
SciPost Phys. 17, 071 (2024)

Composite subsystem symmetries and decoration
of sub-dimensional excitations

Avi Vadali1, Zongyuan Wang2, Arpit Dua2, Wilbur Shirley3 and Xie Chen2

1 California Institute of Technology, Pasadena, California 91125, USA
2 Department of Physics and Institute for Quantum Information and Matter,

California Institute of Technology, Pasadena, California 91125, USA
3 School of Natural Sciences, Institute for Advanced Study,

Princeton, NJ 08540, USA

Abstract

Flux binding is a mechanism that is well-understood for global symmetries. Given
two systems, each with a global symmetry, gauging the composite symmetry instead
of individual symmetries corresponds to the condensation of the composite of gauge
charges belonging to individually gauged theories and the binding of the gauge fluxes.
The composite charge that is condensed is created by a “short” string given by the
new minimal coupling corresponding to the composite symmetry. This paper studies
what happens when combined subsystem symmetries are gauged, especially when the
component charges and fluxes have different sub-dimensional mobilities. We investigate
3+1D systems with planar symmetries where, for example, the planar symmetry of
a planon charge is combined with one of the planar symmetries of a fracton charge.
We propose the principle of Remote Detectability to determine how the fluxes bind and
potentially change their mobility. This understanding can then be used to design fracton
models with sub-dimensional excitations that are decorated with excitations having
nontrivial statistics or non-Abelian fusion rules.
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1 Introduction

In the past couple of decades, the study of topological phases of matter has moved to the
forefront of theoretical condensed matter physics. This has been partly fueled by their
applications in quantum error correction. The classification of topological phases of matter
in two spatial dimensions in terms of anyon theories, modular tensor categories, and chiral
central charges forms the cornerstone of the subject. In three spatial dimensions, there
exist phases beyond the conventional description based on topological quantum field theories
(TQFT). These are fracton topological phases, and they present a challenge to the classification
of phases in three dimensions and higher. Unlike topological order, obtained by gauging global
(0-form) symmetries, fracton models are obtained by gauging rigid subsystem symmetries
and are characterized by emergent quasiparticles with restricted mobilities. We know several
examples of fracton models, many similar in their properties to the canonical examples of the
X-cube model and the Haah code [1,2]. Fracton models with more exotic properties, such as
non-Abelian superselection sectors, are also known. However, the space of fracton models is
not entirely understood. Hence, we need more ways to build and understand fracton models.
In this work, we show how exotic fracton models can be constructed by gauging composite
symmetries that are subgroups of global symmetries of models, possibly supported in different
spatial dimensions. For instance, we consider a model that is the combination of a 3D plaquette
Ising Model and a stack of 2D Ising models, and we can gauge the combined global subsystem
symmetry of a plaquette Ising model with global symmetries of layers.

In gauge theories of global symmetries, it is well understood that if we start with two
independent global symmetries and condense the composite of the two gauge charges, their
corresponding fluxes bind together to remain deconfined in the condensate. Consider, for
example, two 2D planes, each with a global Z2 symmetry, as shown in Fig. 1. When the planes
are coupled to Z2 gauge fields separately, they each have a Z2 gauge charge (e1 and e2) and a
corresponding Z2 flux (m1 and m2). If, instead, only the composite global symmetry is gauged
(the two planes are coupled to the same gauge field), the composite of the two symmetry
charges e1e2 is no longer a symmetry charge. In the gauge theory, this corresponds to the
condensation of the gauge charge pair. As a result, individual gauge fluxes become confined,
while the flux pair remains deconfined, meaning that m1, and m2 always appear together. Such
a mechanism is, of course, well understood and plays a vital role in, for example, coupled layer
construction of 3D models such as the 3D toric code and twisted gauge theories.

What happens if we have subsystem symmetries instead of global 0-form symmetries? For
simplicity, we will focus on planar symmetries in 3D systems in this paper. There are several
possibilities. First, the symmetry charges can be planons, lineons, fractons, which are point
excitations that move in 2D, 1D, and 0D submanifolds in the system. The planons, lineons,
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condensed

combine

Figure 1: Gauging two planes with Z2 global symmetries. (a): gauging the two
layers separately. We have two copies of the Z2 gauge theory with planon charges ei
and planon fluxes mi . (b): gauging the combined symmetry of the two planes. The
gauge fluxes m1 and m2 now bind together, becoming a new planon flux. Individual
charge e1 or e2 remains deconfined planon excitations while the charge pair e1e2 is
condensed.

Figure 2: Gauging correspondence for planar subsystem symmetries. (a) planon
charge (red, transforming under one planar symmetry) and the corresponding planon
flux (blue); (b) lineon charge (transforming under two planar symmetries) and
the corresponding lineon flux; (c) fracton charge (transforming under three planar
symmetries) and the corresponding lineon fluxes.

and fractons transform under one, two, and three sets of (intersecting) planar symmetries,
respectively, as shown in Fig. 2. When the symmetries are gauged, the corresponding gauge
flux of a planon charge is a planon in the same plane; the gauge flux of a lineon charge
is a lineon along the same line; the gauge fluxes of a fracton charge are lineons in x , y , z
directions that fuse into identity, as shown in Fig. 2. This set of correspondence was shown
explicitly in Ref. [3]. When we combine the subsystem symmetries of different charges, there
are several potential outcomes. One possibility is when we have charges of the same type, and
all their overlapping planar symmetry generators are respectively combined to give the new
symmetries. For example, given two fracton charges, we can combine their planar symmetries
in x y , yz, zx planes, respectively. If separately gauged, the two charges correspond to the
same type of flux, and it is natural to expect that when such a combined symmetry is gauged,
the two fluxes bind together to give the new flux with the same mobility. The second possibility
is a composite symmetry combination, which happens when we have charges of potentially
different types such that not all of their planar symmetry generators can or are one-to-one
combined. For example, we may have a fracton charge with planar symmetry in x y , yz, and
zx planes and a planon charge in the x y plane, and their x y planar symmetries are combined.
If gauged separately, the fracton charge corresponds to lineon fluxes in x , y , and z directions,
while the planar charge corresponds to planar flux in the x y plane. When the combined
symmetry is gauged, what is the new flux like? Do the original x , y , z lineon, and x y planon
fluxes bind into new lineon fluxes, planon fluxes, or fracton fluxes?
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We address this problem in this paper. We find that the way the original fluxes bind to give
the new fluxes depends not only on the mobility of the original fluxes and the plane where
symmetries are combined but also sensitively on how the symmetries are combined exactly. In
particular, we are going to show in section 2, two examples, both of which start with one set
of fracton charges and three sets of planon charges in x y , yz, zx planes, and the three sets of
planar symmetries of the fracton charge are respectively combined with the planar symmetries
of the planon charges. However, the way the original lineon fluxes and planon fluxes bind
together to give the new fluxes are very different. In Model FP1, two original planon fluxes
from intersecting planes attach to an original lineon flux along the intersection line to give a
new lineon flux. In Model FP2, the lineon flux disappears, and the lineon dipole binds with
an original planon flux to give a new planon flux. We obtain this result by solving the gauge
theory lattice model. Can we arrive at the result without doing lattice level calculation? In
section 3, we use the principle of “remote detectability”: For fractional (charge) excitations,
there exist operators that detect their existence at a large distance; for non-fractional (charge)
excitations, no operator can detect their existence at a large distance. Applying this principle
to the subsystem symmetry cases we are interested in, we can see directly why Models FP1
and FP2 work differently, as described above. This understanding is helpful because we can
design models where subsystem symmetry fluxes are bound to planon fluxes in specific ways
and acquire nontrivial statistics or non-Abelian features through the process. We discuss in
section 4, how lineon and fracton fluxes can be decorated in this way, reproducing nontrivial
fracton order like semionic X-cube, Ising Cage-net, etc. Section 5 summarizes the paper.

2 Fracton + planon: Two examples model FP1 and model FP2

In this section, we present examples of ‘gauging composite symmetry’ and demonstrate the
phenomenon of flux binding. We present two classes of models, Model FP1 and Model FP2.
The construction of these models uses a fracton-charge system and stacks of planon-charge
systems. The former is associated with Z2 fracton charges transforming under x y , yz, and zx
planar symmetries, and the latter is associated with Z2 planon charges that transform under
the planar symmetries of the layers in the stacks. We consider the stacks of planon-charge
systems along three directions, i.e., the x y , yz, and zx planes. Thus, in both the fracton-
charge and planon-charge systems, we have a planar symmetry associated with each lattice
plane. We now consider a symmetry of the combined system generated by products of planar
symmetries of the fracton-charge system and the planon-charge system. In particular, in each
x y plane, the planar Z2 symmetry associated with the fracton charge is combined with the
x y planar Z2 symmetry associated with the x y planons to yield a symmetry generator of the
combined system. The symmetry generators in the yz and zx planes are defined similarly for
the combined system. We refer to this symmetry of the combined system as the composite
symmetry. This general description of the composite symmetry holds for both Model FP1 and
Model FP2. However, as we will see below, the exact structures of the planar-charge system
and the planar symmetry are different for Model FP1 and Model FP2. This leads to a difference
in the gauge fluxes of Model FP1 and Model FP2.

For both examples, we start from the paramagnetic product state where all matter qubits
are in the |+〉= 1p

2
(|0〉+ |1〉) state. Our goal is to study the exact solvable model obtained by

gauging the composite symmetry [3, 4] and compare it to the models obtained by gauging
the individual symmetries of the fracton-charge and planon-charge systems separately; in
particular, we observe how the fluxes of the model obtained by gauging the composite
symmetry are a composite of the fluxes of the decoupled gauged models. For instance, gauging
the fracton-charge system alone gives a model with lineon fluxes, while gauging the planon-
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“on-site” symmetry term

(a) (b)

Figure 3: Bilayer Planon model. (a): from left to right, the “on-site” symmetry term
X (1)v X (2)v ; the minimal coupling terms and the flux terms C(1), C(2) and E. The E-type
flux term does not contribute to superselection sectors because its excitation can be
converted into C-type excitations on either the top or the bottom plane by the action
of a Pauli-X operator, e.g. β x

(1). Hence, we can set Ep = I. (b): Consider the product

of four E terms. The same product is equal to that of C(1)p and C(2)p . Hence, these two
C terms must be simultaneously excited since Ep = I. Notice that the C terms are
exactly the original flux terms had we gauged the planes individually. Constructing
the string operator, we find that the original fluxes must bind together to remain
deconfined.

charge system alone gives planon fluxes. In Model FP1 (Sec. 2.2) obtained by gauging the
composite symmetry, the lineon flux of the gauged fracton charge system binds with two
planon fluxes of the gauged planon charge system to form a new lineon flux. In Model FP2
(Sec. 2.3) obtained by gauging the composite symmetry of a different nature, each lineon flux
gets confined, but a lineon dipole binds with a planon flux to form a new planon flux.

Below, we first illustrate the procedure of gauging the composite symmetry with a simple
example. In particular, we consider a 2D bilayer Ising paramagnet in section 2.1, such that two
global planar symmetries of the two layers can be combined into a planar composite symmetry
(see Fig. 1) and gauged. Following that, we discuss Model FP1 and Model FP2 in section 2.2
and section 2.3 respectively.

2.1 Warm-up: Bilayer planon model

We consider a 2D bilayer Ising system, consisting of two layers of 2D Ising paramagnets, each
with a Z2 on-site global symmetry

∏

v X (1|2)v where 1 and 2 are the layer indices. On gauging
the planar symmetry of each layer individually, the minimal couplings are intralayer 2-qubit
terms, which we denote as β . The resulting pure gauge theory is just two decoupled copies of
the 2D Toric Code, with the Hamiltonian,

H = −
∑

ℓ∈{1,2}

∑

p∈Pℓ

C(ℓ)p − (charge terms) , (1)

where ℓ is a layer index, Pℓ denotes the plaquettes in each layer and C denote the 4-qubit flux
terms of β gauge qubits around a plaquette; see Fig. 3(a). Here, we write only the flux terms
in notation form, as our goal is to demonstrate flux binding.

We are now interested in gauging the composite symmetry
∏

v X (1)v X (2)v of the bilayer
system. For this composite symmetry, we again have the 2-qubit intralayer minimal couplings
in each plane; we denote these as β . However, there is now an additional 2-body coupling
that acts on one qubit on the bottom layer and one qubit on the top layer; we label these as
α. For gauging, we add the corresponding β and α gauge qubits on the edges defining the
minimal couplings. We get the aforementioned C-flux terms from the β minimal couplings.
Due to the additional minimal coupling, a new flux term arises, a 4-qubit term acting on two
α gauge qubits and two β gauge qubits; we dub these the E-flux terms.
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(a)

“on-site”
symmetry term

(b)

Figure 4: Model FP1. (a): lattice setup. We consider a 3D Ising paramagnet with
planar subsystem symmetries on a cubic lattice with the qubits living on the vertices
(red spheres). For the stacks of the 2D Ising paramagnet systems (indicated by the
planes) with 2D global symmetry, we place the qubits (green disks) at the centers of
the edges. (b): the sandwiched structure of the composite symmetry in Eq. (3).

We integrate out the original matter qubits, i.e., by setting their states to |+〉 in this case,
to obtain a pure gauge theory. This pure gauge theory has one vertex term per matter spin
and two kinds of flux terms C and E, see (a) of Fig. 3. The Hamiltonian is given by

H = −
∑

ℓ∈{1,2}

∑

p∈Pℓ

C(ℓ)p −
∑

p′
Ep′ − (charge terms) , (2)

where Pℓ stands for the planes and p′ denotes plaquettes connecting the two layers. As
mentioned, the C-type flux terms are also the flux terms obtained from gauging the individual
symmetries of the layers. In contrast, the E flux terms are purely due to the gauging of the
composite symmetry.1

We now observe that the flux in the model given by Eq. 1 is a composite of the original
fluxes. We see this through a relation between the original fluxes and new fluxes. We consider
an excitation of a single Ep flux; by applying a Pauli X operator, we can convert this single
Ep excitation to either a pair of C(1)p or a pair of C(2)p excitations (see Fig. 3(a)). Hence, the E
terms do not contribute to the superselection sectors. In other words, this equivalence allows
us to set the E-type fluxes equal to the identity (Ep = I), so the new E-type fluxes give rise
to a relation between the C-type fluxes: the product of a pair of C-type fluxes with one flux
in each plane is equivalent to a product of four E-type fluxes around the side faces of a cube;
see Fig. 3(b). If Ep = I, the two C-type flux terms must be simultaneously excited, as the
product of the two C fluxes must have eigenvalue +1. In this sense, the two C planon fluxes
bind together to give the planon flux of the model with gauged composite symmetry.2

2.2 Fracton + planon: Model FP1

We now introduce our first nontrivial example. As mentioned above, the model is built by
combining a fracton-charge system and planon-charge systems and gauging a symmetry of
the integrated system generated by composite planar symmetries. Below we show that the
gauge theory obtained from gauging the composite symmetry has a lineon flux composed of
planon and lineon fluxes from the decoupled gauge theories.

We consider a cubic lattice where the matter qubits of a classical Ising model live on the
vertices as shown in (a) of Fig. 4. We call this the fracton-charge system due to the symmetries

1In our examples, we’ll use a choice of gauge fields that also produces the original flux terms; this is a particular
choice that is of interest to us because we want to see the relation between the new and original fluxes from the
decoupled theories. One could gauge the composite symmetry differently so the original fluxes no longer appear.

2This binding can be verified by explicitly writing the string operators for the fluxes.
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(a) (b) (c)

Figure 5: Model FP1: the minimal coupling terms. (a): A 3-qubit minimal coupling
term of Sµiµ . We add a Z2 gauge qubit to the edge connecting the three matter
qubits; we label this gauge qubit as α corresponding to the α-coupling. The charges
associated with the α-coupling are the ‘composite condensate’ of this model. It
requires a planon charge to fuse with a fracton dipole into the topological vacuum.
(b): A 2-qubit minimal coupling term of Sµiµ . The β gauge qubit lives on the edge
shown by the dashed line. Apart from a directional label, β has a plane label in
the square brackets. We suppress the position index of the plane. The β ’s are also
the original minimal coupling terms for the planon-charge systems. (c): A 4-qubit
minimal coupling term of the fracton-charge system. γ, however, is not a minimal
coupling term for Sµiµ .

we consider for this model. The fracton-charge system has planar subsystem symmetries given
by
∏

v∈Pµiµ
X v for every plane Pµiµ with µ ∈ {x , y, z} and iµ being the position index of the

plane. We then insert three stacks of Ising paramagnets (planon-charge systems) such that
their qubits are located on the edges. Each planon-charge system has a 2D global symmetry
given by
∏

ρ∈Pµ(iµ ,iµ+1)
Xρ where (iµ, iµ+1) indicates the edges on which the qubits of the planon-

charge systems live. We gauge the composite subsystem symmetry whose generators as shown
in Fig. 4 (b) are given by

Sµiµ =
∏

ρ∈Pµ(iµ ,iµ+1)

∏

v∈Pµiµ

∏

ρ′∈Pµ(iµ−1,iµ)

XρX vXρ′ . (3)

Recall each symmetry generator is a “sandwich” involving 2 planon-charge symmetry
generators and 1 fracton-charge symmetry generator. Hence taking the product of all
symmetry generators orthogonal to a given axis should leave only the product of all fracton
symmetry generators orthogonal to that axis. Hence we notice a relation among the symmetry
generators of this model.

∏

ix

S x
iy
=
∏

iy

S x
iy
=
∏

iz

S x
iz

. (4)

We note that this composite symmetry group for Model FP1 is isomorphic to the symmetry
group of the undecorated plaquette Ising model.

We consider three types of coupling terms associated with Sµiµ . There are the 3-qubit
coupling terms (red and green qubits shown in Fig. 5(a)), which we label as α. There are
the 2-qubit coupling terms (green qubits shown in Fig. 5(b)), which we label as β . Lastly,
there are the 4-qubit coupling terms (red qubits shown in Fig. 5(c)), which we label as γ.
Even though the γ couplings are generated by the α and β coupling terms, we consider them
in our gauging process since we are interested in demonstrating how the fluxes from decoupled
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(a) (b) (c) (d)

Figure 6: Model FP1: The three types of flux terms: Cµp , Γµp , and E[µ](ν)p . (a) & (b):
A Cz

p flux term and a Γz
p flux term. They are those of the 2D planon-charge and the

3D fracton-charge systems respectively. (c) & (d): there are two kinds of E-type flux
terms on the face of a cube of the cubic lattice. Drawn here are (c) E[z](y)p and (d)
E[z](x)p on the same face p.

gauged models bind together and form fluxes for the model obtained by gauging the composite
symmetry.

To gauge the composite symmetry, we add a gauge qubit for each type of coupling
term [3, 4] as shown in Fig. 5. We label the gauge qubits as α, β , and γ corresponding to
the minimal couplings they are associated with. Following the gauging procedure, we obtain
the Hamiltonian for Model FP1 as,3

H F P1 = −
∑

µ,{iµ}

�

∑

p∈Pµiµ

Γµp +
∑

p∈Pµ(iµ ,iµ+1)

Cµp +
∑

ν,p∈Pµiµ

E[µ](ν)p

�

− (charge terms) . (6)

Here, the C-type flux terms are the original fluxes of the planon-charge systems, and
the Γ-type flux terms are the original flux terms of the fracton-charge system. The E-type
flux terms are the new flux terms that arise in the model obtained from gauging composite
symmetries. Similar to the bilayer model, we observe that the E terms do not contribute to
the superselection sectors. For an excitation of the E-type flux term i.e., E[µ](ν)p = −1, we can
act a Pauli X operator to turn it into two C-type fluxes with the two corresponding C terms
having the eigenvalue of −1. Hence, we can set all E[µ](ν)p = I. This gives a relation between
the Γ and the C terms. The product of four E terms around the side faces of a cube must be
identity, but the product is also equal to the product of a Γ and a C flux terms; see Fig. 7.
The lineon string operator that satisfies this set of relations and the trivial E-flux condition is
described in Fig. 7. We observe that the string operator is the product of a lineon flux string
operator from the fracton-charge system, together with two planon flux string operators from
two intersecting planon-charge systems. Thus, we conclude that the new lineon flux is the
composite of a lineon flux and two planon fluxes from the decoupled models, respectively.

2.3 Fracton + planon: Model FP2

We present another nontrivial example of a model obtained from gauging composite symmetry.
The underlying models consist of the same fracton-charge systems and the planon-charge

3As mentioned earlier in footnote 1, this is a particular choice of gauging of interest to us. We can make
a different choice of gauging such that the fluxes of the gauged Hamiltonian HA come from only the α and β
couplings as

HA = −
∑

µ,{iµ}

�

∑

p∈Pµ(iµ ,iµ+1)

Cµp +
∑

p∈Pµiµ

Bµp

�

− (α,β charge terms) , (5)

where Bµp = E[µ](ν)p × E[µ](ρ)p is the product of two E terms on the same plaquette p.
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Figure 7: Model FP1: one of the relations between the original flux terms. The
remaining relations can be obtained by rotations. LHS: the relation is the product
of the four E-type flux terms as shown, two E[y](x)p ’s and two E[x](y)p ’s. RHS: the C-
type and Γ-type flux terms also have a relation. Right: Model FP1: the new lineon
string operator for a y-mobile lineon. The locations of the new lineon excitations are
indicated by the pink cubes. From this string operator, we see clearly that the new
lineon is a composite of the original lineon flux together with two original planon
fluxes from perpendicular planes.

systems as considered for Model FP1. However, the planon-charge systems are laid out
such that the matter qubits live on the vertices; thus the nature of the composite symmetry
is different. Below we show that the gauge theory obtained from gauging the composite
symmetry has only planon fluxes; each is a composite of a planon flux and a lineon dipole
flux from the decoupled gauged theories.

Similar to Model FP1, we have the fracton-charge system with matter qubits on the vertices.
We insert the three stacks of planon-charge systems into the cubic lattice, as shown in Fig. 8(a).
The plaquettes of the planon-charge systems (not drawn) coincide with those of the cubic
lattice. Each vertex hosts four matter qubits, one (the red sphere) from the fracton-charge
system and three (the green disks) from three mutually intersecting planon-charge systems.
We gauge the composite symmetry whose generators are given by

Sµiµ =
∏

v∈Pµiµ

X v, f X v,µ , (7)

where f denotes the matter qubit belonging to the fracton-charge system and µ denotes the
matter qubit belonging to the planon charge system in the plane with direction iµ. We note
that the composite symmetry group of Model FP2 is isomorphic to that of 3 decoupled stacks
of planon symmetry generators with no global relation.

The couplings associated with the composite symmetry are the 2-qubit β-coupling terms,
the 4-qubit γ-coupling terms, and the 2-qubit α-coupling terms as shown in Fig. 8. We
add gauge qubits for each coupling term. Following the gauging procedure, we obtain the
Hamiltonian for Model FP2 as

H F P2 = −
∑

µ,{iµ}

�

∑

p∈Pµiµ

Γµp +
∑

p∈Pµiµ

Cµp +
∑

ν,p∈Pµiµ

E[µ](ν)p

�

− (charge terms) . (8)
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(a) (b) (c)

Figure 8: Model FP2. (a): lattice setup. Same as in Model FP1, we place the matter
qubits of the fracton-charge system on the vertices. The stacks of planon-charge
systems are arranged such that their qubits also live on the vertices. The plaquettes
of the planon-charge systems coincide with those of the cubic lattice. (b): the original
minimal coupling terms. The 2-qubit β-coupling terms are also minimal coupling for
the composite symmetry Eq. (7). (c): the new minimal coupling term as a result of
gauging the composite symmetry.

(a) (b) (c)

Figure 9: Model FP2. (a): One of the E-type flux terms (Ep). The other E-type flux
terms are plaquettes of the same form in the other 2 spatial planes. (b): One of the
relations between the original flux terms. The remaining relations can be obtained by
rotations. LHS: the relation is the product of the four E-type flux terms as shown, two
E[y](x)p ’s and two E[x](y)p ’s. RHS: the C-type and Γ-type flux terms also have a relation.
(c): The new planon string operator for a z-plane mobile planon. We indicate the
locations of the new planon excitations by the pink cubes. Notice that this string
operator is exactly the product of an original z-plane planon flux string operator and
an original z-plane lineon dipole flux string operator.

The fluxes consist of the original flux terms of the decoupled models, i.e., the C-type and
Γ-type flux terms similar to Model FP1. But we also have the new E-type flux terms, Fig. 9, that
arise from gauging the composite symmetry. Similar to the bilayer Model and Model FP1, we
observe that the E terms do not contribute to the superselection sectors. In fact, on setting E[µ]p
to Identity, we get a relation between the C and the Γ flux terms. The corresponding gauge
flux is a planon composed of a planon flux from the planon-charge system and a lineon dipole
flux from the fracton-charge system; see the string operator for this combined gauge flux in
Fig. 9.

We note that Model FP2 is equivalent to stacks of 2D toric codes. To see this, we recall that
the gauge charges in Model FP2 consist of one fracton and three planons (in the x y, yz, zx
directions). We write this charge basis as { f , px y , pyz , pzx}. The new minimal coupling (see
Fig. 8(c)) corresponding to the composite symmetry is a product of the four elements of
the charge basis. Hence f × px y × pyz × pzx = 1, which implies that px y × pyz × pzx = f .
This suggests that the charge basis is not independent, as the planon charges ({px y , pyz , pzx})
generate the fracton charge ( f ). Thus, we can choose an independent charge basis consisting
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of only planons ({px y , pyz , pzx}). For each basis planon, we can apply an entanglement
renormalization circuit to extract a toric code layer [5, 6], leading to the result that Model
FP2 is just a stack of 2D toric codes. Thus, we see that different patterns of flux binding, due
to gauging different composite symmetries, result in different topological orders.

3 Flux binding via remote detectability

In the previous section, we saw through exactly solvable stabilizer models how the lineon
fluxes of a fracton charge bind with the planon fluxes of planon charges when some composite
planar symmetries of the fracton and planon charges are gauged. In this section, we arrive at
the same result without solving the lattice models. In particular, we will use the principle of
“remote detectability” to deduce how the old fluxes bind together to form new fluxes. This
argument does not rely on the Model FP2 being a stabilizer or even exactly solvable and can
be applied generally. We will apply the resulting insight to reproduce some interesting fracton
models and construct new ones with nontrivial features in the next section.

The principle of “remote detectability” says: fractional excitations can be detected with some
‘remote’ unitary operators which act only at a large distance from the excitation; non-fractional
excitations, on the other hand, cannot be detected remotely.

In this paper, we apply this principle to fractional charge excitations in a gauge theory
and deduce the corresponding form of the gauge flux.4 In particular, knowing the form of
the gauge charge, we can deduce the form of the remote detection operator. Truncating the
remote detection operator then exposes the shape and mobility of the gauge flux excitation. We
illustrate this line of argument using models with 2D global symmetry and 3D planar subsystem
symmetries, respectively in section 3.1. Moreover, if we start with two independent systems
but only keep some of their composite symmetries, certain local composites of the symmetry
charges will no longer carry nontrivial charges. When the composite symmetries are gauged,
remote detection operators that detect such local composites no longer give rise to deconfined
flux excitations once truncated. We will see in section 3.2, 3.3 how this mechanism leads to
the binding of individual fluxes when composite symmetries are gauged.

3.1 Flux excitations from truncating remote detection operators

Consider first a 2D system with global Z2 symmetry. A single charged particle carries a
nontrivial symmetry charge while a charge pair does not. After coupling to the gauge field,
the remote defection operator, therefore, should be able to detect a single charge but not a
pair. This can be achieved, of course, with a loop integration of an electric field that intersects
and anti-commutes with the Wilson line connecting to the single charge when it is created, as
shown in Fig. 10(c). When the loop-shaped remote detection operator is truncated, it leaves
two endpoints (Fig. 10(d)), which correspond to a pair of point flux excitations that can move
along the loop operator that twists and turns freely on the 2D plane. The flux excitations are
hence planons.

In a 3D model with planar Z2 symmetry in each x y , yz, and zx plane and one charge at
each triple intersection point of three perpendicular planes, local symmetric processes create
a minimum of four charges at a time (Fig. 11 (a)). The remote detection operator should
be able to detect not only single charges but also charge pairs remotely. This is achieved
with the wireframe operator in Fig. 11 (b). When the wireframe encloses a single charge, it

4Although remote detection operators do not necessarily act as pure U(1) phases (in the case of non-Abelian
anyons with degeneracies), in this paper we only consider systems in which remote detection operators act as U(1)
phases on the excited states.
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Figure 10: 2D model with global symmetry. (a): Minimal couplings and gauge
symmetry operator. Qubits (green disks) live on vertices, and gauge fields (purple
edges) are assigned to edges. (b): Operator that detects charges within the bulk
(in the ungauged theory). (c): Remote detection operator capable of detecting
excitations within the loop (shown in orange). This RD operator is formed by taking
products of gauge symmetry operators such that the gauge fields in the bulk cancel
out. (d): Loop RD operator detecting anyon charge via anticommutation between
the loop and string creation operator. (e): Truncated remote detection operator.
The excitations at the boundary of the truncation possess the same mobility as flux
excitations.

intersects and anti-commutes with the Wilson ‘membrane’ that extends from the single charge
and detects its existence. The same configuration can be used to detect charge pairs. For
example, to detect the vertical pair of charges on the left in Fig. 11 (c), we can use a wireframe
operator such that half of the charge pair is ‘inside’ the wireframe while the other half is outside.
Although the two charges in the pair can be very close to each other, this is still a ‘remote’
detection method because the wireframe operator only acts along the edges of the cube area
it encloses and never gets close to either of the charges. Truncating the wireframe operator
exposes point flux excitations that move along rigid wireframe edge directions (Fig. 10(d)).
The flux excitations are hence lineons, and lineons in the x , y , and z directions fuse into the
vacuum.

To determine the principle of truncation of remote detection (RD) operators, we find and
slice the RD operators of a 2D model with global symmetry and a 3D system with planar
symmetry and fracton charge (the ingredient models in our construction of sample models
with a gauged composite symmetry). We first consider the 2D system, whose remote detection
operator is a loop consisting of products of charge operators shown in Fig. 10(a). To determine
the exact product of charge operators needed to create the RD loop, we refer to Fig. 10(b).
The operator depicted in this figure detects charge excitations within the bulk in the ungauged
theory; if there is an odd number of violations (eigenvalue -1) within this membrane of Pauli
X operators, the operator is measured to be −1 (hence it can detect violations). Thus adding
the gauge fields associated with each qubit in Fig. 10(b) should give the gauged RD operator
(see Fig. 10(c)). An equivalent method of determining the particular form of the RD operator
is to note what product of charge operators annihilates all gauge fields in the bulk and leaves
gauge fields only at the region’s boundary over which the product of terms is taken. Using this,
one can see that a product of charge terms in a closed loop satisfies this exact condition; hence
the charge RD operator for a 2D system with global symmetry is a loop operator. This loop
RD operator can detect individual anyon charges within the loop by anti-commuting with the
excitation creation operator (see Fig. 10(d)). Truncating this loop RD operator (see Fig. 10(e))
reveals a single anyon (violation of Z plaquette stabilizer) at each endpoint; we conclude that
the flux excitations of the 2D system are anyons. The same analysis can be done for a general
3D model with planar symmetry and a fracton charge.

Looking at the 3D model, the charge terms are given by cube operators (violations of which
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Figure 11: 3D model with planar symmetries and fracton charge. (a): Minimal
couplings and gauge symmetry operator. Qubits (red spheres) live at body centers,
and gauge fields (cyan spheres) are assigned to edges. (b): Operator that detects
charges within the bulk (in the ungauged theory). (c): Remote detection operator
capable of detecting excitations within the wireframe (shown in blue). This RD
operator is formed by taking products of gauge symmetry operators such that the
gauge fields in the bulk cancel out. (d): Wireframe RD operator detecting fracton
charge via anticommutation between wireframe and membrane creation operator.
This operator detects a fracton dipole in 2 steps: it first detects one fracton and then
is moved to detect the second fracton in the dipole. (e): Truncated remote detection
operator. The excitations at the boundary of the truncation possess the same mobility
as flux excitations.

Figure 12: Model FP1. (a): The new 3-body minimal coupling due to gauging the
composite symmetry. (b): Remote detection operator capable of detecting excitations
within the decorated wireframe (shown in black). This RD operator is formed by
taking gauge symmetry operators’ products such that the bulk gauge fields cancel
out. (c): The RD operator cannot detect the new minimal coupling; hence it is not
a fractional excitation. (d): Truncated remote detection operator. The excitations at
the boundary of the truncation possess the same mobility as flux excitations.

are fractons) shown in Fig. 11(a). Similar to the 2D model, we can see that in the ungauged
theory, to detect a single violation of a Pauli X operator inside a finite volume, we take the
product of Pauli X ’s at the body centers within the cubic volume (see Fig. 11(b)). Adding in
the gauge fields according to the cubic charge operator, we see that the gauged RD operator is
a cubic wireframe with gauge fields along the edges (see Fig. 11(c)). This wireframe detects
fracton charges by anti-commuting with the membrane creation operator (see Fig. 11(d)).
Truncating this RD operator (see Fig. 11(e)) shows that the excitations at the endpoints of the
wireframe are lineons, i.e., the violations of the Z vertex terms of the 3D system. Additionally,
note that since the endpoints of the truncated RD operator are lineons, RD operators can also
be viewed as operators that move the flux excitations in a closed path far from the charge.
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Figure 13: Model FP2. (a): The new 3-body minimal coupling due to gauging the
composite symmetry. (b): Remote detection operator capable of detecting excitations
within the decorated wireframe (shown in black). This RD operator is formed by
taking gauge symmetry operators’ products such that the bulk gauge fields cancel
out. (c): The RD operator cannot detect the new minimal coupling; hence it is not
a fractional excitation. (d): Truncated remote detection operator. The excitations at
the boundary of the truncation possess the same mobility as flux excitations.

3.2 Remote detection in model FP1

Now we will use the remote detection principle to see how the fluxes bind in Model FP1.
Recall that in Model FP1, we had fracton charges at lattice sites of a cube lattice and planon
charges on three sets of planes cutting through edges of the cube lattices. If the fracton-charge
system is gauged alone, the remote detection operators are in the shape of a wire-frame, and
correspondingly, the flux excitations are lineons, as discussed above. If the planon-charge
system is gauged alone, the remote detection operators are loops, and correspondingly the
flux excitations are planons. If some composite symmetry is gauged, the lineon and planon
fluxes must bind together. In particular, according to how the planar symmetries are combined
in Model FP1, there is a new type of minimal coupling term containing both the fracton and the
planon charges as shown in Fig. 12 (a). The wire-frame and loop remote detection operator
would each detect the existence of such a term so we need to combine them in a way that
this three-body term is not detected by any remote detection operator as it corresponds to a
trivial superselection sector. This can be achieved with a remote detection operator, as shown
in Fig. 12(b), where the loop operators are attached to the six surfaces of the wire-frame
operator.

The new operator still takes the shape of a wire-frame. We can check that 1. individual
fracton charges and fracton dipoles can still be detected if properly placed inside the decorated
wire-frame operator; 2. individual planon charges can still be detected if placed on the surface
of the decorated wire-frame operator; 3. the new three-body minimal coupling cannot be
detected by any of the decorated wire-frame operators, whether the minimal coupling is
entirely inside the operator or partially outside as shown in Fig. 12(c). From this operator,
we can then determine the form of the new flux excitation. Since the operator still takes the
shape of a wire-frame, we can see from its truncation that the flux excitations are still lineons.
This conclusion is consistent with that obtained in section 2.2 but applies more generally.
In particular, the argument we use in this section is independent of the symmetric state of
the fracton and planon charges, so it works even when they form some nontrivial symmetry-
protected topological state.

3.3 Remote detection in model FP2

A similar argument can be applied to Model FP2. We will see how the difference in the
composite symmetry results in a different binding of fluxes compared to Model FP1, such
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that the new fluxes are planons instead of lineons. In Model FP2, the fracton charges are still
at the lattice sites of a cubic lattice, while the planon charges lie on the x y , yz, and zx planes
of the cubic lattice. The planar symmetries are combined so that there is a new type of minimal
coupling term containing the fracton charge and three planon charges at the same lattice site,
as shown in Fig. 13 (a). To not detect this term, we need to combine the wire-frame operator
with all the loop operators that wind around the wire-frame in a particular direction. For
example, Fig. 13 (b) shows one such operator with the wire-frame bound to loop operators
in the x y plane. There are two other types of operators with loops in the yz and zx planes,
respectively.

We can check that: 1. individual fracton charges and fracton dipoles can still be detected
if properly placed inside the decorated wire-frame operator; 2. individual planon charges
can still be detected if placed inside the wire-frame operator with loop operators in the same
plane; 3. the new four-body minimal coupling cannot be detected by any of the new remote
detection operators as shown in Fig. 13 (c). Truncating the remote detection operator exposes
the new flux excitations. The operator is not a wire-frame anymore but instead takes the shape
of a ribbon loop. When the ribbon is thin, the endpoints of the truncated operator are point
excitations that move in planes. Therefore, the elementary flux excitations are planons in x y ,
yz, and zx planes, respectively. Again, this result is derived independent of the symmetric
state formed by the fractons and planons.

4 Decoration of sub-dimensional excitations

The flux-binding result derived in section 3 allows us to construct interesting fracton models
by binding lineons / fractons with planons, thereby passing the non-trivial statistics or
non-Abelian internal structure of the planons onto the lineons or fractons. We discuss
the decoration of lineon excitations and fracton excitations in section 4.1 and section 4.2
respectively. In particular, we demonstrate in the process how some of the Cage-net models
discussed in [7] can be obtained by gauging the subsystem symmetry of an SSPT (subsystem
symmetry protected topological) model.

4.1 Decoration of lineons

To construct the models with the decoration of lineon flux superselection sectors, we follow
the construction of Model FP1 (Sec. 2.2) but use the 2D symmetry-protected topological
phases (SPT) or symmetry-enriched topological orders (SET) with Z2 planar symmetry as
the planon-charge systems (see Fig. 14). We recall that in Model FP1, the new gauge flux
is a composite of the original lineon flux of the fracton-charge system and two planon fluxes
from orthogonal planon-charge systems. Below, we consider examples where we replace the
2D Ising paramagnet on the ungauged side by the 2D Levin-Gu SPT with global Z2 symmetry
or the 2D toric code with global e↔ m anyon-swap symmetry. We obtain decorated lineon
superselection sectors with nontrivial statistics or non-Abelian fusion rules in these cases.

• Example of model FP1 with decorated lineons that have nontrivial statistics
We consider an example of Model FP1 where we introduce nontrivial Z2 SPTs as the
planon-charge systems. In particular, we can use the Levin-Gu SPTs [8] as the planon-
charge systems. Gauging just the Z2 symmetry of the Levin-Gu SPT yields the double
semion model that has two semionic fluxes. The flux binding result of Model FP1
implies that upon gauging its composite symmetry, the two semionic fluxes from two
orthogonal double semion planes must bind with the lineon flux of the fracton-charge
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Figure 14: The general setup for Model FP1. We have a fracton-charge system (red
spheres) and 2D planon-charge systems (colored planes). The green, blue, and red
planes represent the planon-charge system, which are in some potentially non-trivial
SPT or SET states.

system to yield a lineon flux composite. The resulting 3D model is the 3D semionic X-
cube model [9]. One can show that two lineon fluxes of this model have mutual statistics
of π by designing processes analogous to braiding in 2D topological orders [9].

• Example of model FP1 with decorated lineons that have non-Abelian fusion rules
We now discuss an example of Model FP1, where we introduce nontrivial SETs as the
planon-charge systems. For instance, we consider toric code SETs (enriched by the
e − m swap symmetry) and gauge the composite symmetry that is a product of this
planar swap symmetry and the planar symmetries of the fracton-charge system. Gauging
the swap symmetry alone in the toric code layer would give the doubled Ising string-
net model with non-Abelian fluxes, the Ising anyons σ’s and σ̄’s, each with quantum
dimension

p
2. On gauging the composite symmetry, the non-Abelian Ising anyons from

orthogonal doubled-Ising string-net planes must bind with the lineon flux of the gauged
fracton-charge system to yield a decorated lineon flux that is non-Abelian with quantum
dimension 2. The resulting 3D model is the Ising cage-net model [7].

4.2 Decoration of fractons: Model LP

We now consider a different model of flux binding such that we obtain decorated fracton
superselection sectors. In particular, we consider a class of models obtained from combining
a 3D lineon-charge system with three stacks of 2D planon-charge systems. Hence, we refer to
this class of models as Model LP. The key difference between Model LP and Model FP1 is that
the construction of the former uses a lineon-charge system, while the latter uses a fracton-
charge system instead in its construction. It is due to this change that the gauged model hosts
decorated fracton flux superselection sectors instead of decorated lineon flux superselection
sectors; the fracton flux is a composite of the original fracton flux with three planon fluxes,
each from a different 2D system.
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(a) (b) (c)

Figure 15: Model LP: lattice setup. We take the 3D lineon-charge system, a model
that is dual to the fracton-charge system [3], on the cubic lattice. The orange and red
spheres represent the qubits. As in Model FP1 (Sec. 2.2), we insert three stacks of
the 2D planon-charge systems bisecting the edges. The green disks show their qubits.
(b) & (c): the minimal coupling terms. (a): all three kinds of the original minimal
coupling terms γ of the 3D lineon-charge system (inside the dashed cyan colored
loops), and an example of the minimal coupling of the planon-charge systems β .
(b): the new minimal coupling terms α for the composite symmetry are highlighted
by the dashed blue loops. The β ’s and γ’s remain minimal coupling terms for the
composite symmetry.

We demonstrate Model LP’s flux binding of fracton flux with planon fluxes by considering
a 3D Ising paramagnet with planar symmetries as the lineon-charge system and stacks of 2D
models with on-site Z2 planar symmetries as the planar-charge systems. This lineon-charge
system, a 3D Ising paramagnet with planar symmetries, is “dual” to the fracton-charge system
discussed earlier; gauging the planar systems in either of these, i.e., the lineon-charge system
or the fracton-charge system, yields the X-cube model [3]. The difference in the resulting
gauged models is that in the gauging of the lineon-charge system, the X-cube fracton is the
flux excitation, while in the gauging of the fracton-charge system, the X-cube lineon is the flux
excitation.

We put the lineon-charge system on the cubic lattice with two matter qubits per vertex,
the orange and the red spheres in Fig. 15. The orange spins transform under the planar
symmetries of the y- and x-planes, and the red spins transform under the z- and x-planes.
These subsystem symmetries are defined by:

∏

v∈P x
ix

X r
vX o

v for the x-planes;
∏

v∈P y
iy

X o
v for the

y-planes; and
∏

v∈Pz
iz

X r
v for the z-planes. We place the qubits of the planon-charge systems

on the edges. We recall that each planon-charge system has the 2D global symmetry of
∏

ρ∈Pµ(iµ ,iµ+1)
Xρ where (iµ, iµ+1) indicates the edges on which the qubits of the planon-charge

systems live. Like Model FP1, the composite symmetry we gauge here also has a sandwiched
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(a) (b)

Figure 16: Model LP: flux binding from remote detection operators. (a): A new
charge remote detection (RD) operator, which is built from the original RD operators
supported on four sides of the cube. The membrane charge RD operator of the
lineon-charge system is drawn in cyan color. The green and purple loops are the
RD operators of the planon-charge system on the y- and z-planes, respectively. (b):
cutting the charge RD operator reveals a membrane with fractons (purple cubes) at
the corners and planons (red plaquettes and green and purple edges) along the sides.

structure. Specifically, for each direction, we consider the symmetry generators,

S x
ix
=
∏

ρ∈P x
(ix ,ix+1)

∏

v∈P x
ix

∏

ρ′∈P x
(ix−1,ix )

XρX r
vX o

v Xρ′ , (9)

S y
iy
=
∏

ρ∈P y
(i y ,i y+1)

∏

v∈P y
iy

∏

ρ′∈P y
(i y−1,i y )

XρX o
v Xρ′ , (10)

Sz
iz
=
∏

ρ∈Pz
(iz ,iz+1)

∏

v∈Pz
iz

∏

ρ′∈Pz
(iz−1,iz )

XρX r
vXρ′ . (11)

We illustrate the minimal couplings associated with the original decoupled symmetries and
the new composite symmetry in Fig. 15(b) and Fig. 15(c) respectively. We denote the original
minimal couplings (for decoupled symmetries) as β and γ while the new minimal couplings
(for composite symmetries) as α. The α terms along different directions x |y|z are specified
by adding a subscript (x)|(y)|(z).

We can determine the flux binding of this model using the principle of Remote
Detectability.5 We recall from Sec. 3 that the closed local membrane operators for the new
fluxes in the model obtained by gauging the composite symmetry are the RD operators for
the charges. These new RD operators can be constructed using the original RD operators
such that they do not detect the ‘composite condensates’, i.e., the charges associated with
the new minimal couplings that were not present for decoupled symmetries. For example,
consider the RD operator for charges of the lineon-charge system, drawn in cyan in Fig. 16(a).
This operator detects the original x and y lineons. So, it can also detect our ‘composite
condensates’ associated with α(z) and α(y) coupling terms. To prevent the detection of α(z),
we add two remote detection operators of the planon-charge system on the side planes (the
purple loops). Similarly, for α(y), we add two remote detection operators on the front and back
faces, as indicated by the green loops. This yields the required remote detection operator, as
stated earlier. By slicing this closed membrane operator, we get the creation operator for the
new fracton flux, as shown in Fig. 16(b). The excitation created by this sliced membrane

5See Appendix A for an alternative explanation of flux binding by writing the gauged model and looking at
independent superselection sectors.
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Figure 17: The general setup for Model LP. The Model LP consists of a lineon-charge
system and a stack of 2D planon-charge systems. The lineon-charge system has red
and orange qubits on vertices, and the 2D planon-charge systems live on dual planes,
as shown. The composite symmetry generators act on the qubits of the lineon-charge
system and the planon-charge system together.

operator is our bound flux excitation which is a composite of the original fracton fluxes of the
gauged lineon-charge system and three planon fluxes from the gauged planon-charge systems
in orthogonal layers.

Above, we described a particular example of Model LP class to demonstrate the flux binding
that yields decorated fractons. In general, we can consider different planon-charge systems
with global Z2 symmetry instead of the 2D Ising paramagnet. The general setup for Model LP
is illustrated in Fig. 17.

We now present an example of ModelLP where we use nontrivial SETs as the planon-charge
systems. For instance, we consider 2D toric code SETs (enriched by the e-m swap symmetry)
as planon-charge systems. We gauge the composite symmetry, each generator of which is a
product of the swap symmetries of two toric code layers and a planar symmetry of the lineon-
charge system. As mentioned earlier, gauging the swap symmetry alone in the toric code layer
would give the doubled Ising string-net model with non-Abelian planons; the gauge fluxes are
the Ising anyons σ’s and σ̄’s, each with quantum dimension

p
2. Now, in the case of gauging

the composite symmetry, the fractons in the model obtained from gauging composite symmetry
are decorated with these non-Abelian anyons and are, hence, non-Abelian. In particular, three
non-Abelian planon fluxes decorate the original fracton flux; hence, this decorated fracton flux
has a quantum dimension of (

p
2)3. This model is similar to that in Ref. [1], where the fracton

is fundamentally immobile and also inextricably non-Abelian [7, 10]. We note that it is also
possible to obtain non-Abelian fractons from gauging twisted Abelian theories as discussed in
Ref. [10].

5 Summary and outlook

In this work, we construct exotic fracton models by taking decoupled Ising models with global
subsystem symmetries and gauging a subgroup of the associated full symmetry group. We
discovered that on gauging this composite symmetry, the flux sector is given by the composite
of fluxes associated with the gauged versions of the decoupled models. In other words, the
original fluxes in the gauged models bind to give the flux in the model with gauged composite
symmetry. We also used the principle of remote detectability to demonstrate flux binding.
In particular, we construct remote detection operators for detecting symmetry charges of the

19

https://scipost.org
https://scipost.org/SciPostPhys.17.3.071


SciPost Phys. 17, 071 (2024)

composite symmetry and truncate them to find the bound flux.
The model obtained by gauging the composite symmetry can be equivalently obtained by

condensing a composite of gauge charges in the gauged decoupled models. This composite
gauge charge corresponds to the new minimal coupling obtained for the composite symmetry.
We expect that such a condensation can be realized using a sequential linear-depth circuit.
Since we consider only planar symmetries in this work, such a sequential linear-depth circuit
would also be in-plane. In particular, starting from Model FP1 or FP2, we can obtain the
gauged decoupled models by application of in-plane sequential linear-depth circuits that
condense fractional excitations in foliations. The gauged models could, hence, be understood
as generalized foliated fracton models where the notion of generalized foliation is described
in Ref. [11]. Thus, in this sense of generalized foliation, our models are equivalent to the
decoupled models. On the ungauged side, this corresponds to having a weak subsystem
symmetry-protected topological phase (SSPT) [12] if we apply the notion of generalized
foliation in the definition of SSPTs. Thus, we expect the models obtained by gauging strong
SSPTs cannot be obtained using the construction presented in this work.

Following the picture of flux binding as composite charge condensation, we note that
the constituent (gauged) X-cube model, used in the construction of Model FP1 (FP2), can
also be obtained by a charge-condensation process in toric code layers, known as p-loop
condensation [7, 9]. Thus, the (gauged) ModelFP1 can be obtained by starting with stacks
of toric code layers, performing p-loop condensation in a subset of them to obtain the X-cube
model, and then performing the composite charge condensation mentioned earlier. Since the
condensation in both the steps is of charges, we can perform them in any order and obtain the
gauged Model FP1.

Gauging a composite symmetry can be considered a special case of gauging a subgroup of
the symmetry group. Such gauging of subgroups of the symmetry group has been considered
before. For instance, in the hybrid fracton models of Refs. [13] and [14], instead of gauging
the Z4 global symmetry of layers of 2D Z4 toric codes, one can gauge a Z2 subgroup of the
symmetry such that the pairs of e2 across neighboring layers are condensed to obtain “hybrid
toric code layers”.

Throughout this work, we considered planar subsystem symmetries. An interesting future
direction involves extending this paper’s analysis to fractal symmetries and a combination of
fractal and planar symmetries. A potential issue arises in obtaining geometrically local fracton
models when gauging a combination of fractal and planar symmetries. In particular, it is
not obvious how to choose composite subsystem symmetries such that the set of symmetric
operators is generated by purely local terms. For all (subsystem) symmetries we consider in
this paper, their symmetric operators can be locally generated. For example, in a 2D system
with a global Z2 symmetry, the set of symmetric operators can be generated by an on-site
transverse field term and a nearest-neighbor Ising coupling term. The gauge field DOF’s are
then placed at the location of the Ising terms. If, on the other hand, the symmetric operators
are not locally generated, the gauging process would yield a non-local model. For example,
consider a 2D system with line symmetries in both the x and y directions and try gauging
the composite symmetry of the tensor product of symmetries on row i and column i. In an
N × N system, there are N symmetry generators. All two-body Ising coupling terms between
sites ( j, k) and (k, j) are now symmetric. However, since this set of terms cannot be locally
generated, the gauged model would be non-local. On the other hand, gauging composite
symmetries can yield interesting k-local Hamiltonians corresponding to quantum low-density
parity check (LDPC) codes [15]. In general, obtaining LDPC codes via gauging can be insightful
in understanding the associated code properties from the perspective of the gauging duality.
In order to obtain an LDPC code Hamiltonian, we would want, in the ungauged model, each
qubit and each relation to support and involve constant number of k-local terms respectively.
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(a) (b) (c)

Figure 18: Model LP: the E-type flux terms. Drawn here are: (a) the E[z](x)p , and

(b) the E[z](y)p terms. The remaining E[x](·)p and E[y](·)p terms are similar. (c): one of
the three relations between the original flux terms, which is the product of a cube
flux term of the lineon-charge system and a plaquette flux term of the planon-charge
system. It is obtained from multiplying the E-type flux terms around the faces of a
cube. The other two relations can be obtained by rotations.

Whether this is possible or not would depend on the map from initial to final ungauged
symmetric terms obtained after combining the symmetries.
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A Model LP: Gauged Hamiltonian

In Sec. 4.2, we introduced a lineon-charge system that is the dual of the fracton-charge system
used in Sec. 2.2. Gauging this model yields the X-cube model but now with the identification
of the fracton superselection sectors as fluxes. We added three stacks of 2D planon charge
systems to the model (shown in Fig. 15(a)) and gauged a composite symmetry with generators
supported on both models to yield the model LP with decorated fracton superselection sectors.
To illustrate the flux binding that leads to the decorated fracton superselection sectors, we
constructed the remote detection operator (a membrane operator shown in Fig. 16(c)) of the
fluxes in the model with gauged composite symmetry. In this appendix, we show the flux
binding by writing the fully gauged Hamiltonian.
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Figure 19: Model LP: the new fracton membrane operator where the fractons are
created at the four corners, the blue cubes. The new fracton flux is a product of three
original planon fluxes from three mutually perpendicular planon-charge systems
together with the original fracton flux from the 3D lineon-charge system.

Following the procedure in Sec. 2, we add gauge fields to the coupling terms as shown in
(b) and (c) of Fig. 15.

H LP = −
∑

x ′∈P x
(ix ,ix+1)

∑

y ′∈P y
(i y ,i y+1)

∑

z′∈Pz
(iz ,iz+1)

Γ(x
′,y ′,z′) −
∑

µ,{iµ}

�

∑

p∈Pµ(iµ ,iµ+1)

Cµp +
∑

ν,p∈Pµiµ

E[µ](ν)p

�

− (charge terms) . (A.1)

The Γ-type flux terms are the original 12-body cube fluxes of the lineon-charge system. The
C-type flux terms are the original 4-body plaquette fluxes of the planon-charge system (shown
in Fig. 6(a)). The E-type flux terms, involving both the original minimal couplings and the new
minimal couplings, are given in (a) and (b) of Fig. 18. Since these E terms do not contribute to
the superselection sectors (since they can be converted to C-type fluxes via a β x

[µ](ν) operator),
we can set them to the identity. This yields relations between the original flux terms, e.g. (c)
of Fig. 18. The product of 4 E terms around the faces of a cube equals the identity, but it is
also equivalent to the product of a Γ and a C flux term. Using these constraints, we construct
the logical operator for the new flux excitation in Fig. 19. The new flux is also a fracton since
it is a composite of an original fracton together with three original planon fluxes, each from a
different 2D system.

B Connection to cage-net fracton models

In Sec. 4, we saw that Model FP1 (Sec. 2.2) can give rise to the cage-net fracton models [7,9].
The cage-net models are constructed using three stacks of 2D topological orders and then
coupled with particle-loop (p-loop) condensation. Here, we show how the p-loop condensation
can be understood as gauging a composite symmetry.

Consider two ‘composite condensates’ in the z-direction, i.e. the charges associated with
the α(z)-coupling term, Fig. 5(a). And two ‘composite condensates’ in the x-direction. The
product of these four terms is equal to four planon charges on the same face of a cube, Fig. 20.
If we represent a planon charge by a line orthogonal to its plane, then we get a loop, i.e. the
orange loop in Fig. 20. This loop is precisely the p-loop considered in Ref. [7, 9]. Since we
constructed this p-loop through the ‘composite condensates’, it is also condensed. Therefore,
gauging the composite symmetry is the same as condensing the p-loop. We can then regard
Model FP1 as the ungauged version of the cage-net fracton models.
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Figure 20: Particle-loop (p-loop) condensation in Model FP1. The p-loop, the orange
loop on the RHS, is generated by the ‘composite condensates’ on the LHS.
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