
SciPost Phys. 17, 068 (2024)

Boundary condition and reflection anomaly in 2 + 1 dimensions

Jiunn-Wei Chen1,2,3⋆, Chang-Tse Hsieh1,3† and Ryutaro Matsudo1‡

1 Department of Physics and Center for Theoretical Physics,
National Taiwan University, Taipei 10617, Taiwan

2 Leung Center for Cosmology and Particle Astrophysics,
National Taiwan University, Taipei 10617, Taiwan

3 Physics Division, National Center for Theoretical Sciences, Taipei 10617

⋆ jwc@phys.ntu.edu.tw , † cthsieh@phys.ntu.edu.tw , ‡ matsudo@phys.ntu.edu.tw

Abstract

It is known that the 2 + 1d single Majorana fermion theory has an anomaly of the re-
flection, which is canceled out when 16 copies of the theory are combined. Therefore,
it is expected that the reflection symmetric boundary condition is impossible for one
Majorana fermion, but possible for 16 Majorana fermions. In this paper, we consider
a reflection symmetric boundary condition that varies at a single point, and find that
there is a problem with one Majorana fermion. The problem is the absence of a corre-
sponding outgoing wave to a specific incoming wave into the boundary, which leads to
the non-conservation of the energy. For 16 Majorana fermions, it is possible to connect
every incoming wave to an outgoing wave without breaking the reflection symmetry.
In addition, we discuss the connection with the fermion-monopole scattering in 3 + 1
dimensions.
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1 Introduction

At the quantum level, there can be an obstruction of gauging a symmetry, which is called an
’t Hooft anomaly [1]. Clarifying whether the symmetry is anomalous is important because
an anomaly provides a powerful constraint on the phase of the theory. The theory with an
anomaly in d dimensions can also be employed for the classification of symmetry-protected
topological (SPT) phases in d+1 dimensions [2–5]. This application is based on the conjecture
that when we define an SPT phase with the symmetry G on a manifold with a boundary, it is
always associated with boundary degrees of freedom that carry an anomaly of the symmetry
G, but the total system does not have the anomaly.

The classification of 3+1 dimensional SPT phases was argued for several symmetries [4–7].
Remarkably, the free fermion classification of SPT phases with the reflection symmetry, given
by Z, is reduced to Z16 when interactions are introduced [6]. This classification is confirmed by
calculating the eta invariant, which is the action of the free fermion SPT phase [8]. The surface
theory of this SPT phase is the 2 + 1d free massless Majorana fermion theory, which has an
anomaly of the reflection symmetry. Corresponding to this relation, the 16 Majorana fermion
theory does not have the reflection anomaly [8–10]. In 3 + 1 dimensions, the classification
of the Z4 symmetry, with its generator X satisfying X 2 = (−1)F , is also given by Z16 [9].
This coincidence is explained by an isomorphism between corresponding bordism groups [11].
The 3+ 1d single Majorana fermion theory has the anomaly of the Z4 symmetry, and the 16
Majorana fermion theory does not have the anomaly [11].

The relation between a bulk SPT phase and a surface anomalous theory leads to another
characteristic of anomalies, non-edgeablity [2, 12, 13], which means the absence of bound-
ary conditions preserving the corresponding symmetry. In 1 + 1 dimensions, the existence
of boundary conditions preserving non-anomalous symmetries and the absence of boundary
conditions preserving anomalous symmetries were confirmed for perturbative anomalies [14]
and certain discrete symmetries, including time-reversal, in specific CFTs [12, 13, 15]. Such
studies in 1+ 1d CFTs are possible because the language of boundary conformal field theory
(BCFT) describes all possible boundary conditions. There are non-trivial boundary conditions
that can only be described using the language of BCFT and cannot be expressed as a linear
equation of the fields at the boundary. For example, the chiral fermion parity in the massless
free Majorana fermion theory whose flavor number is a multiple of eight is only preserved by
boundary conditions of this kind [12,15]. However, our current understanding of anomalous
theories on a manifold with a boundary in higher dimensions remains limited.

In this paper, we examine the possibility of imposing a boundary condition preserving
several symmetries including the reflection in 2+1 dimensions to check the equivalence of the
non-edgeability and the anomaly.

In Sec. 2, we confirm that simple linear boundary conditions do not preserve the anomalous
symmetries listed in Tab. 1. We also show that several symmetries without anomalies can be
preserved by linear boundary conditions, but the reflection symmetry cannot be, even when it
is non-anomalous.
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Table 1: The classification of the anomalies in 2 + 1 dimensions. Actions of the
symmetries to a Dirac fermion are written in Eqs. (5)-(10). The classification is given,
e.g., in Ref. [5,7,17] as the classification of fermionic SPT phases in 3+1 dimensions.

Symmetries (−1)F R R̃ U(1) U(1)× R U(1)⋊ CR U(1)⋊ÝCR
Anomalies in 3d 0 Z16 0 0 Z8 ×Z2 Z2

3 Z2

In Sec. 3, we impose a boundary condition that varies at a single point, taken as the origin,
in order to maintain the reflection symmetry in the single Majorana fermion theory. We show
that, with this boundary condition, there is no corresponding outgoing wave for a specific in-
coming wave into the origin. This means that the incoming wave must vanish at the origin,
leading to a violation of energy conservation. To obtain a corresponding outgoing wave, it is
necessary to introduce an additional Majorana fermion and impose an extra boundary con-
dition at the origin. We show that this additional boundary condition breaks the reflection
symmetry.

In Sec. 4, we consider the possibility of boundary conditions preserving the reflection sym-
metry in the presence of N f Majorana fermions. By restricting the fermion fields to the com-
ponents without corresponding outgoing or incoming waves, the system is reduced to 1 + 1
dimensional one on the half line parametrized by the radial distance. The boundary condition
at the origin corresponds to the boundary condition of the 1 + 1d fermions. The reflection
symmetry in the original 2 + 1d theory is reduced to the chiral fermion parity in the 1 + 1d
theory. By using the known facts of this 1+1d symmetry, we show that it is possible to impose a
boundary condition preserving the reflection symmetry when the number N f of the Majorana
fermions is a multiple of 16. This is consistent with the absence of the reflection anomaly in
such cases.

In Sec. 5, we discuss the relation between the reflection anomaly in 2+ 1 dimensions and
the fermion-monopole scattering in 3+ 1 dimensions. Also in the monopole background, the
absence of the corresponding outgoing wave for a specific incoming wave is observed when
the theory suffers from the mixed gauge-gravitational anomaly. We can explicitly relate this
problem to the problem in the 2+1d setup by restricting the 4d fermion to the modes in which
the third component of the angular momentum is zero.

In Sec. 6, we discuss the 3+ 1d anomalies of Z4 and U(1)× Z2 that can be derived from
the 2+ 1d anomaly of R and U(1)× R respectively. In the same way as the 2+ 1d setup, we
impose a boundary condition changing at a line to preserve the symmetry. By restricting the
3+1d fermions to specific modes, we obtain the massless 2+1d fermion theory, and the 3+1d
symmetries are reduced to the corresponding 2+ 1d symmetries. We can determine whether
it is possible to impose a boundary condition preserving the 3+ 1d symmetries by using the
result of the 2 + 1d setup in Sec. 4. The derivation of the inconsistency of the symmetric
boundary condition gives a physical interpretation of the Smith homomorphism [16] between
the corresponding bordism groups Ωspinc

5 (BZ2) and Ωpinc

4 .

2 Boundary conditions preserving some non-anomalous symme-
tries

Let us focus on some spacetime symmetries listed in Tab. 1. We consider N f free massless
Majorana fermions, whose action is given as

S =

∫

d3 xψT
j (−i)γtγµ∂µψ j , (1)
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where j is a flavor index. Here we define the gamma matrices as

γt = iσ2 , γx = σ1 , γy = −σ3 . (2)

For this choice, the Majorana condition is ψ = ψ∗. The theory can have the symmetries and
the corresponding anomalies, depending on N f .

By changing the variable as

Ψ =ψ1 + iψ2 , (3)

we can rewrite the action of two Majorana fermions as the action of one Dirac fermion as
∫

d3 x Ψ†(−i)γtγµ∂µΨ . (4)

The symmetries act on the Dirac fermion fields Ψ as

U(1) : Ψ(t, x , y)→ eiαΨ(t, x , y) , (5)

R : Ψ(t, x , y)→ γxΨ(t,−x , y) , (6)

R̃ : Ψ(t, x , y)→ iγxΨ(t,−x , y) , (7)

CR : Ψ(t, x , y)→ γxΨ∗(t,−x , y) . (8)

The symmetries U(1), R̃, and CR are defined only when N f is even. The reflection R can be
defined for any N f , where it acts on the Majorana fermion field ψ j as

ψ(t, x , y)→ γxψ(t,−x , y) . (9)

The symmetryÝCR characterized byÝCR
2
= (−1)F is defined for a pair of Dirac fermions (Ψ, eΨ)

as

ÝCR : Ψ(t, x , y)→ γx
eΨ∗(t,−x , y) , eΨ(t, x , y)→−γxΨ∗(t,−x , y) . (10)

Corresponding to R, R̃, CR,ÝCR, we can also introduce several types of time-reversal sym-
metry acting on the fermion field as1

C T : Ψ(t, x , y)→ γtΨ∗(−t, x , y) , (11)

ÝC T : Ψ(t, x , y)→ iγtΨ∗(−t, x , y) , (12)

T : Ψ(t, x , y)→ γtΨ(−t, x , y) , (13)

T̃ : Ψ(t, x , y)→ γt Ψ̃(−t, x , y) , Ψ̃(t, x , y)→−γtΨ(−t, x , y) . (14)

Note that these transformations are antilinear. By performing Wick rotation, these symmetries
are analytically continued to R, R̃, CR,ÝCR respectively.

The groups in the lower row of Tab. 1 are understood as follows. Each element of the group
corresponds to one set of theories with the same anomaly, and the identity element corresponds
to non-anomalous theories. The direct product of theories obeys the group multiplication law.
For R symmetry, the single massless Majorana fermion theory corresponds to the generator
of Z16, and its 16th power, the 16 Majorana fermion theory, has no anomaly. For U(1) × R
symmetry, the single Dirac theory generates the factor Z8. The other factor Z2 is generated
by a surface theory of a bosonic SPT phase [5]. For U(1) ⋊ CR symmetry, the single Dirac
theory generates a factor Z2. The other factors Z2

2 correspond to bosonic SPT phases [4]. For

1The C T transformation can act on a Majorana fermion as ψ(t, x , y)→ γtψ(−t, x , y). Due to the antilinearity,
there appears the complex conjugate when it acts on a Dirac fermion defined as Eq. (3).
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U(1) ⋊ÝCR symmetry, the anomaly Z2 corresponds to a bosonic SPT phase [5]. We will not
consider surface theories of bosonic SPT phases in this paper.

Let us check whether we can impose boundary conditions preserving the symmetries. For
simplicity, we consider the half of the Minkowski spacetime parametrized by (t, x , y) whose
values are taken in t, x ∈ R and y ∈ R≥0. The boundary condition should be imposed so that
the Hamiltonian H := −iγtγk∂k of the one-particle state is Hermitian for the completeness of
the eigenfunctions, and thus general spinor fields ψ, ψ̃ should satisfy

0= (ψ̃,Hψ)− (Hψ̃,ψ)

=

∫ ∞

−∞
d x

∫ ∞

0

d y
�

ψ̃†
j (−i)γtγk∂kψ j − ((−i)γtγk∂kψ̃ j)

†ψ j

�

=

∫ ∞

−∞
d x ψ̃†

j (−i)γtγyψ j

�

�

�

y=0
. (15)

A possible linear boundary condition is

γyψ j = M jkψk , (16)

where M is a real symmetric orthogonal matrix. We see that R is not preserved under this
boundary condition, which is consistent with the fact that R has an anomaly. We can impose
a boundary condition preserving U(1) using Dirac fields as

γyΨ j = M jkΨk , (17)

where M is a Hermitian unitary matrix. This is consistent with the fact that U(1) does not have
an anomaly. This boundary condition does not preserve R, R̃, and preserves CR only if M is
antisymmetric. Since the dimension of an antisymmetric unitary matrix has to be even, CR can
be preserved only if the number of the Dirac fermions, N f /2, is even. This is consistent with
the fact that U(1)⋊ CR is non-anomalous only in that case. Instead, the boundary condition

γyΨ j = M jkΨ
∗
k , (18)

where M is a symmetric unitary matrix,2 preserves R̃, not U(1) and R, and preserves CR only
if M = −M∗. This is consistent with the fact that R̃ and CR do not have anomalies.3 At least
for the simple boundary conditions (17) and (18), the symmetries R and U(1) × R are not
preserved, which is consistent with the fact that they have anomalies. For U(1)⋊ÝCR, there are
no anomalies for free fermion fields and we can impose the boundary condition preserving it
as

γyΨ j = M jkΨk , γy Ψ̃ j = −M∗jkΨ̃k , (19)

where M is a Hermitian unitary matrix.
It is known that when there are 16 Majorana fermions (8 Dirac fermions), the reflection

symmetry R does not have an ’t Hooft anomaly [8–10]. Therefore it is expected that we can

2Here we define the inner product (•,•) in Eq. (15) using the Majorana fermion fields via the relation (3), i.e.,
(Ψ̃,Ψ) =
∫

d3 x(ψ̃†
1ψ1 + ψ̃

†
2ψ2), which is different from the inner product for the Dirac fields (Ψ̃,Ψ) =

∫

d3 xΨ̃†Ψ.
Naturally, with the boundary condition (17), the Hamiltonian is Hermitian independent of the definition of the
inner product. However, with the boundary condition (18), we cannot use the inner product for the Dirac fields,
because Ψ satisfying (18) does not span a linear space since the condition (18) is not invariant under the scalar
multiplication Ψ→ iΨ.

3To understand CR does not have an anomaly, let us decompose a Dirac fermion into two Majorana fermions
as Eq. (3). The action of CR is rewritten as ψ1(t, x , y)→ γxψ1(t,−x , y), ψ2(t, x , y)→ −γxψ2(t,−x , y), which
can be understood as a reflection acting on ψ1 and ψ2 with opposite signs. In this case, the reflection anomalies
coming from ψ1 and ψ2 are cancelled, and there are no anomalies in total.
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impose a boundary condition preserving R when there are 16 Majorana fermions. However,
the simple boundary conditions (17) and (18) do not preserve R irrespective of the number of
flavors. In Sec. 4, we show that a non-trivial non-linear boundary condition for 16 Majorana
fermions preserves R.

3 Inconsistency of an R symmetric boundary condition

We impose the following R symmetric boundary condition, which varies at the origin:

γyψ= −ψ , at y = 0 , x > 0 , γyψ=ψ , at y = 0 , x < 0 . (20)

However, this boundary condition should be problematic because R has an anomaly. We will
see that an incoming fermion in a specific mode “disappears” at the boundary under this bound-
ary condition. To obtain a corresponding outgoing fermion mode, we need to introduce an
additional fermion and impose a boundary condition at the origin.

We can decompose ψ as4

ψ=
∞
∑

n=0

�

1
p

r
fn(t, r) cos(nθ )

�

cos θ2
sin θ2

�

+
1
p

r
gn(t, r) sin(nθ )

�

− sin θ2
cos θ2

��

, (21)

where we introduce r,θ as

x = r cosθ , y = r sinθ . (22)

We can confirm the functions make a complete set as follows. First we decompose with respect
to the spinor degrees of freedom as

ψ= F(t, r,θ )

�

cos θ2
sin θ2

�

+ G(t, r,θ )

�

− sin θ2
cos θ2

�

. (23)

Due to the boundary condition (20), G(t, r,θ ) has to satisfy G(t, r, 0) = G(t, r,π) = 0, while
F(t, r,θ ) is an arbitrary function. Any function f (θ ) of θ ∈ [0,π] can be decomposed with
respect to cos(nθ ) for n = 0,1, . . ., because it can be extended to a 2π-periodic even function
by defining f (−θ ) = f (θ ) for θ ∈ [0,π]. On the other hand, any function g(θ ) of θ ∈ [0,π]
that is zero at θ = 0,π can be decomposed using sin(nθ ) because it can be extended to a
2π-periodic odd function by defining g(−θ ) = −g(θ ) for θ ∈ [0,π]. Thus, we obtain the
decomposition (21). The Dirac equation γµ∂µψ= 0 implies

(∂t − ∂r) fn −
n
r

gn = 0 , (∂t + ∂r)gn +
n
r

fn = 0 . (24)

A solution with fixed energy E is

fn(t, r; E) = eiE(t−r)rnM(n+ 1,2n+ 1, 2iEr) ,

gn(t, r; E) = −eiE(t+r)rnM(n+ 1,2n+ 1,−2iEr) , (25)

where M(a, b, x) is Kummer’s function. To confirm this, we have used the properties of Kum-
mer’s function

z
dM(a, b, z)

dz
= (b− a)M(a− 1, b, z) + (a− b+ z)M(a, b, z) ,

M(a, b, z) = ez M(b− a, b,−z) . (26)

4If there is no boundary, we cannot use this decomposition because each component is not 2π periodic with
respect to θ .
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For ψ to be real, the coefficient of the positive frequency mode must be the same as that
of the negative frequency mode because M∗(n+ 1,2n+ 1, 2iEr) = M(n+ 1,2n+ 1,−2iEr).
Asymptotically, the solution (25) behaves as

fn(t, r; E)∼ eiE(t+r) , gn(t, r; E)∼ eiE(t−r) . (27)

This means that fn(t, r; E) can be regarded as an incoming wave into the origin, while
gn(t, r; E) can be regarded as the corresponding outgoing wave.

There is a problem with this solution of the Dirac equation. For each mode with n > 0,
there is an outgoing wave gn corresponding to the incoming wave fn. However, for n = 0,
we do not have the outgoing wave because the term containing g0 in Eq. (21) vanishes. This
means that an incoming fermion in the n= 0 mode has to disappear at the boundary, leading to
the violation of the energy conservation.5 Thus, the reflection symmetric boundary condition
(20) is not justified, which is consistent with the fact that the reflection has an anomaly.

To avoid this problem, one can introduce an additional fermion ψ̃ that satisfies the bound-
ary condition

γyψ̃= ψ̃ , for x > 0 , γyψ̃= −ψ̃ , for x < 0 , (28)

where the sign of the right-hand side is opposite to the boundary condition (20) for ψ. With
this boundary condition, there is no incoming wave for n = 0 rather than an outgoing wave.
We decompose ψ̃ as

ψ̃=
∞
∑

n=0

�

1
p

r
f̃n(t, r) sin(nθ )

�

cos θ2
sin θ2

�

+
1
p

r
g̃n(t, r) cos(nθ )

�

− sin θ2
cos θ2

��

. (29)

Note that the sin(nθ ) and cos(nθ ) appear differently as before to satisfy the boundary condi-
tion (28). We obtain the same equation as fn and gn. There is only outgoing mode for n = 0
because the f̃0 term in Eq. (29) vanishes. We can solve the puzzle by letting g̃0 be the outgoing
state corresponding to f0. To achieve this, we impose the boundary condition for the n = 0
mode as

f0(t, 0) = ± g̃0(t, 0) . (30)

This condition can be rewritten as

γtψ(r = 0) = ∓ψ̃(r = 0) , (31)

since only the n= 0 modes have nonzero values at the origin. This boundary condition breaks
the reflection symmetry (6). Instead, we have a kind of time-reversal symmetry

ψ(t)→ γtψ̃(−t) , ψ̃(t)→−γtψ(−t) , (32)

which is antilinear. We see that this symmetry is ÝC T in Eq. (12) by identifying

Ψ =ψ+ iψ̃ . (33)

Since ÝC T corresponding to R̃ does not have an anomaly, it is consistent.

4 An R symmetric boundary condition for N f = 16

We can impose a boundary condition preserving R when the number of Majorana fermions is
a multiple of 16 as follows. Let ψ j denote half of the Majorana fermions, and ψ̃ j denote the

5In other words, the unitarity of the S-matrix is violated. When the initial state is the s-wave, there is no
corresponding final state.
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Figure 1: The correspondence between the 3d Majorana fermion theory and 2d Ma-
jorana fermion theory. By restricting the fermions to the n = 0 modes, the 3d two
Majorana fermions ψ and ψ̃ reduce to the 2d single Majorana fermion (ψ2d , ψ̃2d),
where ψ2d (ψ̃2d) is the 2d left-moving (right-moving) Weyl fermions. The 3d reflec-
tion symmetry reduces the 2d chiral fermion parity. The 3d two Majorana fermion
theory has the anomaly corresponding to 2 ∈ Z16. On the other hand, the 2d single
Majorana fermion theory has the anomaly corresponding to 1 ∈ Z8. The eight copies
of each theories do not have the anomaly.

rest. We impose the boundary conditions (20) and (28) forψ j and ψ̃ j respectively. Since there
is no problem for the modes other than n = 0, we can restrict our consideration to the n = 0
modes. By substituting the n = 0 modes back into the action, we obtain the two-dimensional
theory as

S2d =

∫

d t

∫ ∞

0

dr
�

(ψ2d
j i(∂t − ∂r)ψ

2d
j + ψ̃

2d
j i(∂t + ∂r)ψ̃

2d
j

�

, (34)

where ψ2d
j = f0, j and ψ̃2d

j = g̃0, j . Here ψ2d
j can be regarded as a left-moving Majorana-Weyl

fermion and ψ̃2d
j as a right-moving one. The reflection R, Eq. (6), reduces to the transformation

(ψ2d
j , ψ̃2d

j )→ (ψ
2d
j ,−ψ̃2d

j ), which is the chiral fermion parity. Since the boundary condition
at r = 0 is only relevant to the n = 0 mode, we can describe the condition in the 1 + 1d
massless fermion theory, where we can use the BCFT language. The symmetry R is preserved
if we impose the boundary condition preserving the chiral fermion parity for the 2d fermions
(ψ2d

j , ψ̃2d
j ).

It is known that when the number of the 2d Majorana fermions is a multiple of 8, the
theory does not have the anomaly of the chiral fermion parity. The chiral fermion parity is the
internal Z2 symmetry, whose anomaly is classified by Z8×Z because the Z2 symmetric 3d SPT
phase is classified by it [7]. The generating theory of the subgroup Z8 of the anomaly is the
single Majorana fermion theory, and thus the direct product of the eight copies of the theory,
the 8 Majorana fermion theory, does not have the anomaly. This is consistent with the fact that
the 3d 16 Majorana fermion theory does not have the anomaly of the reflection. See Fig. 1.
Consistently with the fact that the theory does not have the anomaly of the chiral fermion parity
when the number of the Majorana fermions is a multiple of eight, it is also known that we can
impose the boundary condition preserving the chiral fermion parity in such cases [12, 15].
Thus, we can finally conclude that when the number of the Majorana fermion is a multiple
of 16, the reflection R is preserved when we impose the boundary condition (20) for half of
the fermions and (28) for the others at y = 0, while also imposing the boundary condition
preserving the chiral fermion parity for the n= 0 modes as 2d Majorana fermions at the origin.

When N f = 16, i.e., the number of the 2d Majorana fermions is 8, the 2d boundary con-
dition preserving the chiral fermion parity is the Maldacena-Ludwig boundary condition. The
boundary condition is non-linear and defined as the boundary state using open-closed duality.
Due to this non-linearity, the outgoing wave corresponding to a usual incoming fermion is an
exotic state, which is written as a kink soliton in the 2d bosonized theory [18].
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5 Relation to the fermion-monopole scattering in 3+1d

As seen before, it is impossible to impose a boundary condition preserving the reflection sym-
metry for a single Majorana fermion due to the absence of a corresponding outgoing wave for
the incoming wave in the n = 0 mode. The same issue arises in the context of the scattering
between a monopole and a charged fermion in 3+1 dimensions. Before and after the scatter-
ing with the monopole, the s-wave component of the fermion has to flip its helicity [19–21],
which means that when there is only one Weyl fermion, there is no outgoing wave. This sit-
uation can be interpreted as a consequence of the mixed gauge-gravitational anomaly.6 In
this section, we establish a direct connection between the absence of an outgoing s-wave in
the monopole scattering in 3 + 1 dimensions and the impossibility of imposing a boundary
condition preserving the reflection symmetry in 2+ 1 dimensions.

Let us consider the single free left-handed Weyl fermion theory with the unit positive charge
in the monopole background,

S =

∫

d4 xχ†
L iσ̄µ(∂µ − iAµ)χL , Aµ =

1
2
(1− cosθ )∂µϕ . (35)

In the single Weyl fermion theory, the U(1) symmetry has an ’t Hooft anomaly, which means
that the theory becomes inconsistent when we introduce a background U(1) gauge field.
Therefore, the theory (35) should have an inconsistency. In this case, there is no correspond-
ing outgoing wave for the incoming s-wave, the state with zero angular momentum. In the
monopole background, the angular momentum is given as

J⃗ = −i x⃗ × (∇⃗ − iA⃗) +
1
2
σ⃗−

1
2

x⃗
r

. (36)

Let us decompose the fermion field with respect to the eigenfunctions of J2 and J3. There are
two eigenfunctions belonging to the eigenvalues j( j + 1) and m of J2 and J3 as

χm
j (θ ,ϕ) = Y m

j (θ ,ϕ)

�

cos θ2
eiϕ sin θ

2

�

, ηm
j (θ ,ϕ) =
��

∂θ + i
1

sinθ
∂ϕ

�

Y m
j (θ ,ϕ)
�

�

− sin θ
2

eiϕ cos θ2

�

. (37)

When we decompose χL as

χL =
∞
∑

j=0

j
∑

m=− j

�

1
r

f m
j χ

m
j +

1
r

gm
j η

m
j

�

, (38)

the Dirac equation implies the equations,

(∂t − ∂r) f
m
j (t, r) +

j( j + 1)
r

gm
j (t, r) = 0 , (∂t + ∂r)g

m
j (t, r)−

1
r

f m
j (t, r) = 0 , for j > 0,

(∂t − ∂r) f
0

0 (t, r) = 0 . (39)

Since η0
0 = 0, the term containing g0

0 does not appear in the decomposition, and thus there
are no outgoing waves for the j = 0 mode.

The explicit relation to the 2+1 dimensional system is obtained by restricting the fermion
field to the m= 0 component. The m= 0 component can be expressed as

χL =
1
p
ρ

�

Ψ1(t,ρ, z)
eiϕΨ2(t,ρ, z)

�

, (40)

6The correspondence between the mixed gauge-gravitational anomaly and the absence of an outgoing wave
can be seen from the fact that they disappear only when the sum of the U(1) charges of the Weyl fermions is zero.
See Appendix A.
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where the factor 1/
p
ρ is introduced to ensure that the mass dimension of Ψ j matches that of

a 2+ 1d fermion. When we restrict the fermion field to this component, the action reduces to
∫

d4 xχ†
L iσ̄µ(∂µ − iAµ)χL =

∫

d t

∫ ∞

0

dρ

∫ ∞

−∞
dz
�

−Ψ̄γµ3d∂µΨ −
�

1
2ρ
−

1
ρ

Aϕ

�

Ψ̄Ψ

�

, (41)

where we define Ψ := (Ψ1,Ψ2)T , γ0
3d := iσ2, γz

3d := σ1, γρ3d := −σ3, Ψ̄ := iΨ†γ0. This theory
is the 3d fermion coupled with the scalar field

Φ=
1

2ρ
−

1
ρ

Aϕ =
z

2ρ
p

ρ2 + z2
. (42)

Because this scalar field is odd under the reflection Φ(ρ,−z) = −Φ(ρ, z), the system has the
symmetry under the reflection Ψ(t,ρ, z) → γz

3dΨ(t,ρ,−z). Due to the singularity of Φ at
ρ = 0, the equation of motion implies the behavior of the fermion fields as

lim
ρ→0

1
p
ρ
Ψ2 = 0 for z > 0 , lim

ρ→0

1
p
ρ
Ψ1 = 0 for z < 0 . (43)

These behaviors correspond to the reflection symmetric boundary condition (20) by identifying
(x , y) as (z,ρ). In 2+ 1 dimensions, we can interpret the absence of an outgoing wave in the
j = 0 mode as a result of this boundary condition preserving the reflection symmetry.

A right-handed Weyl fermion χR with the unit positive charge plays a role of ψ̃ in the
previous 2+1d setup, i.e., it has only the outgoing wave in the j = 0 mode. We can decompose
χR as

χR =
∞
∑

j=0

j
∑

m=− j

(
1
r

g̃m
j χ

m
j +

1
r

f̃ m
j η

m
j ) , (44)

which is mostly the same as Eq. (38), but the Dirac equation for the right-handed fermion
implies g̃m

j corresponds to the outgoing wave, and f̃ m
j corresponds to the incoming one. Thus,

the incoming wave f̃ 0
0 in the j = 0 mode is absent. The m = 0 mode is related to the 2+ 1d

fermion Ψ̃ = (Ψ̃1, Ψ̃2)T as

χR =
1
p
ρ

�

Ψ̃2
−eiϕΨ̃1

�

. (45)

The reduced 2+1d theory has the opposite sign of the term containing the scalar field Φ, which
implies the behavior near ρ = 0 corresponding to the boundary condition (28).

The reflection symmetry of the reduced 2+ 1 dimensional fermion Ψ can be extended to
3+ 1 dimensions as

χL(t, x , y, z)→ eiϕσxχL(t, x ,−y,−z) , χR(t, x , y, z)→−eiϕσxχR(t, x ,−y,−z) . (46)

We can confirm that this reduces to the reflection symmetry by substituting Eqs. (40) and (45).
By a rotation and a gauge transformation, this reduces to

χL → χL , χR→−χR , (47)

which is a chiral rotation. The U(1) background gauge field breaks the Z2 symmetry (47) due
to the chiral anomaly, corresponding to the boundary condition (31) breaking the reflection
symmetry in the previous 2+ 1d setup.

The four-flavor Dirac fermion theory has exotic outgoing waves that cannot be expressed
as Fock states created by a single fermion field when we impose an SU(4) symmetric boundary
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Figure 2: The correspondence of the 4d, 3d, and 2d Dirac theories. The 4d theory
is considered in the monopole background. By restricting the field to the m = 0
modes, whose third component J3 of the angular momentum is zero, the 4d single
Dirac fermion (χL ,χR)T reduces to the 3d two Dirac fermions Ψ and Ψ̃ (coupled with
the scalar field Φ odd under the reflection), which obeys the reflection symmetric
boundary condition. By further restricting the field to the j = 0 mode, the zero
angular momentum component, they reduce to the 2d single Dirac fermion. The 4d
U(1) × Z2 symmetry reduces to the 3d U(1) × R, and it further reduces to the 2d
U(1)×Z2. The 4d theory in the monopole background cannot detect the anomaly of
the 4d four Dirac fermion theory.

condition at the core of the monopole [18,22–29]. The boundary condition is realized as the
Maldacena-Ludwig boundary condition in the two-dimensional theory obtained by restricting
the fermion field to the j = 0 mode. In this case, the 3 + 1d chiral fermion parity (47) is
preserved, because the Maldacena-Ludwig boundary condition preserves the corresponding
2d chiral fermion parity. This setup corresponds to the N f = 16 Majorana fermion theory in
the previous 2+ 1d setup, where the reflection symmetry can be preserved consistently.

We found that the 3+1d chiral fermion parity Z2 given by Eq. (47) is reduced to the reflec-
tion symmetry in 2+ 1 dimensions, and is further reduced to the 2d chiral fermion parity in
the monopole background. The monopole background can detect the 4d anomaly of U(1)×Z2
that cannot be detected by the chiral anomaly. For two Dirac fermions, Z2 is not broken by the
chiral anomaly, but the scattering with the monopole breaks Z2, which corresponds to the R
symmetry breaking due to the boundary condition in 2+ 1d four Dirac fermion theory. How-
ever, the monopole background cannot detect the anomaly of four Dirac fermions. It is known
that the anomaly of the U(1)×Z2 is classified by7 Z8×Z2, and the single Dirac fermion theory
corresponds to 1 ∈ Z8, which means that the theory is non-anomalous only if the number of
the Dirac fermions is a multiple of eight. See Fig. 2. For the consistency check that the anomaly
detected by the j = 0 mode is a part of the 3+1d anomaly Z8 of the U(1)×Z2, see Appendix
B. We can detect the anomaly Z8 of U(1)×Z2 completely by introducing a boundary condition
changing at a line in three spatial dimensions as we will see in the next section.

6 A 4d anomaly detected by the 3d reflection anomaly

The classifications of the anomalies of U(1) × Z2 in 3 + 1 dimensions and U(1) × R in 2 + 1
dimensions are the same. This coincidence can be explained by the Smith homomorphism,
which gives a one-to-one correspondence between corresponding bordism groups [16]. In
this section, we see an explicit relation between these 3 + 1d and 2 + 1d anomalies using a
boundary condition changing at a line similarly to the previous 2+ 1d setup, where we relate
the 2+1d anomaly and the 1+1d anomaly. Unlike the case of the monopole background, this

7The classification of the anomaly of U(1) × Z2 in four dimensions corresponds to the bordism group
Ω

spinc

5 (BZ2) = Z8 ×Z2 [30].
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method can detect the full 3+ 1d anomaly.
The anomaly of U(1) × Z2 can be derived from the anomaly of the Z4 symmetry whose

generator X satisfies X 2 = (−1)F . This anomaly of Z4 is classified by Z16 [11, 31, 32]. In
the following, we initially derive an inconsistency in a Z4 symmetric boundary condition, and
subsequently derive an inconsistency in a U(1) × Z2 symmetric boundary condition. Let us
consider the single free Weyl fermion theory

S =

∫

d4 x χ†
L iσ̄µ∂µχL . (48)

We can regard this theory as the single Majorana fermion theory by identifying the Majorana
fermion field as ψ4d = (χL , iσ2χ∗L)

T . We consider this theory in the region where x > 0 and
attempt to impose a boundary condition preserving the Z4 symmetry generated by

ψ4d →−iγ5ψ4d ⇔ χL → iχL , (49)

whose square is equal to (−1)F . The simple linear boundary condition ψ4d = iγxψ4d |x=0
violates this symmetry. Instead, We consider the boundary condition

ψ4d = −γ5γxψ4d , at y > 0 , x = 0 , ψ4d = γ
5γxψ4d , at y < 0 , x = 0 ,

⇔ χL = −σ3χ∗L , at y > 0 , x = 0 , χL = σ
3χ∗L , at y < 0 , x = 0 ,

(50)

changing at the z axis. This boundary condition is invariant under the combination of Z4 and
the rotation (x , y, z)→ (x ,−y,−z),

ψ4d(t, x , y, z)→−iγ5γyγzψ4d(t, x ,−y,−z) ⇔ χL(t, x , y, z)→ σ1χL(t, x ,−y,−z) .
(51)

We will show that this boundary condition presents issues as a result of the pathology of the
reflection symmetric boundary condition in a reduced 3d theory.

We decompose the fermion χL as

χL =
∑

n∈Z

1
p
ρ

�

−i exp
�

i 2n−1
2 (ϕ −

π
2 )
�

ψ1
n(t, z,ρ)

exp
�

i 2n+1
2 (ϕ −

π
2 )
�

ψ2
n(t, z,ρ)

�

, ψ1
n,ψ2

n ∈ R . (52)

It can be shown that any function satisfying the boundary condition (50) can be decomposed
in this way as follows. We write χL = (χ1

L ,χ2
L)

T . Due to the boundary condition (50), χ1
L+χ

1∗
L

and χ2
L −χ

2∗
L become functions of ϕ ∈ [−π/2,π/2] that are zero at ϕ = π/2. Such a function

f (ϕ) can be decomposed by sin((2n+1)(ϕ−π/2)/2) for n≥ 0. This is because we can make
f (ϕ) be odd under ϕ → π − ϕ and even under ϕ → −π − ϕ by extending the domain to
[−5π/2,3π/2], which is 4π periodic function since f (−5π/2) = f (3π/2). Any 4π periodic
function odd under ϕ→ π−ϕ can be decomposed by sin(m(ϕ−π/2)/2), and if m is an odd
integer it is even under ϕ→−π−ϕ. On the other hand, χ1

L −χ
1∗
L and χL +χ2∗

L are functions
of ϕ ∈ [−π/2,π/2] that are zero at ϕ = −π/2. In the similar way, we can show that such a
function can be decomposed by cos((2n+ 1)(ϕ −π/2)/2) for n ≥ 0. Thus, we can write, by
using real-valued functions χRe,1

n χ Im,1
n χRe,2

n χ Im,2
n of t, z,ρ,

χ1
L +χ

1∗
L =

∞
∑

n=0

sin
�

2n+ 1
2
(ϕ −π/2)
�

χRe,1
np
ρ

, χ1
L −χ

1∗
L =

∞
∑

n=0

i cos
�

2n+ 1
2
(ϕ −π/2)
�

χ Im,1
np
ρ

,

χ2
L +χ

2∗
L =

∞
∑

n=0

cos
�

2n+ 1
2
(ϕ −π/2)
�

χRe,2
np
ρ

, χ2
L −χ

2∗
L =

∞
∑

n=0

i sin
�

2n+ 1
2
(ϕ −π/2)
�

χ Im,2
np
ρ

.

(53)
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By defining ψ1
n,ψ2

n as linear combinations of χRe,1
k , χ Im,1

k , χRe,2
l and χ Im,2

l properly, we obtain
the decomposition (52).

By substituting the decomposition (52) into the action, we obtain

S =
∑

n∈Z

∫

d tdzdρψT
n (−i)γ0

3d

�

γ
µ

3d∂µ +
n
ρ

�

ψn , (54)

where we defineψn := (ψ1
n,ψ2

n), γ
0
3d := iσ2, γz

3d := σ1, γρ3d := −σ3. The transformation (51)
acts on ψn as

ψn(t, z,ρ)→ (−1)nγzψ−n(t,−z,ρ) . (55)

Due to the presence of the (ρ-dependent) mass terms nψ̄nψn/ρ in the action for the n ̸= 0
modes, they do not contribute to the anomaly.8 Only the n = 0 mode contributes to the
anomaly, and therefore we can restrict the action into n= 0 mode,

S0 =

∫

d tdzdρψT (−i)γ0
3dγ

µ

3d∂µψ , (56)

where we define ψ :=ψ0. This theory is nothing but the single-Majorana fermion theory, and
the transformation (51) reduces to R. The R symmetric condition (20) causes the problem as
shown in Sec. 3, which can be regarded as a problem of the original symmetry (51) in four
dimensions. We can impose the R symmetric condition (20) only if the number of the Majorana
fermion is a multiple of 16 as shown in Sec. 4, which means that the anomaly Z16 of the Z4
symmetry is fully detected by the reduced 3d theory.

An inconsistency of a U(1)× Z2 symmetric boundary condition is derived as follows. Let
us introduce another left-handed Weyl fermion χ̃L , and assign the U(1) charges +1 and −1
to χL and χ̃L respectively in order to avoid the perturbative anomalies. The fermions χL and
χ̃L are taken even and odd under Z2 respectively. The generator (49) of Z4, which acts on χL
and χ̃L in the same way, can be regarded as the element of U(1)×Z2 that acts on the fermion
fields as

χL → eiπ/2χL , χ̃L →−1 · e−iπ/2χ̃L . (57)

Thus, the U(1)×Z2 symmetry is anomalous in this theory. The direct product of eight copies of
the theory is free from this anomaly because it consists of 16 Weyl fermions, which is consistent
with the classification Z8 × Z2 of the anomaly of U(1)× Z2. Also in this case, we can relate
the anomaly to a 3d anomaly. In order to preserve U(1) symmetry, it is necessary to adjust the
boundary condition (50) as

χL = −σ3χ̃∗L , at y > 0 , x = 0 , χL = σ
3χ̃∗L , at y < 0 , x = 0 . (58)

This boundary condition is invariant under the combination of Z2 and the rotation
(x , y, z)→ (x ,−y,−z),

χL(t, x , y, z)→ iσ1χL(t, x ,−y,−z) , χ̃L(t, x , y, z)→−iσ1χ̃L(t, x ,−y,−z) . (59)

The linear combinations λL := (χL + χ̃L)/2 and λ̃L := −i(χL − χ̃L)/2 of the fermion fields
satisfy the boundary condition (50), and thus they can be decomposed in the same way as
Eq. (52). Since χL = λL + iλ̃L , the decomposition of χL is obtained by replacing the real

8We can explicitly see that there is no anomaly for n ̸= 0 mode by redefining λn :=ψn+ψ−n and λ̃n :=ψn−ψ−n,
where the transformation reduces to λn(z)→ (−1)nγzλn(−z) and λ̃n(z)→ (−1)n+1γzλ̃n(−z), and thus the anoma-
lies coming from λn and λ̃n are cancelled.
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fields ψ1
n,ψ2

n by complex fields Ψ1
n ,Ψ2

n . The other field χ̃L can also be decomposed using the
same complex fields Ψ1

n ,Ψ2
n . Thus, the 3d theory obtained by restricting the fields to the n= 0

component is the single Dirac fermion theory. The symmetry U(1) and Eq. (59) are reduced to
U(1)×R in this 3d theory. Thus, the anomaly Z8 of U(1)×Z2 is also detected by the reduced
3d theory.

7 Summary and discussion

We investigate the boundary conditions (20) and (28) preserving the reflection symmetry R of
free massless Majorana fermions. When there are odd number of Majorana fermions, they are
problematic, i.e., the condition (20) (resp. (28)) results in the absence of an outgoing (resp.
incoming) wave for the n= 0 mode in the decomposition (21) (resp. (29)). This is understood
as a consequence of the anomaly of R. In the case of an even number of Majorana fermions, the
problem can be solved by imposing boundary conditions at the origin, such as Eq. (31), where
ψ obeying the condition (20) and ψ̃ obeying the condition (28) are mixed. The boundary
condition at the origin can be described using BCFT language in 1 + 1 dimensions. This is
possible because the only relevant mode is the n = 0 mode, and the theory reduces 1 + 1
dimensions when the field is restricted to the mode. We conclude that we can impose an R
symmetric boundary condition at the origin only if the number of the Majorana fermions are
multiple of 16 using the result of 1+ 1 dimensional CFTs.

In order to preserve R symmetry, it is necessary to impose a nonlinear boundary condi-
tion, where the final state is exotic state that cannot be created by a single fermion field.
The corresponding state in 1+ 1 dimensions can be understood as a fractional kink using the
bosonization [18, 22]. However, the comprehension in 2 + 1 dimensions is currently inad-
equate, and it remains uncertain whether a particle interpretation is applicable. The same
problem was considered in the fermion-monopole scattering in 4d, but there is no consensus
on the interpretation of the state [18,22–28]. The 2+1d framework might be more convenient
for describing the exotic outgoing state than 3+ 1d.

In this paper, we do not consider the part of the classification of the anomalies related to
bosonic SPT phases. It is interesting to consider a nontrivial cancellation of anomalies using a
free fermion theory and a bosonic theory. It is known that the 8 Majorana fermion theory in
three dimensions can be a surface theory of a bosonic SPT in four dimensions, and the anomaly
can be cancelled by a bosonic theory, a Z2 gauge theory coupled with the Stiefel-Whitney class
in a specific way. A boundary condition preserving R in the combined theory of these two could
be more exotic.
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A The scattering of a monopole and fermions with general charges

In this section, we show that, in the monopole background, we can find the corresponding in-
coming (outgoing) wave to any outgoing (incoming) wave only if the sum of the U(1) charges
of the Weyl fermions is zero. This condition coincides with the cancellation condition of the
mixed gauge-gravitational anomaly.

In the monopole background, for a fermion with charge Q > 0, only incoming waves are
present among the lowest partial waves. The lowest partial waves are the eigenfunction of
J2 belonging to j( j + 1) for j = (Q − 1)/2, and thus there are Q independent modes. On the
other hand, for the fermion with charge Q < 0, only outgoing waves are present among the
lowest partial waves, where the number of the independent modes is −Q. Thus, if and only
if the sum of the charges

∑

j Q j is zero, the number of the incoming waves and the outgoing
waves are the same, and we can set the boundary condition relating them so that the energy
is conserved.

In the following, we show, for the sake of completeness, that the lowest partial waves only
have incoming modes for Q > 0 and outgoing modes for Q < 0. This fact was established by
the analysis given in Ref. [21]. We consider the left-handed Weyl fermions χQ in the monopole
background with the charges Q, whose equation of motion is given as

σ̄µ(∂µ − iQAµ)χ
Q = 0 , Aµ =

1
2
(1− cosθ )∂µϕ . (A.1)

The angular momentum is given as

J⃗ Q = −i x⃗ × (∇⃗ − iQA⃗) +
1
2
σ⃗−

Q
2

x⃗
r

. (A.2)

The ladder operators are given as

JQ
± := JQ

1 ± iJQ
2 = e±iϕ(±∂θ + i cotθ∂ϕ) +

Q
2

e±iϕ cosθ − 1
sinθ

+
1
2
(σ1 ± iσ2) . (A.3)

Let us consider a fermion with a positive charge Q > 0. The solution for a fermion with a
negative charge −Q is obtained as iσ2χ∗(−t, x⃗) using the solution χ(t, x⃗) for the fermion
with a positive charge Q since

σ̄µ
�

∂µ − i(−Q)Aµ
�

(iσ2χ∗(−t, x⃗)) = −iσ2
�

(∂ t̃ − σ⃗ · (∇⃗ − iQA⃗))χ( t̃, x⃗)
�∗�
�

t̃=−t = 0 . (A.4)

The function that is an eigenstate of (JQ)2 and the lowest eigenfunction of JQ
3 is given as

χ
Q,− j
j =
�

cos
θ

2

�Q−1

χ
−( j−(Q−1)/2)
j−(Q−1)/2 (θ ,ϕ) , η

Q,− j
j =
�

cos
θ

2

�Q−1

η
−( j−(Q−1)/2)
j−(Q−1)/2 (θ ,ϕ) , (A.5)

where χm
j ,ηm

j are defined in Eq. (37). We can confirm that these functions vanish when JQ
−

acts on them by using

JQ
−

�

cos
θ

2

�Q−1

=
�

cos
θ

2

�Q−1

JQ=1
− . (A.6)

We can also check that these are eigenfunction of JQ
3 belonging to − j by acting

JQ
3 = −i∂ϕ −

1
2

Q+
1
2
σ3 . (A.7)
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Note that the lowest eigenfunction of (JQ)2 corresponds to j = (Q − 1)/2, and for this value
η

Q,− j
j = 0. The higher eigenfunctions χQ,m

j , ηQ,m
j of JQ

3 are obtained by acting JQ
+ repeatedly.

We expand the fermion field χQ with charge Q as

χQ =
∞
∑

j=(Q−1)/2

j
∑

m=− j

�

1
r

f Q,m
j (t, r)χQ,m

j (θ ,ϕ) +
1
r

gQ,m
j (t, r)ηQ,m

j (θϕ)
�

. (A.8)

Because the Dirac operator commutes with JQ
+ , the equation for each mode does not depend

on m, and therefore it is enough to consider the lowest eigenfunctions (A.5). By using the
properties

(−∂θ + i cotθ∂ϕ)Y
−( j−(Q−1)/2)
j−(Q−1)/2 = 0 , −i∂ϕY−( j−(Q−1)/2)

j−(Q−1)/2 = −( j − (Q− 1)/2)Y−( j−(Q−1)/2)
j−(Q−1)/2 ,

(A.9)

we obtain the equations for the modes j > (Q− 1)/2 as

(∂t − ∂r) f
Q,m
j (t, r) +

4 j( j + 1)− (Q− 1)(Q+ 1)
4r

gQ,m
j (t, r) = 0 ,

(∂t + ∂r)g
Q,m
j (t, r)−

1
r

f Q,m
j (t, r) = 0, (A.10)

and those for the lowest j modes as

(∂t − ∂r) f
Q,m
(Q−1)/2(t, r) = 0 . (A.11)

We see that there are only incoming waves in the lowest j modes, and no corresponding
outgoing waves. The number of the lowest j mode is Q. On the other hand, the solution for
the fermion with charge −Q is obtained by acting χ(t, x⃗)→ iσ2χ∗(−t, x⃗) to Eq. (A.8) as

χ−Q =
∞
∑

j=(Q−1)/2

j
∑

m=− j

�

1
r

g−Q,m
j (t, r)iσ2χ

Q,m∗
j (θ ,ϕ) +

1
r

f −Q,m
j (t, r)iσ2η

Q,m∗
j (θϕ)
�

,

g−Q,m
j (t, r) = f Q,m

j (−t, r) , f −Q,m
j (t, r) = gQ,m

j (−t, r) . (A.12)

Thus, the lowest j modes g−Q,m
(Q−1)/2 are the outgoing waves.

B A check that the anomaly of the s-waves is a part of the anomaly
of U(1)×Z2

In this section, we give a consistency check that the anomaly detected by the s-waves is part
of the 4d anomaly Z8 of the U(1) × Z2 symmetry and not part of the other anomaly. We
consider left-handed Weyl fermions χk with the U(1) charge Qk, which transforms under Z2
as χk → (−1)nkχk with nk ∈ {0,1}, and determine how the classification of the anomaly
depends on Qk and nk. Then we determine how the classification of the 2d anomaly of the
corresponding s-wave theory depends on Qk and nk. By comparing them, we will conclude
that the 2d anomaly of the s-wave theory is part of the 4d anomaly.

B.1 The anomaly Z8 of the U(1)×Z2 symmetry in four dimensions

The anomalyZ8 of the U(1)×Z2 symmetry is derived from the anomalyZ16 of theZ4 symmetry
whose generator X satisfies X 2 = (−1)F . This Z16 anomaly is considered, e.g., in Refs. [11,31,

16

https://scipost.org
https://scipost.org/SciPostPhys.17.2.068


SciPost Phys. 17, 068 (2024)

32]. A generating theory of this anomaly is the single left-handed Weyl fermion theory, where
the generator of Z4 acts on the fermion as a multiplication by i. The direct product of 16 copies
of this theory does not have the anomaly. Because the square of the generator of Z4 has to
be equal to (−1)F , the generator has to act on any fermion as a multiplication by i or −i. We
define mk ∈ {−1,1} for each Weyl fermion χk so that the generator of Z4 acts as χk→ imkχk.
A pair χk,χl of Weyl fermions with mk = 1 and ml = −1 does not contribute to the anomaly
because this Z4 is subgroup of the non-anomalous U(1), χk → eiθχk, χl → e−iθχl . Thus,
the classification of this anomaly is given as9

∑

k mk mod 16, the reduction modulo 16 of the
difference of the number of the Weyl fermions with mk = 1 and those of mk = −1.

Let us relate this anomaly to the anomaly Z8 of U(1)×Z2. Precisely speaking, the anomaly
Z8 is the anomaly of the symmetry Spinc(4)×Z2, where Spinc(4) is defined as

Spinc(4) =
Spin(4)× U(1)

Z2
. (B.1)

Here Spin(4) is (the Euclidean version) of the Lorentz symmetry, and the division by Z2 means
that we identify (−1)F ∈ Spin(4) and −1 ∈ U(1). In order to make (−1)F = −1 ∈ U(1), the
charges Qk have to be odd integers. Additionally, in order to avoid the mixed gravitational-
gauge anomaly, the sum of the charges has to be zero,

∑

k Qk = 0. In this theory, the Z4
symmetry stated above is reduced to Z2 by multiplying i ∈ U(1),

χk
Z4−→ imkχk

i∈U(1)
−−−−→ iQk+mkχk = (−1)(Qk+mk)/2χk , (B.2)

where (Qk+mk)/2 is an integer because both of Qk and mk are odd integers. Thus, the anomaly
of Z4 can be regarded as the anomaly of U(1)×Z2 in this theory. However, the classification
changes from Z16 to Z8. Because

∑

k Qk = 0 and every Qk is odd, the number of the Weyl
fermions is an even integer, and therefore

∑

k mk is an even integer. Thus, the anomaly is
classified by
∑

k mk/2 mod 8. We can determine mk from the charge Qk and the Z2 charge nk
as

mk =

¨

1 , if nk = 0 , Qk = 3 mod 4 , or nk = 1 , Qk = 1 mod 4 ,

−1 , if nk = 0 , Qk = 1 mod 4 , or nk = 1 , Qk = 3 mod 4 .
(B.3)

B.2 The anomaly Z4 of U(1)×Z2 in the 2d s-wave theory

As we show in Appendix A, a 4d Weyl fermion χk with charge Qk > 0 (resp. Qk < 0) reduces to
Qk (resp. −Qk) 2d left-moving (resp. right-moving) fermions in the s-wave theory. The U(1)
and Z2 act on these 2d fermions in the same way as the corresponding 4d Weyl fermions. Let
us determine the dependence of the anomaly Z4 of U(1)×Z2 on Qk and nk in the 2d s-wave
theory.

The 2d anomaly Z4 of the U(1)×Z2 symmetry is derived from the 2d anomaly Z8 of the
Z2 symmetry. The classification Z8 of the anomaly of Z2 is written, e.g., in Ref. [7] as the
classification of the 3d fermionic SPT phases with the symmetry Z2. A generating theory of
the anomaly Z8 of Z2 is the single Majorana fermion theory, where the left-moving fermion
is odd and right-moving fermion is even under Z2. A pair of Majorana fermions whose Z2
charge assignments are opposite to each other does not have the anomaly, because this Z2 ac-
tion becomesψ→−ψ for the Majorana fermionψmade by the left-moving and right-moving
components that are odd under Z2. Therefore the anomaly is classified by the reduction mod-
ulo eight of the difference between the number of left-moving and right-moving real fermions
that are odd under Z2. Similar to the previous 4d case, to introduce the U(1)×Z2 symmetry,

9The classification in Ref. [31] reduces to this by choosing the representative of the charges as mk ∈ {−1, 1}.
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all fermions must have odd charges. Consequently the number of the Majorana fermions in
the theory has to be even, allowing all Majorana fermions to pair up and form Dirac fermions.
Therefore the anomaly Z8 reduces to Z4. Thus, we conclude that the anomaly Z4 of U(1)×Z2
is classified by the reduction modulo four of the difference between the number of left-moving
and right-moving complex fermions that are odd under Z2.

In the s-wave theory, the number of the left-moving fermions that are odd under Z2 is
∑

Qk>0 nkQk and the number of the right-moving fermions that are odd is −
∑

Qk<0 nkQk,
and thus the anomaly Z4 of U(1) × Z2 is classified by

∑

k nkQk mod 4. Let lk ∈ {−1, 1} be
lk = Qk mod 4. Using this, the classification is given by

∑

k nk lk mod 4. Since
∑

k Qk = 0
and consequently

∑

k lk = 0, the classification can be expressed as
∑

k(2nk − 1)lk/2 mod 4.
As (2nk − 1)lk = mk, where mk is defined in Eq. (B.3), we finally arrive at the classification
∑

k mk/2 mod 4.

B.3 Comparing the 4d anomaly and 2d anomaly of the s-wave theory

The anomaly Z8 of the 4d theory and the anomaly Z4 of the 2d s-wave theory are controlled
by the same quantity

∑

k mk/2, which means that the anomaly Z4 is a part of the anomaly
Z8 in the sense that we cannot make a theory without the anomaly Z8 while maintaining the
anomaly Z4. The 4d theory with

∑

k mk = 4 mod 8 corresponds to 4 ∈ Z8 of the classification
of the 4d anomaly, but its 2d s-wave theory corresponds to 0 ∈ Z4 of the classification of the
2d anomaly, i.e., does not have the anomaly. Thus, we conclude that the s-wave theory only
detects the reduction modulo four of the full anomaly Z8.
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