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Abstract

We revisit the problem of integrability breaking in free fermionic quantum spin chains.
We investigate the so-called adiabatic gauge potential (AGP), which was recently pro-
posed as an accurate probe of quantum chaos. We also study the so-called weak in-
tegrability breaking, which occurs if the dynamical effects of the perturbation do not
appear at leading order in the perturbing parameter. A recent statement in the litera-
ture claimed that integrability breaking should generally lead to an exponential growth
of the AGP norm with respect to the volume. However, afterwards it was found that weak
integrability breaking is a counter-example, leading to a cross-over between polynomial
and exponential growth. Here we show that in free fermionic systems the AGP norm al-
ways grows polynomially, if the perturbation is local with respect to the fermions, even
if the perturbation strongly breaks integrability. As a by-product of our computations
we also find, that in free fermionic spin chains there are operators which weakly break
integrability, but which are not associated with known long range deformations.
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1 Introduction

In quantum many body physics there is the dichotomy of chaos versus integrability. The two
families of systems display markedly different dynamical behaviour. For example, isolated
chaotic models equilibrate to the Gibbs ensemble [1], and they typically feature diffusive trans-
port of their conserved quantities (such as energy or particle number). In contrast, integrable
models equilibrate to the Generalized Gibbs Ensemble [2], and typically they support ballistic
transport. Integrable models include free systems (in arbitrary space dimension), and also a
plethora of interacting models in one space dimension.

Practically every quantum many body system can be uniquely characterized as either
chaotic or integrable, at least in the thermodynamic limit, where both the system size and
the number of particles is approaching infinity. However, for a finite size system it can be
more difficult to decide between quantum chaos and integrability. This motivated the search
for numerical probes of quantum chaos.

Traditionally there have been two main methods to treat this problem. First, if a given
model is suspected to be integrable, one can attempt to obtain exact many body eigenstates
using the method of the Bethe Ansatz [3]. Alternatively, one could try to find the higher
conserved charges or the standard algebraic structures of integrability such as Lax operators
and R-matrices [4]. If either one of these methods works, then the model is found to be
integrable. However, these special analytic computations can be difficult to carry out, and
often they require an expert working with one dimensional integrable models. The alternative
and by now quite standard method is to investigate the level spacing statistics of the finite
volume systems. Chaotic models display Wigner-Dyson statistics, while integrability leads to
a Poisson distribution [5,6]. In the case of spin chains exact diagonalization can be performed
in a straightforward way, yielding direct information about the question at hand.

However, level spacing statistics might not be the optimal tool in all cases. In certain
situations it is not possible or very demanding to reach large enough volumes for the method
to work. For example, there are models which might be “close” to an integrable model, either
because they arise from small perturbation of a known model [7, 8], or perhaps simply by
chance [9,10]. In such cases the signs of quantum chaos become visible only in larger volumes,
making then numerical work more challenging.
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In the recent work [11] the so-called Adiabatic Gauge Potential (AGP) was proposed as
an alternative probe of quantum chaos. The AGP carries information not only about the level
spacings, but also about the matrix elements of local operators. The key statement of [11]
was, that if a chaotic or integrable model is perturbed by a local operator, then the norm of the
AGP behaves differently, depending on whether the original model was chaotic or integrable,
and on whether the perturbation itself is along an integrable direction. It was argued that if
the model is chaotic, or if the model is integrable but the perturbed model becomes chaotic,
then the AGP scales exponentially with the volume. In contrast, if the model is integrable and
the perturbation is also along an integrable direction, then the AGP scales polynomially.

Following [11] the method of AGP was also considered in the work [12], which treated
the so-called “weak breaking of integrability”. Here the description “weak” refers to a special
selection of the perturbing operators, such that the integrability breaking effects do not arise
to the leading orders in the perturbing parameters [13–15]. Most importantly, for these types
of systems the thermalisation time is larger than usually, and it scales as t th ∼ λ−κ with κ > 2,
as opposed to the standard case of κ = 2. Such a weak breaking was considered recently in
multiple works [16–18]; it was explained in [17,19] that weak integrability breaking is closely
related to long range deformations known from the literature dealing with the AdS/CFT cor-
respondence in the planar limit [20,21]. It was a key statement of [12] that weak integrability
breaking leads to a crossover between polynomial and exponential growth of the AGP, as the
perturbation strength is increased.

In this paper we revisit the behaviour of the AGP in spin chains which are equivalent
to free fermions. We show that the picture painted in the previous works is not complete:
We argue that in free fermionic models the AGP scales polynomially even if the perturbation
breaks integrability, given that the perturbation is local with respect to the fermions. The
distinction between weak and strong integrability breaking is irrelevant in such situations.
This observation about free fermionic models has escaped previous works dealing with this
problem.

Regarding weak integrability breaking there is an open question: Does the framework of
the long range deformations [20,21] cover all cases of weak breaking? We also contribute to
this question. In the case of free fermions we show that there are perturbations, which are local
in space and also local with respect to the fermions, that are weakly breaking integrability, and
that do not follow from the boost or bi-local long range deformations discussed in [19].

We should mention that there is some similarity of our computations and those in the recent
work [22], which considered the perturbation of free fermions in the continuum. However,
the primary goals and thus the results obtained are different.

2 Adiabatic gauge potential and integrability breaking

In this Section we set the stage for the computations to be presented in later Sections. First
we introduce the key definitions and a few basic statements in the literature.

2.1 Adiabatic gauge potential

Consider a Hamiltonian H(λ), which depends on a parameter λ. This Hamiltonian has a set
of orthonormal eigenstates |n(λ)〉, satisfying the Schrödinger equation:

H(λ) |n(λ)〉= En(λ) |n(λ)〉 . (1)

For simplicity we assume that the spectrum is non-degenerate, so that every eigenvector is well
defined up to a phase. Cases with degeneracies will be treated afterwads. Then it is always
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possible to define a unitary transformation that gradually rotates these eigenstates:

|n(λ)〉= U(λ) |n(0)〉 . (2)

The unitary transformation is well defined, up to the choice of the phases of the vectors.
The generator of this transformation is called the adiabatic gauge potential, denoted as Aλ.

The formal definition is:

Aλ = i [∂λU(λ)]U†(λ) , Aλ |n(λ)〉= i∂λ |n(λ)〉 . (3)

There is some ambiguity in choosing the diagonal components of Aλ in the eigenbasis of H(λ),
because the relative phases of the eigenvectors could be chosen as an arbitrary function of λ.
Here we adopt the standard definition that

〈n(λ)|Aλ |n(λ)〉 ≡ 0 . (4)

It can be easily shown that the AGP satisfies the following operator equation [23,24]

i∂λH(λ) =
�

Aλ, H(λ)
�

− iF(λ) , (5)

where the operator F(λ) is diagonal in the eigenbasis of H(λ). Explicitly, it is given by

F(λ) = −
∑

n

∂ En(λ)
∂ λ

|n(λ)〉〈n(λ)| . (6)

The matrix elements of the AGP between the eigenstates of H(λ) can be expressed as:

〈m(λ)|Aλ |n(λ)〉= −
i
ωmn
〈m(λ)|∂λH(λ) |n(λ)〉 , ωmn = Em(λ)− En(λ) . (7)

These definitions of the AGP are ill-defined if there are degeneracies in the spectrum. In
the degenerate cases the unitary rotation U(λ) is ill-defined, and it might happen that the
derivatives in (3) become singular. This can be avoided by degenerate state perturbation
theory, thus making sure that we always choose a basis in which the perturbation is diagonal
within the degenerate subspaces. However, this would complicate both the formal and the
numerical treatment.

Alternatively, it is possible to define a regularized form of the AGP, which is convenient for
both purposes. Following [11] we define the regularized AGP through the matrix elements

〈m(λ)|Aλ(µ) |n(λ)〉= −
iωmn

ω2
mn +µ2

〈m(λ)|∂λH(λ) |n(λ)〉 , (8)

where µ is a small energy cutoff. This regularized form can be expressed alternatively as

Aλ(µ) = −
1
2

∞
∫

−∞

sign(t)e−µ|t|(∂λH)(t) , (∂λH)(t)≡ eiH t∂λHe−iH t . (9)

In the next section we discuss the AGP as a probe of quantum chaos and explain the proper
choice of the energy cutoff µ.
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2.2 AGP as a probe of quantum chaos

In the recent work [11] it was proposed that the AGP can serve as an accurate probe of quantum
chaos. The key idea was to study the volume dependence of the norm of the AGP, which
would tell the difference between chaos and integrability. Now we briefly summarize the
main statements of [11].

We start with a perturbation
H(λ) = H0 +λV , (10)

where H0 can be chaotic or integrable, and if H0 is integrable in itself, the perturbed model
H(λ)might or might not be integrable with a finite λ. For such a perturbation we can compute
the norm of the AGP as

∥Aλ∥2 =
1
D
∑

n

∑

m ̸=n

| 〈m|Aλ |n〉 |2 , (11)

with D being the dimension of the Hilbert space. The matrix elements of Aλ are given by
(7) or by the regularized formula (8). For the regulator the proper choice was found to be
µ∼ LD−1 [11]. We use this regulator in all our numerical examples below.

The investigation of [11] revealed intriguing scaling behavior with respect to the system
size L. If H0 is chaotic, or if it is integrable but the perturbation breaks integrability, then the
norm of the AGP exhibits exponential scaling:

∥Aλ∥2
L
∼ eκL , (12)

for any finite parameter λ. This scaling behaviour should hold in the L→∞ limit.
On the other hand, if H0 and also H(λ) are integrable, then a polynomial bound on the

AGP norm was found:
∥Aλ∥2

L
∼ Lp , p ∈ R . (13)

An intriguing aspect of the adiabatic gauge potential (AGP) is its behavior at λ = 0. It
was claimed in [11] that in most cases the scaling should be the same for λ = 0 and λ ̸= 0.
This would make it possible to distinguish integrable models and integrable perturbations
from all other cases, already at λ = 0. However, the situation is more complicated: there are
exceptional cases when the scaling at λ = 0 differs from that at λ ̸= 0. These are the cases
that we treat in this paper.

First we focus on the cases with weak integrability breaking, and we review the known
results regarding this class of perturbations. Afterwards in Section 3 we discuss that special
cases that appear in free fermionic models; these are new results of the present work.

2.3 Weak integrability breaking

Let us consider the case when H0 is integrable, but the perturbation in (10) is breaking inte-
grability. We say that we are dealing with weak integrability breaking if the physical effects of
integrability breaking do not manifest themselves at leading order in the coupling constant.
For example, the relaxation time towards the Gibbs Ensemble of the non-integrable H(λ) be-
haves as t ∼ λ−κ, with κ≥ 4 [18] as opposed to the standard case with κ= 2 [25,26].

Weak integrability breaking as we defined it appears to be associated with quasi-conserved
quantities [12,16,19]. There are also other mechanisms guaranteeing the persistence of certain
dynamical features of integrability (for example, for the stability of superdiffusion see [27]),
but in the following we focus on the weak breaking associated with the quasi-conserved quan-
tities.
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If a certain Hamiltonian H0 is integrable, then it possesses a family of conserved charges
Qα, such that each charge is extensive with a local operator density, H is a member of the
family, and the charges commute among themselves:

[Qα,Qβ] = 0 . (14)

If the perturbation (10) was integrable, then each of the Qα could be extended into a λ depen-
dent operator, and the commutativity could be preserved for all α. For later use we introduce
the notation Q(0)α , which stands for the conserved charge in the original model at λ= 0.

We say that a certain charge Q(0)α is quasi-conserved, if the commutation with H(λ) is
preserved to the leading order in λ. In other words, if there is an operator Q(1)α , which is
extensive with a local density, such that

[H +λV,Q(0)α +λQ(1)α ] =O(λ2) , (15)

which is equivalent to the relation

[V,Q(0)α ] + [H,Q(1)α ] = 0 . (16)

This relation should hold for the model with every length L large enough that the charges can
be defined there, or formally in the infinite volume limit.

At this point the main question is how to find solutions of (16). More precisely, for a given
integrable model how to classify the perturbations V which allow the solution of (16) for at
least a subset of the original charges. If a solution is found, then we say that the combination
Qα + λQ(1)α is a quasi-charge for the given perturbation. Note that if a solution is found, then
it is not unique, because Q(1)α can be modified by adding any operator which commutes with
unperturbed Hamiltonian.

A formal solution to the problem can be given using the AGP itself. Let us assume for
a moment that the model Hamiltonian is free of degeneracies, and the AGP can be defined
unambiguously in the eigenbasis of H. This assumption is generally not true in translation-
ally invariant integrable models. However, at this point we will sketch a formal procedure,
therefore we neglect the issue of degeneracies for a moment.

Now consider the equation (5), which defines the AGP Aλ for any chosen perturbation V .
We extend this relation to the higher charges, by making them λ-dependent and prescribing
the evolution in λ as

i∂λQα(λ) =
�

Aλ,Qα(λ)
�

− iFα(λ) , (17)

where the operator Fα(λ) is again diagonal in the instantenous eigenbasis of H(λ). Explicitly,

Fα(λ) = −
∑

n

∂Qα,n(λ)

∂ λ
|n(λ)〉〈n(λ)| . (18)

Then it follows from the Jacobi identity for the triplet of operators (H,Q(0)α ,Aλ=0) and from
the commutativity

[H,Q(0)α ] = 0 , (19)

that the first order corrections in λ satisfy (16). The problem with this formal approach is that
it does not guarantee that the first order correction Q(1)α has the required locality properties,
namely that it has a local or quasi-local operator density.

The problem of selecting “good” AGP operators for this purpose was considered in a seem-
ingly unrelated part of the literature, namely in the theory of long range deformations, orig-
inally worked out for the spin chains describing scaling dimensions of local operators in the
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planar limit of N = 4 super-symmetric Yang-Mills theory [20, 21]. In the case of long range
deformations every charge is expanded into a formal and infinite power series in λ:

Qα(λ) =
∞
∑

n=0

λn

n!
Q(n)α , (20)

such that the family of charges exactly preserves commutativity to each order in λ. Such long-
range deformation can be used to build systems with weak integrability breaking, simply by
truncating the above power series to the first or the first few terms [19].

The works [20, 21] considered the long range deformations in infinite volume, and the
generating equations (5)-(17), focusing on the so-called fundamental models associated to
the group SU(N) with N ≥ 2. The diagonal pieces Fα(λ) were discarded, which is possible
in the formal infinite volume limit. It was found that there are two types of generators which
guarantee the locality of the deformations: those of the so-called boost and the bi-local type.
For a review of these concrete cases we refer to the works [17,19]. We should note that long
range deformations of the bi-local type can be seen as a lattice version of the (generalized)
T T̄ -deformations [28, 29], and this observation has been used in a series to construct and
study new integrable models [30–34].

The connection between the AGP and the generator of long range deformations was ob-
served already in [12, 19]. However, there are crucial differences too. The generator of the
long range deformations was defined formally in an infinite volume setting, and its action was
defined directly on the infinite volume asymptotic states, thus avoiding the problems of de-
generacies. In contrast, the AGP is an inherently finite volume quantity, it is well defined only
if the diagonal terms are also treated, and it should be compatible with all the degeneracies
of the finite volume system. It can be attributed to these differences, that explicit formulas
for the real space representation of the AGP are not known, not even in the cases of weak
integrability breaking.

The norm of the AGP was investigated numerically in [12]. These numerical observations
showed that the AGP undergoes a crossover from polynomial to exponential scaling as the size
of the system grows. Moreover, the value of the crossover parameter itself exhibits exponential
scaling with the system size, characterized by λ∗ = e−γL , where γ is a real positive number.
This finding provides valuable insights into the behavior of the AGP in systems with weak
integrability-breaking perturbations.

In the next section we are going to discuss models which are equivalent to free fermions,
and we will consider two types of perturbations: those that are local and non-local with re-
spect to the fermions, respectively. In the case of local perturbations we also find a crossover
from polynomial to exponential scaling, even though the perturbation may break integrability
strongly.

3 Weak integrability breaking of free fermions

In this section we examine free fermionic models with a special class of perturbations: we limit
ourselves to 4-fermion perturbations, which are homogeneous in space and which conserve
the fermion number. For these cases we show that it is always possible to build quasi-charges
with the desired locality properties. Therefore, we establish weak integrability breaking. The
corresponding AGP norm is considered afterwards in the next section.
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3.1 Model and setup

As our main example we choose the so-called X X model, which is defined as

HX X =
1
4

∑

j

�

X jX j+1 + YjYj+1

�

. (21)

Here and in the following X j , Yj and Z j are the standard Pauli operators acting at site j. We
will consider this model with periodic boundary condition. In this case the summation over j
above runs from 1 to L and periodicity is assumed for the indices. Here we apply the standard
Jordan-Wigner transformation:

c†
j =

 

j−1
∏

k=1

Zk

!

σ−j , c j =

 

j−1
∏

k=1

Zk

!

σ+j , (22)

which gives us the fermionic model defined as

H0 =
1
2

L
∑

j=1

�

c†
j+1c j + h.c.

�

, c j+L ≡ c j . (23)

This model is equivalent to the periodic X X model only in the sector with an odd number of
fermions: in the sector with an even number of fermions an extra factor of −1 appears in the
boundary conditions for the fermions. However, this sign difference is not essential to our
computations, therefore we dismiss it in the following, and in most of our examples we treat
the model Hamiltonian (23) directly.

The Hamiltonian (23) can be diagonalized by standard methods. We use the Fourier trans-
form of the fermionic operators:

cp =
1
p

L

L
∑

j=1

eip jc j , c†
p =

1
p

L

L
∑

j=1

e−ip jc†
j , (24)

to arrive at

H0 =
L
∑

n=1

ϵpc†
pcp , p =

2πn
L

, (25)

where the spectrum of quasi-particles is given by

ϵp = cos(p) . (26)

The Jordan-Wigner transformation is highly non-local, and this can have consequences for
the locality properties of the perturbations: operators which are local in the XX chain might
not be local in the fermionic representation, and vice versa. The non-locality can arise from the
Jordan-Wigner string

∏

j Z j , therefore locality is preserved if this string of operators cancels.
It follows, that those operators which can be represented by an even number of fermions close
to each other are local on both sides of the duality. Let us now consider examples for such
operators.

First we define the fermion number operators

n j = c†
j c j , (27)

which can be represented in the original spin language as

n j =
1− Z j

2
. (28)
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Any combinations of nearby n j operators are local both in the X X chain and also in the
fermionic chain.

In contrast, let us consider the local operators X j . It follows from (22) that they can be
expressed as

X j =

 

j−1
∏

k=1

(1− 2nk)

!

(c j + c†
j ) . (29)

Any perturbation with an odd number of X -operators in the X X chain is therefore highly non-
local with respect to the fermions. It will be demonstrated later that this is crucial for the
behaviour of the AGP norm.

3.2 Quasi-charges

Here we examine a Hamiltonian of the form (23). We consider the 4-fermion perturbation
with U(1) and translation symmetry:

H = H0 +λV , (30)

where

H0 =
∑

p

cos(p)c†
pcp , V =

1
L

∑

p⃗∈K
V (p1, p2, p3, p4)c

†
p1

c†
p2

cp3
cp4

.1 (31)

Here the sum is over the discrete momenta pi = 2πni/L, ni = 1, 2, ..., L and we defined the
set:

K ≡
¦

pi : p1 + p2 = p3 + p4 (mod 2π)
©

, (32)

where momentum conservation is the consequence of translational invariance. One can sum
over momentum p4 to rewrite the perturbation in the following form:

V =
1
L

∑

p1,p2,p3

Ṽ (p1, p2, p3)c
†
p1

c†
p2

cp3
cp1+p2−p3

, (33)

where we defined Ṽ (p1, p2, p3) ≡ V (p1, p2, p3, p1 + p2 − p3) and used the 2π periodicity of
fermion operators cp+2πn ≡ cp.

At this point, we do not specify the concrete values of V (p⃗) or the real space representation
of operator V . Instead, we just make the natural assumption that V (p⃗) is a continuous function
of pi , scaling O(1) with system size L and bounded by constant:

max
p⃗∈K
|V (p⃗)|= V . (34)

Now we attempt to solve (16) for the selected charges Q(0)α . In principle, we could choose
the zeroth order charges to be any linear combination of the fermionic mode operators, i.e.
Q(0) =

∑

k F(k)n(k), with arbitrary independent functions F(k). However, in order to guar-
antee locality in coordinate space we consider the known family of local charges Q(0)(n,σ) with
n ∈ N, σ = 0, 1, given by

Q(0)(n,σ) =
1
2
(−i)σ

L
∑

j=1

(c†
j c j+n + (−1)σc†

j+nc j) . (35)

1Throughout this subsections we use the shorthand p⃗ for the sequence of momenta p1, p2, p3, p4, and p for
p1, p2, p3.
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These charges are expressed in Fourier space as

Q(0)(n,σ) =
∑

k

ε(n,σ)(k)n(k) , (36)

with
ε(n,0)(k) = cos(nk) , ε(n,1)(k) = sin(nk) . (37)

The Hamiltonian itself is a member of the family, as H =Q(0)(1,0).
Let us now consider the family of charges with σ = 0. We attempt to find a solution to

(16) directly in Fourier space. The first commutator in (16) is found to be

�

V,Q(0)(n,0)

�

= −
1
L

∑

p∈K

�

cos(np1) + cos(np2)− cos(np3)− cos(np4)
�

V (p⃗)c†
p1

c†
p2

cp3
cp4

= −
4
L

∑

p1,p2,p3

cos
�

n
p1 + p2

2

�

sin
�

n
p3 − p1

2

�

sin
�

n
p3 − p2

2

�

Ṽ (p)c†
p1

c†
p2

cp3
cp1+p2−p3

. (38)

Then a formal solution to the first-order correction is given by

Q̃(1)(n,0) =
1
L

∑

p1,p2,p3

f̃n(p)Ṽ (p)c
†
p1

c†
p2

cp3
cp1+p2−p3

, (39)

with

f̃n(p1, p2, p3) =
cos

�

n p1+p2
2

�

sin
�

n p3−p1
2

�

sin
�

n p3−p2
2

�

cos
� p1+p2

2

�

sin
� p3−p1

2

�

sin
� p3−p2

2

� . (40)

We stress that this is just a formal result because both the numerator and the denominator can
be zero. An actual solution is found only if all zeroes of the denominator are cancelled by the
numerator.

Therefore, the necessary condition for solving (16) reads:

cos
�

n
p1 + p2

2

�

sin
�

n
p3 − p1

2

�

sin
�

n
p3 − p2

2

�

Ṽ (p1, p2, p3) = 0 , for p ∈ E , (41)

where we defined the set of momentum with zero energy excitation (given by denominator of
(40)):

E ≡
n

pi : cos
� p1 + p2

2

�

sin
� p3 − p1

2

�

sin
� p3 − p2

2

�

= 0
o

. (42)

We argue that the condition (41) is satisfied for any function Ṽ (p) if n is odd. If for some
p∗ we have sin(p∗) = 0, then sin(n p∗) = 0 for n ∈ Z; if for some p∗ we have cos(p∗) = 0, then
cos(n p∗) = 0 only for odd n. Thus, the necessary condition for the existence of a solution to
(16) is satisfied for odd n and any function Ṽ (p).

As we already mentioned, one has the freedom of adding operators that commute with
the initial Hamiltonian to the corrections of the charges. We add diagonal contributions to the
charges (39) by analytical continuation of the function f̃n(p) to p ∈ E:

Q(1)(n,0) =
1
L

∑

p1,p2,p3

fn(p)Ṽ (p)c
†
p1

c†
p2

cp3
cp1+p2−p3

, fn(p)≡ lim
p̃→p

f̃n(p̃) . (43)

The analytically continued function fn(p1, p2, p3) is now smooth.
With this, we have constructed the quasi-charges for the 4-fermion perturbations of the

X X model. In the following subsection, we discuss the locality of the resulting operators.
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However, first we comment here on higher perturbations, that are local in fermions. For
simplicity, we focus on the 6-body perturbations. There the formal ratio of eigenvalue differ-
ences analogous to (40) takes the form

cos(np1) + cos(np2) + cos(np3)− cos(np4)− cos(np5)− cos(np6)
cos(p1) + cos(p2) + cos(p3)− cos(p4)− cos(p5)− cos(p6)

, (44)

where momentum conservation p1+ p2+ p3 = p4+ p5+ p6 (mod 2π) holds due to translation
invariance. In contrast to the 4-fermion case, there is now no way to factorize the expressions
of cosines in the numerator and denominator of (44). This implies that submanifolds defined
by the zeroes of the numerator and the denominator will generally not coincide, leading to
divergences for the first-order correction Q(1)(n,0). This implies that the quasi-charges can not be
defined, and the 6-body perturbations are generally strongly breaking integrability.

3.3 Locality of quasi-charges

In this subsection we discuss locality properties of the results in equations (40)-(43). We focus
on the case of Ṽ (p) being polynomial in eip j of the following form:2,3

Ṽ (p1, p2, p3) =
M
∑

m j=−M

v(m1, m2, m3)e
i(p1m1+p2m2−p3m3) , v(−m) = v(m)∗ , (45)

where M (the highest order in eip j ) does not scale with system size L.
Such a form arises when the perturbation involves fermionic operators placed only M sites

apart. For instance, the perturbation operator V =
∑

j n jn j+l (which is integrability breaking
for l ≥ 2 and integrability preserving for l = 1) in momentum space looks as:

Vl ≡
L
∑

j=1

n jn j+l =
1
L

∑

p1,p2,p3

ei(p2−p3)l c†
p1

c†
p2

cp3
cp1+p2−p3

, (46)

so in this case the potential Ṽ (p1, p2, p3) = ei(p2−p3)l is of the form (45) with highest order
M = l.

The function fn(p) can also be rewritten as a polynomial of eip j using the simple formulas
for the ratio of sines and cosines:

sin(nx)
sin(x)

=

(n−1)
2
∑

m=− (n−1)
2

e2i xm ,
cos(nx)
cos(x)

= (−1)
n−1

2

(n−1)
2
∑

m=− (n−1)
2

e2i xm(−1)m , for odd n . (47)

Then the function

fn(p) = (−1)
n−1

2

(n−1)
2
∑

m j=−
(n−1)

2

(−1)m1 eip1(m1−m3)+ip2(m1−m2)+ip3(m2+m3) , (48)

is also a polynomial of the form (45) with the highest order in eip j equal to (n− 1).

2The negative sign convention −m3p3 in the exponent leads to simpler formulas later. Compare this to the
definition of p ·m after (49).

3The summation over m j is a shorthand for three distinct summations over m1, m2, m3 each having the same
lower and upper bound.
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The function fn(p)Ṽ (p) can also be written as a polynomial in eip j :

fn(p)Ṽ (p) =
(n−1+M)
∑

m j=−(n−1+M)

ξ(m)eip·m , (49)

where ξ(m) = ξ(m1, m2, m3) are coefficients, which do not scale with L, and we used the
notation p ·m = p1m1+p2m2−p3m3. Now the quasi-charges given by (43) can be represented
in the following way:

Q(1)(n,0) =
(n−1+M)
∑

m j=−(n−1+M)

ξ(m)
1
L

∑

p

eip·mc†
p1

c†
p2

cp3
cp1+p2−p3

. (50)

Notice that each term of the form

χ(m) =
1
L

∑

p1,p3,p3

ei(p1m1+p2m2−p3m3)c†
p1

c†
p2

cp3
cp1+p2−p3

(51)

is local in coordinate space. To show this let us transform the previous equation to coordinate
space using (24):

χ(m) =
1
L3

L
∑

x j=1

c†
x1

c†
x2

cx3
cx4

∑

p

eip·m−ip1 x1−ip2 x2+ip3 x3+i(p1+p2−p3)x4 . (52)

Summing over components of p, we obtain:

χ(m) =
L
∑

x i=1

c†
x1

c†
x2

cx3
cx4
δm1−x1+x4

δm2−x2+x4
δ−m3+x3−x4

. (53)

Next, we sum over the coordinate components x1, x2, x3, so we are left with the sum over one
coordinate component:

χ(m) =
L
∑

x=1

qx(m), qx(m)≡ c†
x+m1

c†
x+m2

cx+m3
cx . (54)

The density operator qx(m) has finite support supp(qx(m)) ≤ 2(M + n− 1) for bounded
|mi| ≤ (n− 1+M) from sum (50), and translation by a sites acts as Taqx(m) = qx+a(m). So,
the operator χ(m) is local.

Thus, the correction to charges given by a finite sum of local operators is also a local
operator given by:

Q(1)(n,0) =
(n−1+M)
∑

m j=−(n−1+M)

ξ(m)χ(m) , χ(m) =
L
∑

x=1

c†
x+m1

c†
x+m2

cx+m3
cx . (55)

Above we constructed the charge corrections only for the σ = 0 family, and for odd n. In
the same way, we can build the first-order corrections for the family of σ = 1 charges, but now
for even n (see Appendix B). Thus, half of the initial charges of H0 can be deformed up to the
first order in λ, which is the desired extensive number of corrections.

In this Subsection we focused on the perturbations described by Ṽ (p) of the form (45). In
Appendix C we also consider the general case of a bounded function Ṽ (p), for which we prove
the so-called quasi-locality and pseudo-locality of the resulting quasi-charge.
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3.4 Weak breaking and long range deformations

In the previous Section 2.3 we explained that the long range deformations of integrable spin
chains always lead to weak integrability breaking, simply by truncating the deformation to
some chosen order in the deformation parameter. It is an interesting open question, whether
all cases of weak integrability breaking can be obtained in such a way.

There are only two classes of systematic long range deformations known in the literature:
the boost and the bi-local type [20, 21]. In the case of the XX model, the work [19] investi-
gated various local perturbations, and found that the specific perturbation V2 defined in (45)
is not generated from a long range deformation of either the boost or the bi-local type. This
would imply that V2 is strongly breaking integrability. In contrast, we found that this specific
perturbation weakly breaks integrability; explicit coordinate-space expressions for the first few
local quasi-charges corresponding to this perturbation may be found in Appendix B.

Our results imply that either there are more types of long range deformations for free
fermions, or that not all cases of weak breaking follow from the long range deformations.
At present it is not clear, whether the perturbation by V2 can be extended to an actual long
range deformation. It might be that even though the 4-fermion terms are only weakly breaking
integrability, there is no way to extend the quasi-charges beyond leading order. This question
deserves further study.

4 AGP for free fermions

In this section, we provide a rather general argument, which shows that in free fermionic
systems the AGP scales polynomially if the perturbing operator is local with respect to the
fermions. We start with an analytical calculation of the AGP for 4-fermion perturbations with
U(1) symmetry and conservation of momenta. Additionally, we also consider the AGP for 6-
fermion perturbations, demonstrating that the scaling remains polynomial, even though those
perturbations are generally strongly breaking integrability.

In the case of the 4-fermion perturbation we start again with

V =
1
L

∑

p

Ṽ (p1, p2, p3)c
†
p1

c†
p2

cp3
cp1+p2−p3

, (56)

where we assume again that Ṽ is a continuous function bounded by a constant

max
p
|Ṽ (p1, p2, p3)|= V , (57)

and V is a local operator. Here we would like to use (9), in order to express AGP. To do so
let us notice that the simple structure of Hamiltonian implies exact time dependence for the
fermion modes

cp(t) = e−iϵp t cp , c†
p(t) = eiϵp t c†

p . (58)

In order to find the AGP at the point λ = 0 we use the formula (9), which in the present case
reads

A= −1
2

∞
∫

−∞

sign(t)e−µ|t|V (t) , (59)

where the time-evolved perturbation term is given by

V (t) =
1
L

∑

p

eiωp t Ṽ (p1, p2, p3)c
†
p1

c†
p2

cp3
cp1+p2−p3

, (60)
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and ωp = ϵp1
+ ϵp2
− ϵp3
− ϵp1+p2−p3

. A straightforward calculation leads to:

A= − i
L

∑

p

ωp

ω2
p +µ2

Ṽ (p1, p2, p3)c
†
p1

c†
p2

cp3
cp1+p2−p3

. (61)

Now it can be argued that the norm of the operator above always grows at most polynomially.
On the one hand, note that the number of terms in the summand grows polynomially with the
volume. The growth of each term is determined by the Ṽ coefficients and theω-dependent pre-
factors, where the Ṽ pre-factor comes from the perturbation which was assumed to be local. If
there are special algebraic relations between the ϵp, then the sum can be exactly zero; however,
in such a case the pre-factor vanishes due to the regularisation we discussed. Otherwise, the
minimal non-zero value decays with a power of L, due to the typical quantization conditions
that determine the ϵp. Therefore, with any choice of the volume dependence of the regulator
µ, the pre-factor can only grow polynomially with the volume.

This argument does not depend on the number of fermions in the perturbing operator. In
fact, the same argument can be repeated for 6-fermion or even higher body perturbations. The
only crucial point is that the number of fermion operators has to be limited by a constant, i.e.
the perturbation V has to be local with respect to the fermions, in order to have a polynomial
growth of the AGP. This is one of our main results.

Below we investigate this statement for the 4-fermion and 6-fermion perturbations. In the
4-fermion case we are able to derive an analytical bound for the AGP norm, whereas for the
6-fermion perturbation, we can find the scaling using numerical analysis.

4.1 Bound on the AGP

Let us consider the above 4−fermion perturbation and calculate the bound on the scaling of
the AGP norm. Using (61) the regularized norm of AGP is given by:

||A||2 = 1
2L L2

∑

p,q

ω2
p

(ω2
p +µ2)2

Ṽ (p)Ṽ (q)Tr
�

c†
p1

c†
p2

cp3
cp1+p2−p3

c†
q1

c†
q2

cq3
cq1+q2−q3

�

. (62)

Here we used that Tr[c†
p1

c†
p2

cp3
cp1+p2−p3

c†
p̃1

c†
q2

cq3
cq1+q2−q3

] ̸= 0 only ifωp = −ωq , otherwise the
diagonal matrix element of the operator expression inside the trace vanishes in the eigenbasis
of H0. Also, we take into account that the terms with ωp = 0 do not contribute to the norm
of the AGP due to the regularization discussed before.

In order to bound the norm of AGP, we first bound the nonzero energy difference ωp in
sum (62) which reads

ωp = ϵp1
+ ϵp2
− ϵp3
− ϵp1+p2−p3

= 4 cos
� p1 + p2

2

�

sin
� p3 − p1

2

�

sin
� p3 − p2

2

�

. (63)

In order to lower bound |ωp | notice that a trigonometric factor in the above formula takes up
its minimal nonzero absolute value when its argument becomes as close to one of its zeros as
possible - allowed by the n1, n2, n3 momentum quantization numbers.4

For the sine factors sin( nπ
L ), where n ∈ Z, the minimal nonzero value is sin(πL ), whereas

for the cosine cos( nπ
L ) it is the same if L is even, while becomes sin( π2L ) for odd L. Both of

these smallest values can be bounded from below simply by 1/L:

sin
�π

L

�

> sin
� π

2L

�

>
1
L

, for L > 1 . (64)

4Note that these have also some constraints, since when n1 = n2 or n3 = n4, the string of fermionic operators
vanishes inside the perturbation (31) as c†

p1
c†

p1
= 0 or cp3

cp3
= 0.
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Figure 1: Scaling of minimal gap min
p /∈E

�

�ωp

�

� for 4-fermion interaction with the system

size L. The gap scales polynomially with the number of sites ∼ L−3. The bound is
given by (65).

Thus, for the minimal nonzero energy difference given by (63), we have

min
p /∈E

�

�ωp

�

�> 1/L3 , L > 1 , (65)

where E is set of momentum with zero energy difference ωp = 0 introduced before in (42).
We can also verify the obtained lower bound by numerically calculating the minimum energy
difference. We use (63) and determine the minimum energy difference as a function of the
system size see Figure 1.

Now we can calculate the bound on the AGP itself. Using the ωp bound (65) we deduce
that:

ω2
p

(ω2
p +µ2)2

< L6 . (66)

Therefore the only thing we need to bound now is the sum over momenta of the coeffi-
cients Ṽ (p):

�

�

�

�

�

∑

p,q

Ṽ (p)Ṽ (q)Tr
�

c†
p1

c†
p2

cp3
cp1+p2−p3

c†
q1

c†
q2

cq3
cq1+q2−q3

�

�

�

�

�

�

< 4! V2 L32L−4 . (67)

Here we used some simple statements about the traces of the fermionic operators, with details
given in Appendix A.

Thus, the AGP is bounded by a polynomial function of the system size

||A||2 < 3
2
V2 L7 . (68)

To further demonstrate the polynomial scaling of the norm, we take a specific example and
calculate the AGP numerically for the system defined by the following perturbation:

V =
L
∑

j=1

n jn j+2 . (69)
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Figure 2: Scaling of the AGP norm ||A||2 with the system size for the integrability
breaking perturbation V2 =

∑

j n jn j+2. The regularization is given by µ= L2−L . The
inset shows the scaling of the AGP norm on a log-log scale. It scales polynomially
with the system size ||A||2 ∼ Lα, where α≈ 3.2.

In Figure 2 we show the AGP’s behaviour as a function of the system size, and we find that
indeed it scales as some power of L. The exponent that we obtained numerically is smaller
than the one appearing in the bound (68).

Having discussed the 4-fermion perturbations, now we turn our attention to the 6−fermion
perturbations

V =
1
L2

∑

p

Ṽ (p1, p2, p3, p4, p5)c
†
p1

c†
p2

c†
p3

cp4
cp5

c∆p , 5 (70)

where ∆p = p1 + p2 + p3 − p4 − p5, and we introduced the function Ṽ (p) with 5 arguments
in a similar fashion as we did in (56). In this case the AGP takes the form

||A||2 = 1
2L L4

∑

p,q

ω2
p

(ω2
p +µ2)2

Ṽ (p)Ṽ (q)Tr
�

c†
p1

c†
p2

c†
p3

cp4
cp5

c∆pc†
q1

c†
q2

c†
q3

cq4
cq5

c∆q

�

. (71)

To determine the scaling of the AGP norm, we investigate the scaling of the minimal energy
gap, given by:

ωp = cos(p1) + cos(p2) + cos(p3)− cos(p4)− cos(p5)− cos(∆p) . (72)

We argue that the minimal non-zero value scales polynomially with 1/L. Every momentum
p j appearing in the cosines has a specially selected value 2πI j/L, with some I j = 1, 2, . . . , L.
These values come from the quantization conditions of the free model. Sometimes there can
be coincidences when the whole sum is actually zero, and we assume that the smallest non-
zero values appear close to these special coincidences. Then simply an expansion into a Taylor
series around the zero values will tell us that the smallest non-zero values behave polynomially
with 1/L. As we increase the number of the terms in the sum, then by special cancellations it
is possible to obtain higher and higher order cancellations in 1/L, but we can never achieve
an exponentially small non-zero value.

This argument is not rigorous. We searched the mathematical literature for a proof of our
claim. The related problem of finding the minimum non-zero value of sums of roots of unity

5Here p means the sequence p1, p2, p3, p4, p5.
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Figure 3: Polynomial scaling of the minimal energy difference
�

�ωp

�

� for 6-fermion
interactions. The numerical data is fitted for even and odd L values separately, and
the black line corresponds to the estimated bound∝ L−8.

appeared in the recent mathematical work [35], but for the case of five or more roots no proof
was found. We did not find any other mathematical work discussing this question, thus it
appears that this particular problem is not yet solved.

In order to substantiate our claim, we also performed further numerical studies, in the
special case of the 6-body perturbations. In Figure 3 we plot the minimal energy among all
possible values of p, and we observe that the scaling of the minimal energy remains polyno-
mial, specifically min

pi : ωp ̸=0

�

�ωp

�

�∼ L−(6.0±0.2) when fitted. There seem to be points not respecting

this scaling and thus the lower bound is better approximated by some other power

min
pi : ωp ̸=0

�

�ωp

�

� ≳ const.× L−β , (73)

where β ≈ 8 based on Figure 3. This allows us to estimate the scaling of the AGP using the
formula in (71), resulting in:

||A||2 ≲ const.× L2β+1 , (74)

that is, the scaling is bounded by L17 from our numerics up to L = 200. It is likely that this high
power could be lowered by more accurate estimates. However, for our purpose, it is enough
that we establish the polynomial growth.

4.2 AGP at λ ̸= 0

Until now, our focus has been on the behavior of the AGP at the integrable point λ = 0. We
now shift our attention to the case of finite λ, employing the formulas given by (8) and (11).

At first, we consider the specific example given by (69) again. As discussed in Subsection
3.4, we expect this to be weak integrability breaking. We carry out the numerical analysis of
the AGP norm, presenting its variation as a function of the system size L, where 7 ≤ L ≤ 19
across different parameter values of λ. The results are shown in Figure 4. We observe a shift
from polynomial to exponential scaling. This pattern is consistent with previously investigated
examples of weak integrability breaking.

Now, we turn to the case of a 6-fermion perturbation

V =
L
∑

j=1

n jn j+1n j+2 , (75)
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Figure 4: The AGP norm as a function of system size L, for the Hamiltonian of
free fermions perturbed by the potential (69) for different values of the integrability
breaking coupling λ. We observe the crossover from polynomial to exponential scal-
ing.
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Figure 5: The AGP norm as a function of the system size, for the perturbation (75),
plotted for several λ values.

which is an example of strong integrability breaking operators by our argument given at the
end of Subsection 3.2. As shown in Figure 5, there is a crossover from polynomial to exponen-
tial scaling, and it happens for smaller system sizes with increasing λ, similarly to the weak
integrability breaking scenario. This indicates that the λ ̸= 0 AGP seems to be insensitive to
whether we perturb our free fermionic model weakly or strongly. This is opposite to what has
been found when perturbing interacting integrable models in [12].
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Figure 6: The AGP norm at λ = 0 in case of the X X model for the perturbing oper-
ator

∑L
j=1 X j . This operator breaks integrability, and it is non-local in the fermions,

therefore we find an exponential scaling of the AGP norm.

4.3 AGP for non-local perturbations

In this subsection, we explore a perturbation that is non-local in the fermions. In this scenario,
we expect exponential scaling with respect to the volume.

The Hamiltonian we consider is expressed in terms of the spin operators as

H = HX X +λ
L
∑

j=1

X j , (76)

where HX X is a Hamiltonian of X X model we discussed in Subsection 3.1, and X j are corre-
sponding Pauli matrices. Notice that now the perturbation term V =

∑

j X j is non-local in
fermions because the X j-s contain the Jordan-Wigner strings.

We use exact diagonalisation in order to calculate the AGP norm as a function of the system
size; results are shown in Figure 6. We see that already at λ= 0 the scaling of adiabatic gauge
potential is exponential with the system size ||A||2 ∼ eκL , where κ∼ 0.61(7).

5 Conclusions

In this work we investigated integrability breaking in systems solvable by free fermions. We
obtained two main results, which escaped previous works. First, we proved that local 4-
body perturbations are always weakly breaking integrability. Second, we found that the AGP
norm scales polynomially for integrability breaking terms which are local with respect to the
fermions, irrespective whether the integrability breaking is strong or weak (in the sense de-
scribed in the main text). In contrast, the AGP is exponentially growing if the perturbation is
non-local in the fermions, and this holds already for the unperturbed model with λ = 0. We
focused on the specific example of the XX model, but all our arguments depend only on the
free fermionic nature, and not on the other concrete details of the models.

Our first result might not be surprising from the point of view of Generalized Hydrody-
namics (GHD). It can be argued, that a particle number conserving 4-body interaction does
not give first order corrections to the hydrodynamical flow equations, simply as a result of
energy and momentum conservation in the 2 body scattering events [36,37]. However, in the
present work we obtained the result by exact computations involving the fermionic fields.
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In the concrete case of the XX model we found a particular 4-fermion perturbation, for
which it is known that it does not follow from a known long range deformation, see the dis-
cussion in Section 3.4. This implies that either there are new types of long range deformations
(at least for the free models), or that the possibilities for weak integrability breaking are simply
just wider than the families of long range deformations.

Some of our results are based on mathematical statements about the minimal non-zero
values of finite sums of roots of unity. These statements seem natural, but in fact they haven’t
been proven. A special case of such questions has been investigated recently in [35]. It would
be useful to actually prove these statements.
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A Trace identities

In this section, we provide useful formulas for traces of multiple spinless fermion operators.
We will consider an equal number of creation and annihilation operators since we consider
models with U(1) global charge. The expression we evaluate is

I(n)i, j,k,l = Tr
�

c†
i1

...c†
in

c j1 ...c jn c†
k1

...c†
kn

cl1 ...cln

�

. (A.1)

The simplest example we need is n= 1

Tr[c†
i c jc

†
kcl] =

�

δ
j
iδ

l
k +δ

l
iδ

j
k

�

Tr [nink] = 2L−2
�

δ
j
iδ

l
k +δ

l
iδ

j
k

�

. (A.2)

The general expression is given by the sum over all different contractions of creation and
annihilation operators, namely:

I(n)i, j,k,l = 2L−2n
∑

σ

(−1)#(σ)δσ( j1)i1
...δσ( jn)in

·δσ(l1)k1
...δσ(ln)kn

, (A.3)

where #(σ) is number of intersections of contraction. Notice that the number of terms in
(A.3) is (2n)!.

B Examples for local quasi-charges

As stated at the end of Subsection 3.2 it is possible to build the σ = 1 quasi-charges as well
for a 4-fermion perturbation, at least for even n. The calculation is very similar, here we only
point out the differences. The trigonometric identities used in (38) now give

sin(np1) + sin(np2)− sin(np3)− sin(np4) = 4 sin
�

n
p1 + p2

2

�

sin
�

n
p3 − p1

2

�

sin
�

n
p3 − p2

2

�

,

(B.1)
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if p1 + p2 = p3 + p4 (mod 2π), thus in place of (47) we need to use

sin(nx)
sin(x)

=

n
2−1
∑

m=− n
2

e(2m+1)i x ,
sin(nx)
cos(x)

= i(−1)n/2
n
2−1
∑

m=− n
2

e(2m+1)i x(−1)m , for even n . (B.2)

After these steps, the machinery is very similar to the σ = 0 case, therefore let us here only
summarize the final result for both families:

Q(1)(n,σ) =
n−1+M
∑

m j=−(n−1+M)

ξ(n,σ)(m)χ(m) , ξ(n,σ)(m) =
M
∑

m′j=−M

X(n,σ)(m −m′)v(m′) , (B.3)

where the coordinate-space coefficients are determined by the function

X(n,σ)(m) = iσ(−1)
n−1+σ

2 (−1)
m1+m2−m3−σ

2 Θ(n,σ)(m1 +m2 −m3)

×Θ(n,σ)(m1 −m2 −m3)Θ(n,σ)(−m1 +m2 −m3) , (B.4)

and where the characteristic function restricting the domain is

Θ(n,σ)(m) =

¨

1 , if − n+ 1≤ m≤ n− 1 , and m ∈ 2Z+σ ,

0 , otherwise.
(B.5)

For the specific family of perturbations (46), especially for l = 1,2 we show explicitly the
coordinate-space expression (B.3) of the first few constructed quasi-charges.

The (integrability preserving) perturbation V1 =
∑

j n jn j+1 which is the analog of the X X Z-
type perturbation

∑

j Z j Z j+1 for the X X model, modifies the first non-trivial charge by the
correction

Q(1)(2,1) = −i [χ(2, 0,1) +χ(2,1, 2)] + h.c. , (B.6)

which is exactly the O(λ) part of the corresponding X X Z charge (see H3 in equation (5.12)
of [38]) when represented via fermions after Jordan-Wigner transformation. The same charge
correction for the range-3 perturbation V2 =

∑

j n jn j+2 looks as:

Q(1)(2,1) = −i [χ(2,0, 1) +χ(2, 1,2) +χ(3,0, 2) +χ(3, 1,3)] + h.c. (B.7)

The next charge, i.e. Q(0)(3,0) for which the construction is possible then gets its correction
as

Q(1)(3,0) =
1
2
χ(1,0, 1)−χ(2, 0,2)−χ(2,1, 1)

+χ(3, 0,1) +χ(3,1, 2)−χ(2, 1,3) +χ(3,2, 3) + h.c. , (B.8)

in case of the XXZ-type perturbation V1, and as

Q(1)(3,0) = −
1
2
(χ(1, 0,1) +χ(2,0, 2) +χ(3, 0,3)) +χ(2,1, 1)

+χ(3,0, 1) +χ(3, 1,2)−χ(2,1, 3) +χ(3,2, 3)

+χ(4,1, 2) +χ(4, 1,3)−χ(3,1, 4) +χ(4,2, 4) + h.c. , (B.9)

for perturbation V2.

21

https://scipost.org
https://scipost.org/SciPostPhys.17.3.075


SciPost Phys. 17, 075 (2024)

C Locality of quasi-charges for general potential

In this section we consider the locality properties of quasi-charges given by equations (40)-
(43) for different classes of functions Ṽ (p). First, we define the notion of pseudolocality and
quasilocality of an operator. Following the literature we define the Hilbert–Schmidt (HS) inner
product and the corresponding HS norm of operators:

〈A, B〉=
1
DTr(A†B)−

1
D2

Tr(A†)Tr (B) , ||A||2HS = 〈A, A〉 , (C.1)

where D = 2L is Hilbert-space dimension. The operator O is pseudolocal if it satisfies the
following two conditions:

1) 0< lim
L→∞

||O||2HS

L
< +∞ , 2) ∃ local b : lim

L→∞
〈b,O〉 ̸= 0 . (C.2)

The quasilocality property also constrains the local densities of operators. Namely, consider
the translationally invariant operator O given by:

O =
L−1
∑

x=1

P x(q) , q =
L
∑

r=1

q[1,r] , (C.3)

where P x is translation operator by x sites, q is density and q[1,r] is local density supported
over sites 1, ..., r. Then, the operator O is quasilocal if it has exponentially decaying HS norm
of local densities with increasing support:

∃ C ,ξ > 0 : ||q[1,r]||2HS < Ce−ξr . (C.4)

Notice that a quasilocal operator is automatically pseudolocal.
Pseudolocality. Here we consider the general case of the function Ṽ (p), which is bounded

maxp Ṽ (p) = V , but not necessarily continuous in thermodynamic limit (e.g. disorder inter-
action). We show that in this case, the charge corrections are pseudolocal. The existence of
an extensive number of pseudolocal charges constrains the transport properties of a quantum
many-body system, in particular, it leads to ballistic scaling of the dynamical response function
(see e.g. [39]).

Notice, that since we consider the quasi charges of the form Q =Q(0) +λQ(1) +O(λ2) the
second condition is automatically satisfied due to the locality of the non-perturbed charges
given by (35). In order to bound the HS norm of corrections we found (43), first we have to
bound the function fn(p1, p2, p3) given by Eq.(40). It’s easy to prove by induction that:

�

�

�

�

cos(nx)
cos(x)

�

�

�

�

≤ n ∀x : cos(x) ̸= 0 , and odd n , (C.5a)
�

�

�

�

sin(nx)
sin(x)

�

�

�

�

≤ n ∀x : sin(x) ̸= 0 , and ∀n ∈ Z . (C.5b)

The function fn(p1, p2, p3) given by 3 ratios of cosines and sines is bounded by

| fn(p1, p2, p3)| ≤ n3 , pi ∈
2π
L
Z . (C.6)

Let us calculate the operator norm of the first-order corrections:

||Q(1)(n,0)||
2
HS =

1
2L L2

∑

p,q

fn(p) fn(q)Ṽ (p)Ṽ (q)Tr
�

c†
p1

c†
p2

cp3
cp1+p2−p3

c†
q1

c†
q2

cq3
cq1+q2−q3

�

≤
V2n6

2L L2

∑

p,q

�

�

�Tr
�

c†
p1

c†
p2

cp3
cp1+p2−p3

c†
q1

c†
q2

cq3
cq1+q2−q3

�

�

�

�≤
3
2
V2n6 , (C.7)
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where we used (A.3) to decompose the trace of 8 fermionic operators as a sum of 4! Kro-
necker delta terms with overall multiplication factor 2L−4 (see Appendix A). From (C.7) fol-

lows that lim
L→∞
||Q(1)(n,0)||

2
HS/L < +∞, which implies lim

L→∞

�

�

�

¬

Q(0)(n,0),Q
(1)
(n,0)

¶

�

�

�/L < +∞ from

Cauchy–Schwarz inequality. Thus, we proved the pseudolocality of quasi-charges in the case
of any bounded two-body interaction potential Ṽ (p):

for odd n : 0< lim
L→∞

||Q(0)(n,0) +λQ(1)(n,0)||
2
HS

L
< +∞ . (C.8)

Quasilocality. Here we consider the case of smooth function Ṽ (p). Let us transform the
expression for charge corrections (43) to coordinate space:

Q(1)(n,0) =
∑

x1,x2,x3,x4

F(x1 − x4, x2 − x4, x4 − x3)c
†
x1

c†
x2

cx3
cx4

, (C.9)

where we defined

F(y1, y2, y3)≡
1
L3

∑

p

e−ip·y Ṽ (p1, p2, p3) fn(p1, p2, p3) .6 (C.10)

In the thermodynamic limit L→∞, F(y) becomes the Fourier transform of a smooth function:
F(y)→ 1

(2π)3
∫

d3p e−ip·y Ṽ (p) fn(p). The Fourier transform of a smooth function is exponen-

tially decaying, namely ∃A,κ : F(y) ≤ Ae−κ|y | (Payley-Wiener theorem, see e.g. [40, 41]).
Thus, the density of quasi-charges (C.9) is exponentially localized, so they are quasilocal.
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