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Abstract

We study the renormalization group flow of unitary Quantum Field Theories on two-
dimensional de Sitter (dS) spacetime. We prove the existence of two functions of the
radius of dS that interpolate between the central charges of the UV and IR fixed points
of the flow when tuning the radius R while keeping the mass scales fixed. The first
is constructed from certain components of the two-point function of the stress tensor
evaluated at antipodal separation. The second is the spectral weight of the stress tensor
in the ∆ = 2 discrete series. This last fact implies that the stress tensor of any unitary
QFT in dS2 must interpolate between the vacuum and states in the ∆ = 2 discrete series
irrep. We verify that the c-functions are monotonic for intermediate radii in the free
massive boson and free massive fermion theories, but we lack a general proof of said
monotonicity. We derive a variety of sum rules that relate the central charges and the
c-functions to integrals of the two-point function of the trace of the stress tensor and to
integrals of its spectral densities. The positivity of these formulas implies cUV ≥ cIR. In
the infinite radius limit the sum rules reduce to the well known formulas in flat space.
Throughout the paper, we prove some general properties of the spectral decomposition
of the stress tensor in dSd+1.
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1 Introduction

Unitary and Lorentz invariant quantum field theories (QFTs) in two dimensions describe renor-
malization group (RG) flows between two conformal field theories (CFT), one in the long
distance (IR) regime, and one in the short distance (UV) regime. Zamolodchikov’s seminal
paper [1] showed that to each flow one can assign a function which is monotonic in the
scales of the theory and which asymptotes to the central charges of the two CFTs at the fixed
points. The difference between the two central charges ∆c ≡ cUV − cIR is positive, a fact that
is usually referred to as the c-theorem, and it can be related to sum rules involving integrals
of observables computed along the flow [2–5]

∆c = 6π2

∫ ∞

0

r3dr〈Θ(r)Θ(0)〉= 12π

∫ ∞

0

ds
s2
ϱΘ(s) , (1)

where r is a radial coordinate on the Euclidean plane, Θ is the trace of the stress tensor and
ϱΘ is its spectral density over the s = m2 > 0 unitary irreducible representations (UIRs) of the
Poincaré group in two dimensions.

The existence of a function that is monotonic under RG flows implies that the flows them-
selves are irreversible, giving a quantitative basis to the intuition that there is a loss of degrees
of freedom when “zooming out” and coarse graining in QFT. It is thus interesting to establish
the existence of other RG-monotonic functions (also called c-functions) for QFTs in higher
dimensions and on curved backgrounds, providing new general constraints on RG flows.

In [6], Cardy conjectured that the one-point function of Θ integrated over a sphere could
be a c-function in spacetimes with an even number of dimensions. This fact was proven in 4d
by Komargodski and Schwimmer [7] and is called the a-theorem, since said integral isolates
the coefficient of the Euler density in the trace anomaly of the UV and IR CFTs, usually denoted
as a. In 3d, Casini and Huerta proved the F -theorem [8], stating that the finite part of the
free energy on a three-sphere satisfies FUV ≥ F IR. This had been conjectured in [9], and
in [10–12] it was proposed that sin

�

π
2 d
�

log ZSd with ZSd being the partition function of the
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Figure 1: Both in Euclidean and Lorentzian signature the functions c1 and c2
interpolate between the central charges of the CFTs at the endpoints of RG flows.

theory on Sd , could be the generalization of F to any dimension. While many checks and no
counter examples are known, there is still no proof for this last statement.

In this work, we focus on RG flows in reflection positive QFTs on a two-dimensional
Euclidean sphere S2 and unitary QFTs in two-dimensional de Sitter spacetime dS2. The study
of RG flows in dS has a long history, see for example [13–43]. Leveraging recent advances in
understanding non-perturbative unitarity [44–49] and analyticity [50–54], our main result is
to prove the existence of two functions c1(R) and c2(R) which interpolate between the central
charges at the fixed points of the RG flow as we tune the radius of S2/dS2 while keeping the
mass scales of the theory fixed. At infinite radius we recover cIR and at vanishing radius cUV.
The two functions c1(R) and c2(R) are defined in terms of the correlation functions of the
stress tensor. In the examples of the free massive boson and the free massive fermion, we find
that these functions are also monotonic for intermediate R, although we do not have a theory-
independent proof of this fact. We further consider the example of the massless Schwinger
model, in which c1 and c2 match the same functions as in the free massive boson theory,
hinting towards the fact that there exists a field redefinition that relates the two theories in
dS, just as in flat space.

The general point we advocate for in this work is that the radius of the sphere is a useful
tunable parameter which can be used to follow RG flows in any QFT of interest.

Outline The paper is structured as follows. In Section 2, we define c1(R) (30) and derive
a sum rule (31) to compute cUV − c1(R) in terms of an integral of the two-point function
of the trace of the stress tensor over the chordal distance. We take a flat space limit and
recover Cardy’s sum rule [2], showing that c1(∞) = cIR. Then, we use the Källén-Lehmann
decomposition in de Sitter [44–46, 55] to prove a sum rule for cUV − c1(R) in terms of the
spectral densities of the trace of the stress tensor (40). Its flat space limit reproduces the sum
rule from [3]. Finally, we outline the technical assumptions under which c1(0) = cUV.

In Section 3, we show that conservation greatly simplifies the spectral decomposition
of the stress tensor (53) in any number of dimensions. In two dimensions, we show that
there are only three independent spectral densities: one for the principal series, one for
the complementary series and one for the ∆ = 2 discrete series (55). The latter quantity
is precisely c2(R). We show that c2(∞) = cIR and outline the assumption under which
c2(0) = cUV, showing that it is more general than the analogous criterion for c1(R). We prove
sum rules for cUV− c2(R) in terms of integrals of the other spectral densities (62) and in terms
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of an integral of the two-point function of the trace of the stress tensor in position space (66).
We also show sum rules which compute cUV (59) and c1(R) (58) independently.

In Section 4, we verify all our sum rules in the cases of a free massive boson and a free
massive fermion. We find that c2(R) is monotonic and interpolates between the two central
charges in both cases. The divergences associated with massless scalars in de Sitter make it so
that the technical assumption at the basis of the proof that c1(0) = cUV is violated. The theory
of a massless fermion in dS, instead, is devoid of IR divergences and c1(R) still interpolates
between cUV and cIR in the massive fermion flow. We comment on the fact that the massless
Schwinger model has the same c1 and c2 functions as the free massive boson theory.

In Section 5, we conclude and discuss some open questions.

2 The first c-function and its sum rules

In this section we define c1(R) and we provide sum rules to compute cUV− c1(R), checking that
the flat space limit reproduces the known formulas from [2, 3]. The techniques we use here
closely parallel what was done in [56] to derive sum rules for cUV in Anti de Sitter. The broad
logic of this section is the following

• Assumptions: the stress tensor is conserved and its two-point function reduces to the
CFT form when the two points approach each other. In particular, its normalization
constant is cUV.

• Construction: we construct a differential equation (23) involving the two-point func-
tion of the stress tensor. We choose an ansatz for the unknowns in (23) in terms of
components of the stress tensor two-point function and impose as a boundary condition
that we retrieve cUV at coincident points.

• Result: We find a solution to the differential equation and we integrate it. This lands us
on a sum rule which returns cUV minus a quantity which we call c1(R). In the rest of the
section we prove c1(R) interpolates between cUV and cIR.

2.1 Preliminaries

We are going to treat both the Euclidean and Lorentzian cases together. The Sd+1 and dSd+1
can be embedded in R1,d+1 as follows

±(Y 0)2 + (Y 1)2 + . . .+ (Y d+1)2 = R2 . (2)

Throughout this and the following sections we will write “de Sitter” to mean both the
Lorentzian and Euclidean manifolds, to which all derivations apply.

We introduce the two-point invariant

σ ≡
1
R2

Y1 · Y2 , (3)

where the dot is either Y1 · Y2 = ηABY A
1 Y B

2 or Y1 · Y2 = δABY A
1 Y B

2 depending on the signature
of choice, and the indices are A = 0, . . . , d + 1. For now, we will set R = 1 and then restore
it when it is convenient. Operators can be lifted to embedding space and are related to their
local counterparts in some coordinates yµ with µ= 0, 1, . . . d as follows

TA1...AJ =
∂ Y A1

∂ yµ1
· · ·
∂ Y AJ

∂ yµJ
Tµ1...µJ . (4)
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The induced metric in embedding space and the covariant derivative are

GAB = ηAB − Y AY B , ∇A = ∂ A
Y − Y A(Y · ∂Y ) . (5)

The proof of the existence of c1(R) starts from considering the two-point function of the stress
tensor on the Bunch-Davies vacuum, with the following choice of normalization

Tµν ≡ −
2

p

|g|
δS
δgµν

.1 (6)

Let us for now stay in general dimension d+1. By group theory, the two-point function of any
spin 2 symmetric tensor can be decomposed into 5 linearly independent tensor structures

〈TAB(Y1)T
C D(Y2)〉=

5
∑

i=1

TABC D
i Ti(σ) . (7)

The tensor structures we choose are, specifically,

TABC D
1 = V A

1 V B
1 V B

2 V D
2 ,

TACBD
2 = V A

1 V C
1 GBD

2 + GAC
1 V B

2 V D
2 ,

TACBD
3 = −V A

1 V B
2 GC D

12 − V C
1 V D

2 GAB
12 − V C

1 V B
2 GAD

12 − V A
1 V D

2 GCB
12 ,

TACBD
4 = GAC

1 GBD
2 ,

TACBD
5 = GC D

12 GAB
12 + GAD

12 GCB
12 ,

(8)

with
V A

1 = Y A
2 − (Y1 · Y2)Y

A
1 , V A

2 = Y A
1 − (Y1 · Y2)Y

A
2 ,

GAB
1 = η

AB − Y A
1 Y B

1 , GAB
2 = η

AB − Y A
2 Y B

2 ,

GAB
12 = η

AB −
Y A

2 Y B
1

Y1 · Y2
.

(9)

All of the tensors in (9) are transverse, so that we force the stress tensor to be tangential to
the surface (2):

Vi · Yi = GAB
i Yi,A = GAB

12 Y1,A = GAB
12 Y2,B = 0 . (10)

The connected two-point function of the trace Θ ≡ TA
A will then be given by

〈Θ(Y1)Θ(Y2)〉=(σ2 − 1)2T1(σ) + 2(d + 1)(1−σ2)T2(σ) + 4
�

1
σ
−σ

�

T3(σ)

+ (d + 1)T4(σ) + 2
�

d +
1
σ2

�

T5(σ) .
(11)

The coincident point limit probes the CFT in the UV fixed point of the RG flow defined by our
QFT. In particular, in that limit the two-point function (7) has to reduce to the CFT two-point
function of the stress tensor in the UV. This is uniquely fixed by symmetry and conservation up
to a constant that is proportional to cUV. In some Riemann normal coordinates xµ, this means

lim
x→0
〈Tµν(x)Tϱσ(0)〉 ≈

cUV
T

x2d+2

�

1
2

�

wµϱwνσ +wµσwνϱ
�

−
1

d + 1
ηµνηϱσ

�

, (12)

with
wµν ≡ ηµν − 2

xµxν
x2

. (13)

1In our conventions the metric gµν is dimensionless, so Tµν has mass dimensions d + 1, as does the trace Θ.
Furthermore, we will consider the tensor structures (8) dimensionless and the functions Ti dimensionful.
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where cUV
T is the normalization of the stress tensor two-point function in the UV, which in two

dimensions is related to the central charge as follows

cT =
1

2π2
c . (14)

This matching in the UV implies that the Ti(σ) functions have the following behaviors at
coincident points (see appendix (A.2) for more details on how to derive this)

T1 ≈
4cUV

T

x2d+6
, T2 ∼ o(x−2d−2) , T3 ≈ −

cUV
T

x2d+4
,

T4 ≈ −
cUV

T

d + 1
1

x2d+2
, T5 ≈

cUV
T

2
1

x2d+2
.

(15)

When defining the stress tensor through (6), we effectively impose it to be conserved at the
fixed points, but we allow for the presence of local contact terms in its expectation values.
To be more precise, (15) should also include contact terms in the form of delta functions and
their derivatives, such as is done explicitly in [57, 58]. All these terms would drop out of the
sum rules we derive, and thus we do not report their explicit forms here.

Two dimensions Effectively, in two dimensions (7) is a redundant decomposition, since
there are only 4 linearly independent tensor structures. This can be seen from the fact that
necessarily

W ABC D
EF ≡ Y [A1 Y B

2 δ
C
Eδ

D]
F = 0 , when d + 1= 2 . (16)

It is possible to check, then, that the equation W A1A2C D
EF W B1B2EF

C D = 0 with (A1B1) and (A2B2)
symmetrized, is equivalent to

−
2
σ4
T1 −

2
σ2
T2 +

1
σ3
T3 + 2

1−σ2

σ2
T4 −

1−σ2

σ2
T5 = 0 , (17)

where we suppressed all the indices on the Ti to avoid clutter. This shows indeed that the
tensor structures are degenerate in two dimensions. The Ti(σ) functions are then defined up
to a common shift by a generic function g(σ)

T1(σ)∼ T1(σ)−
2
σ4

g(σ) , T2(σ)∼ T2(σ)−
2
σ2

g(σ)

T3(σ)∼ T3(σ) +
1
σ3

g(σ) , T4(σ)∼ T4(σ)− 2
σ2 − 1
σ2

g(σ) ,

T5(σ)∼ T5(σ) +
σ2 − 1
σ2

g(σ) .

(18)

We thus construct four quantities which are invariant under this shift

T1(σ)≡ (1−σ2)

�

σ2

2
T1(σ)−

1
2

T2(σ)

�

, T3(σ)≡
1
2

T4(σ)− (1−σ2)σT3(σ) ,

T2(σ)≡ (1−σ2)
�

−
1
2

T2(σ)−σT3(σ)
�

, T4(σ)≡
1
2

T4(σ) + T5(σ) .2
(19)

In this basis, the two-point function of the trace of the stress tensor has the following expres-
sion, in two dimensions

GΘ(σ) =
2
σ2

�

(1−σ2)T1(σ)− (1+ 3σ2)T2(σ) + (3σ
2 − 1)T3(σ) + (1+σ

2)T4(σ)
�

, (20)

2The precise overall σ-dependent coefficient of each Ti function was chosen a posteriori after having derived
their spectral decompositions (B.16) in such a way that they would not diverge at antipodal separation σ = −1.
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where we introduced the notation

GΘ(σ)≡ 〈Θ(Y1)Θ(Y2)〉 . (21)

Notice that the regularity of GΘ(σ) at σ = 0, which is not a special configuration on the sphere
or in de Sitter, implies the following relation for the Ti functions

T1(0) + T4(0) = T2(0) + T3(0) . (22)

2.2 Proof of the position space sum rule

For the purposes of our proof, we want to find a kernel r(σ) and a function C(σ) such that

r(σ)GΘ(σ) =
d

dσ
C(σ) . (23)

Moreover, to extract the central charge, we would like to have C(1) = cUV up to contact terms,
such that integrating both sides of (23) will give us a sum rule. For this to work, necessarily
r(1) = 0 to kill the divergence of GΘ(σ) at coincident points.

In order to solve (23), we use the following ansatz with four unknown functions gi(σ),
purely motivated by the fact that it works

C(σ) =
4
∑

i=1

gi(σ)Ti(σ) .3 (24)

Then, we impose the conservation of the stress tensor

∇A〈TAB(Y1)T
C D(Y2)〉= 0 . (25)

This induces three linearly independent scalar differential equations on the Ti functions, which
we obtain by multiplying with three linearly independent projectors, see (A.1) for details.
Using (19), the conservation equations transform into three differential equations for the Ti ’s
(A.3).

Call Ei = 0 with i = 1,2, 3 the three conservation equations (A.3). Then, we introduce
three unknown functions qi(σ) and say

r(σ)GΘ(σ)−
d

dσ
C(σ) =

3
∑

i=1

qi(σ)Ei . (26)

We impose that this equation be true for any σ, Ti(σ) and T ′i (σ). We treat Ti and T ′i as
independent from each other, and imposing that their coefficients are zero gives 8 differential
equations with 8 unknown functions, namely r(σ), g1(σ), . . . , g4(σ) and q1(σ), q2(σ), q3(σ).
We find three solutions which we report in (A.4). Only one of them has C(1) = cUV up to
contact terms and r(1) = 0. It has kernel

r(σ) = 8π2
�

1−σ
�

log
�

1+σ
2

�

+ 1
��

, (27)

and associated function C(σ)

C(σ) =
8π2

σ2

�

2(1−σ2)2 log(ζ)T1(σ)

+ 2(σ2(1−σ)2 + (σ2 − 1)(2σ2 + 1) log(ζ))T2(σ)

+ (σ(1−σ)2(1− 2σ) + 2(2σ2 − 1)(1−σ2) log(ζ))T3(σ)

− (σ(σ− 1)2 + 2(σ2 − 1) log(ζ))T4(σ)
�

,

(28)

3This choice was inspired by [56] where a similar construction led to sum rules for cUV in AdS2.
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where ζ≡ 1+σ
2 . The fact that limσ→1 C(σ) = cUV up to contact terms can be checked by using

(19) and (15). Importantly, at antipodal separation, we have

C(−1) = 32π2R4
�

T5(−1)− T4(−1)
�

= 32π2R4
�

T4(−1)− 3T3(−1)
�

, (29)

where we used the fact that the Ti(σ) and Ti(σ) functions cannot diverge at σ = −1 and that
T2(−1) = 0, both facts which we prove in total generality in Appendix B.2, and we restored
factors of the radius. This is our c1(R), and we claim it interpolates between cUV and cIR as we
change the radius of S2/dS2

c1(R)≡ C(−1) . (30)

We will prove that the end-points of c1(R) are cUV and cIR, and we will verify in examples in
Section 4 that c1(R) is a non-increasing function of the radius in between.

Let us emphasize that, in a given QFT, each Ti function depends on the mass scales of the
theory {mk} through dimensionless products such as mkR and mi/m j , hence the dependency
on the radius of c1(R).

Integrating both sides of (23) over the domain of the normalized inner product on the
sphere σ ∈ [−1,1), while being careful to avoid contact terms at σ = 1, we get to one of our
main results

cUV − c1(R) = 8π2

∫ 1

−1

dσ
�

1−σ
�

log
�

1+σ
2

�

+ 1
��

R4GΘ(σ) , (31)

where we restored the necessary factors of the radius.
Let us note that, in this form, this sum rule is analogous to what was obtained in two-

dimensional EAdS in [56]

cUV = 8π2

∫ −1

−∞
dσ

�

−1−σ
�

log
�

1−σ
2

�

+ 1
��

R4GΘ(σ) , in AdS2 .4 (32)

Notice the slightly different kernel, the different integration domain and the fact that the
information about the intermediate flow is lost in the AdS case.

Flat space limit Let us show that (31) reduces to (1) in the flat space limit, thus proving

that c1(∞) = cIR. We start from the flat slicing coordinates ds2 = R2 −dη2+dy2

η2 and we choose
conventions in which the metric is dimensionless. The flat space limit is achieved by taking
η→ t − R and y → x and then taking R→∞. Then the metric becomes ds2 = −dt2 + dx2

and

σ =
η2

1 +η
2
2 − (y1 − y2)2

2η1η2
∼ 1−

−(t1 − t2)2 + (x1 − x2)2

2R2
≡ 1−

r2

2R2
. (33)

Our formula (31) then changes as follows

cUV − lim
R→∞

c1(R) = 8π2 lim
R→∞

∫ 1

−1

dσ
�

1−σ
�

log
�

1+σ
2

�

+ 1
��

R4GΘ(σ)

= 6π2 lim
R→∞

∫ 2R

0

r3dr GΘ

�

1−
r2

2R2

�

= 6π2

∫ ∞

0

r3dr〈Θ(r)Θ(0)〉flat ,

(34)

4For a direct comparison, use σhere = −2ξthere − 1.
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The last form precisely matches (1), implying that

lim
R→∞

c1(R) = cIR . (35)

2.3 A sum rule in terms of spectral densities

We are interested in phrasing (31) in terms of an integral over the spectrum of the theory. To
do that, we are going to use the fact that the two-point function of the trace of the stress tensor
in the Bunch-Davies vacuum in a unitary QFT in dS2 has a Källén-Lehmann decomposition into
UIRs of SO(1, 2) as follows [44–46,55,59–62]

GΘ(σ) = 2π

∫

1
2+iR

d∆
2πi

ϱP
Θ (∆)G∆(σ) +

∫ 1

0

d∆ ϱC
Θ(∆)G∆(σ) ,

5 (36)

with

G∆(σ) =
1
4

csc(π∆) 2F1

�

∆, ∆̄, 1,
1+σ

2

�

, ∆̄≡ 1−∆ , (37)

where ∆ parametrizes the eigenvalue of the quadratic Casimir of SO(1, 2) as follows

CSO(1,2)
2 =∆(1−∆)≡ m2R2 . (38)

The first term in (36) stands for contributions associated to principal series UIRs, while the
second one stands for complementary series contributions. In a unitary theory, the spectral
densities ϱP

Θ (∆) and ϱC
Θ(∆) are positive on their domains of integration. For early references

on the full classification of UIRs of SO(1,2) see [63–66]. For recent reviews, see [67,68].
Notice that we are excluding the possibility that, in two dimensions, the discrete series of

UIRs (∆ = p ∈ N \ {0}) could contribute to the Källén-Lehmann decomposition of the trace
of the stress tensor, since it is a scalar operator. In [45, 50] we phrased more precisely some
arguments in favor of the fact that only operators with spin J ≥ p can interpolate between the
vacuum and states in the discrete series. The rigorous statement is the following: the two-
point function of an operator with J indices which does not grow at infinite geodesic distance
and does not have branch cuts at spacelike separation, cannot have discrete series irreps with
p > J in its Källén-Lehmann decomposition. In the J = 0 case, the reason is that the Casimir
equation

�

∇2 − p(1− p)
�

Gp = 0 has two families of solutions, one which grows at infinity and
one which has a branch point atσ = −1. Concretely, the solutions with the unphysical cuts are
Legendre Q functions Qp(σ). Taking a discontinuity across the branch cuts returns Legendre P
functions Pp(σ), which are orthogonal for different p. Thus, there is no way that a finite sum
of discrete series irreps leads to a two-point function which is free of unphysical branch cuts.
Similar statements can be adapted to operators with J indices, see [45, 50] for more details.
Then, we conjecture that it is impossible that an infinite sum of discrete series contributions
leads to a two-point function which is free of unphysical branch cuts. This is not an obvious
statement because the infinite sum and the discontinuity do not commute.

Some references which further speculate on possible loopholes to these arguments are [69–
71]. At the moment, no explicit counterexample to this conjecture is present in the literature.

Given these assumptions, the derivation of the spectral sum rule is straightforward: we

5In our conventions G∆ is dimensionless, so the mass dimensions of the trace of the stress tensor are captured
by the spectral densities, which thus have mass dimension 4.
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plug (36) into (31) and carry out the integral over σ. We use the following identities
∫ 1

−1

dσ G∆(σ) =
1

2π
1
∆∆̄

,

∫ 1

−1

dσ σ G∆(σ) =
1

2π
1

(∆+ 1)(∆̄+ 1)
,

∫ 1

−1

dσ σ log
�

1+σ
2

�

G∆(σ) =
1

2π
∆∆̄− 4

∆∆̄(∆+ 1)2(∆̄+ 1)2
−

csc(π∆)
2(∆+ 1)(∆̄+ 1)

.

(39)

We obtain

cUV − c1(R) =

∫

1
2+iR

d∆
2πi

�

24π2

(∆+ 1)2(∆̄+ 1)2
+

8π3 csc(π∆)
(∆+ 1)(∆̄+ 1)

�

R4ϱP
Θ (∆)

+

∫ 1

0

d∆
2π

�

24π2

(∆+ 1)2(∆̄+ 1)2
+

8π3 csc(π∆)
(∆+ 1)(∆̄+ 1)

�

R4ϱC
Θ(∆) .

(40)

Notice that, now, the integrands on the right hand side are manifestly positive on the principal
and complementary series domains ∆= 1

2 + iR and ∆ ∈ (0, 1), implying that

cUV ≥ c1(R) . (41)

Flat space limit Let us show that (40) reduces to (1) in the flat space limit. We start from
the fact that, reinstating factors of the radius, [45]

lim
R→∞

R
p

s
ϱP
O(∆= iR

p
s) = ϱflat

O (s) , (42)

where s ≡ m2 is the flat space mass that is integrated over in the Källén-Lehmann representa-
tion. Taking the flat space limit of (40) gives

cUV − lim
R→∞

c1(R) = 12π lim
R→∞

�∫ ∞

0

Rds
p

s
1

s2R4

p
s

R
R4ϱflat

Θ (s) + complementary

�

= 12π

∫ ∞

0

ds
s2
ϱflat
Θ (s) + lim

R→∞
complementary

= cUV − cIR + lim
R→∞

complementary ,

(43)

where we used the fact that the csc(π∆) factor exponentially suppresses the spectral density
in this limit, which cannot compete due to Tauberian theorems in flat space, and that the first
term in the penultimate line was exactly the spectral sum rule (1). Since we showed that
limR→∞ c1(R) = cIR in the previous section, we just proved that

lim
R→∞

∫ 1

0

d∆
2π

�

24π2

(∆+ 1)2(∆̄+ 1)2
+

8π3 csc(π∆)
(∆+ 1)(∆̄+ 1)

�

R4ϱC
Θ(∆) = 0 , (44)

meaning that the complementary series contribution has to vanish when taking the R →∞
limit.

10

https://scipost.org
https://scipost.org/SciPostPhys.17.3.079


SciPost Phys. 17, 079 (2024)

2.4 Behavior of the first c-function at vanishing radius

Let us study the behavior of c1(R) as we take R→ 0. We start from (31) and study the limit

lim
R→0

∫ 1

−1

dσ
�

1−σ
�

log
�

1+σ
2

�

+ 1
��

G̃Θ(σ, {miR}) , (45)

where G̃Θ ≡ R4GΘ is the dimensionless two-point function of the trace of the stress tensor, and
we made explicit the fact that it can in general depend on all the dimensionless combinations
of the mass scales of the theory and of the radius. Taking R→ 0 in this formula while keeping
mk fixed is equivalent to taking all mk → 0 and keeping R fixed, probing the UV fixed point
of the theory, which is a CFT on a two-sphere of radius R. It is a general fact that in a CFT in
curved space, the two-point function of the trace of the stress tensor vanishes up to contact
terms. Then, we notice two more facts: the divergence of the kernel at σ = −1 is logarithmic
and thus integrable, and the divergence of G̃Θ at σ = 1 is logarithmic and cured by a simple
zero in the kernel. We can thus safely state that

lim
R→0

c1(R) = cUV , if lim
R→0

G̃Θ(σ) = 0 .6 (46)

This has implications regarding the integrals appearing in the spectral sum rule (40). Specifi-
cally, we can say that necessarily

lim
R→0

�

∫

1
2+iR

d∆
2πi

�

24π2

(∆+ 1)2(∆̄+ 1)2
+

8π3 csc(π∆)
(∆+ 1)(∆̄+ 1)

�

R4ϱP
Θ (∆)

+

∫ 1

0

d∆
2π

�

24π2

(∆+ 1)2(∆̄+ 1)2
+

8π3 csc(π∆)
(∆+ 1)(∆̄+ 1)

�

R4ϱC
Θ(∆)

�

= 0 ,

(47)

under the same assumption as in (46). This will be important when studying the second c-
function in the next section.

An important caveat Let us discuss the generality of the hypothesis in equation (46). While
it is certainly true that G̃Θ(σ) = 0 in a CFT on S2, at least one case is known of an RG flow in
which limR→0 G̃Θ(σ) ̸= 0: the free massive boson flow. The cause of this can be traced back
to the fact that the massless limit of the two-point function of a free field is divergent, a fact
which itself originates from the IR divergent zero mode of the free massless scalar [72, 73].
More details on this will be explained in Section 4.1. The main statement is that there exist
QFTs which violate the hypothesis limR→0 G̃Θ(σ) = 0, in which case c1(R) does not reach cUV

as R→ 0. Intuition suggests that, more in general, the UV of the theory must be ill defined in
some sense in order to have limR→0 G̃Θ(σ) ̸= 0. We will outline a technical hypothesis under
which c2(R) interpolates to cUV in Section 3.3, and see that a broader class of theories satisfies
it, including the free massive boson.

3 Spectral densities of the stress tensor and the second c-function

In this section, we derive a series of properties regarding the spectral representation of the
stress tensor in unitary QFTs in de Sitter and on the sphere. In subsection 3.1, we show the
most general form of the spectral decomposition of the stress tensor in d+1 dimensions, taking
into consideration only the contributions from the principal and complementary series. The

6The precise expression is 〈Θ(x1)Θ(x2)〉= −
c

12π∇
2δ(2)(x1 − x2) [57].
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conservation of the stress tensor implies relations between the spectral densities associated
to different SO(d) spin, making the expressions much simpler than initially expected. In
subsection 3.2, we specify to the case of two dimensions and we take into account all the
UIRs that the stress tensor can in principle couple to. After imposing conservation, we find
once again a much more compact expression than one would expect, and we show that from
the discrete series only the ∆= 2 UIR can appear. We leave many details of this section to the
Appendix B.1.

3.1 Spectral decomposition of the stress tensor in higher dimensions

The stress tensor is a symmetric spin 2 operator. As such, naively, one would expect it to have a
total of five independent spectral densities: one associated to its trace, three associated to the
SO(d) decomposition of its traceless part, and one associated to the mixed two-point function
of its trace and its traceless parts. In equations,

〈TAB(Y1)T
C D(Y2)〉= 2π

∫

d
2+iR

d∆
2πi

� 2
∑

ℓ=0

ϱP
T̂ ,ℓ
(∆)GAB,C D

∆,ℓ (Y1, Y2)

+ϱP
T̂Θ
(∆)

�

GC D
2

d + 1
Π̂AB

1 G∆(σ) +
GAB

1

d + 1
Π̂C D

2 G∆(σ)

�

+ϱP
Θ (∆)

GAB
1 GC D

2

(d + 1)2
G∆(σ)

�

+ other UIRs , (48)

where GAB,C D
∆,ℓ (Y1, Y2) are the blocks that appear in the Källén-Lehmann representation of trace-

less symmetric spin 2 operators on the Bunch-Davies vacuum, Π̂AB
i is a traceless symmetric

differential operator

Π̂AB
i =

1
d + 1

GAB
i ∇

2
i −∇

(A
i ∇

B)
i , (49)

and G∆(σ) is the canonically normalized free scalar propagator in d + 1 dimensions in the
Bunch-Davies vacuum [74]

G∆(σ) =
Γ (∆)Γ (∆̄)

(4π)
d+1

2

F
�

∆, ∆̄,
d + 1

2
,
1+σ

2

�

, σ =
1
R2

Y1 · Y2 .7 (50)

In particular, the ℓ = 2 block GAB,C D
∆,2 (Y1, Y2) is explicitly reported in (C.16) and the ones for

ℓ = 0 and ℓ = 1 can be found in index-free form in appendix F.3 of [45]. Embedding space
covariant derivatives∇A and the induced metric GAB are defined in Section 2.1. In this section,
we are again setting R= 1.

Taking or removing traces from (48) reduces it to the following, naively independent,
decompositions

〈T̂AB(Y1)T̂
C D(Y2)〉= 2π

∫

d
2+iR

d∆
2πi

2
∑

ℓ=0

ϱP
T̂ ,ℓ
(∆)GAB,C D

∆,ℓ (Y1, Y2) + other UIRs ,

〈Θ(Y1)T̂
C D(Y2)〉= 2π

∫

d
2+iR

d∆
2πi

ϱP
T̂Θ
(∆)Π̂C D

2 G∆(σ) + other UIRs ,

〈Θ(Y1)Θ(Y2)〉= 2π

∫

d
2+iR

d∆
2πi

ϱP
Θ (∆)G∆(σ) + other UIRs .

(51)

7We use the notation for the regularized hypergeometric function F(a, b, c, z) ≡ 1
Γ (c) 2F1(a, b, c, z) , and in this

section ∆̄≡ d −∆, while in the rest of the paper ∆̄≡ 1−∆.
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The conservation of the stress tensor induces relations among these spectral densities, totally
analogous to those in flat space [5]. We relegate the proof of these relations to Appendix B.1.
Here, we report the results

ϱT̂Θ(∆) =
ϱΘ(∆)

d(∆+ 1)(∆̄+ 1)
, ϱT̂ ,0(∆) =

ϱΘ(∆)
d2(∆+ 1)2(∆̄+ 1)2

, ϱT̂ ,1(∆) = 0 .8 (52)

The Källén-Lehmann decomposition of the stress tensor thus reduces to

〈TAB(Y1)T
C D(Y2)〉= 2π

∫

d
2+iR

d∆
2πi

�

ϱP
T̂ ,2
(∆)GAB,C D

∆,2 (Y1, Y2)

+
ϱP
Θ (∆)

d2(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ)

�

+ other UIRs ,

(53)

where ΠAB
i comes from the combination of the various propagators proportional to ϱΘ after

applying (52)
ΠAB

i ≡ GAB
i

�

d +∇2
i

�

−∇(Ai ∇
B)
i . (54)

In this representation, both lines in (53) are independently conserved: ∇AGAB,C D
∆,2 = 0 by defi-

nition and it can be checked that∇AΠ
ABG∆ = 0. Group theoretically, the first line corresponds

to states which carry SO(d) spin 2, while the second line corresponds to all other scalar states.

3.2 Spectral decomposition of the stress tensor in two dimensions

In two dimensions, the picture simplifies even further: there is no dynamical propagating
massive traceless symmetric spin 2 field, so GAB,C D

∆ (Y1, Y2) = 0. Moreover, the only UIRs that
can contribute, other than the principal series, are the complementary series and the irrep with
∆= 2 in the discrete series. We prove this fact in Appendix B.1. We are left with

〈TAB(Y1)T
C D(Y2)〉=2π

∫

1
2+iR

d∆
2πi

ϱP
Θ (∆)

(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ)

+

∫ 1

0

d∆
ϱC
Θ(∆)

(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ)

+ϱD2

T̂
ΠAB

1 Π
C D
2 G∆=2(σ) .9

(55)

Since for the discrete series there is no integral over ∆, we call ϱD2

T̂
the spectral weight of the

stress tensor in the ∆= 2 UIR.
When the theory has a good continuation in the number of spacetime dimensions, there

is a final simplification. If in higher dimensions the stress tensor only decomposes in principal
and complementary series, then when continuing to d = 1 the only contribution to the ∆= 2

8Here we omit the superscripts on the spectral densities specifying the series of UIRs because these identities
apply also to the complementary series, given that the functional form of its contribution is just the analytic
continuation of the principal series ones.

9We use the same notation for projectors and propagators that we used in the higher dimensional case, but we
are implicitly setting d = 1.
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discrete series comes from spurious poles at ∆ = 2 and ∆̄ = 2 in GAB,C D
∆,2 which will cross

the contour of integration over the principal series and lead to the discrete series ∆ = 2
contribution. This is in fact what happens in the free massive boson case, as we will discuss in
further detail in Section 4.1 and Appendix C.1. We can thus state that if the theory has a good
analytic continuation in d, with only principal and complementary series contributions to the
stress tensor in higher dimensions, we have

ϱ
D2

T̂
= 4π Res

∆=2

�

ϱP
Θ (∆)

(∆+ 1)2(∆̄+ 1)2

�

. (56)

3.3 Finding the second c-function

By comparing the definitions (7), (19) and (30) with the spectral decomposition (55), it is
possible to derive formulas which extract cUV and c1(R) individually as integrals over the
spectral densities of the stress tensor. To start, in Appendix B.2 we show how to relate the
Ti(σ) functions to integrals over the spectral densities of the stress tensor, obtaining equations
(B.16). Then, evaluating them at σ = −1, we obtain

T1(−1) = 0 , T2(−1) = 0 ,

T3(−1) = −
3

32π
ϱ
D2

T̂
+
π

32

∫

1
2+iR

d∆
2πi
(4+∆∆̄)csc(π∆)
(∆+ 1)(∆̄+ 1)

ϱP
Θ (∆) + complementary ,

T4(−1) =
3

32π
ϱ
D2

T̂
+
π

32

∫

1
2+iR

d∆
2πi
(4+ 3∆∆̄)csc(π∆)
(∆+ 1)(∆̄+ 1)

ϱP
Θ (∆) + complementary ,

(57)

where “complementary” stands for the same exact expression as the principal series case but
with an integral over the ∆ ∈ (0, 1) contour. Now, using the definition of c1(R) (30), we get

c1(R) = 12πR4

�

ϱ
D2

T̂
−

2π2

3

∫

1
2+iR

d∆
2πi

csc(π∆)ϱP
Θ (∆)

(∆+ 1)(∆̄+ 1)
−
π

3

∫ 1

0

d∆
csc(π∆)ϱC

Θ(∆)

(∆+ 1)(∆̄+ 1)

�

. (58)

Using our sum rule (40), we can thus derive a formula for cUV which is valid for any R:

cUV = 12πR4

�

ϱ
D2

T̂
+ 2π

∫

1
2+iR

d∆
2πi

ϱP
Θ (∆)

(∆+ 1)2(∆̄+ 1)2
+

∫ 1

0

d∆
ϱC
Θ(∆)

(∆+ 1)2(∆̄+ 1)2

�

. (59)

Interestingly, in the flat space limit the second term in (59) independently reduces to the sum
rule for cUV− cIR, see the previous paragraph. At the same time, the principal series integral in
(58) vanishes in this limit. Moreover, (44) implies that both complementary series integrals in
(59) and (58) vanish in this limit. Finally, in Section 2.4 we showed that all of these integrals
of the spectral densities of the trace of the stress tensor vanish as R→ 0 if limR→0 GΘ(σ) = 0.
We can thus define

c2(R)≡ 12πR4ϱ
D2

T̂
, (60)

and state that
lim

R→∞
c2(R) = cIR ,

lim
R→0

c2(R) = cUV , if lim
R→0

GΘ(σ) = 0 .
(61)
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σ

1 Ck

Figure 2: In blue, the contour of integration Ck in (64). It wraps the branch cut of the
two-point function for time-like separation. In practice, it is equivalent to summing
the residue at σ = 1 and the discontinuity at σ ∈ (1,∞).

In other words, the spectral weight of the stress tensor in the discrete series ∆ = 2 irrep is
another candidate c-function which interpolates between cIR and cUV as we vary the radius.
In the last part of this section we will weaken the assumption in (61).

Let us write down two sum rules for c2(R). The one in terms of spectral densities is obtained
by combining (58), (59) and (60):

cUV − c2(R) = 24π2R4

�

∫

1
2+iR

d∆
2πi

ϱP
Θ (∆)

(∆+ 1)2(∆̄+ 1)2
+

∫ 1

0

d∆
2π

ϱC
Θ(∆)

(∆+ 1)2(∆̄+ 1)2

�

, (62)

once again from this we can deduce cUV ≥ cIR. Comparing with (40) we can further state

c2(R)≥ c1(R) . (63)

Deriving the position space sum rule for c2(R) is slightly more involved. We make use of the
inversion formula from [39, 45, 46], which in two dimensions states that the principal series
spectral density associated to a two-point function G(σ) is given by

ρP(∆) =
�

1
2
−∆

�

i cot(π∆)

∫

Ck

dσ 2F1

�

∆, ∆̄, 1,
1−σ

2

�

G(σ) , (64)

with the contour Ck being a “keyhole” contour wrapping the branch cut of G(σ), which for a
physical two-point function is at σ ∈ [1,∞), see figure 2. In practice, evaluating this integral
corresponds to computing the residue of the integrand at σ = 1 and the discontinuity of G(σ)
around the cut.
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For now, we will assume that there are no further contributions to the spectral decompo-
sition of our two-point function. We will see that the sum rule we obtain in this way works
even if there are complementary series contributions.

To proceed, we plug (64) inside (62), and we use the following identity

2F1

�

∆, ∆̄, 1,
1−σ

2

�

=
Γ (1

2 −∆)p
πΓ (∆̄)

1
(2(1+σ))∆ 2F1

�

∆,∆, 2∆,
2

1+σ

�

+ (∆↔ ∆̄) . (65)

Exploiting the symmetry of the integral, we can drop the second term in (65). Now the
integrand decays with large Re(∆). Assuming the convergence of the sum rule (62) and of
the inversion formula (64), we can swap the integrals and close the contour of integration
over ∆ on the right half of the complex plane, picking up the residue on the only pole of the
integrand, which is at ∆= 2. We obtain the following position space sum rule,

cUV − c2(R) =

∫

Ck

dσ r2(σ)R
4GΘ(σ) , (66)

with the explicit form of the kernel being

r2(σ) =
4πi

(1+σ)2

�

2σ3coth−1(σ) +σ2 log

�

(σ+ 1)3

4(σ− 1)

�

+σ log

�

(σ− 1)(σ+ 1)3

16

�

(67)

+ log

�

σ2 − 1
4

�

+ 2(1+σ)2
�

1−σ
�

coth−1(σ) log
�

σ− 1
2

�

− Li2

�

2
1−σ

���

�

,

where Li2(x) is a dilogarithm. Notice that r2(σ) is purely imaginary in σ ∈ (1,∞), as is the
discontinuity of GΘ(σ), so that the integrand in (66) is real.

Given this new sum rule (66) we can now weaken the assumption in (61). Let us write
explicitly

∫

Ck

dσ r2(σ)G̃Θ(σ) =

∫ ∞

1

dσ r2(σ)Disc[G̃Θ(σ)]− 2πir2(1)Res
σ=1
[G̃Θ(σ)] , (68)

where we are using the notation of Section 2.4 where G̃Θ ≡ R4GΘ. From this, we can state the
following sufficient condition

lim
R→0

c2(R) = cUV , if lim
R→0

Disc[G̃Θ(σ)] , and lim
R→0

Res
σ=1
[G̃Θ(σ)] = 0 . (69)

This is a more general condition than the one for c1(R) (46). Infact, in the free boson case,
where limR→0 c1(R) ̸= cUV, we instead have limR→0 c2(R) = cUV. The fact that this condition is
weaker puts c2(R) on a preferred standing with respect to c1(R) as a candidate c-function.

For completeness, let us state that as long as the two-point function GΘ(σ) can be ana-
lytically continued to some regime where only the principal series contributes to its spectral
decomposition, then (66) works in every other regime. We checked that this works in the free
massive boson case, even when complementary series contributions appear.

As a final note, let us emphasize that what we showed in this section implies that in any
QFT the spectral decomposition of the stress tensor must contain a contribution from the∆= 2
discrete series irrep, since its spectral weight has to interpolate between cIR and cUV.10

10The only exception is, of course, the empty theory.
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3.4 Independent argument for the second c-function

Here we will give an independent argument for why ϱD2

T̂
interpolates between cUV and cIR

as we tune the radius of the sphere R. Let us start by writing down the Källén-Lehmann
decomposition of the stress tensor in two-dimensional flat space [3–5]

〈Tµν(x1)T
ρσ(x2)〉flat =

cIR

12π
Π
µν
1 Π

ρσ
2 G0(x1, x2) +

∫ ∞

0

ds
s2
ϱ̃Θ(s)Π

µν
1 Π

ρσ
2 Gs(x1, x2) , (70)

where we separated the massless contributions from the massive ones, and

Gs(x1, x2)≡
1

2π
K0(
p

s|x1 − x2|) , (71)

is the canonically normalized propagator of a massive free scalar with m2 = s in two dimen-
sions, with Kn(x) being the modified Bessel function of the second kind, and

Π
µν
i ≡ η

µν∂ 2
i − ∂

µ
i ∂

ν
i , (72)

are the divergence-less projectors which ensure conservation of the stress tensor. Notice that
the massless contribution in (70) is also traceless. That is necessary, since it is what survives
in the IR CFT. In fact, it can be checked that

cIR

12π
Π
µν
1 Π

ρσ
2 G0(x1, x2) = 〈Tµν(x1)T

ρσ(x2)〉flat
CFT . (73)

On the other hand, consider the Källén-Lehmann decomposition of the stress tensor in S2/dS2
which we derived in the previous section and which we report here for convenience

〈TAB(Y1)T
C D(Y2)〉=2π

∫

1
2+iR

d∆
2πi

ϱP
Θ (∆)

(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ)

+

∫ 1

0

d∆
ϱC
Θ(∆)

(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ)

+ϱD2

T̂
ΠAB

1 Π
C D
2 G∆=2(σ) .

(74)

In [45] we studied the flat space limit of the principal series contributions and showed that
they account for the continuum part in (70). Then, in (44) we argued that the complementary
series part has to vanish in the flat space limit. What remains is only the last line in (74). Now
notice that the ∆ = 2 contribution is precisely the two-point function of the stress tensor in a
CFT on the two-sphere, up to a normalization factor

W±1AW±1BW±2CW±2DΠ
AB
1 Π

C D
2 G∆=2(σ) =

6
π

(W±1 ·W
±
2 )

2

(1−σ)4

∝ 〈T (Y1, W±1 )T (Y2, W±2 )〉
sphere
CFT ,

(75)

where W±iA are null vectors we are using to contract indices and give a compact form to the final
expression, and the ± stands for their behavior under parity. We explain some more details on
them in Appendix C.1 and in our previous work [45]. Then, based on what we argued about
the flat space limit, this is what matches the massless part in (70) when R→∞, so that

cIR = 12π lim
R→∞

R4ϱ
D2

T̂
. (76)

On the other hand, as we discussed in 2.4, taking R→ 0 is equivalent to probing the theory
on the sphere at fixed radius but with all mass scales taken to zero, effectively flowing to the
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UV CFT on S2/dS2, where the spectral densities of the trace of the stress tensor vanish and
the only term surviving in (74) is the discrete series. Based on this physical assumption, let us
assume that in this limit the integrals in (74) vanish. Then,

cUV = 12π lim
R→0

R4ϱ
D2

T̂
, (77)

giving an independent argument for why c2(R) defined in (60) interpolates between cUV and
cIR. See the discussion around equation (69) for a proof of a weaker assumption under which
(77) is true.

4 Examples

In this section, we apply the sum rules (31), (40), (62) and (66) in the cases of a free massive
scalar and a free massive fermion to compute the associated c-functions c1(R) and c2(R). In
the free massive boson case we compute all the spectral densities of the stress tensor and show
that the conservation relations (52) are satisfied.

4.1 Free massive scalar

Consider the theory of a free massive scalar with m2R2 = ∆φ(1 − ∆φ). Without loss of
generality, we will use the convention ∆φ =

1
2

�

1+
p

1− 4(mR)2
�

. The action is given by

S = −
1
2

∫

d2 x
p

g
�

gµν∂µφ∂νφ +m2φ2
�

. (78)

In the UV, this can be seen as the free theory of a massless scalar, for which we expect cUV = 1,
perturbed by the relevant operator m2φ2. Following the flow to the IR, we get to the trivial
empty theory, cIR = 0. In flat space, this is one of the simplest examples of RG flows in QFT
and the sum rules (1) work perfectly fine. In de Sitter, the IR divergences associated to the
zero mode of a massless scalar will instead slightly spoil this picture.

As we take the radius to zero, in fact, we are going to find that the two-point function
of the trace of the stress tensor becomes a non-zero constant, due to the divergence of 〈φφ〉
in this limit, which is equivalent to the massless limit. This violates the condition stated in
(46). Instead, the assumption in (69) is not going to be violated, so c2(R) will successfully
interpolate between cUV and cIR. Let us discuss the details.

The stress tensor for this theory, computed from its definition (6), is

Tµν = ∂µφ∂νφ −
1
2

gµν
�

∂ ρφ∂ρφ +m2φ2
�

. (79)

Its trace is Θ = −m2φ2 . The two-point function of the trace is thus

GΘ(σ) = 2m4
�

G∆φ (σ)
�2

, (80)

where G∆(σ) is in (37). As we take the radius to 0 fixing m, we get

lim
R→0

2m4R4
�

G∆φ (σ)
�2
=

1
8π2

, (81)

violating (46). Infact, if we just apply the sum rule (30) we get

c1(R) = 0 , ∀R , (82)
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implying that c1(R) = 0 for all R. In Appendix C.1, we compute the full two-point function of
Tµν and independently verify that c1(R) = 0 using its definition (30). At the same time, we can
check whether condition (69) is satisfied. Using the following formulas for the discontinuity
of hypergeometric functions

Disc [F(a, b, c, z)] =
2πi

Γ (a)Γ (b)
(z − 1)c−a−bF (c − a, c − b, c − a− b+ 1,1− z) ,

Disc
�

F2(a, b, c, z)
�

= (Disc[F(a, b, c, z)] + 2F(a, b, c, z)Disc[F(a, b, c, z)]) ,
(83)

one can easily check that criterion (69) is verified. Then, we expect c2(R) to interpolate
between cUV and cIR for this theory.

In order to derive an explicit expression for c2(R) we will use its definition in terms of
the spectral density of the discrete series (60). In Appendix C.1 we compute all the spectral
densities of the stress tensor for this theory and we check formulas (52) and (40). Let us report
here the resulting decomposition. The general form of the spectral decomposition of the stress
tensor was derived in Section 3.

〈TAB(Y1)T
C D(Y2)〉=2π

∫

1
2+iR

d∆
2πi

ϱP
Θ (∆)

(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ)

+

∫ 1

0

d∆
ϱC
Θ(∆)

(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ)

+ϱD2

T̂
ΠAB

1 Π
C D
2 G∆=2(σ) ,

(84)

where the differential operators ΠAB
i where defined in (54). As expected from our arguments,

we observe the presence of a discrete series irrep with∆= 2. The explicit form of the spectral
densities is, for the principal series

ϱP
Θ

�

1
2
+ iλ

�

=
m4λ sinh(πλ)

16π4Γ (1
2 ± iλ)

Γ

� 1
2 ± iλ

2

�2
∏

±,±
Γ

� 1
2 ± iλ± 2iλφ

2

�

, (85)

where we used∆φ =
1
2+ iλφ for convenience, so then m2R2 = 1

4+λ
2
φ

. For the complementary
and discrete series we find

ϱC
Θ(∆) = −δ(∆− 2∆φ + 1)θ

�

∆φ −
3
4

� (∆+ 1)2∆̄ cos(π∆)Γ (3
2 −∆)Γ (

3−∆
2 )Γ (

∆
2 )

2

24−∆π2R4Γ (1− ∆2 )
,

ϱ
D2

T̂
=
λφm2

3R2
csch(2πλφ) , (86)

where we are using the convention ∆φ =
1
2

�

1+
p

1− 4(mR)2
�

. The heaviside theta function
θ (x) indicates the fact that this complementary series contribution appears only when the
scalar is light enough (in terms of the mass, when m2 < 3

16R2 ). The Dirac delta δ(x) implies
the contributions are isolated states rather than a continuum. This seems to be a very general
fact, there is no example in the literature where the complementary series of irreps appear as
a continuum of states.

It can be checked that these densities are positive,11 and that evaluating the integrals
in (84) numerically one can reproduce the analytic expression of 〈TAB T C D〉 from the Wick
contractions of (79).

11The density ϱD2
Θ is positive for all λφ ∈ R∪ i(− 1

2 , 1
2 ). The complementary series density ϱC

Θ
is positive on the

support of the Heaviside theta function in (84) after applying the Dirac delta.
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Figure 3: Plot of the second c-function in the free massive scalar case, for which we
derived an analytic expression, eq. (88). It interpolates between cUV = 1, the CFT of
the free massless scalar, and cIR = 0, the empty theory.

If one considers a massless and compact scalar from the start, as in [38], then
GΘ(σ) = ϱP

Θ (∆) = ϱ
C
Θ(∆) = 0 and ϱD2

T̂
= 1

12πR4 , giving

〈TAB(Y1)T
C D(Y2)〉=

1
12πR4

ΠAB
1 Π

C D
2 G∆=2(σ) , (87)

meaning that in the massless case the stress tensor precisely creates states in the ∆ = 2 irrep
in the discrete series. This makes sense, given that this theory is conformally invariant and the
stress tensor in a CFT is a spin 2 primary with ∆= 2.

Now that we have all the spectral densities, we can check the individual formulas for cUV

(59) and c1(R) (58). We find once again that cUV = 1 and that c1(R) = 0 for all R, due to the
IR issues of the massless scalar theory in de Sitter. We can also compute the second c-function
c2(R) from its definition (60), and we obtain explicitly

c2(R) = 4πm2R2

√

√

m2R2 −
1
4

csch

�

2π

√

√

m2R2 −
1
4

�

. (88)

We plot it in figure 3, and we observe that it indeed is a monotonic function which interpolates
between cUV = 1 and cIR = 0. We also check that the sum rule (66) returns the same function,
testing the fact that it works even when the complementary series contributes to the spectral
decomposition of GΘ(σ).

Finally, notice that in this special case of the free massive boson, the full spectral de-
composition of the stress tensor can be expressed as one spectral integral with a modified
contour. That is because there exists a regime of the parameters of the theory, namely in
d > 1 and ∆φ ∈

d
2 + iR ∪ ( d

4 , 3d
4 ), for which only the principal series contributes. We show

this in Appendix C.1. Then, since the two-point function of the stress tensor is an analytic
function of d and ∆φ , the only thing that can happen is that poles in the principal series
spectral density cross the integration contour and lead to extra contributions to the Källén-
Lehmann decomposition as we continue in the mass of the scalar and in the dimensions. These
poles can be accounted for by modifying the contour of integration, leading to the following

20

https://scipost.org
https://scipost.org/SciPostPhys.17.3.079


SciPost Phys. 17, 079 (2024)

decomposition in two dimensions

〈TAB(Y1)T
C D(Y2)〉=

∫

γ

d∆
2πi

ϱP
Θ (∆)

(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ) , (89)

with the contour γ shown in blue in figure 4.

4.2 Free massive fermion

As a second example, consider the theory of a free Majorana fermion in two dimensions

S = −
1
2

∫

d2 x
p

gΨ̄ ( /∇+m)Ψ . (90)

This can be seen as a specific field parametrization of two-dimensional Ising field theory on the
sphere above the critical temperature and with zero magnetic field. The Ising CFT is reached
when m= 0, and it notoriously has cUV = 1

2 . The mass term mΨ̄Ψ acts as a deforming operator
which triggers a flow to the trivial empty theory in the IR, which has cIR = 0.

We leave many details to Appendix C.2. The canonically normalized two-point function
is [48,75]

〈Ψ(x1)Ψ̄(x2)〉=
1

p
η1η2

�

i[(η1 +η2) + (y1 − y2)]G−m(σ) [(η1 −η2) + (y1 − y2)]G+m(σ)
[(y1 − y2)− (η1 −η2)]G+m(σ) i[(η1 +η2)− (y1 − y2)]G−m(σ)

�

,

(91)
where

G+m(σ)≡
1
8

m csch(πmR) 2F1

�

1− imR, 1+ imR, 1,
1+σ

2

�

,

G−m(σ)≡ −
i
8

m2R csch(πmR) 2F1

�

1− imR, 1+ imR, 2,
1+σ

2

�

,
(92)

−1 2

∆
1
2 + iR

2∆̄ϕ 2∆ϕ − 1

Figure 4: In blue, the contour of integration γ in (89). A vertical line runs over the
principal series and circles surround the poles corresponding to a discrete series and
a complementary series UIR contributing to the spectral decomposition of the stress
tensor. Because of shadow symmetry, the residues on a pole at∆ and 1−∆ are equal
and opposite in sign. Here, we represented the case where the massive boson is in
the complementary series and has ∆φ > 3/4.
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and we are working in flat slicing coordinates ds2 = R2 −dη2+dy2

η2 and xµ = (η, y) . The two-
point invariant then takes the form

σ =
η2

1 +η
2
2 − (y1 − y2)2

2η1η2
. (93)

In Appendix C.2 we show that, in the flat space limit, (91) reduces to the canonically normal-
ized two-point function of a free fermion in two-dimensional flat space. The symmetric and
conserved stress tensor for this theory is [76]

Tµν =
1
8
Ψ̄
�

Γµ
↔
∇ν + Γν

↔
∇µ
�

Ψ , (94)

where A
↔
∇µB ≡ A

�

∇µB
�

−
�

∇µA
�

B, and Γµ are the Dirac gamma matrices in de Sitter, related
to the flat space gamma matrices through the zweibein (see C.2 for an explanation). Using the
equations of motion, the trace of the stress tensor reduces to

Θ = −
m
2
Ψ̄Ψ , (95)

with two-point function

GΘ(σ) = 〈Θ(x1)Θ(x2)〉= 2m2
�

(1−σ)
�

G+m(σ)
�2
+ (1+σ)

�

G−m(σ)
�2�

. (96)

Applying our formula (31) we numerically verify that

cUV − lim
R→∞

c1(R) =
1
2

. (97)

In contrast to the free boson case, it can be verified that in this theory

lim
R→0

GΘ(σ) = 0 , (98)

implying both (46) and (69) are true, so that both c-functions will interpolate between cUV and
cIR. Using that cUV = 1

2 , we show a numerical plot of c1(R) in figure 5. It is a monotonically
decreasing function of the radius.

To compute c2(R) for this theory, we start from the sum rule (66), which requires computing
the integral of r2(σ)GΘ(σ) over the contour Ck shown in figure 2. We notice that (96) has a
simple pole at σ = 1 and a branch cut at σ ∈ [1,∞). The sum rule thus becomes

cUV − c2(R) =

∫ ∞

1

dσ r2(σ)Disc
�

R4GΘ(σ)
�

− 2πi Res
σ=1

�

r2(σ)R
4GΘ(σ)

�

. (99)

The discontinuity can be computed analytically using (83). The residue is simply

2πi Res
σ=1

�

r2(σ)R
4GΘ(σ)

�

= m2R2

�

2−
π2

3

�

. (100)

We evaluate the remaining integral numerically and plot the function c2(R) in figure 5. It is
also a monotonic function of R, and it satisfies the condition (63).
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0.0 0.5 1.0 1.5 2.0
mR

0.0

0.1

0.2

0.3

0.4

0.5

ci(R)

c1(R) for free massive fermion

c2(R) for free massive fermion

Figure 5: Numerical plots of c1(R) and c2(R) for the free massive fermion, obtained
by using (31) and (66) with the two-point function of the trace of the stress tensor in
this theory (96), and knowing that cUV = 1/2. They interpolate between the critical
Ising model in the UV and the empty theory in the IR.

4.3 A comment on the massless Schwinger model

The massless Schwinger model is an integrable QFT in dS2 [77–79]. Here we show that its
associated functions c1 and c2 are precisely the same as in the free massive scalar theory,
indicating that the two theories are related by a field redefinition as in flat space. The massless
Schwinger model is defined through the following action

S =

∫

d2 x
p

g
�

Ψ̄ ( /∇+ i/A)Ψ +
1

4q2
FµνFµν

�

, (101)

where Ψ is a Dirac spinor, Aµ is a compact U(1) gauge field with field strength Fµν=∂µAν−∂νAµ
and q is the gauge coupling, which has mass dimensions 1. The trace of the stress tensor (6)
is, on-shell,

Θ =
1

2q2
FµνFµν . (102)

The two-point function of F in the Bunch-Davies vacuum is written explicitly in [77], and it
has the precise form of the two-point function of a free massive boson (37):

1
p

g(x1)g(x2)
〈F01(x1)F01(x2)〉= −

q4

π
G∆q
(σ) , (103)

where in this case ∆q(1 −∆q) =
1
πq2R2. Since in two dimensions this is the only degree of

freedom of the field strength, this implies

GΘ(σ) = 2

�

q2

π

�2
�

G∆q
(σ)

�2
. (104)

23

https://scipost.org
https://scipost.org/SciPostPhys.17.3.079


SciPost Phys. 17, 079 (2024)

This is exactly the same two-point function as in (80). Since c1 and c2 can be derived through
sum rules (31) and (66) which only depend on the trace of the stress tensor, they are precisely

the same as for the free massive boson theory, up to the mapping m2 ↔ q2

π . This is not
unexpected: it is well known in flat space that the massless Schwinger model can be mapped

through a field redefinition to the free massive boson theory, precisely with m2↔ q2

π [80,81].
This equality of the c-functions hints to the fact that carefully bosonizing the action (101)
should lead to the free massive scalar theory in dS2 as well.

5 Discussion

In this work we have studied RG flows in unitary QFTs in dS2 and S2. We have introduced two
functions of the radius which interpolate between the central charges of the CFTs that live at
the fixed points of any RG flow. One is defined through certain components of the two-point
function of the stress tensor at antipodal separation (30), while the other is the spectral weight
of the traceless part of the stress tensor in the ∆ = 2 irrep (60). The fact that this spectral
weight has to interpolate between the two central charges implies that it needs to be non-
zero for any QFT, or in other words the stress tensor has to always couple to discrete series
∆ = 2 states. We have verified our formulas in the examples of the theories of a free massive
boson, a free massive fermion and the Schwinger model. We showed that c2 is monotonically
decreasing in every case, while c1 is monotonically decreasing in the free fermion flow and it
is zero for all radii in the free boson case where the massless regime is ill-defined due to IR
divergences. We found that the massless Schwinger model has the same c1 and c2 as the free
boson theory. As an intermediate step, we worked out the details of how the conservation of
the stress tensor simplifies its spectral decomposition greatly. We argue that, in general, the
sphere and de Sitter can be interesting background geometries to study QFT since the radius
acts as a tunable parameter which, while not breaking any symmetry, can be used to follow
the RG flow and reveal new facts about QFTs of interest which may be inaccessible in flat
space. Moreover, the existence and behavior of c1 and c2 are new rigorous constraints that
any unitary QFT in dS2 must satisfy.

There are some open questions which would be interesting to explore in the future:

• The c-functions we have introduced interpolate between cUV and cIR. We also showed
that cUV ≥ ci(R) for both, implying in particular Zamolodchikov’s c-theorem cUV ≥ cIR. In
the two examples we studied, we also verified that they are monotonic for intermediate
radii. It would be interesting to establish whether the monotonicity is true for all QFTs
with a general proof or a counterexample.

• The examples in which we could test our formulas were gapped theories. In the future,
we hope to test them in flows which have cIR ̸= 0, such as between minimal models in
de Sitter.

• Can a similar approach to the one utilized in this work be adapted to the problem of
finding RG-monotonic functions constructed from the stress tensor two-point function in
higher dimensions? Analogously to what happens in AdS [56], the simple generalization
of the differential equation (23) to higher dimensions is not enough to extract the trace
anomalies, so a more sophisticated approach is required.

• The results of this paper can be thought of as a new set of constraints that any unitary
QFT in S2/dS2 needs to satisfy. Some of them are in the form of positive sum rules on
two-point functions of the stress tensor which relate IR and UV data. Combining these
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with constraints on higher-point functions one may be able to set up numerical bootstrap
problems in de Sitter, as suggested in [44–47,50,82,83].

• Are there any RG flows of interest for which the approach presented in this paper is
more efficient than the well known flat space techniques? It would be interesting to un-
derstand whether there are computational advantages that come, for example, from the
fact that one of the c-functions we propose is only dependent on the ∆= 2 contribution
to the spectral decomposition of the traceless part of the stress tensor, which has the
form of a CFT two-point function of a spin 2 primary on the sphere.
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A Details on the position space sum rules

In this appendix we report some details concerning section (2.2) of the main text.

A.1 Conservation equations and solutions of (23)

Here we report the three linearly independent constraints we get from imposing the conser-
vation of the stress tensor on the functions Ti(σ).

σ2 − 1
σ3

�

− (d + 4)σ4(σ2 − 1)T1(σ) + (d
2 + 3d + 4)σ4T2(σ) + 4(σ+ (d + 1)σ3)T3(σ)

+ (4+ 2dσ2)T5(σ)−σ3(σ2 − 1)2T ′1(σ) + (d + 2)σ3(σ2 − 1)T ′2(σ)

+ 4σ2(σ2 − 1)T ′3(σ)− (d + 1)σ3T ′4(σ)− 2σT ′5(σ)
�

= 0 ,

(σ2 − 1)2

σ3

�

(d + 4)σ4(σ2 − 1)T1(σ)− (d + 4)σ4T2(σ)− 2σ(2+ (d + 2)σ2)T3(σ)

− 4T5(σ) +σ
3(σ2 − 1)2T ′1(σ)− 2σ3(σ2 − 1)T ′2(σ)− 4σ2(σ2 − 1)T ′3(σ) (A.1)

+σ3T ′4(σ) + 2σT ′5(σ)
�

= 0 ,

σ2 − 1
σ4

�

(d + 4)σ4(σ2 − 1)T1(σ)− 2(d + 2)σ4T2(σ)−σ(4+ 2(d + 2)σ2 + d(d + 3)σ4)T3(σ)

− (4+ dσ2)T5(σ) +σ
3(σ2 − 1)2T ′1(σ)− 2σ3(σ2 − 1)T ′2(σ)

−σ2(σ2 − 1)(4+ dσ2)T ′3(σ) +σ
3T ′4(σ) +σ(2+ dσ2)T ′5(σ)

�

= 0 .
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They are obtained, respectively, by acting on ∇A〈TAB(Y1)TC D(Y2)〉= 0 with the projectors

V B
1 GC D

2 , V B
1 V C

2 V D
2 , GBC

12 V D
2 , (A.2)

where the explicit form of these objects is in equation (9). In two dimensions, these are
differential equations for the four Ti functions

(2+σ2)T1(σ) +
�

σ2 +
2

σ2 − 1

�

T2(σ)− (σ2 + 2)T3(σ) +
�

2+σ2
�

T4(σ)

+σ
�

σ2 − 1
�

T ′1 (σ) +σ
�

1+ 2σ2
�

T ′2 (σ) +σ
�

1− 2σ2
�

T ′3 (σ)−σT ′4 (σ) = 0 ,

−(σ2 + 2)T1(σ) +
σ2 − 2
σ2 − 1

T2(σ) + 2T3(σ)− 2T4(σ)

+σ(1−σ2)T ′1 (σ)−σ(σ2 + 1)T ′2 (σ) +σ(σ2 − 1)T ′3 (σ) +σT ′4 (σ) = 0 ,

−(2+σ2)T1(σ) +
σ4 −σ2 + 2

1−σ2
T2(σ) +

1
2
(σ2 + 4)T3(σ)−

1
2
(4+σ2)T4(σ)

+σ(1−σ2)T ′1 (σ)−σ(σ2 + 1)T ′2 (σ) +
σ

2
(σ2 − 2)T ′3 (σ) +

σ

2
(2+σ2)T ′4 (σ) = 0 .

(A.3)

And here we report the kernels and functions C and qi that solve (23), parametrized by three
real numbers c1, c2, c3 .

r(σ) =
1
2
[2c3σ− 2c2 +σ(c1 − c2) log(1−σ) +σ(c1 + c2) log(1+σ)] ,

C(σ) =
1
σ2

�

−
�

1−σ2
�2
(2(c3 − c1) + (c1 − c2) log(1−σ) + (c1 + c2) log(1+σ))T1(σ)

+ (2((σ4 − 2σ2 − 1)c1 + c3 +σ
2(c3 + 2σ(c2 −σc3)))

+ (1−σ2)(2σ2 + 1)(2 tanh−1(σ)c2 + c1 log(1−σ2)))T2(σ)

+ (−2(σ4 − 5σ2 + 1)c1 −σ(1+ 5σ2)c2 + 2(2σ4 − 3σ2 + 1)c3

+ (2σ4 − 3σ2 + 1)(2 tanh−1(σ)c2 + c1 log(1−σ2)))T3(σ)

+ ((2− 4σ2)c1 +σ(σ
2 + 1)c2 + 2(σ2 − 1)c3

+ (1−σ2)((c2 − c1) log(1−σ)− (c1 + c2) log(σ+ 1)))T4(σ)
�

,

q1(σ) =
1

2σ3

�

4σc2 − 4c1 + (1−σ2) (2c3 + (c1 − c2) log(1−σ) + (c1 + c2) log(σ+ 1))
�

,

q2(σ) =
1−σ2

σ4
(σc1 − c2) ,

q3(σ) =
(1+σ2)c2 − 2σc1

σ4
.

(A.4)

The gi(σ) functions can be read off from the expression for C(σ) through their definition (24).
The particular solution that leads to (31) is c1 = c2 = −8π2 and c3 = 8π2(log(2)− 1).

A.2 Coincident point limit of Ti

Here we derive the coincident point limit of the Ti(σ) functions in (7). We use the following
local coordinate system for de Sitter

Y 0 =
1− e−2t + x2

2e−t
, Y i = x iet , Y d+1 =

−1− e−2t + x2

2e−t
, (A.5)

where x ∈ Rd with i = 1, . . . , d and we keep R= 1. In this coordinate system, the metric is

ds2 = −dt2 + e2tdx2 . (A.6)

The two-point invariant reads

σ =
1
2

e−(t1+t2)
�

e2t1 + e2t2 + 2e2(t1+t2)x1 · x2 − e2(t1+t2)(x2
1 + x2

2)
�

. (A.7)
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Then, by using (4) we can compute the behavior of the tensor structures (8) near coincident
points in these local coordinates, where xµ = (t,x).

Tµνρσ1 ≈ xµxνxρ xσ , Tµνρσ2 ≈ ηµνxρ xσ + xµxνηρσ − xµxνxρ xσ ,

Tµνρσ3 ≈ ηνσxµxρ +ηµσxνxρ +ηνρ xµxσ +ηµρ xνxσ ,

Tµνρσ4 ≈ ηρσηµν −ηρσxµxν , Tµνρσ5 ≈ ηµσηνρ +ηµρηνσ .

(A.8)

This means the coincident point limit of our parametrization of the stress tensor (7) is

〈Tµν(x)Tρσ(0)〉 ≈ xµxνxρ xσT1(x) + (η
µνxρ xσ +ηρσxµxν)T2(x)

+ (ηνσxµxρ +ηµσxνxρ +ηνρ xµxσ +ηµρ xνxσ)T3(x)

+ηµνηρσT4(x) + (η
µσηνρ +ηµρηνσ)T5(x) .

(A.9)

We need to match with the well known flat space CFT two point function of the stress tensor
(12). We can reshuffle the expression (12) in order to expand it in the same tensor structures

〈Tµν(x)Tρσ(0)〉CFT
M =

4cT

x2d+6
xµxνxρ xσ −

cT

x2d+4
(ηνσxµxρ +ηµσxνxρ +ηνρ xµxσ +ηµρ xνxσ)

−
cT

(d + 1)x2d+2
ηµνηρσ +

cT

2x2d+2
(ηµσηνρ +ηµρηνσ) . (A.10)

By matching with our Ti functions, we find the constraints mentioned in the main text

T1 ≈
4cT

x2d+6
, T2 ∼ o(x−2d−2) , T3 ≈ −

cT

x2d+4
,

T4 ≈ −
cT

d + 1
1

x2d+2
, T5 ≈

cT

2
1

x2d+2
.

(A.11)

B Details on the spectral decomposition of the stress tensor

In this section we provide extra details regarding the spectral decomposition of the stress
tensor. First, we prove the relations (52) used extensively in the main text. Then, we relate
the Ti(σ) and the Ti(σ) defined in (7) and (19) to integrals over spectral densities. This in
turn allows us to prove that these functions are always finite at σ = −1, a fact that is crucial
in deriving the form of c1(R) in (30).

B.1 General relations among the spectral densities

Here we prove the relations (52) used in the main text. We start from the most general spectral
decomposition of a spin 2 symmetric tensor in dSd+1/Sd+1, for which we already explained
the notation in Section 3

〈TAB(Y1)T
C D(Y2)〉= 2π

∫

d
2+iR

d∆
2πi

� 2
∑

ℓ=0

ϱP
T̂ ,ℓ
(∆)GAB,C D

∆,ℓ (Y1, Y2)

+ϱP
T̂Θ
(∆)

�

GC D
2

d + 1
Π̂AB

1 G∆(σ) +
GAB

1

d + 1
Π̂C D

2 G∆(σ)

�

+ϱP
Θ (∆)

GAB
1 GC D

2

(d + 1)2
G∆(σ)

�

+ other UIRs , (B.1)

where the other UIRs can be complementary series, which has the same analytic expression as
the principal series but is integrated over ∆ ∈ (0,1), exceptional series type I and exceptional
series type II [45,67]. We impose conservation, so from now on we consider the equation

∇A〈TAB(Y1)T
C D(Y2)〉= 0 . (B.2)
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Various manipulations of this equation will lead to the spectral relations (52). The complemen-
tary series contributions have the same functional form as the principal series ones, so every
relation we are going to find is valid also for the spectral densities on the complementary
series. We thus drop the superscript P and consider a generic contour for the integral over ∆.
We now start to consider the consequences of (B.2).

First of all, the divergence kills the ℓ = 2 term in the sum, which is automatically and
independently conserved by definition. The first nontrivial statement comes from taking a
trace over the indices C , D

∫

d∆
�

ϱT̂Θ(∆)∇1AΠ̂
AB +

ϱΘ(∆)
d + 1

∇1AGAB
1

�

G∆(σ) = 0 . (B.3)

Using the explicit expressions of the projectors (49), the induced metric and the covariant
derivative (5), we find that (B.3) implies

ϱT̂Θ(∆) =
ϱΘ(∆)

d(∆+ 1)(∆̄+ 1)
. (B.4)

Now we use this fact, and (B.2) becomes
∫

d∆
�

ϱT̂ ,1(∆)∇1AGAB,C D
∆,1 (Y1, Y2) +ϱT̂ ,0(∆)∇1AΠ̂

AB
1 Π̂

C D
2 G∆(σ)

+ϱΘ(∆)
� 1

d(∆+ 1)(∆̄+ 1)

�

∇1AΠ̂
AB
1

GC D
2

d + 1
+∇1A

GAB
1

d + 1
Π̂C D

2

�

+∇1A
GAB

1 GC D
2

(d + 1)2
�

G∆(σ)
�

= 0 ,

(B.5)

where we used that by definition GAB,C D
∆,0 = Π̂AB

1 Π̂
C D
2 G∆. Now, carrying out all the necessary

computations, we find the last two relations

ϱT̂ ,0(∆) =
ϱΘ(∆)

d2(∆+ 1)2(∆̄+ 1)2
, ϱT̂ ,1(∆) = 0 , (B.6)

where we used the fact that the term proportional to ϱT̂ ,0 turns out to have the same tensor
structure as the one proportional to ϱΘ, while ϱT̂ ,1 has an independent tensor structure, and
thus has to vanish on its own. This shows a fact that is well known in flat space: the stress
tensor cannot interpolate between the vacuum and states carrying SO(d) spin 1.

Using all of these relations, the expressions simplify greatly, and all the terms associated
to ϱΘ, ϱT̂Θ and ϱT̂ ,0 collapse into one single term, resulting in

〈TAB(Y1)T
C D(Y2)〉=2π

∫

d
2+iR

d∆
2πi

�

ϱP
T̂ ,2
(∆)GAB,C D

∆,2 (Y1, Y2)

+
ϱP
Θ (∆)

d2(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ)

�

+ other UIRs ,

(B.7)

with ΠAB
i defined in (54).
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In two dimensions, the argument is very similar. The most general decomposition of a
spin 2 symmetric tensor is

〈TAB(Y1)T
C D(Y2)〉=2π

∫

1
2+iR

d∆
2πi

�

ϱP
T̂ ,1
(∆)GAB,C D

∆,1 (Y1, Y1) +ϱ
P
T̂ ,0
(∆)Π̂AB

1 Π̂
C D
2 G∆(σ)

+ϱP
T̂Θ
(∆)

�

Π̂AB
1

GC D
2

2
G∆(σ) +

GAB
1

2
Π̂C D

2 G∆(σ)

�

+
GAB

1 GC D
2

4
ϱP
Θ (∆)G∆(σ)

�

+ complementary series (B.8)

+ϱD1

T̂
Π̂AB

1 Π̂
C D
2 G∆=1(σ) +ϱ

D2

T̂
Π̂AB

1 Π̂
C D
2 G∆=2(σ) ,

where, group theoretically, the first two terms stand for the contributions from states carrying
the two inequivalent chiralities of SO(1,2) (see [45] for an in-depth discussion on this), and
of course states do not carry any spin in two dimensions, so there is no ℓ= 2 contribution. The
only difference between the complementary and principal series contributions will be again
the domain of integration, while the discrete series has been explicitly added. Contributions
from this series of UIRs can only be traceless because the trace of the stress tensor is a scalar
operator, and as such it cannot carry discrete series irreps. More in general, local operators
with spin J can only couple to discrete series states with ∆≤ J [45,50].

Now we impose conservation (B.2). For the principal and complementary series contribu-
tions, the computations are analogous to what was done in the previous paragraph, and so
one obtains (B.4) and (B.6)with d = 1. For the discrete series, something interesting happens:
we have that

∇1AΠ̂
AB
1 Π̂

C D
2 G∆=2(σ) = 0 , ∇1AΠ̂

AB
1 Π̂

C D
2 G∆=1(σ) ̸= 0 . (B.9)

This implies that necessarily ϱD1

T̂
(∆) = 0, or in other words the stress tensor cannot interpolate

between the vacuum and states in the ∆ = 1 discrete series irrep. Instead, the ∆ = 2
irrep is allowed and is conserved independently from the principal and complementary series
contributions. Using all these facts together, we can write

〈TAB(Y1)T
C D(Y2)〉=2π

∫

1
2+iR

d∆
2πi

ϱP
Θ (∆)

(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ)

+

∫ 1

0

d∆
ϱC
Θ(∆)

(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ)

+ϱD2

T̂
ΠAB

1 Π
C D
2 G∆=2(σ) ,

(B.10)

which is the complete and general spectral decomposition of the stress tensor two-point func-
tion in S2/dS2. In Section 3 we have shown that in any unitary QFT ϱD2

T̂
interpolates between

cUV and cIR. This implies that the ∆ = 2 contribution to the spectral decomposition of the
stress tensor is not just allowed but rather it is necessary in any unitary QFT in S2/dS2.

B.2 How to compute the Ti functions

Throughout this work, we have used two decompositions of the stress tensor, namely the ones
in terms of tensor structures (7) and the ones in terms of the spectral densities (53), (55).
Here, we are going to show relations between the two, which are crucial in deriving formulas
for cUV and c1(R) independently of their difference. The main idea is to look closely at the
explicit expressions of the tensor structures Ti given in (8). We notice that there are some
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combinations of the coordinates and the metric with specific indices that appear uniquely in
each tensor structure. Specifically,

TABC D
5

!
⊃ {ηADηBC ,ηACηBD} ,

TABC D
4

!
⊃ {ηABηC D} ,

TABC D
3

!
⊃ {σηBDY A

1 Y C
1 ,σηADY B

1 Y C
1 } ,

TABC D
2

!
⊃ {ηABY C

1 Y D
1 ,−σηC DY B

1 Y A
2 ,−σηC DY A

1 Y B
2 ,σηC DY A

2 Y B
2 } ,

(B.11)

where with the symbol
!
⊃ we mean the terms on the right hand side appear only in the tensor

structure on the left hand side and not in the others.
Finding the coefficients of any of the terms on the right hand side thus uniquely identifies

the Ti component within a two-point function. For T1, it is sufficient to subtract all other
contributions. Here, we will do this in (53) in order to find relations between the Ti and
integrals of spectral densities. We obtain

T5(σ) = 2π

∫

d
2+iR

d∆
2πi

�

1
2
ϱP

T̂ ,2
(∆)G0(σ) +ϱ

P
T̂ ,0
(∆)G′′∆(σ)

�

+ . . . ,

T4(σ) = 2π

∫

d
2+iR

d∆
2πi

�
ϱP

T̂ ,2
(∆)

(d + 1)2
�

(1−σ2)2G2(σ) +σ(σ
2 − 1)G1(σ) + (σ

2 − d − 2)G0(σ)
�

+ϱP
T̂ ,0
(∆)

�

(d +∆∆̄)2G∆(σ) +σ(1+ 2d + 2∆∆̄)G′∆(σ) +σ
2G′′∆(σ)

�

�

+ . . . ,

T3(σ) =−
2π
σ

∫

d
2+iR

d∆
2πi

 

ϱP
T̂ ,2
(∆)

4
(2G0(σ) +σG1(σ))+ϱ

P
T̂ ,0
(∆)

�

G′′∆(σ) +σG′′′∆ (σ)
�

!

+ . . . ,

T2(σ) = 2π

∫

d
2+iR

d∆
2πi

�
ϱP

T̂ ,2
(∆)

(d + 1)

�

(σ2 − 1)G2(σ) +σG1(σ) + G0(σ)
�

(B.12)

−ϱP
T̂ ,0
(∆)

�

(d + 2+∆∆̄)G′′∆(σ) +σG′′′∆ (σ)
�

�

+ . . . ,

T1(σ) =
2π
σ2

∫

d
2+iR

d∆
2πi

�

ϱP
T̂ ,2
(∆)

�

G0(σ) +σG1(σ) +σ
2G2(σ)

�

+ϱP
T̂ ,0
(∆)

�

2G′′∆(σ) + 4σG′′′∆ (σ) +σ
2G′′′′∆ (σ)

�

�

+ . . . ,

where the functions Gm are defined in (C.16), primes are derivatives with respect to σ, and
the dots stand for contributions from complementary and exceptional series. In particular, the
complementary series contributions are exactly the same, with the only difference being the
domain of integration. We checked these equations in the case of the free massive boson.

In two dimensions, we can find the analogous relations for the Ti functions by again
extracting the coefficients of the tensor structures (B.11) from (55) and then using (19).
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We obtain

T1(σ) =(1−σ2)

∫

1
2+iR

d∆
2πi

ϱP
Θ (∆)

N(∆)

�

(∆∆̄+ 5)G′′∆(σ) +σ(5G′′′∆ (σ) +σG′′′′∆ (σ))
�

+
3

4π
ϱ
D2

T̂

1+σ
(1−σ)3

+ complementary , (B.13)

T2(σ) =(1−σ2)

∫

1
2+iR

d∆
2πi

ϱP
Θ (∆)

N(∆)

�

(∆∆̄+ 5)G′′∆(σ) + 3σG′′′∆ (σ)
�

+
3

4π
ϱ
D2

T̂

1+σ
(1−σ)2

+ complementary , (B.14)

T3(σ) =

∫

1
2+iR

d∆
2πi

ϱP
Θ (∆)

N(∆)

�

(∆∆̄+ 1)2G∆(σ) + (3+ 2∆∆̄)σG′∆(σ) + (2−σ
2)G′′∆(σ)

+ 2σ(1−σ2)G′′′∆ (σ)
�

+
3

8π
ϱ
D2

T̂

1+ 2σ
(1−σ)2

+ complementary , (B.15)

T4(σ) =

∫

1
2+iR

d∆
2πi

ϱP
Θ (∆)

N(∆)

�

(∆∆̄+ 1)2G∆(σ) + (3+ 2∆∆̄)σG′∆(σ) + (2+σ
2)G′′∆(σ)

�

+
3

8π
ϱ
D2

T̂

1
(1−σ)2

+ complementary , (B.16)

where here

N(∆)≡
(∆+ 1)2(∆̄+ 1)2

π
. (B.17)

By plugging in σ = −1 and using that the n-th derivative of the scalar propagator at antipodal
separation is

∂ n
σG∆(σ)

�

�

�

σ=−1
=
Γ (∆+ n)Γ (∆̄+ n)

22+nπn!
, (B.18)

we find that all the integrands for Ti(−1) go like eiπ∆ϱP
Θ (∆) as ∆ → 1

2 + i∞. They thus
converge if ϱP

Θ (∆) does not grow exponentially in that same limit. This limit corresponds to
the flat space limit, and in flat space spectral densities can only grow polynomially. We thus
proved that the Ti functions are analytic around σ = −1. Moreover

T1(−1) = T2(−1) = 0 . (B.19)

C Details on the free scalar and the free fermion

Here we show some computational details and checks of our formulas in the cases of a free
massive scalar and a free massive Majorana fermion.

C.1 Free massive scalar

Consider the theory of a free massive scalar with m2R2 = ∆φ(d −∆φ). We work in d + 1
dimensions, but we are ultimately interested in taking the limit d → 1. We will thus ignore
improvement terms in the stress tensor which arise from the conformal coupling in the action
d−1
4d Rφ2,12 since in d = 1 the coupling is zero.

S = −
1
2

∫

dd+1 x
Æ

|g|
�

gµν∂µφ∂νφ +m2φ2
�

. (C.1)

12In this expression R is the Ricci scalar.
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As written in the main text, the stress tensor of this theory, which we here report uplifted to
embedding space, is

TAB =∇Aφ∇Bφ −
1
2

GAB

�

∇Cφ∇Cφ +m2φ2
�

. (C.2)

We can split it into its traceless part and its trace. For convenience, we introduce some
auxiliary vectors W which are null (W 2 = 0) and tangent to the hypersurface in embedding
space (W · Y = 0), for the purpose of contracting all the indices while enforcing symmetricity
and tracelessness [45, 48, 51, 52, 54, 75, 84]. Embedding space tensors are then traded for
polynomials of W

T̂ (W )≡W AW B TAB = (W · ∇)φ(W · ∇)φ . (C.3)

To retrieve the expression of the traceless part of the stress tensor with indices, we act with
the Todarov operator [45,48,75]

KA ≡
d − 1

2
[∂W A − YA(Y · ∂W )] + (W · ∂W )∂W A − YA(Y · ∂W )(W · ∂W )

−
1
2

WA

�

(∂W · ∂W )− (Y · ∂W )
2
�

,
(C.4)

in the following way

T̂AB =
KAKB

2( d−1
2 )2

T̂ (W ) . (C.5)

Finally, let us mention that the covariant derivative has to be modified to accomodate the use
of the W vectors

∇A = ∂Y A − YA(Y · ∂Y )−WA(Y · ∂W ) . (C.6)

The first thing we do is to check whether there is some range of parameters for which the
principal series is the only contribution to the Källén-Lehmann decomposition of T̂ , such that
we can apply the inversion formulae from [45]. The criterion, also outlined in [45], is based
on the fall-off of the components of the two-point function of T̂ as we take σ→−∞. Let us
write a generic two-point function of a spin 2 operator in index free formalism as

〈O(Y1, W1)O(Y2, W2)〉=
2
∑

m=0

(W1 ·W2)
2−m[(Y1 ·W2)(Y2 ·W1)]

mGm(σ) . (C.7)

Then, the criterion for the principal series being the only class of UIRs appearing in the spectral
decomposition of this two-point function is that the fall-offs of the Gm functions respect the
following inequality

lim
σ→−∞

Gm(σ)∼ |σ|−ωm−m , min
m
[Re(ωm)]>

d
2
+ 2 . (C.8)

When this condition is satisfied, the two-point function is square integrable when continued
to EAdS, which ensures that harmonic functions in the principal series furnish a complete
basis [84, 85], see section 4.3 in [45] for a detailed discussion. The two-point function of
interest to us is

〈T̂ (Y1, W1)T̂ (Y2, W2)〉= 2 [(W1 · ∇1)(W2 · ∇2)〈φ(Y1)φ(Y2)〉]
2 . (C.9)

The fall-offs of its components in the basis (C.7) are

min ω0 =min ω1 =min ω2 = 2+ 2min(Re∆φ , Re∆̄φ) . (C.10)
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We can thus say that for min(Re∆φ , Re∆̄φ) >
d
4 , the principal series is the only contribution

to the spectral decomposition of T̂ . Let us start by assuming we are in this regime, which is
satisfied when the free boson is in the principal series or in a portion of the complementary
series ∆φ ∈ (

d
4 , 3d

4 ). Then, we can decompose the traceless part of the stress tensor in the
principal series only

〈T̂ (Y1, W1)T̂ (Y2, W2)〉= 2π

∫

d
2+iR

d∆
2πi

�

ϱP
T̂ ,2
(∆)G∆,2(Y1, Y2; W1, W2)

+ϱP
T̂ ,0
(∆)(W1 · ∇1)

2(W2 · ∇2)
2G∆(σ)

�

,

(C.11)

where we used the facts proven in Section B.1 to exclude spin 1 contributions, and the explicit
expression of G∆,2 is given in (C.16). Applying the inversion formulae from [45], specifically
with the methods outlined in appendix H there, we compute the spectral densities in (C.11)

ϱP
T̂ ,2
(∆) =

λ sinh(πλ)Γ
�

2+ d
2±iλ
2

�2

2π3+ d
2 Γ ( d

2 + 2)Γ (2+ d
2 ± iλ)

∏

±,±
Γ

�

2+ d
2 ± iλ± 2iλφ

2

�

, (C.12)

ϱP
T̂ ,0
(∆) =

�

(d − 1)∆∆̄+ 4∆φ∆̄φ
�2
λ sinh(πλ)Γ

� d
2±iλ

2

�2

28π3+ d
2 d2(∆+ 1)2(∆̄+ 1)2Γ ( d

2 )Γ (
d
2 ± iλ)

∏

±,±
Γ

� d
2 ± iλ± 2iλφ

2

�

,

where we are using∆= d
2+iλ and∆φ =

d
2+iλφ and the radius has been set to 1. The integral

in (C.11) can then be checked numerically. We also independently compute ϱΘT̂ and ϱΘ and
we check that the identities (52) are verified. Using those identities and more in general what
is discussed in Section B.1, we can thus write the spectral decomposition of the full stress
tensor two-point function for the free boson in the regime where min(Re∆φ , Re∆̄φ)>

d
4 :

〈TAB(Y1)T
C D(Y2)〉= 2π

∫

d
2+iR

d∆
2πi

�

ϱP
T̂ ,2
(∆)GAB,C D

∆,2 (Y1, Y2)

+
ϱP
Θ (∆)

d2(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ)

�

.

(C.13)

Now we start the continuation to d = 1. First of all, let us write the explicit form of G∆,2, the
free propagator of a massive traceless and transverse spin 2 field in de Sitter. In index-free
notation, it is the solution to

�

∇2
1 −∆∆̄− 2

�

G∆,2(Y1, Y2; W1, W2) = 0 , (K1 · ∇1)G∆,2(Y1, Y2; W1, W2) = 0 , (C.14)

with the extra condition of finiteness at antipodal separation. Because of SO(1, d + 1) invari-
ance and the tangential condition Wi · Yi = 0, we can express the solution in terms of three
scalar functions multiplying the elements of a polynomial of dot products involving the W
vectors

G∆,2(Y1, Y2; W1, W2) =
2
∑

m=0

(W1 ·W2)
2−m[(W1 · Y2)(W2 · Y1)]

mGm(σ) , (C.15)

with [45]

G0(σ)
N(∆)

= 8
�

2d(F(0) +σF(1)) + (σ2d − 1)F(2)
�

, (C.16)

G1(σ)
N(∆)

= 8
�

2d(d + 1)F(1) +σd(5+ 3d +∆∆̄)F(2) + (σ2d − 1)(∆+ 2)(∆̄+ 2)F(3)
�

,

G2(σ)
N(∆)

= 4(d)3F(2) + (∆+ 2)(∆̄+ 2)(4d(d + 2)σF(3) + (σ2d − 1)(∆+ 3)(∆̄+ 3)F(4)) ,
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where we use a shorthand notation for some regularized hypergeometric functions

F(a) ≡ F
�

∆+ a, ∆̄+ a,
d + 1

2
+ a,

1+σ
2

�

, (C.17)

and here

N(∆)≡
(∆+ 1)(∆̄+ 1)Γ (∆)Γ (∆̄)

2d+5π
d+1

2 d(∆− 1)(∆̄− 1)
. (C.18)

The index-open form of this propagator is then retrieved as

GAB,C D
∆,2 (Y1, Y2) =

KA
1 KB

1 KC
2 K D

2

4
� d−1

2

�2

2

G∆,2(Y1, Y2; W1, W2) . (C.19)

Notably, the normalization factor (C.18) has simple poles at ∆= 1 and ∆̄= 1, or equivalently
at λ = ±i d−2

2 . When continuing in the number of dimensions, these poles will cross the
integration contour over the principal series in (C.13) when passing by d = 2. The residues
on their positions need to be added by hand in order to retrieve the correct Källén-Lehmann
representation in d = 1. In [45], we showed that on these spurious poles, propagators and
spectral densities associated to different spins are related to each other. The relations relevant
here are

Res
∆=d−1

G∆,2(Y1, Y2; W1, W2) =
2− d

d
(W1 · ∇1)

2(W2 · ∇2)
2Gd+1,0(σ) ,

ϱT̂ ,2(d − 1) = d(d − 2) Res
∆=d+1

ϱT̂ ,0(∆) .
(C.20)

Using the conservation relations (52), we can further say

ϱT̂ ,2(d − 1) =
d − 2

d(d + 2)3
((d + 2)∂∆ϱΘ(d + 1)− 2ϱΘ(d + 1)) . (C.21)

We thus see that in two dimensions (d = 1) there will be the appearance of a UIR with ∆= 2
in the Källén-Lehmann representation of the traceless part of the stress tensor of a free massive
boson. In particular, in this case ϱΘ(2) = 0, and what we are left with is

ϱ
D2

T̂
=

4π
9
∂∆ϱ

P
Θ (2) =

λφm2

3
csch(2πλφ) , (C.22)

where m2 = 1
4 +λ

2
φ
(R= 1 here). Finally, in d = 1, the following identities are true

�

Y1 ·W±2
� �

Y2 ·W±1
�

= (σ+ 1)
�

W±1 ·W
±
2

�

,
�

Y1 ·W∓2
� �

Y2 ·W±1
�

= (σ− 1)
�

W±1 ·W
∓
2

�

,
(C.23)

where± stands for the SO(1, 2) chirality. These identities stem from the fact that spin J tensors
have only two independent components in two dimensions, corresponding to two SO(1,2)-
inequivalent W A. Every two-point function of spin J operators in two dimensions can be then
decomposed in two components, one proportional to (W±1 ·W

±
2 )

J and one proportional to
(W±1 ·W

∓
2 )

J . The second one is vanishing except if the theory violates parity.
It can be checked that, using (C.23) in (C.16), both components of the two-point function

G∆,2 vanish in two dimensions. All in all, the spectral decomposition of the stress tensor of a
free massive boson in the principal series in two dimensions, obtained by continuing in d from
(C.13), is

〈TAB(Y1)T
C D(Y2)〉=2π

∫

1
2+iR

d∆
2πi

ϱP
Θ (∆)

(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ)

+ϱD2

T̂
ΠAB

1 Π
C D
2 G∆=2(σ) ,

(C.24)

with the spectral densities given by setting d = 1 in (C.12) and (C.22).
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Complementary series contributions Until now we had assumed the free scalar sits in the
range min(Re∆φ , Re∆̄φ)>

1
4 , or equivalently m2 > 3/16. We can analytically continue (C.24)

beyond that regime. From the explicit expression of ϱΘ(∆) in (C.12) we see that poles at
λ = ±2λφ +

i
2 cross the integration contour over the principal series when |Imλφ | >

1
4 .

Summing the residues on these poles, we obtain the full decomposition

〈TAB(Y1)T
C D(Y2)〉=2π

∫

1
2+iR

d∆
2πi

ϱP
Θ (∆)

(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ)

+

∫ 1

0

d∆
ϱC
Θ(∆)

(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ)

+ϱD2

T̂
ΠAB

1 Π
C D
2 G∆=2(σ) ,

(C.25)

with

ϱC
Θ(∆) = −δ(∆− 2∆φ + 1)θ

�

∆φ −
3
4

� (∆+ 1)2∆̄ cos(π∆)Γ (3
2 −∆)Γ (

3−∆
2 )Γ (

∆
2 )

2

24−∆π2R4Γ (1− ∆2 )
,

(C.26)
and where θ (x) is a Heaviside theta function.

Notice that all these extra terms can be added as a modification of the original contour of
integration, becoming

〈TAB(Y1)T
C D(Y2)〉= 2π

∫

γ

d∆
2πi

ϱP
Θ (∆)

(∆+ 1)2(∆̄+ 1)2
ΠAB

1 Π
C D
2 G∆(σ) , (C.27)

where γ is the contour represented in blue in figure 4.

The c-functions By using the techniques outlined in Appendix B.2, we compute the function
c1(R) from its definition (30). For the free boson in two-dimensions we obtain, in particular

T3(−1) =
m4

128
csc2(π∆φ) , T4(−1) = 3

m4

128
csc2(π∆φ) . (C.28)

Using (30) we thus get c1(R) = 0 , which is due to the IR divergences associated to massless
scalars in de Sitter, affecting the trace of the stress tensor. The second c-function is reported
in the main text (88).

C.2 Free massive fermion

Consider the theory of a free massive Majorana fermion in two-dimensional de Sitter space,
described by the action

S = −
1
2

∫

d2 x
Æ

|g|Ψ̄ ( /∇+m)Ψ . (C.29)

The only spin 1
2 UIRs are in the principal series, with mass and conformal weight related

through ∆ = 1
2 + imR, with m > 0 [86, 87]. We choose to work with conventions in which Ψ

is a real bispinor

Ψ =

�

ψ1
ψ2

�

, (C.30)

where ψ1 and ψ2 are real Grassmann functions. Moreover, it is useful to go to local coor-

dinates, and we choose the flat slicing metric ds2 = R2 −dη2+dy2

η2 . Then, we choose the (flat)
gamma matrices to be

γ0 =

�

0 1
−1 0

�

, γ1 =

�

0 1
1 0

�

. (C.31)
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The corresponding gamma matrices in de Sitter are given by Γµ = eµaγa, with the zweibein
satisfying ea

µeb
νηab = gµν. With these conventions, the charge conjugation matrix, defined by

CγµC−1 = −γT
µ , (C.32)

can be chosen to be C =

�

0 1
−1 0

�

. Then, we have that Ψ̄ =
�

−ψ2 ψ1
�

, and the two-point

function is

〈Ψ(x1)Ψ̄(x2)〉=
�

−〈ψ1(x1)ψ2(x2)〉 〈ψ1(x1)ψ1(x2)〉
−〈ψ2(x1)ψ2(x2)〉 〈ψ2(x1)ψ1(x2)〉

�

. (C.33)

As explained in the main text, the trace of the stress tensor in this theory is

Θ(x) = −
m
2
Ψ̄Ψ(x) = −mψ1ψ2(x) , (C.34)

and the associated two-point function is

〈Θ(x1)Θ(x2)〉= m2(〈ψ1(x1)ψ2(x2)〉〈ψ2(x1)ψ1(x2)〉 − 〈ψ1(x1)ψ1(x2)〉〈ψ2(x1)ψ2(x2)〉) .
(C.35)

The entries of the matrix (C.33) that solve the equations of motion [48,88]

( /∇+m)Ψ = 0 −→
�

ηγµ∂µ +
1
2
γ0 +m

�

Ψ = 0 , (C.36)

were given in eq. (91) [48,75].
We are now going to show that, in the flat space limit, we reproduce the correct two-

point function, thus providing an independent check of the normalization presented in the
references [48,75].

Flat space limit Let us focus on

G−(σ)≡ −〈ψ1(x1)ψ2(x2)〉=
i[(η1 +η2) + (y1 − y2)]p

η1η2
G−m(σ) ,

G+(σ)≡ 〈ψ1(x1)ψ1(x2)〉=
[(η1 −η2) + (y1 − y2)]p

η1η2
G+m(σ) ,

(C.37)

with G+m and G−m given in (92).
As usual, we start by taking η→ t − R and y → x . Then

σ =
η2

1 +η
2
2 − (y1 − y2)2

2η1η2
→ 1−

−(t1 − t2)2 + (x1 − x2)2

2R2
≡ 1−

x2

2R2
. (C.38)

After some simplifications, we obtain

G−(σ)→−m2R
4

csch(πmR) 2F1

�

1− imR, 1+ imR, 2, 1−
x2

4R2

�

,

G+(σ)→ mcsch(πmR)
8R

(t1 − t2 + x1 − x2) 2F1

�

1− imR, 1+ imR, 1, 1−
x2

4R2

�

.

(C.39)

We use the following Barnes representation of the regularized hypergeometric function

F(a, b, c, z) =

∫

R+iε dsΓ (a+ is)Γ (b+ is)Γ (c − a− b− is)Γ (−is)(1− z)is

2πΓ (a)Γ (b)Γ (c − a)Γ (c − b)
. (C.40)
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We can apply it directly to G− without any issues. Using Γ (a ± i b) ≡ Γ (a + i b)Γ (a − i b), we
write

G−(σ)→−m2R csch(πmR)
8πΓ (1± imR)2

∫

R+iε
ds Γ (1± imR+ is)Γ (−is)2

�

x2
12

4R2

�is

. (C.41)

For G+, instead, there is a subtlety: the contour in (C.40) does not actually separate the two
series of poles in the gamma functions. We thus need to introduce a regulator which we take
to be α≥ 1 and we eventually will take to 0, and write

G+(α)(σ)≡
mcsch(πmR)

8R
(t1 − t2 + x1 − x2)F

�

1− imR, 1+ imR, 1+α, 1−
x2

4R2

�

. (C.42)

Then, the Barnes representation for the regulated G+(α)(σ) reads

G+(α)(σ)→
mcsch(πmR)(t1 − t2 + x1 − x2)

16πRΓ (±imR)Γ (1± imR)

×
∫

R+iε
ds Γ (1± imR+ is)Γ (−is)Γ (α− 1− is)

�

x2

4R2

�is

,
(C.43)

where we already took the regulator to zero where it didn’t cause problems. Now we take the
large radius limit. In this limit,

Γ (a± i bR)→ 2πe−πbR(bR)2a−1 , (C.44)

and only the growing part of csch(πmR) matters

G−(σ)→− m
8π2

∫

R+iε
ds

�

m2 x2

4

�is

Γ (−is)2 ,

G+(α)(σ)→
m2

16π2
((t1 − t2) + (x1 − x2))

∫

R+iε
ds

�

m2 x2

4

�is

Γ (α− 1− is)Γ (−is) .

(C.45)

Here we recognize the Barnes representations of the modified Bessel function of the second
kind

Kν(z) =
1

4πi

� z
2

�ν
∫

c+iR
d t Γ (t)Γ (t − ν)

� z
2

�−2t
, (C.46)

with c > max(Re(ν), 0). For G−, the result is spot on. For G(α)+ , the validity of the integral
representation (C.46) depends on α, specifically α≥ 1, which is precisely the values for which
(C.43) is valid. We can thus substitute also here the Bessel function, and we obtain

G−(σ)→− m
2π

K0(m|x |) ,

G+(α)(σ)→
m2

4π

�

2
m|x |

�1−α
(t1 − t2 + x1 − x2)K1−α(m|x |) .

(C.47)

The Bessel function is analytic in its order. We can thus now continue to α= 0 and obtain

G−(σ)→− m
2π

K0(m|x |) ,

G+(σ)→ m
2π
(t1 − t2 + x1 − x2)

|x |
K1(m|x |) .

(C.48)

Summarizing, we have shown that in the flat space limit

〈Ψ(x1)Ψ̄(x2)〉 →
m
2π

�

−K0(m|x |)
t1+x1−t2−x2
|x | K1(m|x |)

t1−x1−t2+x2
|x | K1(m|x |) −K0(m|x |)

�

, (C.49)

precisely matching the canonical normalization (see for example [89]).
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