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Abstract

Recent experimental studies on strongly disordered indium oxide films have revealed an
unusual first-order quantum phase transition between the superconducting and insulat-
ing states (SIT). This transition is characterized by a discontinuous jump from non-zero
to zero values of superfluid stiffness at the critical point, contradicting the conventional
“scaling scenario” typically associated with SIT. In this paper, we present a theoretical
framework for understanding this first-order transition. Our approach is based on the
concept of competition between two fundamentally distinct ground states that arise from
electron pairs initially localized by strong disorder: the superconducting state and the
Coulomb glass insulator. These ground states are distinguished by two crucially dif-
ferent order parameters, suggesting a natural expectation of a discontinuous transition
between them at T = 0. This transition occurs when the magnitudes of the supercon-
ducting gap ∆ and the Coulomb gap EC become comparable. Additionally, we extend
our analysis to low non-zero temperatures and provide a mean-field “phase diagram” in
the plane of (T/∆, EC/∆). Our results reveal the existence of a natural upper bound for
the kinetic inductance of strongly disordered superconductors.
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1 Introduction

Studies of the transformation of a superconducting ground state into an insulating one (aka
Superconductor-Insulator Transition, or SIT for short) continue for more than four decades
(see [1–6] for various reviews of the subject) and still provide new discoveries. Very recent
microwave resonance experiments [7] on amorphous Indium Oxide films have made it pos-
sible to determine superfluid stiffness Θ with a very high precision at low temperatures, and
have demonstrated that superconductivity disappears (upon increase of disorder) in an abrupt
manner. Specifically, it was found that upon careful step-by-step increasing of disorder, a su-
perconducting ground state with Θ > Θmin > 0 suddenly transforms into an insulating ground
state with Θ = 0. This result came as a surprise since all previously developed theories had
considered it obvious that SIT is a kind of continuous quantum phase transition [8]. In this
paper, we will demonstrate that a self-consistent consideration of all major competing factors
in the problem – Anderson localization, superconducting pairing, and Coulomb interaction –
does indeed lead to the prediction of an abrupt first-order T = 0 phase transition with a min-
imal value of superfluid stiffness Θmin. Since Θ∝ 1/LK , where LK is the kinetic inductance
of the film, it means there is an upper bound Lmax

K for the value of kinetic inductance of a
superconductor.

Amorphous InOx films serve as a prime example of a direct transition from a superconduct-
ing to an insulating state with increasing disorder [9]. In the proximity of the Superconductor-
Insulator Transition (SIT), these films exhibit a pseudogap in the single-particle density of
states (DoS) that emerges well above the superconducting transition temperature (Tc) [10].
The origin of this pseudogap was explained in [11, 12] by the binding energy (∆P) between
two electrons occupying the same localized state, akin to the parity gap observed in ultra-
small superconducting metal grains [13]. Crucially, this theory proposes that Cooper pairing
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occurs between Anderson-localized electrons, a possibility initially explored in [14] and sub-
sequently investigated numerically in [15,16] and analytically in [11,12]. The coexistence of
a large single-particle gap (∆P) with a much smaller collective superconducting gap (∆) was
experimentally confirmed in [17] and corroborated by large-scale numerical simulations [18].
These findings collectively suggest that the low-temperature behavior of such superconductors
(and the neighboring insulating state) can be effectively described using the “pseudospin” op-
erators introduced by P.W. Anderson [19]. This approach essentially neglects single-particle
excitations as gapped entities, regardless of the superconducting state. In simpler terms, only
a specific subspace of the entire Hilbert space, encompassing solely bound electron pairs, needs
to be considered.

The theory of the disorder-driven SIT proposed in Refs. [20, 21], based on a pseudospin
Hamiltonian for Anderson-localized electrons, leads to a continuous quantum phase transition
dominated by substantial statistical fluctuations. Near the transition point, the spatial fluctu-
ations of the superconducting order parameter (∆) develop a “fat tail”, making the concept
of an average ∆ meaningless. Consequently, the theory necessitates the use of a probability
distribution, P(∆), similar to the approach employed in a different context by Ref. [22]. How-
ever, a key limitation of the theory in Refs. [20, 21] is its neglect of the long-range Coulomb
interaction between bound electron pairs.

The impact of Coulomb (or charging) energy on the SIT has been extensively studied in
the context of artificial Josephson junction (JJ) arrays. A relevant review can be found in
Ref. [23]. In these systems, the SIT arises from the interplay between the Josephson coupling
energy (EJ) between neighboring superconducting islands and the charging energy (Echarge)
associated with adding an extra Cooper pair to an island (Echarge = 2e2/C , where C is the
effective capacitance). While research has primarily focused on two-dimensional JJ arrays
(three-dimensional granular arrays, although known [24], are more challenging to control),
a definitive understanding of the SIT’s nature in these systems remains elusive. Theoretically,
the significant challenge lies in consistently accounting for the random stray charges inherent
in such arrays. Experimentally, the behavior of JJ arrays near the SIT can be highly uncon-
ventional, with even hints of a “strange metal" state observed [25, 26]. However, amorphous
InOx superconductors are fundamentally distinct from JJ arrays. Notably, they lack large,
well-defined grains with a local order parameter (see Introduction to Ref. [12] for a detailed
discussion). Instead, the fundamental building block in amorphous InOx is the bound electron
pair itself, aptly described by Anderson’s pseudospin.

Diffusive transport theory offers a distinct approach to incorporating Coulomb interaction
into the understanding of disorder effects on the critical temperature (Tc) [5, 27–29]. This
theory, essentially an extension of BCS theory, accounts for the dependence of the effective
electron-electron attraction on disorder, particularly when slow electron motion due to de-
creased diffusivity weakens the Coulomb repulsion. A.M. Finkelstein further developed [29]
and reviewed this approach [5]. Finkelstein’s theory is well-suited when the suppression of
Tc by disorder goes hand-in-hand with a similar suppression of the spectral gap, a situation
observed in many materials. However, amorphous InOx , along with strongly disordered NbN
and TiN films, exhibits a different behavior. Notably, Finkelstein’s theory focuses on the short-
range behavior of the Coulomb interaction, specifically within the coherence length (supercon-
ducting pair size) [5, 27–29]. Conversely, the competition between Josephson and charging
energies discussed above involves a long-range Coulomb interaction acting between electron
pairs.

It is noteworthy that the observed jump between states with non-zero and zero superfluid
stiffness in Ref. [7] bears a formal resemblance to the Berezinskii-Kosterlitz-Thouless (BKT)
transition [30] known to occur in disordered superconducting thin films as a function of tem-
perature. However, this similarity is superficial. The reported observation deals with a 3D
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phase transition (films are roughly 8-10 times thicker than the low-temperature coherence
length, ξ0) at near-zero temperature. This contrasts significantly with the BKT transition,
which occurs in a 2D system driven by thermal fluctuations. BKT transitions are dominated
by strong, long-wavelength fluctuations, which are absent in our case due to the near-zero
temperature and higher dimensionality. Consequently, for the current problem, a mean-field
approach like the Landau theory of phase transitions remains relevant, at least as a first ap-
proximation.

Section 2 delves into a detailed discussion of both short-range and long-range Coulomb
interactions. We begin by demonstrating, based on the fractal nature of electron wavefunc-
tions near the localization threshold [12], how phonon-induced electron-electron attraction
can overcome Coulomb repulsion. This explains the existence of bound electron pairs despite
Anderson localization. Subsequently, we address the magnitude of long-range Coulomb repul-
sion between electron pairs, incorporating recent experimental findings on insulating indium
oxide films [31,32] and the theoretical framework for the dielectric constant in Anderson in-
sulators [33]. Our analysis reveals that the typical Efros-Shklovskii Coulomb gap [34] (EC)
for near-critical InOx is estimated to be around 0.1 meV, comparable to the superconducting
gap (∆). This observation forms the cornerstone of our theoretical approach presented in this
work.

In Section 3, we formulate a model of spin-1/2 pseudospins representing bound electron
pairs. This model incorporates two key features: 1) an XY-type coupling (ferromagnetic-like)
responsible for pair tunneling between localized orbitals, and 2) a long-range ZZ-type repul-
sion due to Coulomb interaction between the pairs. Random single-electron energies are mod-
eled as random on-site “fields" acting along the Z pseudospin direction. The superconducting
state is described by a ferromagnetic-like order parameter in the XY plane, while the insulating
state corresponds to a random spin-glass-like ordering in the Z direction.

To understand the first-order Superconductor-Insulator Transition (SIT), a crucial obser-
vation is that this transition occurs between two distinct ordered states with fundamentally
different order parameters. In simpler terms, due to the presence of long-range Coulomb re-
pulsion, the insulating state possesses its own order parameter, a spin-glass order parameter of
the Parisi type [35,36]. This naturally leads to a discontinuous (first-order) phase transition:
at the critical point, one order parameter vanishes simultaneously as the other one appears.

Since the first-order phase transition occurs at the point where the free energies of the two
phases, the glassy insulating phase (FG) and the superconducting phase (FS), become equal,
our primary goal is to calculate both free energies in the low-temperature limit and compare
them. We will employ two different approximation methods.

First, in Section 4, we will investigate the glassy insulating phase using a generalized Parisi
approach. We will build upon the works by Müller, Pankov and Ioffe [35,36] to calculate the
free energy of this glassy state. As expected in mean-field glass theories, the free energy of
the replica symmetry breaking (RSB) state is predicted to be higher than that of the trivial
(unstable) replica symmetric (RS) state.

Second, in Section 5, we will focus on the superconducting phase when the Coulomb gap
(EC) is small compared to∆0, the superconducting gap in the absence of Coulomb interaction.
Here, we will calculate the free energy as a function of the superconducting order parameter
(∆) and demonstrate that in the T → 0 limit, it acquires an unusual non-analytic term propor-
tional to |∆|EC . This term effectively shifts the minimum of the energy functional for the order
parameter ∆ downwards compared to ∆0. For sufficiently large EC , this non-trivial minimum
disappears entirely. Even before that, when EC approaches ∆0, the ground state energy of the
Coulomb glass becomes lower than that of the superconductor, inducing the SIT in this system.

In Section 6, we compare the free energies of the superconducting and glassy phases to
determine the position of the phase transition line in the parameter space (EC/∆0, T/∆0).
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Finally, Section 7 presents a discussion of the results and conclusions. Some technical details
are provided in Appendices A-E.2.

2 Coulomb interaction in near-critical Anderson insulators

In this Section we provide several estimates for the strength of the Coulomb interaction in
amorphous InOx films near SIT. These estimates are not intended to be exact and systematic.
Rather, the aim is to offer a new qualitative picture and provide order-of-magnitude estimates
which support it.

2.1 Short length scales: Competition between attraction and repulsion

This Section addresses a key question: why can InOx exhibit attractive electron-electron inter-
actions that lead to superconductivity despite its high level of disorder, as measured by bulk
resistivity? In contrast, superconductivity in many other bulk disordered materials, such as
those described in Ref. [37], is suppressed to zero at significantly lower resistivity values.

Amorphous InOx stands out from many disordered superconductors due to its low density
of conduction electrons (ne ∼ 1021 cm−3). These electrons interact through an insulating
matrix with a relatively high dielectric constant (ϵ). However, it is important to note that the
dielectric constant in Anderson insulators isn’t a fixed value but depends on the length scale
considered. A more accurate description of the dielectric response comes from the function
ϵ(q) in Fourier space. This function reaches a large macroscopic value (ϵ) at small wavevectors
(q→ 0). According to Ref. [33], the major contribution to this macroscopic ϵ comes from large
spatial scales (∼ 5 − 10 times the localization length, ξloc). This long-range ϵ is crucial for
understanding the interaction between localized electron pairs, which will be discussed later.
On the other hand, to describe electron interaction within a single localized state (distances
≤ ξloc), a much lower value of the short-range dielectric constant (ϵ1) is needed. This ϵ1
is expected to be roughly 50 or slightly higher (compared to the value of 30 reported for
crystalline In2O3 [38])

The effect of Coulomb interaction upon electron pairing in InOx was discussed in Sec. 1.2
of Ref. [12] with the conclusion that ϵ1 ∼ 30 is sufficiently large to make overall Coulomb ef-
fect weak. Unfortunately, a subsequent error was identified in those calculations: the product
e2kF was significantly underestimated, being closer to 50,000 K instead of 5,000 K as origi-
nally stated [12]. Following the same logic, this revision suggests a requirement of ϵ1 ≥ 300,
which seems unrealistic. However, there is another crucial factor that wasn’t considered in
the initial estimates: the fractal nature of electron wavefunctions at short scales (r ≤ ξloc).
We will address this shortcoming below. The key difference between the attractive and re-
pulsive electron-electron interactions in electronic systems near the mobility edge lies in their
range. Phonon-induced attraction is local, typically acting on the scale of a lattice constant.
Conversely, Coulomb repulsion is long-range, with the interaction potential UC(r) decaying as
e2/ϵ1r. The fractal nature of electron wavefunctions (ψ(r )) enhances the matrix element of
the local attractive interaction but has no effect on the long-range Coulomb repulsion.

In the following we will need an estimate for the Density of States (DoS) of strongly dis-
ordered InOx , and we take it from Ref. [7]:

ν0 ≈ 1.2 · 1033 erg−1cm−3 . (1)

Note that apparent difference with [7] is due to the use of Gauss system of units in our paper;
also we define here ν0 as the DoS per single projection of spin.
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We now estimate average matrix element of local phonon-mediated attraction of the form
Ue-ph(r − r ′) = −ge-phδ(r − r ′), where ge-ph is the electron-phonon coupling constant:

Ue-ph = −
∫

d3r d3r ′ge-phδ(r − r ′)ψ2(r )ψ2(r ′) . (2)

To describe the correlation function of wavefunctions densities C(r , r ′) = ψ2(r )ψ2(r ′) we
use scaling Ansatz [12] valid for d = 3:

C(r , r ′) = I−1
3−d2

ξ−6
loc

�

ξloc

|r − r ′|

�3−d2

exp
�

−
|r |+ |r ′|
ξloc

�

, (3)

with the normalization constant given by integral:

Iα =
∫

d3x d3ye−|x |−|y |

|x − y |α
=

4π2

3
(6−α)(4−α)(2−α)Γ (2−α) , (4)

arising due to the condition
∫

C(r , r ′)d3r d3r ′ = 1. Here d2 is the correlation fractal dimen-
sion of wavefunctions at the mobility edge; in 3D case d2 ≈ 1.24 according to results from
numerical simulations [39]. Distances r and r ′ are measured from the center of localized
wavefunction. For the use of C(r , r ′) in Eq.(2) one should set |r − r ′| → a, which is short-
distance cutoff of the order of lattice constant, to obtain

Ue-ph ≈ −
π

I3−d2

ge-ph

a3

�

a
ξloc

�d2

. (5)

Note that small fractal exponent d2 makes the matrix element (5) much larger than it would
be in the trivial case d2 = 3, since the ratio a/ξloc≪ 1.

For the Coulomb matrix element, using the same wavefunctions and Eq.(3), we find:

UC =

∫

d3r d3r ′
e2

ϵ1|r − r ′|
ψ2(r )ψ2(r ′) =

I4−d2

I3−d2

e2

ϵ1ξloc
. (6)

Contrary to the case of local interaction, UC in Eq.(6) is nearly independent on d2 and follows
simplest order-of-magnitude estimate.

Now we can estimate the ratio of between phonon-mediated attraction and Coulomb re-
pulsion:

�

�Ue-ph

�

�

UC

≈ λ0
π

I4−d2

�

a
ξloc

�d2−1 ϵ1

e2ν0a2
≈ 2λ0 , (7)

where λ0 = ν0 ge-ph is the dimensionless Cooper attraction constant. For the last numerical
estimate, we used Eq.(1) for ν0, then a = 0.3 nm, ξloc = 5nm, and ϵ1 = 50. The estimate (7)
shows that Coulomb repulsion can be overcome by phonon-induced attraction of moderate
strength. The smallness of d2 − 1 = 0.24 plays a crucial role in this result. Indeed, with d2
replaced by naive dimension d = 3 one would get≈ 0.01λ0≪ 1 in the R.H.S. of Eq.(7), which
would lead (incorrectly) to the conclusion that Coulomb repulsion dominates.

2.2 Long length scales: Coulomb repulsion between bound pairs of electrons

The Coulomb repulsion between electron pairs tends to suppress fluctuations in the pair den-
sity, hindering the formation of long-range superconducting order. In our case, superconduc-
tivity emerges within an Anderson insulator with a relatively high density of states (DoS).
Localized electrons with energies much larger than the superconducting gap (|ε| ≫∆) do not
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contribute to superconductivity but act as a screening layer for the Coulomb interaction, ef-
fectively reducing the repulsion between bound pairs. A theoretical estimate for the resulting
long-range dielectric constant (ϵ) in a 3D material without electron interaction was derived in
Ref. [33]. For such a material with a full DoS of 2ν0, the equation reads:

ϵ ≈ 40 · 2ν0 · e2ξ2
loc . (8)

Equation (8) applies to relatively large localization lengths (ξloc) compared to the atomic
scale (0.3 nm). However, its validity becomes questionable in the limit of infinitely large ξloc,
where a different power-law dependence on ξloc might emerge. An important limitation of
the calculation in Ref. [33] is that it neglects spatial inhomogeneity of the local electric field,
particularly near the Anderson transition. This inhomogeneity could lead to a different critical
exponent for the dependence of ϵ on ξloc. We expect Eq. (8) to be reliable for a broad range
of moderately large ξloc in a non-interacting Anderson insulator. However, our focus is on
an insulator with a pseudogap due to local electron-electron attraction. The modifications of
dielectric response due to this feature were considered in Ref. [40]. As a rough estimate, local
pairing is expected to decrease ϵ by a factor of about 2, which aligns with the data reported
in Section 6.5.3 of the thesis [31].

Recent experimental data on dielectric constant in insulating amorphous InOx films with
varying disorder levels support the above assertion [31, 32]. Notably, they observed that ϵ
measured using a microwave technique at ultra-low temperatures scales approximately as:
ϵ∝ T−α0 , where T0 is the activation temperature for transport conductivity (σ(T )∝ e−T0/T

in the same films). Theoretically we expect α= 2/d2 due to the relationship T0∝ ξ
−d2
loc , as was

shown in Ref. [12], and ϵ∝ ξ2
loc according to Eq.(8) above. The experimental value of α found

in [31, 32] (≈ 1.54) is in good agreement with this theoretical prediction. The maximum ϵ

measured in [31,32]was around 500, with a corresponding T0 ≈ 6 K. It is reasonable to expect
that the dielectric constant near the SIT could be even higher, reaching values of 1000-2000.
This is because the lowest T0 value measured in InOx films was around 2 K [41]. On the
other hand, using Eq. (8) with typical values (ν0 = 1033 erg−1cm−3 and ξloc = 5 nm), and
accounting for the extra 1/2 due to pairing pseudo-gap factor [40], we obtain ϵ = 2000. This
aligns with the extrapolation from the experimental data [31,32]. For our numerical estimates
of the Coulomb strength at long scales, we will use in the following an intermediate value of
ϵ = 1500.

We will see below that the long-range repulsion

Ui j =
e2

ϵ|r i − r j|
, (9)

between localized electron pairs (here r i, j are centers of localized wavefunctions ψi, j) leads
to a Coulomb gap like the one predicted by Efros and Shklovskii [34]:

EC =
p

2πν0
e3

ϵ3/2
. (10)

We emphasise that the above Eq.(10) serves just as the definition of the parameter EC for
3D Coulomb glass with 2e charges; it differs by a numerical factor from similar quantity in
Ref. [34].

While the main focus of this paper is on 3D disordered superconductors and thick films
(thickness d ≫ ξ0), we expect the same phenomenon to occur in thin films with d ≪ ξ0

as well. The key difference lies in the magnitude of the Coulomb gap E(2D)
C for thin films. To

estimate E(2D)
C , we consider the very large dielectric constant ϵ, which leads to the electric field

being concentrated within the film, extending up to distances on the order of ∼ ϵd (typically
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in the micrometer range). Within this length scale, the Coulomb interaction energy becomes
logarithmic, as described in Ref. [42]. In Fourier space, for electron pairs with a charge of 2e,
the 2D Coulomb interaction reads: U (2D)

C (q) = 4πe2/ϵdq2. The corresponding Coulomb gap
value can be found in Ref. [43]:

E(2D)
C =

e2

ϵd
. (11)

Equations (10) and (11) represent the magnitudes of the Coulomb gap for bulk and 2D cases,
respectively. These values will determine the positions of the first-order SIT in each scenario.

It is worth noting that a unique situation exists in the superconductivity of the
LaAlO3/SrTiO3 interface [44]. Here, purely 2D electrons interact via bulk Coulomb forces,
which are significantly suppressed due to the giant dielectric constant of SrTiO3 (around 2·104

at low temperatures). Consequently, the relevant EC in this case has been estimated to be neg-
ligibly small.

3 Formulation of the model and general approach

3.1 Model Hamiltonian and general considerations

We will use the Hamiltonian in the form (see Ref. [21] for comparison)

H = 2
∑

i

ξiS
z
i +

1
2

∑

i ̸= j

�

−Ji j

�

S+i S−j + h.c.
�

+ 4Ui jS
z
i Sz

j

�

, (12)

where subscripts i, j enumerate localized single-electron eigenstates, ξi are their energies,
factor 4 in front of Ui j manifests 2e charge quantization, and pseudospin operators are defined
via electron creation/annihilation operators:

S+i = a†
i↑a

†
i↓ , S−i = ai↓ai↑ , 2Sz

i = a†
i↑ai↑ + a†

i↓ai↓ − 1 , (13)

where ↑,↓ denote possible directions of electron spin. Operators Sα from (13) commute ex-
actly as spin-1/2 operators [19]. Random local energies ξi are uncorrelated and belong to a
Gaussian wide band of width W , so that P(ξ) = (

p
2πW )−1 exp(−ξ2/2W 2). Matrix elements

Ji j describe amplitudes of coherent tunneling of electron pairs between localized eigenstates:

Ji j =
M
Z
Ai j , (14)

and are considered (like in Refs. [21,45,46]) to be equal for all “connected” pairs of states i, j,
while Ai j is the connectivity matrix with Z ∼ n0ξ

3
loc ≫ 1 “neighbours” for each state i, with

n0 ∼ a−3 being spatial density of single-electron localized states. Normalization of Ji j is chosen
such that the limit of Z →∞ is well-defined. The magnitude of M can be related to effective
microscopic electron attraction constant geff, which results from the combination of attraction
and repulsion couplings discussed in Sec. 2.1, by the order-of-magnitude relation M ∼ geffn0.
Simultaneously, the energy eigenvalue density to be used below is P0 = (

p
2πW )−1 = ν0/n0.

Dimensionless coupling constant λ= M P0 = geffν0 is always small in superconductors. Below
we will associate coordinates r i with location of “sites” where our pseudospin operators Sαi
are located.

A crucial simplification we will employ in this paper is that coordination number Z is so
large, that local superconducting order parameter ∆i is weakly space-dependent and can be
replaced by a constant ∆. According to Ref. [45,46], it corresponds to the case of

λW
2∆Z
≪ 1 . (15)
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Here ∆∝ exp(−1/λ) is very small, thus the condition (15) is rather demanding. Actually,
experimental situation is such that upon increase of disorder the condition (15) is violated and
spatial distribution of the superconducting order parameter becomes inhomogeneous [1, 10]
even relatively far from the SIT. Nevertheless, we will use (15) in our further considerations
in this paper. We acknowledge it as a “mean-field approximation" that serves as a first step to-
wards a more complete theory that incorporates superconductivity, localization, and Coulomb
interaction.

The phase boundary between the superconducting and insulating states, assuming a dis-
continuous (first order) transition, is determined by the condition where the free energies of
both states are equal: FS = FG . Our strategy will be to calculate these free energies in two
distinct limits using a perturbative approach.

Our first step is to calculate the free energy of the glassy insulating state. We will assume
that the dominant terms in the Hamiltonian (12) are the first and third terms. These terms
likely represent the kinetic energy of the electrons and the Coulomb repulsion, respectively.
This approach creates a formal similarity to the problem studied in Refs. [35,36], where purely
classical Coulomb glasses were analyzed using the Parisi Replica-Symmetry-Breaking (RSB)
approach. We will extend this approach in Section 4 to calculate the corresponding free energy
for our system.

Second, we consider the opposite limit (EC ≪ ∆) and calculate the free energy of the su-
perconducting state in Section 5, including corrections arising from Coulomb interaction. It is
important to note that these corrections are absent in the classical theory of superconductivity
for metals. This is because the Debye screening length in metals is typically on the atomic
scale a, whereas the superconducting coherence length (ξ0, or the size of a Cooper pair) is
significantly larger than a. In clean superconductors, ξ0/a ∼ EF/∆ ∼ 103. As a result, lo-
cal electro-neutrality is maintained in metals with very high precision, and the formation of
Cooper pairs doesn’t affect the energy of Coulomb screening. However, the situation is en-
tirely different for a superconducting state emerging within an Anderson insulator. Here, the
relative magnitude of the energy correction is solely controlled by the ratio EC/∆. As we will
see, the non-trivial superconducting solution disappears when EC/∆∼ 1.

3.2 Mean-field approach

To enable averaging over disorder and effectively describe the glassy phase of our model, we
will employ the replica trick. This involves averaging the n-th power of the partition function,
denoted as Zn, with the limit n → 0 revealing the behavior of the average free energy. The
detailed derivation of the mean field free energy functional is provided in Appendix A. Below,
we will briefly outline its key points and the approximations employed during its derivation.

One of the key observations that was noticed in Refs. [35, 36] is that for large disorder
strength W , the polarizability which governs the Debye screened Coulomb interaction Û via
the RPA approximation

Û−1 = Û−1 + Q̂ , (16)

becomes local in the real space and can be described by the matrix

Qab
i (τ,τ′) = 4
¬

Ŝz
i,a(τ)Ŝ

z
i,b(τ

′)
¶

. (17)

Note that bare Coulomb interaction Û is diagonal in the replica space and in Matsubara imag-
inary time τ ∈ (0,β = 1/T ).

Within the same approximation, the dynamics of local spin degrees of freedom is then
governed by the single site effective action Âloc[Ĝi , Ŝi ,∆i] in which the effect of long-range
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Coulomb interaction is incorporated into a “Coulomb matrix” Gab
i (τ,τ′):

−Âloc[Ĝ, Ŝ,∆] = 2

∫ β

0

dτdτ′Ŝz
a(τ)(W

2Iab + Gab(τ,τ′))Ŝz
b(τ
′) +

∫ β

0

dτ
∑

a

(∆Ŝ−a (τ) + h.c) ,

(18)
such that the correlation function (17) has to be calculated w.r.t. this action.

Finally, the “Coulomb matrix” Gab
i (τ,τ′) can be shown to obey another equation, which

closes self-consistency loop:

Gab
i (τ,τ′)≡ Uiiδ

abδ(τ−τ′)−U ab
ii (τ,τ′) . (19)

In this relation, the first term simply cancels out unphysical self-action, while the second term
describes the mean-field effect of the Coulomb interaction on a given spin from the environ-
ment created by all other spins.

Assuming sites are uniformly distributed in space with with sufficiently large density
n0, one can switch to the coordinate basis and assume matrices to vary smoothly in space:
Q̂ i = Q̂(r i) and Ĝi = Ĝ(r i). Furthermore, within the mean field approximation governed by
the large coordination number Z , it suffices to consider spatially homogeneous configurations.
The self-consistent procedure then can be conveniently formulated as the problem of finding
the extremum of the mean-field free energy functional derived in Appendix A:

F[Ĝ, Q̂,∆] = FC[Ĝ, Q̂] +Floc[Ĝ,∆] . (20)

The first contribution denoted as “Coulomb” is given by:

FC[Ĝ, Q̂] =
T
2n

Tr
�

n0ĜQ̂−Φ(Q̂)
�

, (21)

where we have explicitly calculated the trace over the real space and left the trace over replica
and imaginary time spaces:

Φ(Q) =

∫

(d3k) (n0UkQ− ln(1+ n0UkQ)) =
8
3
ν0EC

�

Q
2P0

�3/2

, (22)

with EC given by Eq. (10).
The second contribution, denoted as “local”, is given by:

Floc[Ĝ,∆] = −
T
n

n0 lnTrS Tτ exp
�

−Âloc[Ĝ, Ŝ,∆]
�

+
ν0|∆|2

λ
, (23)

with trace taken over quantum spin degrees of freedom, and symbol Tτ denoting imaginary
time ordering. The variation of the total free energy w.r.t. Ĝ then reproduces Eq. (17) and
(19) correspondingly. Below we will analyze the behavior of this functional in various limits.

4 Glassy insulating phase

We start our treatment of the mean field model (20) by first focusing on the Coulomb glass
phase, i.e. neglecting all superconducting correlations: ∆ = 0. The analysis is then greatly
simplified as the absence of the transverse field for the local spin action (18) makes it classical,
allowing us to replace spin variables by binary S = ±1/2 and restrict ourselves to the zeros
Matsubara harmonic only Qab(τ,τ′) = Qab = const, and same for Gab(τ,τ′). The problem
then becomes equivalent to one studied in Refs. [35,36]. The trace over imaginary time in Eq.
(21) yields additional factors of β , leading us to the following expression:

FC[Ĝ, Q̂] =
T
2n

Tr
�

n0β
2ĜQ̂−Φ(βQ̂)
�

, (24)
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with the remaining trace taken only over the replica space, whereas the “action” governing
the local contribution to free energy via Eq. (23) reduces to:

−Aloc[G, S,∆= 0] = 2β2Sa(W
2Iab + Gab)Sb . (25)

At this point it becomes convenient to introduce a dimensionless inverse temperature, po-
larizability and dimensionless Coulomb matrix:

b ≡ βEC , q̂ ≡ βQ̂/2P0 , ĝ ≡ Ĝ/2E2
C , (26)

and the self-consistency equation then becomes:

β Ĝ = Φ′(βQ̂)/n0⇒ ĝ = q̂1/2/b , (27)

with the help of which the Coulomb contribution simplifies to:

FC =
T
2n

Tr
�

βQ̂Φ′(βQ̂)−Φ(βQ̂)
�

= ν0EC T
1
n

Tr
�

2
3

q̂3/2
�

. (28)

We utilize standard Parisi ultrametric ansatz as described in Appendix B, and parametrize
ultrametric matrices Ĝ and Q̂ via functions G(x ∈ [0, 1]) and Q(x ∈ [0,1]), while their corre-
sponding replica Fourier transforms are marked with tilde. We arrive at:

FC =
1
2

n0EC −
1
3
ν0EC T + ν0EC T

∫ 1

0

d x
�

1−
1
x

�

eq1/2(x)eq′(x) . (29)

Now we switch our attention to the “local” contribution to the free energy. First of all, it
contains a large band contribution:

Fb = −n0T

∫ +∞

−∞
dξ P0(ξ) ln2 coshβξ≈ −

√

√ 2
π

n0W −
π2

12
ν0T2 , (30)

after subtracting which the remaining contribution becomes dominated by the vicinity of the
Fermi surface allowing one to replace the distribution function by a constant P0(ξ)≈ P0. The
remaining part can be calculated with the help of Parisi scheme, the detailed analysis of which
is presented in Appendix C:

Floc −Fb = ν0E2
C

∫ +∞

−∞
d y y (m(0, y)−m(1, y))−

3
2

n0EC + ν0EC T . (31)

The magnetization m(x , y) (with dimensionless field y = ξ/EC), together with the dimen-
sionless distribution function of local fields p(x , y) and glass order parameter eq(x) is calculated
with the help of full set of Parisi equations:

−∂x m= g ′(x)
�

∂ 2
y m+ bx∂y(m

2)
�

, (32)

where m(x = 1, y) = tanh b y ,

∂x p = g ′(x)
�

∂ 2
y p− 2bx∂y(mp)

�

, (33)

where p(x = 0, y) = 1, and

eq(x) =
1
2

∫ +∞

−∞
d y p(x , y)∂y m(x , y) . (34)
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The self-consistency loop is then closed with the help of Eq. (27) and replica Fourier transform:

g ′(x)≡ −
eg ′(x)

x
= −
eq′(x)

2bxeq1/2(x)
. (35)

The Eqs. (32)-(35) constitute a dimensionless closed self-consistent scheme for describing
the glass state of the classical Coulomb Glass and suitable for further numerical analysis; it
depends on a single dimensionless parameter b = βEC .

These equations always have a replica-symmetric solution with eq(x) = 1 and all quantities
independent on x; this solution, however, becomes unstable at the Almeida-Thouless critical
line where the marginal stability condition is fulfilled:

eq1/2(x) =
1
2

∫ +∞

−∞
d y p(x , y)
�

∂y m(x , y)
�2

, (36)

which yields the following glass transition temperature:

TG =
2
3

EC . (37)

The constant contributions in Eq. (29) and (31) are then combined into the free energy of
the normal state (unstable at T < TG):

FN = −n0

�√

√ 2
π

W + EC

�

+
2
3
ν0EC T −

π2

12
ν0T2c , (38)

while the difference of the free energy of glass state and the normal state is given by:

(FG −FN )/ν0E2
C = 2

∫ 1

0

d x (1− x)eq(x)g ′(x)−
∫ ∞

−∞
d y y (m(1, y)−m(0, y)) . (39)

Last but not least, the entropy density SG = −∂FG/∂ T of the glass state can also be
calculated as:

SG/ν0EC =

∫ +∞

−∞
d y p(1, y) [ln 2cosh b y − b y tanh b y]−

2
3
eq3/2(1) . (40)

We have implemented the numerical iterative solution of the self-consistent scheme de-
scribed by Eqs. (32)-(35) for temperatures T/EC ∈ [0.06,2/3] and have calculated the free
energy associated with such temperatures. Fig. 1 demonstrates the characteristic behavior
of RSB order parameter function eQ(x) and distribution function of frozen fields P(x = 1,ξ)
for several selected values of temperature; the latter corresponds physically to the tunneling
density of states in Coulomb glass insulator. In Fig. 2 we plot the temperature dependence
of the obtained free energy as compared to the zero-temperature limit of free energy of the
normal state FN ,0 ≡ FN (T = 0), and the entropy of the glass state.

At low temperature T/EC → 0, solution to Parisi equations acquire a universal scaling
form (see Ref. [36] and Appendix D), leading to the appearance of the soft Coulomb gap in
the density of states:

p(1, y)≃ 0.327 y2 + 2.298 (T/EC)
2 , T,ξ≪ EC . (41)

Numerical coefficients provided above are consistent with those obtained in Ref. [36]. The
entropy of the glass state, as given by Eq. (40), vanishes at T → 0 as

SG/ν0EC ≈ 1.657 (T/EC)
3 , T ≪ EC . (42)

We conclude in passing that for the similar reasons the entropy of 2D Coulomb glass with
1/r interaction scales as S(2D)

G /ν0EC ∝ (T/EC)2. Note also that the case of 2D Coulomb
glass with logarithmic interaction [43] is quite different, and careful analysis of its low-T
thermodynamics will be provided in a separate study.
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Figure 1: Left: RSB order parameter function eQ(x), right: distribution function of
frozen potential P(x = 1,ξ), plotted for different values of T/EC , obtained from
numerical solution of Parisi equations.

Figure 2: Left: free energy of a glass state (blue), compared to the free energy of
the normal state (orange). Red point marks the glass transition TG/EC = 2/3. Right:
low-temperature behavior of entropy of glass state, dashed line: asymptotic behavior
as given by Eq. (42).

5 Superconducting phase: Mean field solution corrected for
Coulomb effects

In the Section we consider situation of Coulomb effects weak compared to superconducting
pairing, thus it is sufficient to work within replica-symmetric manifold for Q̂-matrix. For the
same reason, it is possible to expand the free energy (20,23) up to linear order in Ĝ. Variation
of local free energy (23) over Ĝ is equal to Q̂/2, thus this term cancels out with the corre-
sponding term in the first line in Eq.(20), so that Ĝ does not enter at all within the necessary
accuracy. The details of the calculation are outlined in the Appendix E.1.

The “local” contribution in the replica-symmetric case is given by:

Floc = n0

∫

dξP0(ξ)
�

−T ln 2coshβ
Æ

ξ2 + |∆|2
�

. (43)

It is convenient to subtract the zero-temperature “band” contribution (30); the remaining in-
tegral is dominated by the vicinity of the Fermi energy allowing one to replace the distribution
function by a constant. It also contains logarithmic divergence associated with the Cooper
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instability, and has to be cut at Debye frequency ωD. We then obtain:

Floc(∆)−Fb,0 = −ν0|∆|2
�

1
2

ln
e∆2

0

|∆|2
+η(β |∆|)
�

, (44)

with the dimensionless function

η(z) =
1
z

∫ ∞

−∞
d y ln
�

1+ e−2z
p

y2+1
�

, (45)

and ∆0 = 2ωD exp(−1/λ). This is the only contribution in the absence of Coulomb energy,
and its minimization over ∆ leads to (nearly) standard result for ∆(T ) dependence, up to
the replacement 2T → T due to the reduced Hilbert space of our model (no single-particle
excitations).

We now switch to the Coulomb corrections. In the replica-symmetric case, the Q-matrix
contains just two components. The first one is the analog of Edwards-Anderson order param-
eter, it is purely static and characterizes the quenched fluctuations of single electron orbital
occupation, i.e. magnetization in the spin language:

m(ξ)≡ 2〈Sz〉=
ξ
p

ξ2 + |∆|2
tanhβ
Æ

ξ2 + |∆|2 , (46)

and is given by:

Q0 =

∫ +∞

−∞
dξ P0(ξ)m

2(ξ) . (47)

The second component of Q-matrix is associated with the dynamic screening and can be
expressed via the Fourier transform of the dynamical spin susceptibility:

χ(ξ,τ) = 4




Ŝz(τ)Ŝz(0)
��

, (48)

as follows:

eQ1(ω) =

∫ +∞

−∞
dξ P0(ξ)χ(ξ,ω) . (49)

The susceptibility at nonzero Matsubara frequency ω ̸= 0 is given by:

χ(ξ,ω ̸= 0) =
|∆|2 tanhβ
p

ξ2 + |∆|2
p

ξ2 + |∆|2 (ξ2 + |∆|2 + (ω/2)2)
, (50)

and χ(ξ,ω= 0) = m′(ξ).
The Coulomb energy (21) in the replica-symmetric limit is then expressed via components

of Q-matrix as follows:

FC = −
1
2

Q0Φ
′(eQ1(0))−

T
2

∑

ω

Φ(eQ1(ω)) , (51)

with the summation performed over bosonic Matsubara frequencies ω= 2πnT .
The resulting free energy of the superconducting phase can be written as:

FS −FN ,0 = ν0EC |∆|
�

q0(β |∆|)−
4
3

c(β |∆|)
�

− ν0|∆|2
�

1
2

ln
e∆2

0

|∆|2
+η(β |∆|)
�

, (52)
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Figure 3: ∆-dependence of free energy difference between superconducting free en-
ergy at zero temperature, given by Eq. (53), and glass free energy as given by Eq.
(39), for different values of EC/∆0. The positions of minimum w.r.t. ∆ are marked
by black dots. Inset: |∆| as a function of EC at zero temperature. First order transi-
tion occurs at EC ≈ 0.326∆0, corresponding to the orange curve, with |∆| jumping
from 0 to |∆|= 0.577∆0.

where we have subtracted the normal state free energy at zero temperature FN ,0 = FN (T = 0),
see Eq. (38), and dimensionless functions q0(z) and c(z) are defined in Appendix E.1. In the
low temperature limit it takes a simple yet non-analytic in ∆ form:

FS(∆, T → 0)−FN ,0 ≈ 1.947ν0EC |∆| −
1
2
ν0|∆|2 ln

e∆2
0

|∆|2
. (53)

First term in (53) comes due to decrease of ZZ susceptibility χ(ξ) in presence of the “spin”
ordering in XY plane, described by ∆.

Equation (53) is the central result of this work: is describes competition between Coulomb
gap and superconductivity. This competition results in the decrease of magnitude of ∆ which
minimizes the energy (53) with respect to the bare value ∆0. Figure 3 displays several curves
for FS(∆, T → 0)−FG(T → 0) at different values of the ratio EC/∆0 < 1.

At the critical value of EC ≈ 0.326∆0 energy of superconducting state (at the position
of local minima over ∆ on the orange curve) becomes equal to the energy of Coulomb glass
state: this is the location of first-order transition. In terms of actual magnitude of minimal
superconducting gap |∆| before the transition, its location is given by EC ≈ 0.564|∆| within
our mean-field approximation.

It is important to note that near the critical value of EC/∆0, the energy of the supercon-
ducting state appears positive compared to the normal (unpaired) state. This might seem
counterintuitive, as superconductivity typically lowers the energy of a system. In our case, the
unusual behavior arises from the anomalous first term on the R.H.S. of Eq. (53). This term
describes the increase in Coulomb energy due to the formation of a superconducting gap ∆
and related decrease of the screening response. In terms of pseudospin representation it cor-
responds to the suppression of susceptibility to the Z component of conjugated field due to
ordering in XY plane.

Throughout this Section we considered replica-symmetric solution only. The reason is that
the instability condition with respect to replica-symmetry breaking is never observed within
superconducting state (at least for relatively small EC), as demonstrated in Appendix E.2. On
the conceptual level, this kind of behavior seems to be related with the specific nature of
interaction leading (when it is strong enough) to a glassy state. In our case it is Coulomb
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interaction and superconducting pairing modifies it via the suppression of the susceptibility to
the Z component of conjugated field. We could imagine that in the case of the infinite-range
random ZZ interaction the situation might be different, leading to some co-existence region
of XY-plane ordering and glassiness, like it was discussed in Ref. [47]; this issue needs further
investigation.

6 Phase diagram

With a complete mean-field description of both the superconducting and Coulomb glass
phases, let us now analyze the mean-field phase diagram presented in Figure 4. This dia-
gram depicts three distinct phases: Coulomb glass insulating phase (CG): described in detail
in Section 4, Superconducting phase (SC): described in Section 5, and Normal insulating state
(N).

The boundary between the normal and Coulomb glass phases is the Almeida-Thouless
line (Eq. (37)). This transition is continuous and characterized by the Parisi infinite-order
replica symmetry breaking scheme. The transition between the normal and superconducting
states occurs when a global minimum appears in the superconducting free energy (including
Coulomb corrections) as a function of the absolute value of the superconducting gap |∆|. In
the absence of Coulomb interactions, the transition would occur at a critical temperature (TS)
that is twice the standard BCS value due to the absence of single-particle excitations in our
model. This translates to TS/∆0 = 2eγ/π≈ 1.134.

The transition between the superconducting and Coulomb glass phases is first-order, char-
acterized by simultaneous jumps in both the glass order parameter Q(x) and the supercon-
ducting order parameter ∆. This transition occurs when the free energies of the two states,
given by Eqs. (39) and (52), become equal. Within mean-field approximation, at low tem-
peratures, the dependence of the superconducting state’s free energy on temperature has an
activation form: FS(T → 0) −FS(T ) ∼ exp(−|∆|/T ). However, this contribution is negligi-
ble due to the presence of a hard superconducting gap |∆| in the excitation spectrum (not to
be confused with the large single-particle gap ∆P). In contrast, the temperature dependence
of the Coulomb glass free energy can be derived from its entropy (Eq. (42)) and is given
by: FG(T → 0)−FG(T ) ∼ ν0E2

C (T/EC)4. This temperature dependence of the free energies
determines the shape of the continuous line in the inset of Fig. 4 that separates the super-
conducting phase from the Coulomb glass phase. The line favors the Coulomb glass state at
higher temperatures due to its stronger temperature dependence.

7 Discussion and conclusions

Our results demonstrate that the pseudo-gap superconducting state undergoes an abrupt tran-
sition to an insulating state at a critical minimum value of the superconducting gap ∆min.
This means that with a slightly higher level of disorder, ∆ vanishes completely, along with the
superfluid stiffness Θ. This phase transition occurs when ∆min becomes comparable in mag-
nitude to the Coulomb gap EC characterizing the insulating ground state on the other side of
the transition. We focused on the bulk (3D) scenario because the films studied in [7] are thick
(d ≫ ξ0), where EC is determined by the density of states at the Fermi level ν0 and the macro-
scopic dielectric constant ϵ in the insulating state. Consequently, the minimum gap ∆min, the
minimum superfluid stiffness Θmin, and the maximum kinetic inductance Lmax

K ∝ 1/Θmin are
all ultimately determined by ν0 and ϵ.

While a general equation relating the kinetic inductance LK to the gap value ∆ isn’t avail-
able for pseudo-gap superconductors, we can leverage an empirical relation from Ref. [7] to
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Figure 4: Mean-field phase diagram on (T/∆0, EC/∆0) plane, with blue supercon-
ducting (SC) region, orange Coulomb glass (CG) region and white normal (N) insu-
lating region. Inset: zoomed low-temperature region. Dashed line: suggested phase
boundary for a more physical model with inhomogeneous order parameter∆(r ), see
discussion in Sec. 7.

estimate the maximum achievable kinetic inductance:

LK ≈A
c2ħhR□
π∆

. (54)

Here, A is a numerical factor equal to 1 within the dirty BCS theory, but data suggests it can be
around 3-5 for pseudo-gap superconductors. Additionally, R□ represents the Drude resistance
per square in the normal state, measured well above the transition temperature. Using Eq.
(54) and assuming ∆ ≈ EC at the transition point, we can derive a formula for the maximum
kinetic inductance (Lmax

K ):

Lmax
K ≈

3A
g
p

ν̃0

�

10−3ϵ
�3/2

nH. (55)

In this equation, g = 2πħh/4e2R□ represents the dimensionless film conductance, and ν̃0 is the
reduced density of states defined by the relation ν0 = ν̃0 · 1033cm−3erg−1. Refs. [7] reports
a maximum experimentally measured kinetic inductance close to 17 nH, which aligns reason-
ably well with Eq. (55). This is because both g and ν̃0 are of order of unity, while ε ≈ 1500
based on extrapolations from Ref. [31]. It is important to acknowledge that within this sim-
plified theoretical framework, factors of order unity might not be entirely reliable due to the
approximations made (discussed further below).

Following a similar approach for thin films with thickness d ≪ ξ0, we can combine Eq.
(11) with Eq. (54) and the estimate ∆≈ E(2D)

C to arrive at the result for the maximum kinetic
inductance in a 2D system:

Lmax,(2D)
K ≈

A
g

d (10−3ϵ)nH. (56)

Here, the film thickness (d) is measured in nanometers. This estimate (Eq. (56)) might be
particularly relevant for very thin (∼ 2 nm) NbN films, which exhibit characteristics of pseudo-
gap superconductivity. Equations (55) and (56) represent key practical implications of our
theory, offering valuable guidance for the design of “super-inductors”.
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While the location of the zero-temperature transition between the competing phases
seems straightforward (∆ ≈ EC), determining the exact shape of the transition line in the
(T/∆0, EC/∆0) plane, even at low temperatures (T ≪ ∆), becomes more challenging. At fi-
nite temperatures, the phase transition boundary is determined by the equality of free energies:
FS(T ) = FG(T ). The sign of the derivative d(FS(T )−FG(T ))/dT = T (SG(T )−SS(T )) (where
SS,G(T ) are the entropy of the superconducting and glassy states, respectively) indicates the
direction of the slope dE∗C(T )/dT for the transition line in Fig. 4. Our results in Section 4
demonstrate that the glass entropy SG scales as T3, leading to a higher entropy compared to
the exponentially small entropy of the superconducting state in the T → 0 limit. However,
this contradicts the expected behavior in real, strongly disordered superconductors, as we will
discuss further below.

It is important to discuss the approximations made in our model and their potential im-
pact. The primary approximation is neglecting spatial variations of the order parameter∆(r ),
known to be significant in pseudo-gap superconductors [10,45]. This undoubtedly limits the
accuracy of our theory (in terms of the transition point and minimum Θ value) by an unknown
factor of order one. However, it shouldn’t affect the overall observation of a sharp drop in Θ,
as this arises from the competition between ground states with fundamentally different or-
der parameters. However, accounting for order parameter inhomogeneity does influence the
shape of the phase diagram in Fig. 4. According to Ref. [46], temperature variations of the
superfluid stiffness follow a power law: Θ(0) − Θ(T )∝ Tβ , with a non-universal exponent
β ≈ 1.6− 2.5. This power law stems from the existence of very low-energy excitations due to
the broad distribution of order parameter magnitudes in space. These same excitations lead
to an entropy contribution SS ∝ Tβ that becomes larger than the glass entropy SG ∝ T3 at
low temperatures. Consequently, the actual position of the critical line dE∗C(T )/dT is expected
to behave as shown by the black dashed line in the inset of Fig. 4, which aligns better with
experimental data [7].

Since this is a first-order phase transition, the potential existence of metastable states be-
comes relevant. In the experimental protocol of Refs. [7], no metastable behavior was observed
as the samples with varying disorder levels were cooled down and measured at low tempera-
tures. However, microscopic disorder in the spatial distribution of ∆(r ) could lead to larger-
scale (mesoscopic) inhomogeneities, where superconducting and insulating states form a kind
of domain structure. The typical spatial scale of these domains might be substantial. We specu-
late that this phenomenon could explain the striking results of Ref. [48], where significant size-
dependent transport properties were observed in InOx films with sizes up to tenths of microns.

Investigating the nature of metastable states near this first-order SIT would benefit from
experimental techniques that allow control of the transition with a continuously tunable pa-
rameter, such as a magnetic field. However, it is important to remember that in the presence
of a magnetic field, there is no straightforward relationship between the superfluid stiffness
Θ measured in experiments like [7] and the superconducting gap ∆ that competes with the
Coulomb gap EC . Therefore, understanding the behavior of the magnetic-field-driven SIT re-
quires dedicated studies of the interplay between all these factors.

Our analysis hinges on estimating the Coulomb interaction strength at moderate (Sec-
tion 2.1) and long scales (Section 2.2). The first subsection demonstrates how the very ex-
istence of superconductivity in an amorphous material with high resistivity and low electron
density can be understood through the fractal nature of electron wavefunctions. The second
subsection shows that while Coulomb repulsion is relatively suppressed at short distances, it re-
emerges at longer scales and eventually disrupts superconductivity under extremely strong dis-
order.

On a more technical note, our findings include a detailed study of the thermodynamic prop-
erties of the Coulomb glass state, which was absent in previous works [35,36].
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A Derivation of the mean field free energy functional

We start our analytical treatment of the model (12) by decoupling the interaction via two
Hubbard-Stratonovich fields, one having the meaning of the complex order parameter ∆ and
other being the plasmonic field φ:

e−βF =

∫

DφD∆exp

�

−
∫ β

0

dτ
�

∆̄i(τ)Ĵ
−1
i j ∆ j(τ) +

1
2
φi(τ)Û

−1
i j φ j(τ)
�

�

×
∏

i

TrTτ exp

�

−
∫ β

0

dτĤloc(τ)

�

, (A.1)

with β = 1/T and

Ĥloc(τ) = 2(ξi + iφi(τ))Ŝ
z
i (τ)−
�

∆i(τ)Ŝ
−
i (τ) + h.c.
�

. (A.2)

The averaging over the distribution of random fields ξi is performed utilizing the standard
replica trick. Fields ∆i , φi and spin degrees of freedom Ŝi acquire additional replica index
a = 1, . . . , n, and the quenched disorder leads to the mixing between replicas:

exp

�

−2

∫ β

0

dτξi

n
∑

a=1

Ŝz
i,a(τ)

�

= exp

�

2W 2

∫ β

0

dτdτ′Ŝz
i,a(τ)IabŜz

i,b(τ
′)

�

, (A.3)

with all matrix elements of matrix Iab are equal to unity.
As was explained in the main text, we will treat superconductivity in the mean-field approx-

imation and neglect spatial and temporal fluctuations of the superconducting order parameter
∆i,a(τ) =∆= const.

Following Refs. [35, 36], we identify self-consistently RPA-screened “cactus” diagrams
as giving the leading contribution to the free energy in the limit of large disorder
W ≫ ∆, EC and as being responsible for the freezing transition. Such diagrams can
be resummed self-consistently by introducing the auxillary local Coulomb energy matrix
Gab

i (τ,τ′) ≡ Uiiδ
abδ(τ − τ′) −



φa
i (τ)φ

b
i (τ
′)
�

(with the first term acting as a counter-term
cancelling unphysical “self-interaction”) and the Lagrange multiplier Qab

i (τ,τ′)which imposes
this condition:

−βnFL[Ĝ, Q̂,φ] = −
1
2

∑

i,a,b

∫ β

0

dτdτ′
�

Gab
i (τ,τ′)Qab

i (τ,τ′) +φa
i (τ)Q

ab
i (τ,τ′)φb

i (τ
′)
�

−
1
2

∫ β

0

dτ
∑

i,a

UiiQ
aa
i (τ,τ) , (A.4)
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and, as we can see show below, has the meaning of local polarizability and spin glass order
parameter. Resummation of the cactus diagram then equivalent [43] to the following replace-
ment in the action describing local spin degrees of freedom:

exp

�

−2i

∫ β

0

dτφi,a(τ)Ŝ
z
i,a(τ)

�

7→ exp

�

2

∫ β

0

dτdτ′Ŝz
i,a(τ)G

ab
i (τ,τ′)Ŝz

i,b(τ
′)

�

. (A.5)

The remaining Gaussian integration over φ-fields yields:
∫

Dφ exp
�

−
1
2
φ(Û−1 + Q̂)φ
�

= exp
�

−
1
2

Tr ln(1+ ÛQ̂)
�

, (A.6)

which brings us to the final form of the mean field free energy functional, which now has to
be minimized w.r.t. G, Q and ∆:

− βnF[Ĝ, Q̂,∆] = −
1
2

Tr
�

ĜQ̂− ÛQ̂+ ln(1+ ÛQ̂)
�

+
∑

i

�

−βnP0|∆|2/λ+ lnTrS Tτ exp
�

−Aloc[Ĝi , Ŝi ,∆i]
��

, (A.7)

where we have introduced dimensionless superconducting coupling constant λ = P0
∑

i Ji j ,
the spectrum density at the Fermi level P0 ≡ P0(ξ = 0), and local in real space spin action
given by Eq. (18) in the main text. The traces are calculated over the Matsubara imaginary
time space, replica space and over the localized single-electron orbitals.

Within the mean-field approximation, we assume matrices Ĝ and Q̂ to be spatially homoge-
neous Gab

i (τ,τ′) = Gab(τ,τ′). Assuming that localized states are distributed homogeneously
in the real space with large concentration n0, we replace summation over the sites by the in-
tegration over real space as

∑

i fi 7→ n0

∫

dr f (r ), leading to appearance of factors n0 in the
Eq. (A.7). This allows us to calculate the trace over real space and we arrive at the following
expression for the free energy density F ≡ F/V ≡ FC[Ĝ, Q̂] +Floc[∆, Ĝ], with:

FC[Ĝ, Q̂] =
T
2n

Tr
�

n0ĜQ̂−Φ(Q̂)
�

, Φ(Q) =

∫

(d3k) (n0UkQ− ln(1+ n0UkQ)) , (A.8)

Floc[Ĝ,∆] =
ν0|∆|2

λ
−

T
n

n0 lnTrTτ exp
�

−Âloc[Ĝ,∆]
�

, (A.9)

where trace in FC now taken over Matsubara and replica spaces only, and ν0 ≡ n0P0 is the
density of states (per unit volume).

B Parisi ansatz for ultrametric matrices

To describe the glass phase, we will utilize standard Parisi ultrametric replica symmetry break-
ing ansatz for arbitrary matrix in a replica space M̂ as follows:

M ab = M0Iab +
R+1
∑

k=1

(Mk −Mk−1)Iab
k , (B.1)

with R being number of replica symmetry breaking steps, and matrices Iab
k = δ[a/mk],[b/mk],

where [...] denotes the integer part, δ being Kronecker delta-symbol and
n = m0 > m1 > · · · > mR+1 = 1 being sizes of corresponding blocks in the replica symmetry
breaking scheme. In the limit R→∞, which corresponds to the continuous RSB, the replica
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structure of these matrices can then be encoded in a single function defined on x ∈ [0, 1] as
follows:

M(x) = M0 +
R+1
∑

k=1

(Mk −Mk−1)θ (x −mk) , (B.2)

with θ (x) being Heaviside theta-function.
We will also utilize related representation, which is called “Replica Fourier Transform” of

a matrix M̂ . The representation, and its inverse, are defined as follows:

eMk =
R+1
∑

i=k

mi(Mi −Mi−1) , k = 1, . . . , R+ 1 , (B.3)

Mk = M0 +
k
∑

i=1

( eMi − eMi+1)/mi . (B.4)

However, from this definition it follows that eM0 − eM1 = nM0, which vanishes in the replica
limit; for this reason, the component M0 = M(0) should be kept as a separate parameter in
the RFT parametrization.

The continuous RFT defined as:

eM(x)≡ eMR+1θ (1− x) +
R
∑

k=0

( eMk − eMk+1)θ (mk − x) , (B.5)

and has the property

eM ′(x) = −x M ′(x)⇒ eM(x) =
∫ 1+

x
d x x M ′(x) = M(1+)− x M(x)−

∫ 1

x
M(y)d y , (B.6)

where M(1+) corresponds to diagonal elements MR+1, as function M(x) is, strictly speaking,
discontinuous at x = 1.

This representation emerges naturally in a Replica Fourier basis, which diagonalizes ar-
bitrary ultrametric matrix; quantities eMk denote eigenvalues of matrix M with degeneracies
dimk = n/mk − n/mk−1. This dictates following very useful properties of RFT:

• If Ĉ = ÂB̂, then

eC(x) = eA(x)eB(x) , C(0) = eA(0)B(0) + A(0)eB(0) . (B.7)

• If B̂ = f (Â), then:
eB(x) = f (eA(x)) , B(0) = A(0) f ′(eA(0)) . (B.8)

• Finally, the trace of an ultrametric matrix can be calculated as:

1
n

tr Â= A(1+) = A(0) + eA(0) +

∫ 1

0

d x
�

1−
1
x

�

eA′(x) . (B.9)

C Parisi free energy

As discussed in the beginning of the Sec. 4, the full free energy of the classical Coulomb glass
consists of two parts:

F[Ĝ, Q̂] = Floc[Ĝ] +FC[Ĝ, Q̂] , (C.1)
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with the “Coulomb” contribution

FC[Ĝ, Q̂] =
T
2n

Tr
�

n0β
2ĜQ̂−Φ(βQ̂)
�

, (C.2)

and the “local” contribution

Floc[Ĝ] = −
T
n

n0 lnTr exp
�

−2β2Sa

�

W 2Iab + Gab
�

Sb

�

. (C.3)

In this Appendix, we will present its calculation for arbitrary form of the function Φ(Q̂).

C.1 Parisi scheme

The “local” contribution can be expressed in a standard way via the Parisi free energy
f (x ,ξ) = −T ln Z(x ,ξ) as follows:

Floc[G] = n0

∫ +∞

−∞
dξ0eP0(ξ0) f (x = 0,ξ0)−

β

2
n0 eG(0) , (C.4)

with eG(x) denoting the Replica Fourier Transform of matrix Ĝ (see Appendix B), and the
“renormalized” distribution function

eP0(ξ) =
exp
�

−ξ2/2fW 2
�

p

2πfW
, fW 2 ≡W 2 + G(0) . (C.5)

In the limit W → 0 this reduces to the standard Parisi scheme e.g. for Sherrington-Kirkpatrick
model, while in the present calculation we will be interested in the opposite limit W →∞.
The function f (x ,ξ) satisfies the Parisi partial differential equation

∂x f = −
1
2

G′(x)
�

∂ 2
ξ f + β x
�

1− (∂ξ f )2
�

�

, f (x = 1,ξ) = −T ln 2coshβξ , (C.6)

which can be equivalently rewritten via the magnetization m(x ,ξ)≡ −∂ξ f (x ,ξ):

−∂x m=
1
2

G′(x)
�

∂ 2
ξ m+ β x∂ξ(m

2)
�

, m(x = 1,ξ) = tanhβξ . (C.7)

Within the saddle point approximation, the Q-matrix is determined by:

Qab = 4 〈SaSb〉G = −
2T
n0

δ(nFloc[G])
δGab

, (C.8)

with the average calculated w.r.t. exponential weight defined by Eq. (C.3). It can be expressed
in terms of auxillary function P(x ,ξ) having the meaning of distribution function of frozen
fields:

eQ(x) = T

∫ +∞

−∞
dξP(x ,ξ)∂ξm(x ,ξ) , Q(x) =

∫ +∞

−∞
dξP(x ,ξ)m2(x ,ξ) , (C.9)

and which satisfies following equation:

∂x P =
1
2

G′(x)
�

∂ 2
ξ P − 2β x∂ξ(mP)

�

, P(x = 0,ξ) = eP0(ξ) . (C.10)

Finally, the extremum of the free energy w.r.t Q̂ yields:

βn0Ĝ = Φ′(βQ̂) , ⇒ n0 eG(x) = TΦ′(β eQ(x)) , n0G(0) =Q(0)Φ′′(β eQ(0)) . (C.11)
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This closes the self-consistency scheme m(x ,ξ) 7→ P(x ,ξ) 7→Q(x) 7→ G(x) 7→ m(x ,ξ).
Differentiating (C.9) w.r.t. temperature, we arrive at:

eQ′(x) = eG′(x)

∫ +∞

−∞
dξP(x ,ξ)(∂ξm(x ,ξ))2 , (C.12)

from which follows the marginal stability criterion:

1= n−1
0 Φ
′′(β eQ(x))

∫ +∞

−∞
dξP(x ,ξ)(∂ξm(x ,ξ))2 , (C.13)

which has to be fullfilled as long as eQ′(x) ̸= 0.

C.2 Free energy, internal energy and entropy

The Coulomb contribution can be calculated utilizing the RFT, and yields:

FC[G,Q] =
1
2

�

βn0 eG(1)eQ(1)− TΦ(β eQ(1)) + βn0G(0)eQ(0) +Q(0)
�

βn0 eG(0)−Φ′(β eQ(0))
�

�

−
1
2

∫ 1

0

d x
x

d
d x

�

βn0 eG(x)eQ(x)− TΦ(β eQ(x))
�

, (C.14)

and can be further simplified utilizing Eq. (C.11):

FC =
1
2

�

−TΦ(β eQ(1)) + βn0

�

eG(1)eQ(1) + G(0)eQ(0) +

∫ 1

0

d xG′(x)eQ(x)

��

. (C.15)

Thus the full free energy reads:

F = n0 f (0) +
1
2

�

−TΦ(β eQ(1)) + βn0

�

eG(1)eQ(1)− eG(0) + G(0)eQ(0) +

∫ 1

0

d xG′(x)eQ(x)

��

, (C.16)

where we have introduced

f (x)≡
∫ +∞

−∞
dξ P(x ,ξ) f (x ,ξ) . (C.17)

This partially averaged self-energy satisfies the following equation, which can be derived
directly from the Parisi equations:

f ′(x) =
1
2
β eG′(x)(1+Q(x)) , (C.18)

which allows us to express the full free energy equivalently via f (1):

F = n0 f (1) +
1
2

�

− TΦ(β eQ(1))

+ βn0

�

G(0)eQ(0)− eG(1)Q(1) +
∫ 1

0

d x
�

G′(x)eQ(x)− eG′(x)Q(x)
�

�

�

. (C.19)

The internal energy E = ∂β(βF) can be calculated directly from Eqs. (C.1-C.3) by differen-
tiating it w.r.t. β and noting that one only has to take into account the explicit β-dependence
as the free energy is already minimized w.r.t. G and Q. As consequence, we obtain:

E = ∂β(βF) = −βn0W 2 1
n

Tr(Q̂Î)− 1
2n

Tr∂βΦ(βQ̂) = −βn0W 2
eQ(0)−

1
2n

Tr(Q̂Φ′(βQ̂)) . (C.20)
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Utilizing Eq. (C.9) and the fact that P(x = 0,ξ) is a Gaussian distribution of width fW , we
can integrate by parts and obtain:

eQ(0) = T

∫ +∞

−∞
dξeP0(ξ)∂ξm(0,ξ) =

T
fW 2

∫ +∞

−∞
dξeP0(ξ)ξm(0,ξ) . (C.21)

Reexpressing W via fW in Eq. (C.20), and calculating the trace, we arrive at:

E = E(0) +
βn0

2

�

−eG(1) + G(0)eQ(0) +

∫ 1

0

d x
�

eG′(x)Q(x)− G′(x)eQ(x)
�

�

, (C.22)

where we have introduced:

E(x)≡ −
∫ +∞

−∞
dξP(x ,ξ)ξm(x ,ξ) . (C.23)

Utilizing Parisi equations, we can derive the following:

E′(x) = −βG′(x)
�

eQ(x) + xQ(x)
�

, (C.24)

which allows us to express the internal energy via E(1) as follows:

E = n0E(1) +
βn0

2

�

−eG(1) + G(0)eQ(0) +

∫ 1

0

d x
�

G′(x)eQ(x)− eG′(x)Q(x)
�

�

. (C.25)

As consequence, for the entropy S = β(E −F) we obtain two equivalent representations:

S = βn0(E(0)− f (0)) +
1
2

�

− β eQ(1)Φ′(β eQ(1)) +Φ(eQ(1))

+ β2n0

�

eG(0)− eG(1) +
∫ 1

0

d x
�

eG′(x)Q(x)− 2G′(x)eQ(x)
�

�

�

= βn0(E(1)− f (1))−
1
2

�

β eQ(1)Φ′(β eQ(1))−Φ(eQ(1))
�

. (C.26)

The last equation is the most convenient one. The explicit integral representation for the first
term reads:

βn0(E(1)− f (1)) = n0

∫ +∞

−∞
dξ P(1,ξ) (ln2 coshβξ− βξ tanhβξ) . (C.27)

C.3 W →∞ limit

The scheme can be greatly simplified under the assumption of large bandwidth, which here
allows one to neglect the energy-dependence of the bare density of states and approximate it
with a constant P0(ξ) = exp

�

−ξ2/2W 2
�

/
p

2πW ≈ P0 ≡ (
p

2πW )−1. One just has to carefully
subtract the high-energy contributions which are, however, insensitive to the glass transition,
in all the quantities.

We make following dimensionless substitutions:

Q̂ ≡ 2P0Tq̂ , Ĝ ≡ 2E2
C ĝ , b ≡ βEC . (C.28)

We also pick (at this point arbitrary) energy scale EC and also introduce:

y ≡ ξ/EC , P(x ,ξ)≡ P0p(x , y) , Φ(βQ̂) = 4ν0ECφ(q̂) . (C.29)
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For the case of Coulomb glass, the dimensionless function has the very simple form
φ(q) = 2q3/2/3. The relevant equations from the previous subsection, Eqs. (C.7-C.13), then
acquire the following form:

−∂x m= g ′(x)
�

∂ 2
y m+ bx∂y(m

2)
�

, m(x = 1, y) = tanh b y , (C.30)

∂x p = g ′(x)
�

∂ 2
y p− 2bx∂y(mp)

�

, p(x = 0, y) = 1 , (C.31)

eq(x) =
1
2

∫ +∞

−∞
d y p(x , y)∂y m(x , y) , (C.32)

q(x) =
1

2P0T
−

b
2

∫ +∞

−∞
d yp(x , y)(1−m2(x , y)) , (C.33)

eg(x)≡ φ′(q)/b ⇒ g ′(x) = φ′′(eq(x))q′(x)/b , (C.34)

1= φ′′(eq(x))

∫ +∞

−∞
d yp(x , y)(∂y m(x , y))2 , (C.35)

which give Eqs. (32-36) in the main text. The most important simplification here was replace-
ment of the initial condition by a constant P(0,ξ) = P0, which is justified by the parameter
W ≫ T, EC . From this approximation it immediately follows that:

eq(0) =
1
2
(m(0,+∞)−m(0,−∞)) = 1 . (C.36)

Furthermore, the marginal stability criterion evaluated exactly at T = TG (below which
eq′(x) ̸= 0 continuously appears), where eq(x) = 1, m(x , y) = tanh bG y , and p(x , y) = 1 gives
the glass transition temperature:

TG/EC =
4
3
φ′′(1) , (C.37)

which for the Coulomb glass problem yields Eq. (37) from the main text.
We now switch to the calculation of the free energy and entropy. The first observation is

that G(0) only enters Floc via small renormalization of large bandwidthfW 2 =W 2+G(0), thus
its effect can be calculated via the Taylor expansion:

Floc(G0)−Floc(G0 = 0) ≃
W→∞

−
1
2
βn0G(0)eQ(0) , (C.38)

where we have utilized Eq. (C.8) to calculate the derivative. After such expansion, we can
safely replace eP0(ξ) by the bare distribution function P0(ξ) in the Parisi scheme. To calculate
the free energy, we subtract from Eq. (C.16) the same contribution with eG(x) = eG(0) and
eQ(x) = eQ(0), which is the free energy of the normal state; the main contribution to their
difference then comes from the vicinity of the Fermi surface, justifying the constant density of
states approximation. Taking also into account (C.38), and making dimensionless substitution,
we arrive at:

FG −FN = ν0EC

∫ +∞

−∞
d y ( f (0, y)− f (1, y)) + 2ν0E2

C

∫ 1

0

d x g ′(x)eq(x)

− 2ν0EC T
�

φ′(1)−φ(1)− eq(1)φ′(eq(1)) +φ(eq(1))
�

. (C.39)
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The first integral can be conveniently expressed via m(x , y) = −∂y f (x , y)/EC :

∫ ∞

−∞
d y ( f (0, y)− f (1, y)) = EC lim

Λ→∞

∫ Λ

−Λ
d y

∫ y

−Λ
d y ′ (m(1, y)−m(0, y))

= EC lim
Λ→∞

∫ Λ

−Λ
d y (m(1, y)−m(0, y)) (Λ− y)

= EC

∫ ∞

−∞
d y y (m(0, y)−m(1, y)) , (C.40)

where we have utilized that m(x , y) is an odd function of y . The last expression is nothing
but the integral of the full derivative:

−
∫ 1

0

d x
d

d x
(eq(x)φ′(eq(x))−φ(eq(x))) = βEC

∫ 1

0

d x x g ′(x)eq(x) , (C.41)

which yields Eq. (39) from the main text. Finally, the entropy given by Eq. (C.26) is already
defined by low-energy physics ξ∼max(T, EC), allowing us to make dimensionless substitution
and arrive at:

SG/ν0EC =

∫

d yp(1, y) [ln2 cosh b y − b y tanh b y]− 2
�

eq(1)φ′(eq(1))−φ(eq(1))
�

, (C.42)

which yields Eq. (40) from the main text.

D Müller-Pankov low-temperature scaling

In the low-temperature regime T ≪ EC , the dimensionless Parisi equations formulated in the
Appendix C acquire universal scaling for 1≫ x ≫ T/EC discussed in Ref. [36]. In the present
Appendix we reproduce it for the generic power-law dependence

φ(q) =
n

n+ 1
q1+1/n , (D.1)

with the 3D Coulomb glass corresponding to n= 2.
We switch to variables τ≡ bx ∈ [0, b] and z ≡ bx y , the Parisi equations (C.30-C.35) then

read:

− (z∂zm+τ∂τm) = τ3 g ′(τ)
�

∂ 2
z m+ ∂z(m

2)
�

, m(τ= b, z) = tanh z , (D.2)

z∂z p+τ∂τp = τ3 g ′(τ)
�

∂ 2
z p− ∂z(mp)
�

, p(τ= 0, z) = 1 , (D.3)

eq(τ) =
1
2

∫ +∞

−∞
dzp(τ, z)∂zm(τ, z) , (D.4)

g ′(τ) = −
1
τ

d
dτ
φ′(eq(τ)) , (D.5)

1= τφ′′(eq(τ))

∫ +∞

−∞
dz p(τ, z)(∂zm(τ, z))2 . (D.6)

The following Ansatz then solves these equations in the parametric region b≫ τ≫ 1:

g ′(τ)≃ g0/τ
3 , eq(τ)≈ (g0/τ)

n , m(τ, z)≈ m0(z) , p(τ, z) = (g0/τ)
np0(z) , (D.7)
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with universal functions m0(z) and p0(z) satisfying the following equations:

zm′0 + g0

�

m′′0 + 2m0m′0
�

= 0 , (D.8)

zp′0 − np0 − g0

�

p′′0 − 2(m0p0)
′�= 0 , (D.9)

with the boundary condition m0(z→±∞) = sign(z).
At z→∞, the equation for p0(z) is then simplified and can be asymptotically solved:

zp′0 − np0 − g0

�

p′′0 − 2p′0 sign z
�

= 0⇒ p0(z)≈
C

(2g0)n/2
Hn

�

|z|
p

2g0

+
p

2g0

�

≈
z≫1

C
�

|z|
g0

�n

, (D.10)

with the Hermite polynomial Hn(z). Finally, the two constants that enter this scheme, C and
g0, can be found from the equations which follow from Eqs. (D.4,D.6):

g0

n

∫ +∞

−∞
dzp0(z)(m

′
0(z))

2 = 1 , (D.11)

1
2

∫ +∞

−∞
dzp0(z)m

′
0(z) = 1 . (D.12)

This scaling solution implies the following Ansatz for the form of the Coulomb gap in the
distribution function of frozen fields, with t ≡ T/EC ≡ b−1

p(1, y ≪ 1)≈ C |y|n + Atn , (D.13)

which is Eq. (41) from the main text. This form implies vanishing of eq(1) at zero temperature
as:

eq(1) =
�

C I (1)n + A
�

tn , (D.14)

where

I (1)n =

∫ ∞

0

zn

cosh2 z
dz = 22(1−n)(2n−1 − 1)Γ (n+ 1)ζ(n) =











1 , n= 0 ,

π2/12 , n= 2 ,

7π4/240 , n= 4 .

(D.15)

Furthermore, the value of constant A can be related to C utilizing the marginal stability crite-
rion, which yields:

2
n

�

C I (1)n + AI (1)n

�1/n−1 �
I (2)n + AI (2)n

�

= 1 , (D.16)

where

I (2)n =

∫ ∞

0

zn

cosh4 z
dz =

¨

2/3 , n= 0 ,

(π2 − 6)/18 , n= 2 .
(D.17)

For the low-temperature behavior of the entropy it implies:

S/ν0EC = 2
h

C I (3)n + AI (3)0 −
n

n+ 1

�

C I (1)n + A
�1+1/n
i

tn+1 , (D.18)

with

I (3)n =

∫ ∞

0

zn(ln2 cosh z − z tanh z)dz =
I (1)n+2

n+ 1
. (D.19)

We have implemented the numerical self-consistent solution of scaling equations for n= 2,
corresponding to the three-dimensional Coulomb glass, and have obtained the following val-
ues:

C ≈ 0.32673 , g0 ≈ 1.12303 , (D.20)
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Figure 5: Pankov scaling functions m0(z) and p0(z) for 3D Coulomb glass n= 2.

and the scaling functions m0(z) and p0(z) are plotted on Fig. 5. This implies:

A≈ 2.29761 , (D.21)

eq(1)≈ 2.56633 (T/EC)
2 , (D.22)

p(1, y)≈ 0.32673 y2 + 2.29761 (T/EC)
2 , (D.23)

S/P0EC ≈ 1.65746 (T/EC)
3 , (D.24)

which gives Eqs. (41,42) from the main text.

E Properties of superconducting phase with Coulomb corrections

E.1 Free energy

This Appendix is devoted to detailed analytical analysis of the free energy of the supercon-
ducting phase with Coulomb corrections.

The first contribution is “local”, given by Eq. (43). We subtract the “band” contribution,
which corresponds to the same integral at T = 0 and ∆= 0:

Fb,0 = −n0

∫ +∞

−∞
dξ P0(ξ)|ξ|= −

√

√ 2
π

n0W , (E.1)

and obtain an integral with the main contribution coming from the vicinity of the Fermi energy,
allowing us to replace the distribution function by a constant:

Floc −Fb,0 ≃
P0|∆|2

λ
− ν0

∫ ωD

−ωD

dξ
�Æ

ξ2 + |∆|2 − |ξ|
�

− ν0T

∫ ∞

−∞
dξ ln
�

1+ e−2β
p
ξ2+|∆|2
�

= ν0∆
2

�

1
2

ln
|∆|2

e∆2
0

−η(β |∆|)
�

, (E.2)

with the dimensionless function η(z) defined in Eq. (45), which has following asymptotic
behavior:

η(z)≈

¨p
πe−2z/z3/2 , z≫ 1 ,

π2/12z2 − ln(πe−γ/2z)− 1/2 , z≪ 1 .
(E.3)

The quenched fluctuations of “magnetization” are given by Eq. (47). Adding and subtract-
ing unity, we can rewrite it as:

Q0 = 1−
∫ +∞

−∞
dξ P0(ξ)(1−m2(ξ)) . (E.4)
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The remaining integral is again dominated by the vicinity of the Fermi-surface. This brings us
to the following form:

Q0 ≈ 1− P0|∆|q0(β |∆|) , (E.5)

with the dimensionless function

q0(z) =

∫ ∞

−∞
d y

�

1−
y2

y2 + 1
tanh2
�

z
Æ

y2 + 1
�

�

≈

¨

π+ 2
p
πe−2z/z3/2 , z≫ 1 ,

2/z , z≪ 1 .
(E.6)

The average dynamic susceptibility is given by Eq. (49). The integral is already dominated
by the vicinity of the Fermi surface. At bosonic Matsubara frequency ω= 2πnT , we obtain:

eQ1(ω= 2πnT )≈ 2P0eqn(β |∆|) , (E.7)

with the set of dimensionless functions

eqn̸=0(z) =
1
2

∫ ∞

−∞
d y

tanh z
p

y2 + 1
p

y2 + 1
�

y2 + 1+ (πn/z)2
� ≈

¨

θn(z)/ sinhθn(z) , z≫ 1 ,

cnz2 , z≪ 1 ,
(E.8)

and eq0(z)≡ 1. Here we have denoted

sinh
θn(z)

2
=
πn
z

, cn =

∫ ∞

0

d x
tanh x

x (x2 +π2n2)
. (E.9)

Finally, the Coulomb contribution (51) can be brought to the dimensionless form as fol-
lows:

FC = −n0EC + ν0EC |∆|
�

q0(β |∆|)−
4
3

c(β |∆|)
�

, (E.10)

where we have introduced yet another dimensionless function

c(z) =
1
z

∑

n∈Z
eq3/2

n (z)≈

¨

C1 , z≫ 1 ,

1/z + C2z2 , z≪ 1 ,
(E.11)

with constants

C1 ≈
∫ ∞

−∞

dθ
2π

cosh
θ

2

�

θ

sinhθ

�3/2

≈ 0.896167 , C2 = 2
∞
∑

n=1

c3/2
n ≈ 0.249127 . (E.12)

Notably, in the limit z →∞, both functions q0(z) and c(z) saturate at a constant. As the
result, in the T → 0 limit, the Coulomb contribution is non-analytic in ∆:

FC(T → 0) = −n0EC + C ν0EC |∆| , (E.13)

with
C = π−

4
3

C1 ≈ 1.946703 . (E.14)

E.2 Stability

Finally, we switch to the analysis of the possibility of the soft instability of the superconducting
state towards appearance of the glass order parameter on top of it — as related to the question
of possible coexistence of superconducting and glass order parameters in the present problem.
Such instability appears if the “glass susceptibility” χSG, defined as:

χSG = n−1
0 Φ
′′(β eQ)

∫ +∞

−∞
dξP0(ξ)
�

∂m
∂ ξ

�2

, (E.15)
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Figure 6: Spin glass susceptibilityχSG, calculated on top of the superconducting state.

becomes larger than unity (i.e. at the highest temperature where the marginal stability crite-
rion (C.13) is fulfilled). Here eQ = eQ1(ωn = 0) = 2P0 is given by Eq. (E.7), and m(ξ) is given
by Eq. (46). In the dimensionless units z ≡ β∆ and y ≡ ξ/∆, it reads:

χSG (T, EC ,∆) =
EC

∆

∫ ∞

0

d y

�

∂

∂ y

�

y
p

y2 + 1
tanh
�

z
Æ

y2 + 1
�

��2

. (E.16)

We have calculated this quantity numerically everywhere inside the superconducting re-
gion on the phase diagram, and the result is presented on Fig. 6. One can see that everywhere
in the superconducting phase, the susceptibility is well below unity, i.e. the superconducting
state is everywhere stable towards appearance of the glass order parameter.
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