
SciPost Phys. 17, 067 (2024)

Non-invertible symmetries and higher representation theory II

Thomas Bartsch, Mathew Bullimore, Andrea E. V. Ferrari and Jamie Pearson

Department of Mathematical Sciences, Durham University,
Upper Mountjoy Campus, Stockton Road, Durham, DH1 3LE, United Kingdom

Abstract

In this paper we continue our investigation of the global categorical symmetries that
arise when gauging finite higher groups and their higher subgroups with discrete torsion.
The motivation is to provide a common perspective on the construction of non-invertible
global symmetries in higher dimensions and a precise description of the associated sym-
metry categories. We propose that the symmetry categories obtained by gauging higher
subgroups may be defined as higher group-theoretical fusion categories, which are built
from the projective higher representations of higher groups. As concrete applications we
provide a unified description of the symmetry categories of gauge theories in three and
four dimensions based on the Lie algebra so(N), and a fully categorical description of
non-invertible symmetries obtained by gauging a 1-form symmetry with a mixed ’t Hooft
anomaly. We also discuss the effect of discrete torsion on symmetry categories, based a
series of obstructions determined by spectral sequence arguments.
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1 Introduction

1.1 Background and motivation

Non-invertible topological defects in quantum field theory have long been known to exist in
dimension D = 2 and are captured mathematically by fusion categories [1–23]. An important
class of examples is obtained by gauging an anomaly-free finite symmetry group G, which leads
to topological Wilson lines described by the fusion category Rep(G) of representations of G.

A generalisation of this construction is to gauge an anomaly-free subgroup of a finite group
G together with discrete torsion. This results in a rich class of symmetry categories known as a
group-theoretical fusion categories, whose structure is entirely determined by the (projective)
representation theory of finite groups [24–26]. These symmetry categories are in 1-1 corre-
spondence with gapped boundary conditions of a three-dimensional Dijkgraaf Witten theory
determined by the finite group G and its anomaly.

The aim of this paper is to extend the above considerations to D > 2, building on our
previous work [27] and the closely related work [28]. This is motivated by the remarkable
recent progress on the existence and implications of non-invertible symmetries in higher di-
mensions [27–69]. A common thread of many constructions is to generate non-invertible sym-
metries by performing finite gauging procedures. Our idea is to provide a common framework
for such examples that exhibits their full categorical structure in terms of higher representa-
tion theory.

On general grounds, finite symmetries in D dimensions are expected to be captured mathe-
matically by (D−1)-fusion categories. The latter encode the spectrum of topological operators
of all dimensions p = 1, · · · , D−1 as well as their fusion and braiding properties. For example,
gauging a finite group symmetry G is expected to result in a symmetry category (D−1)Rep(G)
of (D−1)-representations of G. This symmetry category not only captures topological Wilson
lines but also higher dimensional condensation defects that arise when gauging G.

In this paper, we explore the extension of this picture to the gauging of anomaly-free sub-
groups of higher groups in D > 2. This leads us to introduce the notion of group-theoretical
higher fusion categories, which generate a rich class of non-invertible symmetries whose struc-
ture is determined by higher (projective) representation theory of finite higher groups. Many
examples of non-invertible symmetries in D > 2 constructed thus far fall into this framework
and may be understood in terms of higher analogues of standard results in the representation
theory of higher groups.
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Our approach will not be completely systematic and we will focus on dimensions
D = 2, 3,4. In D = 4, where the appropriate higher representation theory is less well-
developed, input from known examples in the physics literature will provide an important
guide. Some important applications are summarised below:

• A unified description of the symmetry categories of gauge theories in dimension D = 3
based on the Lie algebra so(N) [70, 71], including disconnected global forms and dis-
crete theta angles. They can be understood in terms of gapped boundary conditions
for 4-dimensional Dijkgraaf-Witten theory with dihedral group D8 symmetry. Similar
considerations apply to gauge theories in D = 4.

• A categorical description of non-invertible symmetries obtained by gauging a 1-form
symmetry with a mixed ’t Hooft anomaly in dimension D = 4 [33]. These non-invertible
symmetries are realised in N = 1 supersymmetric Yang-Mills theories.1 We explain
how the dressing of symmetry defects with compensating anomalous TQFTs is a higher
analogue of the appearance of projective representations in the representation theory of
group extensions.

We also discuss of the effect of discrete torsion on the symmetry category, based a series of
obstructions determined by spectral sequence arguments [72–75].

The approach will primarily build upon our previous work [27], which utilises the fact that
finite symmetries can be gauged by summing over networks of symmetry defects. This may be
used to define topological defects after gauging as topological defects before gauging together
with instructions for how symmetry defects may end on them consistently. We will also discuss
the connection to the approach in [28], where topological defects are defined by coupling to
TQFT with the appropriate symmetry.

We will already encounter new phenomena in dimensions D = 2, 3 compared to our pre-
vious work due the appearance of projective higher representations. Correspondingly, we will
emphasise the need to couple to TQFTs with anomalous symmetries in order to define topo-
logical defects.

In dimension D = 4, there are yet further new phenomena due to the fact that topologi-
cal lines on a three-dimensional defect may braid. This is reflected in the richness of three-
dimensional TQFTs or the existence of topological order described by SET phases in three
dimensions. The mathematical structure of fusion 3-categories and 3-representation theory is
less well-developed and we do not provide a completely systematic presentation in this case.
In particular, we only consider 3-dimensional TQFTs of Turaev-Viro type, leaving a systematic
treatment of more general TQFTs to future work. As a result, our formalism does not capture
all possible topological defects in four dimensions that have been considered in the literature.
We explain the appearance of TQFT-valued fusion coefficients in four dimensions and how
they appear naturally when gauging 1-form symmetries with mixed anomalies.

1.2 Summary of results

The general setup this paper aims at is a quantum field theory T in D dimensions with a
finite group-like symmetry G. This could be at most a finite (D− 1)-group and may have an ’t
Hooft anomaly specified by a cocycle α ∈ Z D+1(G, U(1)). The symmetry category is denoted
(D− 1)Vecα(G).

We then wish to gauge an anomaly free (D − 1)-subgroup H ⊂ G. This requires choos-
ing a trivialisation of the anomaly ψ ∈ C D(H, U(1)) such that α|H = (dψ)−1, which may

1As explained below, our formalism only captures a subset of the topological defects constructed in [33].
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be interpreted as a generalisation of discrete torsion. The resulting theory T /ψH has fusion
(D− 1)-category symmetry that we denote by

C(G,α |H,ψ) . (1)

We refer to this as a higher group theoretical fusion category, which reduces to the standard
notion of a group theoretical fusion category in dimension D = 2 [24–26]. For fixed G,α,
these symmetry categories are expected to arise on gapped boundary conditions in (D + 1)-
dimensional Dijkgraaf-Witten theory based on the data G, α, which then serves as a common
symmetry TFT for this collection of symmetries.

We expect this construction to encompass a wide spectrum of interesting non-invertible
symmetries in D > 2. In particular, in the case where G is an ordinary group with ’t Hooft
anomaly α, we show that the symmetries obtained by gauging a subgroup H ⊂ G with discrete
torsion ψ correspond to so-called higher group-theoretical fusion categories C(G,α |H,ψ),
whose structure is completely determined by the higher projective representation theory of G
and its subgroups:

C(G,α |H,ψ) =
⊕

[g]∈H\G/H
(D− 1)Rep cg (α,ψ)(H ∩ g H) . (2)

Here, the D-cocycle cg(α,ψ) is constructed out of the ’t Hooft anomlay α and the choice of
discrete torsion ψ and g H := gH g−1. The paper will explore aspects of this classification in
dimensions D = 2, 3,4.

We emphasise that underpinning these constructions is the (D− 1)-fusion category

(D− 1)Vec , (3)

which captures framed fully extended TQFTs in (D − 1) dimensions. For example, (D − 1)-
representations,

C(G |G) = (D− 1)Rep(G) , (4)

correspond to higher functors of the form G → (D − 1)Vec(G). The structure of (D − 1)Vec
and higher fusion categories more generally is not as well-developed for D > 3. We therefore
restrict our attention to D = 2,3, 4, and for D = 4 especially we will lean heavily upon physical
considerations to light the way.

Let us summarise the content of each section as follows:

• In section 2 we review the gauging of anomaly-free subgroups of finite groups in two
dimensions. The resulting symmetry categories are given by group-theoretical fusion
categories, which are completely determined by the projective representation theory of
ordinary groups. This is illustrated in two case studies.

• In section 3 we leverage the results from two dimensions to describe the gauging of
anomaly-free 2-subgroups of finite 2-groups in three dimensions. The resulting symme-
try categories are given by 2-group-theoretical fusion 2-categories, which are completely
determined by the projective 2-representation theory of 2-groups. This is illustrated in
two case studies.

• In section 4 we use the results from two and three dimensions to comment on aspects of
gauging anomaly-free 3-subgroups of finite 3-groups in four dimensions. Our description
will not be systematic, but will focus on highlighting important features in two case
studies.

Note added: During the course of this project, we were informed of potentially overlapping
results by Lakshya Bhardwaj, Lea Bottini, Sakura Schäfer-Nameki and Apoorv Tiwari. We are
grateful to them for coordinating the submission of our papers.
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2 Two dimensions

In this section, we review the gauging of subgroups of finite groups in two dimensions. We
describe the associated fusion categories that capture the properties of topological lines after
gauging. This will serve as a prototype whose structure we would like to emulate when gauging
subgroups of higher groups in higher dimensions.

Underpinning the discussion of topological lines in two dimensions is the fusion category
Vec, whose objects are finite-dimensional vector spaces V = Cn and whose morphisms are
linear maps. Fusion is given by the tensor product of vector spaces. This may be considered a
category of 1-dimensional TQFTs where morphisms correspond to topological interfaces and
fusion corresponds to stacking.

Any topological line L in two dimensions may be stacked with a decoupled 1-dimensional
TQFT V = Cn, which corresponds to taking the sum of n identical copies of the line,

V ⊗ L = L ⊕ · · · ⊕ L = n · L . (5)

More formally, given any fusion category we may regard Vec as the sub-category that is gener-
ated by the identity line under fusion. As a consequence, the fusion rules of topological lines
in two dimensions are understood to have integer coefficients.

2.1 Preliminaries

Let us consider a two-dimensional quantum field theory T with finite group symmetry G and
’t Hooft anomaly specified by a group cohomology class [α] ∈ H3(G, U(1)). Our convention
is that a specification of T includes a choice of local counter term in background fields or
equivalently a choice of representative α ∈ Z3(G, U(1)).

The symmetry category of T is the fusion category

Vecα(G) , (6)

whose objects are finite-dimensional G-graded vector spaces and whose morphisms are grad-
ing preserving linear maps. Fusion is given by the tensor product of graded vector spaces with
associator twisted by α ∈ Z3(G, U(1)). The symmetry category depends on the representative
α only up to auto-equivalence.

The simple objects are vector spaces with a single graded component Vg
∼= C and corre-

spond to indecomposable topological lines generating the G symmetry. They fuse according
to the group law and satisfy an associativity relation as illustrated in figure 1.

2.2 Gauging groups

If the anomaly vanishes [α] = 0, the symmetry G may be gauged and the resulting theory
T /G has symmetry category Rep(G). Its objects are finite-dimensional representations of G

Figure 1
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and its morphisms are intertwiners. Fusion is given by the tensor product of representations.
The simple objects are given by irreducible representations of G and are non-invertible if their
dimension is greater than 1. There are a number of equivalent physical and mathematical
interpretations of Rep(G):

• It captures topological Wilson lines in T /G.

• It captures topological lines in T /G obtained by coupling to a 1-dimensional TQFT with
G-action. This is the category of functors G→ Vec, where G is understood as a category
with a single object, all of whose morphsims are invertible.

• It captures topological lines in T /G defined by topological lines in T together with in-
structions for how to intersect with networks of G symmetry defects. This corresponds
to defining lines in T /G as bi-modules for an algebra object in Vec(G).

The gauging procedure requires a choice of trivialisation α = (dψ)−1 of the ’t Hooft
anomaly, where ψ ∈ C2(G, U(1)) can be interpreted as discrete torsion. In order to keep
track of this additional choice, we denote the resulting theory by T /ψ G. The effect of ψ is to
act by an auto-equivalence, so the symmetry category of T /ψ G will be equivalent to Rep(G).

However, one may study topological interfaces between theories T /ψ1
G and T /ψ2

G, which
form projective representations of G with 2-cocyle ψ1 −ψ2. The latter will also appear nat-
urally when considering the gauging of an anomaly-free subgroup of an anomalous group as
we will see in the following.

2.3 Gauging subgroups

The aim of this section is to generalise the above picture to gauging a general subgroup H ⊂ G.
Let us then suppose the ’t Hooft anomaly α is trivial on restriction to a subgroup H. This means
there exists a 2-cochain ψ ∈ C2(H, U(1)) such that

α|H = (dψ)−1 . (7)

This subgroup may then be gauged consistently by summing over appropriately weighted net-
works of topological line defects for H ⊂ G. The choice of trivialisation ψ corresponds to
gauging with a specified local counter term and is a generalisation of discrete torsion.

The result is a new theory T /ψH whose symmetry category we denote by2

C(G,α |H,ψ) . (8)

This is known as a group-theoretical fusion category [24–26]. The latter form an important
class of fusion categories that generically have non-invertible simple objects and whose prop-
erties are determined by the projective representation theory of finite groups. In the remainder
of this subsection, we summarise the construction of group-theoretical fusion categories from
the perspective of topological line defects.

We note that the possible choices H,ψ are in 1-1 correspondence with gapped boundary
conditions for the 3-dimensional Dijkgraaf-Witten theory based on the data G,α [76,77]. The
latter then serves as the symmetry TFT for this collection of symmetries.

2When α or ψ are trivial we often omit them in the symmetry category C(G,α |H,ψ) of T /ψH.
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Figure 2

2.3.1 Objects

The starting point is the symmetry category Vecα(G) of T . The 3-cocycle condition may be
written explicitly as

(dα)(g1, g2, g3, g4) ≡
α(g2, g3, g4)α(g1, g2 g3, g4)α(g1, g2, g3)

α(g1 g2, g3, g4)α(g1, g2, g3 g4)
!
= 1 , (9)

and ensures that the associator defines consistent relations when fusing four topological lines
labelled by g1, g2, g3, g4 ∈ G together. We will assume the 3-cocycle α is normalised in the
sense that it is equal to 1 whenever one of its arguments is the identity element.

Let us now suppose that the anomaly becomes trivial upon restriction to H ⊂ G. This means
that we can absorb the anomaly for H by attaching phases ψ(h1, h2) ∈ U(1) to junctions of
topological lines labelled by h1, h2 ∈ H as shown in figure 2. In order for these phases to cancel
the anomaly, they need to satisfy

ψ(h1h2, h3)ψ(h1, h2)
ψ(h2, h3)ψ(h1, h2h3)

!
= α(h1, h2, h3) , (10)

as shown on the right hand side of figure 2. This can be identified with the trivialisation condi-

tion α|H
!
= (dψ)−1. Note that the choice of 2-cochain ψ ∈ C2(H, U(1)) is not unique: shifting

ψ→ψ ·ω by any 2-cocycle ω ∈ Z2(H, U(1)) will lead to an equally valid trivialisation of α|H .
We interpret this non-uniqueness as the freedom to add discrete torsion for the subgroup H.

Fixing a trivialisation ψ, we then gauge H by summing over (equivalence classes of) net-
works of H-defects with phasesψ(h1, h2) attached to junctions of topological lines. The result
is a new theory T /ψH whose topological lines are constructed from topological lines in the
ungauged theory T together with instructions for how networks of H-defects may intersect
with them consistently. This is illustrated schematically in figure 3.

Concretely, we need to equip the topological defect with instructions for how networks
of H-defects can end on it consistently from the left and from the right in a manner that
is compatible with their topological nature. Mathematically, this reproduces the symmetry
category C(G,α |H,φ) as the category of bimodules for an algebra object A(H,ψ) in Vecα(G)
associated to H and ψ.

Figure 3
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Figure 4

Let us start from a general topological line in T corresponding to an object of Vecα(G),
which is a G-graded vector space V = ⊕g Vg . Instructions for how symmetry defects h ∈ H end
on it from the left and right are specified by morphisms

ℓh|g : h⊗ Vg → Vhg , and rg|h : Vg ⊗ h → Vgh , (11)

as illustrated in figure 4.
The left and right morphisms must be compatible with fusion of symmetry defects in the

bulk, which leads to the consistency conditions

ψ(h1, h2) · ℓh1h2|g = α(h1, h2, g) · ℓh1|h2 g ◦ ℓh2|g , (12)

ψ(h1, h2) · rg|h1h2
= α(g, h1, h2)

−1 · rgh1|h2
◦ rg|h1

, (13)

illustrated in figures 5 and 6 respectively. In addition, the left and the right morphisms must
be compatible with one another in the sense that

rh1 g|h2
◦ ℓh1|g = α(h1, g, h2) · ℓh1|gh2

◦ rg|h2
, (14)

which is illustrated in figure 7. Solutions of these equations define a bimodule for the algebra
object A(H,ψ) in Vecα(G) associated to H and ψ.

In the remainder of this subsection, we collect some known information about simple ob-
jects, fusion and morphisms in the symmetry category C(G,α |H,ψ).

Figure 5

Figure 6

8

https://scipost.org
https://scipost.org/SciPostPhys.17.2.067


SciPost Phys. 17, 067 (2024)

Figure 7

2.3.2 Simple Objects

From the form of the left and right morphisms in (11), it is clear that any solution will de-
compose as a direct sum of solutions supported on double H-cosets in G. Let us therefore
restrict our attention to a solution supported on a single double coset [g] ∈ H\G/H with
representative g ∈ G.

The associated vector space Vg carries a projective representation Φg of the subgroup
Hg := H ∩ g H ⊂ H that is constructed from the left and right morphisms as

Φg(h) := rhg|(hg )−1 ◦ ℓh|g , (15)

where h ∈ Hg and hg := g−1hg. From a physical point of view, group elements h ∈ Hg
correspond precisely to those elements in H that leave Vg invariant when intersecting it via Φg
as illustrated in figure 8.

As a straightforward consequence of the consistency conditions (12), (13) and (14), the
above defines a projective representation of Hg in the sense that

Φg(h1h2) = cg(h1, h2) · Φg(h1) ◦ Φg(h2) , (16)

for all elements h1, h2 ∈ Hg , where the 2-cocycle cg ∈ Z2(Hg , U(1)) depends on the anomaly
α and its trivialisation ψ.

In order to bring the 2-cocycle of the projective representation into a more symmetric form,
we redefine Φg → γg · Φg , where the 1-cochain γg ∈ C1(Hg , U(1)) is given by the following
combination

γg(h) = ψ(hg , (hg)−1)−1 · α(g, hg , (hg)−1)−1 . (17)

It is straightforward to check using equation (13) that this redefinition is equivalent to using the
alternative definition Φg := (rg|hg )−1 ◦ ℓh|g . This redefinition shifts the 2-cocycle cg → cg · dγg
and brings it into the form

cg(h1, h2) :=
ψ(hg

1 , hg
2)

ψ(h1, h2)
·
α(h1, h2, g)α(g, hg

1 , hg
2)

α(h1, g, hg
2)

. (18)

Figure 8
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Figure 9

The interpretation of the projective representation is illustrated in figure 9, where it is shown
to represent the compatibility with topological moves of the network of H-defects.

It is known that conversely such a projective representation determines a solution to the
compatibility constraints for left and right morphisms [24, 26]. The above construction then
sets up a bijection between isomorphism classes of simple objects and isomorphism classes of
pairs (g,Φg) consisting of

1. A double coset [g] ∈ H\G/H with representative g ∈ G.

2. An irreducible projective representation Φg of Hg with 2-cocycle

cg(h1, h2) =
ψ(hg

1 , hg
2)

ψ(h1, h2)
·
α(h1, h2, g)α(g, hg

1 , hg
2)

α(h1, g, hg
2)

. (19)

The isomorphism class of a simple object depends on the double coset representative g and
the 2-cocycle cg only up to isomorphism.

The above description of simple topological lines allows for the following alternative phys-
ical interpretation: Let us consider the line g ∈ G in T . This is left invariant under the action
of Hg ⊂ H and therefore supports a Hg symmetry group. However, due to the bulk ’t Hooft
anomaly and its trivialisation, the topological line has an anomaly captured by the repre-
sentative 2-cocycle cg ∈ Z2(Hg , U(1)). In order to define a consistent topological line when
gauging H ⊂ G, this anomaly must be cancelled by dressing with a 1-dimensional TQFT with
Hg symmetry and ’t Hooft anomaly cg . This is precisely specified by a vector space support-
ing a projective representation of Hg with 2-cocycle cg . It may simultaneously be regarded
as a badly quantized Wilson line for Hg whose anomalous transformation cancels that of the
symmetry defect.

A similar mechanism will appear throughout and foreshadows many recent constructions
of non-invertible symmetries in higher dimensions.

2.3.3 Morphisms

By similar reasoning, morphisms in the gauged theory T /ψH are obtained from morphisms
in the original theory T together with compatibility conditions for how they intersect with
networks of H-defects.

Concretely, given two simple objects (g,Φg) and (g ′,Φg ′), a morphism between them is
obtained from a morphism m : Vg → V ′g ′ in Vecα(G) subject to compatibility conditions. First,
since m must preserve the grading of the vector spaces, such a morphism can only exist when
g = g ′. This is illustrated in figure 10.

In addition, the morphism m must be compatible with topological manipulations of H-
defects intersecting Vg and Vg ′ in the sense that

m ◦ Φg(h)
!
= Φ′g(h) ◦ m , (20)

10
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Figure 10

Figure 11

for all h ∈ Hg , which is illustrated in figure 11. We can thus identify morphisms in T /ψH with
intertwiners between projective representations of Hg .

In summary, putting aside fusion, there is a decomposition,

C(G,α |H,ψ) ∼=
⊕

[g]∈H\G/H
Repcg (Hg) , (21)

at the level of categories. A generic object of the symmetry category will thus be given by
a collection of projective representations of subgroups Hg ⊂ H with 2-cocycle cg indexed by
(representatives of) double cosets [g] ∈ H\G/H.

As a tautological example, consider the case where both H andψ are trivial. Double cosets
are then in 1-1 correspondence with group elements g ∈ G and representations of the trivial
group are finite-dimensional vector spaces. General objects can therefore be identified with
G-graded vector spaces, reproducing the expected result,

C(G,α |1) = Vecα(G) , (22)

at the level of categories. In the other extreme, consider the case where H = G with trivial
anomaly. There is a single double coset with representative 1 so that

C(G |G,ψ) = Rep(G) (23)

at the level of categories as anticipated from the discussion in subsection 2.2.

2.3.4 Fusion

The fusion of objects is completely determined by the tensor product of bimodules for the
algebra object A(H,ψ) in Vecα(G). The fusion rules of simple objects can be determined
explicitly and are a special case of the fusion rules in equivariantisations of fusion categories
presented in [78]. We will not present the general formula, but restrict ourselves to some
salient features.

Consider two objects L1 and L2 supported on double cosets [g1] and [g2] respectively.
Their fusion should be such that one can consistently insert additional H-defects in between
them as illustrated in figure 12, and will thus be supported on the decomposition of [g1] · [g2]
into double cosets.
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https://scipost.org
https://scipost.org/SciPostPhys.17.2.067


SciPost Phys. 17, 067 (2024)

Figure 12

More generally, consider a generic object L given by a collection {Φg} of projective repre-
sentations indexed by representatives of double cosets [g] ∈ H\G/H. We define the support
of L in the double coset ring Z[H\G/H] by

sup(L) :=
∑

[g]∈H\G/H

dim(Φg) · [g] . (24)

Then the fusion of two objects L and L′ must preserve their support in the sense that

sup(L ⊗ L′) = sup(L) ∗ sup(L′) , (25)

where ∗ denotes the ring structure on the double coset ring Z[H\G/H]. This can be defined
explicitly as follows. First, given two double cosets [g1], [g2], we can lift them to elements
x1, x2 ∈ Z[G] by setting

x i :=
∑

g ∈ [gi]

1 · g ∈ Z[G] . (26)

Their product x1 · x2 ∈ Z[G] is then H-invariant both from the left and from the right and
hence determines a unique element in Z[H\G/H] which we call [g1] ∗ [g2]. The product of
two generic elements in Z[H\G/H] is obtained by linear extension.

In this way, the double coset ring forms the backbone of fusion with respect to the sum
decomposition (21). The remaining fusion structure corresponds to decomposing and com-
bining projective representations. We confine ourselves here to specific instances. A general
formula can be found in [78].

2.4 Gauging extensions

Let us consider a group extension

1→ A→ G→ K → 1 , (27)

where A is a finite abelian group and K is a finite group. This is determined by a group
homomorphism ϕ : K → Aut(A) and an extension class [e] ∈ H2(K , A), where A is understood
as a K-module via the homomorphism. Any group element g ∈ G may be expressed uniquely
as a pair (a, k) ∈ A× K with multiplication is given by

(a1, k1) · (a2, k2) :=
�

a1 · k1a2 · e(k1, k2), k1 · k2

�

, (28)

where we abbreviated ka := ϕk(a) for convenience.
If the short exact sequence splits (i.e. [e] = 1), this becomes a semi-direct product

G = A⋊ϕ K . Aspects of gauging the subgroups A and K in this case were summarised in
the first instalment [27] and therefore we focus here on the orthogonal case of a non-trivial
group extension with trivial action ϕ.
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Figure 13

2.4.1 Gauging in steps

Let us thus consider a theory T with anomaly-free symmetry group G of this kind. We gauge
the symmetry G in the absence of discrete torsion in two steps: we first gauge the subgroup A
and then subsequently gauge the remaining symmetry K . This is illustrated as a commutative
diagram in figure 13.

• We start by gauging A without discrete torsion, which corresponds to following the hor-
izontal arrow in figure 13. We note that double cosets in A\G/A are in 1-1 correspon-
dence with elements of K , so that simple objects after gauging are labelled by pairs
(χ, k) ∈ bA× K with fusion

(χ1, k1)⊗ (χ2, k2) = (χ1 ·χ2, k1 · k2) . (29)

The symmetry group of T /A can thus be identified with the product group bG = bA×K . An
explicit computation of the associator shows that this has a ’t Hooft anomaly [9] given
by the class [α] ∈ H3(bG, U(1)) with cocycle representative

α
�

(χ1, k1), (χ2, k2), (χ3, k3)
�

= 〈χ3, e(k1, k2)〉 . (30)

This may also be represented by the 3-dimensional SPT phase,
∫

X
ba∪ k∗(e) , (31)

in terms of the background fields ba ∈ H1(X , bA) and k : X → BK for bA and K respectively.
In summary, the symmetry category of T /A is given by

C(G |A) = Vecα(bG) . (32)

This is summarised in the top right of figure 13.

• We now gauge the remaining symmetry K ⊂ bG in T /A, which corresponds to following
the vertical arrow in figure 13. First, we note that double cosets of K in bG are in 1-1
correspondence with elements χ ∈ bA, and that the corresponding 2-cocycle cχ from (19)
with α as in (30) and ψ= 1 reduces to

cχ(k1, k2) = 〈χ, e(k1, k2)〉 . (33)

The simple objects are therefore labelled by pairs (χ,Φ) consisting of

1. a character χ ∈ bA,

2. an irreducible projective representation Φ of K with 2-cocycle 〈χ, e〉.
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Their fusion is determined by the multiplication of characters and the tensor product of
projective representations,

(χ1,Φ1) ⊗ (χ2,Φ2) = (χ1 ·χ2, Φ1 ⊗Φ2) . (34)

This has the following physical interpretation: Due to the mixed anomaly in T /A the
topological line labelled by χ ∈ bA has an anomaly under background gauge transfor-
mations for K specified by 〈χ, e〉 ∈ Z2(K , U(1)). To define a consistent topological line
when gauging K , this must be absorbed by dressing with a 1-dimensional TQFT with
the opposite anomaly, or equivalently a badly quantised Wilson line transforming in a
projective representation of K .

Let us now check that following the above two steps sequentially is equivalent to following
the diagonal arrow in figure 13, i.e. to gauging G as a whole. The resulting symmetry category
is known to beRep(G), which means that the simple objects after gauging K should correspond
to irreducible representations of G. Therefore let (χ,Φ) be such a simple object, i.e. χ ∈ bA is
a character of A and Φ : K → Aut(V ) is a projective representation of K satisfying

Φ(k1k2) = 〈χ, e(k1, k2)〉 · Φ(k1) ◦ Φ(k2) . (35)

Using this data, we can define an action Ψ of group elements g = (a, k) ∈ G on V by setting

Ψ(g)(v) := χ(a) · Φ(k)(v) , (36)

which can be checked to give a representation Ψ : G→ Aut(V ) of G on V satisfying

Ψ(g1 · g2) = Ψ(g1) ◦Ψ(g2) . (37)

We claim this exhausts all irreducible representations of G. The fusion of simple objects cor-
responds to the tensor product of representations and morphisms are given by intertwiners.
This reproduces the symmetry category

C(G |G) = C(bG,α |K) = Rep(G) , (38)

summarised in the bottom right of figure 13.

2.4.2 Adding discrete torsion

Let us now reconsider the previous example in the presence of discrete torsion.
First, consider gauging the entire symmetry G with discrete torsion ψ ∈ Z2(G, U(1)). We

have already stated that this acts by an auto-equivalence of the symmetry category Rep(G).
This is compatible with the discussion above since the contributions from discrete torsion can-
cel out such that ce(g1, g2) = 1 and simple objects are ordinary irreducible representations of
G.

Now consider gauging G in steps. We first gauge the abelian normal subgroup A with
discrete torsion φ ∈ Z2(A, U(1)). The simplest possibility is that this lifts to a discrete torsion
for G. This means there exists a eφ ∈ Z2(G, U(1)) such that [φ] = ι∗[ eφ], where ι : A ,→ G
denotes the inclusion map in the short exact sequence. However, gauging A with discrete
torsion may produce an obstruction to subsequently gauging K due to a symmetry extension
or ’t Hooft anomaly.

These obstructions are controlled by the Lyndon-Hochschild-Serre spectral sequence,
which begins with

Ep,q
2 = H p(K , Hq(A, U(1))) , (39)
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and converges to H p+q(G, U(1)). This approach was discussed in [72–75] and is explored in
more detail in the appendix A. The obstructions are organised in terms of the sequence of
differentials d 0,2

j : E 0,2
j → E j,3− j

j in the spectral sequence. The construction formalises the
attempt to correct the topological terms in the action due to the relation δa = k∗(e) satisfied
by the background fields a ∈ C1(X , A) and k : X → BK for the G symmetry. We consider the
obstructions in turn:

• The first obstruction arises from the differential

d 0,2
2 : H2(A, U(1)) → H2(K , bA) . (40)

This obstruction corresponds to a non-vanishing cohomology class

[ f ] := d 0,2
2 ([φ]) ∈ H2(K , bA) . (41)

Note that due to the nilpotency d 2,1
2 ◦ d 0,2

2 = 0 of the differential and its explicit form
d 2,1

2 = [e] ∪ (.), the obstruction must satisfy [e] ∪ [ f ] = 0 ∈ H4(G, U(1)). Upon
choosing representatives e and f , we are therefore always able to find a trivialisation
ω ∈ C3(K , U(1)) such that dω= e ∪ f .

This obstruction reflects the fact that the symmetry group bG of the gauged theory T /φ A
will in general form a non-trivial extension

1→ bA→ bG→ K → 1 , (42)

with extension class [ f ] ∈ H2(K , bA) and ’t Hooft anomaly [bα] ∈ H3(bG, U(1)) represented
by the 3-dimensional SPT phase

∫

X

�

ba ∪ k∗(e)− k∗(ω)
�

. (43)

Here, the inclusion of ω is needed to ensure that the SPT phases is still closed in light of
the relation δba = k∗( f ) representing the fact that bA and K form a non-trivial extension.
The resulting symmetry category of T /φ A is therefore given by

C(G |A,φ) = Vecbα(bG) . (44)

Note that in the case of a vanishing first obstruction [ f ] = 0, the symmetry group bG
reduces to a product group bA× K as before. Furthermore, we can choose ω to be trivial
in this case so that the corresponding anomaly bα reduces to the anomaly α in (31).

• If the first obstruction vanishes (i.e. [ f ] = 0), there is a second obstruction coming from
the differential

d 0,3
3 : H2(A, U(1)) → H3(K , U(1)) . (45)

This obstruction corresponds to a non-vanishing class

[θ] := d 0,3
3 ([φ]) ∈ H3(K , U(1)) . (46)

In this case, gauging A results in a theory T /φ A with symmetry group bG = bA×K , whose
anomaly is shifted by an additional pure anomaly [θ] ∈ H3(K , U(1)) that obstructs gaug-
ing K . The total anomaly is therefore represented by the 3-dimensional SPT phase

∫

X

�

ba∪ k∗(e) + k∗(θ )
�

, (47)
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and the corresponding symmetry category is given by

C(G |A,φ) = Vecα+θ (bG) . (48)

In the case of a vanishing second obstruction [θ] = 0, there are no further obstructions
so K may be gauged. This is equivalent to gauging the entire symmetry group G with
discrete torsion given by the lift eφ ∈ H2(G, U(1)). The discrete torsion acts by an auto-
equivalence of the symmetry category such that C(G |G, eφ) = Rep(G).

2.5 Case study I

Let us consider G = Z4 viewed as an extension

1→ Z2→ Z4→ Z2→ 1 , (49)

with non-trivial class [e] ∈ H2(Z2,Z2). If we denote the generators of A = Z2 and K = Z2
by x and y respectively, the normalised 2-cocycle e is completely determined by the condition
e(y, y) = x .

We consider a theory T with symmetry group G = Z4 and trivial ’t Hooft anomaly. There
is no possibility for discrete torsion since H2(Z4, U(1)) = 0. Gauging the whole symmetry G
leads to a theory T /G with symmetry category

C(Z4 |Z4) = Rep(Z4) ∼= Vec(Z4) . (50)

Alternatively, we may gauge the symmetry in steps by first gauging A= Z2 and subsequently
gauging K = Z2. This example serves as a prototype for more interesting constructions in
higher dimensions.

• First gauging A= Z2 results in a theory T /A with symmetry group bG = bA× K = Z2×Z2
and mixed anomaly α ∈ Z3(Z2 ×Z2, U(1)) determined by the extension class [e]. This
anomaly may be represented by the SPT phase,

1
2

∫

X
ba∪ k∪ k , (51)

in terms of the background fields ba,k ∈ H1(X ,Z2) for bG. There is no possibility for
discrete torsion since H2(Z2, U(1)) = 1. The symmetry category of T /A is thus

C(Z4 |Z2) = Vecα(Z2 ×Z2) . (52)

• Now consider gauging K = Z2, which again does not allow for discrete torsion. The
simple objects are labelled by pairs (χ,Φ), where χ ∈ bA and Φ is an irreducible projective
representation of K with 2-cocycle 〈χ, e〉. Let us denote the generators of bA = Z2 and
bK = Z2 by bx and by , respectively. For χ = 1, we obtain two simple objects

U0 := (1,1) , and U2 := (1, by) . (53)

For χ = bx , we obtain two additional simple objects

U3 := (bx , f ) , and U1 := (bx , f · by) , (54)

where the normalised 1-cochain f : K → U(1) is defined by f (y) = i. Using f 2 = by , the
fusion of the simple objects can then be determined to be

(U1)
n = Un mod 4 . (55)

This reproduces the symmetry category C(Z2×Z2,α |Z2) = Vec(Z4), which agrees with
that of T /G.
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2.6 Case study II

Consider a theory T with anomaly free symmetry given by the dihedral group of order eight
G = D8. We systematically gauge subgroups H ⊂ D8 with discrete torsion. The possible
choices are in 1-1 correspondence with gapped boundary conditions for the 3-dimensional D8
Dijkgraaf-Witten theory with trivial topological action, which plays the role of a symmetry TFT.

In two dimensions, an example is the orbifold branch of the c = 1 CFT orZ2-orbifold theory.
In addition to the symmetry group G = D8 considered here, this theory has a rich spectrum of
non-invertible topological defects due to the fact that it is invariant under gauging of various
subgroups [20]. We therefore emphasise that the symmetry categories discussed below form
only part of the full fusion category symmetry in this example. Our considerations will also
serve as a prototype for gauge theories with Lie algebra so(N) in three and four dimensions,
which will be considered in 3.6 and 4.6 respectively.

It is convenient to introduce generators r, s of D8 corresponding to rotation by π/2 and
reflection such that

D8 = 〈r, s | r4 = s2 = 1, srs−1 = r−1〉 , (56)

which manifests its presentation as a semi-direct product Z4 ⋊ Z2. Alternatively, one may
introduce generators a := rs and b := sr such that

D8 = 〈a, b, s | a2 = b2 = s2 = 1, ab = ba, sas−1 = b〉 , (57)

which manifests its presentation as a semi-direct product D4 ⋊ Z2, where we denoted by
D4 = Z2 ×Z2 the dihedral group of order four.

The automorphism group of D8 is again D8: There is a D4 subgroup of inner automor-
phisms generated by the conjugations x 7→ rs x and x 7→ s x as well as a Z2 subgroup of outer
automorphisms generated by the automorphism that sends r 7→ r3 and s 7→ rs. The latter
acts on D4 by sending rs(.) 7→ s(.), so that the total automorphism group is indeed given by
D4 ⋊Z2

∼= D8.
There are 10 subgroups H ⊂ D8 forming 8 conjugacy classes, whose structure is sum-

marised in figure 14. The subgroups are organized in rows according to their orders 1, 2, 4
and 8 from bottom to top. Normal subgroups are coloured in red whereas non-normal sub-
groups are coloured in black with red arrows indicating their transformation behaviour under
conjugation. The encircled subgroup is the centre of D8 and grey arrows denote inclusion as a
normal subgroup. The blue arrow indicates the transformation behaviour of subgroups under
the generator of outer automorphisms, which acts by reflection of the diagram.

The starting point is the symmetry category C(D8 |1) = Vec(D8). We consider the sym-
metry categories that result from gauging subgroups with discrete torsion, beginning with
subgroups of the smallest order and working upwards in figure 14.

2.6.1 Order two subgroups

We begin by gauging order 2 subgroups H ∼= Z2. There is no possibility of discrete torsion
since H2(Z2, U(1)) = 1. There are 5 order 2 subgroups forming 3 conjugacy classes, two of
which are related by an outer automorphism. Thus there are only two substantive cases to
consider.

• The center H = 〈r2〉 ∼= Z2 of D8 forms a non-split extension

1→ Z2→ D8→ D4→ 1 , (58)

with non-trivial extension class [e] ∈ H2(D4,Z2). Gauging the center therefore leads
to a symmetry group Z2 × D4 with ’t Hooft anomaly determined by [e], which can be

17

https://scipost.org
https://scipost.org/SciPostPhys.17.2.067


SciPost Phys. 17, 067 (2024)

Figure 14

represented by the cubic SPT phase,

1
2

∫

X
ba∪ a1 ∪ a2 , (59)

in terms of the background fields for Z2 × D4. More concretely, we can describe the
simple objects as follows: there are four double H-cosets [1], [r], [s] and [rs], all of
whose stabilisers are given by H. The double coset ring is given by

[r]2 = [s]2 = [1] , [r] ∗ [s] = [rs] . (60)

There are therefore 8 simple objects corresponding to the following pairs of double cosets
and irreducible representations

([1],χn) , ([r],χn) , ([s],χn) , ([rs],χn) , (61)

where n = 0,1 and χ denotes the generator of ÒH ∼= Z2. The fusion ring contains a Z2
subgroup generated by C = ([1],χ) as well as a D4 subgroup generated by Y = ([r], 1)
and Z = ([s], 1), which commute with each other

C ⊗ Y = Y ⊗ C , C ⊗ Z = Z ⊗ C . (62)

The symmetry can thus be identified with the product group Z2 × D4 as stated above.
The corresponding symmetry category is given by C(D8 | 〈r2〉) = Vecα(Z2 × D4).

• Now consider the two non-normal subgroups H = 〈s〉, 〈r2s〉 ∼= Z2, which are related to
each other by conjugation. For concreteness, consider gauging H = 〈s〉. There are three
double cosets [1], [r], [r2] with stabilisers H, 1, H respectively. The double coset ring
is given by

[r] ∗ [r] = [1] + [r2] , [r] ∗ [r2] = [r] , [r2] ∗ [r2] = [1] . (63)

There are therefore 5 simple objects corresponding to the following pairs of double cosets
and irreducible representations

1= ([1], 1) , U = ([r2], 1) , V = ([1],χ) , W = ([r2],χ) , X = ([r], 1) , (64)
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where χ denotes the generator of ÒH ∼= Z2. The fusion ring contains a D4 subgroup
generated by U and V with U ⊗ V =W and additional relations

U ⊗ X = X , V ⊗ X = X , X ⊗ X = 1⊕ U ⊕ V ⊕W . (65)

The symmetry category is therefore a Tambara-Yamagami category of type D4. A com-
putation of the associator shows that C(D8 | 〈s〉) = Rep(D8).

• Now consider the non-normal subgroups H = 〈rs〉, 〈r3s〉 ∼= Z2. They are related to each
other by conjugation and to the subgroups in the previous bullet point by an outer-
automorphism. The computation of the symmetry category is therefore the same up to
relabelling, which implies C(D8 | 〈rs〉) = C(D8 | 〈r3s〉) = Rep(D8).

2.6.2 Order four subgroups

There are three order 4 subgroups: one is isomorphic to Z4 and invariant under the outer auto-
morphism, and the remaining two are isomorphic to D4 and exchanged by the outer automor-
phism. In the latter case, there is the potential for discrete torsion because H2(D4, U(1)) = Z2.
There are therefore only two substantive cases to consider.

• Consider gauging the normal subgroup H = 〈r〉 ∼= Z4. There are two double cosets, [1]
and [s], both of which have H as their stabiliser. The double coset ring is

[s] ∗ [s] = [1] . (66)

There are therefore 8 simple objects corresponding to the following pairs of double cosets
and irreducible representations

([1],χn) , ([s],χn) , (67)

where n = 0, ..., 3 and χ denotes the generator of ÒH ∼= Z4. The fusion ring is generated
by R := ([1],ω) and S := ([s], 1) subject to the relations

R4 = S2 = 1 , S ⊗ R⊗ S−1 = R−1 . (68)

The symmetry can therefore be identified with the semi-direct product Z4⋊Z2
∼= D8, so

that the corresponding symmetry category is given by C(D8 | 〈r〉) = Vec(D8).

• Now consider the normal subgroup H = 〈r2, s〉 ∼= D4. There are again two double cosets
[1] and [r], both of which have H as their stabiliser. The double coset ring is

[r] ∗ [r] = [1] . (69)

There are therefore 8 simple objects corresponding to the following pairs of double cosets
and irreducible representations

([1],χnωm) , and ([r],χnωm) , (70)

where n, m= 0, 1 andχ,ω denote the generators of ÒH ∼= D4. The fusion ring is generated
by A := ([1],χ), B := ([1],ω) and D := ([r], 1) subject to the relations

A2 = B2 = D2 = 1 , D⊗ A⊗ D−1 = B . (71)

The symmetry can therefore be identified with D4⋊Z2
∼= D8 and the symmetry category

is again given by C(D8 | 〈r2, rs〉) = Vec(D8).
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Adding a discrete torsion element ψ ∈ H2(D4, U(1)) = Z2 leads to the same result, i.e.
acts as an auto-equivalence of symmetry categories. This can be understood from the
point of view of spectral sequences, interpreting H2(D4, U(1)) as H0(Z2, H2(D4, U(1))).
Since there is no non-trivial group action of Z2 on Z2, H2(D4, U(1)) is a trivial Z2 mod-
ule. We can then use the same arguments as in appendix A for split central extensions.
It follows that there are no non-trivial differentials in the spectral sequence, which col-
lapses at the second page. In particular, there is no obstruction in lifting ψ to a class in
H2(D8, U(1)).

• The normal subgroup H = 〈r2, rs〉 ∼= D4 is obtained from the bullet point above by
an outer automorphism and therefore the computation of the symmetry category is the
same up to relabelling. Adding discrete torsion again acts by an auto-equivalence of the
symmetry category. We conclude that C(D8 | 〈r2, s〉) = Vec(D8).

Note that gauging both order four subgroups, including with discrete torsion, results in an
identical symmetry category Vec(D8), up to equivalence. It is therefore possible that a theory
T is invariant under gauging these subgroups, resulting in a rich spectrum of additional non-
invertible duality defects that we have not not considered here. It was shown that this scenario
is indeed realised when T is the Z2-orbifold CFT in [20].

2.6.3 Whole group

Finally, we gauge the entire symmetry group leading to the symmetry category Rep(D8).
Adding a discrete torsion element ψ ∈ H2(D8, U(1)) ∼= Z2 results in the same symmetry cate-
gory up to equivalence. The results are summarised in figure 15.

There are various consistency checks on these results that correspond to taking different
routes from bottom to top in figure 15. Due to the reflection symmetry of the diagram, it is
sufficient to perform these checks for left hand side:

• Starting from the theory T with symmetry category Vec(D8) we can gauge the central
subgroup 〈r2〉 ∼= Z2 to obtain the theory T / 〈r2〉 whose symmetry category is given by

Figure 15
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Vecα(Z2×D4) as described in the first bullet point in 2.6.1. This contains a D4
∼= Z2×Z2

subgroup generated by defects Y , Z , whose factors may be gauged independently:

◦ Gauging 〈Y 〉 ∼= Z2 reproduces the theory T / 〈r〉 with symmetry category given
by Vec(D8). The latter contains a Z2 subgroup generated by the defect S, whose
gauging reproduces the theory T / 〈r, s〉 with symmetry category Rep(D8).

◦ Gauging 〈Z〉 ∼= Z2 reproduces the theory T / 〈r2, s〉 whose symmetry category is
also Vec(D8). The latter contains a Z2 subgroup generated by the defect D, whose
gauging reproduces the theory T / 〈r, s〉 with symmetry category Rep(D8).

• Starting from T we can gauge the non-normal subgroup 〈s〉 ∼= Z2 to obtain the theory
T / 〈s〉 with symmetry category Rep(D8) as described in the second bullet point in 2.6.1.
The latter contains a Z2 subgroup generated by the defect U , whose gauging reproduces
the theory T / 〈r2, s〉 with symmetry category Vec(D8).

3 Three dimensions

In this section, we consider the gauging of 2-subgroups of finite 2-groups in three dimensions.
We describe the associated symmetry categories that capture properties of topological defects
after gauging. This will lead us to introduce the notion of a group-theoretical fusion 2-category,
which is a natural generalisation of the structures that arose when gauging subgroups of groups
in two dimensions in section 2.

Underpinning the description of topological surfaces in three dimensions is the fusion 2-
category 2Vec, whose objects are finite-dimensional 2-vector spaces: Vec-module categories
equivalent to Vecn for some n ≥ 0. This may be considered a category of 2-dimensional
TQFTs where the integer n ≥ 0 corresponds to the number of vacua and Vecn is the category
of boundary conditions.3 A convenient representative is a 2-dimensional Zn gauge theory,
which we will denote by Zn in the following. Fusion corresponds to stacking of 2-dimensional
TQFTs.

Any topological surface defect S in three dimensions may be stacked with a decoupled 2-
dimensional TQFT. From the discussion above, this corresponds to taking the sum of n identical
copies of the topological surface,

Zn ⊗S = S ⊕ · · · ⊕ S = n ·S . (72)

More formally, given any fusion 2-category we may regard 2Vec as the 2-subcategory gener-
ated by the identity topological surface under fusion. As a consequence, the fusion rules of
topological surfaces in three dimensions may again be understood to have integer coefficients.

3.1 Preliminaries

Let us consider a three-dimensional quantum field theory T with finite group symmetry G and
’t Hooft anomaly specified by a group cohomology class [α] ∈ H4(G, U(1)). Our convention is
again that a specification of T includes a choice of local counter term in background field or
equivalently a choice of representative α ∈ Z4(G, U(1)).

3In addition, 2d TQFTs are also determined by a series of Euler terms that fix the theory’s partition function
on a 2-sphere. In the case of non-trivial Euler terms, the associated topoligical surface defect acts universally by
non-trivial scalar multiplication on all local operators, including the identity operator. Since topological defects
of this type are not interesting from a symmetry perspective, we only consider canonically normalised (stable) 2d
TQFTs with trivial Euler terms (i.e. such that Z(S2) = n for a TQFT specified by an integer n ∈ Z≥0) in what
follows.
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Figure 16

The symmetry category of T is the fusion 2-category

2Vecα(G) , (73)

whose objects are finite-dimensional G-graded 2-vector spaces. The symmetry category de-
pends on the representative α only up to auto-equivalence.

The simple objects are 2-vector spaces with a single graded component Vec attached to an
element g ∈ G, and correspond to the indecomposable topological surfaces generating the G
symmetry. They fuse according to the group law and satisfy a pentagon relation as illustrated
in figure 16.

3.2 Gauging groups

If the anomaly vanishes [α] = 0, the symmetry G may be gauged and the resulting theory
T /G has symmetry category 2Rep(G) [27,28]. There are a number of equivalent physical and
mathematical interpretations of 2Rep(G):

• It captures condensation defects for the topological Wilson lines in T /G. This corre-
sponds to the mathematical statement that 2Rep(G) =Mod(Rep(G)) is the idempotent
completion of the delooping of Rep(G) [79].

• It captures topological surfaces in T /G obtained by coupling to a 2-dimensional TQFT
with symmetry group G. Mathematically, 2Rep(G) can be regarded as the 2-category
of 2-pseudo-functors G → 2Vec, where G is understood as a 2-category with a single
object, all of whose morphisms are invertible.

• It captures topological surfaces in T /G defined by topological surfaces in T together with
instructions for how to intersect with networks of G symmetry defects. This corresponds
to defining surfaces in T /G to be 2-bimodules for a certain 2-algebra object in 2Vec(G).

For further mathematical background on 2-representations, we refer the reader to [80,81]. In-
dependently of the interpretation, the simple objects are irreducible 2-representations, which
can be labelled by the following concrete collection of data:

1. A subgroup H ⊂ G,

2. a 2-cocycle c ∈ Z2(H, U(1)).

The equivalence class of the 2-representations only depends on the conjugacy class of the
subgroup H and the group cohomology class [c] ∈ H2(H, U(1)). The physical interpretation
is a topological surface on which the gauge symmetry is broken down to a subgroup and
supplemented by a defect action corresponding to an SPT phase.

The gauging procedure requires a choice of trivialisation α = (dψ)−1 of the ’t Hooft
anomaly, where ψ ∈ C3(G, U(1)) can be interpreted as discrete torsion. We again denote the
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resulting theory by T /ψ G. Up to equivalence, the symmetry category of T /ψ G is independent
of the choice of trivialisation ψ.

However, one may study topological interfaces between theories T /ψ1
G and T /ψ2

G, which
form projective 2-representations of G with 3-cocycleψ1−ψ2. Similarly to before, irreducible
projective 2-representations of this kind can be labelled by4

1. a subgroup H ⊂ G,

2. a 2-cochain c ∈ C2(H, U(1)) satisfying dc = (ψ1 −ψ2)|H .

They will also appear naturally when considering the gauging of an anomaly-free subgroup of
an anomalous group as we will see in the following.

3.3 Gauging subgroups

The purpose of this section is to generalise the above picture to a general subgroup H ⊂ G.
Let us then suppose the ’t Hooft anomaly α is trivial upon restriction to a subgroup H. This
means there exists a 3-cochain ψ ∈ C3(H, U(1)) such that

α|H = (dψ)−1 . (74)

This subgroup may then be gauged consistently by summing over appropriately weighted net-
works of topological surface defects for H ⊂ G. The choice of trivialisation ψ can again be
recognised as a generalisation of discrete torsion.

In three dimensions, it is possible to generalise this construction further by gauging in
the presence of a more general 3-dimensional TQFT corresponding to an SET phase with H
symmetry [82–84]. We will not consider this generalisation here, but return to a similar con-
struction for 3-dimensional topological defects in four dimensions in section 4.

The result is a new theory T /ψH whose symmetry 2-category we denote by

C(G,α |H,ψ) . (75)

We call this a group-theoretical fusion 2-category. We expect they form an interesting class of
fusion 2-categories, which typically have non-invertible simple objects and whose properties
are determined by the projective 2-representation theory of finite groups. In the remainder
of this subsection, we summarise some elementary properties of group-theoretical fusion 2-
categories from the perspective of topological surface defects.

We again note the possible choices are expected to correspond to gapped boundary con-
ditions for the 4-dimensional Dijkgraaf-Witten theory based on G,α [85–87]. The latter then
serves as the symmetry TFT for this collection of symmetries.

3.3.1 Objects

The starting point is the symmetry category 2Vecα(G) of T . The 4-cocycle condition may be
written explicitly as

(dα)(g1, g2, g3, g4, g5) ≡
α(g2, g3, g4, g5)α(g1, g2 g3, g4, g5)α(g1, g2, g3, g4 g5)
α(g1 g2, g3, g4, g5)α(g1, g2, g3 g4, g5)α(g1, g2, g3, g4)

!
= 1 , (76)

and ensures that the pentagonator defines consistent relations when fusing five topological
surfaces labelled by g1, ..., g5 ∈ G together. We again assume the 4-cocyle α is normalised.

4Note that for generic ψ1 and ψ2, a trivialisation dc = (ψ1 −ψ2)|H may not exist. In this case, there exists no
projective 2-representation of G labelled by the subgroup H ⊂ G.
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Figure 17

Let us now suppose that the anomaly is trivial upon restriction to H ⊂ G. This means that
we can absorb the anomaly for H by attaching phases ψ(h1, h2, h3) ∈ U(1) to junctions of
topological surfaces labelled by h1, h2 and h3 as shown in figure 17. In order for these phases
to cancel the anomaly, they need to satisfy

ψ(h1h2, h3, h4)ψ(h1, h2, h3h4)
ψ(h2, h3, h4)ψ(h1, h2h3, h4)ψ(h1, h2, h3)

!
= α(h1, h2, h3, h4) , (77)

as shown in the lower part of figure 17. This can be identified with the trivialisation condition

α|H
!
= (dψ)−1. Note that the choice of trivialisationψ is not unique, since adding 3-cocycles to

ψ will leave the trivialisation condition invariant. We again interpret this additional freedom
as the possibility to add discrete torsion for the subgroup H.

Upon fixing a particular trivialisation ψ, we are then able to gauge H by summing over
(equivalence classes of) networks of H-defects with ψ attached to junctions of topological
surfaces. The result is a new theory T /ψH, whose topological surfaces are constructed from
topological surfaces in the ungauged theory T together with instructions for how networks of
H-defects may intersect with them consistently. This is illustrated schematically in figure 18.

Concretely, we equip the topological surface S with instructions for how networks of H-
defects can end on it consistently from the left and from the right in a manner that is compatible
with their topological nature. This defines the objects of the symmetry category C(G,α |H,φ)
as 2-bimodules for a certain algebra object in the original symmetry category 2Vecα(G) asso-
ciated to H and ψ.

Let us start from a general topological surface defect corresponding to an object of the

Figure 18
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Figure 19

fusion 2-category 2Vecα(G). This may be expressed as VecS as a module category over Vec,
where S =
⊕

g Sg is a G-graded set. Concretely, writing Sg = {1, . . . , ng} it corresponds to a
general topological surface formed by sums of ng copies of the topological surface labelled by
the group element g ∈ G.

Instructions for how symmetry defects h ∈ H may end on it from left and right are specified
by 1-morphisms

ℓh|g : h ⊗ Sg → Shg , and rg|h : Sg ⊗ h → Sgh , (78)

as illustrated in figure 19. In the following, we will call them left and right 1-morphisms
respectively.

In addition, we need to give instructions for how the fusion of two symmetry defects
h, h′ ∈ H in the bulk can end on S consistently from the left and from the right. This is
implemented by 2-morphisms

Ψℓh,h′|g : ℓhh′|g ⇒ ℓh|h′g ⊗ ℓh′|g , (79)

Ψ r
g|h,h′ : rg|hh′ ⇒ rgh|h′ ⊗ rg|h , (80)

which we call the left and right 2-morphisms respectively. We also introduce left-right 2-
morphisms

Ψℓrh|g|h′ : rhg|h′ ⊗ ℓh|g ⇒ ℓh|gh′ ⊗ rg|h′ , (81)

describing how symmetry defects can end on S from the left and from the right at the same
time. This is illustrated in figure 20.

The left and right 1- and 2-morphisms must be compatible with the fusion of symmetry
defects in the bulk. This leads to the consistency conditions

ψ(h1, h2, h3) ·
�

Ψℓh1,h2|h3 g ⊗ ℓh3|g
�

◦ Ψℓh1h2,h3|g
!
= α(h1, h2, h3, g) ·

�

ℓh1|h2h3 g ⊗Ψℓh2,h3|g

�

◦ Ψℓh1,h2h3|g
, (82)

and

ψ(h1, h2, h3)
−1 ·
�

Ψ r
gh1|h2,h3

⊗rg|h1

�

◦Ψ r
g|h1,h2h3

!
= α(g, h1, h2, h3)

−1 ·
�

rgh1h2|h3
⊗Ψ r

g|h1,h2

�

◦Ψ r
g|h1h2,h3

, (83)

which are illustrated in figure 21.
Similarly, the left-right 2-morphisms need to be compatible with the fusion of symmetry

defects, which leads to the consistency conditions

α(h1, h2, g, h3)
−1 ·
�

Ψℓh1,h2|gh3
⊗ rg|h3

�

◦ Ψℓrh1h2|g|h3

!
=
�

ℓh1|h2 gh3
⊗Ψℓrh2|g|h3

�

◦ Ψℓrh1|h2 g|h3
◦
�

rh1h2 g|h3
⊗Ψℓh1,h2|g

�

,
(84)

and

α(h1, g, h2, h3) ·
�

ℓh1|gh2h3
⊗Ψ r

g|h2,h3

�

◦Ψℓrh1|g|h2h3

!
=
�

Ψℓrh1|gh2|h3
⊗rg|h2

�

◦Ψℓrh1|g|h2
◦
�

Ψ r
h1 g|h2,h3

⊗ℓh1|g
�

, (85)
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Figure 20

Figure 21
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Figure 22

as illustrated in figure 22. Solutions to these equations define a 2-bimodule for the algebra
object A(H,ψ) in 2Vecα(G) determined by H and ψ.

In the remainder of this subsection, we derive some information about simple objects,
fusion and morphisms in the symmetry 2-category C(G,α |H,ψ).

3.3.2 Simple Objects

From the form of the left and right morphisms (78), it is clear that any solution will decompose
as a direct sum of solutions supported on double H-cosets in G. Let us therefore restrict our
attention to a solution supported on a single double coset [g] ∈ H\G/H with representative
g ∈ G.

The associated set Sg carries a projective 2-representation Ψg of the subgroup
Hg := H ∩ g H ⊂ H that is constructed from the left and right 1- and 2-morphisms as follows.
First, we define 1-morphisms

ρg(h) := rhg|(hg )−1 ◦ ℓh|g , (86)

with h ∈ Hg and hg := g−1hg, which describe how symmetry defects pierce through Sg as
illustrated in figure 23.

Next, we introduce 2-morphisms

Ψg(h, h′) := Ψℓrh|h′g|(h′g )−1 ◦
�

Ψ r
hh′g|(h′g )−1,(hg )−1 ⊗Ψℓh,h′|g

�

, (87)

that describe how the fusion of two symmetry defects in the bulk pierces through Sg as illus-
trated in figure 24.
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Figure 23

Figure 24

Using the consistency conditions (82), (83), (84) and (85), one can then check that the
collection of 1-morphisms and 2-morphisms,

Ψg(h, h′) : ρg(hh′) ⇒ ρg(h) ⊗ ρg(h
′) , (88)

indeed defines a projective 2-representation of Hg on Sg in the sense that
�

Ψg(h1, h2)⊗ρg(h3)
�

◦ Ψg(h1h2, h3) = cg(h1, h2, h3) ·
�

ρg(h1)⊗Ψg(h2, h3)
�

◦ Ψg(h1, h2h3) , (89)

where the 3-cocycle cg ∈ Z3(Hg , U(1)) depends on the anomaly α and its trivialisation ψ.
Upon renormalising Ψg → γg · Ψg by an appropriate 2-cochain γg ∈ C2(Hg , U(1)), the 3-
cocycle cg can be brought into the canonical form

cg(h1, h2, h3) =
ψ(hg

1 , hg
2 , hg

3)

ψ(h1, h2, h3)
·
α(h1, h2, h3, g)α(h1, g, hg

2 , hg
3)

α(h1, h2, g, hg
3)α(g, hg

1 , hg
2 , hg

3)
. (90)

The interpretation of the projective 2-representation is illustrated in figure 25, where it is
shown to represent the compatibility with topological moves of the network of H-defects.

We claim that conversely any such projective 2-representation determines a solution to the
compatibility constraints for left and right morphisms. The above construction then sets up
a bijection between isomorphism classes of simple objects and isomorphism classes of pairs
(g,Ψg) consisting of

1. A representative g ∈ G of a double coset [g] ∈ H\G/H.

2. An irreducible projective 2-representation Ψg of Hg with 3-cocycle

cg(h1, h2, h3) :=
ψ(hg

1 , hg
2 , hg

3)

ψ(h1, h2, h3)
·
α(h1, h2, h3, g)α(h1, g, hg

2 , hg
3)

α(h1, h2, g, hg
3)α(g, hg

1 , hg
2 , hg

3)
. (91)
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Figure 25

The isomorphism class of a simple object depends on the double coset representative g and
the 3-cocycle representative cg only up to isomorphism.

We can give an alternative description of simple objects using induction of projective 2-
representations: In this context, every irreducible projective 2-representation of Hg may be
seen as being induced by a 1-dimensional 2-representation of a subgroup of K ⊂ Hg . The
latter is completely determined by a choice of 2-cochainφ ∈ C2(K , U(1)) satisfying dφ = cg |K ,
which slightly generalises the considerations in [80,88].

In summary, simple objects are classified by

1. A representative g ∈ G of a double coset [g] ∈ H\G/H.

2. A subgroup K ⊂ Hg .

3. A 2-cochain φ ∈ C2(K , U(1)) satisfying dφ = cg |K .

The above description of simple topological lines again allows for an alternative physical
interpretation: The topological surface labelled by g ∈ G in T is invariant under the action
of Hg ⊂ H and therefore supports a Hg symmetry group. However, due to the bulk ’t Hooft
anomaly and choice of trivialisation, it has an anomaly cg ∈ Z3(Hg , U(1)). To define a con-
sistent topological surface when gauging, the anomaly must be cancelled by dressing with an
irreducible 2-dimensional TQFT with Hg symmetry and opposite ’t Hooft anomaly. This is a
projective 2-representation of the above type.

3.3.3 1-morphisms

The 1-morphisms in the gauged theory T /ψH are obtained from morphisms in the ungauged
theory T together with compatibility conditions for how they intersect with networks of H-
defects.

Concretely, given two simple objects (g,Ψg) and (g ′,Ψg ′), a 1-morphism between them is
obtained from a 1-morphsim V : Sg → S ′g ′ in 2Vecα(G). Since this must preserve the grading
of the 2-vector spaces Sg and S ′g , such a morphism can only exist when g = g ′. This is
illustrated in figure 26.

In addition, the 1-morphism V needs to be equipped with 2-morphisms,

Φ(h) : ρ′g(h) ◦ V → V ◦ ρg(h) , (92)

in 2Vecα(G) that describe the intersection of V with networks of H-defects as illustrated in
figure 27.
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Figure 26

Figure 27

Figure 28

These 2-morphisms must be compatible with topological manipulations of H-defects inter-
secting Sg and S ′g in the sense that

Φ(hh′) =
Ψ′g(h, h′)

Ψg(h, h′)
·
�

ρ′g(h)⊗Φ(h)
�

◦
�

Φ(h′)⊗ρg(h)
�

, (93)

for all h, h′ ∈ Hg , which is illustrated in figure 28. This allows us to identify 1-morphims
in T /ψH with graded projective representations (or equivalently 1-intertwiners between 2-
representations), which have been studied extensively in Part I [27]. For our purposes, any
simple graded projective representation of Hg can be seen as being induced by an ordinary
projective representation of a subgroup K ⊂ Hg .

In summary, we obtain a decomposition,

C(G,α |H,ψ) ∼=
⊕

[g]∈H\G/H
2Repcg (Hg) , (94)
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at the level of 2-categories. A generic object will thus be given by a collection of projective 2-
representations of subgroups Hg ⊂ H with 3-cocycles cg indexed by representatives of double
cosets [g] ∈ H\G/H.

Similarly to the two-dimensional case, taking both H and ψ to be trivial reproduces the
expected result,

C(G,α |1) = 2Vecα(G) , (95)

at the level of categories. On the other hand, taking H = G with trivial anomaly gives

C(G |G,ψ) = 2Rep(G) (96)

at the level of categories as anticipated from the discussion in subsection 3.2.

3.3.4 Fusion

The fusion of objects is determined by the tensor product of 2-bimodules for the 2-algebra
object A(H,ψ) in 2Vecα(G) associated to H and ψ. We will again not present the general
formula, but restrict ourselves to some salient features.

Consider two simple objects S1 and S2 supported on double cosets [g1] and [g2] respec-
tively. Their fusion should be such that one can consistently insert additional H-defects in
between them as illustrated in figure 29, and will thus be supported on the decomposition of
[g1] · [g2] into double cosets.

Analogously to two dimensions, we define the support of a generic object S inside the
double coset ring Z[H\G/H] by

sup(S) :=
∑

[g]∈H\G/H

dim(Ψg) · [g] , (97)

where we regarded S as a collection {Ψg} of projective 2-representations indexed by double
cosets [g] ∈ H\G/H as above. The fusion of two objects S and S′ must then preserves their
support in the sense that

sup(S ⊗ S′) = sup(S) ∗ sup(S′) , (98)

where ∗ denotes the ring product on Z[H\G/H].
In this way, the double coset ring again forms the backbone of fusion with respect to the

sum decomposition (94). The remaining fusion structure corresponds to decomposing and
combining projective 2-representations. We again confine ourselves to specific instances.

Figure 29
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Figure 30

3.4 Gauging 2-subgroups

Let us now consider a 3-dimensional theory T with a finite 2-group symmetry G. This is
specified by a 0-form symmetry group K , an abelian 1-form symmetry group A[1], a group
action ϕ : K → Aut(A) and a Postnikov class5 [e] ∈ H3(K , A). In our conventions, specifying
local counter terms in the background fields amounts to choosing a representative e ∈ Z3(K , A)
of the Postnikov class. If the Postnikov class vanishes, one must choose a trivialisation. In this
case, shifts of the trivialisation correspond to a choice of symmetry fractionalisation and form
a torsor over H2(K , A).

The system may have an ’t Hooft anomaly specified by a class [µ] ∈ H4(G, U(1)) with
representative µ ∈ Z4(G, U(1)).6 The corresponding symmetry category is given by

2Vecµ(G) . (99)

Our ambition is to gauge an anomaly-free 2-subgroup H ⊂ G. This consists of subgroups
L ⊂ K and B ⊂ A such that the group action ϕ : K → Aut(A) restricts to a group action
ρ : L → Aut(B) and e|L ∈ Z3(L, A) is valued in B. The condition that H be anomaly-free
requires µ|H = (dν)−1 for some trivialisation ν ∈ C3(H, U(1)). This will result in a 2-group-
theoretical fusion 2-category

C(G,µ |H,ν) . (100)

We restrict attention here to cases where the ’t Hooft anomaly does not obstruct gauging
the whole 1-form symmetry A[1]. In this case, A[1] may be gauged first to obtain an ordinary
group symmetry bG = bA⋊

bϕ K with mixed anomaly, to which we can then apply the machinery
from previous subsections. Let us illustrate this procedure by gauging a 2-subgroup H ⊂ G of
an anomaly-free 2-group without discrete torsion. The two steps of the gauging procedure are
then summarised in 30.

• First, we gauge A without discrete torsion to obtain a theory T /A with symmetry group
bG = bA⋊
bϕ K . In the presence of a non-trivial Postnikov class, this symmetry has a ’t Hooft

anomaly [α] ∈ H4(bG, U(1)) with 4-cocycle representative

α
�

(χ1, k1), (χ2, k2), (χ3, k3), (χ4, k4)
�

= 〈 bϕk1k2k3
(χ4) , e(k1, k2, k3) 〉 . (101)

This corresponds to the four-dimensional SPT phase,
∫

X
ba∪ k∗(e) , (102)

5We always assume group the group cohomologies Hn(G, A) to be twisted by the action ϕ of G on A.
6We use a convenient abuse of notation whereby the singular cohomology of the classifying space of a finite

2-group G is denoted in a way analogous to finite group cohomology.

32

https://scipost.org
https://scipost.org/SciPostPhys.17.2.067


SciPost Phys. 17, 067 (2024)

in terms of the background fields ba ∈ H1(X , bA) and k : X → BK for the 0-form symmetry
bG. The symmetry category of T /A is therefore given by

C(G|A) = 2Vecα(bG) . (103)

• Next, we note that we can relate the 2-subgroup H ⊂ G in T to a corresponding ordinary
subgroup ÒH ⊂ bG in T /A as follows:

◦ Given a 2-subgroup H = (L, B) of G, there is an associated short exact sequence
for the 1-form parts

1 −→ B
ı
−→ A

π
−→ C := A/B −→ 1 , (104)

which can be dualised to obtain a short exact sequence

1 −→ bC
bπ
−→ bA
bı
−→ bB −→ 1 , (105)

for the corresponding Pontryagin dual groups. Let now l ∈ L and χ ∈ bC . Using
that by assumption the group action ϕ restricts to a group action of L on B, it is
then straighforward to check that

〈bı (l ▷ bπ(χ)), b 〉 = 〈χ, (π ◦ ı)(l−1 ▷ b) 〉 ≡ 1 , (106)

for all b ∈ B, which implies that l ▷ bπ(χ) ∈ ker(bı) = im(bπ). Thus, the Pontryagin
dual action bϕ restricts to an action of L on bπ(bC) ⊂ bA, which allows us to define a
subgroup ÒH := bπ(bC)⋊

bϕ L of bG. Furthermore, since e|L is valued in B by assumption,
we have that

〈 bπ(χ), e(l1, l2)〉 = 〈χ, (π ◦ ı)(e(l1, l2))〉 ≡ 1 , (107)

for all χ ∈ bC and l1, l2 ∈ L, which is equivalent to saying that the anomaly α from
(101) becomes trivial upon restriction to ÒH ⊂ bG.

◦ Conversely, running through the above arguments backwards shows that any sub-
group ÒH ⊂ bG with α|

ÒH = 1 uniquely determines a 2-subgroup H of G.

In summary, there is a 1-1 correspondence between 2-subgroups H ⊂ G and subgroups
ÒH ⊂ bG with α|

ÒH = 1 given by

H = (L, B) ↔ ÒH =ÔA/B ⋊ L . (108)

Gauging the 2-subgroup H in T can thus be achieved by gauging the subgroup ÒH in
T /A using the machinery from section 3.3. The symmetry category of T /H is therefore
given by

C(G |H) = C(bG,α |ÒH) . (109)

3.5 Case study I

Let us now consider the case where we gauge the whole 2-group symmetry G of T . This
must result in the symmetry category 2Rep(G), but it is illuminating to reproduce this result
by gauging in steps: We first gauge the entire 1-form symmetry A[1] to obtain a theory T /A
with symmetry group bG = bA⋊

bϕ K and mixed ’t Hooft anomaly α and subsequently gauge the
remaining 0-form symmetry K ⊂ bG as shown in figure 31. This generalises the computation
that was done for split 2-groups in Part I [27].

In order to describe simple objects in T /G, we first note that double K-cosets in bG are in
1-1 correspondence with K-orbits in bA. Let us choose a representative χ ∈ bA of a K-orbit O(χ)
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Figure 31

with stabiliser Stab(χ) = K ∩ χK . Then, the 3-cocycle cχ from (90) with α as in (101) and
ψ= 1 reduces to

cχ(k1, k2, k3) = 〈 bϕk1k2k3
(χ) , e(k1, k2, k3) 〉 . (110)

The simple objects are therefore labelled by triples consisting of

1. a K-orbit O(χ) ⊂ bA with representative χ,

2. a subgroup L ⊂ Stab(χ) of its stabiliser,

3. a 2-cochain φ ∈ C2(L, U(1)) satisfying dφ = 〈χ, e|L〉.

This is equivalent to the data of a finite-dimensional 2-representation of the 2-group G [81]
and reduces to the construction of simple objects that was presented in Part I [27] for the case
of a split 2-group with [e] = 0. In summary, gauging the 2-group G in steps reproduces the
expected result

C(G |G) = 2Rep(G) . (111)

3.5.1 Example: G = Z2[1]×Z2

Consider the case where K = Z2 and A[1] = Z2. We denote the generators of A and K by x and
y , respectively. There are two possible 2-group structures7 corresponding to the two possible
Postnikov classes

[e] ∈ H3(Z2,Z2) = Z2 , (112)

with normalised cocycle representatives e(y, y, y) = 1 and e(y, y, y) = x respectively. We call
the corresponding 2-groups split and non-split respectively. The simple objects after gauging
can then be constructed as follows:

• For the split 2-group, there are no non-trivial 2-cocycles φ since H2(Z2, U(1)) = 0. The
simple objects are therefore completely determined by a choice of character χ ∈ bA and
subgroup L ⊂ Z2 of the stabiliser. We thus have four simple objects

χ L φ

1 1 Z2 1

X 1 {1} 1

V bx Z2 1

X ′ bx {1} 1

(113)

7There is no choice of symmetry fractionalisation since H2(Z2,Z2) = 0.
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Figure 32

whose fusion rules can be determined to be

V ⊗ V = 1 ,

V ⊗ X = X ′ ,

X ⊗ X = X ′ ⊗ X ′ = 2X ,

X ⊗ X ′ = 2X ′ .

(114)

Physically, V is the generator of the dual 0-form symmetry that results from gauging
A = Z2 and generates a subcategory 2Rep(Z2[1]) ∼= 2Vec(Z2). On the other hand, X
is the condensation defect for topological Wilson lines that result from gauging K = Z2
and generates a subcategory 2Rep(Z2) ∼= 2Vec(Z2[1]). The total symmetry category is
given by

2Rep(Z2[1]×Z2) ∼= 2Vec(Z2 ×Z2[1]) . (115)

Its simple objects and 1-morphism spaces are illustrated in figure 32.

• For the non-split 2-group, the condition dφ = 〈χ, e|L〉 becomes non-trivial only when
χ = bx and L = Z2. In this case, since no such normalised 2-cochain φ exists, the
corresponding defect V is no longer present in the spectrum. This is indicated by the
red colouring of the defect V and its attached 1-morphism spaces in figure 32. The
remaining 1-morphisms and fusion rules are the same as before.

3.5.2 Example: G = Z4[1]⋊Z2

As another example, suppose now K = Z2 and A[1] = Z4. We denote the generators of A
and K by x and y again and assume a non-trivial group action with homomorphism fixed
by ϕy(x) = x3. There are again two possible 2-groups G corresponding to the two possible
Postnikov classes

[e] ∈ H3(Z2,Z4) = Z2 , (116)

with normalised representatives e(y, y, y) = 1 and e(y, y, y) = x (which are cohomologous
to e(y, y, y) = x2 and e(y, y, y) = x3 respectively). The simple objects after gauging can then
be constructed as follows:

• For the split 2-group, there are again no non-trivial 2-cocycles φ so that the simple
objects are completely determined by a choice of orbit representativeχ ∈ bAand subgroup

35

https://scipost.org
https://scipost.org/SciPostPhys.17.2.067


SciPost Phys. 17, 067 (2024)

L of the stabiliser. There are now five simple objects

χ L φ

1 1 Z2 1

X 1 {1} 1

D bx {1} 1

V bx2 Z2 1

X ′ bx2 {1} 1

(117)

whose fusion rules are as in (114) with additional relations

V ⊗ D = D ,

X ⊗ D = 2D ,

D⊗ D = X ⊕ X ′ .

(118)

Note that X , X ′ are again condensation defects for the topological Wilson lines obtained
from gauging K = Z2. The simple objects and 1-morphism spaces in the resulting sym-
metry category 2Rep(Z4[1]⋊Z2) are illustrated in figure 33.

• For the non-split 2-group, the condition dφ = 〈χ, e|L〉 is non-trivial only when χ = bx2

and L = Z2. In this case, since no such normalised 2-cochainφ exists, the corresponding
defect V is no longer present in the spectrum. This is indicated by the red colouring of
the defect V and its attached morphism spaces in figure 33. The remaining 1-morphisms
and fusion rules are the same as before.

Finally, we note that replacing Z4 by D4 = Z2 × Z2 with Z2-action exchanging the two
factors leads to the same spectra of simple objects and equivalent symmetry categories

2Rep(Z4[1]⋊Z2) ∼= 2Rep(D4[1]⋊Z2) , (119)

despite the fact that Z4[1]⋊Z2 and D4[1]⋊Z2 are distinct 2-groups.

1 V

X D X ′

Vec

Rep(Z2)

Vec

Rep(Z2)

Vec

Vec(Z2) Vec

Vec

Vec(Z2)

Figure 33
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3.6 Case study II

Let us consider a theory T with anomaly free symmetry G = D8 and systematically gauge all
possible subgroups H ⊂ G with discrete torsion. The possible choices corresponds to gapped
boundary conditions for 4-dimensional Dijkgraaf-Witten theory for D8 with trivial topological
action, which acts as symmetry TFT for the resulting class of symmetries.

Our primary example will be 3-dimensional Yang-Mills theory with gauge group PSO(N)
with N even, whose magnetic and charge conjugation symmetries combine to form D8. Gaug-
ing subgroups of this symmetry will provide a systematic analysis of the fusion 2-category
symmetries of various global forms of gauge theories based on the Lie algebra so(N), includ-
ing those with disconnected gauge groups and discrete theta angles.

If N = 4k+ 2, we introduce standard generators r and s and present D8 as

D8 = 〈r, s | r4 = s2 = 1, srs−1 = r−1〉 , (120)

which identifies the symmetry group with the semi-direct product Z4⋊Z2. In this formulation,
Z4 corresponds to the magnetic symmetry π1(PSO(N))∨ and Z2 to the charge conjugation
symmetry Out(PSO(N)).

If N = 4k, we introduce generators a = rs and b = sr and present D8 as

D8 = 〈a, b, s | a2 = b2 = s2 = 1, ab = ba, sas−1 = b〉 , (121)

which identifies the symmetry group with the semi-direct product (Z2 × Z2) ⋊ Z2. In this
formulation, Z2×Z2 corresponds to the magnetic symmetryπ1(PSO(N))∨ andZ2 to the charge
conjugation symmetry Out(PSO(N)). For simplicity, we will focus on this example in what
follows.

We remind the reader that the subgroup and automorphism structure of D8 is summarised
in figure 14. We now consider the symmetry categories that result from gauging subgroups
with discrete torsion, beginning with subgroups of the smallest order and working upwards in
figure 14.

3.6.1 Order two subgroups

We begin by gauging the order 2 subgroups isomorphic to H ∼= Z2. In this case, it is possible to
gauge with discrete torsion corresponding to the non-trivial class in H3(Z2, U(1))∼= Z2, which
may be represented by adding a counter term of the form

1
2

∫

a∪ a∪ a . (122)

There are 5 order two subgroups forming 3 conjugacy classes, two of which are related by an
outer automorphism. There are therefore only two substantive cases to consider:

• The center H = 〈r2〉 ∼= Z2 of D8 forms a non-split extension

1→ Z2→ D8→ D4→ 1 , (123)

with non-trivial extension class [e] ∈ H2(D4,Z2). The extension class may be repre-
sented by the two-dimensional SPT phase,

1
2

∫

a1 ∪ a2 , (124)

in terms of the background fields a1,a2 ∈ H1(X ,Z2) for the D4 symmetry. Gauging the
center will result in an SO(N) gauge theory. However, the global structure and symmetry

37

https://scipost.org
https://scipost.org/SciPostPhys.17.2.067


SciPost Phys. 17, 067 (2024)

category will depend on the choice of discrete torsion. we denote the choice of discrete
torsion by φ ∈ Z2 and the resulting global form may be expressed as

SO(N)φ =
SO(N)×D(Z2)φ
Z2[1]

, (125)

where the quotient means gauging the diagonal Z2 1-form symmetry [70,71]. Here and
in the following we denote by D(H)φ denotes the 3-dimensional Dijkgraaf-Witten theory
associated to φ ∈ H3(H, U(1)).

◦ In the absence of discrete torsion (φ = 0), gauging H ∼= Z2 results in a split 2-group
symmetry Z2[1]×D4 with ’t Hooft anomaly determined by the extension class [e],
which can be represented by the cubic SPT phase

1
2

∫

X
ba∪ a1 ∪ a2 , (126)

where ba ∈ H2(X ,Z2) denotes the background for the Z2[1] symmetry. The corre-
sponding global form is the plain SO(N)0 gauge theory.

◦ Now consider gauging with non-trivial discrete torsion (φ = 1). This can be under-
stood via the Lyndon-Hochschild-Serre spectral sequence associated to the short ex-
act sequence of groups (123) in a manner analogous to section 2.4 and appendix A.
In this instance, the first obstruction vanishes and the second obstruction corre-
sponding to the differential,

d 0,3
3 : H3(Z2, U(1)) → H3(D4, U(1)) , (127)

sends the discrete torsion to an additional contribution to the ’t Hooft anomaly
represented by the SPT phase

1
2

∫

X
P(a1 ∪ a2) , (128)

where P : H2(−,Z2) → H4(−,Z4) is the Pontryagin square operation. The spec-
tral sequence computation is performed explicitly in [72]. The same computation
is performed in [71] using an explicit Chern-Simons theory representation. This
corresponds to a distinct global form SO(N)1.

In summary, gauging the centre H = 〈r2〉with discrete torsionφ ∈ Z2 leads to the global
form SO(N)φ with symmetry category

C(D8 | 〈r2〉,φ) = 2Vecαφ (Z1[1]× D4) , (129)

where the anomaly αφ is represented by the SPT phase

1
2

∫

X
ba∪ a1 ∪ a2 +

φ

2

∫

X
P(a1 ∪ a2) . (130)

The result of adding discrete torsion is thus to shift ’t Hooft anomaly in the resulting
symmetry category.

• Now consider the two non-normal subgroups H = 〈s〉, 〈r2s〉 ∼= Z2, which are related
to each other by conjugation. For concreteness, consider gauging charge conjugation
H = 〈s〉. Gauging this subgroup results in a PO(N) gauge theory. However, the specific
global form and symmetry category will depend on the choice of discrete torsion when
gauging.
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◦ First consider the case without discrete torsion. The simple objects can be deter-
mined as follows. There are three double cosets [1], [r], [r2] with stabilisers H, 1,
H respectively and double coset ring

[r] ∗ [r] = [1] + [r2] , [r] ∗ [r2] = [r] , [r2] ∗ [r2] = [1] . (131)

There are therefore 5 simple objects corresponding to the following pairs of double
cosets and irreducible representations

1= ([1], 1) ,

V = ([r2], 1) ,

X = ([1],ω) ,

X ′ = ([r2],ω) ,
D = ([r], 1) , (132)

where ω denotes the non-trivial irreducible 2-representation (or condensation de-
fect) of Z2. The fusion ring takes the following form:

V ⊗ V = 1 ,

V ⊗ D = D ,

V ⊗ X = X ′ ,

D⊗ D = X ⊕ X ′ ,

X ⊗ D = D⊕ D ,

X ⊗ X = 2X .

(133)

The symmetry category is identified with

C(D8 | 〈s〉) = 2Rep(Z4[1]⋊Z2) . (134)

To understand this result, note that one may first gauge the subgroup 〈r〉 ∼= Z4
to obtain a dual 2-group symmetry Z4[1]⋊Z2. Then, gauging the entire 2-group
symmetry reproduces the PO(N) theory and symmetry category 2Rep(Z4[1]⋊Z2).
An analogous statement holds if we replace 〈r〉 ∼= Z4 by 〈rs, r3s〉 ∼= D4, making use
of the fact that

2Rep(Z4[1]⋊Z2) ∼= 2Rep(D4[1]⋊Z2) . (135)

The above results are compatible with the fusion rules derived in [33]. The non-
invertible defect N1 there is identified with the 2-dimensional 2-representation D,
while the symmetry defect W is identified with the 1-dimensional 2-representation
V , and X is the condensation.

◦ Adding a non-trivial discrete torsion when gauging results in a PO(N) gauge theory
with a discrete theta angle

1
2

∫

w1 ∪w1 ∪w1 , (136)

where w1 denotes the first Stiefel-Whitney class obstructing the restriction of a
PO(N) bundle to a PSO(N) bundle [70]. Since H = 〈s〉 is not a normal subgroup
of D8, we cannot utilise a spectral sequence construction to determine the symmetry
category.

• Now consider the two non-normal subgroups H = 〈rs〉, 〈r3s〉 ∼= Z2, which are related to
reach other by conjugation. Gauging these subgroups results in Ss(N) and Sc(N) gauge
theories respectively. The two subgroups are related to those considered in the previous
bullet point by an outer automorphism and therefore the construction of the symmetry
category is identical to above.
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3.6.2 Order four subgroups

Recall that there are three order four subgroups, all of which are normal: one is isomorphic
to Z4 and invariant under the outer automorphism and the remaining two are isomorphic to
D4 and exchanged by the outer automorphism. In both cases there is the opportunity to add
discrete torsion since

H3(Z4, U(1)) = Z4 ,

H3(D4, U(1)) = Z3
2 .

(137)

We consider the resulting symmetry 2-categories in turn:

• Let us first consider the normal subgroup H = 〈r2, s〉 ∼= D4. Gauging this subgroup
results in a 2-group symmetry D4[1] ⋊ Z2. Since H forms a split short exact sequence
with D8, there are no obstructions and discrete torsion acts on the resulting symmetry
2-category by an auto-equivalence. In summary,

C(D8 |D4,φ) = 2Vec(D4[1]⋊Z2) . (138)

In our running example, this results in an O(N)0 gauge theory and the effect of adding
discrete torsion is to alternate between different global forms. On the one hand, intro-
ducing discrete torsion for the Z2 subgroup 〈s〉 ⊂ H corresponds to adding a discrete
theta angle

1
2

∫

w1 ∪w1 ∪w1 , (139)

where w1 now denotes the first Stiefel-Whitney class obstructing the lift of an O(N)-
bundle to an SO(N)-bundle. On the other hand, introducing discrete torsion for the Z2
subgroup 〈r2〉 ⊂ H corresponds to the global form

O(N)φ =
O(N)×D(Z2)φ
Z2[1]

. (140)

There is one further generator of discrete torsion and 8 possible global forms given the
Z3

2 classification in (137). Our analysis shows that all of these global forms share the
same symmetry category up to equivalence.

• The remaining normal D4 subgroup H = 〈r2, rs〉 is related to the one above by an outer
automorphism and therefore leads to an identical analysis for the symmetry categories.
They correspond to Spin(N) gauge theories with discrete torsion resulting in different
global forms

Spin(N)φ =
Spin(N)×D(D4)φ

D4[1]
, (141)

where φ ∈ H3(D4, U(1))∼= Z3
2.

• Finally, consider the normal subgroup H = 〈r〉 ∼= Z4. Gauging this subgroup leads to a
split 2-group symmetry Z4[1]⋊Z2. Since H forms a split short exact sequence with D8,
there are no obstructions and discrete torsion [φ] ∈ H3(Z4, U(1)) acts on the resulting
symmetry 2-category by an auto-equivalence. In summary,

C(D8 |Z4,φ) = 2Vec(Z4[1]⋊Z2) . (142)

In our running example, gauging H = Z4 leads to a O(N)1 gauge theory, where the
superscript 1 denotes the presence of the discrete theta angle

1
2

∫

w1 ∪w2 . (143)
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Here, w1 and w2 are the first and second Stiefel-Whitney class of O(N)-bundles. One
way to understand this interpretation is to gauge in steps. Recall that first gauging
the central subgroup 〈r2〉 reproduces an SO(N) gauge theory. The remaining 0-form
symmetries correspond to the magnetic symmetry 〈rs〉 ∼= Z2 and charge conjugation
〈s〉 ∼= Z2. Subsequently gauging the diagonal combination of these symmetries, which
in our notation corresponds to gauging 〈r〉, reproduces the O(N)1 theory [70].

The effect of adding discrete torsion φ ∈ H3(Z4, U(1)) = Z4 corresponds to different
global forms of an O(N)1 gauge theory

O(N)1φ =
O(N)1 ×D(Z4)φ
Z2[1]

. (144)

Our analysis shows that these global forms share the same symmetry 2-category up to
equivalence.

3.6.3 Gauging the whole group

Finally, we may gauge the entire symmetry group H = D8 together with discrete torsion

[φ] ∈ H3(D8, U(1)) ∼= Z2 ×Z2 ×Z4 . (145)

The resulting symmetry 2-category is given by C(D8 |D8,φ) = 2Rep(D8).
In our running example, this corresponds to a Pin±(N) gauge theory, where the choice

of ± and specific global form depends on the choice of discrete torsion. In order to enumer-
ate the possibilities and understand their physical interpretation, it is convenient to use as
an organisational tool the Lyndon-Hochschild-Serre spectral sequence to enumerate possible
discrete torsion. This does not necessarily reproduce the group structure on (145), but it is a
convenient way to identify specific discrete torsion elements and their physical interpretation.
There are many ways to do this and we provide two illustrative examples below.

Let us first consider the split short exact sequence

1 → D4 → D8 → Z2 → 1 , (146)

that is associated to the semi-direct product structure D8
∼= D4 ⋊ Z2. One discrete torsion

element of interest arises from the term

E 3,0
2 = H3(Z2, U(1)) ∼= Z2 . (147)

This corresponds to gauging the Z2 charge conjugation symmetry of Spin(N) gauge theory
with discrete torsion and reproduces the Pin+(N) gauge theory with discrete theta angle

1
2

∫

w1 ∪w1 ∪w1 , (148)

where w1 denotes the first Stiefel-Whitney class that obstructs lifting a Pin+(N)-bundle to a
Spin(N)-bundle.

Now consider instead the short exact sequence

1 → Z4 → D8 → Z2 → 1 , (149)

associated to the semi-direct product structure D8
∼= Z4 ⋊ Z2. We now consider the discrete

torsion element arising from the term

E 2,1
2 = H2(Z2,Z4) ∼= Z2 , (150)
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Figure 34

where Z4 is understood as a non-trivial Z2-module. This corresponds to first gauging the Z4
symmetry of the PSO(N) theory with a local counter term

1
4

∫

k∗(φ)∪ a , (151)

where a is the dynamical Z4 background and k denotes the background for the remaining Z2
symmetry. The result is a O(N)1 gauge theory where the background ba for the emergent Z4[1]
symmetry is shifted by

ba → ba+ k∗(φ) . (152)

If φ is non-trivial, this corresponds to adding a non-trivial symmetry fractionalisation. Subse-
quently gauging the remaining Z2 symmetry then results in a Pin−(N) gauge theory [70].

There are many compatibility checks as order four subgroups may also be gauged by gaug-
ing order two subgroups in steps via composition of arrows in figure 14. The above results
are summarised in figure 34, in which we have omitted the outcomes of gauging with discrete
torsion for brevity.

4 Four dimensions

In this section, we consider gauging 3-subgroups of finite 3-groups in four dimensions. One
expects on general grounds (and under mild assumptions) that the associated symmetry cat-
egories are fusion 3-categories, which are expected to be even richer and more intricate than
fusion 2-categories. As the mathematical literature on the topic is less developed, we do not
wish to be systematic but to provide some general considerations and leverage the knowledge
we have acquired in lower dimensions.

An intuitive reason for the increase in richness is that topological lines on a three-
dimensional topological defect Ω may braid as illustrated in figure 35. This is reflected in
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Figure 35

an increase in richness of 3-dimensional TQFTs compared with one and two dimensions. A
corresponding observation is that while topological order in one and two dimensions is well
described by SPT phases, there are also SET phases in three dimensions [82–84].

From an algebraic perspective, we now work with 3Vec, whose objects are 3-dimensional
framed fully-extended TQFTs of Turaev-Viro type. As a result, our formalism does not capture
all possible topological defects in four dimensions that have been considered in the literature,
such as the topological defects constructed in [33]. Incorporating said defects would require a
further enlargement of 3Vec to include 3-dimensional TQFTs that are not of Turaev-Viro type.
A proper treatment of such an enlargement is beyond the scope of this paper and is left to
future work.

The structure of 3Vec considered in what follows underpins constructions in this section
as well as 3-representation theory more broadly. Let us compare the situation with sections 2
and 3:

• Objects of Vec are finite-dimensional vector spaces, Cn

• Objects of 2Vec are finite-dimensional 2-vector spaces, Vecn.

• Objects 3Vec include finite-dimensional 3-vector spaces of the form 2Vecn. However,
more generally it contains objects Mod(Z(C)) for some multi-fusion category C, cor-
responding to 3d TQFTs obtained by the Turaev-Viro construction. This includes the
former by taking C= Vecn.

The additional 3-vector spaces beyond 2Vecn may serve as the receptacle for new types of
3-representations and projective 3-representations that involve distinct new phenomena com-
pared with 1- and 2-representations.

This additional structure permeates the investigation of non-invertible symmetries in
D = 4. One way it manifests is in the appearance of TQFT valued coefficients in fusion rules
of non-invertible symmetries in four dimensions [32, 33, 43]. If we consider the fusion of a
topological surface S with a decoupled TQFT A corresponding to some object in 3Vec. If
A= 2Vecn, this produces a direct sum

A⊗S = S ⊕ · · · ⊕ S = n ·S , (153)

much as in two and three dimensions. However, if A supports topological lines that braid
non-trivially, then A ⊗ S does not admit such a decomposition. Such contributions arise in
the fusion rules of non-invertible symmetries in four dimensions and have been interpreted as
TQFT-valued coefficients.

It also manifests when gauging 1-form symmetries with ’t Hooft anomalies, where the
dressing by an anomalous TQFT is reformulated in terms of projective 3-representations of
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the 1-form symmetry. Higher representation theory provides a tool to systematise such exam-
ples and many computations boil down to higher analogues of classical constructions in the
representation theory of finite groups.

4.1 Preliminaries

Let us consider a theory T with anomaly-free finite group symmetry G. The symmetry 3-
category 3Vec(G) contains simple objects labelled by group elements g ∈ G that fuse according
to the group law of G. They correspond to the standard codimension-1 topological symmetry
defects generating the symmetry G.

A general object may be expressed as a sum

Ω =
⊕

g ∈G
Mod(Z(Cg)) , (154)

where the Cg form a collection of multi-fusion categories indexed by g ∈ G. This corresponds
to stacking the elementary symmetry defects with 3d TQFTs of Turaev-Viro type. Choosing
Cg = Vecng reproduces a direct sum of ng copies of symmetry defects labelled by g, similar to
two and three dimensions. However, there are more general objects in four dimensions.

4.2 Gauging groups

Now consider gauging the symmetry G. The resulting symmetry 3-category is expected to be
3Rep(G). There are a number of different interpretations of 3Rep(G):

• It captures condensation defects for the topological Wilson surfaces in T /G.

• It captures topological defects in T /G obtained by coupling to a 3-dimensional fully
extended TQFT with symmetry G. This corresponds to a definition of 3Rep(G) as the
3-category of 3-pseudo-functors

G→ 3Vec , (155)

where G is understood here as a strict 3-group, namely a 3-category with a single object,
all of whose morphisms are invertible.

• It captures topological defects in T /G defined by topological defects in the original the-
ory T together with instructions for how they intersect with networks of G symmetry
defects. This corresponds to a definition of 3Rep(G) as bimodules for a certain 3-algebra
object in 3Vec(G). The construction must now take as input all possible topological de-
fects in the original theory T of the form (154).

If one restricts attention to Cg = Vecng , the classification of 3-representations is a straight-
forward generalisation of previous sections: an n-dimensional 3-representation is labelled by
a permutation representation ρ : G → Sn and a 3-cocycle c ∈ Z3(G, U(1)n), where U(1)n is
understood as a G-module.

The simple 3-representations of this type then correspond to those for which ρ is transitive
and are induced by 1-dimensional 3-representations of subgroups of G [89]. In this case, we
can label simple 3-representations of G by pairs consisting of

1. a subgroup H ⊂ G,

2. a class c ∈ H3(H, U(1)).
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Figure 36

Physically, this corresponds to a codimension-1 defect on which the gauge symmetry is broken
down to H ⊂ G and supplemented by a topological action c.

However, there are more general 3-representations allowing for more general objects
3Vec(G). Let us consider starting from an object Ω in T corresponding to a general com-
bination of symmetry defects stacked with a 3d TQFT of Turaev-Viro type determined by a
fusion category C. Equipping this with instructions for how to interact with networks of sym-
metry defects defines a class of one-dimensional irreducible 3-representations in T /G, which
reproduces the classification of G-graded extensions of fusion categories [90].

In more detail, we must provide a G-action on the braided fusion category Z(C). There is
then a sequence of obstructions to defining a consistent coupling of symmetry defects g ∈ G
to Ω. Note that intersections with codimension-1 defects labeled by g ∈ G take the form of
2-dimensional surfaces Sg on Ω as illustrated schematically in figure 36. Then the obstructions
may be formulated as follows:

• The surface defects Sg may form a non-trivial 2-group with the simple abelian lines A in
Z(C). This is determined by an action ρ : G→ Aut(A) and a Postnikov class in H3(G,A).
A non-trivial Postnikov class does not allow a consistent gauging of G, and this provides
the first obstruction.

• If the first obstruction vanishes, there is a second obstruction from a possible ’t Hooft
anomaly for the surfaces Sg on Ω, which is a class in H4(G, U(1)).

If these obstructions vanish, one may consistently couple networks of symmetry defects to Ω,
which leads to irreducible 3-representations determined by a symmetry fractionalisation in
H2(G,A) and an SPT phase H3(G, U(1)).

More generally, irreducible 3-representations are labelled by a subgroup H ⊂ G and a H-
graded extension of a fusion categoryC, as discussed above. If we restrict attention toC= Vec,
this reduces to the elementary 3-representations labelled by H ⊂ G and c ∈ H3(H, U(1)).

In the following, we will also have cause to consider projective 3-representations of G. They
can arise at interfaces between theories T /G and T /φ G, whereφ ∈ H4(G, U(1)). In construct-
ing such interfaces, one must couple to an obstructed H-action on a fusion category C, where
the second obstruction should not vanish but match φ. Such projective 3-representations can
appear when gauging subgroups of G.

4.3 Gauging subgroups

Let us now consider a more general situation where the 0-form symmetry G of T has an
’t Hooft anomaly with representative α ∈ Z5(G, U(1)). Then the corresponding symmetry
category 3Vecα(G). This includes simple objects labelled by group elements g ∈ G and fusion
twisted by the 5-cocycle α.

45

https://scipost.org
https://scipost.org/SciPostPhys.17.2.067


SciPost Phys. 17, 067 (2024)

If [α] is trivial upon restriction to a subgroup H ⊂ G, the subgroup may be gauged. This
requires choosing a trivialisationψ ∈ C4(H, U(1)) such that α|H = (dψ)−1, which is a general-
isation of discrete torsion. We may then gauge H by summing over networks of H-defects with
phases ψ(h1, h2, h3, h4) attached to junctions of four codimension-1 defects labelled by H.

As before, the topological defects in the gauged theory T /ψH are constructed from topo-
logical defects in the ungauged theory T together with instructions for how networks of H-
defects may end on them consistently. This identifies topological defects after gauging with
3-bimodules for the algebra object A(H,ψ) in 3Vecα(G) associated to H and ψ. We again
denote the resulting symmetry category by C(G,α |H,ψ).

Following through the arguments of the previous sections, the simple objects are labelled
by pairs consisting of

1. a double coset [g] ∈ H\G/H with representative g ∈ G,

2. an irreducible projective 3-representation of Hg := H ∩ g H ⊂ H with 4-cocycle

cg(h1, h2, h3, h4) =
ψ(hg

1 , hg
2 , hg

3 , hg
4)

ψ(h1, h2, h3, h4)
·
α(h1, h2, h3, h4, g)α(h1, h2, g, hg

3 , hg
4)α(g, hg

1 , hg
2 , hg

3 , hg
4)

α(h1, h2, h3, g, hg
4)α(h1, g, hg

2 , hg
3)

.

(156)

They depend on the choice of double coset representative g and cocycle representative cg only
up to isomorphism.

The irreducible projective 3-representations may be given a further explicit description
recycling the discussion above: For those projective 3-representations that may be obtained
by induction from a 1-dimensional one, specify a subgroup K ⊂ H ∩ g H together with a 3-
cochain φ ∈ C3(K , U(1)) satisfying dφ = cg |K . However, similarly to above, we may also
encounter projective 3-representations built by coupling to braided fusion categories with the
appropriate projective G-action.

4.4 Gauging 3-subgroups

The most general situation we want to consider in four dimensions is a theory T with a finite
3-group symmetry G. This is specified by a 0-form symmetry K , an abelian 1-form symmetry
A[1], and an abelian 2-form symmetry C[2], together with actions of K on both A and C and
various Postnikov data. The latter may be summarised by cohomology classes8

[e3] ∈ H4(X , C) ,

[e2] ∈ H3(K , A) ,
(157)

where X denotes the 2-group formed by A and K with Postnikov class [e2] ∈ H3(K , A).
The symmetry may have an ’t Hooft anomaly specified by a class with representative

µ ∈ Z5(G, U(1)). The corresponding symmetry category is given by

3Vecµ(G) . (158)

The ambition is then to gauge an anomaly free 3-subgroup H ⊂ G with a choice of trivialisation
µ|H = (dν)−1 where ν ∈ C4(G, U(1)). The outcome will be a 3-group-theoretical fusion 3-
category

C(G,µ |H,ν) . (159)

8In this section we introduce some additional indices in the Postnikov classes, in order to distinguish the two
classes needed to specify the Postnikov data of a 3-group. We refer to appendix A for more details.
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Figure 37

We will not attempt a general analysis here but leverage the above results on gauging sub-
groups together with some additional information about gauging 1-form symmetries to exam-
ine some special cases.

Let us suppose that the anomaly does not obstruct gauging the 2-form symmetry C[2]. This
results in a theory T /C with a 2-group symmetry bC ⋊ X and mixed anomaly determined by
the Postnikov data [e3] ∈ H4(X , C). Then gauging general 3-subgroups may then be reduced
to gauging 2-subgroups of bC ⋊ X analogously to section 3.4.

However, in general it is not possible to reduce the problem to gauging subgroups of ordi-
nary groups, since gauging the 1-form symmetry will lead to another 1-form symmetry. The as-
sociated symmetry categories must therefore be studied independently. An exception is where
the 1-form symmetry A[1] is trivial, which is our first example below. Our second example
is to independently gauge a 1-form symmetry. These results will then feed into the two case
studies at the end of this section.

4.4.1 Example: no 1-form symmetry

Let us begin by considering the case where the 1-form symmetry of G is trivial, such that the
Postnikov data reduces to a class

[e3] ∈ H4(K , C) . (160)

We are then interested in gauging an anomaly-free 3-subgroup H ⊂ G. This consists of sub-
groups L ⊂ K and D ⊂ C such that the group action of K on C restricts to a group action of L
on D and e3|L ∈ Z4(L, C) is valued in D.

Let us assume the ’t Hooft anomaly does not obstruct gauging the whole 2-form symmetry
C[2]. In this case, C[2] may be gauged first to obtain an ordinary group symmetry bG = bC ⋊K
with mixed anomaly, to which we can then apply the machinery from previous subsections.
Let us illustrate this procedure by gauging a 3-subgroup H ⊂ G of an anomly-free 3-group
G without discrete torsion. The two steps of the gauging procedure are then summarised in
figure 37.

• First, we gauge C[2] without discrete tosion to obtain a theory T /C with symmetry
group bG = bC ⋊ K and ’t Hooft anomaly α represented by the SPT phase,

∫

X
bc ∪ k∗(e3) , (161)

in terms of the background fields bc ∈ H1(X , bC) and k : X → BK for the bG symmetry. The
symmetry category of T /C is therefore given by

C(G |C) = 3Vecα(bG) . (162)
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• Next, we note that analogously to section 3.4 there is a 1-1 correspondence between
3-subgroups H ⊂ G and subgroups ÒH ⊂ bG with α|

ÒH = 1 given by

H = (L, D) ↔ ÒH =ÕC/D⋊ L . (163)

Gauging the 3-subgroup H in T can thus be achieved by gauging the subgroup ÒH in
T /C using techniques described in subsection 4.3. The symmetry category of T /H is
therefore given by

C(G |H) = C(bG,α |ÒH) . (164)

The situation is more involved when there is a non-trivial 1-form symmetry A[1], since
gauging C[2] results in an anomalous 2-group. The dependence of the anomaly on the Post-
nikov data is expected to be a general feature. We study an example of this case study I below,
which generalises slightly the examples proposed in [44].

4.4.2 Example: only 1-form symmetry

Let us now consider a theory T with an anomaly-free 1-form symmetry A[1]. The symmetry
category is 3Vec(A[1]). This contains simple objects corresponding to condensation defects
for the topological line operators generating A[1], which correspond to fusion 2-categories

Mod(Vec(A)) , (165)

where Vec(A) is regarded as a braided fusion category with trivial braiding. However, there
are again more general objects by combining with objects of the form Mod(Z(C)) for some
fusion category C.

Now consider gauging the symmetry A[1]. The symmetry category is expected to be
3Rep(A[1]). This contains objects corresponding to condensations for topological Wilson lines,
which correspond to fusion 2-categories

2Rep(A) = Mod(Rep(A)) . (166)

It is known that this reproduces a 1-form symmetry bA, and therefore the symmetry category
should also be equivalent to 3Vec(bA[1]). This is compatible with the statements above because
Rep(A)∼= Vec(bA) as fusion categories.

We may also consider projective 3-representations of a 1-form symmetry A[1]. These
would arise at three-dimensional interfaces between theories T /A[1] and T /φ A[1] for some
φ ∈ H4(A[1], U(1)) and correspond to objects in 3Repφ(A[1]). These associated topological
defects are constructed by gauging A[1] while coupling to a 3d TFQT with 1-form symmetry
A and ’t Hooft anomaly φ ∈ H4(A[1], U(1)).

We caution that in the current setup such 3d TQFTs should be drawn from objects of the un-
derlying category 3Vec, which are necessarily of Turaev-Viro type and therefore may not supply
interesting projective 3-representations. A more interesting setup would therefore require an
extension of 3Vec to incorporate more general 3d TQFTs of the type considered in [91].

4.5 Case study I

Let us now consider a theory T with anomaly-free 3-group symmetry G with trivial 0-form
symmetry component. This is specified by an abelian 1-form symmetry A[1], an abelian 2-
form symmetry C[2], and Postnikov data

[e] ∈ H4(B2A, C) ∼= Hom(Γ (A), C) , (167)
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where Γ (A) denotes the universal quadratic group of A. Gauging the entire 3-group symmetry
results in a theory T /G with symmetry category 3Rep(G). A convenient method to uncover
the structure of this symmetry category is gauging the 3-group in steps by first gauging C[2]
and then subsequently gauging A[1]:

• First gauging the 2-form symmetry C[2] results in a theory T /C[2] with split 2-group
symmetry bG = bC × A[1] and mixed ’t Hooft anomaly α represented by

∫

X
bc ∪ e(a) (168)

in terms of the background fields bc ∈ H1(X , bC) and a : X → B2A for the bC × A[1] sym-
metry. We can denote the symmetry category 3Vecα( bG).

• Subsequently gauging A[1] results in the symmetry category 3Rep(G). Starting from
T /C[2], the simple objects after gauging A[1] are labelled by pairs:

1. a character χ ∈ bC ,

2. a projective 3-representation of A[1] with 4-cocyle 〈χ, e〉 ∈ H4(B2A, U(1)).

This captures the fact that the symmetry defects labelled by χ ∈ bC in T /C[2] support an
anomaly 〈χ, e〉 ∈ H4(B2A, U(1)). This must be cancelled when gauging A[1] by dressing
with a three-dimensional TQFT with 1-form symmetry A[1] whose anomaly cancels the
one above.

The above is reminiscent of the dressing phenomenon appearing in [33] in terms of projective
3-representations and is a higher version of the appearance of projective representations of
a quotient in the representation theory of group extensions, as summarised in section 2.4.
Unfortunately, as mentioned above, 3Vec is not rich enough to incorporate the full spectrum
of topological defects constructed in [33].

4.6 Case study II

Let us consider a theory T in four dimensions with split 2-group symmetry G = D4[1]⋊ Z2.
We consider gauging 2-subgroups H ⊂ G. For simplicity, we omit a discussion of gauging with
discrete torsion here.

An example is a pure Spin(N) gauge theory with N = 4k, where D4 = Z2×Z2 is the 1-form
centre symmetry Z(Spin(N)) and Z2 is the outer automorphism group of Spin(N) or charge
conjugation. Gauging 2-subgroups will then allow us to determine the symmetry categories
of global forms of four dimensional gauge theories with gauge algebra so(N), including those
with disconnected gauge groups.

We follow a similar notation for generators of the 2-group. We denote the generator of
the 0-form symmetry by s with s2 = 1 and the generators of the 1-form symmetry by a, b with
a2 = b2 = 1.

• Consider gauging the subgroup H = 〈s〉 ∼= Z2. This produces the Pin+(N) theory with
symmetry category 3Rep(D4 ⋊Z2).

• Consider the 2-subgroup 〈ab〉[1] ⊂ G forming a non-split exact sequence of 2-groups

1 → Z2[1] → G → Z2[1]×Z2 → 1 , (169)
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with extension class in H3(B2Z2 × BZ2,Z2) represented by

1
2

∫

a′ ∪ b . (170)

Here we introduce background fields satisfying δa = a′ ∪ b. Gauging this 2-subgroup
therefore generates a 2-group symmetry Z2[1]× (Z2[1]×Z2) ∼= D4[1]×Z2 with cubic
’t Hooft anomaly α represented by the SPT phase

1
2

∫

X
ba∪ a′ ∪ b . (171)

This is the SO(N) gauge theory with symmetry category 2Vecα(D4[1]×Z2).

• Consider gauging the subgroup D4[1] = 〈a, b〉[1] This results in the PSO(N) theory with
anomaly free 2-group symmetry D4[1]⋊Z2.

• Consider gauging the 2-subgroup Z2[1]×Z2 = 〈ab〉[1]×〈s〉. This reproduces the O(N)
gauge theory. The ’t Hooft anomaly of SO(N) obtained after gauging 〈ab〉[1] now trans-
lates into a 3-group symmetry

Z2[2]×e D4[1] , (172)

with 2-form symmetry Z2[2], 1-form symmetry D4[1] and a non-trivial Postnikov class
[e] ∈ H4(B2D4,Z2) such that the background fields satisfy

δbb = ba∪ a′ . (173)

The symmetry category is therefore 3Vec(Z2[2]×e D4[1]).

• Consider gauging 〈a〉 or 〈b〉. These correspond to Ss(N) and Sc(N) gauge theories re-
spectively. They can be obtained from SO(N) by gauging the (Z2 × Z2)[1] symmetry,
or equivalently by starting from the O(N) theory above and gauging the entire 3-group.
From this perspective, the simple objects are labelled by elements χ ∈ Z2 and projec-
tive 3-representations of (Z2 × Z2)[1] with 4-cocyle 〈χ, e〉, where e is the element of
H4(B2(Z2 ×Z2),Z2) represented by

1
2

∫

ba∪ a′ . (174)

The symmetry category is 3Rep(Z2[2]×e D4[1]).

• Gauging the whole 2-group gives the PO(N) gauge theory whose symmetry category is
therefore 3Rep(D4 ⋊Z2), equivalent to that of Pin+(N).

These results are summarised in figure 38.
Finally, we note that a number of these symmetry categories are transformed to an equiv-

alent symmetry category under gauging a 1-form symmetry, in a manner that is compatible
with S-duality. Indeed, by an argument to the c = 1 CFT discussed in section 2.6, this leads to
additional non-invertible duality defects at specific values of the coupling where theories are
invariant under gauging [32,33,43,44,64].
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Figure 38
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A Spectral sequences

We first start with a theory in D dimensions with an ordinary 0-form symmetry G given by the
central extension

A → G → K ≃ G/A . (A.1)

The classifying data for this extension is a Postnikov class e ∈ H2(K , A), and when this vanishes
we have simply G = A× K . One way to gauge G is via a sequence of gaugings

(D− 1)Vec(G)
A
−→ (D− 1)Rep(A)× (D− 1)Vec(K)

K
−→ (D− 1)Rep(G) . (A.2)

The symmetry category (D− 1)Rep(A) in the intermediate theory will ultimately include the
symmetry bA[D− 2]. This (D− 2)-form symmetry has a mixed anomaly with K corresponding
to the (D+ 1)-dimensional SPT phase

∫

ba∪ k∗(e) . (A.3)

Next we consider those SPT phases we could include while gauging G classified by
HD(G, U(1)). The exact sequence A.1 determines a Lyndon-Hochschild-Serre spectral se-
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quence that approximates SPT phases

Ep,q
2 = H p(K , Hq(A, U(1))) ⇒ H p+q(G, U(1)) . (A.4)

Certainly this spectral sequence and all that follows can still be described when A ◁ G is a
generic abelian normal subgroup of G, we just need to include that the group cohomology is
twisted by an action of K on A. For the sake of simplicity however we will restrict ourselves to
central extensions.

A.1 Split central extensions

An important fact for calculation is that when G = A× K , the spectral sequence collapses at
the E2-page and reduces to a decomposition

HD(G, U(1)) =
⊕

p+q=D
H p(K , Hq(A, U(1))) . (A.5)

We note that each term appearing in the decomposition above corresponds to a choice we can
make in the gauging sequence A.2.

The most obvious two examples are the pure SPT phases for A and K , which correspond
to the pages E0,D

2 = HD(A, U(1)) and ED,0
2 = HD(K , U(1)) respectively.

Another important example is the page ED−1,1
2 = HD−1(K , bA)which corresponds to a choice

of symmetry fractionalisation of K by bA[D− 2] in the intermediate theory of A.2.
The other terms in the decomposition correspond to other symmetry fractionalisations of

K by condensation defects appearing in (D− 1)Rep(A).

A.2 Obstructions

When the Postnikov class e is non-trivial we instead find that there are obstructions to lifting the
decomposition A.5 to a class in Hd(G, U(1)). Finding terms for which there are no obstructions
takes us to higher pages in the spectral sequence defined cohomologically as

dp,q
r : Ep,q

r → Ep+r,q−r+1
r ,

d2
r = 0 ,

Er+1 = H(Er , dr) .

(A.6)

The differential dr generates these obstructions and depends on the Postnikov class e. We
notice now that these differentials map pages that approximate SPT phases in d dimensions to
pages that approximate SPT phases in (d + 1) dimensions. In other words, these obstructions
describe “trivial" d-dimensional ’t Hooft anomalies for G that we can cancel with an SPT phase.

We also note that the spectral sequence obstructions correspond to anomalies and exten-
sions in A.2 that would obstruct gauging the full sequence.

Obvious examples include the final obstructions generated by dD+1−r,r−1
r which are all

valued in HD+1(K , U(1)) and correspond to pure K ’t Hooft anomalies that obstruct the second
step of the gauging sequence.

A more interesting class of obstructions is the one before the final obstruction generated
by dD+1−r,r−1

r−1 which are valued in HD(K , bA) which corresponds to a non-trivial Postnikov class
for a (D − 1)-group with 0-form part K and (D − 2)-form part bA[D − 2]. This would obstruct
the gauging sequence by making it impossible to gauge K independently of bA[D−2]. We note
that these obstructions also correspond to symmetry fractionalisations in (D+ 1) dimensions;
if SPT phases in one dimension higher correspond to ’t Hooft anomalies on the boundary, then
symmetry fractionalisations in one dimension higher correspond to non-trivial extensions on
the boundary.
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The other obstructions that can appear correspond to other Postnikov classes that describe
higher groups with K as the 0-form part and condensation defects from (D− 1)Rep(A) appear-
ing as higher-form parts. These types of obstructions together with the classes of obstructions
above taken together describe a general extension of symmetry categories that we might write
as

(D− 1)Rep(A) → C → (D− 1)Vec(K) . (A.7)

Such extensions of fusion (D−1)-categories and their classification are not well documented in
the maths literature and so this represents a new and exciting direction of research for gauging
(higher) subgroups.

A.3 Postnikov systems and general spectral sequences

We can extend this formalism to more general group-like symmetries D dimensions relatively
easily. Suppose we have a (D − 1)-group G whose components are finite and labelled by
homotopy groups πn(BG) of an associated classifying space BG for 1≤ n≤ D−1. One way to
construct such a classifying space comes courtesy of a Postnikov system, which is a sequence
of fibrations

Bnπn(BG) → Xn → Xn−1 , 2≤ n≤ D− 1 , (A.8)

such that XD−1 ≃ BG and X1 ≃ Bπ1(BG). These fibrations are classified by homotopy classes
of maps

[en] ∈ [Xn−1, Bn+1πn(BG)] ≃ Hn+1(Xn−1,πn(BG)) , (A.9)

called Postnikov classes. Each fibration has an associated Leray-Serre spectral sequence that
must each be computed in order to construct the de Rham cohomology H•(BG). For example
focus on a single fibration for Bnπn(G) = BnA over some Xn−1

BnA → Xn → Xn−1 . (A.10)

To compute H•(Xn) we have a spectral sequence with E2-page

Ep,q
2 ≃ H p(Xn−1, Hq(BnA)) , (A.11)

and to construct these pages we also need the fibration for Bn−1πn−1(BG) over Xn−2 which in
turn comes with its own spectral sequence. This series of spectral sequence calculations then
continues for each subsequent fibration in the Postnikov tower.

We might be concerned that this computation quickly becomes very complicated and ide-
ally we would like an algebraic analogue for higher group cohomology, but at least we can
restrict to classes of higher groups for which this calculation is more manageable and yet suffi-
ciently rich to demonstrate the range of behaviour SPT phases for higher groups can describe.
Just as was the case for ordinary subgroups, these spectral sequences should collapse at their
respective E2-page if the associated fibration splits.

A.4 Spectral sequences for ’t Hooft anomalies

We may think of a theories ’t Hooft anomaly as an SPT phase in (D + 1)-dimensions flowing
to that theory placed on a d-dimensional boundary. The mixed anomaly of K × bA[D − 2] in
the previous section is one such example, and the classifying space of this (D − 1)-group is
described by a (split) fibration

BD−1
bA → B(K × bA[D− 2]) → BK . (A.12)

The associated spectral sequence for HD+1(B(K × bA[D − 2]), U(1)) collapses at the E2-page.
The mixed anomaly corresponds to an element in E 2,D−1

2 ≃ H2(BK , A), which is exactly the
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group that classifies extensions of K by A. We might also say that the mixed anomaly is just
the image of the Postnikov class under the spectral sequence.

We can also apply this logic to other Postnikov classes that might appear in a higher group
symmetry. Take again our (D−1)-group symmetry example with πD−1(BG) = A, then provided
the (D − 2)-form is not anomalous we can gauge it. The Postnikov class [eD−1] ∈ HD(X , A)
appears in the ED,1

2 page of the spectral sequence for HD+1(XD−2 × BbA, U(1)). Its image is a
mixed anomaly corresponding to the SPT phase

∫

ba∪ x∗(eD−1) , (A.13)

where x is a collection of background fields for the remaining (D−2)-group classified by XD−2.
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