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Abstract

In recent years, the T -linear scattering rate found at low temperatures, defining the
strange metal phase of cuprates, has been a subject of interest. Since a wide range
of materials have a scattering rate that obeys the equation ħh/τ ≈ kBT , the idea of a
universal Planckian limit on the scattering rate has been proposed. However, there is no
consensus on proposed theories yet. In this work, we present our results for the T -linear
scattering rate in the triangular lattice Hubbard model obtained using the dynamical
cluster approximation. We find two regions with T -linear scattering rate in the T—
p phase diagram: one emerges from the pseudogap to correlated Fermi liquid phase
transition at low doping, whereas the other is solely caused by large interaction strength
at large doping.
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1 Introduction

At the lowest temperatures in any metal, when the phonon contribution becomes negligible,
one expects a Fermi liquid with T2 resitivity. Although it is indeed the case in most materials,
many do not abide by this rule, having instead a linear in temperature scattering rate. This
is the case for a wide variety of materials, such as twisted bilayer graphene [1–3], transition
metal dichalcogenides [4], pnictides superconductors [5], heavy fermions [6–8], organic su-
perconductors [5] and cuprates [9–11]. This kind of behavior is even found theoretically in
the square lattice Hubbard model [12] and in the Sachdev–Ye–Kitaev model [13].

T -linear scattering rate is often the result of electron-phonon scattering. This is the case for
example in copper and twisted bilayer graphene [14]. However, at temperatures lower than
the Debye temperature, this mechanism can no longer explain T -linear scattering. T -linear
scattering rate must then be caused by another type of mechanism.

Metals that exhibit T -linear scattering rate at high temperature, beyond the Mott-Ioffe-
Regel limit kFℓ ∼ 1, are called bad metals [15–17]. When the linear regime extends asymp-
totically close to T = 0, we refer to strange metal behavior. Cuprates are a nice case study of
strange metals since their scattering rate has been thoroughly studied from the day of their dis-
covery [18,19]. In addition, their T -linear scattering rate spans a large portion of the cuprate’s
phase diagram, sometimes up to high temperatures [18,19].

The idea of a universal limit on the scattering rate was presented to explain the T -linear
scattering rate [20]. Using Drude’s formula to find the relaxation time τ, it has been observed
that many strange metals obey the simple equation ħhτ = αkB T , where α is between 0.7 and
1.1 [21–23]. The idea that this universal law could also be applied to very different materials
with very similar values of α has led some to believe that electrons are subject to a universal
Planckian limit of α∼ 1 [10,24–29].

The close proximity of strange-metal behavior to optimal doping in cuprates has led some
to believe that understanding it could be the key to uncovering the mechanism behind super-
conductivity in hole-doped cuprates [30, 31]. The T -linear dependence of the scattering rate
in cuprates is still a subject of research [32–35].

In this work, we present the phase diagram and the temperature-dependent scattering
rate on the hole-doped triangular-lattice Hubbard model using the dynamical cluster approx-
imation (DCA) [36] for the six-site cluster shown on Fig. 1a). DCA is a cluster extension of
dynamical mean-field theory (DMFT) that is particularly suited for doped Mott insulators in
regimes where long-wavelength particle-particle and particle-hole fluctuations are negligible.
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The geometrical frustration inherent to the triangular lattice is particularly useful to suppress
the above-mentioned fluctuations, making the thermodynamic limit reachable at finite tem-
perature on small lattices. Our three main results are as follows:

First, our most unexpected finding is the observation of T -linear electron scattering in
two distinct regions of the phase diagram: one at low dopings and another at higher dop-
ings. We attribute the former to doped-Mott insulator physics, showing that T -linear scat-
tering at low doping is linked to the metal-to-pseudogap first-order transition known as the
Sordi transition [37–39]. We refer to this regime as the Mott-driven T -linear scattering rate.
Conversely, at higher dopings, we propose that the T -linear scattering is solely governed by
strong interactions, occurring very far from the Mott transition. We refer to this region as
the interaction-driven T -linear scattering rate. It is noteworthy that in both cases, we noted
in Table 1 summarizes which of the characteristics usually associated to strange metals is re-
spected in each regime. In addition, it is important to point out that we compute the electron
scattering rate, not the transport scattering rate that would necessitate vertex corrections.

Second, the role of long-wavelength magnetic fluctuations is not important in either
regimes since, at the temperatures that we can reach, frustration on the triangular lattice
limits their effect. Indeed, for values of U that we explore, close to the Mott transition, it has
been found that even at half-filling magnetic order is not apparent [40–46] until, perhaps, very
low temperature [47].

Third, we find that even on the triangular lattice, the quasiparticle scattering rate of the
interaction-driven T -linear scattering rate is very near the Planckian result (α∼ 1). We do not
claim that Planckian scattering is a fundamental limit.

Although our work may be related to the fundamental physics that drives the strange metal
in cuprates, our model most likely represents what would be seen in doped κ-ET structured
doped organic superconductors [48,49], field-effect doped organic superconductors [50], sil-
icon triangular lattice simulators [51], 1T-TaS2 [52] or cold atoms experiments [53–55]. Nev-
ertheless, we find it valuable to draw comparisons with cuprates, given their extensive history
of exploration.

In the following sections, we discuss the model, then uncover the phase diagrams that will
drive our discussion of the two possible T -linear scattering rate regimes.

2 Methodology

Here we present the model, then discuss the method that we use, and finally, comment on
observables of interest.

2.1 Model

We capture the complex interplay between kinetic energy and potential energy of electrons on
a lattice with the one-band Hubbard model [56–59]. The Hamiltonian is given by

H = −
∑

i, j,σ

t i jc
†
iσc jσ + U
∑

i

ni↑ni↓ −µ
∑

iσ

niσ , (1)

where c†
iσ and ciσ are respectively the creation and annihilation operators on site i with spin

σ, niσ is the number operator, t i j is the kinetic energy associated to a hopping between sites i
and j, U is the on-site Coulomb repulsion, and µ is the chemical potential. We work in natural
units, thus interatomic distance a, Planck’s ħh and Boltzmann’s kB constants are unity, as is |t|
the nearest-neighbor hopping and the lattice spacing.

The lattice is shown on Fig. 1a). We take t = t ′ = −1 so that the lattice is triangular and
that the Fermi surface is centered at (0, 0). Another hopping t ′ crossing the one illustrated
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Figure 1: a) Hopping terms on the triangular lattice b) Fermi surface for U = 0 and
n= 1 at T = 0.1 on the triangular lattice. The different patches used in the Brillouin
zone of the triangular lattice and on the proxy square lattice made of the reciprocal
lattice-vectors are illustrated. The superlattice vectors in red illustrate the periodic
boundary conditions. Although t ′ = t is satisfied in our work, this connectivity cor-
responds to a bipartite lattice when t ′ = 0. The illustrated Fermi surface is a hole
Fermi surface. c) Local density of states for the non-interacting triangular-lattice.

would transform this problem into the problem of cuprates. We will later discuss implications
of our results for cuprates. With these values of t and t ′, the non-interacting dispersion relation
is:

εk = −2

�

t cos(kx) + t cos

�

kx

2
−

p
3ky

2

�

+ t ′ cos

�

kx

2
+

p
3ky

2

��

.

The band parameters are the same for both hole-doping (denoted by p) and electron-doping
(denoted by x) with respect to half-filling. Doping is controlled by the chemical potential. We
focus mostly hole doping.

2.2 Solving the model

References [60, 61] have shown that in DCA, a six-site cluster impurity in a bath [36, 62–
64] describes the same complex physics as the larger 12-site cluster at temperatures that are
reachable near the Mott transitions. This is discussed further in Appendix A. For this reason,
we use the same six-site cluster as in Ref. [60], defined by the superlattice vectors Rx = (3, 1)
and R y = (2,0) as shown on Fig. 1a). Periodic boundary conditions in DCA impose that the
Brillouin zone be separated into patches, one for every site on the impurity, their shape being
just another degree of freedom [65, 66]. Fig. 1b) presents the layout we use. To illustrate
how the Fermi surface is distributed among the patches we chose, the non-interacting Fermi
surface is also displayed.
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In DCA, one starts with a guess for the non-interacting cluster Green’s function

G0,σ(iωn,Ki) =
1

iωn − ε̄Ki
+µ−∆σ(iωn,Ki)

, (2)

where we define ε̄Ki
=
∑

k̃ εKi+k̃, with
∑

k̃ the sum on every k̃ in a patch, and where we have,
for k on the full Brillouin zone, εKi+k̃ = εk with εk the bare band dispersion. The quantity ωn

denotes the nth fermionic Matsubara frequency, defined as ωn =
(2n+1)π
β , with β the inverse

of temperature. Finally, ∆σ(iωn,Ki) is the hybridization function, linking the bath and the
impurities.

To find the cluster Green’s function Gc,σ(iωn,Ki), one sends the non-interacting Green’s
function to an impurity solver. Here we use the continuous-time auxiliary-field (CT-AUX) [63,
67] quantum Monte-Carlo impurity solver because it scales well with the cluster size. Using
the Dyson equation, one can extract the cluster self-energy

Σc,σ(iωn,Ki) = G−1
0,σ(iωn,Ki)− G−1

c,σ(iωn,Ki) . (3)

Projecting the lattice Green’s function on the patches

Gloc,σ(iωn,Ki) =
∑

j

1
iωn − εKi+k̃ j

+µ−Σc,σ(iωn,Ki)
(4)

(k̃ j are the wave vectors inside the patch Ki), leads to the self-consistency condition
Gloc,σ(iωn,Ki) = Gc,σ(iωn,Ki) from which the hybridization function necessary for the next
iteration can be obtained:

∆σ(iωn,Ki) = iωn +µ− G−1
loc,σ(iωn,Ki)−Σc,σ(iωn,Ki) . (5)

Substituting into the non-interacting Green’s function Eq. 2, the next iteration of the DCA
calculation begins.

Since the Green’s function is symmetric in spin, we drop that index. We use the converged
solution given by the data compilation algorithm proposed in Ref. [60].

Since DCA is a coarse-grained method, the momentum dependence of observables O are
averaged over patches. This means that observables on a given patch Ki are obtained with the
following equation

O(Ki) =
1
N

∑

j

O(k̃ j) , (6)

where k̃ j are the wave vectors inside the patch Ki and N is the number of k̃ j inside the patch.
Thus, the Green’s function and the self-energy are constant within each patch i. Dividing out
the Brillouin zone into six patches Ki , the symmetries of the triangular lattice impose that
O(K1) =O(K2) and O(K3) =O(K5). The patches are identified on Fig. 1b).

2.3 Observables

One of the important observables that we consider is the local scattering rate Γ = 1/τ, where
τ is the electron lifetime. This quantity is extracted from the local self-energy as

Γ = 1/τ= −Im

� Nc
∑

i

Σ(ω= 0,Ki)

�

. (7)

To obtain Σ(ω = 0,Ki), we perform the analytical continuation using a simple polynomial fit
on the first three Matsubara frequencies of ImΣ(iωn,Ki), and extrapolate the polynomial to
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Table 1: Table summarizing the similarities and differences between the usual strange
metal, whose properties appear on the top row, and the two T -linear scattering rate
regimes in this paper, namely Mott-driven and interaction-driven.

Strange metal
characteristics→ 1/τ∼ T 1/τ∼ T

as T → 0
1/τ∼ T

as T →∞
ω/T

scaling
Planckian
dissipation

Extended
range of
doping

Isotropic
scattering

rate

Mott-driven
(p ≈ 4% ∼ 6%)

✓ ✗ ✓ ✓ ✗ ✓ ✗

Interaction-driven
(p ≈ 20% ∼ 30%)

✓ ✗ ✗ ✗ ✓ ✓ ✓

iωn = 0. In Appendix B, we show how the results are affected by the choice of polynomial
order.

Here, we mostly focus on the electron scattering rate given by Eq. 7 instead of the quasi-
particle scattering rate that would be obtained by multiplying Eq. 7 by the quasiparticle renor-
malization factor Z . This is because, even if the density of states presents a quasiparticle peak,
some suggest that the quasiparticle picture breaks down in the strange metal [68]. We find
that the exponent n for the temperature dependence of the scattering rate does not change
significantly when comparing electron scattering rate with quasiparticle scattering rate. There
is however a sizable change in the slope caused by Z .

2.4 Limiting factors

The largest limiting factor of our method is the fermion sign problem that grows exponen-
tially with the inverse temperature β and the free energy of the system [69]. This limits the
maximal size of the cluster as well as the value of U . On top of the fermionic sign problem,
we are also limited in temperature by the low acceptance rate of Monte-Carlo configurations
at low temperatures. Because of that, it is impossible to reach T below 0.02 for the range of
interactions we’re interested in.

Another limiting factor at high temperature comes from the method used to perform the
analytical continuation of the observable. Indeed, as the temperature is increased, the inter-
val between Matsubara frequencies increases, leading to inaccurate polynomial fits. For this
reason, we limit ourselves to T lower than 0.2.

For a typical value of hopping t in the cuprates of 0.3 eV, the range of temperature achiev-
able with DCA would then be approximately between 70K and 700K. In BEDT organics the
corresponding scales would be ten times smaller.

Finally, DCA is a coarse-grained method. Because the observables are averaged over
patches, the momentum resolution is limited.

3 Results

We compute the scattering rate as a function of temperature for various hole-dopings of the
Mott insulator. Doing this for many dopings, we build two temperature-doping phase dia-
grams1 where we summarize the temperature dependence of Γ = 1/τ by color-coding the
local exponent n obtained form a local fit of the form 1/τ= αT n+ b on the data, as described
in Appendix C.

1Note that Fig.2 does not strictly speaking display phase diagrams, but we use this name for convenience.
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Figure 2: a) Temperature-doping phase diagram of the local scattering rate, defined
by Eq. (7), for U = 8.4. Color coding represents the value of n obtained, as described
in Appendix C, from a local fit of the form 1/τ = αT n + b of the scattering rate. No
exponent was computed in the dark region near p = 0.04. The dashed line between
p = 0.04 and p = 0.06 represents the temperature where the scattering rate starts
to fall rapidly with temperature, whereas the one between p = 0.07 and p = 0.1 de-
limits the region where the scattering rate is proportional to T1.5. b) Corresponding
data for U = 8.5 in the high-doping range. The dashed line between p = 0.15 and
p = 0.18 represents the temperature where we find a T2 dependent scattering rate,
whereas the one between p = 0.18 and p = 0.34 delimits the region where we find
T -linear scattering rate at high dopings. This region of linearity between p = 0.18
and p = 0.34 appears very small on this figure because interpolation became difficult
at lower temperature. Fig. 5 shows that the data extends to T = 0.02 and continues
to exhibit linearity. Parts a) and b) share the same vertical axis. This means that the
temperature range for both figures is the same. Note that all dotted lines are only
guides to the eye. The temperature scale is fixed by taking t = 0.3eV, typical value
for cuprates

We choose values of interaction U slightly lager than the critical value of U for the Mott
transition at half-filling (U ≈ 8.2 for T = 0.15 [60]). The first diagram on Fig. 2a) obtained at
U = 8.4, focuses on the low doping behavior. The second, presented on Fig. 2b) for U = 8.5,
focuses on high dopings. At low dopings, the value of U is chosen slightly smaller because
lowering U increases the average sign in the Monte-Carlo calculations and makes it possible
to converge in the pseudogap regime at slightly lower temperatures. The raw scattering rates
that we used to draw these phase diagrams as a function of temperature at U = 8.4 and
U = 8.5 are displayed respectively on Figs. 3 and 5. The raw data extends to slightly lower
temperature than that presented in Figs. 2a) and b). Figures 2a) and b) present the average
scattering rate over patches, namely the local scattering rate Eq. (7).

The results between 10% and 15% hole doping in Fig. 2b) exhibit a T1.5 dependence of
the scattering rate, qualitatively different from that found in organics [48,70] or in cuprates [9,
10,22,24]. Nevertheless, both doping regions illustrated in Figs. 2a) and 2b) display T -linear
scattering rate for different ranges of temperature. Indeed, we find 1/τ ∼ T in Fig. 2a) for a
wide range of temperature for p near 0.06, while in Fig. 2b), we find T -linear scattering for hole
dopings between 0.2 and 0.3, from T ≈ 0.03 down to the lowest temperature achievable. This
leads us to conclude that two different mechanisms are responsible for the T -linear scattering
rates.
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In the following sections, we present the two different regimes of T -linear scattering rate.
In the first section 3.1, we show that the low-doping T -linear scattering rate is deeply rooted
in the existence of the Sordi transition, the same pseudogap-metal first-order transition that
is continuously connected to the Mott transition as reported in Ref. [38]. We thus use the
name Mott-driven T -linear scattering rate, even though superexchange also plays a role in the
Sordi transition, as can be argued from the fact that single-site DMFT finds a direct insulator
to metal transition with doping [71]. Then, in section 3.2, we show that interactions seem to
be the sole driver of the high doping T -linear scattering rate, thus the name interaction-driven
T -linear scattering rate.

Both regimes of T -linear scattering rate found in this research share similarities with the
strange metal phase found in cuprates. A list of these similarities can be found in Table 1.
However, since both regimes have T -linear scattering rates that extrapolate to negative values
at T = 0, we know that the T -linear scattering rate cannot be sustained at T → 0. Because of
this, we do not use the term strange metal to describe our findings. We instead use T -linear
scattering rate.

3.1 Mott-driven T -linear scattering rate

Fig. 2a) displays the first region where we find T -linear scattering, what we call the Mott-driven
T -linear scattering rate. This region spans a large area of the phase diagram, and goes down
to the lowest temperatures near p = 0.065. A clearer picture emerges from Fig. 3, where we
present the scattering rate as a function of temperature and doping for patches K0, K1 and K3.2

At p = 0.06, we see in Fig. 2a) and Fig. 3 that T -linear scattering rate ranges from the lowest
achievable temperatures to around T = 0.2, although we find two temperatures where there
is a slight deviation from the T -linear regime, at seen in Fig. 2a) for T ≈ 0.08 and T ≈ 0.18.
The raw data for the scattering rate at p = 0.06 in Fig. 3, shows that both deviations from the
T -linearity are barely noticeable. At T ≈ 0.08, the deviation is very similar to what is found
in LSCO [10]. In the case of the higher temperature deviation, it is only barely noticeable in
Fig. 3, indicating that this might be due to the fitting procedure (App. C) used for calculating n.

Other caracteristics of this regime include that the scattering rate in this T -linear scattering
rate region is not isotropic, meaning that the scattering has a Ki dependence. Furthermore,
the value of α for the quasiparticle scattering rate in this regime is larger than unity, making
this regime non-Planckian, if we take a strict definition with α = 1. In some experiments,
Planckian dissipation is used as long as the value of α= 1 is within experimental uncertainty,
for example α= 1.2± 0.4 in Ref. [23]. In our case uncertainties are much smaller for a given
choice of analytic continuation (See appendix B). Since our model does not include phonons,
it is excluded that the T -linear scattering found at high temperature near p = 0.06 is a result
of electron-phonon scattering at T > TD.

Away from the optimal doping for the T -linear scattering rate, the behavior changes
rapidly. For dopings lower than p = 0.04 in Fig. 3, we find an upturn in the scattering rate.
This upturn is characteristic of the pseudogap phase. On the other hand, when p increases to
value larger than 0.07, we find, at low-T , a T1.5 scattering rate. Since the low-doping T -linear
scattering rate occurs at low temperature only for a very specific doping, it is likely to arise
from a quantum-critical point. For U = 8.4, this quantum-critical point would be located near
p∗ = 0.06.

2We do not show the results for the patch 4 because it only accounts for a small fraction of the total spectral
weight. This is consistent with a quasi-circular Fermi surface at U = 0 as seen on Fig. 1 b): Luttinger’s theorem
predicts that the Fermi surface’s shape should not change much with interactions, as long as we are far from the Van
Hove singularity, which here is located near p = 0.75 [72]. This is not true for non-circular Fermi surfaces [73]. We
verified that the small leftovers of Fermi surface in the latter patch follow a T 2 scattering rate, which is reminiscent
of a Fermi liquid.
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Figure 3: Scattering rate as a function of temperature for hole dopings between
p = 0.023 and p = 0.08 at U = 8.4 for the zeroth, first and third patches of the trian-
gular lattice in Fig. 1b). The temperature scale, on top, is fixed by taking t = 0.3eV,
typical of the numbers for cuprates.

As stated earlier,ω/T scaling is usually associated with quantum criticality, but here we do
not find it at p∗ ∼ 0.06. The procedure to check for ω/T is explained in Appendix D. We find,
ω/T scaling only at p = 0.04 for U = 8.4, and at p = 0.05 for U = 8.5, at T > 0.05. For both
values of U , this scaling is found only for patch 1 and 3 in a regime where the scattering rate
is not linear in T at low temperature. From Figs. 3 and 5 one can verify that the scattering
rate at these two dopings is very similar. Indeed, in both cases, there is a downturn of the
scattering rate around T = 0.05 for patch 1 and 3.

To clarify the origin of the quantum critical point and of ω/T scaling, Fig. 4 shows how
doping varies as a function of chemical potential µ at U = 8.4 and T = 0.05. There is a first-
order transition with coexistence between a pseudogap at p = 0.02 and a metal p = 0.04. This
can be verified from the density of states computed on both sides of the phase transition with
the maximum entropy method [74], as illustrated on the bottom row of the figure. The loss
of spectral weight near the Fermi level is clear on the left plot while the quasiparticle peak is
clear on the right plot [60]. There is also a first-order transition on the electron-doped side
around x = 0.02, as shown on the top plot of Fig 4. The inset of that figure shows the local
scattering rate 1/τ(T ) at U = 8.4 for both x = 0.02 and p = 0.04. On the electron-doped
side, just like on the hole-doped side, there is a downturn in 1/τ near T = 0.05. This suggests
that this downturn in 1/τ(T ) is intrinsic to the proximity of the first-order transition.

In the case of the square lattice [37, 38], the analog of the first-order Sordi transition
that we just discussed is continuously connected to the Mott transition. The first-order Sordi
transition on the triangular lattice behaves similarly [39]. In particular, there should be a
finite-temperature critical point. In addition, in single-site dynamical mean-field theory, the
Mott transition has a quantum-critical point at the end of a coexistence region [15,75] leading
us to suggest that the quantum critical point that we see at p∗ = 0.06 on the triangular lattice
has a similar origin.

Back to ω/T scaling. For both p = 0.04 and x = 0.02, there is range of ω/T scaling of
the self-energy that breaks down at temperatures below T ∼ 0.05 for p = 0.04, and below
T ∼ 0.07 for x = 0.02. These are the temperatures where the behaviour of the scattering rate
in Fig. 4 changes drastically. For the hole-doped case, the critical point of the Sordi transition
appears to be near T = 0.05 , while it seems to be at a slightly higher temperature for the
electron-doped case.3 Thus, the ω/T scaling appears to emerge from the finite-temperature

3It is known from Ref. [39] that the electron-doped hysteresis for the Sordi transition is far less sensitive to
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Figure 4: On top, electron doping x and hole doping p as a function of the chemical
potential µ at T = 1/20 and U = 8.4. The inset presents the local scattering rate
as a function of temperature for p = 0.04 (red star) and x = 0.02 (blue star). The
scattering rate at p = 0.04 is larger than at x = 0.02. Above the position of the
star, the temperature dependencies are similar. To illustrate the first-order transition,
the bottom row of the plot shows the local density of states for the same chemical
potential and two coexisting dopings, p = 0.025 and p = 0.04, showing a pseudogap
in the first case and a quasi-particle peak in the second case.

critical point of the Sordi transition.

3.2 Interaction driven T -linear scattering rate

Before we discuss T -linear scattering, we point out that there is an unusual region in the high
doping phase diagram Fig. 2b located between 0.15 and 0.2 doping. Indeed, there we find
a T2 dependence of the scattering rate, a result usually associated to a Fermi liquid. This
result is surprising since Fermi liquids are usually found at higher dopings. One could think
that this is caused by the odd number of electrons in the cluster when the doping is close to
p = 1/6. Indeed, an odd number of electrons increases the entropy [76], which may push
the Mott transition to larger U , as seen in Refs. [76] and [60]. However, a calculation of the
scattering rate as a function of temperature at p = 0.17 in a four-site cluster led to the same T2

dependence of the scattering rate at low temperature. This means that this T2 regime found
in the triangular lattice is not an artifact of the cluster used. We do not have an explanation
for this Fermi liquid-like behaviour for a small range of dopings between 15% and 20%. A
similar T2 regime is found at comparable doping in cuprates, but in that case it appears to be
due to Fermi-surface reconstruction from charge-density waves [77,78].

changes of parameters than its hole-doped counterpart. As a consequence, we expect to find the critical point for
the electron-doped Sordi transition at higher temperature.
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Figure 5: Scattering rate as a function of temperature for a large range of dopings
at U = 8.5 for the zeroth, first and third patches of the triangular lattice in Fig. 1b).
A linear fit on the scattering rate as a function of temperature is presented for hole
doping between p = 0.05 and p = 0.45. For p = 0.05, the linear fit is done for
T > 0.2. The temperature scale is fixed by taking t = 0.3eV, typical of the numbers
for cuprates.

Let us move to T -linear scattering at large doping. It is present in Fig. 2b) below T ∼ 0.03,
for p between 0.18 and 0.34. For higher temperatures, the exponent n increases. It is remark-
able that the slope of the T -linear scattering has been found experimentally [10] to satisfy the
relation ħh/τ = αkB T with α ∼ 1. Setting aside the difference between transport scattering
time and single-particle scattering time, we note that the value of α is often found experimen-
tally using the Drude formula.

τquasi =
m∗

ne2ρ
, (8)

with m∗ instead of m. In that case the resulting scattering time is the quasiparticle scattering
time [79]. In order to compare with our results then, the electron scattering rate−ImΣ(ω= 0)
must be multiplied by the quasiparticle weight Z , which is obtained from the following rela-
tion [80]

Z =

�

1−
∂ ReΣ(ω)
∂ω

�

�

�

�

ω→0

�−1

(9)

≈

�

1−
ImΣ(ωn)
ωn

�

�

�

�

ωn=0

�−1

. (10)

The local quasiparticle scattering rate at U = 8.5 as a function of temperature is displayed
in Fig. 6. The inset shows a clear linear temperature dependence at low temperature with
α= 0.98±0.03, very close to unity, similarly to the square lattice [12]. Thus, the interaction-
driven T -linear scattering rate found in the triangular lattice also displays Planckian dissipa-
tion. Geometrical frustration then, does not seem to affect the value of α at high doping. Note
that the value of Z is about equal to 1/3 for the data in the inset of Fig. 6. The unrenormalized
data is in Fig. 5.

Another characteristic of strange metals is that their self-energy scales with ω/T [12,68].
This type of scaling is often related to quantum criticality. Here, we do not find ω/T scaling.
This further asserts the idea that quantum criticality is not responsible for the Planckian dissi-
pation that we see in the high-doping range. We further comment on scaling in Appendix D.
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Figure 6: Local quasiparticle scattering rate as a function of temperature at p = 25%
and U = 8.5. A linear fit is performed for temperature between T = 0.02 and
T = 0.03 in the inset. The value of α obtained with this fit is presented in the inset.
For T > 1/15, the slope α increases to 1.89± 0.01. On the other hand, the electron
scattering rate 1/τ has a slope α= 3.48± 10 for T < 0.3.

In order to find the origin of Planckian dissipation, the value of U was lowered to see if it
would survive. The scattering rates as a function of temperature at p = 0.25 for both U = 6
and U = 8.5 are presented on Fig. 6. We see that at lower U , the T -linear scattering rate is
replaced by a T2 scattering rate [81]. This could be expected from an increase in the coherence
temperature when U is decreased.

4 Discussion

After a discussion of our results on the triangular lattice, we compare with the square lattice
results. Log-Log plots of the temperature dependence of the scattering rates may be found for
a few dopings in Appendix E.

4.1 Two regions of linear in T scattering rates on the triangular lattice

Research on the Hubbard model on the triangular lattice allows to discriminate the effect of
long- vs short-range AFM fluctuations. Finding T -linear scattering rate in this model shows
that only short-range fluctuations are important, particularly since many studies do not find
magnetic ordering at half filling in the range of interaction strength we studied [40–46].

Strange metallicity is defined by T -linear scattering rate for T → 0. It is usually associated
to a quantum critical point at p∗ [68, 82]. Fig. 5 shows that linear fits of the scattering rate
as a function of temperature extrapolate to negative values of 1/τ at T = 0 for all dopings.
Thus, T -linear scattering rate has to disappear at T > 0. The sign problem prevents us to go
to low enough temperature to observe that.

As U increases, the finite-temperature critical point of the Sordi transition moves to lower
temperature [38]. It may eventually reach zero temperature, in which case it would turn into
a quantum critical point and there would be no downturn of the scattering rate. The scattering
rate 1/τ would likely extend all the way to T → 0. An analogous quantum-critical point is
found at T = 0 in the two orbital Hubbard model with Hund coupling [83].
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That the interaction-driven T -linear scattering rate is found for a wide range of dopings,
0.18 < p < 0.34, suggests that it does not emerge from a quantum-critical point. This is
supported by the lack of ω/T scaling. The extrapolation of the linear behavior to negative
temperatures at T = 0 suggests instead a crossover from linear to Fermi liquid T2 at a temper-
ature lower than what is computationally achievable with DCA. Such a crossover is visible at
U = 6 in Fig. 6. The crossover temperature decreases as U increases.

Note that the interaction-driven T -linear scattering rate that we find here is similar to what
is found on the 8-site square lattice with DCA where, however, ω/T scaling was found at one
doping and connected to the effect of spin fluctuations [12].

Since ω/T scaling is not found in the interaction-driven T -linear scattering rate, we look
for other possible scalings. We find in Appendix D that Im (Σ(iωn),K3)/ (ImΣ(iωn = 0,K3))
scales like ω/T z , where z varies between 2 and 2.3 depending on the doping and of Ki . This
type of scaling of the self-energy is different from what is expected from both Fermi liquid
theory, where −ImΣ ∼ ω2 + T2, and from quantum-critical strange metals. The scaling en-
countered in this T -linear scattering rate region is also dimensionful, which means that it is
non-universal. We do not have any explanation for this type of scaling.

The contrasting temperature dependence of the scattering rates on the different patches
and their relation to the pseudogap is discussed in Appendix F.

It is well known that there is a critical point associated to the Mott transition at half-filling
in single site DMFT [84, 85]. In the bad-metal regime at high temperature, a linear in T
scattering rate is also found [16, 17, 86]. It is also known that the Mott critical point has an
influence away from half-filling [15]. To verify if single site DMFT at finite doping also has
an interaction-driven T -linear scattering regime at large doping, calculations as a function of
temperature at p = 0.25 for cluster sizes Nc = 1, Nc = 2 and Nc = 4 were performed, and are
displayed in Fig. 10 of Appendix A. They show that while single site DMFT calculations lead to
T2 scattering rate at low temperature, clusters with Nc ≥ 2 lead to T -linear behaviour at low
temperature. This strongly suggests that superexchange is crucial for the T -linear behaviour
of the scattering rate in this regime.

Finally, contrary to claims found in the literature [87], we do not find a link between
Planckian dissipation and quantum criticality. Indeed, the interaction-driven regime, that dis-
plays Planckian dissipation, does not display quantum critical scaling.

4.2 Comparison with the square lattice

The results for the local scattering rate as a function of temperature on the square and the
triangular lattices are presented in Fig. 7 for p = 0.25 and U = 8.5. We find that the effect of
geometrical frustration does not affect the behaviour of the scattering rate at low temperature.
This leads us to believe that the underlying physics responsible for the T -linear scattering rate
is the same for both the square and triangular lattices. Based on this assumption, we compare
our results for the triangular lattice to the characteristics of the strange metal phase found in
cuprates.

We saw that the interaction-driven T -linear scattering rate is lost at temperatures higher
than T ∼ 0.03 where the exponent of the T dependence increases. This kind of deviation
from T -linear scattering rate is commonly found in LCCO, PCCO, Nd-LSCO and Bi2212 [22,
88]. Even though a direct comparison with cuprates is not warranted, we mention that the
temperature at which the T -linear scattering rate is lost on the triangular lattice (T ∼ 150K)
is similar to what is found in Nd-LSCO and Bi2212 (T ∼ 120K) [22].

Also, as in cuprates, the scattering rate in the interaction-driven T -linear scattering rate
region is near isotropic. Note that the cuprate measurements, however, were done close to a
van Hove singularity [23].
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Figure 7: Local scattering rate as a function of temperature for both the square lattice
(t ′ = 0) and the triangular lattice (t ′ = −t = 1) for p = 0.25 and U = 8.5. The
temperature scale is fixed by taking t = 0.3eV, typical of the numbers for cuprates.

Another similarity between the strange metal found in cuprates and the interaction-driven
T -linear scattering rate is that both display Planckian dissipation. This means that geometrical
frustration does not change the slope. Moreover, Fig. 6 shows that T -linear scattering rate
at small U either disappears completely or appears at smaller temperature, which would be
surprising given the negative intercept of the extrapolated T = 0 result. Thus, Planckian
dissipation occurs when interactions are sufficiently strong, with no other obvious explanation.

There are important differences between what is found here on the triangular lattice and
what is found in cuprates like LSCO. Cuprates have a T -linear scattering rate on a wide range of
dopings like we find, but linearity extends down to T → 0 on the entire range of dopings [10].
Moreover, they exhibitω/T scaling for dopings away from p∗ [89]. Nevertheless, the similarity
between our phase diagram Fig. 2b) and Figure 1 of Ref. [90] is remarkable.

In real materials like cuprates, the effect of disorder may be important for observing linear
in T scattering rate, as emphasized in quantum-critical models [91, 92], in SYK models [93]
or much earlier in Boltzmann transport [94, 95]. In the latter case, Rosch [94] pointed out
that disorder may invalidate the Hlubina-Rice argument [95] that Fermi-liquid like regions of
the Fermi surface with T2 scattering rate would short-circuit hot-spots with T scattering rate.
With disorder, the Hlubina-Rice argument can indeed be invalid. Using a caricature to account
for an elastic scattering rate Γ0 with Mathiessen’s rule, one finds that as T approaches zero,
Γ0 becomes larger than T2 faster than it becomes larger than T . The effect of disorder on the
scattering rate remains to be studied with DCA.

5 Conclusion

We used DCA with a CT-AUX continuous-time impurity solver to study T -linear scattering rate
in the hole-doped triangular-lattice Hubbard model. We find that the phase diagram displays
two metallic regions with linear in T scattering rates. The first one, that we call Mott-driven, is
found for low dopings near the Sordi transition. This T -linear scattering rate has and emerges
from a single doping p∗ ∼ 0.06 and is very close to the ω/T scaling at p ∼ 0.04.
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The second T -linear scattering rate region, that we call interaction-driven T -linear scat-
tering rate, has no ω/T scaling and is found for a wide range of dopings. It does not emerge
from a quantum-critical point. The linear fits of the scattering rate as a function of temper-
ature extrapolate to negative value of 1/τ at T = 0, which suggests a crossover to a Fermi
liquid regime at a temperature lower than what is actually possible to achieve because of the
sign problem. Although there is no identifiable quantum critical point, we found Planckian
dissipation in this regime of interaction-driven T -linear scattering rate at p = 0.25. We also
showed that clusters of at least two sites are necessary to observe linear in T scattering rate
at low temperature in this interaction-driven regime, strongly suggesting that superexchange
is crucial to observe this behavior.

The similarities and differences between the strange metal and the two linear in T regimes
that we identified are summarized in Table 1.

This study is the first to report that there might be two different regimes for T -linear
scattering in strongly correlated materials. This discovery may have an impact on our current
understanding of strongly correlated materials, and more particularly, could impact our vision
of the strange metal in cuprates. It would thus be important to verify if other models, or
calculation technique, find T -linear scattering rate without quantum criticality and phonon
interactions or near the Sordi transition.
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A Dependence on Nc

To verify the accuracy of our results, the scattering rate as a function of temperature for a
12 site bipartite cluster was computed with DCA for the two values U = 8.4 and U = 8.5.
Recall, as explained in Fig. 1, that by bipartite we mean that the cluster would be bipartite
if we were to take t ′ = 0. The results obtained for U = 8.5 are presented at Fig. 8. The 12-
site bipartite-cluster results are very similar to those of the 6-site cluster for large dopings. At
smaller dopings, it is not the case anymore.

One can understand why by looking at Fig. 9. Results for the Widom line [96] indicate
that the Mott transition is at larger U in the 12-site cluster. With the Mott transition for the
12-site cluster at much larger U [39], effects from the Sordi transition on the scattering rate
do not appear at low doping. Hence, we should not expect results at low dopings to be the
same for both of those clusters. Furthermore, because of the sign problem, it is impossible to
get accurate results below β = 11 on the 12-site cluster, which means that it is not possible to
verify our results at the lowest temperatures.

The scattering rate as a function of temperature in the interaction-driven regime, as well
as in the Fermi liquid regime found at p = 0.17, is also displayed for clusters of size Nc = 6
and smaller on Fig. 10. The motivation for the use of the Nc = 4 cluster at p = 0.17 was to
verify if the Fermi liquid regime found in the Nc = 6 cluster was due to the fact that near a
doping of p = 5/6, the average number of electrons is odd. We find that even in the Nc = 4
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Figure 8: Local scattering rate as a function of temperature for U = 8.5 and three
dopings, p = 0.05, p = 0.1 and p = 0.25, for the six-site bipartite cluster in blue and
the twelve-site bipartite cluster in red. In the middle subplot, the subdivision of the
Brillouin zone into the 12 different patches is given with the non-interacting Fermi
surface at half-filling.

cluster, a Fermi liquid is found at low temperature. This means that this Fermi liquid region is
not an artifact of the cluster used.

At p = 0.25, Fig. 10 shows that in the single-site cluster, the scattering rate becomes
quadratic at low temperature. However, the T -linear regime is retrieved at low temperature
for Nc ≥ 2 clusters. This means that short-range interactions, such as superexchange, are
important in order to find the interaction-driven T -linear scattering rate regime.

B Polynomial fit on first Matsubara frequencies

Much of the literature uses a polynomial fit on the first Matsubara frequencies to find the
approximate value of a given observable at ω= 0. This is usually a good approximation [12].
Testing and comparing low frequency results from such techniques, we conclude that the best
polynomial fit is of order three.

We also compared with maximum-entropy analytic continuation [74] and with a second
degree least-square regression on the first six Matsubara frequencies. The results for the sec-
ond degree least-square regression are in concordance with the second degree polynomial fit.
Although the results at order 4 better fit the maximum-entropy technique, as seen on Fig. 11,
it is sensitive to small errors in the input observables. Since the shape of the final fit does not
change much, this indicates that the results given in the article are valid.
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Figure 9: Mott transition and Widom line for six-site and twelve-site clusters of the
triangular lattice. The dotted line corresponds to the Widom line [96], a crossover.
The solid lines correspond to Uc1 and Uc2 for the Mott transitions.

Figure 10: Local scattering rate as a function of temperature for different clusters, at
p = 0.25 and p = 0.17 for U = 8.5. One needs at least Nc = 2 to find a linear regime.
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Figure 11: Local scattering rate (-ImΣ(ω = 0)) as a function of temperature T for
p = 0.25 and U = 8.5 obtained from the Matsubara self-energy using polynomial
fits of different orders. Also shown is a second order least-square regression on the
first six Matsubara frequencies and ImΣ(ω = 0) obtained with the MaxEnt method
OmegaMaxEnt [74]. The inset displays the imaginary part of the self-energy as a
function of the Matsubara frequencies for T = 0.02, p = 0.25 and U = 8.5

B.1 Planckian dissipation

The slope of the scattering rate as a function of temperature decreases when the order of the
polynomial fit increases. To verify if the quasiparticle scattering rate is still Planckian with
higher-order polynomial fits of the self-energy, the slope of the quasiparticle scattering rate as
a function of temperature was computed for polynomial fits of higher order. We find slopes
α = 0.87± 0.04 and α = 0.78± 0.02 with polynomial fits of order four and five respectively.
These values of α are still within the slope found experimentally in materials displaying Planck-
ian behaviour [22]. Thus, even if the slope of the quasiparticle scattering rate depends on the
order of the polynomial fit on the Matsubara frequencies, we find that the α obtained remains
close to the Planckian limit of α= 1 in the interaction-driven T -linear scattering rate.

One should note that the results atω= 0 from the maximum entropy analytic continuation
are not very stable in temperature, so we did not push our analysis further for this.

C Phase diagram

In order to strengthen the link between the finite-doping continuation of the Mott transition,
the Sordi transition [38], and the low-doping T -linear regime, the doping p was computed as a
function of chemical potential at fixed temperature and U = 8.4. Fig. 12 presents an improved
phase diagram at U = 8.4 and low dopings, where the Sordi transition and the Widom line
are added to the colorplot in Fig. 2.

To obtain the phase diagrams on Fig. 2, the scattering rate as a function of temperature
for the different dopings were fitted using Legendre polynomials of degree 7. Then, a fit of
the form aT n + b was performed on each group of 10 points of the Legendre fit to obtain
the local value of n as a function of temperature and doping. The values of n were then
interpolated on a meshgrid to obtain Fig. 2. The non-interpolated values of n are presented
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Figure 12: Phase diagram of the triangular lattice Hubbard model at U = 8.4. In
addition to the colorplot from Fig. 2a), the Sordi transition and the Widom line be-
tween the PG and cFL are also displayed, respectively, with a full line and a dotted
line. No value of the exponent n of the scattering rate as a function of temperature
was computed in the dark region near p = 0.04, as seen in Fig. 13.

Figure 13: Raw data for the temperature-doping phase diagram Fig. 2a) of the lo-
cal scattering rate for U = 8.4. The value of n obtained from a fit of the form
1/τ = αT n + b of the local scattering rate is color coded and interpolated to ob-
tain Fig. 2a).
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Figure 14: Im (Σ(iωn),K1)/ (ImΣ(iωn = 0),K1) as a function of ωn/T for tempera-
tures where a T-linear scattering rate is found at p = 0.25. Only the small values of
ωn/T are displayed in order to verify that ω/T scaling does not hold.

on Fig. 13. At low dopings and low temperature, the scattering rate could not be fitted with
the form aT n + b, hence the absence of points. Different orders of the Legendre polynomial
and number of points for the fits were tested to make sure that the values of n color coded on
the figure were independent of these parameters.

D ω/T scaling

Most strange metals have an optical conductivity that scales likeω/T so in our case we expect
a self-energy that has the form −ImΣ(iωn, T ) = λTνΦ( iωn

T ), where λ is some constant and Φ
is a function of iωn/T [35,68]. The ω/T scaling is then obtained from analytic continuation
iωn→ω+ iη. This type of scaling is normally associated with quantum-critical points.

We can verify whether our data follows iωn/T scaling by computing

ImΣ(iωn, T )/ImΣ(iωn = 0, T ) ,

that should then scale as Φ( iωn
T )/Φ(0). There are two regimes of doping with linear in T

scattering. Let us begin with the large doping regime. There is T-linear scattering rate for
p = 0.25 and T < 1

33 . The above ratio as a function of iωn/T is presented on Fig. 14 for
the first patch. We find that the self-energy for all patches in this interaction-driven T -linear
scattering rate does not display ω/T scaling. The absence of ω/T scaling, along with the
existence of Planckian dissipation for a large range of dopings, leads us to conclude that T -
linear scattering here does not emerge from quantum criticality.

There is however a finite temperature critical point at p = 0.04 for U = 8.4.

Σ(iωn, T )/Σ(iωn = 0, T ) ,

as a function of iωn/T for this doping is presented at Fig. 15. We see that, for tempera-
tures higher than the finite-temperature of the critical point, the Mott-driven T -linear scatter-
ing rate displays ω/T scaling. To find out whether there is a different scaling of the self-
energy in the interaction-driven T -linear scattering we computed Σ(iωn, T )/Σ(iωn = 0, T ) as
a function of ω/T z . The value of z was varied until each temperature has the same scaling of
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Figure 15: Im (Σ(iωn,K1))/ (ImΣ(iωn = 0,K1)) as a function of ωn/T for temper-
atures where a T-linear scattering rate is found at p = 0.04 and U = 8.4. Only the
small values of ωn/T are displayed in order to verify the ω/T scaling.

Figure 16: Im (Σ(iωn),K3)/ (ImΣ(iωn = 0,K3)) as a function of ωn/T
2.3 for differ-

ent temperatures for doping p = 0.25. The insert shows the low-temperature scaling.

Σ(iωn, T )/Σ(iωn = 0, T ) at low Matsubara frequency. We find ω/T2.3 scaling, as shown in
Fig. 16.

E Scattering rate

In order to highlight the different scattering-rate regimes on the triangular lattice, the results
as a function of temperature are also displayed on a log-log scale on Fig. 17. In the Mott-driven
T -linear regime at small dopings, the low-temperature scattering rate for the different patches
changes drastically with doping, as shown on Fig. 18.

Finally, the quasiparticle scattering rate at p = 0.06 is presented in Fig. 19 to support our
claim that the Mott-driven T -linear scattering rate regime has a slope different from unity,
hence it does not strictly-speaking display Planckian dissipation.
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Figure 17: Scattering rate as a function of temperature on a logarithmic scale for
different regimes displaying T -linear scattering rate. The different colors refer to
different patches.

Figure 18: Scattering rate as a function of hole doping at U = 8.4 and fixed temper-
ature T = 1/20, for patches K0, K1 and K3.
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Figure 19: Quasiparticle scattering rate as a function of temperature for p = 0.06
and U = 8.4. A linear fit for the data at T < 1/20 is performed to obtain the value
of α.

F Spectral weight

In order to demonstrate the existence of a pseudogap in the triangular lattice, the spectral
weight A(Ki ,ω= 0) as a function of temperature is computed for different dopings. This data
is presented on Fig. 20. We observe that for p = 0.04, p = 0.06 and p = 0.25, the spectral
weight increases as the temperature decreases. This means that a quasiparticle peak is found
at these points, indicating that there is no pseudogap. Thus, the downturn of the scattering
rate for temperature below the critical point at p = 0.04 is not directly caused by a pseudogap,
but is instead a precursor. However, we see that when the doping decreases to p = 0.023, we
eventually see a decrease of the spectral weight at low temperature, which indicates that there
is a pseudogap.

We also computed the density of state for different temperatures at p = 0.25, for U = 6.0
and U = 8.5. This data is presented on Fig. 21. We find that, just like in the Mott-driven
regime, the density of state presents a peak near ω = 0. Moreover, the increase of U does
not seem to qualitatively change the behaviour of the DOS. There are quantitative differences,
such as the increase of the weight around ω= 10 when U increases.

Fig. 21 also presents the data for the quasiparticle weight Z at p = 0.25 for both U = 6.0
and U = 8.5. We find that for U = 6.0, Z becomes constant at the temperature where the
scattering rate becomes T2 in Fig. 6. This is expected from a Fermi liquid. However, for the
interaction-driven regime at U = 8.5, Z does not seem to become constant at low temperature.
There seems to be an increase of Z at the temperature where the scattering rate becomes linear,
however, the large statistical errors at low T prevents us from making clear statements.
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Figure 20: Spectral weight as a function of temperature for the patches K0, K1 and
K3 at different dopings and U .

Figure 21: (Top) Density of state for p = 0.25 at T = 1/20, T = 1/30 and T = 1/41
obtained from the maximum entropy method, for U = 6.0 and U = 8.5. (Bottom)
Quasiparticle weight Z as a function of temperature for p = 0.25 and both U = 6.0
and U = 8.5.
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