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Abstract

We show that the low-energy effective actions of two ten-dimensional supersymmetric
heterotic strings are different by a Z3-valued discrete topological term even after we
turn off the E8× E8 and Spin(32)/Z2 gauge fields. This will be demonstrated by consid-
ering the inflow of normal bundle anomaly to the respective NS5-branes from the bulk.
This result will be used to show further that the Spin(16) × Spin(16) non-tachyonic
non-supersymmetric heterotic string has the same non-zero Z3-valued discrete topolog-
ical term. We will also explain the relation of our findings to the theory of topological
modular forms. The paper is written as a string theory paper, except for an appendix
translating the content in mathematical terms. We will explain there that our finding
identifies a representative of the Z/3-torsion element of π−32TMF as a particular self-
dual vertex operator superalgebra of c = 16 and how we utilize string duality to arrive
at this statement.
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1 Introduction and summary

Z3-valued discrete topological term: There are two supersymmetric heterotic string theo-
ries in ten dimensions [1–3]. Although they have different gauge groups, namely E8× E8 and
Spin(32)/Z2,1 the field contents of the gravitational sector are common to both and consist of
the metric, the dilaton, the B-field and their superpartners. Their two-derivative low-energy
effective actions of the gravitational sector are also the same, since they are uniquely fixed by
supersymmetry. Discrete topological terms in the actions are not constrained in the same way,
however, and thus can differ between two supersymmetric heterotic theories. Our main aim in
this paper is to show that they are indeed different, by a certain Z3-valued discrete topological
term.

To describe the topological term involved, let us first recall that the gravitational sector
satisfies the relation

dH =
1
2

p1 , (1)

where H is the gauge-invariant field strength of the B-field and p1∝ tr R2 is the first Pontryagin
class of the spacetime curvature [5]. As written above, the equation is at the level of differential
forms, but the relation has by now been convincingly shown to be satisfied at a more refined
topological level, defining what mathematicians call the string structure, see e.g. [4,6–8].

In general, given a spacetime structure S, the possible discrete topological terms in d di-
mensions are known to be classified in terms of the torsion part of the bordism group ΩS

d of
d-dimensional S-structured manifolds [9–11]. To be more explicit, we say two d-dimensional
S-structured closed manifolds M1,2 are bordant, M1 ∼S M2, when there is a (d+1)-dimensional
S-structured manifold N such that its boundary is ∂ N = M1 ⊔ M2, where M2 is M2 with ori-
entation and other associated geometric structures appropriately reversed. Then the classes
[M] of S-structured manifolds under the equivalence relation ∼S form the S-bordism group.
Now, suppose [M] ̸= 0 but n[M] = 0. Then we can introduce a Zn-valued topological term de-
tecting the class [M], which assigns an exponentiated Euclidean action e2πik/n to the bordism
class k[M].

In the case of the string structure, the computation of the bordism groups was done in [12],
with the results given as follows:

d 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ω
string
d Z Z2 Z2 Z24 0 0 Z2 0 Z⊕Z2 (Z2)2 Z6 0 Z Z3

. (2)

1We will not be perfectly consistent in our notations concerning the global form of gauge and other groups. For
example, E8×E8 should more precisely be (E8×E8)⋊Z2. We will later refer to the gauge group of the non-tachyonic
non-supersymmetric heterotic string theory in ten dimensions as Spin(16)×Spin(16); the precise global structure
in this case does not seem to have been completely written down in the literature, to the knowledge of the authors,
although see [4]. We will be careful at least to make sure that the global form we present does consistently act on
the fields in the theory concerned.
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Anomaly inflow ×
N ′6

N7 = N ′6 × R≥0 S3

H flux
∫

S3 H = 1

M10 = N7 × S3 = N ′6 × (S
3 × R≥0)

Figure 1: The anomaly inflow from the ten dimensional bulk to the NS5-branes.

This means that a Z6-valued topological term is possible for ten-dimensional heterotic string
theories. We now write Ωstring

10 = Z6 = Z2 ×Z3. The Z3 part is known to be generated by the
group manifold of Sp(2) with a unit H flux specified by 1 ∈ H3(Sp(2),Z) = Z, see e.g. [13,
the end of Sec. 2]. Then we can consider a Z3-valued topological term detecting this class
of manifolds. We will show that the gravitational effective actions of two supersymmetric
heterotic strings in ten dimensions are different by this Z3-valued topological term.2

Discrete topological term and the global anomaly of NS5-branes: The methods we em-
ploy are the following. We will start from an analogy. Let us say that a ten-dimensional theory
has a Green-Schwarz coupling

∫

M10

B ∧ Y =

∫

M10

H ∧ CS[Y ] , (3)

where Y is a gauge-invariant 8-form constructed from the gauge and spacetime curvatures,
and CS[Y ] is the corresponding Chern-Simons term. Now we take M10 to be a fibration of the
form

S3→ M10→ N7 , (4)

with
∫

S3 H = k . Then the integration of (3) along the S3 direction gives the coupling

k

∫

N7

CS[Y ] . (5)

This provides the anomaly inflow to the six-dimensional theory on the worldvolume of the
stack of k NS5-branes. To see this, we further assume that N7 has the form N7 = R>0 × N ′6,
where the R>0 part has the coordinate r > 0, and that the S3 fiber shrinks to zero size at r = 0.

2It does not make sense to say that two supersymmetric heterotic string theories have theta angles θ E8×E8 ,
θ Spin(32)/Z2 ∈ Z3 so that θ E8×E8 − θ Spin(32)/Z2 = ±1 ∈ Z3. This is because of the following. The effective actions
of two supersymmetric heterotic string theories have Green-Schwarz couplings which are nonzero at the level of
differential forms. As such, they depend continuously on the metric g, the B-field and the gauge fields. This means
that they cannot be considered as a topological term given as a bordism invariant. The difference of these two
Green-Schwarz couplings, after carefully defined above the level of differential forms, turns out to be independent
of continuous variations of g and B, once the gauge fields are set to zero. It is this difference that equals the
non-trivial Z3-valued topological term detecting Sp(2) with a unit H flux.
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Now, the S3 fiber and the radial coordinate r form the R4 normal directions to the stack of
the NS5-branes, whose charge is measured by the flux

∫

S3 H = k. Then the worldvolume N ′6
of the NS5-branes is on the boundary of N7. Note that we consider a general fibration (4)
for M10, not just a direct product S3 × N7. This allows us to capture the anomaly inflow for
the rotational symmetry of the normal bundle of the stack of NS5-branes. See Fig. 1 for the
schematic description of the mechanism.3

In our case, the term of our interest is the Z3-valued discrete topological term discussed
above, detecting the Sp(2) group manifold with an H flux. This term cannot be written as a tra-
ditional Green-Schwarz term as in (3), but is a global counterpart to it, in the following sense.
Consider the subgroup Sp(1) ⊂ Sp(2) obtained by sending q ∈ Sp(1) to diag(q, 1) ∈ Sp(2),
where q is a unit quaternion. With this we can put the Sp(2) group manifold into a fibration
of the form (4):

S3 = Sp(1)→ Sp(2)→ Sp(2)/Sp(1) = S7 , (6)

with k units of the H flux through the S3 fiber. Any Sp(1) = SU(2) bundle over S7 is classified
by π6(SU(2)) = Z12, and this particular fibration is known to provide its generator [16,17].4

Therefore, from the seven-dimensional point of view, the phase associated to this fibration
(6) measures the global anomaly for the normal bundle rotational symmetry of a stack of
k NS5-branes. Now, our Z3-valued discrete topological term in ten dimensions assigns the
Euclidean action e2πik/3 to this fibration. Therefore, this topological term contributes to the
global anomaly of the normal bundle rotational symmetry of a stack of k NS5-branes in a
prescribed way.

Luckily, the worldvolume theories on k NS5-branes of both E8 × E8 and Spin(32)/Z2 het-
erotic string theories are sufficiently well understood, to the extent that we can use our knowl-
edge on them to determine the difference in the global anomalies of the normal bundle rota-
tional symmetry. This allows us to find the difference of the Z3-valued topological terms of two
supersymmetric heterotic string theories in ten dimensions, which turns out to be nonzero.

NS5-branes as gauge instantons: So far we only considered fields in the gravitational sec-
tor. As the Sp(2) group manifold with the H flux gives a nontrivial bordism class, there is no
N11 such that ∂ N11 = Sp(2), as long as we only consider the metric and the B-field on N11.

Heterotic string theories, however, have non-Abelian gauge fields as well, and NS5-branes
can be regarded as a zero-size limit of their instanton configurations. This means that we can
actually find N11 such that ∂ N11 = Sp(2) if we allow a suitable nonzero gauge field F on N11,
this time solving

dH =
p1

2
− n , (7)

where n ∝ tr F2 is the instanton number density. Indeed, S3 with a unit H flux itself is
a boundary of a four-dimensional disk D4 with a one-instanton configuration inside. Then
fibering this D4 with the gauge field and the H-field over S7 gives the required N11.

As was discussed e.g. in [19], there is a method to compute the Euclidean action associated
to the Sp(2) manifold with the H flux using such an N11. Furthermore, the only essential

3In general, see [4, 14, 15] for some recent studies of discrete anomalies in string theory and supergravity
theories which make use of instantonic objects.

4Although it is not relevant to the content of this paper, the following fact about this fibration might be of
some interest to the readers. Thom famously asked if any integral homology class can be realized by embedded
submanifolds. This fibration is known to give a lowest-dimensional counterexample [18]. Namely, the integral
homology group of Sp(2) is Z at degree 3 and 7, but there is no embedded submanifold of dimension 7 realizing
the generator of H7(Sp(2),Z) = Z. Only three times the generator is thus realized. We should note that there
does exist an immersion f : M7 → Sp(2) such that [ f (M7)] ∈ H7(Sp(2),Z) is the generator. A different example
S7/Z3 × S3/Z3, where there is not even an immersion realizing a degree-7 homology class, was given in the first
arXiv version of the paper [18]. In both cases the proof is a standard application of basic tools of algebraic topology,
and might again be of some interest to the readers.
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data needed for this computation are the ordinary Green-Schwarz couplings B ∧ X E8×E8 and
B ∧ X Spin(32)/Z2 . We do not actually carry out this computation in this paper.

Still, this alternative method of computation can be used to determine the Z3-valued dis-
crete topological term of the non-supersymmetric but non-tachyonic heterotic string theory
with gauge group Spin(16)×Spin(16), first found in [20–23]. This follows from the fact that
the Green-Schwarz coupling B ∧ X Spin(16)×Spin(16) of the non-tachyonic Spin(16)× Spin(16)
theory satisfies

X Spin(16)×Spin(16) = X Spin(32)/Z2 − X E8×E8 , (8)

when we restrict the gauge groups on the right hand side to be on the common
Spin(16)× Spin(16) part.5 We will see below that, when combined with our determination
of the difference of discrete topological terms of two supersymmetric heterotic string theo-
ries using NS5-branes, the equation (8) leads to the conclusion that the Z3-valued discrete
topological term of the Spin(16)× Spin(16) theory is nonzero.

Reconstructing 10D topological terms: It is good time to take a pause and go over what
we have done at this point. We take the anomaly of the worldvolume theory on instantonic
NS5 branes in E8×E8 and Spin(32)/Z2 heterotic string theories as input, take their difference
to get the global anomaly on the “formal difference” NS5 brane in the non-supersymmetric
Spin(16) × Spin(16) heterotic string theory. From the global anomaly of this formal differ-
ence, we then take a major leap and reinterpret the anomaly theory associated a 6D instanton
worldvolume (for which at least an SU(2) ⊂ G gauge group is essential) as the 10D discrete
theta angle that can only be detected by a specific X10. In order to go up in dimensionality in
this way, we need this X10 to be an S3 fibration, whose “filling” N11 instantonic configuration
of the gauge bundle in the fiber R4 directions. In the end, we use SU(2) ∼= S3 to reinterpret
the gauge bundle as extra spacetime dimensions.

Such a reconstruction is reminiscent of a somewhat reverse process [24], that is to reduce
the topological terms in the string theory spacetime in M × XΓ (for XΓ an internal geometry
with conifold singularity) to obtain the Symmetry Topological Field Theory (SymTFT) for the
geometrically engineered QFT in M . However, there are two differences that we want to point
out: (a) Our analysis is concerned with the anomaly theory A, which admits the original
QFT as its only boundary. On the other hand, symmetry TFT admits a pair of boundaries - a
dynamical boundary and a topological boundary.6 (b) The dimension reduction approach of
generating symmetry TFT from geometric engineering considers M×XΓ as a direct product. For
our reconstruction, we do not need to explicitly write down the reconstructed 10D topological
action, but we do need that action to be detectable by the special spacetime configuration that
is a non-trivial fibration.

We mention in passing that an exotic IIB topological action has been inferred in [26] via
global anomaly cancellation associated to the SL(2,Z) bundle (and its suitable finite cover). It
would be interesting to make connection between these topological terms obtained in different
string duality frames.

Relation to topological modular forms: Our findings also have bearings on the mathemat-
ical theory of topological modular forms (TMFs) in the context of the proposal of Stolz and
Teichner [27,28], which says that TMF classes are realized by two-dimensional N=(0,1) su-
persymmetric theories. It would suffice to say here the following; we will give more details in
Section 5 for string theorists, and in Appendix A for mathematicians.

5Spin(16)×Spin(16) is not quite a subgroup of neither Spin(32)/Z2 nor E8× E8, but there do exist homomor-
phisms Spin(16)× Spin(16)→ Spin(32)/Z2 and Spin(16)× Spin(16)→ E8 × E8, which give finite covers of the
respective images. This suffices for our purposes.

6For more mathematically-oriented readers, the symTFT is formulated in the “quiche construction” as in [25].
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Any cL = 16 internal worldsheet theory T for a ten-dimensional heterotic string the-
ory determines an element [T] ∈ TMF−32, the Abelian group of topological modular forms
of degree −32. A formal integer linear combination

∑

i ni Ti similarly gives an element
∑

i ni[Ti] ∈ TMF−32. An integer linear combination of theories
∑

i ni Ti whose total elliptic
genus vanishes gives an element in an important subgroup A−32 ⊂ TMF−32, which is known
to be Z3. Then our main results can be summarized by saying that

[T Spin(16)×Spin(16)] = [T Spin(32)/Z2]− [T E8×E8] ∈ A−32 , (9)

is a nontrivial generator of this group A−32 = Z3, where we used T G for the internal worldsheet
theory of the heterotic string theory with gauge group G.

Structure of the paper: The rest of the paper is organized as follows. In Sec. 2, we start by
analyzing the anomaly inflow to NS5-branes in both Spin(32)/Z2 and E8× E8 heterotic string
theories. This is mostly a review of known materials.

In Sec. 3, we use the data gathered in Sec. 2 to evaluate the inflow of the global anomaly of
the normal bundle rotational symmetry to NS5-branes, leading to our first main conclusion as
explained above, that the gravitational couplings of the two ten-dimensional supersymmetric
heterotic string theories are different by a Z3-valued discrete topological term. The computa-
tional techniques are known but not as widely as the content of Sec. 2. As such we will detail
the steps of the computation.

In Sec. 4, we explain how the same result can be arrived, at least in principle, by a com-
putation which uses NS5-branes which are not point-like but are realized as an instanton
configuration of the non-Abelian gauge fields of the heterotic string theories in question. This
will allow us to come to the second main conclusion of ours, namely that the non-tachyonic
Spin(16)× Spin(16) heterotic string theory also has this nonzero Z3 topological term.

In Sec. 5, we explain what our results mean in the context of topological modular forms
and the proposal of Stolz and Teichner. This will be done by connecting to the results of [19].

We have a single Appendix, Appendix A, in which we explain our findings in a language
hopefully more palatable to mathematicians. We will carefully distinguish which part of our
arguments can be made into rigorous mathematics and which part uses string duality not
readily translatable into mathematics yet.

2 Anomaly inflow to NS5-branes

Here we study the perturbative anomaly inflow to a stack of k NS5-branes in two supersym-
metric heterotic string theories. We use the convention that Q, T and N denote the tangent
bundle to the ten-dimensional spacetime, the tangent bundle to the six-dimensional world-
volume of the NS5-brane, and the normal bundle to the NS5-brane, respectively. As vector
bundles, we have Q = T ⊕ N . The Spin(4) rotational symmetry of Q is decomposed into
SU(2)L×SU(2)R, where SU(2)R is the R-symmetry of the N=(0,1) supersymmetry preserved
by the NS5-branes.

Our normalization of the Pontryagin classes are the standard ones, where we have
p1(F) = − tr F2/2 and p2(F) = (tr F2/2)2/2 − tr F4/4 for F being an so-valued curvature 2-
form with (2π)−1 included. We then have p1(N)/2= −c2(L)−c2(R) and χ(N) = c2(L)−c2(R),
where c2(L) and c2(R) are the second Chern classes of SU(2)L and SU(2)R, respectively.

2.1 Anomaly polynomials in ten dimensions

Let us first record the ten-dimensional fermion anomaly polynomials I12 of the two super-
symmetric heterotic theories, which have factorized forms. For the Spin(32)/Z2 theory, we

6
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have
ISpin(32)/Z2
12 = X Spin(32)/Z2

4 Y Spin(32)/Z2
8 , (10)

with

X Spin(32)/Z2
4 =

p1(Q)
2
−

p1(F)
2

, (11)

Y Spin(32)/Z2
8 =

3p1(Q)2 − 4p2(Q)
192

−
1
12

p1(Q)
2

p1(F)
2
+

p1(F)2 − 2p2(F)
12

, (12)

where F stands for the Spin(32)/Z2 gauge bundle. For the E8 × E8 theory, we have

I E8×E8
12 = X E8×E8

4 Y E8×E8
8 , (13)

with

X E8×E8
4 =

p1(Q)
2
− n− n′, (14)

Y E8×E8
8 =

3p1(Q)2 − 4p2(Q)
192

−
1

12
p1(Q)

2
(n+ n′) +

n2 − nn′ + n′2

6
, (15)

where n, n′ are instanton numbers of two E8 gauge bundles. These standard results are re-
cently nicely reviewed in Section 2 of [4].

These anomalies are canceled by the Green-Schwarz mechanism: we introduce a B-field
whose gauge-invariant field strength H satisfies

dH = X4 , (16)

and we further require the Green-Schwarz interaction term

−
∫

10d

B ∧ Y8 . (17)

This produces the cancelling anomaly −X4Y8, which works for both E8× E8 and Spin(32)/Z2
heterotic string theories.

2.2 NS5-branes in the Spin(32)/Z2 heterotic string

NS5-branes in the Spin(32)/Z2 heterotic string theory are D5-branes in the Type I string the-
ory. As such, the worldvolume spectrum can be straightforwardly found by quantizing open
strings. The result is an N=(0, 1) supersymmetric gauge theory with Sp(k) gauge algebra,
with a hypermultiplet in the antisymmetric of Sp(k), together with a half-hypermultiplet in
the bifundamental representation of Sp(k)×SO(32). As for the normal bundle symmetry, the
gauginos are doublets of SU(2)R, the hyperinos in the antisymmetric are doublets of SU(2)L ,
and the hyperinos in the bifundamental are neutral. These facts were first found in [29,30].

This information is enough to compute the anomaly polynomial ISp(k)
8 of the six-

dimensional worldvolume theory. We find that

ISp(k)
8 − kY Spin(32)/Z2

8 = ZSpin(32)/Z2
4 W Spin(32)/Z2

4 , (18)

where

ZSpin(32)/Z2
4 = X Spin(32)/Z2

4 + kχ(N) , W Spin(32)/Z2
4 = k

p1(T )− p1(N)
24

− q1(G) , (19)

where G is the Sp(k) gauge field and q1(G) = − tr G2/2 is its instanton number.
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The H-field now satisfies

dH = ZSpin(32)/Z2
4 =

p1(Q)
2
−

p1(F)
2
+ kχ(N) , (20)

Here, the additional contribution kχ(N) comes from the fact that an H field through S3 fiber
around the stack of NS5-branes, with

∫

S3 Hfiber = k, leads to
dHfiber = −kχ(N) = −k(c2(L)− c2(R)). Then writing Htotal = Hfiber +Hbase yields (20), where
H in the equation stands for Hbase.7 We also have an additional Green-Schwarz coupling on
the NS5-brane worldvolume, given by

−
∫

6d

B ∧W Spin(32)/Z2
4 . (21)

In the type I frame, this is a specialization of the general D-brane coupling that is proportional
to

∫

(
∑

Cp)∧
q

Â(T )/Â(N) tr eiF . (22)

The combination of (20) and (21) produces the anomaly which cancels the difference of the
fermion anomaly ISpin(32)/Z2

8 and the inflow term kY Spin(32)/Z2
8 given in (18). This confirmation

of the anomaly inflow mechanism including the normal bundle contributions on the stack of
k NS5-branes of the Spin(32)/Z2 theory was first done in [34], and we simply reproduced it
in our notations.8

We pause here to mention that the fermion spectrum of this Sp(k) gauge theory has a per-
turbative mixed gauge anomaly −ZSpin(32)/Z2

4 q1(G), which is canceled by the Green-Schwarz
coupling
∫

6d B∧q1(G). It is not immediate that there is no remaining uncanceled global mixed
gauge anomaly, however.

In this paper we take the position that the consistency of string theory guarantees that the
Sp(k) gauge group is anomaly free, for both the perturbative and the global parts. In particular,
we will assume that the anomaly polynomial of the gauged theory, where the Sp(k) gauge fields
are already path-integrated over, is simply obtained by dropping the q1(G)-dependent terms
from the total anomaly polynomial given above. What we will need in the next section is this
anomaly polynomial of the gauged theory. We hope to come back to the issue of the global
mixed gauge anomaly in the future.

2.3 NS5-branes in the E8 × E8 heterotic string

A stack of k coincident NS5-branes gives the rank-k E-string theory, whose existence was first
recognized in [36,37]. Its anomaly polynomial I rank-k

8 was determined later in [38]. Taking the
convention that the E-string theory corresponds to the instanton of the first E8 factor whose
instanton number is n rather than n′, we find that

I rank-k
8 − kY E8×E8

8 = Z E8×E8
4 W E8×E8

4 , (23)

where

Z E8×E8
4 = X E8×E8

4 + kχ(N) , W E8×E8
4 = k

p1(T ) + p1(N)
24

+
χ(N)− 2n+ n′

6
. (24)

7This relation dH ∝ c2(L) − c2(R) is the reason how the WZW term reproduces the fermion anomaly in the
non-Abelian bosonization [31, 32]. The same relation was also pointed out in the context of the normal bundle
anomaly cancellation in [33].

8See also the paper [35] where the anomaly cancellation was studied from the point of view of the NS5-brane
realized as an instanton.
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The H-field now satisfies

dH = Z E8×E8
4 =

p1(Q)
2
− n− n′ + kχ(N) , (25)

where the explanation of the additional term kχ(N) is as before. We also learn that on the
E-string worldvolume in the heterotic E8×E8 theory has an additional Green-Schwarz coupling

−
∫

6d

B ∧W E8×E8
4 . (26)

Then the combination of (25) and (26) produces an anomaly which cancels the difference
(23) between the anomaly of the rank-k E-string theory I rank-k

8 and the inflow term kY E8×E8
8 .

2.4 Difference of the two cases

For simplicity, we only consider the case k = 1 and only keep the six-dimensional tangent
bundle and the SU(2)R bundle to be nontrivial. We set the SU(2)L bundle and the Spin(32)/Z2
and E8 × E8 gauge bundles to be trivial.

The ten-dimensional terms X4 and Y8 are now common to both Spin(32)/Z2 and E8 × E8
theories,

X4 =
p1(Q)

2
, Y8 =

3p1(Q)2 − 4p2(Q)
192

. (27)

The six-dimensional terms ZSpin(32)/Z2
4 and Z E8×E8

4 also become the same:

Z4 =
p1(T )

2
− c2(R) , (28)

which in fact agrees also with X4 above. The way the anomalies of the NS5-branes are repro-
duced is still different, since we have

ISp(1)
8 − Y8 = Z4 ×

p1(T )− p1(N)
24

, (29)

I rank-1 E-string
8 − Y8 = Z4 ×

�

p1(T ) + p1(N)
24

−
c2(R)

6

�

. (30)

Using p1(N) = −2c2(R) under our simplifying assumptions, we have the difference

I sp(1)
8 − I rank-1 E-string

8 = Z4 ×
1
3

c2(R) , (31)

with the corresponding Green-Schwarz coupling

−
∫

6d

B ∧
1
3

c2(R) , (32)

for dH = Z4. Our next aim is to convert this information into the determination of the global
anomaly of the SU(2)R symmetry captured by the ten-dimensional Sp(2) manifold with an H
flux, as discussed in the Introduction.
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3 Evaluation of the global anomaly

In six dimensions, theories with SU(2) symmetry can have global anomalies associated to

π6(SU(2)) = Z12 , (33)

as was pointed out long time ago [39, 40]. A modern understanding of this global anomaly
was provided in [41,42]. The essential point is that there is no global anomaly if the spacetime
is equipped only with the spin structure and the SU(2) gauge field, since

Ω
spin
7 (BSU(2)) = 0 . (34)

This means that, before the introduction of the H field, the anomaly is completely specified by
the anomaly polynomial. The global anomaly only appears because we introduce the H field
satisfying dH = Z4, where Z4 is a degree-4 characteristic class constructed from the curvatures
of the spacetime and the SU(2) gauge bundle. And the global anomaly of the theory with the
H field can be determined from the anomaly polynomial of the theory before the introduction
of the H field.9

We will use this formulation to compute the global anomaly associated to the difference of
the anomaly polynomials (31). We will use the simplified notation p1 := p1(T ) and c2 := c2(R)
below.

3.1 Strategy

Let us consider the evaluation of the global anomaly of an SU(2)-symmetric theory whose
anomaly polynomial is

I8 = Z4W4 , (35)

where Z4 and W4 are linear combinations of p1/2 and c2. We introduce a 3-form field

dH = Z4 , (36)

and the Green-Schwarz coupling

−
∫

B ∧W4 . (37)

The inclusion of this Green-Schwarz term cancels the perturbative part of the anomaly, but the
global part can remain. We are interested in determining it.

The total anomaly of this system is captured by a seven-dimensional invertible phase whose
partition function is given by

X := η[M7, Z4W4]−
∫

M7

H3W4 ∈ R/Z . (38)

Here, the first term, η[M7, I8], is the eta invariant on the manifold M7 (with the spin structure,
gauge fields etc. implicitly specified) with the anomaly polynomial I8, and the second term is
the anomaly produced by the Green-Schwarz coupling. We evaluate this combination follow-
ing [41, Sec. 3], which was based on [46, Appendix B], which was based on [40], which was
based on various works in the late 80s, most notably [39] and [47], which were ultimately
based on [43]. As the previous descriptions were scattered throughout multiple references,
here we try to combine them into one single narrative which is hopefully easier to follow.

9This is perfectly analogous to the case of the global Z2 anomaly of SU(2) in four dimensions, which can be
determined from the anomaly polynomial of the SU(3) theory [43] or the U(2) theory [44,45].
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For our purpose

Z4 =
p1

2
− 2c2 , W4 =

1
3

c2 , (39)

as we saw above, while the computation performed in [41] was for

Z4 = c2 , W4 =
1

24

� p1

2
+ c2

�

, (40)

which was for the anomaly of a Weyl fermion in the doublet of SU(2), with a pseudo-Majorana
condition imposed. For the moment let us work with an arbitrary choice of Z4 and W4. The
steps are as follows.

1. We first define a homomorphism X : π6(SU(2))→ R/Z:

(a) We restrict the manifold to be M = S7.

(b) We note that the combination X (38) is independent of the choice of H when we
solve (36). Indeed, two solutions H and H ′ are related by H = H ′+dB for a globally
well-defined B, since H3(S7,R) = 0. Then the change in X is
∫

M (dB)W4 =
∫

M BdW4 = 0. Therefore, X is a functional of the manifold and the
gauge field only. Note that this step fails for more complicated seven manifolds,
for which the choice of H field is not topologically unique.

(c) X has zero infinitesimal variation of the metric and of the gauge field, as the in-
finitesimal variation of the first term and that of the second term are by construction
the same. Therefore, X defines a map

X : π6(SU(2))→ R/Z . (41)

(d) X is a homomorphism. To see this, denote by (S7, a) the SU(2) configuration on
S7 specified by a ∈ π6(SU(2)). Gluing (S7, a) and (S7, a′) gives (S7, a + a′). X
behaves additively under this operation too, since the η invariant is additive and
the
∫

HW4 term is also additive.

2. We now lift X : π6(SU(2))→ R/Z to X̃ : π7(Sp(2)/SU(2))→ R:

(a) We utilize the fibration SU(2) → Sp(2) → Sp(2)/SU(2) = S7 and the homotopy
exact sequence associated to it given by

· · · → π7(SU(2))
︸ ︷︷ ︸

Z2

0
→ π7(Sp(2))
︸ ︷︷ ︸

Z

ι
−−→
12×
π7(Sp(2)/SU(2))
︸ ︷︷ ︸

Z

∂
−−−−→
mod 12

π6(SU(2))
︸ ︷︷ ︸

Z12

0
→ π6(Sp(2))
︸ ︷︷ ︸

0

→ ·· · . (42)

(b) We regard our S7 to be on a boundary of D8, so that S7 = ∂ D8. It is not possible to
extend the SU(2) configuration specified by a ∈ π6(SU(2)) to D8, but it is possible
to do so if we regard it as an Sp(2) ⊃ SU(2) configuration. Such an extension is
characterized by an element ã ∈ π7(Sp(2)/SU(2)) = Z, such that ∂ (ã) = a.
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(c) Now note that the anomaly polynomial Ĩ8 of a generic set of Sp(2)-symmetric 6d
chiral fermion can always be written in the following form:

Ĩ8 =
t

48
tr F4 + J8(c2, p1) . (43)

Here, we define c2 = tr F2/2 for both Sp(2) and Sp(1), p1 is the spacetime first
Pontryagin class, t is a number, and J8(c2, p1) is a degree-8 polynomial of degree-4
classes c2, p1.
We pick a set of 6d fermions such that this Ĩ8 reduces to P8 = Z4W4 upon reducing
to Sp(1), by using

tr F4 =
1
2
(tr F2)2 = 2(c2)

2 , (44)

for Sp(1). t will eventually be important for our analysis, while the precise form
of J8(c2, p1) will not matter in the end.

(d) Using the Atiyah-Patodi-Singer index theorem, we find

X (a) = X̃ (ã) (mod Z) , (45)

where

X (a) = η[S7, Z4W4]−
∫

S7

HW4 ∈ R/Z , (46)

and

X̃ (ã) =

∫

D8

( Ĩ8 − Z4W4) ∈ R . (47)

Note that X̃ (ã) is a homomorphism

X̃ : π7(Sp(2)/SU(2))→ R . (48)

3. We will now evaluate X̃ : π7(Sp(2)/SU(2))→ R:

(a) As X̃ (ã) is a homomorphism to R, it suffices to evaluate ã ∈ π7(Sp(2)/SU(2)) in
the image of ι from π7(Sp(2)). In particular, we have

X̃ (ι(1)) = X̃ (12) = 12X̃ (1) ∈ R , (49)

and therefore

X (1) =
1
12

X̃ (ι(1)) ∈ R/Z . (50)

(b) So let us calculate X̃ (ι(1)). Note that ∂ (ι(1)) = 0, meaning that the SU(2) con-
figuration on S7 is trivial. Therefore it can also be extended trivially as SU(2)
configuration to D8. We now form

S8 = D8(with Sp(2) configuration specified by ι(1))

⊔ D8(with SU(2) configuration trivially extended) .
(51)

(c) We now integrate Ĩ8 − Z4W4 on both sides of (51). As Ĩ8 − Z4W4 restricted to an
SU(2) configuration is zero, we have

X̃ (ι(1)) =

∫

S8

( Ĩ8 − Z4W4) . (52)

12

https://scipost.org
https://scipost.org/SciPostPhys.17.3.077


SciPost Phys. 17, 077 (2024)

(d) As H4(S8,R) = 0, every degree-4 closed form on S8 is cohomologically zero, and
so the right hand side of the equation above drastically simplifies to give

X̃ (ι(α)) =

∫

S8

t
48

tr F4 = t , (53)

where we used
∫

S8

1
48

tr F4 = 1 , (54)

for the configuration 1 ∈ π7(Sp(2))≃ Z.10

(e) Recalling (50), we find

X (1) =
t

12
. (55)

3.2 Evaluation

To complete our analysis, we need to find an Sp(2) fermion system whose anomaly becomes
our

Idiff
8 =
� p1

2
− 2c2

� 1
3

c2 , (56)

when restricted to its SU(2) subgroup, and compute the coefficient of tr F4. For this, we first
express it as a linear combination of the anomaly polynomials of Weyl fermions in 1, 2 and 3
of SU(2), which are given respectively by

I1 =
7p2

1 − 4p2

5760
, I2 =

1
24

p1c2 +
1

12
c2
2 + 2I1 , I3 =

1
6

p1c2 +
4
3

c2
2 + 3I1 . (57)

We find
Idiff
8 = −8I2 + I3 + 13I1 . (58)

Now, the branching rules from Sp(2) to SU(2) are

4→ 2+ 2 · 1 , 10→ 3+ 2 · 2+ 3 · 1 , (59)

where 4 and 10 are the fundamental and adjoint representation of Sp(2), respectively, see
e.g. [48]. From this we find

−10 · 4+ 10+ 30 · 1 −→−8 · 2+ 3+ 13 · 1 . (60)

Fermions in 4 and 10 of Sp(2) have the following anomaly polynomials

I4 =
p1

48
c2 +

1
24

tr F4 + 4I1 , I10 =
p1

8
c2 +

1
4

tr F4 +
1
16
(c2)

2 + 10I1 , (61)

from which we conclude that

Ĩdiff
8 = −10I4 + I10 + 30I1 = −

1
6

tr F4 + · · · . (62)

10The normalization (54) follows from the following consideration. The Sp(2) gauge configuration on S8 de-
termines an element of KSp(S8), whose topological index is given by π8(BSp) = π7(Sp). This equals, via the
Atiyah-Singer index theorem, the analytic index defined using the number of zero modes of a fermion in the fun-
damental representation coupled to the gauge configuration. The expression of the analytic index as an integral
of a differential form then yields the left hand side of (54).
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This means the number t in (43) is−8, and we find that the global anomaly phase α associated
to the global anomaly for π6(SU(2)) = Z12 is

α= exp
�

−
2πi
12
· 8
�

= exp
�

2πi
3

�

. (63)

This is indeed nontrivial of order 3. This also shows, as we discussed in the Introduction, that
the topological couplings of the gravitational sector of two supersymmetric heterotic string
theories in ten dimensions differ by the Z3-valued discrete topological term detecting the same
Sp(2) with unit H flux.

4 An alternative computation

Here we explain an alternative method of the determination of the discrete topological
term, using the deformation of the NS5-branes into instantons of the non-Abelian gauge
fields of heterotic string theories. This will allow us to determine that the non-tachyonic
Spin(16) × Spin(16) heterotic string theory also has the nonzero discrete Z3-valued topo-
logical term.

4.1 NS5-branes as instanton configurations

So far we only considered the gravitational sector of heterotic string theories. There, the
Sp(2) group manifold with the unit H flux is a generator of a Z3 subgroup of the string bor-
dism group Ωstring

10 , and is not a boundary of any eleven-dimensional spin manifold with the H
field satisfying dH = p1(Q)/2. The Z3-valued discrete topological term was associated to this
configuration.

With an SU(2) gauge field F , however, it is possible to find a smooth eleven-dimensional
spin manifold with H satisfying

dH =
p1(Q)

2
+ c2(F) (64)

instead. To see this, recall that a smooth one-instanton configuration in the heterotic string
theory is a deformation of an NS5-brane, and the instanton charge is identified with the NS5-
charge. Then, we can have a four-dimensional ball D4 with a finite-sized one-instanton con-
figuration at the center, such that we have

∫

S3 H = 1 on the surrounding three-sphere. We can
now fiber the entire setup over S7, so that we have

D4→ N11→ S7 , (65)

whose boundary is
S3→ Sp(2)→ S7 , (66)

effectively wrapping an instantonic NS5-brane on S7 at the center of the B4 fiber.
This means that the phase α associated by the Z3-valued topological term can alterna-

tively computed using this smooth configuration. The method was explained in the physicists-
oriented section of [19]. Let us briefly review this technique.11

11We note that the method is quite general and can be used to define a topological term for a spacetime structure
S when an anomaly I for another spacetime structure S′ is given, assuming that the structure S is an extension
of S′, and that the anomaly I trivializes when the structure S′ is extended to the structure S. This method was
first described in [49] when spacetime structures S, S′ consist of a common spacetime structure S and finite group
symmetries G, G′ with a surjection G → G′, assuming that the anomaly is described by ordinary cohomology. It
was then extended to the case when the anomaly is given more generally by Anderson dual of bordism groups
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4.2 Evaluation using instanton configurations: General theory

Suppose we have a set of d-dimensional fermions Ψ charged under some symmetry G, with
an anomaly described by an invertible theory I in (d + 1) dimensions. This means that the
partition function ZΨ(Md) of Ψ on Md is a vector in the one-dimensional Hilbert space HI(Md)
of the theory I on Md . Let us say that the introduction of the H field with dH = X4 trivializes
this anomaly theory. This means that, given the data of the H field on Md , we have a canonical
choice of the vector v(Md , H) ∈HI(Md). These vectors satisfy the consistency condition that

v(Md , H) = exp

�

2πi

∫

Nd+1

HYd−2

�

ZI(Nd+1)v(M
′
d , H ′) , (67)

where Nd+1 : M ′d → Md is a bordism from the incoming boundary M ′d to an outgoing boundary
Md , ZI(Nd+1) : HI(M ′d)→HI(Md) is the associated evolution operator of the invertible theory,
and Id+2 = X4Yd−2 is the factorization of the anomaly polynomial.

With these vectors we can convert the fermion partition function into a complex number

〈v(Md , H), ZΨ(Md)〉 , (68)

which reproduces the standard Green-Schwarz coupling in the following way. Let us say that
we choose two different H fields on the same Md , given by H1 = H0 + dB, with B a globally
defined 2-form on Md . We now take Nd+1 = Md×[0, 1] and define H on Nd+1 to be H0+ds∧B,
where s is the coordinate of the segment [0,1]. Then the condition (67) says

〈v(Md , H1), ZΨ(Md)〉= exp

�

−2πi

∫

Md

BYd−2

�

〈v(Md , H0), ZΨ(Md)〉 . (69)

This is indeed the variation we expect.
We can also split (68) into the fermion contribution and the contribution from the Green-

Schwarz coupling in favorable cases. Let us say Md is the boundary of a spin manifold Wd+1
without G gauge field. In this case we have the Hartle-Hawking wavefunction of the invertible
theory ZI(Wd+1) ∈HI(Md). Then the combination (68) can be split into

〈v(Md , H), ZΨ(Md)〉= 〈v(Md , H), ZI(Wd+1)〉 〈ZI(Wd+1), ZΨ(Md)〉 , (70)

where the first factor is the phase produced by the Green-Schwarz coupling and the second
factor is the fermion partition function. In this form, the anomaly of the individual factors is
captured by the phase dependence of ZI(Wd+1) on the choice of Wd+1.

The Green-Schwarz phase can be made more concrete when Md is also a boundary of
Nd+1 equipped with the gauge field and the H field solving dH = X4. In this case, applying
the consistency condition (67) for M ′d =∅, we find

〈v(Md , H), ZI(Wd+1)〉= exp

�

−2πi

∫

Nd+1

HYd−2

�

〈ZI(Nd+1), ZI(Wd+1)〉 (71)

= exp

�

−2πi

∫

Nd+1

HYd−2 + 2πiηI[Nd+1 ⊔Wd+1]

�

, (72)

in [50]. In the two references above, the motivation was to construct gapped boundary theories, but the methods
work equally well when the extension from S′ to S involves continuous fields. For example, the Wess-Zumino-
Witten term is an example when the structure S′ is given by the spin structure with a continuous symmetry G,
and the structure S is given by adding a scalar field valued in the coset G/H; the application of this method yields
a definition of the Wess-Zumino-Witten terms including the global topological part [51]. The method explained
below is when S′ consists of the spin structure and a continuous symmetry G and S extends this by adding a B-field.
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where
exp(2πiη[Md+1]) = ZI(Md+1) , (73)

is the partition function of the invertible theory on the closed manifold Md+1 equipped with
the spin structure, the G gauge field etc., which are typically given by an eta invariant.

4.3 Evaluation using instanton configurations: Our case

To apply this general technique in our case, we need a few more preparations. Ten-dimensional
anomaly polynomials were reviewed in Sec. 2.1. We now restrict the gauge bundles to the
common so(16) × so(16) subalgebra. Denote by p1,2 and p′1,2 the Pontryagin classes of two
so(16) bundles. Then we have n = p1/2, n′ = p′1/2 for the instanton numbers of the E8 × E8
theory, and p1(F) = p1 + p′1 and p2(F) = p2 + p1p′1 + p′2 for the Spin(32)/Z2 theory. Under
this reduction, we have

X4 := X Spin(32)/Z2
4 = X E8×E8

4 =
p1(Q)

2
− n− n′ . (74)

We are interested in the difference of the Green-Schwarz contributions, so we consider

Idiff
12 := ISpin(32)/Z2

12 − I E8×E8
12 = X4Y diff

8 , (75)

where

Y diff
8 = Y Spin(32)/Z2

8 − Y E8×E8
8 =

n2 + nn′ + n′2 − p2 − p′2
6

. (76)

For our purposes, we only need to turn on the gauge configuration in an
su(2) ⊂ su(2)× su(2) ≃ so(4) ⊂ so(16) subalgebra. Then we can set n = −c2(F), n′ = 0 and
p2 = p′2 = 0, further simplifying the expression above so that

X4 =
p1(Q)

2
+ c2(F) , Y diff

8 =
c2(F)2

6
. (77)

We now use M10 = Sp(2) equipped with the standard choice of the H field, with N11
constructed in (65), equipped with the instanton configuration as described above. For W11,
we take the same manifold N11 but without the instanton configuration and the H field. Then
the expression (72) should give the same phase α as computed in the previous section.12

4.4 Discrete topological term of the Spin(16)× Spin(16) theory

This alternative method allows us to determine that the non-tachyonic Spin(16)× Spin(16)
heterotic string theory has the Z3-valued discrete topological term. This is based on the fact
that the massless fermion spectrum of the non-tachyonic Spin(16)× Spin(16) theory is given
by that of the Spin(32)/Z2 supersymmetric heterotic string together with that of the chiral-
ity flipped version of the E8 × E8 supersymmetric heterotic string,13 both restricted to the
common Spin(16) × Spin(16) part. This in particular means that the anomaly polynomial
ISpin(16)×Spin(16)
12 of the non-tachyonic Spin(16)× Spin(16) theory is the difference Idiff

12 , given

12In fact, it was this method using (72) that occurred first on the minds of the authors in order to evaluate the
Z3-valued discrete topological term. Although all the ingredients in (72) are mathematically well-defined, the
evaluation of the two contributions in (72) turned out to be beyond the capabilities of the authors, at least at
present. The indirect method using the known anomaly polynomials of the NS5-branes in the two supersymmetric
heterotic string theories was the second approach the authors took. The authors found it interesting that the duality
of various string theories can be used to circumvent a difficult, direct evaluation of this mathematical expression.

13There is a way to understand this fact using a Z2 gauging on the worldsheet, see [52].
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in (75), of the anomaly polynomials of the Spin(32)/Z2 and E8 × E8 supersymmetric het-
erotic strings. In contrast, in the other approach which directly uses the anomaly on the NS5
brane worldvolume theory, the meaning of taking such a formal difference between two het-
erotic string theories is more opaque. This means that it is harder to argue for a direct con-
nection to the NS5 brane in the Spin(16)× Spin(16) heterotic string theory.14

Then, this means that the Z3-valued discrete topological term of the Spin(16)× Spin(16)
theory is given by the formula (72) with the same Idiff

12 and the same eta invariant used in the
case of the discrete difference of the topological terms of the two supersymmetric heterotic
string theories. It therefore has the same value, namely exp(2πi/3).

5 Relation to topological modular forms

Finally let us explain the relation of our findings here to the theory of topological modular
forms. Topological modular forms (TMFs) are objects in algebraic topology, developed par-
tially in order to explain the topological origin of the behavior of the elliptic genus of manifolds
noticed in [54], and partially following a trend internal to algebraic topology. The proposal
of Stolz and Teichner [27,28] says that the deformation classes [T] of two-dimensional spin-
modular-invariant N=(0,1) supersymmetric theories T with gravitational anomaly n p1

48 form
the group TMFn of topological modular forms of degree n. Here the gravitational anomaly
is normalized so that we have n = 2(cR − cL) when the theory is superconformal. Various
pieces of evidence supporting this proposal have accumulated in the last several years, see
e.g. [8,55–60].

In particular, when n is even, there is a map

Φ: TMFn→MFn/2 , (78)

where MFd is the set of modular forms of degree d (the degree of modular form is oftertimes
called weight). This map extracts the elliptic genus of the theory in the following sense under
the Stolz-Teichner proposal. Namely, we have

Φ([T]) = η(q)nZ T
ell(q) , (79)

where Z T
ell(q) is the elliptic genus of the theory T as usually defined by physicists.

For n even, let us define

An = Ker(Φ: TMFn→MFn/2) . (80)

An captures the information about subtle N=(0,1) theories which are nontrivial even though
their elliptic genera are trivial. An is known to be a finite Abelian group.

The internal worldsheet theories of two ten-dimensional supersymmetric heterotic strings
have (cL , cR) = (16,0) and therefore define elements of TMF−32. Denote these two classes as
[T E8×E8] and [T Spin(32)/Z2]. What are the relation between these two TMF elements? As the
two theories T E8×E8 and T Spin(32)/Z2 have the same partition function and therefore the elliptic
genus, we have

T Spin(32)/Z2 − T E8×E8 ∈ A−32 . (81)

The detailed computations of TMFn by mathematicians shows that

A−32 = Z3 , (82)

14See also [53] for discussions on Dai-Freed anomalies in compactifications of Spin(16) × Spin(16) heterotic
string theory.
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see e.g. [61]. Our main result amounts to the demonstration that [T Spin(32)/Z2]− [T E8×E8] is
the generator of this Z3.

This is because of the following. Mathematicians knew [61] that the Anderson self-duality
of topological modular forms leads, among other things, to the statement that the two finite
groups A−d−22 and Ad are Pontryagin dual to each other when d is even. Equivalently, there
is a perfect pairing

((x , y)) ∈ U(1) , (83)

for x ∈ A−d−22 and y ∈ Ad . In [19], it was shown that this perfect pairing gives the expo-
nentiated Euclidean action for the discrete Green-Schwarz effect when x = [T] is the internal
worldsheet theory with zero elliptic genus for the heterotic compactification down to d dimen-
sions and y = [M] is the worldsheet sigma model for the d-dimensional space M equipped
with an appropriate H field which is null bordant as a spin manifold. Our computation in this
paper shows that

(([T Spin(32)/Z2]− [T E8×E8], [Sp(2)])) = e±2πi/3 , (84)

showing simultaneously that [T Spin(32)/Z2]− [T E8×E8] is a generator of A−32 = Z3 and [Sp(2)]
is a generator of A10 = Z3. Our argument also shows that the class [T Spin(16)×Spin(16)] of the
worldsheet theory of the non-tachyonic non-supersymmetric heterotic string theory satisfies

[T Spin(16)×Spin(16)] = [T Spin(32)/Z2]− [T E8×E8] , (85)

and is a generator of A−32.
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A Summary for mathematicians

A.1 Mathematical-physical context

In this appendix we explain the content of the paper in a language hopefully more understand-
able to mathematicians. Let us first recall the relevant parts of the content of [19].

In that paper, the Anderson self-duality of topological modular forms is formulated as the
statement

KO((q))/TMF≃ Σ−20 IZTMF , (A.1)

where the left hand side was defined by the cofiber sequence

TMF
Φ
−→ KO((q)) −→ KO((q))/TMF . (A.2)

Here Φ : TMF → KO((q)) is the standard morphism corresponding to taking the Tate curve
(see [62,63] for more details of this morphism). Let us now define

Ad := Ker(Φ : πdTMF→ πdKO((q))) , (A.3)

which is known to be a finite group. One consequence of the self-duality was that there is a
perfect pairing

((−,−)) : A−22−d × Ad →Q/Z , (A.4)
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unless d ≡ 3,−1 mod 24. In the range −32 ≤ d ≤ 10, the groups Ad are non-trivial in the
following places:

d 3 6 8 9 10

Ad Z/24 Z/2 Z/2 Z/2 Z/3
Md SU(2) SU(2)2 SU(3) U(3) Sp(2)

d −28 −30 −31 −32

Ad Z/2 Z/2 Z/2 Z/3

. (A.5)

There, for positive degrees, we also listed the Lie groups Md , assumed to be equipped with the
Lie group framing, such that σstring([Md]) is the generator of Ad , where

σstring : MString→ TMF , (A.6)

is the sigma orientation of [62]. It would then be interesting to have explicit generators in the
negative degrees.

To give explicit classes in the negative degrees, we use the following conjecture, which is
a special case of a broader proposal by Stolz and Teichner. A more precise formulation was
given in [19], but here the following version would suffice:

Conjecture A.7 A self-dual vertex operator superalgebra V of central charge c gives a class
[V] ∈ π−2cTMF, whose image Φ([V]) ∈ π−2cKO((q)) is fixed in terms of the character theory of
V.

In particular, whether [V] ∈ A−2c or not can be easily found from the knowledge of V.
Now, self-dual vertex operator superalgebras V of c ≤ 24 were recently classified in [64].

In the range c ≤ 16, corresponding to −32≤ d < 0 in terms of the TMF degree d, those V that
i) are not a product of two self-dual vertex operator superalgebras of lower central charges
and ii) Φ([V]) ∈ Ad were found to exist only at

c = 1/2 , 14 , 15 , 31/2 , 16 , (A.8)

corresponding to
d = −1 ,−28 ,−30 ,−31 ,−32 . (A.9)

This miraculously matches the place where Ad<−1 is nontrivial in (A.5). This strongly suggests
that the corresponding [V] for d = −28, −30, −31 and −32 are the generators of Ad . In [19],
we provided evidence for the cases d = −28, −30 and −31. The present paper provides
evidence for the case d = −32.

A.2 Mathematical translation of the content of the paper

One way to check that [V] is a generator of A−32 = Z/3 is to compute the pairing (A.4) with
the generator σstring([Sp(2)]) of A10 = Z/3 and show it to be nontrivial. For this purpose we
use the following theorem proved in [19]:

Theorem A.10 Suppose that x ∈ π−d−22TMF = TMFd+22(pt) lifts to x̃ ∈ TMFd+22+k(BG)
and that the string manifold Md is such that it is null when sent to MStringd+k(BG), where
k : BG→ K(Z, 4) specifies the twist. Let Nd+1 be a (BG, k)-twisted string manifold whose bound-
ary is Md . Then there is an explicit differential geometric formula which computes the pairing

((x ,σstring([Md]))) , (A.11)

such that it only depends on Φ( x̃) ∈ KO((q))d+22(BG) and the (BG, k)-twisted string mani-
fold Nd+1.
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In our convention, a (X , k)-twisted string manifold M for k ∈ H4(X ,Z) comes with a map
f : M → X such that p1/2− f ∗(k) is trivialized, among other things.

To apply this theorem to [V] ∈ π−2cTMF one needs an equivariant version of Conjec-
ture A.7, which was also given in [19]:

Conjecture A.12 A self-dual vertex operator superalgebra V of central charge c, containing a
simple affine Lie algebra ĝ at level k, gives a class [V] ∈ TMF2c+kτ(BG), where G is the simply-
connected simple compact Lie group corresponding to g and τ : BG → K(Z, 4) is such that its
class [τ] ∈ H4(BG,Z) ≃ Z is the generator. Furthermore, the image Φ([V]) ∈ KO((q))2c(BG) is
fixed in terms of the character theory of V.

This theorem was applied in [19] in the case of the element [V] for d = −28 and the
six-dimensional string manifold M6 = SU(2)2, using G = SU(2), successfully showing that the
pairing was nontrivial.

In our case of c = 16, the relevant V is a particular extension of Òso(16)1×Òso(16)1. For this
reason we denote it as VD8×D8

. This vertex operator superalgebra also contains Òsu(2)1, and as
such, this vertex operator superalgebra defines an element [VD8×D8

] ∈ TMF32+τ(BSU(2)). We
can also construct a null-bordism N11 of the string manifold M10 = Sp(2) as a (BSU(2),τ)-
twisted string manifold. Then we can apply Theorem A.10 above. Unfortunately the resulting
formula in this case, although explicit, was too complicated for the authors to evaluate.

Instead we use the following, more indirect approach. As is well-known, there are two
even self-dual lattices at rank 16, of type E8× E8 and D16. Correspondingly, there are two self-
dual vertex operator algebras, which we denote as VE8×E8

and VD16
. They contain the affine

Lie algebras (be8)1 × (be8)1 and Òso(32)1 respectively. Therefore, they both define an element of
TMF32+τ(BSU(2)). Using their character theories, it is straightforward to check that

Φ([VD16
])−Φ([VE8×E8

]) = Φ([VD8×D8
]) ∈ KO((q))32(BSU(2)) . (A.13)

From Theorem A.10, we then have

(([VD16
]− [VE8×E8

] ,σstring[Sp(2)])) = (([VD8×D8
] ,σstring[Sp(2)])) . (A.14)

We now use the left hand side to evaluate the right hand side.
For the left hand side, we use another proposition proved in [19]:

Proposition A.15 For x ∈ π−d−22TMF and a string manifold Md which is null as a spin mani-
fold, we have

((x ,σstring([Md]))) = 〈αspin/string(x), [Nd+1, Md]〉 , (A.16)

where αspin/string : π−d−22TMF → π−d−2 IZMSpin/MString is a morphism constructed in [19],
Nd+1 is the spin null bordism of Md such that ∂ Nd+1 = Md , [Nd+1, Md] is the relative bordism
class in πd+1MSpin/MString, and

〈−,−〉: (π−d−2 IZE)torsion × (πd+1E)torsion→Q/Z , (A.17)

is the torsion pairing induced by the Anderson duality.

To evaluate the right hand side of (A.16), we use another trick. We know
π4MSpin/MString = (MSpin/MString)−4(pt) = Z is generated by a := [D4, S3] where the
string structure of the boundary S3 is given by the Lie group framing. By considering the
action of SU(2) on S3, this element can actually be lifted to an element

a ∈ (MSpin/MString)−4+2c2(BSU(2)) , (A.18)
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for which we used the same symbol by a slight abuse of the notation. The slant product by a
then gives a homomorphism

a : MStringd−3+2c2
(BSU(2))→ (MSpin/MString)d+1(pt) , (A.19)

together with its Anderson dual

IZa : (IZMSpin/MString)d+2(pt)→ (IZMString)d−2+2c2(BSU(2)) . (A.20)

Now, Sp(2) as a string manifold has a fibration structure

S3→ Sp(2)→ S7 , (A.21)

where S7 has a natural (BSU(2), 2c2)-twisted string structure, which we collectively denote
as (S7, f ). A part of the data contained in f is the classifying map f : S7 → BSU(2), which
is known to be given by the generator of π7(BSU(2)) = π6(SU(2)) = Z/12. Let us denote its
class by [S7, f ] ∈MString7+2c2

(BSU(2)). The discussions above amount to the statement

a([S7, f ]) = [N11, Sp(2)] . (A.22)

From the naturality of the Anderson dual pairing, we now have

〈αspin/string(x), [Nd+1, Sp(2)]〉= 〈αspin/string(x), a([S7, f ])〉

= 〈(IZa ◦αspin/string)(x), [S
7, f ]〉 .

(A.23)

So our task is now reduced to the evaluation of

IZa ◦αspin/string : TMFd+22(pt)→ (IZMString)d−2+2c2(BSU(2)) , (A.24)

applied to x = [VD16
]− [VE8×E8

] ∈ TMF32(pt).
Here comes the string-theoretical information which is hard to translate. It just so happens

that string theorists explicitly know the elements

zD16
= IZa ◦αspin/string([VD16

]) , zE8×E8
= IZa ◦αspin/string([VE8×E8

]) . (A.25)

Combining all the discussions so far, we have the equality

(([VD8×D8
], [Sp(2)])) = 〈zD16

− zE8×E8
, [S7, f ]〉 , (A.26)

whose right hand side can be evaluated with some efforts. The description of elements zD16
,

zE8×E8
fills Sec 2, and the computation of the right hand side of (A.26) is the topic of Sec. 3.

We conclude that the pairing (A.26) is a nontrivial cubic root of unity, which was what we
wanted to show.

Let us end this appendix by explaining how physicists know the two elements zD16
, zE8×E8

. A
ten-dimensional heterotic string theory is specified by a choice of the self-dual vertex operator
superalgebra V of c = 16 to be used as the theory on the worldsheet. Such a string theory
is known to possess a six-dimensional ‘brane’ called the NS5-brane, where the shift of the
dimensionality between six and five by one is caused by the convention that a p-brane refers
to an extended object with p spatial and 1 temporal dimensions. The local geometry of the
NS5-brane is given by a fibration of R4 \ {0} over a six-dimensional space M6, such that we
have

∫

S3

H = 1 , (A.27)
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VOSA
Heterotic Instantonic

Anomaly

IZ a ◦αspin/string(x)

String NS5 branes

∈ IZMString
((x ,σstring([Md]))) 〈IZ a ◦αspin/string(x), [S7, f ]〉

(A.23)

(A.15) Pair with [S7, f ]

(A.10) Hard

Figure 2: Summary of the main idea in this appendix. On the left, we have the hard
problem of taking the VOSA and identifying a pairing as given in Theorem A.10. This
would rigorously show that the VOSA represents a torsional element in π−2cTMF for
c = 16, as explained in Conjecture A.7. However, the direct mathematical imple-
mentation is not tractable by the authors. Therefore, the author take the indirect,
physical approach, where the steps that do not yet admit full mathematical formula-
tions are written in magenta and labeled differently.

on any S3 surrounding the origin in the fiber. A six-dimensional quantum field theory is known
to reside ‘on the zero section’ of this fibration, morally speaking.

In heterotic string theory, we use VD16
or VE8×E8

as the worldsheet theory is known as the
Spin(32)/Z2 or E8× E8 heterotic string theory, respectively. The physics of the NS5-branes in
these two cases is sufficiently well-understood, to the extent that we know their anomalies as
an element of (IZMString)8+2c2(BSU(2)). These are the two elements zD16

, zE8×E8
we referred

to above. The determination of these two elements use various string dualities which bring us
outside of the realm of heterotic string theory. Namely, to determine zD16

the duality to Type
I string was used, and to determine zE8×E8

the duality to M theory was used. The main idea
in this appendix of using physical input to indirectly solve a difficult mathematical problem is
schematically summarized in figure 2.
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