 35 0 —31 20 0 0 0 0 0 0 0 0 0 0 0 0
X — 2808 0 0 2808 -—19760 9984 —2808 260 40 0 2080 —61 0 0 0 0 0 0 0 0 0 0 0 0
9 -1 1 -9 0 0 0 0 0 0 0 0 6 -2 5 —4 -1 -4 -1 —6 -1 -2 -11 —6 >
—4 -1 1 4 0 0 0 0 0 0 0 0 18 7 -2 —11 —14 -10 -2 20 —-12 -1 10 1
35 -1 1 —35 0 0 0 0 0 0 0 0 84 0 —47 —56 —28 —6 0 48 15 0 —12 —8
—108 -1 1 108 0 0 0 0 0 0 0 0 262 —147 —278 —133 14 19 2 24 —44 —4 —66 4
386 -1 1 -386 0 0 0 0 0 0 0 0 790 —-1316 —982 80 203 30 -2 -812 -17 4 374 —12
—1408 -1 1 1408 0 0 0 0 0 0 0 0 1212 —7472 —=1572 1769 364 —83 —4 1824 312 -3 -1716 4
5534 —1 1 —5534 0 0 0 0 0 0 0 0 —6096 —34104 6652 6508 —1064 —190 5 7240 —848 —4 6160 16
—52 0 o0 52 0 0 0 0 0 0 0 0 —74 —140 114 12 —42 12 2 —113 12 3 —66 -2
624 0 0 -—624 0 0 0 0 0 0 0 0 —2304 —1104 1832 —684 —36 64 -3 192 145 —4 297 24
—5044 0 0 5044 0 0 0 0 0 0 0 0 —33638 3794 9558 —6456 1554 —81 —2 10152 —-852 7 738 —68
117 0o 0 -117 0 0 0 0 0 0 0 0 —531 294 —47 —72 63 —22 3 —206 27 2 —98 18
—2236 0 0 2236 0 0 0 0 0 0 0 0 —16890 11116 —5318 1720 —322 20 2 —1766 292 —4 2398 —57
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and the characters are

Xo=qg_?‘(1+q2+q3+2q4+2q5+4q6+...),
Xl:qzz_l‘f(1+q+2q2+3q3+4q4+6q5+9q6+...)’
Xz=q_2l4(1+q+2q2+3q3+5q4+7q5+11q6+...),
=g 2 3 4 5 6

23 =q% (1+2q+3¢%+5¢> +8q* +12¢° + 18¢° + -+ ),
x4=q_%(1+q+2q2+3q3+5q4+7q5+11q6+...),
XSZQ%(1+q+2q2+3q3+5q4+7q5+11q6+...)’
%6 =% (1+q+2¢% +3¢°+5¢" +7¢° +12¢° +---),

27=a7% (1+q+2¢+3¢° +5¢* + 8¢5 +12¢° +--) ,
){s:q%(1+q+2q2+3q3+6q4+8q5+13q6+...)’
X9:q§_‘3‘(1+q+2q2+4q3+6q4+9q5+14q6+...)’
% 2 3 4 5 6
x10=97 (1+q+3¢*>+4¢> +7¢* +10¢° + 16¢° +--- ),

xi1=q7 (1+2q+3¢>+5¢° +8¢* +12¢° +18¢° +---) ,

—
-

xlzzq_%z(1+q+2q2+3q3+5q4+7q5+11q6+-~-

11

xlg—qﬁ(1+q+2q2+3q3+5q4+7q5+11q6+---),
X14=¢ 4_2(1+q+2q2+'3>q3—|-5q4+7q5+11q6-|----),
Y15 =q 8_2(1+q+2q2+3q3+5q4+7q5+11q6+--~),
Y16 =07 (1+q+2¢>+3¢3 +5¢* +7¢° + 11¢° +---),
X17=4 2_2(1+q+2q2+3q3+5q4+7q5+11q6+---),
X18 =4 2_2(1—+—q+2q2+3q3+5q4+7q5+12q6—+-~-),
Y10 =q7 (1+q+2¢>+3¢3 +5¢* +8¢° +12¢5 +---),
X20 =4 4_2(1+q+2q2+3q3+6q4+8q5+13q6+---),
221 =% (1+q+2¢> +4¢° +6¢* +9¢° +14¢5 +---) ,
X22 =4 7_2(1+q+3q2+4q3+7q4+10q5’+16q6+-~-),
Y23 =q°7 (1429 +3¢2+5¢° +8q* +12¢° +18¢° +---) .

4 Conclusion and future works

We have explored the non-unitary version of bulk-boundary correspondence with concrete
examples. For those examples, we have confirmed that some basic dictionaries work well
even in the non-unitary cases. By applying the correspondence, we obtain a new class of
non-unitary RCFTs from known bulk rank-0 theories. By applying the correspondence in the
reverse direction, one may construct new classes of 3D rank-0 SCFTs from known non-unitary
RCFTs as studied in [36].

Here we list a set of related problems which we hope to address in the near future.

Chiral algebra of R; In this paper, we analyze the correspondence using modular data
and characters. Another important mathematical object of a 2D RCFT is its underlying chiral
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algebra. Each character is associated to an irreducible representation of the algebra. It would
be interesting to identify the chiral algebra of the R, by analyzing the boundary operator
algebra of the twisted S-fold SCFT using the techniques developed in [9, 33, 45, 68-75]. For
k = 3, the Ry is a product of two Virasoro minimal models, M(3,5) and M(2,5), and the
chiral algebra is expected to be two copies of Virasoro algebra.

Hecke transformation to unitary RCFTs Hecke transformation acts on a vvmf to another
vvmf. Applying the transformation, we may hope to find other admissible RCFT characters
from the characters of R, we obtained. For some cases, the Hecke transform relates non-
unitary RCFTs to unitary ones. It would be interesting to see if one can generate a new class
of admissible characters of unitary RCFTs by applying Heck transformations to the characters
of Rk .

More general classes of Haagerup RCFTs When k = 4m? +4m+3 (m € Z), the modular
data of Sy is related to an unitary Haagerup-Izumi modular data D“Hg,,,,,; with w = £2
by a Hecke transformation (modulo decoupled U(1).,). One may also consider non-unitary
modular data obtained by acting a Hecke transformation on D“Hg,,, . ; with w # £2. It would
be interesting to find 3D rank-0 SCFTs which realize non-unitary TQFTs with the modular data
via a topological twisting. Since the existence of non-unitary 3D TQFTs with the modular data
is obscure, there is no guarantee that such rank-0 SCFTs should exit.
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A Dual Abelian description of S; from 3D-3D correspondence

3D-3D correspondence predicts following IR duality [6,18,20]
(gk in (1) and (26)) =~ %GG[(Zl,l X Sl)SDZSTkELRk—Z;A = A] . (Al)

Here Tpgc[N;A] is the 3D N = 2 gauge theory labeled by an ideally triangulated 3-manifold
N with a torus boundary proposed in [19]. The theory also depends on a choice of primitive
boundary 1-cycle A€ H,(JN,Z). Here (X, ; x Sl)(p denotes the once-punctured torus bundle
with a monodromy ¢ € SL(2,Z) (mapping class group of ¥} ;, once-punctured torus):

(B %8Ny =(T11 x[0,1])/ ~,

A2
with the equivalence relation (x € % 1,0) ~ (¢(x),1). (8.2)

A= A is a boundary 1-cycle circling the puncture on %; ;. The SL(2,Z) matrices S, T =R and

L are
0 1 1 0 1 1
(52 (1) () a2
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Topology of the torus bundle depends only on the conjugacy class of ¢ and note that
ST* ~ LR*"2 up to a conjugation.

One convenient way to identify a field theory description of 7ps;[N;A] is calculating
SL(2,C) Chern-Simons theory partition functions ZSH2C)on (NA )(MA) on the 3-manifold N

(k,0)
with various k € Z:
ZES'kL’((f),C) on (N,A) (MA)
DAJDA k 2 k— INdA+2A
_ [ [PAIDA] exp|i +UTr(A/\dA+—A3)+ UTr(A/\dA+—A3) )
(gauge) |, N 87 3 8 3

with the boundary condition : P exp ( § .A) 0
A

eMA/2 *
~ —M, /2 eSL(2,C). (A4
aN e

According to 3D-3D relations [18, 19, 76-80], the CS partition functions with k(€ Z) and
o(e R oriR) compute various SUSY partition functions of 7p;6[N;A]. Especially when

2
withk=1and o = i:gz , the CS partition function is related to the squashed 3-sphere partition

function of 7p;6[N;A] in the following way

A| H1(N, Zy)| .
(ng(m, v) of TpgeIN ;A]) =\ /=== 2 2 ZZL(E}S))OH WMy, with
)

1+b
M _ (A.5)
(, Fi) =, Ae€XKer(i,:H(ON,Z) > H{(N,Z,)),
m+|in+—-|v= i
M,, otherwise.

The TpgeLN;A] has a U(1), symmetry associated to the torus boundary and (m, v) is the
(rescaled real mass, R-symmetry mixing parameter) of the flavor symmetry. The boundary
l-cycle A of N = (X1 Sl)w belongs to the kernel of the map i, : H;(dN,Z) — H,{(N,Z,).
As we will see below, the Chern-Simons partition function can be given as a finite dimensional
integral which is identical to a squashed 3-sphere partition function localization integral of a
3D N = 2 gauge theory, which can be identified as 7p;g[N,A].

The Chern-Simons partition function can be computed using the so-called state-integral
model based on an ideal triangulation of N [80-86]. There is a canonical way to ideally
triangulate the once-puncture torus bundle (£, x S 1)¢: rrn=k—2 With (n + 1) ideal tetrahedra
[87] . Farey tessellation from the triangulation is given as figure 1. From the farey tessellation,
we can read off the following gluing data

n
_
M,=Y"=>"X,
i=1
M)t / Vi . f 7 Vi
- T AKXy =Y =i+ —2X,—X'+X! -V,
. h
C: =2Y”+2X;1+X{’+Xr’l/_1—2(m+5):2Y”—2Xn+X{’+X:l’_l—2X:l’,
— / /7 . h _ /" Vi
CZ—Y+2X1+X2—2(17‘5+—)—Y—2X1—2X1 +X),
2
(A.6)
Coora =X +2X' +X" —2[i +E =—2X, o, +X" ,—2X"  +X”
n—1—%p_3 n—2 n—1 4|17 2 - 44n-2 n—3  ““n-2

n—1>

. h
Co=X. ,+2X_, +X,’l’—2(m + 5) =—2X, 1 +X ,—2X  +X/

n?’

n n
.k
Coy1 =2Y' +Y + X,/ +2 E Xi—z(m+5)=—Y—2Y”+X,{l’+2 E X;.
i=1 i=1
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Figure 1: Farey tessellation of once punctured torus bundle with monodromy LR".

In the construction of Tpse [19], the ‘easy’ internal edges, C,...,C,, correspond to chiral
primary operators appearing in the superpotential (5). Generally, the gluing data is known to
have a symplectic structure [88] and one consider following affine symplectic transformation

$ AN
6%1 ( A [Xl 0
c X, | . 0
M, |~ Y?: —Gin+1/2)| 4 | (A7)
| ¢ | D || :
: \ J : K )
\ 1 J \x ) 0
where two block matrices A, B are
[—1 0 0 0o -2
0O 0 o0 0 -2
1 -2 0 0 0
Anmix@)=| 0 0 —2 0 o |-
\ 0 0 0O —2 O
[O o --- 0 0 1 —1\ (A.8)
2 1 0 0 1 -2
0o —2 1 0 0 0
Bsixin =0 1 —2 1 o - 0],
0 0 1 -2 1 0
\o 0 0 1 -2 1)
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for n > 3.° Using the symplectic gluing data, the state integral can be given as [85]

SL(2,C) on (N,A)
Z(ll )on (M3)
b2
dn+lz [ n+1
= X'DB'X—2Z"B'Xx+72"B'AZ } Z: (A.9)
e f e Pl )| v
f (M, ,h) dn+1z 1 1 n+1
= ¢ 7 om® ex p[zhzTB lAZ+h(X—lrc——) ZlJerzk+1 ]_[q/;h(z)
TT

Here ef (M2 is a factor independent of Z which can be interpreted as a contribution from back-
ground mixed Chern-Simons levels of U(1), x U(1)z symmetries in the field theory 7pc6[N; Al
In the last line, we let

M h
X=(J—ln cl,...,cn) (A.10)
2 2 Ci<i<n=0
The matrix B~'A is
(5 0 1 23 n—1)
0 2 2 2 2 2
1 2 4 4 4 4
B'A=| 2 2 4 6 6 6 |. (A.11)
3 2 4 6 8 8
\n— 1 2 4 6 8 ... 2n j
Rescaling the Z; to 2Z;, we have (ignoring the factor e/ (M2M)
SL(2,C) on (N,A)
Z(l 1— b2) (MA)
> 1+b2
1 1/M n+1
=v2 | ———exp| —Z"KZ+ > (—*—m——) nz + kZ z;
(A.12)

Here K is the mixed Chern-Simons level in (4). Then combining the 3D-3D relations in (A.1)
and (A.5) and the following facts,

2x|Zs3 0f S ), ke2z,
(25 of /%) = (23 of ) (A.13)
b VIx(Zg of ), ke2z+1,
Y k€27
Hy (31 X SY e jpnkn, Zy) =4 2772 ’ A.l4
1 (@1 XD gmsirmics, Zo) {Zz, ke2Z+1, (A1
we have
(Z53(m, ») of S in (1) = (Z59(m, ») in (10)) . (A.15)

It strongly supports the proposed IR duality between (1) and (2).

®When n is 1 or 2, the exact expression for A and B is different from (A.8). However, the final results agrees
with (A.11) and (A.12) for the two cases.
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