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Abstract

Many superconducting devices rely on the finite gap in the excitation spectrum of a su-
perconductor: thanks to this gap, at temperatures much smaller than the critical one
the number of excitations (quasiparticles) that can impact the device’s behavior is ex-
ponentially small. Nevertheless, experiments at low temperature usually find a finite,
non-negligible density of quasiparticles whose origin has been attributed to various non-
equilibrium phenomena. Here, we investigate the role of photons with energy exceeding
the pair-breaking threshold 2∆ as a possible source for these quasiparticles in supercon-
ducting resonators. Modeling the interacting system of quasiparticles, phonons, sub-gap
and pair-breaking photons using a kinetic equation approach, we find analytical expres-
sions for the quasiparticles’ density and their energy distribution. Applying our theory
to measurements of quality factor as function of temperature and for various readout
powers, we find they could be explained by assuming a small number of photons above
the pair-breaking threshold. We also show that frequency shift data can give evidence
of quasiparticle heating.
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1 Introduction

A detector should ideally respond in a well-understood way to the physical quantity under
investigation while being unaffected by other processes. However, unwanted effects can con-
tribute to noise that obscures the signal. The noise mechanism can be specific to the type
of detector: even within superconducting detectors, different mechanisms are prominent for
different designs. For example, in superconducting nanowire single photon detectors [1, 2]
vortices crossing the nanowire lead to dark counts [3, 4], and in kinetic inductance detectors
(KIDs) [5] the generation-recombination noise due to the creation and annihilation of quasi-
particles increases the noise equivalent power [6–8]. A KID consists of a resonator whose
inductance and hence resonant frequency changes when photons of energy above twice the
superconducting gap ∆ break Cooper pairs. The response of the resonator is monitored via
a probe tone that maintains a large number n̄ ≫ 1 of photons with frequency ω0 < 2∆ in
the resonator (hereinafter we set ħh = kB = 1). The device is operated at temperatures much
smaller than the critical one, T ≪ Tc , where the thermal equilibrium number of quasiparticles
is expected to be negligible. However, a variety of experiments with not only resonators [9,10]
but also superconducting qubits [11,12] indicates the presence of many quasiparticles whose
origin is often unclear. These excess quasiparticles influence basic parameters of the resonator
such as the quality factor, which is why the goal of this work is to quantify their effect and
propose a possible source.

To model the non-equilibrium state of a superconductor, a system of coupled kinetic equa-
tions for the distribution functions of quasiparticles and phonons has been proposed long
ago [13]; even in the steady-state and for uniform systems – that is, considering only the
energy dependence of the distribution functions, – these equations are usually solved numer-
ically [14, 15]. Only recently, approximate analytical solutions have been obtained in the pa-
rameter regime relevant to KIDs [16,17]. The results of these two works can be summarized
as follows: a large number of (non-pair-breaking) photons can “heat up” the quasiparticles by
pushing them to higher energy as compared to the phonon temperature; these quasiparticles
can relax by emitting phonons, so that the latter are also driven out of equilibrium. Quasi-
particles pushed to energy above 3∆ can emit a relatively large number(as compared to the
thermal equilibrium value of pair-breaking phonons with frequencyω> 2∆; because of these
phonons, in the steady state the quasiparticle density is then much larger than the equilibrium
value, a situation that is encountered at low temperatures. These findings can quantitatively
describe the experimental data for a resonator’s internal quality factor Q i of Ref. [18] at inter-
mediate temperatures at which the number of quasiparticles is close to the equilibrium value
but their distribution function is not thermal. As temperature decreases, Q i is predicted to
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Figure 1: A full model of a thin-film superconducting resonator (dark box) takes into
account the resonant mode of frequency ω0, quasiparticles, phonons, and their in-
teractions (with coupling constants cQP

Phot and τ0). Additionally, quasiparticles can be
generated by pair-breaking photons of frequency ωPB (coupling constant cQP

Phot,PB;
this process was not considered in Ref. [17]) and the phonons interact with the sub-
strate, which act as a thermal bath (coupling constant τl).

saturate, but at values few to several orders of magnitude larger than those measured.
The decrease of Q i with readout power observed at low temperature in Ref. [18] is incom-

patible with the expectation from losses due to two-level systems [19]. On the other hand,
clear evidence for the presence of pair-breaking photons is provided by measurements of so-
called parity switching rates in superconducting qubits: effects initially attributed to “hot”
quasiparticles [20] have been explained in terms of tunneling assisted by pair-breaking pho-
tons [21], as confirmed by additional experiments [22,23]. Motivated in part by these results,
here we extend the model [16, 17] discussed in the previous paragraph to include the effect
of a small number of pair-breaking photons of frequency ωPB > 2∆ and show that they could
be responsible for the low-temperature behavior of Q i reported in Ref. [18].

In Sec. 2 we present the kinetic equation that determines the quasiparticle distribution; it
extends the previously used kinetic equations describing the interaction of quasiparticles with
photons of energy below the pair breaking threshold 2∆ [17, 24, 25] by including a contri-
bution from a mode of energy above the threshold. In Sec. 3 we derive approximate analyt-
ical solutions for the case of zero temperature and negligible number of photons below the
threshold, and validate the results numerically. The effect of the low-energy photons on the
distribution’s shape is investigated in Sec. 4. In Sec. 5 the results of the preceding section are
used to calculate quality factor and resonance frequency shift in thin-film resonators, and we
analyse experimental data [18] for this quantities. Section 6 summarizes our findings.

2 Kinetic equation

The kinetic equation for the quasiparticle distribution function f (E) in a homogeneous super-
conductor has the form

d f (E)
d t

= StPhon{ f , n}+ StPhot{ f , n̄}+ StPhot
PB { f , n̄PB} , (1)

with E the energy measured from the Fermi level. The collision integrals in the right-hand
side account for the interaction between quasiparticles and phonons, StPhon{ f , n}, non-pair-
breaking photons, StPhot{ f , n̄}, and pair-breaking ones, StPhot

PB { f , n̄PB}, respectively. While
this structure of the kinetic equation is quite general, we will mostly consider thin-film su-
perconducting resonators, as depicted in Fig. 1. The phonon collision integral StPhon{ f , n}
and the photon one for non-pair breaking photons StPhot{ f , n̄} can be found for instance in
Ref. [17]. In this work we extend the model by including photons of energy ωPB > 2∆ via the
collision integral:

StPhot
PB { f , n̄PB}= StPhot{ f , n̄PB}+ StPhot

PB,g { f , n̄PB}+ StPhot
PB,r { f , n̄PB} . (2)
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Here, StPhot{ f , n̄PB} is a number-conserving scattering term accounting for the redistribution
of quasiparticles in energy due to the absorption of pair-breaking photons. It can be obtained
from the photon integral StPhot for non-pair-breaking photons of frequency ω0 [see diagrams
a) and b) in Fig. 2],

StPhot{ f , n̄}= cQP
Phot U

+(E, E +ω0)
¦

f (E +ω0) [1− f (E)] (n̄+ 1)− f (E) [1− f (E +ω0)] n̄
©

+ cQP
Phot U

+(E, E −ω0)
¦

f (E −ω0) [1− f (E)] n̄− f (E) [1− f (E −ω0)] (n̄+ 1)
©

,

(3)

by replacing photon energyω0, photon number n̄ and coupling constant cQP
Phot by the respective

values of the pair breaking photons ωPB, n̄PB and cQP
Phot,PB [the appearance of n̄ or n̄PB in

the argument of teh collision integral indicates which of these quantities should be used].
We use here the notation of Ref. [17] by defining U±(E1, E2) = K±(E1, E2)ρ(E2), with BCS
coherence factor K±(E1, E2) = 1±∆2/(E1E2) and BCS density of states ρ(E2) = E2/

q

E2
2 −∆2

(see e.g. Ref. [26] for a discussion of coherence factors). This collision integral conserves
the number of quasiparticles,

∫

∆
dEρ(E)StPhot = 0. We note that both for non- and pair-

breaking photons we consider a single mode of definite frequency; this is justified for non-
pair-breaking photons by the fact that, as mentioned in the Introduction, in applications such
as KIDs one high-quality factor mode of the resonator is probed. For pair-breaking photons
this is in general a simplification; however, at least in some of the regimes we will consider, the
extension to multiple modes is straightforward (see Secs. 3 and 4). Moreover, we will show
that this simplification does not alter qualitatively our interpretation of experimental data for
the quality factor in Sec. 5.

In addition to the scattering term, there is a term accounting for the generation of new
quasiparticles [diagram d) in Fig. 2],

StPhot
PB,g = cQP

Phot,PBU−(E,ωPB − E)n̄PB [1− f (E)] [1− f (ωPB − E)] , (4)

and a term describing recombination accompanied by the emission of a photon,

StPhot
PB,r { f , n̄PB}= −cQP

Phot,PBU−(E,ωPB − E)(1+ n̄PB) f (ωPB − E) f (E) . (5)

In Appendix A we discuss how to estimate the coupling constants cQP
Phot and cQP

Phot,PB. The
phonon collision integral can be obtained from the pair-breaking photon one, Eq (2), by re-
placing U±→ U∓, ωPB → ω, cQP

Phot,PB → ω
2/τ0T3

c , n̄PB → n(ω), and integrating over ω > 0;
the integration limits are chosen so that the second argument of U± is larger than ∆. In these
replacements, n(ω) is the phonon distribution function and τ0 is the time scale characterizing
the strength of the electron-phonon interaction [27].

To complete the description of the system, one should also consider the kinetic equation for
the phonon distribution function n(ω); we don’t give it here as it will not be needed explicitly,
and rather refer the reader to our previous work [17]. That equation contains a thermalization
term −[n(ω)−nT (ω, TB)]/τl accounting for the relaxation of the phonons back to equilibrium
at temperature TB over the time scale τl . For the numerical calculations in this work, we either
assume fast equilibration to zero temperature, n(ω) = 0, or solve the full coupled system of
kinetic equations for quasiparticle and phonons, as will be specified. The numerical solutions
are obtained using a straightforward extension of the algorithm described in Ref. [17].

In the next sections, we discuss approximate analytical solutions to Eq. (1) in the steady
state d f /d t = 0. While different approximations will be employed in different regimes, some
approximations are common to all cases we will consider: we generally assume small occupa-
tion probability at all energies, f ≪ 1, so that we can replace Pauli blocking factors with unity,
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Figure 2: Schematic depiction of the main processes entering the collision integrals
in Eq. (1). Straight lines correspond to quasiparticles, wavy lines to phonons, and
dashed lines to photons. Diagrams a) and b) represent the absorption and emission
of non-pair-breaking photons [cf. Eq. (3)], c) the emission of a phonon [c.f. first
term in the bracket of Eq. (6)], d) quasiparticle generation by pair-breaking photons
[Eq. (4)], a process not included in Ref. [17]. Diagram e) depicts generation by a
pair-breaking phonon [last term of Eq. (6)], f) provides the bare recombination rate
r0 xqp, and g) renormalizes the bare recombination coefficient r0 to r in Eq.(6) [see
also Eq. (8)]. Diagram h) describes an additional pair-breaking mechanism due to
phonon emitted by quasiparticles with energy E > 3∆; this process is not included
in the low-energy approximation of Eq. (6), but if n̄ is sufficiently large (cf. Sec. 4) it
can affect the density, see the term proportional to G(T∗/∆) in Eq. (49) and Ref. [17].
In Sec.. 3 we only consider c), d) and f), in Sec. 4 we include diagrams a) and b),
and in Secs. 4.3 and 5 we consider all diagrams. We do not include the diagram
corresponding to photon mediated recombination [similar in structure to f)], as its
contribution is generally negligible compared to phonon mediated recombination
(see Sec. 3.1).

(1− f )→ 1. The validity of this assumption, which limits our considerations to temperatures
small compared to the critical one and small number of pair-breaking photons, can be checked
once the solution to the kinetic equation is found; importantly, number-conserving contribu-
tions to the collision integrals [cf. Eq (3)] remain number conserving in this approximation.
Also, we focus on quasiparticles of low energy, ∆ < E ≲ 2∆; assuming the phonon bath
temperature TB to be sufficiently low (at least compared to the gap, although more stringent
conditions will be discussed), phonon absorption can be neglected and the phonon collision
integral is approximately given by [cf. Ref. [16] and diagrams c), e), and f) in Fig. 2]

StPhon{ f , n} ≃
1
τ0T3

c

∞
∫

0

dωω2 2ε+ω
p

2∆(ε+ω)
f (ε+ω)

−
�

128

105
p

2

�

∆

Tc

�3 � ε

∆

�7/2 1
τ0
+ r xqp

�

f (ε) + StPhon
g , (6)

where ε= E−∆ is the energy measured from the gap [with a slight abuse of notation, we also
substitute f (E) = f (∆+ ε)→ f (ε)] and StPhon

g is obtained from Eq. (4) following the steps
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given after Eq. (5). The last term inside square brackets accounts for quasiparticle recombi-
nation accompanied by phonon emission; here we have introduced the quasiparticle density
normalized by the Cooper pair density, xqp = Nqp/2ρF∆, where the quasiparticle density is
given by

Nqp = 4ρF

∫

∆

dEρ(E) f (E) . (7)

The parameter r = 4(∆/Tc)3/τ̄0 is the (normalized) recombination coefficient, where

τ̄0 = τ0(1+τl/τ
PB
0 ) , (8)

depends on the thermalization time τl of the phonons and τPB
0 is the lifetime of a phonon at the

pair-breaking threshold [the reduction of the recombination coefficient for τl ̸= 0 accounts for
the processes in diagram g)]. This time is proportional toτ0 times the ratio between ion density
over Cooper pair density and times (Tc/ωD)3, with ωD the Debye frequency; for aluminum,
we use τ0/τ

PB
0 = 1.7× 103 [17]. The two terms inside square bracket in Eq. (6) define the

energy-dependent spontaneous phonon emission rate

1

τ
qp
e,n(ε)

=
128

105
p

2

�

∆

Tc

�3 � ε

∆

�7/2 1
τ0

, (9)

and the density-dependent phonon-assisted recombination rate

1

τ
qp
r
= r xqp = RNqp , (10)

with the recombination coefficient R=2∆2/ρF τ̄0T3
c (which, strictly speaking, depends weakly

on energy and/or the width of the distribution function above the gap – that is, the “effec-
tive” quasiparticle temperature, – see [17, 27]; we neglect this factor-of-order-one correction
in this work). The fact that the recombination time depends on the density represents the
main non-linearity of the kinetic equation; as we will show, however, the density can be cal-
culated without a detailed solution of the kinetic equation in an approach reminiscent of the
phenomenological one pioneered by Rothwarf and Taylor [28]. In fact, to use that approach
one must also take into account the last term in the right-hand side of Eq. (6), namely the
generation of quasiparticles by phonons; for f ≪ 1, that term depends only on the phonon
distribution function n and not on f . In this work we will not need the detailed form of StPhon

g
(see e.g. Ref. [17]), rather the integral of its product time the quasiparticle density of states;
for phonons in thermal equilibrium at temperature TB we have

∫

dEρ(E)StPhon
g = r0πTBe−2∆/TB ≡ r0GTB

/4rρF , (11)

where r0 is the recombination coefficient r for τl = 0 and in the last term we introduce the
notation for the generation coefficient GTB

at the given temperature TB.
Two additional approximations can be introduced for the collision integral with pair-

breaking photons, Eq. (2). First, for quasiparticles in the relevant energy range, in
StPhot{ f , n̄PB} the terms proportional to U+(E, E−ωPB) [cf. Eq. (3)] vanish since E−ωPB <∆;
we also assume that f ≪ 1 at all energies and that the distribution function decays quickly
with increasing energy, so that f (E +ωPB)≪ f (E)n̄PB/(n̄PB + 1), and arrive at

StPhot{ f , n̄PB} ≃ −cQP
Phot,PBU+(E, E +ωPB)n̄PB f (E)

≃ −cQP
Phot,PB n̄PB f (E) = −

1

τ
qp
abs,PB

f (E) , (12)
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where in the last equality we have introduced the quasiparticle lifetime against the absorp-
tion of pair-breaking photon. Second, we assume that photon-assisted recombination can be
neglected in comparison to the phonon-assisted one, that is [see Eqs. (5) and (10)]

cQP
Phot,PBU−(E,ωPB − E)(1+ n̄PB) f (ωPB − E)≪ r xqp . (13)

Clearly, this inequality is violated as E→ωPB−∆ due to the divergence of the superconducting
density of states; however, we will show that the violation happens so extremely close to that
energy to have no impact on our results.

In closing this introductory section, we note that in all the formulas above the gap value
∆ should be understood as given by the self-consistent equation for the order parameter. In
the presence of a small density of quasiparticles, the gap is smaller than its no-quasiparticle
value ∆0; defining δ∆ = ∆0 −∆, at leading order we have δ∆/∆0 ≃ xqp [17] and for most
purposes the difference between ∆ and ∆0 can be ignored. One exception is the evaluation
of the resonator’s frequency shift, which we discuss in Sec. 5.1.

3 Generation by pair breaking photons

As a first step, in this Section we study the steady-state quasiparticle distribution in the pres-
ence of pair-breaking photons only,a situation complementary to that analyzed in Refs. [16,17]
in which only non-pair-breaking photons were taken into account. Concretely, we assume that
there are no modes below the pair-breaking threshold and we set StPhot{ f , n̄} = 0 (that is,
cQP

Phot = 0). We also assume that the phonons are at zero temperature, n(ω) = 0, or in other
words fast thermalization (τl → 0) with a TB = 0 bath. Therefore, the kinetic equation reduces
to

0= StPhot{ f , n̄PB}+ StPhot
PB,g { f , n̄PB}+ StPhon{ f , n} , (14)

with the pair-breaking photon collision integrals of Eqs. (3) [appropriatiely modified for pair-
breaking photons] and (4) and the phonon collision integral of Eq. (6) [in which by assumption
the last term accounting for generation by phonons vanishes].

Even in this simplified case, we can in principle distinguish two different regimes, de-
pending on which process is dominant near the gap. Since at those energies phonon-assisted
recombination is faster than phonon emission [1/τqp

e,n(ε)≪ 1/τqp
r as ε→ 0], we should com-

pare the rate for the former process, 1/τqp
r [Eq. (10)], to the rate of absorption of photons,

1/τqp
abs,PB [Eq. (12)]. We show below (Sec. 3.1) that the situation of experimental relevance

for Al resonators is
1

τ
qp
abs,PB

≪
1

τ
qp
r

. (15)

In fact, to check when this inequality holds, we need to eliminate the dependence of the right-
hand side on the quasiparticle density. To that end, we multiply Eq. (14) by ρ(E), integrate
over E, and use that StPhot is number-conserving to find, for f (ε)≪ 1,

r x2
qp =

2
∆

ωPB−∆
∫

∆

dEρ(E)StPhot
PB,g

= 2cQP
Phot,PB n̄PBS−(2+ ξ/∆) , (16)

where
ξ=ωPB − 2∆ , (17)
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and the structure factor S−(x) [21, 29] has the approximate form S−(x) ≃ π(x − 2)/2 for
x − 2≪ 2. Using Eq. (16), the inequality in Eq. (15) can be rewritten as

cQP
Phot,PB n̄PB ≪ πrξ/∆ , (18)

where from now on we assume ξ <∆ (ωPB < 3∆). When the above condition is true, in most
cases quasiparticles created by photon pair breaking relax towards the gap and/or recombine
by phonon emission before they can absorb a photon; indeed, the condition can be satisfied
if the number of photon is sufficiently small. If a photon is absorbed before a recombination
event, this will lead to a second peak in the quasiparticle distribution function at energies
above 3∆. At those energies, quasiparticle relaxation by phonon emission is much faster than
near the gap, so assuming that to be the dominant process, one can treat the second peak in a
perturbative way, similarly to the “cold” regime of Ref. [16]. We do not pursue this approach
further in this section, since if the condition in Eq. (15), or equivalently Eq. (18), is satisfied,
the effect of the second peak can be neglected and only energies ε < ξ are relevant (see,
however, Sec. 4.2 for the expression for the second peak).

So long as Eq. (15) holds, we can further simplify Eq. (14) by ignoring the first term on
the right-hand side to get

StPhot
PB,g { f , n̄PB}= −StPhon{ f , n} . (19)

Next, we introduce the dimensionless energy variable

γ= ε/ξ , (20)

and the function

φ(γ) =

√

√2∆
ξ

r xqp

cPhot
QP,PB n̄PB

�

�

γ

γ′∗

�7/2

+ 1

�

f (ξγ) , (21)

where the dimensionless parameter

γ′∗ =

�

τ
qp
e,n(ξ)

τ
qp
r

�2/7

=

�

105
p

2 xqp

32

�2/7
∆

ξ
, (22)

determines whether at the highest energy at which quasiparticles are generated (that is, ε= ξ)
recombination is faster, γ′∗ > 1, or slower, γ′∗ < 1, than relaxation by phonon emission. With
this notation, the steady-state equation (19) takes the form of a Volterra integral equation of
the second kind

1
p

1− γ
= φ(γ)−

1
∫

γ

dγ′ I(γ,γ′)φ(γ′) , (23)

with the kernel

I(γ,γ′) =
105
128
γ+ γ′
p

γ′

(γ− γ′)2

(γ′∗)7/2 + (γ′)7/2
. (24)

In Eq. (23) the first term on the right-hand side accounts for quasiparticle out-scattering by
spontaneous phonon emission and the second one for the corresponding in-scattering process;
in that term the upper limit of integration is set to 1 consistently with ignoring absorption of
pair-breaking photons and thus occupation at energies ε > ξ, as discussed earlier in this sec-
tion. The term on the left-hand sides originates from the quasiparticle generation by photons;
its divergence as γ → 1 originates from the diverging density of states and, as we will see,
leads to a divergent distribution function. This unphysical divergence is in fact cut off by the
Pauli blocking factors that we have neglected by assuming f ≪ 1; however, the divergence is
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integrable and to our knowledge it does not lead to unphysical behavior of any observable, so
it is not further considered.

Depending on the value of γ′∗ we can distinguish two cases. For γ′∗ ≳ 1, the solution to
Eq. (23) can be given in terms of a Neumann series [30]

φ(γ) =
∞
∑

j=0

φ( j)(γ) , (25)

with φ(0)(γ) = 1/
p

1− γ and

φ( j)(γ) =

1
∫

γ

dγ′ I(γ,γ′)φ( j−1)(γ′) , (26)

over the whole range γ ∈ [0, 1]. In fact for γ′∗≫ 1 we can ignore (γ′)7/2 in the denominator of
the kernel, Eq. (24), and readily see that the terms in the series are suppressed by (γ′∗)

−7 j/2.
The second case, γ′∗≪ 1, is relevant to small quasiparticle density. In this case the solution

has to be constructed differently. For γ≫ γ′∗, the kernel can be simplified to

I(γ,γ′)≃ Ĩ(γ,γ′)≡
105(γ′ − γ)2(γ+ γ′)

128(γ′)4
. (27)

Using this simplified kernel, the solution to Eq. (23) can again be written as a Neumann series,
Eq. (25), but using the approximate kernel Ĩ in Eq. (26) instead of I . The first and second order
terms can be calculated analytically and are given in Appendix B. In fact, such a solution is valid
under a weaker assumption than γ≫ γ′∗: Using the simplified kernel is a good approximation
if the dominant contribution to the integral in Eq. (23) comes from the interval γ′ ∈ [γ′∗, 1].
This holds for γ≫ γ∗, with γ∗ defined by

1
∫

γ′∗

dγ′φ(γ′) Ĩ(γ∗,γ
′) =

γ′∗
∫

γ∗

dγ′φ(γ′) Ĩ(γ∗,γ
′) (28)

(using the simplified kernel in the left-hand side is a reasonable approximation, while using it
in the right-hand side overestimates the value of that integral, since the full kernel is smaller
than the simplified one for small γ′; this leads to a conservative estimate for γ∗). While γ′∗
determines whether out-scattering at energy γ is dominated by spontaneous phonon emission
(γ > γ′∗) or recombination (γ < γ′∗), γ∗ distinguish whether in-scattering mostly originates
from states for which spontaneous phonon emission (γ > γ∗) or recombination dominates
(γ < γ∗). Equation (28) can be solved numerically using a bisection algorithm, the solution is
presented in Fig. 3. We see there that γ∗ is at least an order of magnitude smaller than γ′∗; tak-
ing the geometrical average between the two quantities, we then estimate that the Neumann
series constructed with the simplified kernel is a good approximation for γ≳ γc ≡ γ′∗/3.

Except for the zeroth order, the terms in the “simplified” Neumann series diverge as γ→ 0;
this is a result of the use of the simplified kernel, which has a non-integrable singularity for
γ = 0 as γ′ → 0, while the exact kernel approaches zero in that limit. Thus, the solution for
γ ≲ γc must be constructed differently. We proceed by considering a series expansion for φ
up to third order in γ,

φ(γ) = a0 + a1γ+ a2γ
2 + a3γ

3 . (29)
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Figure 3: Numerically calculated γ∗ as function of γ′∗, determining the range of va-
lidity γ > γ∗ for the validity of the Neumann series constructed using the simplified
kernel in Eq. (27).

Neglecting small factors of order (γc/γ
′
∗)

7/2 and higher, the lower integration limit in the right-
hand side of Eq. (23) can be set to zero, and for consistency the left-hand side should be
expanded also only up to third order in γ. Then the expansion coefficients for φ are given by

a0 = 1+ I0 ,

a1 =
1
2
− I1 ,

a2 =
3
8
− I2 ,

a3 =
5
16
+ I3 , (30)

with

Il =
105
128

1
∫

0

dγ′φ(γ′)
γ′5/2−l

γ′7/2 + γ′7/2∗
. (31)

In this expression φ should be understood as the exact solution, extending over the whole
interval [0,1]. The coefficients can be then calculated numerically, see the dots in Fig. 4.
However, for an approximate estimate of the coefficients, we can set the lower integration
limit in Eq. (31) to γc and use the “simplified” Neumann series solution for φ including terms
up to j = 2 (see Appendix B). The approximate coefficients calculated in this way are shown
as lines; except for a3, we find good agreement between exact and approximate coefficients.
For later use, we note that a0 ≃ 0.073 log3(12/γ′∗) − 0.35 log2(12/γ′∗) + 1.23 log(12/γ′∗) is a
good approximation in the range covered by the dots in Fig. 4 (the dependence on powers of
the logarithm originates from the behavior of φ( j), j = 0, 1, 2, at small γ, while the numerical
coefficients are obtained by comparison to the numerics).

We exemplify the results obtained in this section in Fig. 5. The black lines show the distri-
bution function as obtained by numerical solution of the kinetic equation, while the colored
lines are the analytical approximations. Both the “simplified” Neumann series [cf. Eq. (25)]
and the low-energy expansion [Eq.(29)] are in excellent agreement with the numerical results
in their respective regimes of validity.

The consideration of this Section can be straightforwardly generalized to account for mul-
tiple pair-breaking modes: to determine the quasiparticle density xqp, it suffices to replace
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Figure 4: Coefficients of the low-energy expansion for φ, Eq. (29). For better visi-
bility, the products al(γ′∗)

l , l = 0 to 3, are plotted. Points are calculated using the
numerical result forφ in Eq. (31), while lines using the approximate Neumann series
as described in the text.

the right-hand side of Eq. (16) with its sum over all modes. Then, Eq. (19) [or equivalently
Eq. (23)] being linear in the distribution function, it can be solved for the contribution fi(ξiγi)
of each pair-breaking mode i as for a single mode. The distribution function f is finally given
by the sum over all fi .

3.1 Validity of assumptions

In obtaining the approximate solution for the distribution function, we made a number of
assumptions whose validity depend on parameters such as the recombination rate r and the
quasiparticle-phonon coupling constant cQP

Phot,PB; for aluminum, as order of magnitude we

take r ≃ 107 Hz [11], and we estimate in Appendix A that for resonators of this material
cQP

Phot,PB ≃ 10Hz. The condition in Eq. (18) can be interpreted as a bound on the number

of pair-breaking photons, which with these parameters reads n̄PB ≪ 106ξ/∆. Even for pair-
breaking photons near the threshold (ξ → 0), this conditions is in practice always satisfied
for n̄PB ≲ 1: while for subgap photons high quality factors of order 106-107 are possible [8,
18], the quality factor of above-gap modes is more than two orders of magnitude smaller,
see Appendix A; this implies ξ/∆ > 10−5, since the frequency of the pair-breaking mode
is known with relative precision given by the inverse quality factor. Alternatively, for pair-
breaking photons of sufficient energy, ξ/∆ > 0.1, the bound on the photon number becomes
n̄PB < 105. We note that if Eq. (18) holds, then we also find from Eq. (16) that xqp ≪ 1; this
ensures that the suppression of the gap δ∆/∆≃ xqp can also be neglected for the purposes of
this section.

We now turn to the validity of Eq. (13), that is, negligibility of photon-mediated recombi-
nation. Setting ϵ =ωPB−∆−E, in the limit ϵ→ 0 (i.e., ε→ ξ) we can rewrite that inequality
in the form

ϵ

ξ
≫
� a0

2π

�2





cQP
Phot,PB(1+ n̄PB)

r





2

, (32)

where we used Eqs. (21) and (29). For n̄PB ≫ 1 and assuming γ′∗ ≳ 1, we have a0 ≃ 1
and, for the parameter discussed above we have ϵ/ξ ≫ 10−14n̄2

PB; even at the upper bound
n̄PB ≃ 105 determined in the previous paragraph, the right-had side is small, of order 10−4.
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Figure 5: Shape of the quasiparticle distribution for different pair-breaking pho-
ton numbers and ωPB = 2.8∆. Numerical results are displayed in black, dif-
ferent orders of the Neumann series [cf. Eq. (25)] in green ( j = 0), red
( j ≤ 1) and blue ( j ≤ 2). The different photon numbers correspond to
(top to bottom) cQP

Phot,PB n̄PB = 10−2, 10−4, and 10−6 Hz; other parameters are
τ0 = 63ns, ∆ = 189µeV, and τl = 0, resulting in effective generation temperatures
T̄B ≃ 180mK, 150 mK, and 130 mK, respectively [c.f. Eq. (34)]. The bottom plot
zooms into the low-energy region. Here, the Neumann series (up to second order)
has been displayed with blue solid lines for γ > γ′∗, blue dashed lines for γ′∗ > γ > γ∗
and blue dotted lines for γ < γ∗, while the low energy expansion [Eq. (29)]with solid
brown lines for γ < γc , dashed lines for γc < γ < γ

′
∗, and dotted lines for γ > γ′∗.

In the opposite regime n̄PB, γ′∗ < 1, the first factor on the right-hand side is of order unity (as
can be verified by inspection of Fig. 4 or by using the approximate analytical expression for
a0 given previously) and the second factor is ∼ 10−12, meaning that the requirement becomes
significantly less stringent. Therefore, as mentioned at the end of Sec. 2, recombination by
photon emission can be ignored.

At the beginning of this section, we assumed that there are no other modes beside that
of the pair-breaking photons by setting cQP

Phot = 0. If such a mode is present (cQP
Phot > 0),

even if it is unpopulated (n̄ = 0) it can in principle affect the distribution function, since
quasiparticles could relax by emitting a photon of energyω0. However, similarly to the process
of photon-mediated recombination considered in the previous paragraph, we now show that
we can ignore this relaxation mechanism. Indeed, this mechanism is accounted for by the
term proportional to n̄+1 in the second line of Eq. (3), and the corresponding relaxation rate
diverges for ε→ ω0. We compare this rate to that of relaxation by phonon emission, Eq. (9)
(assuming that 1/τqp

e,n(ω0)> 1/τqp
r , as we expect to be the case at low temperature and hence

quasiparticle density); we find the condition

cQP
Phot

√

√2∆
ϵ̃
≪

128

105
p

2

�

∆

Tc

�3 �ω0

∆

�7/2 1
τ0

, (33)

where ϵ̃ =ω0+∆−E≪ω0. This inequality is equivalent to ϵ̃/∆≫ (∆/ω0)7(105cQP
Phot/16r0)2,

and using cQP
Phot ≃ 1Hz (see Appendix A), we estimate that the second factor on the right-hand

side is small, of order 10−13; while the first factor could in principle be large, since ω0≪ 2∆,
in practice the resonators are designed to have modes in the frequency range above at least
a couple of GHz, in which case (∆/ω0)7 ≲ 109. Hence we conclude that the above condi-
tion is violated only for energy so close to ∆ + ω0 as to not affect the quasiparticle distri-
bution. In fact, the numerical solutions displayed in Fig. 5 were obtained with cQP

Phot = 1 Hz
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and ω0/2π = 4.84 GHz and show no significant deviation from the analytical approximation
derived assuming cQP

Phot = 0.
Finally, we also assumed that we can ignore phonons by setting TB = 0 and τl = 0. Even

within the assumption of fast thermalization (τl ≪ τPB
0 ), thermal phonons with TB > 0 can

generate quasiparticles by breaking Cooper pairs; therefore, a necessary condition to ignore
them is that this generation mechanism gives a negligible contribution to the quasiparticle
density. By comparing the second line in Eq. (16) (that is, the quasiparticle density genera-
tion rate due to pair-breaking photons) to the thermal phonon generation rate [see text after
Eq. (10)], we define the crossover (or effective generation) temperature

T̄B =
2∆

W
�

4r0

cQP
Phot,PB n̄PB

∆
ξ

� , (34)

with W with the Lambert (product logarithm) function. For TB > T̄B thermal phonons are the
main source of quasiparticles, while for TB < T̄B, the dominant generation mechanism is pho-
ton pair breaking and T̄B gives the temperature at which quasiparticles in thermal equilibirum
would have the same density as those generated by the photons. For the typical parameters
discussed above (r0 = 107 Hz, cQP

Phot,PB = 10 Hz), even for photons with frequencies close to

the pair-breaking threshold, ξ/∆ = 10−3, and a low occupation probability, n̄PB = 10−10, we
estimate a relatively high crossover temperature T̄B > 100 mK. In fact, for the crossover tem-
perature to go below e.g. 20 mK the photon occupation probability should be extremely small,
n̄PB < 10−84, so ignoring generation by thermal phonons should likely be a good approxima-
tion for typical low-temperature experiments; in our examples in the plots in Fig. 5 we have
assumed n̄PB ≥ 10−7.

While the condition TB < T̄B implies that the density is not affected by thermal phonons,
it is not sufficient to ensure that they do not alter the shape of the quasiparticle distribution.
A more stringent condition is found by requiring that the rate of phonon absorption at the
gap is small compared to the recombination rate [as defined in Ref. [17], the former rate is
approximately given by 3/τqp

e,n(TB)], or equivalently by requiring that the typical energy gained
by absorbing a phonon is small compared to the width of the distribution in the absence of
phonons, TB < γ

′
∗ξ. These requirements can be expressed as xqp > (TB/∆)7/2. With the

same parameters used above and assuming ξ > 0.1∆, for TB = 10mK we estimate, using
Eq. (16), that the condition is satisfied for n̄PB > 10−8. The bound becomes more stringent as
the phonon temperature increases; we do not explore this higher temperature regime further
here, as we focus next on a competing mechanism affecting the distribution shape, namely the
absorption and emission of non-pair-breaking photons.

The results of this Section show that at low temperature a small number or photons above
the pair-breaking threshold can lead to experimentally relevant quasiparticle densities. In fact,
using Eqs. (16) and (21) one can show that if both ξ and γ′∗ are not too small compared to
unity, then f (0) (cf. Fig 5) is of the same order of magnitude as the normalized density xqp,
which in various experiments has been estimated to range between 10−9 and 10−5 (see [31]
and references therein). Even the width ∼ γ′∗ξ of the quasiparticle distribution can be deter-
mined by the interplay between pair breaking by photons and recombination, rather than by
absorption of thermal phonons. This could happen in particular in superconducting qubits,
for which pair-breaking photons can contribute directly to qubit transitions as well as to quasi-
particle generation [32, 33], although the actual shape of the distribution function is likely
affected by the fact that typically the films forming the qubit’s junction have different gaps.
While qubits are by necessity operated in a regime where at most a few non-pair-breaking
photons are present, this is not the case for resonators, where the large number of non-pair
breaking photons can determined the distribution’s shape, as we discuss next.
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4 Non-pair-breaking photons

When both modes above and below the pair-breaking threshold are populated, n̄, n̄PB > 0,
various regimes are possible. For instance, for n̄ sufficiently small compared to n̄PB we can
expect the quasiparticle distribution function to be mainly determined by the pair-breaking
photons; then the effect of the non-pair-breaking ones can be treated perturbatively. Still, we
can expect the effect to be different depending on the frequencyω0 < 2∆ satisfyingω0 < γcξ,
γcξ < ω0 < ξ, or ω0 > ξ (we have assumed γc < 1, otherwise ω0 should be compared to ξ
only). In the opposite regime of sufficiently large n̄, the distribution function dependence on
energy is instead mainly due to the below-threshold photons and the pair-breaking one mostly
contribute to the overall quasiparticle density. In what follow, we examine in more detail some
(but not all) of these many regimes.1

4.1 Perturbative regime

We begin by investigating the effect of a small number of non-pair-breaking photons of fre-
quency ω0 < 2∆ on the quasiparticle distribution function. We assume that the approxima-
tions employed in Sec. 3 are still applicable, so that the steady-state kinetic equation becomes
[cf. Eq. (19)]

0= StPhon{ f , n}+ StPhot
PB,g { f , n̄PB}+ StPhot{ f , n̄} , (35)

with StPhot{ f , n̄} given by Eq. (3). Simplifying that equation in the regime of low quasiparticle
energies (ε <∆) and densities ( f ≪ 1) we get

StPhot{ f , n̄} ≃ cQP
Phot

√

√ 2∆
ε+ω0

[ f (ε+ω0)(n̄+ 1)− f (ε)n̄)]

+ cQP
Phot

√

√ 2∆
ε−ω0

[ f (ε−ω0)n̄− f (ε)(n̄+ 1)] , (36)

where the last line vanishes for ε < ω0.
In the previous section we have considered already when the effect of this term is negligible

in the case n̄= 0 by focusing on the decay rate associated with the last term on the right-hand
side of Eq. (36) [a finite n̄ adds the factor (1 + n̄) to the left-hand side of condition (33)].
For finite but small occupation, n̄ ≲ 1, to find a necessary condition enabling us to treat the
non-pair-breaking photons as a perturbation we consider the absorption rate arising from the
second term in the first square brackets, which is highest at the lowest energies ε < ω0 at
which the second line of Eq. (36) is zero [at higher energies, the photon absorption accounted
for by the first term in the second square brackets should also be considered]; we then compare
that rate to the recombination rate, Eq. (10), to find the condition

n̄≪
r xqp

cQP
Phot

s

ω0

2∆
, (37)

where xqp depends on n̄PB as follows from Eq. (16). Assuming the inequality holds, we write
the quasiparticle distribution in the form

f (ε) = f0(ε) +δ f (ε) , (38)

1Previous works [49,50] considered the population of both modes in order to evaluate the absorption efficiency
of the pair-breaking photons for detector applications. The kinetic equations are solved there numerically assuming
a broadened density of states and using a discretization procedure [51] that, to our understanding [17], violates
quasiparticle number conservation; therefore, we do not attempt to compare the results in those articles to ours.
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where f0 is the steady-state distribution in the absence of low-energy photons, n̄= 0, and the
kinetic equation can be rewritten as

StPhot{ f , n̄}+ StPhon{δ f }= 0 , (39)

where in the phonon collision integral we dropped the explicit dependence on the phonon
distribution as we assume zero temperature, n = 0 (this implies in particular StPhon

g = 0).
Although the photon collision integral in Eq. (3) accounts only for emission or absorption of a
single photon at a time, consecutive absorption processes uninterrupted by phonon emission
lead to peaks in the energy distribution function at multiples of the photon energy. Thus, we
seek an expression for δ f in form of an expansion δ f = f1+ f2+... using an iterative approach
to find fm once fm−1 is known:

StPhot{ fm−1, n̄}+ StPhon{ fm}= 0 , (40)

with m= 1, 2, ....
To find an explicit expression for fm, m≥ 1, we ignore the in-scattering part of StPhon{δ f }

– that is, the first term on the right-hand side of Eq. (6); we will comment below on this step.
We also assume 1/τqp

e,n(ω0) > 1/τqp
r , so that for ε > ω0 we can ignore the term proportional

to xqp in StPhon. Furthermore, we note that in StPhot there is at each iteration a term that
diverge as ε → mω0 originating from the last line in Eq. (36). Of the two terms in square
brackets there, we expect the first one to be dominant; in other words, we assume

fm(ε)≫ fm(ω0 + ε)(n̄+ 1)/n̄ . (41)

With these simplifications, we find peaks for ε > mω0 with approximate shape

fm(ε)≃
�

T∗
ω0

�6m√
√ ω0

ε−mω0
f0(ε−mω0)
�ω0

ε

�7/2
Πm−1

j=1

�

ω0

ε− jω0

�4

, (42)

where [16,17]

T∗ =
�

105
64

cQP
Phot n̄τ0T3

c ∆ω
2
0

�1/6

. (43)

The value of T∗ being larger than ω0 means that the non-pair-breaking photons are effective
at heating the quasiparticles [16, 17]; similarly, here it can counteract the fast suppression
of the amplitude of the peaks caused by the last two factors in Eq. (42) being approximately
1/m7/2[(m− 1)!]4 for ε≃ mω0.

The result for the peaks in Eq. (42) is compatible with Eq. (41) so long as n̄> 1/(m+1)4.
We can also estimate if a given peak is visible by comparing its amplitude (which we estimate at
ε= mω0+γ′∗ξ) to the value of f0 at the peak’s position. We thus find the “visibility condition”

�

T∗
ω0

�6m 1
[(m− 1)!]4

≫
105
16

√

√2γ′∗ξ

∆

�

∆

ω0

�4 xqp

a0
, (44)

where we assumed ω0 > γ
′
∗ξ. Using this expression, one can for instance check under which

conditions the first peak is visible while at the same time Eq. (37) holds. More interestingly,
for a given choice of parameters as m increases the left-hand side decreases, so there is a last
visible peak which we denote with index ml (we have implicitly assumed that ml < ξ/ω0,
so that it is consistent to ignore occupation at energies ε > ξ as in Sec. 3). For m > ml , it
is reasonable to set fm = 0; in turn, this makes it possible to understand why Eq. (42) gives
a good description of the last peak but not necessarily of lower-index peaks. Indeed, in our
derivation we have ignored the first term on the right-hand side of Eq. (6); considering the
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Figure 6: Distribution function in the presence of non-pair-breaking photons in
the perturbative regime. The dots are obtained by solving the kinetic equation
numerically with parameters ωPB = 2.8∆, τl = 0, τ0 = 63ns, ∆ = 189µeV,
cQP

Phot,PB n̄PB = 10−6Hz, and the values of cQP
Phot n̄ given in the inset. The solid lines

are calculated using Eq. (42).

contribution of that term to Eq. (39) for ε > mω0, one can check that the integral between
ε and (m+ 1)ω0 can be ignored compared to the first term in square brackets in Eq. (6). At
energies just above (m+ 1)ω0, the integral is dominated by the fm+1 term, which we ignore
for m = ml . On the other hand, taking for example m = ml − 1, the ml peak gives a non-
negligible contribution to the integral, a contribution that accounts for quasiparticle relaxing
to lower energies by emitting phonons; this mechanism then leads to the lower-index peaks to
be broader than what Eq. (42) predicts. In Fig. 6 we show with points the results of numerical
solutions of the kinetic equation simulation for different number of non-pair-breaking photons.
Only for the smallest number Eq. (37) holds; nonetheless, in all cases the number of visible
peaks agrees with the expectation from Eq. (44) and the last visible peak is well described by
Eq. (42), see the solid lines.

4.2 Heating regime

We next consider the regime in which there are many non-pair-breaking photons, such that
they can heat the quasiparticles, T∗ > ω0. Even if this condition is met, the pair-breaking
photons could affect the shape of the distribution function; therefore, we additionally require
that the generation of quasiparticles can be ignored at lowest order, so that the results of
Refs. [16,17] can be used as a starting point. Near energy ξ we can approximate the photon
generation collision integral, Eq. (4), as

StPhot
PB,g ≃ cQP

Phot,PB n̄PB
ξ
p

2∆(ξ− ε)
, (45)

which diverges as ε→ ξ; however, since the width of the peaks in the distribution function is
limited by the photon frequency ω0, for our estimates we replace ξ − ε → ω0. If the shape
is determined by the balance between phonon emission and the absorption/emission of non-
pair-breaking photons, the above contribution from StPhot

PB,g should be small in comparison to,

for instance, the phonon collision integral, or more precisely the term proportional to (ε/∆)7/2

in Eq. (6), where we can use [17]

f (ε)≃
3× 21/6

4.2
p

2π
xqp

√

√∆

ε
e−(ε/T

∗)3/3 , (46)
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Figure 7: Distribution function in the crossover from perturbative to heating regimes
as identified by Eq. (47). We use the same parameters as in Fig. 6 except for the
photon number n̄, given in the bottom left inset in terms of the ratio between T∗ of
Eq. (43) and ξ of Eq. (17). The top right inset shows the second peak at energies
ε > ωPB, with the blue dashed curve corresponding to Eq. (48) where f (ε) is the
numerically calculated distribution function at low energies.

for ε = ξ. Assuming that the quasiparticle density is determined by the photon pair-breaking
mechanism and hence given by Eq. (16), we arrive at the condition

T∗
ξ
≳
�

−3 ln

�

3.27xqp

�

∆

ξ

�3
√

√ ∆

ω0

��−1/3

. (47)

For the parameters of Fig. 6 this correspond to T∗/ξ ≳ 0.29, while for the highest photon
number there we estimate T∗/ξ ≃ 0.1. Even doubling the value of T∗ so that T∗/ξ = 0.2
(or cQP

Phot n̄ ≃ 8.2 × 104 Hz), see Fig. 7, the considerations of the previous subsection are still
valid with minor modifications. For example, according to Eq. (44) the m = 7 peak should
be the last visible one, but since that peak is close in energy to ξ, the right-hand side of
that equation should be multiplied by a factor of order

p

ξ/ω0; including this factor, we find
that the inequality holds only weakly. Further increasing T∗ above the threshold value by
setting T∗/ξ = 0.3 (cQP

Phot n̄ ≃ 9.3× 105 Hz), the shape of the distribution function follows the
predictions of Ref. [17] up to energies beyond ξ.

In Fig. 7 it is evident that the distribution function changes qualitatively at a crossover
energy εc > ξ, becoming mostly smooth in the range εc ≲ ε ≲ ωPB. We ascribe this smooth
part to “excess” quasiparticles relaxing by phonon emission (and/or scattering with non-pair-
breaking photons), the excess being understood as the second broad peak at energies above
ωPB. As mentioned in Sec. 3, this second peak is due to the absorption of pair-breaking pho-
tons, and can be found by following the approach of Ref. [16] [cf. Eq. (8) there]:

f (ωPB + ε)≃
n̄PB f (ε)/(1+ n̄PB)

1+ 1
12

r0

cQP
Phot,PB

�ωPB
∆

�3q2ε
∆
∆+ωPB
2∆+ωPB

. (48)

We compare this equation to numerical calculations in the top right inset of Fig. 7. These mod-
ifications affect the distribution only at the relatively large energies ε > εc and, as explained
in Sec .2, do not contribute significantly to quasiparticle creation even when considering a
finite phonon thermalization time (see also the next subsection). Furthermore, since usually
r0≫ cQP

Phot,PB, the second peak is much smaller than the first one and thus does not appreciably
affect measurable properties like the quality factor of a resonator.
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4.3 Quasiparticle density and its fluctuations

So far we have assumed that quasiparticle generation by phonons can be ignored. Once we
enter the heating regime, however, the distribution function is not significantly affected by the
pair-breaking photons, so that the latter can only influence the overall quasiparticle density.
Therefore, in this regime we can extend the generalized Rothwarf-Taylor equation determin-
ing the quasiparticle density by including contributions from both pair-breaking phonons and
photons,

dNqp

d t
= GTB

+ GT̄B
+ G(T∗/∆)Nqp − RN2

qp , (49)

with GTB
of Eq. (11) and GT̄B

, accounting for pair-breaking photons, obtained from GTB
by

replacing r → r0 and TB → T̄B, see Eq. (34); this is equivalent to GT̄B
= 2πρF cQP

Phot,PB n̄PBξ. The
term linear in Nqp depends on T∗ because it describes generation by nonequilibrium phonons
emitted by quasiparticles heated by the non-pair-breaking photons to energies above 3∆ [see
diagram h) in Fig. 2 and Ref. [17]]:

G(x) = 0.21r
τl

τPB
0

x9/2e−
p

14/5 x−3
. (50)

Equation (49) can be derived by multiplying Eq. (1) by ρ(E) and integrating it over energy;
in the collision integrals, the (nonequilibrium) phonon distribution can be expressed in terms
of the quasiparticle distribution, while the energy dependence of the latter, but not its normal-
ization, are determined by the balance between phonon scattering processes and non-pair-
breaking photon absorption; a detailed derivation is given in Ref. [17].

Clearly, as far as the density is concerned, pair-breaking phonons and photons play the
same role; for r ∼ r0, as discussed after Eq. (34) one of the two generation mechanisms is
dominant, depending on which of the two temperatures, TB or T̄B, is the largest. Then defining
TG = max{TB, T̄B} and T ∗B = T3

∗ /∆
2 [17], we can distinguish two steady-state regimes, in

analogy to those discussed in Ref [17] in the absence of pair-breaking photons. At high heating,
T ∗B > TG , we can neglect the first two terms on the right-hand side and find Nqp,0 ≃ G(T∗/∆)/R,
independent of phonon temperature and number of pair-breaking photons (we use subscript
0 to denote the steady state); for low heating, T ∗B < TG , we can neglect the term linear in
Nqp in Eq. (49) and the density is approximately Nqp,0 ≃

Æ

(GTB
+ GT̄B

)/R, independent of the
number of non-pair-breaking photons n̄. In both regimes, the dependence of the density on
bath temperature are similar: at low temperature – TB < T̄B for low heating and TB < T ∗B for
high heating – the density is approximately constant, while above these crossover temperatures
it increases exponentially, being approximately the same as in thermal equilibrium. As an
example, in Fig. 8 we plot the density as function of temperature for a few values of T̄B in the
low-heating regime; the behavior resembles that in the high-heating regime, see Ref. [17].

Interestingly, the two regimes display quantitatively different power spectral densities for
quasiparticle number fluctuations. In general, as shown in Appendix C the spectral density
(per unit volume) can be written in the form

SN (ω) =
8RN2

qp,0τ̄
2
r

1+ (ωτ̄r)2
, (51)

where τ̄r = 1/[2RNqp,0−G(T∗/∆)] is the relaxation time of quasiparticle number fluctuations
and we assumed fast phonon dynamics, τ̄r ≫ τPB

0 , τl . At low heating, we have τ̄r ≃ 1/2RNqp,0
and we recover the result of Ref. [34]. At high heating τ̄r ≃ 1/RNqp,0, which modifies the rela-
tion between measurable quantities such as τ̄r and SN (0) and quantities than can be derived
from them, such as the steady-state quasiparticle density.
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Figure 8: Quasiparticle density for fixed numbers of pair-breaking photons (see pa-
rameter in the inset) as function of temperature in the low-heating regime in which
non-pair-breaking photons have negligible influence on the density. Results calcu-
lated from numerical solutions to the kinetic equation are displayed with full lines
and the corresponding analytical ones obtained by solving Eq. (49) in the steady state
with dashed lines.

It should be noted that in experiments the fluctuations measured are not directly those
of the quasiparticle number, but those of phase and amplitude of the complex transmission.
Therefore, comparison to experiments requires knowledge of the responsivities [9,35]

dA
dNqp

= −
2αQ
σ2

dσ1

dNqp
≃ −

2Q
NqpQ i,qp

, (52)

dθ
dNqp

=
4Q
ω0

dδω0

dNqp
≃ 4Q

δω0

Nqpω0
, (53)

where Q is the loaded quality factor, α the kinetic inductance fraction, σ1(2) the real (imagi-
nary) part of the ac conductivity, Q i,qp the contribution of quasiparticles to the internal quality
factor, and δω0 the frequency shift. For a coupling-limited quality factor, both responsivities
are approximately independent of quasiparticle number. However, in the heating regime the
responsivities depend on the photon number n̄ via Q i,qp and δω0, as investigated in Ref. [17]
– see also the next section.

In closing this section, we remark that the considerations presented in this work for the
heating regime can be straightforwardly extended to the case of multiple pair-breaking modes
(cf. Ref. [36]) by introducing more sources like the term GT̄B

in Eq. (49).

5 Comparison to experiments

We now turn our focus to the implications of the results of the previous sections for experi-
ments. We reconsider in particular the measurement of quality factor and resonant frequency
as functions of temperature and for various readout powers reported in Ref. [18]. We repro-
duce in Fig. 9 the internal Q-factor data from that reference together with fit lines calculated
using the theory of quasiparticle heating of Ref. [17], which does not include the effect of
pair-breaking photons, with the addition of an “extrinsic” dissipation mechanism of unknown
origin; this second mechanism is needed in order to capture the low temperature saturation
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Figure 9: Quality factor vs temperature for different readout powers. The experi-
mental points are taken from Ref. [18]. The solid lines are based on Eq. (54) and are
calculated using the following parameters: ∆= 189µeV, cQP

Phot = 58 mHz, τ0 = 63 ns,
ω0/2π= 5.3GHz, α= 0.13, τl = 170 ps. More details can be found in Ref. [17].

of the Q-factor. Concretely, the inverse internal quality factor is assumed to be of the form

1
Q i,tot

=
1

Q i,ext
+

1
Q i,qp

, (54)

where, at leading order in T∗/∆, we have [17]

Q i,qp =
σ2

ασ1
≃

4.1
α

2ρF∆

Nqp

∆

ω0

�

T∗
∆

�3/2

, (55)

leading to a linear relation between inverse quality factor and quasiparticle density Nqp, with
a slope that decreases with increasing readout power (the condition T∗ >ω0 ensures that the
quality factor is not affected by the detailed shape of the peaks on the scale ω0, but only on
the overall width T0 of the distribution function). In other words, since at low heating the
quasiparticle density is independent of the photon number n̄, the quality factor is expected to
increase with readout power, as n̄ and hence T∗ increase; indeed, when the coupling quality
factor is small, Qc ≪ Q i , we have n̄ = 2Qc Pread/ω

2
0 [17]. While the increase of Q i with

power agrees with observations at sufficiently high temperatures, it is qualitatively inconsistent
with measurements at the lowest temperatures (crossover to the high-heating regime with
decreasing temperature cannot explain the data, see Ref. [17]). We emphasize that Q i,ext is
introduced purely in a phenomenological way, and ranges from approximately 2.5 × 106 at
low power to 0.7 × 106 at high power. The decrease at higher power excludes the standard
explanation of the low-temperature value of Q i,ext as originating from two-level systems, since
the saturation of the latter with increasing power would lead to an increase of the quality
factor [19].

To try and explain the low-temperature behavior of the quality factor, we now consider the
effect of pair-breaking photons, assuming we remain in the low-heating regime. The quasi-
particle density can be strongly affected by a small number of such photons, see the discussion
after Eq. (34). In fact, in a series of works [37,38] radiation emitted by a higher temperature
(3-4 K) stage of the refrigerator was identified as a source of quasiparticle generation, and
at least partially mitigated by using a ‘box in a box’ design. Furthermore, to reduce the influ-
ence of pair-breaking photons propagating through coaxial cables, filters have been used at the
cold stage that, extrapolating measurements below∼ 10GHz to twice the gap, are expected to
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Figure 10: Low-temperature Q-factor vs readout power. Experimental data points are
obtained by averaging the low temperature (TB < 150 mK) data in Ref. [18] and each
error bar shows the corresponding standard deviation; the value of the data points
coincide with those of Q i,ext [cf. Eq. (54)] used in Fig. 9. The solid line is obtained
from numerical solutions to the kinetic equation ignoring thermal phonons (that is,
setting TB = 0) and using parameters ωPB = 2.8∆, cQP

Phot,PB = 27cQP
Phot , τ0 = 20 ns,

n̄PB,0 = 2× 10−4, and µ = 10−9 [see Eq. (56)]; other parameters as in Fig. 9. The
dashed line shows the analytical estimate, Eq. (55).

suppress the number of pair-breaking photons by almost 4 orders of magnitude. Despite such
careful engineering, the “leakage” of pair-breaking photons from higher temperature stages is
likely not completely eliminated. However, at low temperatures such leakage would result in
a density of quasiparticles independent of n̄ and of TB (up to T̄B, see Fig. 8), and the quality
factor should still increase with n̄, in contrast with observation.

Since the assumption of a fixed number of pair-breaking photons is inconsistent with ex-
periment, we are lead to amend it by setting

n̄PB = n̄PB,0 +µn̄ , (56)

where the first term on the right-hand side accounts for the leakage from higher temperature
stages discussed above. The second term introduces a dependence of n̄PB on n̄ and can orig-
inate from high-frequency noise produced by the source used to generate the signal probing
the resonator. This dependence in turns implies that when n̄≳ n̄PB,0/µ the quasiparticle den-
sity increases with readout power even in the low-heating regime, because the second term
on the right-hand side of Eq. (49) increases with n̄. As shown in Fig. 10, with this assumption
we can obtain a satisfactory fit to the measurements of Ref. [18] using reasonable parame-
ters: the “leaked” photon number nPB,0 is about one order of magnitude bigger than what one
would expect assuming a higher-stage temperature of 3.5 K with a 10−4 attenuation factor
for photons of energy ωPB = 2.8∆, but the discrepancy would drop to just a factor of 3 for
photons at the pair-breaking threshold.2 As for the value of µ = 10−9, it can be explained by
a combination of 10−4 attenuation times a 10−5 ratio between power of the generated signal
and of the high-frequency noise.3

2We note that nPB,0 could also originate from even higher-temperature stages with higher attenuation, so the
independence of e.g. τ̄r on the temperature of the few Kelvin stage [9] does not exclude such leakage.

3Spectral purity of signal generators at few GHz frequencies can range between -30 dBc to -140 dBc, depending
on whether harmonics, nonharmonics, or wideband noise are considered, indicating that power ratios up to 10−3

cannot be excluded.
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Figure 11: Quality factor vs temperature for different readout powers. As in Fig. 9,
the experimental points are from Ref. [18]. Here the solid lines include only the
quasiparticle contribution, with no extrinsic loss mechanisms. The lines are calcu-
lated using the same parameters as in Fig. 10 but, in contrast to Fig. 9, here we
take into account effect of a power-dependent number of pair-breaking photons, see
Eq. (56) and the discussion that follows it.

The assumption in Eq. (56) is independent of temperature, so we can employ it also when
evaluating the temperature dependence of the quality factor, as shown in Fig. 11. We stress
that while in Fig. 9 the value of Q i,ext is chosen independently for each of the six readout
powers as to best fit the data, in Fig. 11 just the two parameters appearing in the right-hand
side of Eq. (56) are used to fit all the data at the same time.4 The agreement between theory
and data in Figs. 10 and 11 thus support our proposed explanation for the physical mechanism
responsible for the saturation of the quality factor in terms of excess pair-breaking photons.

We also remark that the way pair-breaking photons affect the quality factor is not equiv-
alent to adding an extrinsic mechanism: the pair-breaking photons influence Q i,qp via the
quasiparticle density Nqp, and in the low-heating regime we can write the latter in the form

Nqp =
r

N2
TB
+ N2

T̄B
, (57)

with NTB
=
Æ

GTB
/R and the analogous definition for NT̄B

. Defining Q i,TB(T̄B) by the replace-
ment Nqp→ NTB

(NT̄B
) in Eq. (55), we find that

1
Q i,qp

=

√

√

√

1

Q2
i,TB

+
1

Q2
i,T̄B

, (58)

which should be contrasted with Eq. (54). Finally, we point out that the above analysis of
the quality factor is not restricted to a single pair-breaking mode, but is valid in the heating
regime if multiple pair-breaking modes (or even a broadband source) are present: the heating
regime is by definition that in which the shape but not necessarily the normalization of the
distribution function is determined by the interplay between non-pair-breaking photons and
phonons, see Sec. 4.2; in this regime, the pair-breaking photons influence the quality factor
only by contributing to the total quasiparticle density as in Eq. (57).

4Strictly speaking, there are two additional parameters, cQP
Phot,PB and ξ; however, only the product cQP

Phot,PB n̄PBξ is
relevant, as it enters GT̄B

, see text following Eq. (49). To arrive at order-of-magnitude estimates for the parameters
in Eq. (56), we choose cQP

Phot,PB based on the considerations in Appendix A and the value of ξ based on Ref. [21].
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Figure 12: Main panel: Dots: relative shift in resonance frequency from
Ref. [18] at low temperature, TB < 150mK, relative to the lowest readout power,
Pread = −100 dBm. Solid line: numerical calculation of the shift for TB = 0 and other
parameters as in Fig. 10. Dashed line: order-of-magnitude estimate from Eq. (59);
both lines calculated as deviations from the value for Pread = −100 dBm. Dotted
line: prediction from Ref. [39] (corrected for the finite kinetic inductance fraction,
see text). Inset: temperature evolution of the shift in linear scale (the colors are the
same as in Fig. 11).

5.1 Frequency shift

The approach presented above to calculate the internal quality factor can also be applied to
evaluate the shift in resonant frequency as function of the readout power. For thin-film res-
onators, the relative change in frequency is proportional to the kinetic inductance fraction
times the relative change in the imaginary part of the ac conductivity [40]. For the latter
quantity, we use here the order-of-magnitude estimate discussed in Ref. [17] to find for the
relative shift

�

�

�

�

δω0

ω0

�

�

�

�

≃ −
α

2
xqp

��

1− 0.42
T∗
∆
+ 0.22
�

T∗
∆

�2
�

+
1

2.1

√

√2∆
T∗

�

. (59)

The terms in square brackets originate from the suppression of the order parameter by the
nonequilibrium quasiparticles, while the last term from the direct effect of the nonequilibrium
distribution on the imaginary part of the ac conductivity. The latter term is in fact only a rough
estimate, since for its actual calculation knowledge of the shape of the first peak (between
energies ∆ and ∆+ω0) in the distribution function is needed [17].

Equation (59) predicts at low temperature a nonmonotonic dependence of the magnitude
of the shift on readout power: at low power, xqp is independent of power as the quariparticle
generation is dominated by the leakage term nPB,0 in Eq. (56), while the factor in curly brack-
ets decreases slowly with power. As power increases and the last term in Eq. (56) becomes
relevant, the magnitude of the shift increases with power as the increase in xqp dominates
on the decrease of the curly-bracket factor. In practice, however, one can measure the shift
from the lowest readout power, not from zero power, so depending on the parameters the non-
monotonic behavior might not be measurable. In fact, for the parameters used to fit the quality
factor data the difference in relative shift between the two lowest powers is about 10−6 which,
given quality factors of order 106, is at the limit of being measurable. For higher powers, the
magnitude of the shift increases, in qualitative agreement with the experiment, see Fig. 12. In
that figure, we plot both the analytical estimate above and the numerically calculated relative
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Figure 13: Dots: Experimental shift of resonance frequency from Ref. [18] (see inset
in Fig. 12) vs quasiparticle density; the latter is obtained from the numerical solution
to the kinetic equation with the same parameters as in the fits in Figs. 10 and 11. Solid
lines: numerical results for the frequency shift calculated using the same parameters
as for the density; readout powers increases from bottom to top (colors as in Fig. 11).
Yellow dotted line: frequency shift assuming a thermal equilibrium distribution; for
reference, xqp = 0.002 corresponds to TB = 350mK.

shift. Both curves deviate from the experimental data by less than a factor of 3.
We note that in Ref. [39] an alternative explanation for the shift was proposed: the authors

argue that, in analogy with the case of a dc supercurrent, the non-pair-breaking photons cause
a broadening of the peak in the superconducting density of states. This broadening effect can
be characterized in terms of a depairing parameter α̃ (not to be confused with the kinetic induc-
tance fraction α) which is proportional to the readout power and which causes a change in the
kinetic inductance: δLk/Lk ≃ 4.85α̃/∆ [39]. The relative shift is in turn proportional to the
change in kinetic inductance, δω0/ω0 = −αδLk/2Lk; implicitly assuming α= 1, good agree-
ment was found between the theory of Ref. [39] and the experiment of Ref. [18]. However, the
kinetic inductance fraction in the experiment can be estimated as α∼ 0.1 [17], meaning that
the theoretical result in fact underestimates the shift by approximately an order of magnitude
compared to experiment. Interestingly, adding the contributions to the frequency shift of the
two mechanisms improves agreement with the experimental data, but further investigation is
needed to understand if in fact the two mechanisms coexist.

The inset in Fig. 12 displays the temperature dependence of the relative shift as extracted
from the data of Ref. [18]. It is instructive to present the same data as function of normalized
density xqp instead, since Eq. (59) predicts a linear relationship with a slope dependent on
readout power. For low readout power, the experimental data and the numerical estimates
are in reasonable quantitative agreement with each other and with the expectation for thermal
equilibrium, see Fig. 13. As power increases, the qualitative trend of decreasing magnitude
of the slope in the frequency vs density plot is evident in both data and numerics; although
there is quantitatve discrepancy at the higher powers, we can conclude that a slope smaller in
magnitude than the thermal equilibrium one is indicative of quasiparticle heating. Recently,
such a reduced slope has been observed in a transmon qubit in which excess quasiparticles are
generated due to the presence of an IR laser beam focused onto the qubit or the substrate next
to it [41].

24

https://scipost.org
https://scipost.org/SciPostPhys.17.3.070


SciPost Phys. 17, 070 (2024)

6 Conclusion and outlook

In this work, we extend previous analytical studies of the quasiparticle distribution in super-
conducting resonators in the presence of (sub-gap) photons and phonons [16, 17] to include
the effect of a small number of photons of energy above the pair breaking threshold 2∆. We
derive expressions for the distribution’s shape in the limit of low bath temperatures and low
numbers of sub-gap photons, see Secs. 3 and 4.1, complementing the results obtained before
in the opposite limit of large numbers of sub-gap photons (see also Sec. 4.2). In the lat-
ter regime, the quasiparticle density can be determined using a generalized Rothwarf-Taylor
equation, Eq. (49); at typical temperatures of the phonon bath in the tens of millikelvin, we
find that absorption of pair-breaking photons can be the dominant quasiparticle generation
mechanism already at extremely low occupation n̄PB ≪ 1. As a consequence, the saturation
of the quality factor of superconducting resonators at low temperatures observed experimen-
tally in Ref. [18] can be explained by assuming a low number of pair-breaking photons, if this
number has two contributions: one originating from higher temperature stages of the cryo-
genic setup and the second from the microwave signal generator, see Eq. (56) and Figs. 10
and 11. In addition to contributing to losses, quasiparticles also cause a shift in the resonator
frequency, analogously to the Kramers-Kronig relation between real and imaginary parts of
response functions (cf. Ref. [42] for the case of qubits). Interestingly, plotting the frequency
shift as function of the quasiparticle density can provide information on the distribution in
energy of the quasiparticles, see Eq. (59) and Fig. 13.

Our results show that resonators can be used to probe the high-frequency (that is, above the
gap) electromagnetic environment of superconducting circuits, in this respect complementing
the use of qubits to probe low-frequency modes they are dispersively coupled to [43,44]. The
ability to investigate this environment can guide further efforts in reducing the detrimental
impact of pair-breaking photons on the coherence time of superconducting qubits [21–23].
The change of resonator response with power and/or temperature is also used to explore non-
quasiparticle loss mechanisms such as dielectric and two-level system losses [45–47], so our
results can contribute to improving the characterization of superconducting materials.

Acknowledgments

Funding information This work was supported in part by the German Federal Ministry of
Education and Research (BMBF), funding program “Quantum Technologies – From Basic Re-
search to Market,” project QSolid (Grant No. 13N16149). G.C. acknowledges support by the
U.S. Government under ARO grant W911NF2210257.

A Coupling constant

In this Appendix, we estimate the coupling constant for the pair breaking photons cQP
Phot,PB.

The approach is the same used in Ref. [17] to find the coupling constant for the resonator’s
photons cQP

Phot ∼ 1Hz, giving the coupling constant in the form

cQP
Phot,PB(ωPB) =

δ

2Q′(ωPB)
, (A.1)

where

Q′(ωPB) =
σ2(ωPB)
α(ωPB)σN

, (A.2)
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is the quality factor with the real part σ1 of the ac conductivity σ = σ + iσ2 replaced by
the normal-state conductivity σN and α is the kinetic inductance fraction (that is, the ratio of
kinetic to total inductance). For frequencies above 2∆ and up to a few times∆, real and imag-
inary part of the conductivity are of comparable magnitude, leading to a frequency dependent
Q′. Indeed, in the following we estimate the frequency dependence of the kinetic inductance
fraction by the frequency dependence of the kinetic inductance of a thin film, i.e. assuming
uniform current through the resonator cross section; as the width of the central strip is much
larger than the penetration depth, we expect this to be a reasonable approximation. At small
quasiparticle densities ( f ≪ 1), at leading order σ2 is [48]

σ2(ω)
σN

=
1
2

��

2∆
ω
+ 1
�

E(k′) +
�

2∆
ω
− 1
�

K(k′)
�

, (A.3)

with E and K the complete elliptic integrals of the second and first kind, respectively,
k′ =
p

1− k2, k = |2∆ −ω|/|2∆ +ω|; the left-hand side has the limiting forms π∆/ω for
ω≪ 2∆ and π(∆/ω)2 for ω≫ 2∆.

The frequency dependence of the kinetic inductance can be obtained from the thin-film
surface impedance Zs = 1/dσ(ω) for a film of thickness d small compared to the magnetic
field penetration depth [40], giving the kinetic inductance per square as

Lk(ω) =
1
ω

ImZs =
σ2(ω)

dω|σ(ω)|2
. (A.4)

Assuming the kinetic inductance fraction to be small leads to α(ω)∝ Lk, which enables us to
calculate the ratio between coupling strengths at different frequencies as

cQP
Phot,PB

cQP
Phot

=
|σ(ω0)|2ω0

|σ(ωPB)|2ωPB
(A.5)

≃
π2∆2

ωPBω0

σ2
N

|σ(ωPB)|2
, (A.6)

where in the second line we have used that for ω0 ≪ 2∆ we have σ1 ≪ σ2 and the ap-
proximate value for σ2 discussed after Eq. (A.3). In the limit ωPB ≫ 2∆, the conductivity
approaches its normal state value and hence cQP

Phot,PB/c
QP
Phot ≃ π

2∆2/ω0ωPB. Here we are
interested into moderate frequencies, ω ≲ 3.6∆; in this range the kinetic inductance varies
by less than a factor 2, and we can approximate the kinetic inductance fraction as frequency
independent. Then we get cQP

Phot,PB/c
QP
Phot ∼ σ2(ω0)/σ2(ωPB) ∼ ω2

PB/ω0∆. For a typical

aluminium resonator with ω0 ≃ 0.1∆, this gives cQP
Phot,PB ∼ (101 − 102)cQP

Phot in this regime.
Accordingly, for order-of-magnitude estimates we use a conservative value for the coupling
constant for pair-breaking photons of order cQP

Phot,PB ∼ 10 Hz.
With the assumptions made in this Appendix, we also find that the ratio between the quality

factors for above- and below-threshold frequencies is

Q(ωPB)
Q(ω0)

≃
cQP

Phot

cQP
Phot,PB

Q′(ω0)
Q(ω0)

. (A.7)

Since for our parameters the first factor on the right-hand side is of order 10−2−10−1 and the
second factor is typically less than 1, this shows that the quality factor of pair-breaking modes
is smaller than that of non-pair-breaking ones, as expected.
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B Neumann series

We give in this Appendix the j = 1, 2 terms in the Neumann series, Eq. (25), discussed in
Sec. 3. For the j = 1 contribution, performing the integral in Eq. (26) using the simplified
kernel in Eq. (27) we find

φ(1)(γ) =
105
128

5γ3 − 6γ2 − 8γ+ 16
8

arctanh
�p

1− γ
�

+
105
128

p

1− γ
24

�

15γ2 − 8γ− 28
�

. (B.1)

The similar calculation for the second order term gives

φ(2)(γ) =
h

B(γ)− 4A(γ) ln
�γ

2

�i

ln
�

1−
p

1− γ
�

+ 2A(γ) ln2
�

1−
p

1− γ
�

+ A(γ) ln2(γ)−
B(γ)

2
ln(γ)− 4A(γ)Li2

�

1
2
+

p

1− γ
2

�

− 2A(γ) ln2(2) +
π2

3
A(γ) + C(γ) , (B.2)

with

A(γ) = −
�

105
128

�2 1
32

�

5γ3 + 6γ2 + 8γ+ 16
�

, (B.3)

B(γ) = −
�

105
128

�2 1
48

�

33γ3 − 150γ2 + 96γ− 224
�

, (B.4)

C(γ) =
�

105
128

�2 1
144

p

1− γ
�

279γ2 − 68γ+ 524
�

, (B.5)

and the dilogarithm defined as Li2(x) =
∫ x

1 d t ln(t)
1−t [note that sometimes a different convention

is used, in which the integral is defined as giving Li2(1− x) instead].
In the limit γ→ 0, the above results reduce at leading order to φ(1) ≃ −(105/128) ln(γ)

and φ(2) ≃ (105/128)2 ln2(γ)/2, respectively. These expressions that can be obtained simply
by keeping the leading contribution Ĩ(0,γ′) in the simplified kernel and taking φ(0) = 1 as the
first term in the series.

C Power spectral density

To calculate the power spectrum of quasiparticle number fluctuations, we follow the approach
of Ref. [34]; we summarize here the necessary steps solely to make our work self-contained,
with no claim of novelty. We assume short phonon lifetimes compared to the quasiparticle
lifetimes to neglect fluctuations in the phonon number; the applicability of this assumption to
aluminum resonators is discussed also in Ref. [17]. Using that each recombination/generation
process involves two quasiparticles, we can identify their respective rates in Eq. (49), which we
then use to set up a master equation for the probability P(N , t|k, 0) of finding N quasiparticles
at time t if there were k quasiparticles at time 0,

dP(N , t|k, 0)
d t

= −[g(N) + r(N)]P(N , t|k, 0) + g(N − 2)P(N − 2, t|k, 0)

+ r(N + 2)P(N + 2|k, 0) . (C.1)
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The recombination rate – renormalized by phonon trapping – is

r(N) =
1
2

R̃N2 , (C.2)

where R̃= R/V with V the resonator volume and N = NqpV the quasiparticle number, and the
generation rate is

g(N) =
1
2

�

G̃TB
+ G̃T̄B

+ G(T∗/∆)N
�

, (C.3)

with G̃ = GV . To check the identification of the rates, we multiply both sides of the master
equation by N and sum over N to find

d
d t
〈N(t)〉k = 2〈g(N(t))〉k − 2〈r(N(t))〉k , (C.4)

where the expectation value of a function of quasiparticle number A(N) at time u under the
assumption of k quasiparticles at 0 defined by

〈A(N(u))〉k =
∞
∑

l=0

A(l)P(l, u|k, 0) . (C.5)

One can verify that Eq. (C.4) agrees with Eq. (49) if fluctuations are small compared to the
average quasiparticle number. In the steady state, the system approaches a probability dis-
tribution for which 〈g(N)〉 = 〈r(N)〉; for small deviations from the steady-state expectation
value N0 = 〈N〉 we can write N = N0 +∆N and expand the generation/recombination rates
up to second order in ∆N to find

g(N0) +
1
2

g ′′(N0)〈∆N2〉= r(N0) +
1
2

r ′′(N0)〈∆N2〉 . (C.6)

The autocorrelation function for the number can be written in the form

φ(u) = 〈N(u)N(0)〉=
∞
∑

k=0

kP(k, 0)〈N(u)〉k , (C.7)

with P(k, 0) the probability of k quasiparticles at time t = 0. Expanding Eq. (C.4) to linear
order in the (time-dependent) fluctuation ∆N(t), solving the resulting differential equation
for 〈∆N(t)〉k, and inserting the result into the autocorrelation function of the fluctuations we
find

∆φ(u)≡ 〈∆N(u)∆N(0)〉= 〈∆N(0)2〉e−t/τ̄r , (C.8)

with 1/τ̄r = 2R̃N0−G(T∗/∆). To calculate the variance, we multiply both sides of the master
equation by N2 and sum over N to get

d
d t
〈N(t)2〉k = 4〈g(N)(N + 1)〉k(t)− 4〈r(N)(N − 1)〉k(t) . (C.9)

Considering the steady state, expanding to second order in ∆N , and using Eq. (C.6) one finds
the variance

〈∆N2〉=
2〈r(N)〉

R̃N0 −
1
2 G(T∗/∆)

≃ 4R̃N2
0 τ̄r . (C.10)

If quasiparticle creation is dominated by photons or thermal phonons, one can neglect G, and
the variance of the quasiparticle number is equal to its expectation value. In the regime in
which phonon trapping dominates, we instead have G(T∗/∆) = RN0, and the variance is twice
the quasiparticle number. Fourier transforming the autocorrelation function (C.8) leads to
equation (51) for the number spectral density.
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