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Abstract

Quantum interference of electron tunneling occurs in any system where multiple tun-
neling paths connect states. This unavoidably arises in two-dimensional semiconducting
qubit arrays, and must be controlled as a prerequisite for the manipulation and readout
of hybrid topological and parity qubits. Studying a loop formed by two quantum dots,
we demonstrate a magnetic-flux-tunable hybridization between two electronic levels,
an irreducibly simple system where quantum interference is expected to occur. Using
radio-frequency reflectometry of the dots’ gate electrodes we extract an interdot cou-
pling exhibiting oscillations with a periodicity of one flux quantum. In different tun-
neling regimes we benchmark the oscillations’ contrast, and find their amplitude varies
with the charge state of the quantum dots. These results establish the feasibility and
limitations of parity readout of qubits with tunnel couplings tuned by flux.

Copyright C. G. Prosko et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

10-06-2024
15-08-2024
06-09-2024

Check for
updates

doi:10.21468/SciPostPhys.17.3.074

Contents

1 Introduction 2

2 Device overview 4

3 Phase-coherent loop and quantum ring 5

4 Flux-tunable interdot coupling 7

5 Limits of flux-tuned tunnel coupling readout 8

6 Conclusions & outlook 11

A Device design & fabrication 12

1

https://scipost.org
https://scipost.org/SciPostPhys.17.3.074
mailto:S.Goswami@tudelft.nl
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.17.3.074&amp;domain=pdf&amp;date_stamp=2024-09-06
https://doi.org/10.21468/SciPostPhys.17.3.074


SciPost Phys. 17, 074 (2024)

B Calculating the RF signal deviation from Coulomb blockade 13

C Tuning symmetric parallel tunnel barriers 14

D Coulomb diamonds 15

E Fitting procedure for extraction of tunnel couplings 15

F Capacitance formula including mutual capacitances 18

G Quantum capacitance suppression due to Landau-Zener transitions 19

H Field-dependence of peak heights in different coupling regimes 19

References 21

1 Introduction

Magnetic fields impart a phase on electron wave functions, leading to constructive or destruc-
tive interference between different electron trajectories. This manifests in commonly observed
phenomena such as the Aharonov-Bohm (AB) effect and weak localization [1]. Similarly, con-
fined quantum systems where only a few states are coupled to each other can exhibit interfer-
ence [2–6], for example due to interference of phases imparted by magnetic fields on the cou-
plings [7]. To date however, the phase of tunnel couplings between discrete fermionic levels
has never been directly measured. This is particularly relevant for several kinds of semiconduc-
tor and hybrid semiconducting-superconducting qubits formed with quantum dots (QDs). QDs
are a fundamental component of topological qubits based on Majorana bound states [8–12]
as well as spin qubits [13]. They are also naturally suited for quantum simulation [14]. Since
measurement-based topological qubits are typically composed of multiple QDs connected in
a loop, their hybridization is sensitive to the magnetic flux through the loop because it mod-
ulates the tunnel couplings’ phases, causing interference [7]. Crucially, this flux-dependent
tunneling is a prerequisite for the readout and manipulation of these qubits and for tests of
Majorana fusion rules [10–12, 15, 16]. In both situations, the tunneling strength must be ad-
justed with magnetic flux to maximize measurement sensitivity. Meanwhile, tunneling may
depend on flux in two-dimensional QD arrays for quantum processors [17, 18] or quantum
simulation [5, 19, 20], since coherent tunneling can occur across chains of QDs [21]. This
highlights the importance of understanding and accounting for this effect. Additionally, it has
been proposed that new types of semiconducting qubits could exploit flux-tunable couplings to
implement gate operations and noise-protected readout schemes [22–24]. Currently, coupling
between dots is typically controlled solely electrostatically with gate voltages [25,26], and an
understanding of how magnetic flux affects tunneling amplitudes is lacking.

Motivated by this, we probe quantum interference in the irreducibly simple case of tun-
neling between two electronic levels in a loop formed by two QDs. Radio-frequency (RF) gate
reflectometry is sensitive to tunnel couplings between QDs [27–36], and is a prominent candi-
date for scalable readout of semiconductor and topological qubits [10–12,15,37]. We therefore
employ it to quantify the interdot coupling as a function of magnetic flux, and demonstrate a
flux-tuned hybridization between electron levels. The specific charge and therefore quantum
state of the QD system strongly affects the tunnel coupling and the oscillation amplitude. Im-
portantly for gate reflectometry, the relation between tunnel couplings and measured signal is
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Figure 1: Experimental design and device configurations. (a) False-color electron
micrograph of a nominally equivalent device to the one measured, and a schematic
of the resonator circuit. The device may be tuned by depletion (red) and barrier (yel-
low, labeled) gate electrodes into an open AB loop, a ring-shaped QD, or a DQD with
QDL and QDR chemical potentials tuned by plunger gate voltages VL and VR (blue,
labeled), schematized in (b), (c), and (d), respectively. Outer and inner depletion
gates have −2 V and VC = −3V applied respectively to form a conducting loop un-
less otherwise specified, illustrated by a dashed line. (e-g) Coupling of the resonator
voltages to electron tunneling and transport for the three configurations depicted in
(b-d). The investigated transport mechanisms which couple to the oscillating res-
onator voltage (blue) are described with orange text and arrows. For the single (f)
and double QD (g) configurations, we use a chemical potential illustration to show
the oscillating resonator voltage coupling to tunneling events (orange arrows). For
the open loop (e), its RF conductance dominates the resonator signal. For single and
double QDs, incoherent tunneling with the leads has capacitive contributions from
tunneling capacitance and dissipative contributions from charge relaxation. In addi-
tion, interdot tunneling in a DQD quantifiably translates into a quantum capacitance
loading the resonator.

nonlinear [34]. Therefore, contrary to expectation [15], we find that readout fidelity of qubits
with their state information encoded in a flux-tuned tunnel coupling may be optimal for weak
coupling between the involved QDs.

This manuscript is organized as follows: In Sec. 2, we describe the device fabrication pro-
cedure as well as its configurability into an open loop, a quantum ring, or a double quantum
dot (DQD). Phase-coherence of electron transport through the device is then established in
Sec. 3 in two ways. First, we measure the AB effect manifesting in both DC conductance and
RF reflectometry of the open loop. Second, we tune the device into a large loop-shaped QD,
and measure h/e-periodic oscillations of its addition energy with flux [38,39], where h/e is the
single-electron flux quantum. This QD exhibits a consistently finite excitation energy despite
having an approximate circumference of 1.4 µm inferred from the oscillations’ periodicity. The
main result of the manuscript is then presented in Sec. 4, where we demonstrate a flux-tunable
tunnel coupling between the levels of two quantum dots arranged in a loop and assess limita-
tions of this tunability in Sec. 5. Lastly, in Sec. 6 we consider implications of these results for
future applications to semiconducting and hybrid superconducting qubits.

Note added During the review process of this article, a manuscript applying related measure-
ment techniques in a hybrid superconducting-semiconducting device was posted online [75].
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2 Device overview

To fabricate a device capable of forming a ring-shaped DQD, we use a ternary InSb0.86As0.14
two-dimensional ternary electron gas (2DEG) grown as in Ref. [40]. The device (Fig. 1(a))
consists of three Ti / Pd gate layers patterned on the 2DEG, each separated by 20 nm of de-
posited Al2O3 dielectric. Charge is confined to an annular ring geometry by applying voltages
to deplete carriers below the outer and inner depletion gates (red). The voltage on the inner
depletion gate VC also serves to tune the chemical potential of the entire ring. Voltages VBS,
VBD, VBT, and VBB on the barrier gates (yellow) define a large curved QD and a smaller QD
(denoted QDL and QDR, respectively), while voltages VL and VR on the plunger gates (blue)
control their chemical potentials. Specifically, VBS and VBD form tunnel barriers between the
QDs and lead reservoirs, while VBT and VBB tune the individual interdot couplings between
the QDs via each arm of the loop. Two additional unlabeled accumulation gates (gray) con-
trol charge density in the exposed 2DEG between the QDs and Al contacts. Note that when
gates in higher layers overlap with gates in lower layers, their applied voltage in this region
is screened by the lower metallic gate. Hence, only the region of the gate separated from the
2DEG by dielectric significantly tunes the 2DEG chemical potential. Additional details of the
fabrication may be found in Appendix A.

By appropriately tuning gate voltages, the device can be continuously tuned between an
open loop, a loop-shaped QD, and a DQD (Figs. 1(b-d)). Measurements on the former two
configurations enable us to verify that electron transport is phase-coherent over the ring cir-
cumference, and that the ring as a whole supports a single extended electron state. The DQD
configuration represents a minimal system in which interference of tunneling between two
electron states can occur, as we will demonstrate.

Both plunger gates controlling QDL and QDR are bonded to resonators formed by NbTiN
spiral inductors with 420 nH and 730 nH inductance and their parasitic capacitances, lead-
ing to resonance frequencies of approximately 400 MHz and 315 MHz, respectively [41]. We
measure V L

RF and V R
RF: the signal reflected from the resonator connected to gate L or R upon ap-

plying a voltage excitation near their resonance frequencies. This complex amplitude depends
on the capacitance associated with resonant tunneling and losses from dissipative transport.
The former results in a frequency shift of the resonator ∆ f L

0 or ∆ f R
0 , while the latter reduces

its quality factor [27, 33, 37]. The low-power signals reflected by the device are amplified
by a high-electron-mobility transistor at 4 K and measured with a vector network analyzer or
ultra-high-frequency lock-in amplifier to produce V L

RF and V R
RF, see Fig. 1(a). Using frequency

multiplexing [41], both quantities can be measured simultaneously. Measurements are per-
formed at the approximately 20 mK base temperature of a dilution refrigerator.

In each of the three measurement configurations displayed in Fig. 1(b-d), properties of
the device are readily measured using RF reflectometry of resonators connected to gates L
or R. The reflectometry signal is sensitive to the RF admittance of the device [37]. In the
case of an open loop, the resonator on gate R probes the RF conductance of the loop in se-
ries with its gate capacitance, depicted in Fig. 1(e). The device admittance is dominated by
high frequency conductance of electrons traveling around the loop and into the leads in this
case (orange arrows), such that the resonator signal arises primarily due to changes in the
resonator’s internal quality factor. When tuned into a single loop-shaped QD, both gates L
and R tune its chemical potential. Hence, their coupled resonators are sensitive to tunneling
effects between the QD ring and the leads. A chemical potential diagram of this coupling
is shown in Fig. 1(f). Relaxation events in the form of electrons tunneling between the QD
and the leads out of phase with the oscillating gate voltage load the resonator reactively with
tunneling capacitance and dissipatively with Sisyphus resistance [37, 42–44]. Through these
signal contributions, Coulomb resonances of the QD are measurable since they lower both the
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resonator frequency and its quality factor. Finally, when tuned into a loop-shaped DQD, the
gate resonators’ signals are sensitive to interdot tunneling, depicted in Fig. 1(g). In partic-
ular, a substantial interdot tunnel coupling manifests in a purely reactive admittance arising
from quantum capacitance [31,33,37], which can be used to directly measure the tunnel cou-
pling [34]. Hence, the measurement signal arises almost entirely from a frequency shift of the
resonator due to the additional quantum capacitance.

3 Phase-coherent loop and quantum ring

We begin by verifying the electron phase coherence in our device manifested by the AB ef-
fect. To form an open loop without QDs, we set all accumulation, plunger, and barrier gates
to positive voltages to remove potential barriers. Fig. 2(a) presents the four-terminal con-
ductance G and response of the right gate R resonator as a function of the out-of-plane field
B⊥. Oscillations of conductance in flux with a periodicity of h/ne for integer n are expected,
depending on how many times an electron can travel around the loop while maintaining a co-
herent phase [1]. The resonator is sensitive to dissipative transport in the loop despite being
capacitively coupled, manifesting as a reduction of the resonator’s quality factor. Matching
AB oscillations and higher harmonics are prominent in both G and the depth of the minimum
in the reflection coefficient of the gate R resonator on resonance [45]. We observe a varying
φ0 ≡ h/e and h/2e flux periodicity consistent with the expected bounds on area based on the
lithographically defined 180 nm and 320 nm inner and outer radii of the loop. This suggests a
phase coherence length at least on the order of a micron, based on the inferred circumference
of the loop.

To investigate if the entire ring can support an extended electronic state, we continue by
tuning the open loop into a large ring-shaped QD. The electron eigenstates of a sufficiently thin
ring are angular momentum states with energies quadratic in flux, centered at integer multiples
of h/e. By virtue of the Pauli exclusion principle, the highest unoccupied electron state is
expected to exhibit a zig-zag like pattern in energy with an h/e flux periodicity, illustrated
in Fig. 2(b). When the quantum ring forms a QD coupled to leads, this results in analogous
kinked oscillations of the dot’s addition energy—its spacing between Coulomb resonances—as
a function of chemical potential [38,46].

To form such a quantum ring, we lower VBS and VBD to form tunnel barriers (Figs. 1(c) and
(f)), and tune the QD’s chemical potential with VC. Both gate L and gate R’s resonators are
sensitive to tunneling between the dot and surrounding leads, since VL and VR tune the ring’s
chemical potential. To project each complex resonator signal into a single real quantity, we
calculate the absolute distance of it from the Coulomb blockade signal, denoted Ṽ L

RF or Ṽ R
RF (See

Appendix B). Since both resonators are measured simultaneously in this case, we normalize the
resulting magnitudes and sum them for measurements of this QD. In this regime, the large QD
exhibits a finite level spacing as demonstrated by the gapped excitation lines visible in Coulomb
diamond measurements shown in Fig. 2(c). Moreover, we observe h/e-periodic oscillations of
the addition energy as the magnetic flux is swept with zero applied bias in Fig. 2(d), consistent
with expectations for a quantum ring [38,39]. Though the oscillations are highly irregular, the
peak positions and signal strengths’ average Fourier transform shows a clear peak at an h/e
period of 27 mT, shown in the inset. This corresponds to a circumference of 1.4 µm assuming
the ring is circular. Deviations from a regular zig-zag pattern in the addition energy may arise
when the ring is not perfectly one-dimensional, such that radial degrees of freedom contribute
to its wave function. Potential irregularities along the ring’s perimeter and effects of spin-orbit
coupling also can cause the more complex oscillations in its addition energy [47].
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G

Figure 2: Phase-coherent transport and extended electron states. (a) AB oscillations
in the open loop configuration depicted in the inset. Measurements are at zero bias
voltage, of 4-terminal lock-in conductance (black) and of the absolute reflected signal
(gray) from the resonator coupled to the VR electrode. Here, |V R

RF| is taken at the field-
dependent resonance amplitude minimum (right). On the right, example frequency
sweeps from which the minimum signal is calculated are shown. h/e and h/2e-
periodic oscillations are visible in both the conductance and in the RF signal. (b)
Single-particle energies for a thin ring∝ (eφ/h+ l)2 for l ∈ Z where φ is magnetic
flux. The tenth lowest energy state is highlighted, showing that energies for fixed
electron number oscillate in a zig-zag fashion. (c) Coulomb diamonds with the device
configured into a ring-shaped QD (depicted in the inset) at B⊥ = 950 mT. The sum
of normalized signals from both gate resonators is plotted, centered about the signal
in Coulomb blockade. A consistently finite excitation energy is visible. (d) Zero-bias
Coulomb resonances as a function of B⊥,with measurement frequencies adjusted to
be near resonance at each B⊥ value. Inset: Normalized absolute Fourier transform
of the resonance VC position (black) and signal height (gray) averaged across all
Coulomb resonances. Both have clear peaks at an h/e periodicity of 27 mT.
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4 Flux-tunable interdot coupling

Having established phase coherence of the 2DEG loop, we next consider the case of a loop
comprising two quantum dots threaded by a magnetic flux, illustrated in Fig. 3(a). For this
system, we expect magnetic flux to tune the effective interdot tunnel coupling. This is in
contrast to studies embedding QDs into semiconducting rings where one trajectory involving
tunneling through a QD could interfere with trajectories involving the other loop arm, poten-
tially containing a second QD [48–57]. Assuming that at each interdot charge transition both
QDs are described by a single fermionic level, the DQD can be represented as a two-level sys-
tem with an effective coupling matrix element teff ≡ tT + tB. Here, we define tT and tB as the
interdot coupling due to the top and bottom arms, respectively. Under the Peierls substitution,
a magnetic flux φ(B⊥) imparts a phase on each coupling [7]. Using an appropriate choice of
gauge, we then have

|teff|=
Æ

|tT|2 + |tB|2 + 2|tT tB| cos (2πφ/φ0) , (1)

assuming tT and tB had equal phases at zero field. Via quantum capacitance, teff(φ) imparts a
frequency shift on QDL’s gate resonator with a maximal magnitude in the ground state which
is proportional to 1/|teff| at the charge degeneracy point [31, 33]. Consequently, we expect
the frequency shift to oscillate periodically with φ. In Figs. 3(b,c), we plot the expected de-
pendence of the resulting frequency shift on flux [31,33].

Experimentally, we realize this system as a loop-shaped DQD with chemical potentials
tuned by voltages VL and VR. To focus on interdot transitions where the signal contains infor-
mation about the interdot tunnel coupling teff, we lower VBS and VBD until tunneling rates to
the leads are immeasurably small, but still nonzero so that the system can reach its ground
charge state. Meanwhile, we form the DQD by lowering VBT and VBB into a regime of moder-
ate tunneling, such that interdot transitions exhibit a substantial quantum capacitance signal.
The barriers are tuned to be approximately equal based on DC current measurements (Ap-
pendix C).Coulomb diamond measurements demonstrate a varying but finite level spacing
above 70 µeV in both QDs (Appendix D) [58], such that the DQD is well-described by two
coupled but potentially spin-degenerate fermionic levels [59]. Maintaining a finite excitation
energy on both QDs despite their large lithographic size is achievable due to the low effective
mass of roughly 0.016me in the 2DEG [40], which favors confinement.

Selecting a single interdot transition in this regime, we measure gate and frequency depen-
dent traces of the gate L resonator’s response V L

RF as a function of B⊥, aiming to extract |teff|. At
each point in the gate space, we fit the results to an asymmetric resonator model to extract the
resonance frequency shift∆ f L

0 [60–62]. As no resonator losses were measured over this inter-
dot transition, the resonator response may be described as a quantum capacitance Cq loading
the bare capacitance C and inductance L of the resonance frequency as f0 = 1/2π

Æ

L(C + Cq).
Accordingly, we fit the VL dependence of ∆ f L

0 (Cq) to a thermal quantum capacitance model
described by

Cq = 2(eαL)
2 |teff|2

(∆E)3
tanh

�

∆E
2kBT

�

, (2)

to extract |teff|, where

∆E ≡
Ç

α2
L(VL + V off

L )2 + 4|teff|2 , (3)

is the energy splitting between the two dot levels involved in tunneling [31, 33]. The lever
arm αL = 0.18 and electron temperature T = 71 mK are optimized simultaneously for all field
values to produce the minimal fit error (Appendix E). Subsequently they are fixed, with the
only other free parameters being the center offset V off

L of the transition and f0 in the Coulomb
blockade.
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Figure 3: Tuning DQD hybridization with flux. (a) Diagram of a DQD ring threaded
by a magnetic flux φ(B⊥). (b),(c) Schematic mapping of |teff| as a function of mag-
netic fluxφ (c) into a final resonator frequency shift∆ f0(φ) at charge resonance (b),
shown for tT = 1.5tB (solid) and 2tB (dashed). For sizable |teff| the frequency shift
is ∝ 1/|teff| [31, 33]. (d) Fit |teff| values from the frequency response of the gate
L resonator as a function of B⊥ for a single interdot transition. The tunnel coupling
oscillates periodically with varying contrast and amplitude. The inset defines the
charge stability diagram (CSD) color scale and plots the approximately ∝ 1/|teff|
correspondence between the fit |teff| and maximum observed ∆ f L

0 for each B⊥ in
(d). (e-g) Select CSDs at the B⊥ values labeled in (d) showing the line shape of∆ f L

0
across the interdot transitions for different tunnel couplings.

The resulting values of |teff| are plotted in Fig. 3(d), where oscillations of |teff| are clearly
visible. In Figs. 3(e-g), we show examples of frequency shifts of the gate L resonator for several
values of B⊥, where we see that for smaller tunnel couplings the transition appears to be more
narrow, but with a stronger frequency shift. In particular, the tunnel coupling in general does
not reach zero at its minima, suggesting that tT and tB are not precisely equal, as exemplified in
Fig. 3(c). The average value of |teff| between oscillations also varies unpredictably, indicating
that the wave functions of the involved states change over the range of multiple flux periods.
Nevertheless, with this measurement we explicitly demonstrate control of the hybridization
between two fermionic levels with magnetic flux.

5 Limits of flux-tuned tunnel coupling readout

For applications to topological qubits using QDs potentially containing many electrons, one
must choose a particular dot level to optimize tunnel coupling readout. Therefore, in the
same DQD regime as in Sec. 4, we proceed to study the variance of the oscillation amplitude
in a broader field range and for multiple transitions, focusing on the 16 transitions shown in
Fig. 4(a). There, similar to measurements of the ring-shaped QD, we plot the absolute devi-
ation of the complex reflection signal of QDL’s resonator from its average value in Coulomb
blockade: Ṽ L

RF. The complex signal is a one-to-one function of the frequency shift of QDL’s
resonator and is inversely proportional to |teff| for substantial |teff| [63]. An even-odd alter-
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Figure 4: Flux-tunable hybridization of the DQD across multiple dot levels. (a) CSD
with no applied field showing the window of 16 interdot transitions probed over a
sweep of B⊥. Dashed lines show the approximate boundaries of stable charge re-
gions, because weak coupling of the QDs to the leads makes only interdot transitions
visible in the gate L resonator’s signal. Several charge regions are labeled with their
relative charge states up to an offset (NL, NR) for unknown even reference charges
NL and NR on QDL and QDR, respectively. (b) Peak signal deviation from Coulomb
blockade Ṽ L

RF of the four numeral-labeled transitions as a function of B⊥, offset by
0.18 arb.units. (c) Peak positions of interdot transitions in VR coordinates relative
to the lowest peak, averaged across all four columns of transitions shown in (a),
and offset by 2.32 mV. The offset voltages vary linearly with the addition energies
of QDR, so that anticrossings in the positions correspond to anticrossings between
electron states of QDR. The black arrows show example points where a correlation
can be observed between the oscillation amplitude of Ṽ L

RF and anticrossings of QDR
states. (d) Schematic describing the kinks in (c) and sudden changes in the |teff|
oscillations of (b). If a state |ψb〉 overtakes another state |ψa〉 as the ground state of
QDR, and the former has a different tunnel coupling to the ground state of QDL, then
a sudden change in |teff| and its oscillation amplitude may occur at this crossing.

nation in the transition spacing both along the VL and VR axes suggests that both QDs have
spin degenerate levels with a finite level spacing in this window. We sweep B⊥, measuring
new CSDs of the 16 transitions at a single measurement frequency adjusted to remain close to
resonance. From these CSDs, we extract the maximum Ṽ L

RF signal and the approximate peak
position in the gate space for all transitions.

We plot in Fig. 4(b) the peak signal height—proportional to 1/|teff| except when |teff| is
very small—for the column of transitions enumerated in Fig. 4(a). For all four transitions,
h/e-periodic oscillations of the peak height are clearly seen in some ranges of B⊥. There, we
identify four distinct features. First, some regions in Fig. 4(b) present visible oscillations in
a relatively small signal. One such region appears between B⊥ = 220 and B⊥ = 400 mT for
Transition i. As schematically depicted in Fig. 3(b,c), this corresponds to large average |teff| and
asymmetric barriers. Large tunnel couplings lead to a small frequency shift while asymmetry
reduces the amplitude of the oscillations. Second, for smaller mean values of |teff| the signal
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variation with flux is much greater since |d∆ f L
0 /d|teff|| is larger, as seen for transition iv in the

range 280 mT to 400 mT for example. Third, Transition iv at low fields exhibits a substantial
peak height, indicating a small tunnel coupling, but a very weak oscillation contrast. This
suggests that the tunnel barriers are tuned by B⊥ to be substantially asymmetric in this field
range. Finally, a sudden drop of the peak height to near zero sometimes appears near the
oscillation maximum for transitions i and ii. We expect this to be a result of |teff| being small
enough near the maximum peak height that thermal excitations and Landau-Zener transitions
populate the excited DQD state, suppressing quantum capacitance (see Appendix G for a more
detailed argument) [64,65]. Importantly, this also suggests that |tB| ≈ |tT| in those cases.

Differences between these scenarios are known to have consequences when sensing tunnel
coupling to manipulate or measure qubits [34,66,67]. Probing the tunnel coupling with gate
sensing in the regime of very weak tunneling gives a sharp change in the resonator signal for
small changes in |teff|, allowing one to couple QDs weakly to the qubit of interest. Conversely,
the signal is also sensitive to small changes in flux in this case. Certain topological qubit
proposals also rely on a substantial tunneling magnitude for their operation [8].

To better understand the results of Fig. 4(b), we now consider the influence of the specific
electronic levels involved on the amplitude of the tunnel coupling oscillations. To this end, we
plot the relative position VR of interdot transitions averaged across all four columns in Fig. 4(c)
and offset by the inferred product of their charging energy and gate lever arm: 2.32 meV.
This position is proportional to the excitation energies of the different QDR levels [68, 69],
and we observe that they are nearly spin-degenerate at zero field. Kinks can be seen in the
peak positions, indicating (anti-)crossings between levels of QDR, depicted schematically in
Fig. 4(d). At several fields, with examples highlighted by black arrows in Fig. 4(b,c), sudden
changes in the average peak height and oscillation contrast of a transition appear correlated
with anticrossings of QDR levels. We hypothesize that variation in wave function overlap of
different levels with field, as well as the particular levels involved, can have a drastic effect
on tT/B. As the cartoon in Fig. 4(d) illustrates, it may be the case that two different states
of QDR have different wave-function overlaps with the ground state of QDL, and vice-versa.
In particular, transitions between states of opposing spin have teff determined by spin-orbit
coupling strength [26,70,71], while transitions between states of the same spin do not. Given
the large out-of-plane g-factor of these 2DEGs [40], it was difficult to independently study spin
and flux effects. Additionally, some changes in the mean peak height and oscillation contrast
have no obvious correlation with QDR excitation energies, but we note that changes in the
ground state of QDL as a function of field also affect teff. Hence, for any application requiring
hybridization readout between QD levels, the specific levels used must be optimized for a given
magnetic field range.

Lastly, we compare the differences in tunnel coupling readout contrast for regimes of dif-
ferent VBT/BB and thus average tT/B values. From Eq. 1 we expect that for nearly equal tB
and tT, large tunnel couplings should produce the best oscillation contrast, since the tunnel
coupling ranges from |tT| + |tB| to nearly zero. We therefore conduct measurements analo-
gous to those in the intermediate coupling regime of Fig. 4 for other coupling regimes, with
results summarized in Fig. 5 and shown in more detail in Appendix H. Namely, we first bin
the peak heights for a given regime into windows equal to the h/e periodicity extracted from
their average Fourier transform (Fig. 5(d)). Next, we plot bars spanning the minimum Ṽ L

RF
peak height to the maximum for whichever of the 16 transitions maximizes this difference in
a given field bin. In addition to the dataset from Fig. 4, datasets for more negative (closed)
and less negative (open) barrier gate voltages are shown in blue and green, respectively. As
a control, in orange we show the data for an in-plane field sweep over the same transitions
considered in Fig. 4, where no oscillations are seen. Compared to the red ‘intermediate’ cou-
pling regime, the more closed-off regime shows on average a larger variation in peak height
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⊥
‖

d

Figure 5: Contrast of DQD Tunnel Coupling Variation in Different Regimes. (a-c) Bars
showing maximal peak height variation on a single interdot transition spanning the
distance between the smallest and largest observed Ṽ L

RF peak height, binned within
one h/e period of 23.5 mT and plotted for three different regimes of tunnel barrier
tuning. Of the 16 interdot transitions tracked in each dataset, only the bar for the
transition with the largest signal variation for each period is shown. (a) summarizes a
B⊥ sweep in a regime of weak interdot tunneling with more negative barrier voltages,
while (c) shows data for strong tunneling and less negative barrier voltages. (b)
corresponds to the intermediate tunnel barrier data from Fig. 4. The largest contrast
in the signal generally occurs within the weak coupling regime. (d) Absolute Fourier
transforms in each regime averaged across all 16 transitions. Orange represents a
sweep of the in-plane field for the same transitions and tuning as the intermediate
regime. A vertical line shows the peak at 23.5 mT.

across a single h/e period, due to the increased slope of∆ f L
0 with flux as described above. The

open regime shows very weak oscillation contrast despite the tunnel barriers exhibiting simi-
lar resistances to each other (Appendix C), suggesting that larger coupling regimes are more
sensitive to slight asymmetries between tT and tB. If the percent difference between |tT| and
|tB| is non-negligible, then the maximum flux-tuned difference in quantum capacitance signals
(proportional to 1/||tT| − |tB|| − 1/(|tT|+ |tB|) for real tT/B) becomes smaller for larger aver-
age tunnel couplings. Consequently, for flux-tuned qubit readout and manipulation schemes
where the state is encoded in the sum or difference of two tunnel couplings [10–12, 15], the
optimal readout fidelity may occur for weak overall couplings.

6 Conclusions & outlook

Herein we have measured a tunable hybridization between two electronic levels threaded by
a magnetic flux for the first time. Using gate-based RF reflectometry implemented in a phase-
coherent InSb0.86As0.14 2DEG, we measured h/e-periodic oscillations of tunnel coupling be-
tween the levels of two QDs arranged in a loop. Even for nearly symmetrically tuned interdot
tunnel barriers, the coupling was not generically suppressed at its minima, exhibiting a high
degree of variability in magnitude and contrast of the tunnel coupling oscillations. We inferred
that this variability is in part dependent on the specific QD levels involved. Finally, we found
that, given the inherent difficulty of symmetrically tuning two tunnel barriers in parallel, the
best signal contrast across an oscillation period occurs for relatively weak average interdot
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tunnel couplings [34]. On the other hand, tuning a tunnel barrier strength as a function of
flux while probing the gate reflectometry signal at an interdot charge resonance serves in it-
self as a method for tuning |tT| and |tB| to be equal. In this approach one would exploit the
fact that |teff| has a minimum of |tT− tB|, and target the barrier strength where Landau-Zener
transitions suddenly suppress the signal near its maximum as a function of flux, as described
in Appendix G. This work establishes a prerequisite for the readout of qubits formed in topo-
logical nanowires and Kitaev chains [10–12,16,72]. It also demonstrates a new mechanism by
which the effective coupling between localized electronic states can be tuned and illustrates
its limitations, applicable to semiconducting spin and charge qubits [22–24]. Even when un-
desirable, flux-tuned tunnel couplings may arise in two-dimensional QD arrays [5], as direct
tunneling or cotunneling between QDs can occur via more than one trajectory in this case.
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A Device design & fabrication

Here we describe in more detail the design considerations in fabricating the measured device.
One equivalent in design to the one measured from the same chip is shown in Fig. 6(a). Ini-
tially, the chip is covered with a<10 nm epitaxial layer of Al which was selectively etched away
everywhere except in a region to the left and right of the pictured device to form leads, expos-
ing the InSb0.86As0.14 2DEG heterostructure. The 2DEG itself—where electrons conduct—is
formed near the surface of the heterostructure. Details of the heterostructure can be found in
Ref. [40]. Next, the 2DEG was etched away except in a region close to the active device and
along a roughly 140 µm path connecting it to the Al leads, forming a mesa. The fact that the
Al leads are superconducting and separated by roughly 6.3 µm of conducting 2DEG from the
active device means that four-terminal measurements of the device conductance are possible,
including a small resistive contribution from the exposed 2DEG portion of the leads. To do so,
we simply bond two DC lines each to the superconducting source and drain leads. We then
alternated between using atomic layer deposition to deposit roughly 20 nm Al2O3 dielectric
layers then evaporating Ti/Pd gate layers to form three electrically isolated gate layers. Each
layer also contains thicker coarse gate leads (not shown), required to facilitate climbing the
mesa. The 2DEG mesa on which the device was fabricated conducts, so forming a loop re-
quired application of negative voltages both along the outer perimeter of the loop, as well as
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.

a

b

Figure 6: Device design and layer stack. (a) False-color scanning electron micrograph
for a device nominally equivalent to the one measured on the same chip. The colors
are encoded by gate layer, of which there are three, instead of by the gates’ purpose
as was done in Fig. 1(a). (b) Cross-sections approximately depicting the layer stack
of the device along the solid and dashed lines shown in (a). Thicknesses of the
dielectric and Ti/Pd gate layers are relatively to scale, but the widths are not, and
the topography is only schematically depicted.

in the hole in the center. Fabricating a DQD in this loop further necessitated plunger gates to
tune the chemical potential of the QDs and gates to form barriers between them and to the
contacts. One option to satisfy these requirements is to pattern depletion gates in a layer above
the plunger gates needed to tune the QDs, however in this case the leads of the lower layer
gates were found in previously measured devices to screen the depletion gate voltage and pre-
vent forming a stable loop. Hence, it was topologically required to fabricate three gate layers
in order to both have an outer depletion gate underneath the plunger and barrier gates, as
well as a central depletion gate which can cross over the plunger gates to deplete the center of
the loop. The corresponding layer stack is schematized in Fig. 6(b), with details of the 2DEG
heterostructure underneath given in Ref. [40]. A third gate layer had the added advantage
that tunnel barriers could be made effectively more narrow, since barrier gates in the third
layer may overlap with plunger gates in the second layer. Notably, thin wires with very high
resistance were also fabricated on-chip in series with the lower depletion gate leads, such that
cross-capacitances between gates used for RF reflectometry would not shunt the resonator
signal through lossy DC lines to ground.

B Calculating the RF signal deviation from Coulomb blockade

The scattering parameters V L
RF and V R

RF measured in the reflectometry circuit are complex and
at Coulomb resonance the signal information is stored in both their real and imaginary com-
ponents. To illustrate this, we plot the histogram of measured V L

RF values using the dataset of
Fig. 4(a) in Fig. 7. A large concentration of points is centered around the Coulomb blockade
signal (denoted V L0

RF ) away from V L
RF = 0, while an elongated distribution of points corresponds

to the signal around a Coulomb resonance. The vector between these two groupings of mea-
sured values, illustrated with an arrow for an arbitrary V L

RF on Coulomb resonance, contains
most of the signal information. Hence, to plot a real quantity representing the RF signal while
excluding the minimum possible amount of information, we plot the magnitude of this vector,
denoted Ṽ L

RF ≡ |V
L

RF − V L0
RF |. We note that a second elongated distribution of points appears in

Fig. 7 oriented horizontally. This arises from a stray charge resonance unrelated to the QDs but
sensed by resonator L [74], appearing as a vertical resonance along the right side of Fig. 4(a).
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Figure 7: Histogram of the measured complex V L
RF values from the dataset of Fig. 4.

The extracted value of V L0
RF for this dataset is plotted in red, and is roughly centered

over the clustering of points corresponding to the Coulomb blockade signal. Ṽ L
RF is

calculated as the absolute deviation of the signal from this point.

To estimate V L0
RF , we use two different methods. For data shown in Fig. 2, we take the mean

V L
RF over a rectangular window observed to correspond to Coulomb blockade from an initial

inspection of |V L
RF| as V L0

RF . This technique is robust provided that charge jumps do not move
Coulomb resonances into the window. For the data shown in Figs 4, 5 and 11, however, we
use a modified median of the data since it can be automatically calculated without specifying
a window corresponding to Coulomb blockade. Namely, we first extract the lowest 50 % of VL
rows in the dataset in terms of their V L

RF standard deviation. This is because rows with high
standard deviation are expected to contain Coulomb resonances since the signal varies more
from its Coulomb blockade value. From this subset of points, we take the median as V L0

RF . To
illustrate this, we plot the V L0

RF value extracted with this method in Fig. 7 as a red point. We see
that it is roughly centered over the clustering of points corresponding to Coulomb blockade.
Note that the same steps are used for V R

RF data as used in Figs. 2(b) and 2(c). A different
Coulomb blockade value is taken at each magnetic field value in the case of a field sweep,
since the field affects the resonator’s line shape and resonance frequency.

C Tuning symmetric parallel tunnel barriers

To tune the bare tunneling strengths tT and tB to be approximately equal, we select voltages on
their corresponding barrier gates such that each admits the same instantaneous conductance
when the other barrier is completely closed off. This procedure is summarized in Fig. 8. For
this method to be valid, we must assume that the barrier gates have a negligible capacitive
cross coupling, as evidenced by the approximate rectangular shape of their two-dimensional
pinch-off map shown in Fig. 8(a).
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Intermediate

Closed

a b

Open

Figure 8: Pinch-off scans for approximately symmetric barrier tuning. (a) Current
through the device at 3 mV applied bias voltage as a function of VBT and VBB, tuned
into an otherwise open loop. The roughly rectangular shape of the zero-current re-
gion implies a weak cross-coupling between gates BT and BB. Linecuts where BT or
BB are closed (white lines) can thus be used to select barrier voltages for roughly
equal resistance. (b) Linecuts from the current map of (a). To tune for the interme-
diate coupling regime of Fig. 4 (red), or the more closed off (blue) and open (green)
regimes described in Fig. 5, VBT and VBB voltages are chosen such that when the op-
posite barrier is pinched off, they both admit roughly the same current. The relatively
large bias reduces the influence of QD states under the barriers on the measurement.
The instantaneous conductance through the parallel barriers in the closed, interme-
diate, and open voltage regimes are roughly 0.1, 0.3, and 0.4 e2/h.

D Coulomb diamonds

Coulomb diamonds of QDL and QDR are shown in Fig. 9, from which we observe that both
exhibit a consistently finite excitation energy between electronic levels.

E Fitting procedure for extraction of tunnel couplings

Herein we detail the procedure used to extract the effective tunnel coupling magnitude of
a DQD (|teff| in the main text), given a CSD spanning an inter-dot charge transition with a
frequency-dependent response measured at each point for a resonator coupled to one of the
QD’s gates. The parametric capacitance for a gate at voltage Vg primarily coupled to a single
charge island or QD (indexed by i) out of multiple potentially coupled islands is

Cp = α̃i|e|
d 〈n̂i〉
dVg

, (E.1)

where 〈n̂i〉 is the expectation value of charge on QD i and α̃i is a lever arm of the gate’s cou-
pling to the quantum modified by mutual capacitances of this QD to other charge islands in
the system, see Appendix F for further details. In essence, the large inter-dot capacitance of
the system when tuned into the DQD regime (as can be inferred from the inter-dot transition
width in gate space relative to the spacing between transitions in Fig. 4(a) [69]) lowers the ef-
fective lever arm of the gate to the sensed QD. Consequently, we must fit for α̃i independently,
since it is not expected to agree with the lever arms extractable from the Coulomb diamond
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| | . | | .

Figure 9: Coulomb diamonds of QDL (a) and QDR (b). The single QDs are tuned
such that both the relevant lead barrier as well as VBT and VBB are in a weak tunnel-
ing regime. Magnitude of the reflectometry signal near the resonance frequency of
their respective plunger gates’ resonators is plotted. A varying but finite level energy
spacing is visible for both QDs larger than the linewidth.

measurements of Fig. 9. This parametric capacitance can be calculated from the fitted res-
onator frequency f0 as Cp = 1/4π2 L f 2

0 −C where L and C are the resonator’s bare inductance
and capacitance, respectively. In practice, we approximate L at zero magnetic field as its sim-
ulated value for the resonator’s inductor coil. We calculate C from the resonance frequency
in Coulomb blockade, where Cp is assumed zero. At each value of the out-of-plane magnetic
field B⊥, we assume that in Coulomb blockade the only shift in the resonator frequency is due
to changes in L, such that from frequency fits at each field we can extract L(B⊥) assuming
C(B⊥) is fixed. Thus, the parameters L and C are fixed by measurements and not varied in
the subsequent fits described below.

As an explicit model for parametric capacitance, we consider the model of Refs. [31, 33]
for a DQD coupled to a phonon bath. Near an inter-dot transition, this model considers two
charge states with an excess electron residing either on a discrete fermionic mode of the sensed
QD, or a mode of a second QD. These two modes are coupled by tunnel coupling teff, and the
detuning between their energies is given by ϵ = α̃i(Vg−V off

g ) where the offset V off
g determines

the transition position in gate space. In this model, the parametric capacitance is found to be

Cp = 2(eα̃i)
2 |teff|2

(∆E)3
tanh

�

∆E
2kB T

�

︸ ︷︷ ︸

≡Cq(ϵ)

+
(eα̃i)2

4kB T

� ϵ

∆E

�2 γ2

ω2 + γ2
cosh−2

�

∆E
2kB T

�

, (E.2)

where ∆E ≡
p

ϵ2 + 4|teff|2 is the energy splitting of the charge qubit and ω is the angular
resonator measurement frequency. The first term above corresponds to quantum capacitance
while the second corresponds to so-called tunneling capacitance. The parameter γ quanti-
fies incoherent tunneling due to phonon absorption and emission, and in principle is another
parameter we must include in our fit of Cp to extract |teff|.

A resistive contribution to the effective impedance of the sample known as Sisyphus
conductance arises, however, whenever there is substantial tunneling capacitance [31, 33],
which would lower the resonator internal quality factor near the transition. In our fits of the
frequency-dependent CSDs, the change in resonator quality factor was not discernible at the
inter-dot transition, indicating that Sisyphus resistance and likely tunneling capacitance can
be neglected in our fits. This also indicates that all information about inter-dot tunneling is
contained in the frequency shift∆ f0, such that we may solely fit∆ f0(Vg) to extract |teff|, rather
than simultaneously fitting the frequency shift and quality factor. Regardless, in Fig. 10(c) we
show that maximizing the contribution of tunneling capacitance leads to a negligible change
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a

b

c

d

Figure 10: Optimization of tunnel coupling fits. (a) The mean absolute residual
difference between the fit Cp line shape of the inter-dot charge transition as a function
of VL and the Cp values extracted from fit frequency shifts of QDL’s resonator. The
black line shows the fixed αL value minimizing the residual error for each fixed T .
(b) The mean residual error with αL fixed at its optimal value shown in (a) for each
fixed value of T . A clear minimum is found at T = 71mK and αL = 0.18. (c)
The extracted |teff| for zero tunneling capacitance (γ = 0) and maximal tunneling
capacitance, which saturates as γ→∞. The presence of tunneling capacitance has
a negligible effect on |teff| except at very small |teff|. (d) Fit |teff| with αL fixed to the
value minimizing fit error for each value of fixed temperature.

to the extracted |teff| except for very small tunnel couplings. Hence, we neglect tunneling
capacitance for the fits of Fig. 3(d).

Under these constraints, we extract a fitted Cp(Vg) from fitted ∆ f L
0 and our knowledge of

L and C described above, and fit the result to

Cp = Cq(αL(Vg − V off
g )) + Coff , (E.3)

with Cq as defined above and where we denoted α̃i → αL as the effective QDL lever arm.
In fact, we select five rows of the gate voltage near the center of the transition and fit them
simultaneously with the same |teff|, αL, and T , but allow for a different Coff and V off

g for each
row. In other words, we fit multiple traces for values of the other QD’s gate voltage near the
center of the charge transition in the charge stability diagram. The offset Coff accounts for
errors in converting from ∆ f0 to Cp. These parameters are fitted independently for each row.

Since T and αL should be roughly the same at all fields, we sweep different fixed values
of these parameters iteratively and choose the values which lead to a minimum total residual
across all magnetic field values. We found a global optimum of T = 71mK and αL = 0.18
which minimized the mean absolute fit residual error, see Fig. 10(a,b). This temperature
is larger than the roughly 20 mK temperature of the dilution refrigerator used, which is not
unexpected since electron temperature may be raised by connection to higher temperature
cables and electronics [58]. Lastly, in Fig. 10(d), we observe that the oscillation amplitude
of |teff| does vary with increasing temperature used in the fits (with αL fixed at the optimum
shown in Fig. 10(a)), but the oscillations of |teff| are consistently present with a period of one
flux quantum.
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F Capacitance formula including mutual capacitances

In order to determine the degree to which mutual capacitances between QDs suppress para-
metric capacitance, we follow the approach of Refs. [31,33] to derive an expression for para-
metric capacitance, additionally considering mutual capacitance effects to second order. We
consider the case of N charge islands coupled capacitively to a single gate voltage Vg via ca-
pacitances Cgi for i ∈ {1, 2, ..., N}, with mutual capacitances between the islands of Ci j for
i ̸= j, and other capacitive couplings to ground encompassed by an environmental capaci-
tance Cei . The latter includes any capacitances to lead reservoirs, for example. We refer to the
total capacitance of each island as Ci ≡ Cgi + Cei +

∑

j ̸=i Ci j . Note that by definition, we have
Ci j = C ji . The total differential capacitance Cdiff as seen by Vg can then be written as the sum
over differential capacitance contributions of each island

Cdiff =
N
∑

i=1

d 〈Q i〉
dVg

=
d
∑N

i=1 〈Q i〉
dVg

, (F.1)

where Q i is the total effective charge on the capacitor Cgi as seen by Vg and the angular brackets
denote the statistical average of the charge. In general, this average must include thermody-
namic, quantum mechanical, and driving effects.

To solve this expression, we write 〈Q i〉 in terms of known capacitances and the expectation
values 〈n̂i〉 of electron number on each island with charge number operator n̂i . First, by def-
inition of the gate capacitances we may write 〈Q i〉 = Cgi(Vg − Vi) where Vi is the electrostatic
potential on island i. On average, we can write the charge expectation value on island i as a
sum over all of the voltage induced charges from each capacitor

−|e| 〈n̂i〉= Cgi(Vi − Vg) +
∑

j ̸=i

Ci j(Vi − Vj) + CeiVi , (F.2)

with e being the electron charge [69]. Solving for Vi and recalling the definition of Ci , we find

Vi =
1
Ci

 

CgiVg +
∑

j ̸=i

Ci jVj − |e| 〈n̂i〉

!

. (F.3)

By substituting this result for each Vj into the original expression for Vi , we may recursively
generate expressions for Vi to higher and higher orders in the mutual capacitance lever arms
Ci j/Ci . Doing so twice, substituting the result into the definition of 〈Q i〉, and using the resulting
expression to calculate Cdiff, we find

Cdiff = Cgeo + Cp +O(C3
i j/C

3
i ) , (F.4)

with contributions from a constant geometric capacitance

Cgeo ≡
N
∑

i=1

αi



Ci − Cgi −
∑

j ̸=i

Ci j

 

α j +
∑

k ̸= j

C jk

C j
αk

!



 , (F.5)

and a 〈n̂i〉-dependent parametric capacitance:

Cp ≡
N
∑

i=1



αi +
∑

j ̸=i

 

α j
Ci j

C j
+
∑

k ̸= j

αk
Ci jC jk

CiCk

!



 |e|
d 〈n̂i〉
dVg

, (F.6)

where we have defined the bare lever arms αi ≡ Cgi/Ci .
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Hence, in addition to large mutual capacitances renormalizing a coupled island’s lever
arm by increasing Ci , there is an additional renormalization factor due to mutual capacitances
increasing the effective lever arm. The lowest-order of the latter corrections are multiplied
by the cross-capacitive lever arms α j ≪ 1, however. Note additionally that as Vg tunes the
islands near an inter-dot charge transition between islands i and j, the transfer of an electron
by this tuning implies d 〈n̂i〉/dVg ≈ −d 〈n̂ j〉/dVg so that cross-capacitances Cg j between the
gate voltage and islands other than the island it is designed to sense suppresses the parametric
capacitance signal at these transitions [31, 33]. From the slope of successive triple points
across multiple inter-dot transitions, these cross capacitances are estimated to be negligible in
the measured regimes of this experiment. In this limit, where Vg primarily couples to a single
island i, but the island itself has relatively larger mutual capacitances to the other islands, we
discard terms of the order Ci jα j/C j for j ̸= i but preserve terms to second order in Ci j/C j
when multiplied by αi ≫ α j , leading to

Cp ∼

 

1+
∑

j ̸=i

C2
i j

C2
i

!

αi|e|
d 〈n̂i〉
dVg

=
1+

∑

j ̸=i C2
i j/C

2
i

Cei + Cgi +
∑

j ̸=i Ci j
Cgi|e|

d 〈n̂i〉
dVg

, (F.7)

valid in the limits Ci j/Ci ,α j ≪ 1 and α j ≪ Ci j/Ci for all j ̸= i.

G Quantum capacitance suppression due to Landau-Zener transi-
tions

Landau-Zener transitions (LZTs) make the used capacitance model inapplicable for small val-
ues of |teff| ≲

p

ħhαδVRF f0, where δVRF is the resonator’s oscillating voltage amplitude, α is
its lever arm to the QD, and f0 is the resonator frequency [65]. There LZTs become frequent,
biasing the system towards equal occupation of the excited and ground charge states where
quantum capacitance is zero [34]. For a DQD with a short decoherence time, and at zero
detuning from the charge transition, the probability of a LZT occurring twice in a resonator
cycle is e−2|teff|2/ħhαδVRF f0 [64,65]. Due to the sinusoidal nature of the oscillating voltage, a LZT
occurring twice in a cycle means that the tunneling electron spends an equal amount of time
in the excited DQD state as in the ground state. In other words, the population of the excited
state is equal to the population of the ground state when this probability is one. Hence, we
expect quantum capacitance to be eventually suppressed for small enough |teff|, since LZTs
become more probable as |teff| becomes smaller for fixed δVRF. Thermal redistribution also
becomes important for small |teff|, further suppressing the frequency shift [31,33].

H Field-dependence of peak heights in different coupling regimes

In this section the full datasets from which Fig. 5 was constructed are shown in Fig. 11, includ-
ing the dataset used in Fig. 4. The four datasets are measured in three different regimes of
inter-dot barrier gate voltage strengths, denoted the ‘closed’, ‘intermediate’, and ‘open’ regimes
ordered from the strongest to the weakest barrier gate voltages separating QDL and QDR.
Though not shown in the figure, in the closed regime at fixed field values, some transitions
occasionally exhibited a jitter from row to row in VL-space. This may be due to very weak
coupling from the DQD to the leads resulting in electrons tunneling on to the DQD stochas-
tically as the gate is swept, and may result in unphysical additional suppression of the peak
height for some fields. Nonetheless, the prominent peak of the Fourier transform of this data
at a periodicity of one flux quantum (shown in Fig. 5) indicates that the sharp dips in the data
truly correspond to a suppression of the signal periodically as a function of flux.
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Figure 11: Field-dependence of inter-dot charge transitions in different regimes of
tunnel coupling. (a) Measurement frequency for resonator L used at each out-of-
plane field value B⊥ for the three different regimes of tunneling strength inves-
tigated as well as for an in-plane field B∥ sweep for the same transitions of the
intermediate regime. (b-d) Field-dependence data for the closed (b), interme-
diate (c), and open (d) tunnel coupling regimes. These correspond to voltages
(VBT, VBB) = (−2.1,−1.65)V, (−1.9,−1.49)V, (−1.82,−1.34)V, for the closed, in-
termediate, and open regimes respectively. VBS and VBD were tuned to a very weak
tunneling regime of VBS = −2.05V and VBD = −2.75V, except in the closed regime
where VBS = −2.5V. Left: CSDs measured at zero magnetic field, plotting the re-
flected signal magnitude Ṽ L

RF from resonator L centered about the Coulomb block-
ade value. Right: Field dependence of the peak deviation from Coulomb blockade
for the 16 inter-dot transitions shown in the CSDs, offset by 0.3 (b), 0.17 (c), and
0.09 arb.units (d) for clarity. Peak heights in (c) for the B∥ sweep are plotted in or-
ange. In (d), a stray resonance appeared which occluded inter-dot transitions for
some transitions in a wide window. This resonance interfered with extraction of the
peak signal height, and so appears as a gap in the plot. Red markers denote points at
which charge jumps appeared in the search window used to extract the peak signal
height.
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