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Abstract

For a given spectral curve, the theory of topological recursion generates two different
families ωg ,n and ω∨g ,n of multi-differentials, which are for algebraic spectral curves re-
lated via the universal x − y duality formula. We propose a formalism to extend the
validity of the x − y duality formula of topological recursion from algebraic curves to
spectral curves with exponential variables of the form ex = F(ey) or ex = F(y)eay with F
rational and a some complex number, which was in principle already observed in [1,2].
From topological recursion perspective the family ω∨g ,n would be trivial for these curves.
However, we propose changing the n = 1 sector of ω∨g ,n via a version of the Faddeev’s
quantum dilogarithm which will lead to the correct two families ωg ,n and ω∨g ,n related
by the same x − y duality formula as for algebraic curves. As a consequence, the x − y
symplectic transformation formula extends further to important examples governed by
topological recursion including, for instance, Gromov-Witten invariants ofC3 (or, equiva-
lently, triple Hodge integrals), orbifold Hurwitz numbers, and stationary Gromov-Witten
invariants of P1. The proposed formalism is related to the issue topological recursion
encounters for specific choices of framings for the topological vertex curve.
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1 Introduction

This article mainly deals with the theory of topological recursion (TR) [3] which, roughly
speaking, can be seen as an algorithm that associates to a complex curve a family of multi-
differentials ωg,n indexed by g ∈ Z≥0 and n ∈ Z>0. Depending on the curve these multi-
differential can carry information which are of interest in enumerative geometry [4–7], ran-
dom matrix theory [3, 8–10], topological string theory [11–13], knot theory [14, 15], free
probability [16,17], quantum field theory [18–21], etc. Therefore, TR provides a huge range
of applications which goes back to a common algorithm starting from some algebraic curve.
The theory of TR was developed around 2007 but it is still a current research topic by itself.

The connection of TR to all these different areas of mathematics and mathematical physics
is mostly of a structural nature. It is cumbersome to apply the algorithm of TR to perform
explicit computations due to its algorithmic structure, which is recursive in the Euler charac-
teristic −χ = 2g + n − 2. This property prevents direct computations using TR since other
techniques are more efficient. For instance, explicit formulas for intersection numbers on the
moduli space of complex curves Mg,n for small n are well-known and can be derived from
Virasoro constraints or localization theory in algebraic geometry. However, TR would require
2g + n− 2 computational steps.

Changing the roles of x and y in the polynomial, a second family of multi-differentials
can be generated by TR, denoted by ω∨g,n, which clearly distinguishes it from the first family
ωg,n. In almost all cases where simple explicit formulas are known for ωg,n for small n, the
corresponding dual familyω∨g,n is actually trivial, i.e. ω∨g,n = 0 for 2g+n−2> 0. Therefore, it
appears that the existence of simple explicit formulae for the multi-differentials ωg,n depends
on the properties of the dual spectral curve with x and y exchanged. Very recently, completely
new insights concerning the relation between ωg,n and ω∨g,n for any algebraic spectral curve
were understood; see Fig. 1. Recent works in the context of this duality include [2,10,16,17,
22–26]. Understanding this relation was already considered, for instance, in [27]. The duality
between ωg,n and ω∨g,n has resolved, in an extended way, an open problem in the theory of
free probability [16], providing the functional relation between the generating series of higher-
order free cumulants and moments.

Applying this universal duality formula betweenωg,n andω∨g,n to a curve, which generates
a trivial family ω∨g,n, produces an explicit formula for ωg,n. In other words, for a trivial family
ω∨g,n, we overcome the algorithmic procedure of TR, which is recursive in the Euler character-
istic. Consequently, this explains the existence of such explicit formulas, which were generally
derived in the past using problem-specific techniques.
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P(x , y) = 0

ωg,n
ω∨g,n

x − y duality

Figure 1: The two families ωg,n and ω∨g,n which are generated from a curve
P(x , y) = 0 via TR are related through the universal x − y duality formula.

ex − F(e y) = 0

ωg,n
ω∨g,n := δn,1

B2g (1/2)
(2g)!

�

∂
2g
y
ω∨0,1
d y

�

d y
x − y duality

Figure 2: For a curve of the form ex−F(e y) = 0 (or ex−F(y)ea y = 0) the familyω∨g,n
has to be redefined, then the family ωg,n generated by TR is related to the redefined
family ω∨g,n via the universal x − y duality formula.

It is known and observed, for instance, in [26], for the Lambert curve that the x− y duality
formula does not hold in general for curves of the form P(ex , e y) = 0 which have exponential
variables. However, very important examples are exactly of this form, such as Gromov-Witten
invariants of toric Calabi-Yau 3-folds [11] and conjectured applications in knot theory [15].

This article makes progress in understanding the x − y duality formula for curves of the
form P(ex , e y) = ex − F(e y) = 0 (or ex − F(y)ea y = 0) with exponential variables, where
F is rational and a some complex number. This family of spectral curves is already a very
important subclass with different applications, such as simple Hurwitz numbers (equivalently,
linear Hodge integrals) and framed Gromov-Witten invariants ofC3 (equivalently, triple Hodge
integrals on Mg,n).

For curves of this form, the theory of TR would predict a trivial familyω∨g,n = 0 for 2g+n−2.

However, we will redefine ω∨g,1 :=
B2g (1/2)
(2g)!

�

∂
2g
y
ω∨0,1
d y

�

d y through ω∨0,1
1 and keep ω∨g,n = 0 for

n > 1 and 2g + n − 2 > 0, see Fig. 2. The coefficient Bn(x) is the Bernoulli polynomial
and appears exactly in this form in Faddeev’s quantum dilogarithm. It is conjectured that this
proposed redefinition of ω∨g,n makes the x − y duality formula work again, which is tested on
several examples.2 The idea of using the form ofω∨g,1 comes from the quantum spectral curve

P̂( x̂ , ŷ) observed by Gukov and Sulkowski [14], which will be explained along the way in this
article.

The paper is organised in the following way:
In Sec. 2, we review facts and definitions about TR, starting in Sec. 2.1 with TR itself. In Sec.
2, we will use a notation with a "tilde" (ω̃g,n and ω̃∨g,n) which are the multi-differentials defined
by TR directly to distinguish them from the later redefined ω∨g,n related to curves of the form

1After this article was published, I was informed that for transalgebraic spectral curves the same extension is
conjectured [28, Conj. 4.15], where the spectral curve has the form x(z) = M0(z)exp(M1(z)), y(z) = M2(z)/x(z)
and Mi(z) meromorphic.

2The redefinition and extension proposed in this article were further developed and proved in [29] under the
name LogTR. This is now understood as a universal extension of TR for meromorphic d x and d y , specifically
including logarithmic singularities of x and y .
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ex − F(e y) = 0 or ex − F(y)ea y = 0. In Sec. 2.2, we review some background on the quantum
spectral curve P̂( x̂ , ŷ) and how to construct the wave function from TR, which is annihilated by
the quantum spectral curve. We also discuss the interplay of the x − y duality with the wave
function, which is heuristically the Fourier/Laplace transform of the wave function. Then,
we recall how the multi-differentials can be reconstructed from the wave function through
the kernel K(x i , x j) in Sec. 2.3. This reconstruction formula is known as the determinantal
formula, which will be later compared with a special case of the x − y duality formula. Then,
we review the x − y duality formula in general in Sec. 2.4, which gives the duality between
ω̃g,n and ω̃∨g,n for an algebraic curve P(x , y) = 0. The special case where y is unramified is
discussed separately in Sec. 2.5. We prove, in this case, a new version of the formula which
highly resembles the determinantal formula, represented via a summation over permutations
σ ∈ Sn consisting just of n-cycles.

Sec. 3 considers the curve ex−F(e y) = 0 (or ex−F(y)ea y = 0), where we use the ordinary
notation without "tilde". We start with a motivating example in Sec. 3.1, which has, as a wave
function, the Euler Γ function. In Sec. 3.2, we explain and motivate the general construction
of the two families ωg,n and ω∨g,n for these specific curves. The family ω∨g,n will be defined by

ω∨g,n = δn,1
B2g (1/2)
(2g)! ∂

2g
y ω

∨
0,1, and the familyωg,n through the x− y duality formula. We propose

that for this definition, ω̃g,n generated by TR andωg,n generated by the x− y formula coincide.
In Sec. 3.3, we discuss the example of Faddeev’s quantum dilogarithm as the wave function.
Based on the work of Garoufalidis and Kashaev, we discuss some general constructions for
performing Borel resummation for the wave function for curves of the form ex − F(e y) = 0 in
Sec. 3.4. An explicit formula is given for the Borel transform.

In Sec. 4, we apply our proposed construction to curves with important enumerative mean-
ing. We start with the Lambert curve in Sec. 4.1, providing (to our knowledge) new formulas
for simple Hurwitz numbers or, equivalently, for linear Hodge integrals (using the ELSV for-
mula). In Sec. 4.2, the framed topological vertex curve is discussed, providing Gromov-Witten
invariants of C3 or equivalently triple Hodge integrals. The last example discusses stationary
Gromov-Witten invariants of P1 where explicit formulas of Pandharipande are reproduced as
examples. We also discuss, for this specific curve, that taking limits for the x − y formula is
much more convenient than taking limits for TR. This comes from the fact that TR is much
more sensitive, where, for instance, ramification points can collide or run to infinity. There-
fore, the x − y duality formula seems to be a much more universal duality than just the x − y
symplectic transformation in TR.

2 Background on topological recursion

This section will provide the necessary background on the theory of topological recursion
including the quantum spectral curve, determinantal formula and x − y symplectic duality.
We will set the notation used throughout the article focusing on x − y duality in conjunction
with the spectral curve and the quantum spectral curve. The explicit result for the x − y
duality in case of an algebraic spectral curve will be cited and explained in details to be able
to understand the extension to spectral curves of the form ex = F(e y) (or ex = F(y)ea y ,
respectively) in Sec. 3. We will define the corresponding objects in this section with "tilde"
(e.g. ω̃g,n, ω̃∨g,n, W̃g,n, Φ̃g,n, etc) through the algorithmic definition of topological recursion.

2.1 Topological recursion

We understand by the term topological recursion an algorithm which associates to a given
initial data, the so-called spectral curve, a family of multi-differentials. To be more precise, the
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spectral curve is a tuple (Σ, x , y, B), where Σ is a not necessarily compact Riemann surface,
with x , y : Σ → C are complex functions such that d x and d y are meromorphic, i.e. x , y
can have logarithms. Both functions x , y should have at most simple ramification points and
log singularities on Σ, where the ramification points of x are not ramification points of y and
vice versa (higher order ramifications are excluded due to technical reasons, see [30] for the
definition with higher order ramification points). Then, topological recursion associates to
the spectral curve (Σ, x , y, B) the multi-differentials ω̃g,n living on Σn with ω̃0,1 = y d x and
ω̃0,2 = B, where B is symmetric with double pole on the diagonal and no residue, bi-residue
1 and normalised such that the A-periods vanish.

For negative Euler characteristic χ = −2g − n + 2 < 0, all ω̃g,n are defined recursively
via [3]

ω̃g,n+1(I , z) :=
∑

βi

Res
q→βi

Ki(z, q)
�

ω̃g−1,n+2(I , q,σi(q)) +
∑

g1+g2=g
I1⊎I2=I

(gi ,Ii )̸=(0,;)

ω̃g1,|I1|+1(I1, q)ω̃g2,|I2|+1(I2,σi(q))
�

.

(1)
The following notation is used:

• I = {z1, . . . , zn} is a collection of n local coordinates z j on Σ, and I1, I2 ⊆ I (possibly
empty) disjoint subsets of I such that I1 ∪ I2 = I ,

• the ramification points βi of x are defined by d x(βi) = 0 (or given by poles of x(z) of
order greater or equal than 2),

• the local Galois involution σi ̸= id with x(q) = x(σi(q)) is defined in the vicinity of βi
with fixed point βi ,

• the recursion kernel Ki(z, q) is also locally defined in the vicinity of βi by

Ki(z, q) =
1
2

∫ q
σi(q)

B(z,•)

ω̃0,1(q)− ω̃0,1(σi(q))
.

Properties which follow (more or less directly) from the definition are

• All ω̃g,n are symmetric.

• For 2g + n− 2> 0, ω̃g,n only has poles located at the ramification points of x .

• ω̃g,n is homogeneous of degree 2− 2g − n, i.e. changing y → λy or x → λx by some
scalar λ transforms ω̃g,n→ λ2−2g−nω̃g,n.

• For 2g+n−2> 0, all ω̃g,n are invariant under symplectic transformations of the symplec-
tic form d x∧d y which leaves the ramification points βi invariant. These transformations
are generated by

(x , y)→
� ax+b

cx+d , (cx+d)2
ad−bc y

�

, where

�

a b
c d

�

∈ PSL2(C) ,

(x , y)→
�

x , y + R(x)
�

, where R(x) is any rational function.

There are several further properties which will not play any role in this article. We refer a
curious reader for instance to [3,31].
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Now, we want to fix further notation and definitions for functions used throughout the
article. We define

W̃g,n(x(z1), ..., x(zn))d x(z1)...d x(zn) := ω̃g,n(z1, ..., zn) , (2)

W̃n(x(z1), ..., x(zn)) :=
∞
∑

g=0

ħh2g+n−2W̃g,n(x(z1), ..., x(zn)) , (3)

Φ̃g,n(x(z1), ..., x(zn)) :=

∫ z1

...

∫ zn

ω̃g,n(z1, ..., zn) , (4)

Φ̃n(x(z1), ..., x(zn)) :=
∞
∑

g=0

ħh2g+n−2Φ̃g,n(x(z1), ..., x(zn)) , (5)

where the ħh-series is understood as a formal power series. The integration is just locally defined
from some base points close to z1, ..., zn, and the integration constants for Φ̃ will not play any
role. For the sake of this article, only genus zero spectral curves are considered.

The invariance property of the ω̃g,n under specific symplectic transformations plays an
important role in the theory of TR and also in the theories where TR finds its applications. A
third symplectic transformation which transforms the ω̃g,n’s and does not leave them invariant
is the x − y symplectic transformation

(x , y) 7→ (y, x) . (6)

Strictly speaking, this is a symplectic transformation up to a sign −1 which can be restored by
the homogeneity property. To clearly distinguish between ω̃g,n generated by the spectral curve
(Σ, x , y, B) or by the curve (Σ, y, x , B), we will use the notation ∨ as superscript. Therefore,
we define the ω̃∨g,n to be generated by the spectral curve (Σ, y, x , B) by the same TR algorithm
(1) but with x and y interchanged. For instance, we have ω̃∨0,1 = x d y and ω̃∨0,2 = B = ω̃0,2.

The families ω̃g,n and ω̃∨g,n of multi-differentials are dual to each other. If the family ω̃g,n

can be reconstructed from the family ω̃∨g,n through a specific formula, then the family ω̃∨g,n can
also be reconstructed from the family ω̃g,n via the same formula but x and y interchanged.

Similar to the previous definitions (with integration again defined locally and just for a
genus zero spectral curve), we will use throughout the article the following functions

W̃∨g,n(y(z1), ..., y(zn))d y(z1)...d y(zn) := ω̃∨g,n(z1, ..., zn) , (7)

W̃∨n (y(z1), ..., y(zn)) :=
∞
∑

g=0

ħh2g+n−2W̃∨g,n(y(z1), ..., y(zn)) , (8)

Φ̃∨g,n(y(z1), ..., y(zn)) :=

∫ z1

...

∫ zn

ω̃∨g,n(z1, ..., zn) , (9)

Φ̃∨n(y(z1), ..., y(zn)) :=
∞
∑

g=0

ħh2g+n−2Φ̃∨g,n(y(z1), ..., y(zn)) . (10)

The relation between all W̃g,n and W̃∨g,n will be presented in Sec. 2.4 for spectral curves with
meromorphic x , y : Σ→ C on a compact Riemann surface Σ, i.e. there exists an irreducible
polynomial P(x(z), y(z)) = 0 for z ∈ Σ. However, the relation for the first few examples can
be read off by the definitions. For (g, n) = (0,1), we have

W̃0,1(x(z)) = y(z) , W̃∨0,1(y(z)) = x(z) .
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It implies that W̃0,1 is the formal inverse of W̃∨0,1, i.e. W̃0,1(W̃∨0,1(y(z))) = y(z) and
W̃∨0,1(W̃0,1(x(z))) = x(z). For (g, n) = (0, 2), we have

W̃0,2(x(z1), x(z2)) =
B(z1, z2)

d x(z1)d x(z2)
, W̃∨0,2(y(z1), y(z2)) =

B(z1, z2)
d y(z1)d y(z2)

,

from which one concludes

W̃0,2(x(z1), x(z2)) = W̃∨0,2(y(z1), y(z2))
d y(z1)
d x(z1)

d y(z2)
d x(z2)

.

Just as a side remark, the functional relation for W̃0,2 is the second order moment-cumulant
functional relation in the theory of free probability, see [16,17,32] for more information about
the relation to the theory of free probability.

The relation between W̃g,n and W̃∨g,n can thus be interpreted as a generalization of an
inversion formula graded by the Euler characteristic 2g + n− 2 of the two integers g and n.
In the case of g = 0 and n= 1, this simply corresponds to the classical inversion of a function
W̃∨0,1(y) = x(y) and W̃0,1(x) = y(x), respectively.

2.2 Quantum spectral curve

The quantum spectral curve is an important application of TR to ordinary differential equa-
tions and its solutions. The idea of quantum spectral curve from TR could be traced back
to [33]. It was suggested for the A-polynomial by Gukov and Sulkowski [14]. For an accessi-
ble review on quantum spectral curve see [34]. The WKB solution is reconstructed from TR as
explained later, this is proved for genus zero curves in [35]. For higher genus algebraic curves,
new insight was gained in [36] and extended to hyperelliptic curves in [37, 38] and further
generalised in [39]. The perturbative WKB solution has to be extended to a non-perturbative
wave function. However, we will just review some facts about the WKB solution via TR (genus
zero spectral curves), and refer the reader to the literature mentioned above for higher genus
spectral curves.

A spectral curve (Σ, x , y, B) with rational x , y : Σ→ C and compact Σ can also be repre-
sented as the vanishing locus of a polynomial P(x , y) = 0 as mentioned before. Being more
precise, we have a complex curve of genus zero defined by

{P(x(z), y(z)) = 0 |∀z ∈ Σ} .

Now, we are interested in an operator-valued quantisation of the polynomial in a quantum
mechanical sense. The polynomial P is quantised with x → x̂ = x and y → ŷ = ħh d

d x to P̂( x̂ , ŷ),
together with the semi-classical limit limħh→0 P̂(x , y) = P(x , y). The quantisation of P to P̂ is
obviously not unique due to ambiguities by ordering the operators x̂ and ŷ and additional ħh
terms which vanish in the semi-classical limit. Nevertheless, having such a differential operator
P̂ one might ask for the wave function Ψ̃(x) which is annihilated by it, i.e.

P̂( x̂ , ŷ)Ψ̃(x) = 0 . (11)

The algorithm of TR provides a way to compute a wave function Ψ̃(x). Let (Σ, x , y, B) be a
given spectral curve of genus zero represented as P(x , y) = 0, then there exists a quantisation
P̂( x̂ , ŷ) which annihilates the (perturbative) wave function

Ψ̃(x) := exp
�

∑

g≥0,n≥1

ħh2g+n−2

n!
Φ̃g,n(x , ..., x)

�

, (12)
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where Φ̃g,n is defined in (4), and the special case Φ̃0,2 is regularised by
∫ ∫

ω̃0,2(z1, z2)−
d x(z1) d x(z2)
(x(z1)−x(z2))2

. Here, the integration constants of Φ̃ actually play some role, but
we do not go into the details. The explicit form of the quantum spectral curve can be construct
from the structure of the singularities (see [35]). For higher genus algebraic spectral curve,
the construction of the wave function from TR includes non-perturbative parts, and is much
more involved [39].

In the special case, where the polynomial is not algebraic but takes the form ex = F(e y) (or
ex = F(y)ea y , respectively), where F is rational, a quantum spectral curve was conjectured
in [14, eq. (3.20)] which annihilates the wave function constructed by TR via (12) to be of
the form

P̂(e x̂ , e ŷ) = e x̂+ ħh2 − F
�

e ŷ− ħh2
�

. (13)

However, it was already observed in [14, 40] that there are some issues if the spectral curve
ex = F(e y) does not have ramification points in x , which includes the framed topological
vertex curve with framing f = 0. These observations and comments in the literature seem not
to be resolved in the meantime, but they are highly related to the construction in Sec. 3 in
conjunction with the x − y duality.

The quantum spectral curve and the wave function can of course also be studied
from the x − y duality perspective This means there is a second quantum spectral curve
of the form P̂∨( x̂ , ŷ) with operators x̂ = ħh d

d y and ŷ = y and the semi-classical limit

limħh→0 P̂∨(x , y) = P(x , y). The dual wave function Ψ̃∨(y) is constructed again via TR but
with interchanged roles of x and y , i.e.

Ψ̃∨(y) := exp
�

∑

g≥0,n≥1

ħh2g+n−2

n!
Φ̃∨g,n(y, ..., y)

�

, (14)

where Φ̃∨g,n is defined in (9), and the special case Φ̃∨0,2 is regularised by
∫ ∫

ω̃∨0,2(z1, z2)−
d y(z1) d y(z2)
(y(z1)−y(z2))2

.

So what is now the relation between the two wave function Ψ̃(x) and Ψ̃∨(y)? The naive
suggestion would be of course that both wave functions are related via Fourier/Laplace trans-
formation, which from another perspective implies that the x − y symplectic transformation
in TR is deeply related to a Fourier/Laplace transformation.

Let us give two examples for the quantum spectral curve, the x − y duality and its interre-
lation, where the first one is almost too simple:

Example 2.1. Take the trivial spectral curve (C, x = z, y = z, dz1 dz2
(z1−z2)2

) which is represented by
the polynomial P(x , y) = x − y = 0. For this example, x and y have no ramification points
which implies that all ω̃g,n and ω̃∨g,n vanish for 2g + n− 2> 0. However, ω̃0,1 and ω̃∨0,1 are not
trivial. Just applying the previous definitions, we find

Φ̃0,1(x) =
x2

2
→ Ψ̃(x) = exp

�

x2

2ħh

�

,

Φ̃∨0,1(y) =
y2

2
→ Ψ̃∨(y) = exp

�

y2

2ħh

�

.

Both wave functions are the Gaussian function, where it is very well known that its Fourier trans-
form is again a Gaussian function. The wave functions are annihilated by the quantum spectral
curves P̂( x̂ , ŷ) = x −ħh d

d x and P̂∨( x̂∨, ŷ∨) = ħh d
d y − y, respectively.

Example 2.2. Take the simplest nontrivial example, the Airy spectral curve
(C, x = z2, y = z, dz1 dz2

(z1−z2)2
) which is represented by the polynomial P(x , y) = x − y2 = 0. In
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this example, y has no ramification points implying that all ω̃∨g,n = 0 with 2g + n−2> 0. From
the previous definitions, we find

Φ̃∨0,1(y) =
y3

3
→ Ψ̃∨(y) = exp

�

y3

3ħh

�

,

satisfying the differential equation
�

ħh
d

d y
− y2

�

Ψ̃∨(y) = 0 .

On the other hand, all ω̃g,n do not vanish since x has a ramification point at z = 0. It is very
well-known that ω̃g,n computes the ψ-class intersection numbers on Mg,n the moduli space of
complex curves with n marked points [3], which was essentially observed by Kontsevich [41] in
proving Witten’s conjecture [42]. Furthermore, the wave function generated by these ω̃g,n’s gives
actually the asymptotic expansion of the Airy function (or Bairy function, depending on the sign
of ħh) [35,43]

Ψ̃±(x) =
e∓

2
3ħh x3/2

p
2πx1/4

∞
∑

k=0

(6k)!
1296k(2k)!(3k)!

�

∓
ħh

x3/2

�k

,

where Ψ̃+(x) corresponds to the Airy function and Ψ̃−(x) to the Bairy function. The wave functions
satisfy

�

�

ħh
d

d x

�2

− x

�

Ψ̃±(x) = 0 .

The Airy (or Bairy function, respectively) can be obtained by a Fourier/Laplace transform of the
dual wave function Ψ̃∨(y), where the contour depends on the complex argument of ħh

Ψ̃±(x) =
1
p

2πħh

∫

C±

ex y/ħhΨ̃∨(y)d y .

2.3 Reconstruction of ω̃g ,n from the wave function

The reconstruction of ω̃g,n or equivalently W̃g,n is given by the determinantal formula [33]
through the kernel K(x1, x2), which by itself is constructed from all wave functions (this means
from all linearly independent solutions of the differential equation (11))

K(x1, x2) =
exp

�

∑∞
n=1

∫ x1
x2

...
∫ x1

x2
W̃n(x ′1,...,x ′n)d x ′1...d x ′n

n!

�

x1 − x2
, (15)

where one has to be very careful since the pullback to the x-space from the z-space chooses
a specific branch, or equivalently a specific solution of the quantum spectral curve. The
determinantal formula is therefore another way of representing the formal power series
W̃n =

∑

g ħh
2g+n−2W̃g,n by an explicit formula if the kernel is known. The determinantal for-

mula was recently used in combination with resurgence to derive the large genus asymptotitcs
for intersection numbers on Mg,n at subleading order [43].

Example 2.3. The Airy kernel KAir y is constructed by the Airy function Ψ̃+(x) and the B-Airy
function Ψ̃−(x) of Example 2.2 which are the two independent solutions of the differential equation
ħh2Ψ̃′′(x)− xΨ̃ = 0:

KAir y(x1, x2) =
1
ħh
Ψ̃+(x1)Ψ̃′−(x2)− Ψ̃′+(x1)Ψ̃−(x2)

x1 − x2
.

9

https://scipost.org
https://scipost.org/SciPostPhys.17.2.065


SciPost Phys. 17, 065 (2024)

Another way is to construct the kernel from its differential system (see [33] for details),
but this is beyond the scope of the article.

We want to emphasise the structure of the determinantal formula, and compare the differ-
ent structures of the determinantal formula and the x − y duality formula (18). Let K(x1, x2)
be the kernel (15) (also used in [24, eq. (3.8)]), then it was conjectured in [33] that the
correlators

W̃n(x1, ..., xn) = (−1)n−1
∑

σ∈Sn
σ=n-cycle

n
∏

i=1

K(x i , xσ(i))−
δn,2

(x1 − x2)2
, (16)

W̃1(x) = lim
x ′→x

�

K(x , x ′)−
1

x − x ′

�

, (17)

are equal to W̃n generated by TR (1). The sum over all permutations σ ∈ Sn is restricted to
permutations with one cycle of length n.

2.4 x − y duality for algebraic curves

Now, we want to recall the relation between ω̃g,n generated by the spectral curve (Σ, x , y, B)
and ω̃∨g,n generated by the spectral curve (Σ, y, x , B) with interchanged x and y . We assume
x , y to be meromorphic and have simple distinct ramification points. It turns out that it is
much more convenient to represent this functional relation in terms of W̃n and W̃∨n defined in
(3) and (8).

We use in this article the x − y formula as it appeared in [17,23] or in [25] for the special
case of genus g = 0. For this, we will need first to define the following graphs:

Definition 2.4. Let Gn be the set of connected bicoloured graphs Γ with⃝-vertices and •-vertices,
where the number of⃝-vertices is n. A graph Γ satisfies the following conditions:

- the⃝-vertices are labelled from 1, ..., n,

- edges are only connecting •-vertices with⃝-vertices,

- •-vertices have valence ≥ 2.

For a graph Γ ∈ Gn, let ri(Γ ) be the valence of the ith⃝-vertex.
Let I ⊂ {1, ..., n} be the set associated to a •-vertex, where I is the set of labels of⃝-vertices

connected to this •-vertex. Let I(Γ ) be the set of all sets I for a given graph Γ ∈ Gn.

We will abuse the notation x i = x(zi) = x i(zi) and yi = y(zi) = yi(zi) for conve-
nience. This implies by chain rule that x i depends on yi and vice versa. Thus, we understand
d yi
d x i
= d y(zi)

d x(zi)
= 1

x ′(zi)
d y(zi)

dzi
= y ′(zi)

x ′(zi)
. Then, the functional relation between the two families W̃n

and W̃∨n is the following sum over graphs (see [17,23] for more details and examples):

Theorem 2.5. Let (Σ, x , y, B) be an algebraic spectral curve, and let
W̃∨n (y1, ..., yn) :=

∑∞
g=0ħh

2g+n−2W̃∨g,n(y1, ..., yn) be generated by TR on the spectral curve

(Σ, y, x , B). Let further be S(u) = eu/2−e−u/2

u and for I = {i1, ..., in}

ĉ∨(uI , yI) :=
�

∏

i∈I

ħhuiS(ħhui∂yi
)
�

�

W̃∨n (yI)
�

,

and for I = { j, j} the special case

ĉ∨(uI , yI) := (ħhu jS(ħhu j∂y j
))(ħhu jS(ħhu j∂y))

�

W̃∨2 (y j , y)−
1

(y j − y)2

�

�

�

�

�

y=y j

.
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Ψ(x) Ψ
∨
(y)

W g,n
W
∨
g,n

K(x1, x2) K∨(y1, y2)

x − y duality

Fourier/Laplace
transformation

Figure 3: Duality interplay.

Define the following differential operator acting from the left

Ô∨(yi) :=
∑

m≥0

�

− ∂x i

�m
�

−
d yi

d x i

�

[um
i ]

exp
�

ħhuiS(ħhui∂yi
)W̃∨1 (yi)− x iui

�

ħhui
.

Then, all W̃g,n generated by TR by the spectral curve (Σ, x , y, B) are related to the W̃∨g ′,n′ via
formal power series in ħh of

W̃n(x1, ..., xn) =
∑

Γ∈Gn

1
|Aut(Γ )|

n
∏

i=1

Ô∨(x i)
∏

I∈I(Γ )
ĉ∨(uI , yI) , (18)

where the graphs Gn are defined in Definition 2.4.

This theorem is proved in [23] and provides a solution for an open problem in the theory
of TR. Actually, the theorem gives a duality between two families of correlators W̃g,n and
W̃∨g,n, since the same formula holds by interchanging x and y as well as W̃g,n with W̃∨g,n. The
functional relation of the theorem has solved simultaneously an open problem in the theory
of free probability [32] related higher order free cumulants and moments [16]. In the same
vein, it relates from a combinatorial perspective ordinary maps and fully simple maps [9,10].

Remember that the family W̃g,n gives rise to the wave function Ψ̃(x) and the dual family
W̃∨g,n to the wave function Ψ̃∨(y) via (12) and (14), respectively. Since both wave functions
Ψ̃(x) and Ψ̃∨(y) are related via Fourier/Laplace transformation, we can conclude that the
functional relation of Theorem 2.5 is the corresponding duality formula for each g and n.
Therefore, the x − y duality formula (18) is, casually speaking, a way to generate asymptot-
ically a Fourier/Laplace transformation which is graded by the Euler characteristic. At each
grading the functions W̃∨g,n are functions in several variables. Fig. 3 shows the interplay be-
tween the different dualities, the Fourier/Laplace transformation between the wave function
Ψ̃ and Ψ̃∨ as well as the x − y duality between W̃g,n and W̃∨g,n. The dashed lines show the
reconstructions mentioned before. The remaining duality between the two kernels K and K∨

was recently considered in [24] for KP integrable systems.

2.5 x − y duality for algebraic curves with unramified y

The formula becomes particularly nice and applicable if one of the families, for instance W̃∨g,n,
is trivial. An important subclass of genus zero spectral curves are curves of the form x = F(y),
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where F is rational which implies that y is unramified. Therefore, the family W̃∨g,n vanishes
identically. In this case Theorem 2.5 breaks down to:

Corollary 2.6. Consider the situation of a genus zero spectral curve with simple ramification
points for x and y is unramified, i.e. d y(z) ̸= 0 for all z ∈ Σ. In particular, we can set y(z) = z
or y(z) = 1

z . Then, all W̃∨g,n = 0 for 2g + n− 2 > 0, and therefore all ĉ∨(uI , yI) = 0 for |I | > 2.
In this specific case, the x − y formula reduces to (see [23,26] for further details)

W̃n(x1(z1), ..., x1(zn)) =
n
∏

i=1

Ô∨(yi(zi))
∑

Γ∈G2
n

∏

{i, j}∈I(Γ )

ħh2uiu j

(yi(zi)− yi(z j))2 −
ħh2

4 (ui + u j)2
, (19)

where G2
n ⊂ Gn is the set of graphs defined in Definition 2.4 with only 2-valent •-vertices just con-

necting two different⃝-vertices and at most one •-vertex connects the same pair of⃝-vertices,
or equivalently (and much simpler) G2

n is the set of connected labeled graphs with n vertices3

With the formula (19) of Corollary 2.6, one can compute all W̃g,n for any g directly. It
is not necessary any more to follow the algorithmic procedure of TR recursively in the Eu-
ler characteristic. Examples which are included in the class of spectral curves considered in
Corollary 2.6 are the enumeration of ψ-class intersection numbers [41, 42], r-spin intersec-
tion numbers [7,44], Θ-class intersection numbers and r-spin Θ-class intersection numbers on
M̃g,n [45,46] or the enumeration of genus permutations [47].

Interestingly, the x − y formula of Corollary 2.6 can be brought into a formula of exactly
the same shape as the determinantal formula (16) for algebraic curves with unramified y .
The sum over all connected labeled graphs in (19) can indeed be turned into a sum over
permutations σ ∈ Sn where σ is an n-cycle. As a consequence we get another explicit formula
with significantly less terms. The number of terms is reduced since the number of n-cycle
permutations in Sn is (n−1)!, whereas the number of connected graphs with n labeled vertices
grow much faster. Actually, the asymptotic growth of connected graphs with n labeled vertices

is 2(
n
2) = 2

n(n−1)
2 since almost all graphs with n labeled vertices are connected (see [48, p. 138]).

Proposition 2.7. Consider the situation of a genus zero spectral curve with simple ramification
points for x and y is unramified, i.e. d y(z) ̸= 0 for all z ∈ Σ. In particular, we can set y(z) = z
or y(z) = 1

z . Then, all W̃g,n generated by TR from this spectral curve are

W̃g,n(x1(z2), ..., xn(zn)) = [ħh
2g+n−2]

n
∏

i=1

Ô∨(yi(zi))ħhui

∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

yi(zi) +
ħhui
2 − yσ(i)(zσ(i)) +

ħhuσ(i)
2

,

(20)
and in the special case n= 1, the sum over all n-cycles is defined to be 1

ħhu1
.

Proof. The aim is to transform the rhs of (19) into the rhs of (20). The first step is to rewrite

ħh2uiu j

(yi − y j)2 −
ħh2

4 (ui + u j)2
=
(yi − y j)2 −

ħh2

4 (ui − u j)2

(yi − y j)2 −
ħh2

4 (ui + u j)2
− 1 ,

where the subtraction of 1 corresponds to just taking connected correlators which was in prin-
ciple already used to derive Corollary 2.6 (see [23,26]).

Then, we go from connected correlators W̃g,n(x1, ..., xn) to disconnected
◦

W̃ g,n(x1, ..., xn)
defined as sum over all partitions

◦
W̃ n(x I) :=

∑

λ⊢I

l(λ)
∏

i=1

W̃|λi |(xλi
) . (21)

3See for instance A001187 on OEIS, where the number of connected labeled graphs with n vertices is listed.
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We achieve an equation for the disconnected
◦

W̃ g,n, where the sum over all connected graphs
turns into the product

◦
W̃ n(x1(z1), ..., x1(zn)) =

n
∏

i=1

Ô∨(yi(zi))
∏

1≤i< j≤1

(yi − y j)2 −
ħh2

4 (ui − u j)2

(yi − y j)2 −
ħh2

4 (ui + u j)2
. (22)

Combining the factor 1
ħhui

from Ô∨(yi(zi)) and the product
∏

1≤i< j≤n, we can write it in the
form of the determinant of the Cauchy matrix

n
∏

i=1

1
ai + bi

∏

i< j

(ai − b j)(a j − bi)

(ai + b j)(a j − bi)
= det

�

1
ai + b j

�

=
∑

σ∈Sn

sign(σ)
∏

i

1
ai + bσ(i)

, (23)

with ai = −yi+
ħhui
2 and b j = y j+

ħhu j
2 . Restricting to the connected part, which is nothing than

the Möbius function for the partially ordered set of partitions of {1, ..., n}, all terms coming
from permutations σ ∈ Sn with more than one cycle vanish. The remaining n-cycle permuta-
tions σ ∈ Sn have parity n−1 which gives an overall factor of sign(σ) = (−1)n−1. This proves
the assertion.

Applying this formula to some known interesting example like the Airy curve, r-spin Airy
curve and Lambert curve will be provided:

Example 2.8. For the Airy curve (C, x = z2, y = z, dz1 dz2
(z1−z2)2

), Proposition 2.7 yields the following

representation for W̃g,n which are the same as computed by TR:

W̃g,n(x1(z1), ..., xn(zn)) (24)

= [ħh2g+n−2]
n
∏

i=1





∑

mi

�

−
∂

∂ (zi)2

�mi

[umi
i ]

e
ħh2u3

i
12

2zi





∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

zi +
ħhui
2 − zσ(i) +

ħhuσ(i)
2

.

The ψ-class intersection numbers are extracted from W̃g,n via

W̃g,n(x1(z1), ..., xn(zn)) =
∑

k1,...,kn=3g+n−3

〈ψk1
1 ...ψkn

n 〉g,n

n
∏

i=1

(2ki + 1)!!

2z2ki+3
i

. (25)

An explicit formula for the intersection numbers can be extracted by taking the Laplace transfor-

mation of (25) with 1p
2π

∫∞
−∞ d x(zi)

e−µi z2
i

z
2ki+3
i

=
µ

ki+1/2
i

(2ki+1)!! for the rhs, which can further be represented

as a geometric series. For the lhs, we insert (24) and perform integration by parts mi times (see
a detailed discussion for this in [26]) to finally get

­ n
∏

i=1

p
µi

1−µiψi

·

g,n
= [ħh2g+n−2]

n
∏

i=1





e
ħh2µ3

i
12

p
2π

∫ ∞

−∞
dzie

−µiz
2





∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

zi +
ħhµi
2 − zσ(i) +

ħhµσ(i)
2

,

where the contours are on the real line with a small semi circle above the origin. This formula
coincides with the formula which can be found in [49,50].

Example 2.9. The r-spin Ariy spectral curve is a generalisation of the form
(C, x = zr , y = z, dz1 dz2

(z1−z2)2
). This spectral curve has for positive integer r greater than 2 higher

order ramification. The corresponding version of TR which keeps track of higher order ramifica-
tion was formulated in [30]. A new cohomological class cW (a1, ..., an) ∈ H•(Mg,n,Q) of degree
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s = (r−2)(g−1)+
∑

i(ai−1)
r (which has to be a positive integer s ∈ N) was defined by Witten in [51]

for the moduli space complex curves associated with an r-spin structure. A conjecture of Witten
concerning the intersection number 〈τk1,a1

...τkn,an
〉g,n = 〈cW (a1, ..., an)ψ

k1
1 ...ψkn

n 〉g,n of this class
cW (a1, ..., an) with ψ-classes relates to the r-KdV hierarchy, which was proved [52]. We use the
notation of [43], where the relation of these intersection numbers to TR and the determinan-
tal formula was discussed. The correlators W̃g,n computed by higher order TR are related to the
intersection numbers via

W̃g,n(x1(z1), ..., xn(zn)) =
∑

0≤k1,...,kn
1≤a1,...,an≤r−1

n
∏

i=1

(−r)g−1−|k|〈τk1,a1
...τkn,an

〉g,n

n
∏

i=1

(rki + ai)!(r)

rz r(ki+1)+ai
i

, (26)

where m!(r) is the r-factorial defined recursively for m> r by m!(r) = m(m− r)!(r) and m!(r) = m
for 0< m≤ r.

On the other hand, assuming Proposition 2.7 is true for TR with higher order ramification
(which is just conjectured at the moment, see also [23, Remark 5.8]) yields the following repre-
sentation for W̃g,n (note that applying the higher order generalisation of TR from [30] is quite
tedious to use)

W̃g,n(x1(z1), ..., xn(zn)) = [ħh2g+n−2]
n
∏

i=1





∑

mi

�

−
∂

∂ (zi)r

�mi

[umi
i ]

e
(zi+
ħhui
2 )

r+1−(zi−
ħhui
2 )

r+1

ħh(r+1) −zr
i ui

rzr−1
i





×
∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

zi +
ħhui
2 − zσ(i) +

ħhuσ(i)
2

. (27)

Again, taking the Laplace transformation of (26) with
1

Γ (1− ai
r )

∫∞
0 d x i

e−µi xi

x
ki+ai/r+1
i

= (−1)ki
rkiµ

ki+ai/r
i

(rki+ai)!(r)
for each i, we extract the intersection number. The

lhs behaves nicely under the Laplace transformation as described in [26] such that we conclude

∑

1≤a1,...,an≤r−1

­

cW (a1, ..., an)
n
∏

i=1

Γ (1− ai
r )µ

ai/r
i

1−µiψi

·

g,n
(−r)g−1

= [ħh2g+n−2]
n
∏

i=1

�

∫ ∞

0

dzie
−
(zi+
ħhµi

2 )r+1−(zi−
ħhµi

2 )r+1

ħh(r+1)

�

∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

zi +
ħhµi
2 − zσ(i) +

ħhµσ(i)
2

. (28)

This formula recovers the formula of Brezin and Hikami [44,53], which can be used in the n= 1
case to derive more explicit formulas [54,55].

Note that the formula (28) depends on the rhs continuously on r, whereas using higher order
TR [30] to derive explicit values for these intersection numbers needs a fixed integer r correspond-
ing to the order of ramification. When n> 1, the integration contours are shifted slightly relative
to each other.

Example 2.10. The Lambert spectral curve [4, 56] computes simple Hurwitz numbers which
due to the ELSV formula to linear Hodge integrals on Mg,n. The spectral curve takes the form

(C, x = z − log z, y = log z, dz1 dz2
(z1−z2)2

, where y was shifted by x to make the x − y formula
applicable, see [26] for details. Let ck(E) be the kth Chern class of the Hodge bundle E and
Λ(α) = 1+

∑g
k=1(−1)kα−kck(E). Then, the correlators generated by TR compute the intersection

numbers of the Hodge classes in the following way

W̃g,n(x1(z1), ..., xn(zn)) =
∑

k1,...,kn≥0

n
∏

i=1

kki+1
i

ki!

­

Λ(1)
∏n

i=1(1− kiψi)

·

g,n
eki x i(zi) . (29)
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Since y = log z, we can not use the formula from Corollary 2.6 and Proposition 2.7. However
assuming that Thm 2.5 holds for this curve,4 computations analogous to Corollary 2.6 and the
proof of Proposition 2.7 with y = log z provide the formula (Cauchy determinant has to be used
with ai = zie

ħhki/2 and b j = −z je
−ħhki/2)

W̃g,n(x1(z1), ..., xn(zn)) (30)

= [ħh2g+n−2]
n
∏

i=1

�

∑

mi

�

−
∂

∂ x i(zi)

�mi

[umi
i ]

eui(S(ħhui)−1)zi

1− zi

�

∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

zie
ħhki
2 − zσ(i)e−

ħhkσ(i)
2

.

Taking now the Laplace transformation of (29) with contour around the origin by
Reszi

e(ui−µi)x i(zi)d x i(zi) = δµi ,ui
extracts the intersection number. On the other hand, applying

this Laplace transformation to (30) as described in [26] yields finally

∏n
i=1

k
ki+1
i
ki !

­

Λ(1)
∏n

i=1(1−kiψi)

·

g,n
= Reszi=0[ħh2g+n−2]

∏n
i=1

dzi e
ki zi S(ħhki )

z
ki
i

∑

σ∈Sn
σ=n-cycle

∏n
i=1

1

zi e
ħhki
2 −zσ(i)e

−
ħhkσ(i)

2

.

The difference to the formula already appearing in [26] is that the sum is over n-cycle permutations
rather than over connected labelled graphs.

3 x − y duality for curves of the form ex = F(ey) or ex = F(y)eay

It was already observed in [14, 40] that TR possess some issues with curves of the form
e y = F(ex) which are for instance the framed topological vertex curve with framing f = 0.
To understand on a very simple example that the x − y symplectic transformation formula is
directly related to this observation, we will present an almost trivial example related to the
Euler Γ -function as wave function of the quantum spectral curve. This example carries already
all information needed to understand the general formalism which makes the x − y formula
applicable to the curves under consideration.

In this section we switch to a notation without "tilde", and will explain in Sec. (3.2) how
these objects are defined in detail. Assume ωg,n and ω∨g,n are given (the explicit definition
of these objects will be given in Sec. (3.2)), then the relation to Wg,n, Wn, W∨g,n, W∨n , Φg,n,
Φn, Φ∨g,n, Ψ(x) and Ψ∨(y) is given as before (2)-(5), (7)-(10), (12) and (14) by just removing
"tilde".

3.1 The Γ -wave function

Just for this subsection (due to pedagogical reasons), we consider the spectral curve (P1, x , y, B)
of the form e y = ... (rather than ex = ....) with

e y = x , (31)

with the parametrisation
x = z , y = log z .

Quantising naively this spectral curve via x → x̂ = x and y → ŷ = ħh ∂
∂ x leads to the formal

differential operator eħh
∂
∂ x − x which annihilates formally the Euler Γ function

(eħh
∂
∂ x − x)Γ

�

x
ħh

�

= 0 ,

4At the time this article was written, this was just a conjecture which was proved later after submission in [29].
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where we have used the action eħh
∂
∂ x f (x) = f (x +ħh) and Γ (1+ x) = xΓ (x). Note this is just a

formal observation and all functions are understood in terms of formal expansions in ħh. The
asymptotic5 (not convergent) expansion of the logarithm of the Γ function at infinity is very
well-known in terms of Bernoulli numbers

log Γ
�

x
ħh

�

∼
x
ħh

log
x
ħh
−

x
ħh
−

1
2

log
x
ħh
+

1
2

log 2π+
∞
∑

k=2

Bkħhk−1

k(k− 1)xk−1
.

Comparing this to the construction of the wave function Ψ̃(x) via ω̃g,n as defined in Sec. 2.2,
we find heuristic arguments that the ω̃g,n should actually not vanish for 2g + n− 2 > 0 if the
wave function is constructed as suggested in Sec. 2.2 . However, applying TR to the curve
defined in (31) has vanishing ω̃g,n = 0 for all 2g + n−2> 0, since x(z) = z is unramified, i.e.
d x(z) ̸= 0 for all z ∈ P1.

Having the x− y symplectic transformation in mind, we apply TR for the curve with x and
y exchanged. In this situation, we find also vanishing ω̃∨g,n = 0 for all 2g + n− 2 > 0 since
y(z) = log z has no algebraic ramification point. After having swapped x and y , consider
heuristically the quantum spectral curve with the quantisation x → x̂ = ħh ∂

∂ y and y → ŷ = y .
Direct computation shows

�

e y −ħh
∂

∂ y

�

e
e y
ħh = 0 ,

where the logarithms of the wave function has no contributions at order ħhn and n≥ 0, which
aligns with the observation that all ω̃∨g,n = 0 for 2g + n− 2> 0.

We conclude that there is an obvious mismatch by naively trying to construct the wave
function from the correlators ω̃g,n generated by TR from the curve (31). However, we show
that the x − y symplectic transformation formula resolves this problem in the following way.

Now we change the notation to ωg,n without "tilde". Consider the spectral curve (31)
with ω∨g,n ≡ 0 for 2g + n − 2 > 0, then we define all ωg,n through the x − y symplectic
transformation formula (18) by replacing ω̃∨g,n by ω∨g,n, which means replacing W̃∨g,n by W∨g,n.

The first examples already shows that Wg,n =
ωg,n

d x1...d xn
does not vanish for 2g + n− 2> 0 with

n = 1. It turns out that the corresponding wave function constructed as in Sec. 2.2 from this
ωg,n is the Γ -function. More precisely, we have

Ψ(x) =
Γ ( x
ħh +

1
2) ·ħh

x
ħh

p
2π

,

which is annihilated by the operator

P̂(x ,ħh∂x) = eħh∂x − x −
ħh
2

, (32)

which is in accordance with the conjecture by Gukov and Sulkowski (13).
To see this, take x = z and y = log z. We assume that all W∨g,n = 0 for 2g + n − 2 > 0

since y is unramified. Consider the cases (g, n) = (g, 1). Apply the x − y duality formula of
Corollary 2.6 for Wg,1

Wg,1(x) = [ħh2g−1]
∑

k

(−∂x)
k[uk]

exp(xu(S(ħhu)− 1))
ħhuS(ħhu)

(−1)
x

,

5Note an asymptotic expansion at x = 0 for the form f (x) ∼
∑

n an xn satisfies | f (x)−
∑N

n=0 an xn| ∈ O(xN+1)
where an can have factorial growth.
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where S(x) = ex/2−e−x/2

x = 1 + x2

24 + .... Integrating once with respect to x gives
Φg,1(x) =

∫

Wg,1(x)d x which changes just a factor of u. We have as a formal power series

Φg,1(x) = [ħh2g−1]
∑

k

(−∂x)
k[uk]

exp(xu(S(ħhu)− 1))
ħhu2S(ħhu)

(−1)
x

.

Note expanding the exponential in ħh has a higher power of u than of x . This means that
after acting with (−∂x)k[uk] on it, this term vanishes. In summary, the exponential does only
contribute as a 1. We find

Φg,1(x) = [ħh2g−1]
∑

k

(−∂x)
k[uk]

1
ħhu2S(ħhu)

(−1)
x

= [ħh2g−1]
∑

k

(−∂x)
k[uk]

1
ħhS(ħhu)

(x − x log x)

= [ħh2g−1]
eħh/2∂xħh∂x

ħh(eħh∂x − 1)
(x − x log x)

= [ħh2g−1]eħh/2∂x

�

x/ħh log x/ħh− x/ħh−
1
2

log x/ħh+
∞
∑

k=2

Bk

k(k− 1)(x/ħh)k−1

�

+
x
ħh

logħh

= [ħh2g−1] log Γ
�

x
ħh
+

1
2

�

+
x
ħh

logħh−
1
2

log 2π ,

which coincides with the Γ function. Next, we argue that all Wg,n with n> 2 and 2g+n−2> 0
vanish. The poles at the diagonal vanish due to the argument in [23, Proposition 4.6] (nothing
changes by including logarithms). The only possible pole would be at x i = 0 which is generated
by the term d yi

d x i
, however the expansion of the exponential yields factors of x i together with

factors of u2+n
i . These generate higher derivatives with respect to x i . So, we use the same

argument as before which means we have terms of the form ∂ n+k
x i

xn
i , where k > 0. An explicit

computation is very cumbersome and there is no new insight.
In conclusion, the wave function is constructed by just Wg,1(x)

logΨ(x) =
∞
∑

g=0

ħh2g−1Φg,1(x) = log Γ
�

x
ħh
+

1
2

�

+
x
ħh

logħh−
1
2

log 2π .

Via the functional equation of the Γ function, the quantum spectral curve (32) is also derived.

Remark 3.1. The dual wave function is

Ψ∨(y) = exp

�

∑

g,n

ħh2g+n−2

n!
Φ∨g,n(y, ..., y)

�

= exp
�

e y

ħh
−

1
2

y
�

,

since Φ∨0,2(y, y) = −y. It is annihilated by P̂∨(ħh∂y , y) = e y−ħh∂y−
ħh
2 . Its formal Fourier/Laplace

transform with an appropriate contour and ħh chosen in an appropriate region in the complex
plane is equal to the wave function Ψ(x)

1
p
ħh2π

∫

e
�

e y
ħh −

1
2 y
�

︸ ︷︷ ︸

=Ψ∨(y)

e−x y/ħhd y =
1
p
ħh2π

∫

e−t t x/ħh−1/2ħhx/ħh+1/2d t =
Γ ( x
ħh +

1
2)ħh

x/ħh

p
2π

︸ ︷︷ ︸

=Ψ(x)

,

where we have substituted e y

ħh = −t.
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We summarise the previous observation in the following way. TR implies that both families
ω̃g,n and ω̃∨g,n vanish for the spectral curve (31). However, constructing the wave functions
from these trivial families ω̃g,n and ω̃∨g,n gives wrong results. Now, assuming that the family
ω∨g,n = ω̃

∨
g,n is trivial and letting ωg,n be defined by the x − y duality formula produces a

non-vanishing family ωg,n which generates the correct wave function. Therefore, one of the
families should actually not be trivial even though TR implies it.

3.2 General construction

We propose the following extension of the x − y formula for spectral curves of the form
ex = F(e y) (or ex = F(y)ea y) with exponential variables having, a priori from TR perspective,
one trivial family of correlators ω̃∨g,n = 0. The formalism extends the trivial family ω̃∨g,n toω∨g,n
by a version of the asymptotic series of Faddeev’s quantum dilogarithm [57]. The connection
to Faddeev’s quantum dilogarithm will be explained in the next subsection.

We define for the spectral curve ex = F(e y) (or ex = F(y)ea y) the correlators

W∨g,1(y) :=
B2g(1/2)

(2g)!
∂ 2g

y (W
∨
0,1(y)) , (33)

where W0,1(y) = x(y) = log F(e y). The coefficient Bn(x) is the nth Bernoulli polyno-
mial, and more precisely the coefficient appearing (33) is the 2g coefficient of the function

1
S(x) =

x
ex/2−e−x/2 , i.e. [x2g] x

ex/2−e−x/2 =
B2g (1/2)
(2g)! . Note that this coefficient already appeared in

the expansion of the Γ function before.
Now we define all Wg,n through the x − y symplectic transformation formula (18) which

are in general nontrivial with poles at the ramification points of x for 2g + n− 2> 0.

Now, we have the following proposal (which is conjectural an checked for many examples):

If we have a spectral curve of the form ex = F(e y) (or ex = F(y)ea y) with F rational and
simple algebraic ramification points for x , then the correlators ω̃g,n computed by TR via
(1) coincide with the correlators ωg,n from the x − y formula (18) where W∨g,1 is defined
by (33), i.e.

ω̃g,n =ωg,n .

Remark 3.2. When this paper was finished, I was informed by Alexander Alexandrov, Boris By-
chkov, Petr Dunin-Barkowski, Maxim Kazarian, and Sergey Shadrin that this proposal is in some
sense a special case of the results in [1, 2]. However, it was not formulated in this way directly
in the past. An equivalent version of the explicit formulas (34) or (35) were instead directly de-
rived and proved to satisfy TR, and not taken as a consequence of the proposed extension of the
x− y duality formula. Therefore, this paper still provides a new perspective on the topic revolving
around the x − y duality in general.
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Considering (33), we find, as a consequence of the x − y duality formula, Corollary 2.6, and
Proposition 2.7, the explicit form

Wn(x1, ..., xn) =
n
∏

i=1

∑

mi≥0

�

−
∂

∂ x i

��

−
∂ yi

∂ x i

�

[umi
i ]

× exp

 

∞
∑

g=0

ħh2g−1(Φ∨g,1(yi +ħhui/2)−Φ∨g,1(yi −ħhui/2))− x iui + yi

!

×
∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

e yi+
ħhki
2 − e yσ(i)−

ħhkσ(i)
2

, (34)

for curves of the form ex i = F(e yi ).
In case of curves of the form ex i = F(yi)ea yi , we have the minor change

Wn(x1, ..., xn) =
n
∏

i=1

∑

mi≥0

�

−
∂

∂ x i

��

−
∂ yi

∂ x i

�

[umi
i ]

× exp

 

∞
∑

g=0

ħh2g−1(Φ∨g,1(yi +ħhui/2)−Φ∨g,1(yi −ħhui/2))− x iui

!

×
∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

yi +
ħhki
2 − yσ(i) +

ħhkσ(i)
2

, (35)

where Φ∨0,1(y) =
∫

x d y =
∫

log F(y)d y and Φ∨g,1(y) =
B2g (1/2)
(2g)! ∂

2g
y (Φ∨0,1(y)).

Note that the argument of the exponential in both expressions has the following equivalent
representation:

∞
∑

g=0

ħh2g−1(Φ∨g,1(y +ħhu/2)−Φ∨g,1(y −ħhu/2))− xu=

�

S(uħh∂y)

S(ħh∂y)
− 1

�

u x(y) ,

where we remind S(x) = ex/2−e−x/2

x . The form is very similar to the original formulation of the
x − y duality formula appearing in [2,58].

Let us justify the choice of (33) with a prediction for the quantum spectral curve of the
form ex = F(e y) by Gukov and Sulkowski [14, (3.20)], who conjecture

P̂∨( x̂ , ŷ) = e x̂− ħh2 − F
�

e ŷ+ ħh2
�

,

where the operators are x̂ = ħh∂y and ŷ = y . The corresponding wave function Ψ∨(y) will
therefore satisfy the functional relation

Ψ∨(y +ħh)e−
ħh
2 − F

�

e y+ ħh2
�

Ψ∨(y) = 0 ,

or equivalently (after shifting y → y − ħh2 and renormalising the wave function
Ψ∨,ren(y) = Ψ∨(y)e−y/2, which is essentially subtracting the contribution of Φ∨0,2)

Ψ∨,ren
�

y +
ħh
2

�

− F(e y)Ψ∨,ren
�

y −
ħh
2

�

= 0 .

Now, it becomes obvious that the logarithm of the renormalised wave function together with
the action of the formal derivative e

ħh
2 ∂y − e

ħh
2 ∂y satisfies

(e
ħh
2 ∂y − e−

ħh
2 ∂y ) logΨ∨,ren(y) = logΨ∨,ren

�

y +
ħh
2

�

− logΨ∨,ren
�

y −
ħh
2

�

= log F(e y) .
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Inverting formally the operator (e
ħh
2 ∂y − e

ħh
2 ∂y ) and adding on the rhs 1= ∂y∂

−1
y yields

logΨ∨,ren(y) =
1

ħhS(ħh∂y)

∫

log F(e y)d y =
1

ħhS(ħh∂y)
Φ∨0,1(y) , (36)

where S(t) = et/2−e−t/2

t . Expanding both sides in a formal power series in ħh, we identify the

terms of order ħh2g−1 in the lhs (which is Φ∨g,1(y)) with
B2g (1/2)
(2g)! ∂

2g
y (Φ∨0,1(y)) from the rhs, under

the assumption that all Φ∨g,n(y) with n > 1 vanish (except Φ∨0,2(y) which contributed to the
renormalisation).

3.3 Faddeev’s quantum dilogarithm and x − y duality

The quantum dilogarithm [57] (see also [59–61] and references therein for further informa-
tion) is a special function which plays an important role in quantum Teichmüller theory and
complex Chern-Simons theory. The quantum dilogarithm is defined by

ϕ̃b(x) = exp

�∫

R+iϵ

e−2i x t

4 sinh(t b) sinh(t/b)
d t
t

�

.

The Fourier transform is given by (see for instance [62, eq. (A.16)])

∫ ∞

−∞
ϕ̃b(x)e

2πi y x d x =
e−

πi
12 (3+b2+b−2)−πy(b+b−1)

ϕ̃b

�

− y − i
2(b+ b−1)

� . (37)

For our purpose, it is convenient to use the following representation after variable transforma-
tion

ϕħh(x) := ϕ̃q ħh
2πi
(x/

p

−ħh2πi) = exp

�∫

ex t

S(tħh)(eiπt − e−iπt)
d t
ħht2

�

, (38)

which satisfies ϕħh(x) =
1

ϕ−ħh(x)
and the functional relation

ϕħh

�

x −
ħh
2

�

= (1+ ex)ϕħh

�

x +
ħh
2

�

, (39)

and has the asymptotic expansion

logϕħh(x)∼
∞
∑

g=0

ħh2g−1
B2g(1/2)

(2g)!
∂ 2g

x Li2(−ex) =
1

ħhS(ħh∂x)
Li2(−ex) , (40)

which is exactly of the same form as the new defined family of W∨g,1 with W∨0,1(y)= log(−1−e y).
Thus to make the connection to TR, we want to study the spectral curve

ex + e y + 1= 0 , (41)

which is symmetric between x and y . This curve is very special, since the curve can be written
as ex = F(e y) and e y = F(ex). The general construction from Sec. 3.2 tells us that both Wg,1
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and W∨g,1 should not vanish and actually be

Φ0,1(x) =

∫

y d x = xπi − Li2(−ex) , (42)

Φg,1(x) =
B2g(1/2)

(2g)!
∂ 2g

x (Φ0,1(x)) , (43)

Φ∨0,1(y) =

∫

x d y = yiπ− Li2(e
−y) , (44)

Φ∨g,1(y) =
B2g(1/2)

(2g)!
∂ 2g

y (Φ
∨
0,1(y)) . (45)

Now, we want to check if this aligns with the proposed x − y duality formula. Therefore, take
(34) for n= 1 which is

Wg,1(x) = [ħh2g−1]
∑

m≥0

�

−
∂

∂ x

�m�

−
∂ y
∂ x

�

× [um]
exp

�

∑∞
k=0ħh

2k−1(Φ∨k,1(y +ħhu/2)−Φ∨k,1(y −ħhu/2))− xu
�

ħhuS(ħhu)
, (46)

whereΦ∨g,1 is given by (45). Comparing now the lhs with Wg,1(x) of (44), we are expecting that

the rhs computes to
B2g (1/2)
(2g)! ∂

2g
x (W0,1(x)). This is already generated if we set the exponential

to be 1, since

[ħh2g−1]
∑

m≥0

�

− ∂
∂ x

�m �
− ∂ y
∂ x

�

[um] 1
ħhuS(ħhu) =

B2g (1/2)
(2g)! ∂

2g+1
x (Φ0,1(x)) =

B2g (1/2)
(2g)! ∂

2g
x (W0,1(x)) .

Next, we multiply (46) by ħh2g−1 and sum over g. Acting with eħh∂x/2 − e−ħh∂x/2 on both sides
generates for the lhs (if Wg,1(x) = ∂xΦg,1(x) of (43))

∞
∑

g=0

ħh2g−1(Wg,1(x +ħh/2)−Wg,1(x −ħh/2)) = ∂x
eħh∂x/2 − e−ħh∂x/2

eħh∂x/2 − e−ħh∂x/2
W0,1(x) =

∂ y
∂ x

.

Whereas on the rhs the action of eħh∂x/2− e−ħh∂x/2 cancels against the S(ħhu) in the denominator
and we obtain the following statement:

−
∂ y
∂ x
= [ħh2g]

∑

m≥0

�

−
∂

∂ x

�m�

−
∂ y
∂ x

�

[um]exp

�∞
∑

k=0

ħh2k−1(Φ∨k,1(y +ħhu/2)−Φ∨k,1(y −ħhu/2))− xu

�

,

with ex + e y +1= 0 and Φ∨g,1 given by (45). This means that every order ħh2g with g > 1 vanish
identically. This was tested with computer algebra system up to genus g = 5, and it seems to
be completely non trivial.

One can summarise the previous computation in the following statement:
The x − y duality formula sends coefficients of the quantum dilogarithm to coefficients of the
quantum dilogarithm in a nontrivial way.

Next, we discuss compatibility with the quantum spectral curve. Both wave functions Ψ(x)
and Ψ∨(y) can directly be constructed from Φg,1(x) and Φ∨g,1(y) since all other Φ(∨)g,n = 0 for
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n≥ 2 except for Φ(∨)0,2 . We deduce

logΨ(x) =
1
2

x +
iπ
2
+

xπi
ħh
+
∞
∑

g=0

(−ħh)2g−1
B2g(1/2)

(2g)!
∂ 2g

x (Li2(−ex)) ,

logΨ∨(y) =
1
2

y +
iπ
2
+

yπi
ħh
+
∞
∑

g=0

(−ħh)2g−1
B2g(1/2)

(2g)!
∂ 2g

y (Li2(−e y)) ,

where the first two terms for each wave function come fromΦ(∨)0,2 . Due to the functional relation

of the quantum dilogarithm ϕ(x) (39) and Ψ(x) = ϕ−ħh(x)e
x
2+

xπi
ħh , we find that Ψ(x) satisfies

(1+ ex+ħh/2)Ψ(x) +Ψ(x +ħh)e−ħh/2 = 0 ,

implying that the quantum spectral curve of (41) reads

P̂( x̂ , ŷ) = 1+ e x̂+ħh/2 + e ŷ−ħh/2 . (47)

This obviously aligns with the prediction of Gukov and Sulkowski (13). It is straightforward

to check that the dual wave function Ψ∨(y) = ϕħh(y)e
y
2+

yπi
ħh satisfies

(1+ e y−ħh/2)Ψ∨(y) +Ψ∨(y −ħh)eħh/2 = 0 ,

where the quantisation is x̂ = −ħh∂y .
Last but not least, we might check if Ψ(x) and Ψ∨(y) are related via Fourier/Laplace trans-

formation. Using the previously mentioned identities, we compute
∫

Ψ(x)e−
x y
ħh d x =

∫

ϕ−ħh(x)e
x
2+

xπi
ħh e−

x y
ħh d x

=

∫

ϕ̃p−ħh/(2πi)(x/
p

ħh2πi)e
x
ħh (
ħh
2+πi−y)d x

=
p

ħh2πi

∫

ϕ̃q −ħh
2πi
(x)e

x
ħh
p
ħh2πi( ħh2+πi−y)d x

=
p

ħh2πi
e−

πi
12 (3−

ħh
2πi−

2πi
ħh )−π

ħh
2+πi−y
p
ħh2πi

(
q

−ħh
2πi+

q

2πi
−ħh )

ϕ̃q −ħh
2πi

�

ħh
2+πi−y
p
ħh2πi

+ i
2

�

q

−ħh
2πi +

q

2πi
−ħh

��

= C ·
e

y
2+

yπi
ħh

ϕ−ħh(−y)
= C · e

y
2+

yπi
ħh ϕħh(y) = C ·Ψ∨(y) ,

where C is a constant independent of y and not important for us, since it would be related to
the integration constant of Φ∨(y) which we have not fixed. In the first step we have inserted
Ψ(x) = ϕ−ħh(x)e

x
2+

xπi
ħh , in the second step we have replaced ϕ through ϕ̃ via (38), in the

third step we did the variable transformation x → x
p
ħh2πi, in the fourth step we applied

the Fourier transform (37) of the quantum dilogarithm, in the fifth step we have used the
identity ϕħh(x) =

1
ϕ−ħh(x)

which gave finally in the last step the wave function Ψ∨(y) up to an
normalisation constant depending on ħh.

3.4 Resurgence for curves of the form ex = F(e y)

Computing the wave function Ψ(x) or Ψ∨(y) (or more precisely the log of the wave function)
from the correlator ωg,n or ω∨g,n give an asymptotic expansion in ħh which is in general not

22

https://scipost.org
https://scipost.org/SciPostPhys.17.2.065


SciPost Phys. 17, 065 (2024)

convergent. The spectral curves considered in this paper of the form ex = F(e y) possess a
particular form, for which the Borel transform of the log of the wave function Ψ∨(y) can be
computed. We will essentially just apply the result [61, Prop. 2.2]. The proposition states that
for a given asymptotitic series of the form

φ f (τ, y) =
∞
∑

g=1

B2g(1/2)

(2g)!
f (2g)(y)(2πiτ)2g−1 ,

with f analytic on y for |Im(y)|< π, the Borel transfroam takes the form

B[φ f (τ, y)](ξ) =
i

2π

∞
∑

g=1

(−1)g

g2

�

f ′′
�

y +
ξ

n

�

+ f ′′
�

y −
ξ

n

��

.

Applying this to the previous construction of the wave function Ψ∨(y), we set ħh = 2πiτ and
f (y) = Φ∨0,1(y) =

∫

log F(e y)d y and derive the Borel transform

B[φΦ∨0,1
(
ħh

2πi
, y)](

ξ

2πi
) =

i
2π

∞
∑

g=1

(−1)g

g2

�

F ′(e y+ ξ
2πin )e y+ ξ

2πin

F(e y+ ξ
2πin )

+
F ′(e y− ξ

2πin )e y− ξ
2πin

F(e y− ξ
2πin )

�

.

We conclude that the wave function Ψ∨(y) takes the form (by the Laplace transform of the
Borel transform, which is not an aymptotic expression in ħh any more)

logΨ∨(y) =
y
2
+

iπ
2
+
Φ∨0,1(y)

ħh
+

1
2πi

∫ ∞

0

dξe−ξ/ħhB
�

φΦ∨0,1

�

ħh
2πi

, y
���

ξ

2πi

�

.

If we want to analyse the precise analytic properties, for instance poles in the Borel plane, the
function F of the spectral curve ex = F(e y) should be specified.

4 Examples and consequences

4.1 Lambert curve

The Lambert curve is a simple example which shows already how the x− y should be adjusted
according to Sec. 3.2. The Lambert curve is an important example since it enumerates simple
Hurwitz numbers [4] or equivalently by the ELSV formula simple Hodge integrals over Mg,n.
It was observed and discussed in [26] that the spectral curve of the form

x(z) = z − log z , ỹ(z) = log z → x = e ỹ − ỹ , (48)

can be applied to the ordinary x − y duality formula and generates the same W̃g,n as TR, see
also Example 2.10 for this.

However, this curve differs from the curve of Bouchard and Marino by the symplectic trans-
formation ỹ → y = ỹ + x which leaves the correlators W̃g,n (except for W̃0,1) invariant (see
Sec. 2.1). Note that for the curve (48) the logarithmic singularity of x at z = 0,∞ is cancelled
by the logarithmic singularity of ỹ at z = 0,∞ in the x-y duality formula. The differential
d ỹ
d x or d x

d ỹ in the x − y formula is regular at z = 0 (this is not the case for x(z) = z − log z and
y(z) = z). This cancellation has the consequence that the x− y formula does not generate ad-
ditional poles for ωg,n or ω∨g,n at z = 0. Therefore, the construction of Sec. 3.2 is not needed,
and the ordinary x − y formula of [17,23] can be applied, see also Example 2.10.
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Now, we change the curve via symplectic transformation ỹ → y = ỹ + x to

x(z) = z − log z , y(z) = z → ex =
e y

y
, (49)

as it was originally formulated. The construction of Sec. 3.2 applies for this curve. This means
that the W∨g,1’s have to be corrected as suggested in Sec. 3.2 by equation (33), that is

W∨g,1(y) =
B2g(1/2)

(2g)!
∂ 2g

y (y − log y)

= δg,0 y −
B2g(1/2)

2g(2g − 1)y2g

= [ħh2g−1]
�

y
ħh
− ∂y log Γ

�

y
ħh
+

1
2

�

−
1
ħh

logħh+
1
2

log 2π
�

,

where the Γ function is understood as an asymptotic series, see Sec. 3.1. This implies that the
wave function and the quantum spectral curve is of the form

Ψ∨(y) =
e

y2

2ħh
p

2π

Γ

�

y
ħh +

1
2

�

ħhy/ħh
,

P̂∨(ħh∂x , y) = eħh∂y −
e y+ħh/2

y + ħh2
.

The new ingredients for the x − y formula (18) considering the construction of Sec. 3.2
are

Ô∨(y(z)) =
∑

m≥0

�

−
∂

∂ x(z)

�m�

−
d y(z)
d x(z)

�

[um]
zuΓ

� z
ħh +

1−u
2

�

ħhuħhuΓ
� z
ħh +

1+u
2

� , (50)

e
1
2 ĉ∨(u,u,y,y) = 1 , (51)

e ĉ∨(u1,u2,y(z1),y(z2)) =
(z1 −ħhu1/2− z2 +ħhu2/2) (z1 +ħhu1/2− z2 −ħhu2/2)
(z1 +ħhu1/2− z2 +ħhu2/2) (z1 −ħhu1/2− z2 −ħhu2/2)

. (52)

Showing that either (30) of Example 2.10, or (50), (51) and (52) give the same W̃g,n=Wg,n
after inserting in (18) is a non trivial task, but follows after long computations which were
performed in [17] in a slightly more general setting. We explicitly write down

Wg,n(x1(z1), ..., xn(zn)) =
n
∏

i=1





∑

mi≥0

�

−
∂

∂ x i(zi)

�mi
�

−
d yi(zi)
d x i(zi)

�

[umi
i ]

zui
i Γ
�

zi
ħh +

1−ui
2

�

ħhuiΓ
�

zi
ħh +

1+ui
2

�





×
∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

zi +
ħhui
2 − zσ(i) +

ħhuσ(i)
2

,

where we have used that the sum over all graphs G2
n can be represented as sum over n-cycles

(see Proposition 2.7).
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Taking the Laplace transform of this equation (as explained in [26]), the following formula
for the linear Hodge integrals is deduced

n
∏

i=1

kki+1
i

ki!

­

Λ(1)
∏n

i=1(1− kiψi)

·

g,n
= Reszi=0[ħh2g+n−2]

n
∏

i=1

dzie
kizi

ħhki

Γ
�

zi
ħh +

1−ki
2

�

Γ
�

zi
ħh +

1+ki
2

�

×
∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

zi +
ħhki
2 − zσ(i) +

ħhkσ(i)
2

,

where for n= 1 we define
∑

σ∈S1
σ=1-cycle

1

zi+
ħhki
2 −zσ(i)+

ħhkσ(i)
2

= 1
ħhui

.

Remark 4.1. A generalisation of these linear Hodge integrals to integrals of the form
­

Λ(a)
∏n

i=1(1−kiψi)

·

g,n
was for instance considered in [63] and proved to satisfy TR with the curve

eax = y
ea y in [6, 64]. From the Hurwitz point of view, this count of ramified coverings is called

orbifold Hurwitz numbers (the ramification profile over infinity is µ = (µ1, ...,µn) and over 0 of
the form (a, ...., a), see [6] for details). The corresponding spectral curve fits perfectly in the class

of curves under consideration. It is straightforward to derive a formula for
­

Λ(a)
∏n

i=1(1−kiψi)

·

g,n
from

the x − y duality formula for any a.

4.2 The framed topological vertex curve

The framed Topological Vertex curve encodes the Gromov-Witten invariants of C3, more pre-
cisely the framed mirror curve of C3 is the curve

ex =
e y f

(1− e−y)
,

with framing f . This curve is important in topological string theory. It was conjectured in [11]
more generally that if one takes the mirror curve of a toric Calabi-Yau 3-fold to be the spectral
curve, the ω̃g,n generated by TR computes the B-model correlators. In the specific case of C3,
the conjecture was proved for instance in [12,65] and in general in [13].

However note that for the special framing f = 0, TR does not give the expected results
neither for the ω̃g,n nor for the free energies, which was observed for instance in [40].

We take the following parametrisation of the curve

x(z) = − f log z − log(1− z) , y(z) = − log z .

The correlators computed by TR (1) from this curve yield triple Hodge integrals on Mg,n [65,
Theorem 4.1]

ω̃g,n(z1, ..., zn) = ( f (1+ f ))g−1
∑

µ1,...,µn

∏n
i=1

(µi(1+ f ))!
µi !( f µi)!

e−µi x i(zi)µid x i(zi)
­

Λ(1)Λ( f )Λ(−1− f )
∏n

i=1(1+µiψi)

·

g,n
,

where ψi is the ith ψ-class and Λ(α) = 1+
∑

k(−1)kα−kck(E) with ck the kth Chern class of
the Hodge bundle E.

Taking the Laplace transform of this with contour in the z-plane around the origin yields
(since Reszi=1 ex i(zi)(ki−µi)d x i(zi) = −δµi ,ki

f )

Reszi=0 ex i(zi)ki ω̃g,n(z1, ..., zn) = ( f (1+ f ))g−1
n
∏

i=1

�

−
(ki(1+ f ))! f ki

ki!( f ki)!

�­

Λ(1)Λ( f )Λ(−1− f )
∏n

i=1(1+ kiψi)

·

g,n
. (53)
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Now, we want to apply the construction of Sec. 3.2 which is also valid for the case of
f = 0,−1. We find

W∨0,1(y) = f y − log(1− e−y) , W∨g,1(y) = −
B2g(1/2)

(2g)!
∂ 2g

y log(1− e−y) . (54)

By construction and the argumentation of Sec. 3.2, the wave function Ψ∨(y) and the
quantum spectral curve P̂∨ are as expected from eq. (13).

The ingredients for the x − y formula (18) considering (54) for W∨g,n are

Ô∨(y(z)) =
∑

m≥0

�

−
∂

∂ x(z)

�m�

−
d y(z)
d x(z)

�

[um]
exp

h�

S(ħhu∂y(z))
S(ħh∂y(z))

− 1
�

ux(z)
i

ħhu
, (55)

e
1
2 ĉ∨(u,u,y,y) =

1
S(ħhu)

, (56)

e ĉ∨(u1,u2,y(z1),y(z2)) =

�

z1e−ħhu1/2 − z2e−ħhu2/2
� �

z1eħhu1/2 − z2eħhu2/2
�

�

z1eħhu1/2 − z2e−ħhu2/2
� �

z1e−ħhu1/2 − z2eħhu2/2
� . (57)

Showing that (55), (56) and (57) give the same W̃g,n =Wg,n after inserting in (18) is again a
non trivial task, but tested with computer algebra system for several examples. We explicitly
write down the formula following from the x − y transformation formula

Wg,n(x1(z1), ..., xn(zn))

=
n
∏

i=1

(

∑

mi≥0

�

−
∂

∂ x i(zi)

�mi
�

−
d yi(zi)
d x i(zi)

�

[umi
i ]zi exp

��

S(ħhui∂yi(zi))

S(ħh∂yi(zi))
− 1

�

ui x i(zi)

�

)

×
∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

zieħhui/2 − zσ(i)e
−ħhuσ(i)/2

,

where we have used that the sum over all graphs G2
n can be represented as sum over n-cycles

(see Proposition 2.7) and the Cauchy matrix in the proof Proposition 2.7 has to be chosen with
ai = zie

ħhui/2 and b j = −z je
−ħhu j/2.

Taking the Laplace transform of this equation (as explained in [26]), the following formula
for the triple Hodge integrals is deduced

( f (1+ f ))g−1
n
∏

i=1

�

−
(ki(1+ f ))! f ki

ki!( f ki)!

�­

Λ(1)Λ( f )Λ(−1− f )
∏n

i=1(1+ kiψi)

·

g,n

= Reszi=0[ħh2g+n−2]
n
∏

i=1

dzi e
S(ħhki∂yi (zi )

)

S(ħh∂yi (zi )
) ki x i(zi)

∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

zieħhki/2 − zσ(i)e
−ħhkσ(i)/2

,

where we remind S(t) = et/2−e−t/2

t , x(z) = − f log z − log(1− z) and y(z) = − log z, and f is
the framing. This formula seems to be of a very similar nature as the original Marino-Vafa
formula [66]. In the case n= 1, we have to take

∑

σ∈S1
σ=1-cycle

1
zi eħhki/2−zσ(i)e

−ħhkσ(i)/2
= 1

ziħhuiS(ħhui)
.

One might further simplify the expression in the following way

exp

�

S(ħhki∂yi(zi))

S(ħh∂yi(zi))
ki x i(zi)

�

= exp

 

ki−1
∑

n=0

eħh(n+
1−ki

2 )zi∂zi (− f log zi − log1− zi)

!

=
1

z f ki
i

∏ki−1
n=0 (1− zieħh(n+

1−ki
2 ))

,
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where the formal action az∂z f (z) = f (az) was used. For instance for n= 1, we find

( f (1+ f ))g−1
�

−
(k(1+ f ))! f k

k!( f k)!

�­

Λ(1)Λ( f )Λ(−1− f )
(1+ kψ)

·

g,1

= Resz=0[ħh2g−1]
dz

(eħhk/2 − e−ħhk/2)z f k+1
∏k−1

n=0(1− zeħh(n+
1−k

2 ))
.

Remark 4.2. For more general triple Hodge integrals of Calabi-Yau condition of the form
­

Λ(p)Λ(q)Λ(−p− q)
∏n

i=1(1+ kiψi)

·

g,n
, (58)

it is also known that they can be computed by TR, see [67,68]. The spectral curve for these integrals
is also of the form ex = F(e y) such that a formula for the more general triple Hodge integrals
of the form (58) can also be written down. However, formulas are getting pretty ugly and there
is no new insight for Λ(p)Λ(q)Λ(−p − q) since Λ(1)Λ( f )Λ(−1− f ) has the same enumerative
geometric content.

Remark 4.3. Adding additional Θ-classes as they are introduced by Norbury [45] to triple Hodge
integrals can be performed as well, where the spectral curve is known [68] and again of the form
ex = F(e y). These are called triple Θ-Hodge integrals. More simple intersections numbers where
mixtures of a Θ-class just with Ψ-classes have a spectral curve of the form P(x , y) = x y r −1= 0
[46]. Results of Sec. 2.5 from the x− y duality with unramified y are applicable here, a particular
example is the Bessel curve of the form (P1, z2, 1

z , dz1 dz2
(z1−z2)2

) [45].

4.3 Descendent Gromov-Witten invariants of P1

The stationary Gromov-Witten invariants on P1 with their relation to integrable systems were
considered by Pandharipande in [69] and Okounkov and Pandharipande in [70]. Later, it was
conjectured that these invariants are computable by TR in [71], which was proved in [72].
The stationary Gromov-Witten invariants are defined by (see for instance [70] and references
therein)

­ n
∏

i=1

τbi
(γ)
·d

g
=

∫

[Mg,n(P1,d)]vir

n
∏

i=1

ψ
bi
i ev∗i (γ) , (59)

where d satisfies the dimension condition
∑

i bi = 2g − 2+ 2d, γ ∈ H2(P1) be the dual class
of a point and Mg,n(P1, d) is the moduli space of degree d maps from a Riemann surface of
genus g with n marked points to P1. The corresponding spectral curve computing stationary
Gromov-Witten invariants is

x = e y + e−y , (60)

which is typically parametrised by

x(z) = z +
1
z

, y(z) = log z .

The precise statement in the notation of the article, where ω̃g,n(z1, ..., zn) is derived by TR, is
the following [72]:

ω̃g,n(z1, ..., zn) =
∑

b1,...,bn

­ n
∏

i=1

τbi
(γ)
·d

g

n
∏

i=1

(b1 + 1)!
x(zi)bi+2

d x(zi) .
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The equality holds as a Laurent expansion at x i →∞.
We will now discuss that taking this curve and the (conjectured) application of the x − y

formula together with the proposition of this article is compatible, also with taking singular
limits, for instance, of colliding ramification points. This will further support the proposed
structure of Sec. 3.2. The curve (60) does not fit into the class of curves considered in Sec.
3.2 (also not after interchanging x and y). However if we add a parameter t by

x t(z) = z +
t2

z
, y(z) = log z → x t = e y + t2e−y , (61)

we get a new curve which coincides with the spectral curve (31) of Sec. 3.1 for t → 0 and
with the curve (60) for t = 1.

The limit t → 0 is a singular limit, since the two ramification points at β± = ±t merge
and cancel out, and on the other hand the ramification points merge with the logarithmic
singularity of y(z). This geometry of the limit is not included in the recent work [73] where
several different cases of a t → 0 limit are discussed.

However, taking the x − y duality formula into account and the construction of Sec. 3.2
the limit t → 0 from the curve (61) and from the construction of Sec. 3.2 (after changing the
role of x and y) coincide. To see this, we observe first that the curve (61) does not fit into
the class considered in Sec. 3.2 for t ̸= 0. However, in both cases t = 0 and t ̸= 0 we have
ω̃∨g,n = 0 for 2g+n−2> 0 since y(z) has no ramification points. Following the x − y formula
(18), we have the ingredients

Ô∨(y(z)) =
∑

m≥0

�

−
∂

∂ x t(z)

�m�

−
d y(z)
d x t(z)

�

[um]
exp

�

u (S(ħhu)− 1) (z + t2

z )
�

ħhu
, (62)

e
1
2 ĉ∨(u,u,y,y) =

1
S(ħhu)

, (63)

e ĉ∨(u1,u2,y(z1),y(z2)) =

�

z1e−ħhu1/2 − z2e−ħhu2/2
� �

z1eħhu1/2 − z2eħhu2/2
�

�

z1eħhu1/2 − z2e−ħhu2/2
� �

z1e−ħhu1/2 − z2eħhu2/2
� . (64)

We conclude from the x − y duality formula (18) (or more precisely a version of the special
case (19) where y = log z which just conjecturally holds6) together with ideas of the proof of
Proposition 2.7 (as explained in Example 2.10)

W̃g,n(x t(z1), ..., x t(zn))

=
n
∏

i=1

(

∑

mi≥0

�

−
∂

∂ x t(zi)

�mi
�

−
d y(zi)
d x t(zi)

�

[umi
i ]zi exp

�

ui (S(ħhui)− 1)

�

zi +
t2

zi

��

)

×
∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

zieħhui/2 − zσ(i)e
−ħhuσ(i)/2

, (65)

which was tested with computer algebra systems for small g and n. Note that the rhs behaves
smoothly in t, which converges for t → 0 to the case considered in Sec. 3.1. However, the
derivation of Wg,n(x t(z1), ..., x t(zn)) from TR is not smooth in t since ramification points collide
and merge with the singularity of the logarithm. This underpins again that TR needs some
adaption if the curve is of the form e y = F(ex) or e y = F(x)eax , respectively.

6Later proved in [29].
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Since we can extract from the correlators ω̃g,n the stationary Gromov-Witten invariants via
Laplace transform

(−1)n Reszi=0 d x(z1)...d x(zn)e
µ1 x(z1)+...+µn x(zn)ω̃g,n =

∑

bi

­ n
∏

i=1

τbi
(γ)
·d

g

∏

i

µ
bi+1
i

=

∫

[Mg,n(P1,d)]vir

ev∗i (γ)
n
∏

i=1

µi

1−µiψi
,

we derive the following formula for the stationary Gromov-Witten invariants (59) from the
Laplace transform of the x − y duality formula (65) (holds just conjecturally) with t = 1

∫

[Mg,n(P1,d)]vir

ev∗i (γ)
n
∏

i=1

µi

1−µiψi
= [ħh2g+n−2]

n
∏

i=1

Reszi=0 dzie
µiS(ħhµi)(zi+

1
zi
)

×
∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

zieħhµi/2 − zσ(i)e
−ħhµσ(i)/2

,

and the order of integration is the same for each summand of the sum over σ ∈ Sn.

Example 4.4. Let us consider the n= 1 example of the above formula:

∫

[Mg,n(P1,d)]vir

ev∗i (γ)
µ

1−µψ
= [ħh2g−1]Resz=0

dzeµS(ħhµ)(z+ 1
z )

zħhµS(ħhµ)

= [ħh2g−1]Resz=0 dz
∞
∑

n=0

(µS(ħhµ)(z + 1
z ))

n

n!zħhµS(ħhµ)

= [ħh2g]
∞
∑

n=0

µn−1S(ħhµ)n−1

( n
2 )!(

n
2 )!

.

Taking on the lhs due to dimensional restriction the coefficient µ2g+2d−1 yields the formula of
Pandharipande [69, Theorem 1] with n= 2d.

Example 4.5. The degree d = 1 case is also an important explicit special case (considered by
Pandharipande in [69, Theorem 2]) which can easily be derived from the above formula. Due to
dimensional restriction, we have after expanding the geometric series 1

1−µiψi
=
∑

bi
µ

bi
i ψ

bi
i that

∑

i bi = 2g. Taking the [µb1+1
1 ...µbn+1

n ] coefficient, we have on the lhs

∫

[Mg,n(P1,1)]vir

ev∗i (γ)
∏

i

ψ
bi
i .

Since we have to take on the rhs the coefficient [ħh2g+n−2] and [µb1+1
1 ...µbn+1

n ] with
∑

i(bi + 1) = 2g + n, we can redefine all µi →
µi
ħh on the rhs. The remaining coefficient in ħh

is [ħh−2], which can just be generated by expanding at most two exponentials

[ħh−2][µb1+1
1 ...µbn+1

n ]
n
∏

i=1

Reszi=0 dzie
µi
ħh S(µi)(zi+

1
zi
)
∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

zieµi/2 − zσ(i)e
−µσ(i)/2

.

Now, it is important that the order of the contour integrals is fixed, since
swapping order of the contour integrals gives nontrivial contributions of the form
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Reszi=0 Resz j=0 = Resz j=0 Reszi=0+Resz j=0 Reszi=z j
. Therefore, we fix for all permutationsσ ∈ Sn

the order of the integrals in the consecutive order, i.e. first z1, then z2 etc. It is easy to see that the

residue for z1 already vanishes except if the exponential e
µ1
ħh S(µ1)(z1+

1
z1
) is expanded. Furthermore,

since the last contour integral is zn, we have to expand also e
µn
ħh S(µn)(zn+

1
zn
) otherwise the expression

vanishes. This means that fixing the order of integration and taking the [ħh−2] coefficient yields
just nontrivial contribution of the form

[µb1+1
1 ...µbn+1

n ]Reszn=0 dzn... Resz1=0 dz1µ1S(µ1)
�

z1 +
1
z1

�

µnS(µn)
�

zn +
1
zn

�

×
∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

zieµi/2 − zσ(i)e
−µσ(i)/2

.

Now, computing the residues for all (n − 1)! permutations σ ∈ Sn with σ an n-cycle, a lot of
permutations have vanishing contributions except for 2n−2 permutations σ ∈ Sn. This 2n−2 per-
mutations can be characterised nicely in the cycle notation as follows. Put 1 on the first place,
than we have to put 2 either at the first or last empty space

(1,2, ....) , or (1, ...., 2) ,

otherwise the integral vanishes. Adding 3 again either at the first or last empty space:

(1, 2,3....) , or (1,2, ...., 3) , or (1,3, ...., 2) . or (1, ...., 3, 2) ,

etc. Constructing the subset of 2n−2 permutations σ ∈ Sn in this way, these are the only permuta-
tions which do not vanish if we take the order of integration to be the consecutive order. Performing

the integration, each permutation gives a term of the form (±)ε2+...+εn−1 eε2
ħhµ2

2 +ε3
ħhµ3

2 ...+εn−1
ħhµn−1

2 ,
where εi = ± depends on if we have put i at the first or last empty space by constructing the
permutation. Therefore, we find

∫

[Mg,n(P1,1)]vir

ev∗i (γ)
∏

i

ψ
bi
i

= [µb1+1
1 ...µbn+1

n ]Reszn=0 dzn... Resz1=0 dz1µ1S(µ1)
�

z1 +
1
z1

�

µnS(µn)
�

zn +
1
zn

�

×
∑

σ∈Sn
σ=n-cycle

n
∏

i=1

1

zieµi/2 − zσ(i)e
−µσ(i)/2

= [µb1+1
1 ...µbn+1

n ]µ1S(µ1)µnS(µn)
∑

(ε2,...,εn−1)∈{+1,−1}n−1

n−1
∏

i=2

(−1)εi eεiħhµi/2

= [µb1+1
1 ...µbn+1

n ]
n
∏

i=1

(eħhµi/2 − e−ħhµi/2)

=
n
∏

i=1

1
22bi (2bi + 1)!

,

where
∑

i bi = 2g. This result obviously coincides with [69, Theorem 2] as claimed before.

5 Outlook

This article presents new ideas on how the universal x − y duality of the theory of TR can be
applied to a simple class of spectral curves of the form ex = F(e y) (or ex = F(y)ea y) with ex-
ponential variables. These types of curves find applications in topological string theory, where

30

https://scipost.org
https://scipost.org/SciPostPhys.17.2.065


SciPost Phys. 17, 065 (2024)

the spectral curve corresponds to the mirror of the toric Calabi-Yau 3-fold, and the generated
correlators are the B-model correlators. The main idea was to define the (a priori trivial fam-

ily) ω∨g,n := δn,1
B2g (1/2)
(2g)! ∂

2g
y ω

∨
0,1. The same coefficients appear in the asymptotic expansion of

the quantum dilogarithm, providing a primary example. Further examples discussed in this
article include the framed topological vertex and stationary Gromov-Witten invariants on P1.
Additionally, in the context of polynomial spectral curves P(x , y) = 0, we provide further ex-
amples of the x− y duality formula in Section 2.5, relating it structurally to the determinantal
formula in the case where y is unramified.

From here, several further directions can be pursued:

• We have seen in Sec. 2.5 that the x− y duality formula can be brought into the same form
as the determinantal formula if y is unramified via the Cauchy determinant. However,
bringing the general x − y formula into such a form, where the sum over all graphs
Gn is turned into a sum over n-cycle permutations, is absolutely nontrivial but might
be possible. The advantage is that the sum over graphs Gn includes many more terms
since the number of these graphs grows much faster than the number of permutations.
Furthermore, having such an x − y duality formula will provide a new way to express
the kernel K(x i , x j) through the family ω̃∨g,n rather than through the family ω̃g,n.

• The ħh series of the family ω̃g,n is factorially growing. The determinantal formula can be
used to compute the Borel transform. It is worth investigating whether the x− y duality
formula can also be used to derive the Borel transform or make some other asymptotic
predictions.

• The two wave functions, Ψ̃(x) and Ψ̃∨(y), related by x − y duality, are heuristically
Fourier/Laplace transformations of each other. The x − y duality between the two fam-
ilies, ωg,n and ω∨g,n, should recover this Fourier/Laplace transformation at each order
in a formal ħh expansion. Making this observation more rigorous will interplay with
resurgence since the Fourier/Laplace transformation is in principle defined for a non-
vanishing parameter ħh.

• Extending the x− y duality formula to general spectral curves with exponential variables
of the form P(ex , e y) = 0, especially with higher genus, will significantly broaden its
range of applications.
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