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Emergent generalized symmetries in ordered phases
and applications to quantum disordering
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Abstract

We explore the rich landscape of higher-form and non-invertible symmetries that emerge
at low energies in generic ordered phases. Using that their charge is carried by homo-
topy defects (i.e., domain walls, vortices, hedgehogs, etc.), in the absence of domain
walls we find that their symmetry defects in D-dimensional spacetime are described
by (D − 1)-representations of a (D − 1)-group that depends only on the spontaneous
symmetry-breaking (SSB) pattern of the ordered phase. These emergent symmetries
are not spontaneously broken in the ordered phase. We show that spontaneously break-
ing them induces a phase transition into a nontrivial disordered phase that can have
symmetry-enriched (non-)Abelian topological orders, photons, and even more emergent
symmetries. This SSB transition is between two distinct SSB phases—an ordinary and
a generalized one—making it a possible generalized deconfined quantum critical point.
We also investigate the ’t Hooft anomalies of these emergent symmetries and conjec-
ture that there is always a mixed anomaly between them and the microscopic symme-
try spontaneously broken in the ordered phase. One way this anomaly can manifest is
through the fractionalization of the microscopic symmetry’s quantum numbers. Our re-
sults demonstrate that even the most exotic generalized symmetries emerge in ordinary
phases and provide a valuable framework for characterizing them and their transitions.
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1 Introduction

Recent generalizations of symmetry have refortified the power of symmetry to non-
perturbatively characterize the dynamics and phases of many-body systems [1–4]. The crux
of these generalizations stems from the modern perspective that a topological defect1 always
generates a symmetry [7]. In Lorentzian spacetime, a topological defect within a fixed time
slice is the symmetry operator that commutes with the Hamiltonian and acts on the Hilbert
space. When a topological defect extends in the time direction, it is a symmetry defect that
modifies the Hilbert space.

From the point of view of topological defects, in D dimensional spacetime, ordinary sym-
metries are generated by invertible codimension 1 topological defects {T (g)D−1}. The symmetry
group G describes their parallel fusion

T (g)D−1 × T (h)D−1 = T (gh)
D−1 , g, h ∈ G . (1)

They are invertible topological defects because for each T (g)D−1 there exists a topological defect

labeled by h= g−1 whose fusion with T (g)D−1 yields the trivial defect T (1)D−1.
A fruitful avenue for generalizing ordinary symmetries is to modify the properties of

{T (g)D−1}. For instance, there are topological defects that are not (D− 1)-dimensional. So, one
can generalize symmetries by having codimension p+ 1 topological defects (0 ≤ p ≤ D − 1)
also generate symmetries, which are called p-form symmetries [7–12]. When p > 0, p-form
symmetries are called higher-form symmetries, and their symmetry charge is carried by ex-
tended objects of dimension ≥ p. With this modification, symmetries are no longer generally
described by groups but instead by a kind of higher category called a higher-group [13–17].

Another interesting proposed generalization is to consider non-invertible topological de-
fects as symmetries, which are called non-invertible symmetries [18–25]. A topological defect
T (a) is non-invertible if there does not exist a topological defect T (a

−1) for which
T (a) × T (a

−1) = T (1). Evidently, non-invertible symmetries cannot be described by (higher-)

1Defects in spontaneous symmetry breaking (SSB) phases characterized by the topology of the order
parameter—vacuum—manifold are sometimes called topological defects [5, 6]. However, these defects are gen-
erally not topological in the sense that they can be continuously deformed without modifying observables. In this
paper, we will call these homotopy defects and reserve the term topological defect to describe defects that can be
continuously deformed.
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groups, where each element is required to have an inverse, and are instead described by more
general (higher-)categories [26–31] (see appendix B). For this reason, non-invertible symme-
tries are sometimes called (higher-)categorical symmetries.

Another generalization, which we will not consider in this paper, is to no longer require
the topological defects to be fully topological. These partially topological defects are topo-
logical only within some subspace of spacetime and generate symmetries called subsystem
symmetries [32–37]. In a quantum theory, something that generates a symmetry must always
be topological in the time direction to ensure that its symmetry operator commutes with the
Hamiltonian. Therefore, subsystem symmetries can only occur in non-relativistic systems.

A symmetry can enjoy any combination of these and other generalized properties. With
these ones, a generic symmetry is an a1-a2-a3 symmetry, where the adjectives

a1 ∈ {invertible, non-invertible} ,
a2 ∈ {0-form,1-form, · · · , (D− 2)-form, (D− 1)-form} ,
a3 ∈ {fully topological, subsystem} .

Furthermore, a system’s total symmetry can include any mixture of ordinary and generalized
symmetries. Including the higher-form and non-invertibility properties generalizes the fusion
rule Eq. (1) to

T
(ap)
D−p−1 × T

(bp)
D−p−1 =
∑

cp

N
cp

ap bp
T
(cp)
D−p−1 . (2)

If the sum on the right-hand side always includes only one term, the topological defects gen-
erate an invertible p-form symmetry; otherwise, they generate a non-invertible p-form sym-
metry. The sum is at the level of correlation functions. However, another way to interpret it is

by inserting the topological defect T
(ap)
D−p−1 × T

(bp)
D−p−1 in the time direction to modify the Hilbert

spaceH to the defect Hilbert spaceHT (ap)×T (bp) . The fusion rule then implies

HT (ap)×T (bp) =
⊕

cp

N
cp

ap bp
HT (cp) . (3)

This also makes it clear that N
cp

ap bp
must be non-negative integers.

At the level of kinematics, generalized symmetries provide an economical and unifying
organization principle for many-body systems. However, their real power lies in their abil-
ity to characterize and constrain a system’s dynamics. For instance, generalized symmetries
can characterize its phases by spontaneously breaking, giving rise to topological order, frac-
tons, emergent photons, and other exotic phenomena [38–48], and by forming symmetry
protected topological (SPT) phases [21,48–63]. Furthermore, they can have ’t Hooft anoma-
lies [52,64–71] and provide other constraints on renormalization group flows [20,72–75] and
out-of-equilibrium phenomena [76–78]. These powerful consequences also justify why topo-
logical defects should be interpreted as generalized symmetries: they can do what ordinary
symmetries can do.2

At the microscopic scale, many-body systems will typically not have generalized symme-
tries. Indeed, microscopic models of condensed matter describe nuclei and electrons and will
include generic two-body terms and spatial disorder that explicitly break any generalized sym-
metries. From a high-energy physics point of view where the microscopic scale is governed by
quantum gravity, it is believed there are no symmetries at all [79], including higher-form [80]
and non-invertible symmetries [81,82]. However, generalized symmetries can emerge at low
energies/long distances and at critical points, which is why they are useful despite not gener-
ically being microscopic symmetries.

2If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.
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While ordinary symmetries that emerge at low energies are typically only approximate
symmetries, emergent higher-form symmetries are exact at low energies [83–89]. This makes
them just as powerful at low energies as exact microscopic symmetries. They can sponta-
neously break, have ’t Hooft anomalies, characterize many-body phases and transitions, and
provide general non-perturbative low-energy constraints [88].

It is, therefore, important to identify generic settings where generalized symmetries emerge
and to understand their physical consequences. In this paper, we show that ordinary ordered
phases, arising from spontaneously breaking ordinary symmetries, have emergent generalized
symmetries at low energies. By low energy, we will always mean energy scales below any
gapped excitations (i.e., the deep IR). Examples of such symmetries have been investigated
previously in particular ordered phases [7,39,67,90–94]. Here we explore the rich landscape
of generalized symmetries in generic ordered phases in arbitrary dimensions, finding they
can have any combination of non-invertible and higher-form properties and uncovering some
of their general physical consequences. While we focus our attention on generic ordinary
ordered phases, our results can be generalized to any phase with symmetries—generalized or
ordinary— spontaneously broken. Furthermore, we will not specialize to any particular class
of models as our arguments apply to any physical system with the SSB pattern. However, we
note that our results generally apply to nonlinear sigma models whose target space is the order
parameter manifold of the SSB pattern. In the context of these field theories, the symmetries
we study are the so-called magnetic symmetries of the theory.

The general feature of ordered phases we use to reveal these emergent generalized sym-
metries is the existence of topologically protected defects, which we will call homotopy defects
(i.e., domain walls, vortices, and hedgehogs). Homotopy defects are generally not topologi-
cal defects as defined by footnote 1. They play an important role in a wide range of fields in
physics, from condensed matter [95] to cosmology and particle physics [5]. We discuss their
classification in Sec. 2, reviewing standard aspects in 2.1 and presenting a new technique to
represent them as magnetic defects (i.e., gauge fluxes) of a (D− 1)-groupG(D−1)

π gauge theory
in 2.2. At the level of the homotopy defects, the classifying space of G(D−1)

π is the (D− 1)th
Postnikov stage of the order parameter manifold.

In physical systems, homotopy defects have dynamics and there can exist degrees of free-
dom on which they end. For example, in a D = 3 superfluid, the homotopy defects are vortex
lines classified by the winding number and they can end on gapped particles. In Sec. 3, we
show that at energies below the gap of the degrees of freedom homotopy defects can end
on, homotopy defects are detected by topological defects. Therefore, there is an emergent
symmetry whose symmetry charges are carried by the homotopy defects and correspond to
their classification. In the absence of domain walls, at energy scales below any gapped de-
grees of freedom, we show that the emergent symmetry’s symmetry defects are described
by the (D− 1)-representations of G(D−1)

π . When there are finitely many classes of homotopy
defects, this means that the fusion (D− 1)-category describing this generalized symmetry is
S = (D− 1)-Rep(G(D−1)

π ). We verify our result by independently deriving it from the homotopy
defect’s classification using the Symmetry TFT (SymTFT). We discuss this symmetry category
and SymTFT construction for particular examples in Secs. 3.1–3.4.

In the ordered phase, these emergent generalized symmetries are not spontaneously bro-
ken. In Sec. 4, we argue that spontaneously breaking them induces a phase transition to
a nontrivial disordered phase with (non-)Abelian topological order, emergent photons, and
even more emergent generalized symmetries. The critical point is controlled by the micro-
scopic symmetries and the emergent symmetries common to both the ordered and nontrivial
disordered phases. It is a direct transition between two SSB patterns—an ordinary one and
a generalized one—and, therefore, is possibly a type of generalized deconfined quantum crit-
ical point. We demonstrate the existence of such phase transitions and additional emergent
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symmetries in simple examples using Euclidean lattice models in Secs. 4.1 and 4.2.
These emergent generalized symmetries can also have ’t Hooft anomalies, which we discuss

in Sec. 5. The fact that the homotopy defects of the microscopic symmetry are charged under
the emergent generalized symmetry strongly suggests there is a mixed anomaly between them.
We conjecture that such a mixed ’t Hooft anomaly always exists. We provide evidence for this
conjecture through physical reasoning and by showing examples in 5.1.

2 Homotopy defects

Consider a system in D-dimensional Euclidean spacetime MD with an internal ordinary sym-
metry described by the group G that is spontaneously broken to H ⊂ G. The different SSB
patterns are labeled by the conjugacy classes of the subgroups H and are characterized by a
local order parameter O(x) that is an H singlet. When space is path-connected, the ground
states are labeled by elements of the order parameter manifold3

M= {gO | ∀g ∈ G/H} ≃ G/H . (4)

2.1 The order parameter presentation

The details of O depend on microscopic details. For our purposes, it is convenient to consider
one that takes values in M. When M is discrete, we can triangulate MD and consider O(x)
as a lattice field instead of a continuum field. This makes O a map from MD to M. Therefore,
for any closed k-submanifold Σk of MD, each configuration of O(x) belongs to an equivalence
class of

[O|Σk
]f ∈ [Σk,M]f , (5)

the set of maps from Σk to M up to free homotopy. Furthermore, we equip Σk and M with
base points s and m, respectively, and consider based maps (i.e., O(s) = m). Then, Eq. (5) is
the set of based maps up to free homotopy.

The order parameter represents the system’s configuration and is the constant map Ogs
for a ground state—a map to a single point in M. If [O|Σk

]f ̸= [Ogs]f, O(x) represents a
configuration that cannot be continuously deformed to a ground state in the minimal volume
(k+ 1)-manifold Bk+1 with ∂ Bk+1 = Σk. Such a configuration is interpreted as having a defect,
where O(x) is singular, intersecting Bk+1 that is responsible for this obstruction [95]. We will
call this defect a homotopy defect (see footnote 1) and denote the operator that inserts one
on the n-submanifold Cn as H(Cn).

Homotopy defects that can be detected using Σk are classified by Eq. (5), and the equiva-
lence class [O|Σk

]f is often referred to as the charge of the homotopy defect. The most com-
monly studied ones are those detected by Σk ≃ Sk through linking and are codimension k+ 1.
For this simple class of defects, it is convenient to consider instead the kth homotopy group

πk(M)≡ [Sk,M]b , (6)

which is the set of maps from Sk to M up to based homotopy.
While freely homotopic maps may not be based homotopic, there is an action of π1(M)

on πk(M) that connects freely homotopic elements of πk(M) and provides the one to one
correspondence4

πk(M)/π1(M)↔ [Sk,M]f . (7)

3For a p-form symmetry G(p)
ssb
−→ H (p), from the perspective of gauge theory, the order parameter manifold is

M= Bp(G/H)≃ BpG/BpH, constructed by delooping G/H p times [14,96].
4See appendix A for a more detailed discussion.
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For instance, the action ofπ1(M) on itself is by conjugation, so these codimension 2 homotopy
defects are classified by the conjugacy classes Cl(π1(M)) of π1(M). More generally, these
actions are described by the group homomorphisms

αn : π1(M)→ Aut(πn(M)) , (8)

where Aut(πn(M)) is the group of automorphisms of πn(M). Physically, the π1 action on πn
describes how codimension 2 homotopy defects can change the πn invariant of codimension
n+ 1 homotopy defects. For example, in D = 3, braiding a π2 defect around a π1 defect
changes the value of π2 according to α2 [97–100].

When the action of π1(M) on πk(M) is trivial, πk(M)≃ [Sk,M]f and these homotopy
defects are characterized by πk(M). This includes their fusion

H(g) ×H(h) = H(gh) , g, h ∈ πk(M) , (9)

from which it is clear they are invertible defects. See Fig. 1 for the definition of fusing homo-
topy defects, which is contextualized to D = 3 so the fusion can be visualized.

Since homotopy defects detected by Sk are codimension k+ 1, homotopy defects classi-
fied by πk(M) for k > D− 1 are not present in D dimensional spacetime. Therefore, only the
homotopy (D− 1)-type of M matters when classifying homotopy defects. When M is con-
nected and admits a CW-decomposition, which will always be the case for physical M, we can
truncate it to Mn which satisfies

πk(Mn) =

¨

πk(M) , k ≤ n ,

0 , else,
(10)

and classify the homotopy defects of M using MD−1. Mn is called the nth Postnikov stage of
M and models the homotopy n-type of M. It obeys the fibration

Bnπn(M)→Mn→Mn−1 , (11)

for n≥ 2. Each such fibration is classified by the twisted (n+ 1) cocycle [101,102]

[βn+1] ∈ Hn+1
αn
(Mn−1,πn(M)) , (12)

called the Postnikov (n+ 1)-invariant. This makes the nth Postnikov stage Mn the classifying
space of an n-group G(n)π (i.e., Mn = BG(n)π ) which is defined by the data

G(n)π = (π1(M) ; π2(M),α2,β3 ; · · · ; πn(M),αn,βn+1) . (13)

The data in this n-group defines the homotopy n-type of M. Because the homotopy defects of
M in D-dimensional spacetime are the same as those from MD−1 = BG(D−1)

π , the homotopy
defects of M obey the same classification as magnetic defects (i.e., gauge fluxes) of G(D−1)

π

higher gauge theory [103,104].
We emphasize that the homotopy type of a topological space includes more data than

its homotopy groups. Only when all α and β are trivial, in which case the classifying space
BG(n)π =
∏n

k=1 Bkπk(M), does the homotopy type reflect only the homotopy groups. Indeed,
two topological spaces can have the same homotopy groups while having different homotopy
types (e.g., the spaces B2Z× B3Z and the third Postnikov stage of S2 both have π2 = Z and
π3 = Z, but have different homotopy 3-types since their Postnikov 4 invariants β4 are differ-
ent.)

When all Postnikov invariants βn+1 are trivial for n≤ D− 1, this reduces to the classifica-
tion Eq. (7). Nontrivial Postnikov invariants reflect how lower codimension homotopy defects
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(a) (b)

(c)

Homotopy
C1

Σ1 Σ′ 1

Σ1∘Σ′ 1Σ′ ′ 1

C′ 1

C1
C′ 1 C1

C′ 1

C1 C′ 1

Figure 1: A configurationO(x) in D = 3 with two homotopy defects H(C1) and H(C ′1)
classified by [S1,M]f = Z is shown. (a) A defect T1(Σ1) detects H(C1) and mea-
sures [O|Σ1

]f = 1 and (b) T1(Σ′1) detects H(C ′1) and measures [O|Σ′1]f = −1. (c) The
fusion H(C1)×H(C ′1) can be measured by T1(Σ′′1 ), but since [O|Σ′′1 ]f = [O|Σ1◦Σ′1

]f
it can also be measured using T1(Σ1 ◦Σ′1). This defines a multiplication structure
[O|Σ1◦Σ′1

]f = [O|Σ1
]f×[O|Σ′1]f, so [O|Σ′′1 ]f = 0 and H(C1)×H(C ′1) is the trivial ho-

motopy defect line.

can carry the topological charge of higher codimension homotopy defects, which can be de-
tected using Σk ̸≃ Sk. For example, when α2 is trivial, as a 3-cocycle, the Postnikov 3-invariant
algebraically describes a map β3 : π1(M)×π1(M)×π1(M)→ π2(M), physically reflecting
how a configuration with three π1 defects can be deformed into a configuration with a π2
defect. Since β3 is the associator of the 2-group G(2) describing M’s homotopy 2-type, the
homotopy between a configuration with three π1 defects and one with a π2 defect is imple-
mented by having the π1 defects perform an F -move. Therefore, the π1 defects “know” about
the π2 defects. In particular, the topological defect surface detecting the π2 defects must also
detect the π1.

The equivalence class [O|Σk
]f is measured by a defect Tk(Σk) that detects H(Cn) inser-

tions for which the intersection number #(Cn, Bk+1) ̸= 0 (e.g., Fig. 1). The defect Tk(Σk) is
constructed using the topological invariant characterizing the free homotopy classes [O|Σk

]f
(e.g., Eq. (25)). However, this topological invariant will generally not have a local expression
in terms of O.

2.2 The higher gauge theory presentation

It is useful to consider a different presentation of the order parameter that makes the homo-
topy defects manifest. Consider instead eO : MD→ eG, where eG is a covering space of G with
trivial [ eO|Σk

]f classes for all 0≤ k ≤ D− 1 submanifolds. The original G symmetry acting on
O is realized as a eG symmetry acting on eO. As long as M admits a CW-decomposition, eG for
Σk
∼= Sk can always be constructed inductively using the Whitehead tower of M [105]. To

have eO-configurations correspond to O-configurations, we turn on a 1-form eH gauge field,
where eH is the cover of H that lifts it to a subgroup of eG, to introduce the gauge redun-
dancy eO(x)∼ eh(x) eO(x) with eh(x) ∈ eH. The gauge redundancy reduces the physically dis-
tinguishable values of eG to eG/ eH = G/H ≡M, and hence physical—gauge inequivalent— eO-
configurations correspond to O-configurations.5

5This is a generalization of similar techniques that have been used in the study of magnets and nematics [106–
108] and Villain formulations of lattice models [87,109–112].
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The main idea of this new presentation is that there are no eO homotopy defects, and all
the information regarding the O homotopy defects are instead encoded in the eH gauge fields.
Indeed, because πn(eG) = 0 for all n≤ D− 1, the long exact sequence of homotopy groups

· · · → π2( eH)→ π2(eG)→ π2(M)
→ π1( eH)→ π1(eG)→ π1(M)
→ π0( eH)→ π0(eG)→ π0(M) ,

(14)

yields the exact sequences

0→ πn+1(M)→ πn( eH)→ 0 , n≤ D− 2 , (15)

and therefore
πn( eH) = πn+1(M) , n≤ D− 2 . (16)

In this new presentation, codimension 2 homotopy defects are eH gauge fluxes. However,
codimension > 2 homotopy defects are encoded in the topology of the eH gauge fields. When
codimension > 2 homotopy defects exist, we can repeat the procedure by finding a covering
space of eH that trivializes this topology while preserving π0( eH) and introducing a 2-form K
gauge field encoding these homotopy defects. From the long exact sequence of homotopy
groups, this implies that πn(K) = πn+1( eH) = πn+2(M) for 0≤ n≤ D− 3, and thus codimen-
sion 3 homotopy defects are K gauge fluxes. These 1-form and 2-form gauge fields may mix
nontrivially, encoding how codimension 2 and 3 homotopy defects are related to and influ-
ence each other. This mixing is formally encoded by the total gauge group being a nontrivial
2-group.

This process can be repeated many times, and in the end, there will be a collection of
gauge fields of varying forms, and the total gauge group will be the (D− 1)-group G(D−1)

π . At
the level of the homotopy defects,G(D−1)

π will include all the data present in Eq. (13). However,
it can also include additional structures reflecting the dynamics of the ordered phase as well.
Importantly, like for Eq. (13), the homotopy defects are encoded directly as G(D−1)

π gauge
fluxes and not through the topology of target spaces, so the defect Tk(Σk) will have a local
expression in terms of the gauge fields.

As an example, consider M= RP2 in D = 3 spacetime, where π0(M)≃ 0, π1(M)≃ Z2,
and π2(M)≃ Z. The action of π1(M) on π2(M) is described by the group homomorphism
α2 : π1(M)→ Aut(π2(M)) and changes the sign of π2(M). Thus, there are Z2 and Z≥0 codi-
mension 2 and 3 homotopy defects, respectively. We first trivialize π1(M) using O′ : M3→ S2

and a Z2 1-form gauge field such that physical O′ configurations take values in S2/Z2 ≃M.
Then, to trivialize π2(M) we lift S2 to eG ≡ S3, consider eO : M3→ S3, and introduce a U(1)
1-form gauge field since S3/S1 ≃ S2. The total gauge group is eH = U(1)×Z2, which correctly
recovers S3/(S1 ×Z2)≃ RP2 =M. The codimension 2 and 3 homotopy defects are the Z2
gauge fluxes and U(1) magnetic monopoles, respectively. The latter is encoded by the topol-
ogy of U(1), so we lift U(1) to R and introduce a 2-form K ≡ Z gauge field since R/Z≃ U(1).
Including the group homomorphism α2, the homotopy defects are gauge fluxes of the discrete
2-group G(2)π = (π1(M),π2(M),α2) gauge theory, where we idnore the R 1-form gauge field
since it has no magnetic defects. Indeed, triangulating spacetime and denoting the G(2)π gauge
fields as the Z2 1-cocycle mZ2

i j and Z valued 2-cochain nZi jk, the G(2)π gauge redundancy is6

mZ2
i j ∼ mZ2

i j + (dλ
Z2)i j , (17)

nZi jk ∼ α2(λ
Z2
i )n
Z
i jk + (dα2

ΛZ)i jk , (18)

where α2 enforces that the sign of the codimension 3 Z gauge fluxes is not physical.
6See appendix A of Ref. [16] for a high-level introduction for physicists on twisted singular cohomology.
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Fluctuations⟶
at E ≫ Δ

Fluctuations⟶at E ≪ Δ

Tk(Σk)

H(Cbefore
D−k−1)

Tk(Σk)

Tk(Σk)

H(Cafter
D−k−1)

H(Cafter
D−k−1)

Figure 2: The dynamics of homotopy defects depend on the energy scale. When
E≫∆, homotopy defects can end and link(Cbefore

D−k−1,Σk) ̸= link(Cafter
D−k−1,Σk), so Σk

can become homologically trivial. However, when E≪∆ and homotopy defects can-
not end, link(Cbefore

D−k−1,Σk) = link(Cafter
D−k−1,Σk) is conserved, signaling the emergence

of a symmetry.

3 Emergent generalized symmetries

In the ordered phase, homotopy defects H(CD−k−1) cost energy increasing with |CD−k−1| be-
cause the larger |CD−k−1| is, the more O deviates from Ogs. Thus, there is some low-energy
scale E < EIR without homotopy defects, and such configurations without homotopy defects
can be globally continuously deformed to Ogs. In this regime, the defect Tk(Σk) that detects
H(CD−k−1) is trivial for all Σk since there are simply no homotopy defects. This also implies,
in a trivial way, that Tk(Σk) is a topological defect in this regime since it does not depend on
the topology of Σk.

At E > EIR, configurations have homotopy defects H(CD−k−1) inserted and Tk(Σk) is no
longer generally topological. Indeed, deforming Σk such that the intersection number
#(CD−k−1, Bk+1) changes will change the equivalence class [O|Σk

]f.
In physical systems, homotopy defects generally come in two different types: they can

be supported on closed submanifolds (i.e., ∂ CD−k−1 = ;) or can end on dynamical degrees of
freedom residing along ∂ CD−k−1 ̸= ;. From the perspective of “particle-vortex” duality, these
degrees of freedom on ∂ CD−k−1 are the dynamical matter fields carrying gauge charge.

These dynamical degrees of freedom will have an energy gap ∆. At energies EIR < E <∆,
the dynamical degrees of freedom are absent, and the only homotopy defects present are sup-
ported on closed submanifolds. In this regime, the only way to have Bk+1 no longer intersect
CD−k−1 is to deform Σk through CD−k−1. Therefore, Tk(Σk) can be deformed as long as the
linking number link(Σk, CD−k−1) does not change. In other words, the shape of Σk does not
matter, only the linking number does [5, 6, 95]. This makes Tk(Σk) a topological defect that
generates a (D− k− 1)-form symmetry transforming H(CD−k−1) when link(Σk, CD−k−1) ̸= 0.
This was similarly discussed in Ref. [94] in the context of nonlinear sigma models.

We emphasize that this does not imply that the homotopy defects are topological defects,
but only that they are detected by topological defects at low energy, which is a direct conse-
quence of their homotopy-based classification reviewed in Sec. 2.1. In the eO presentation of
O discussed in Sec. 2.2, Tk(Σk) will be a topological quantum field theory on Σk constructed
from the G(D−1)

π higher gauge fields. Furthermore, while our discussion thus far assumed that
the spontaneously broken microscopic symmetry is invertible, the general principle applies
to any generalized symmetries since their spontaneous breaking also gives rise to homotopy
defects.
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At E >∆, there are homotopy defects that can end, and the equivalence class [O|Σk
]f

can be changed by deforming Σk such that Bk+1 goes through ∂ CD−k−1. Consequentially,
the linking number link(Σk, CD−k−1) loses its aforementioned topological properties. In fact,
the linking number is no longer well defined for homotopy defects that do not end at E >∆
because they can now be “cut” open using endable homotopy defects, as shown in Fig. 2.
Therefore, homotopy defects that can end and screen the (D− k− 1)-form symmetry, explicitly
breaking it.

When ∆→∞, the (D− k− 1)-form symmetry is an exact symmetry. When ∆ has a finite
nonzero value, it is instead an emergent symmetry appearing at E <∆. This is an emergent
higher-form symmetry for k < D− 1. Since the homotopy defect is the charged object under
the symmetry, its symmetry charges are labeled by the homotopy defects’ equivalence classes,
and the symmetry sectors are the phase’s topological sectors.

So, what is this symmetry? Let’s restrict ourselves to the case where M is connected. Since
the homotopy defects carry the symmetry charge, and since their classification is equivalent
to that of magnetic defects of G(D−1)

π higher gauge theory (see Eq. (13)), the symmetry is the
same as the magnetic symmetry of G(D−1)

π higher gauge theory. This means that the symmetry
defects are the G(D−1)

π electric defects (i.e., Wilson lines, surfaces, etc.) and described by
the (D− 1)-representations of G(D−1)

π . When there are finitely many homotopy defect classes,
G(D−1)
π is finite, and the symmetry category7 S describing this emergent symmetry is the fusion
(D− 1)-category

S = (D− 1)-Rep(G(D−1)
π ) . (19)

This symmetry includes non-invertible and invertible symmetries as well as 0-form and
higher-form symmetries. However, it does not include any information about codimension 1
homotopy defects whose classification is related to π0(M). At the most basic level, Eq. (19) is
the emergent symmetry when restricted to a single superselection section in the ground state
subspace of the SSB phase. However, more generally, the (D− 1)-form symmetry arising from
codimension 1 homotopy defects can mix nontrivially. The emergent symmetry associated with
codimension 1 homotopy defects is additional information, which we will discuss in Sec. 3.4.

This expression for S can be directly verified using a (D+ 1)-dimensional topological field
theory (TFT) called the Symmetry TFT (SymTFT)8 [22, 23, 71, 113–131]. Its topological de-
fects are described by the Drinfeld center Z(S) of S. A defining feature of the SymTFT is that
it has a topological boundary condition Bsym whose topological defects are described by S.
The topological defects in Z(S) that become the trivial defect on Bsym correspond to the sym-
metry charges of S. Therefore, one can find S from its symmetry charges by: (1) constructing
a TFT with topological defects corresponding to the symmetry charges; (2) finding a topo-
logical boundary where they become trivial; (3) finding the fusion higher category describing
nontrivial topological defects on that boundary, which will be S.

Since the emergent symmetries are exact symmetries of finite G(D−1)
π gauge theory in D di-

mensional spacetime, the natural candidate for the SymTFT is G(D−1)
π gauge theory in one

higher dimension, whose topological defects are described by Z((D− 1)-VecG(D−1)
π
). From

standard dimensional reduction [132], it is clear that the SymTFT’s gauge fluxes correspond
to G(D−1)

π gauge fluxes in D-dimensions and, therefore, the homotopy defects. The SymTFT
has two canonical topological boundaries: an electric and magnetic boundary whose topo-
logical defects are described by (D− 1)-VecG(D−1)

π
and (D− 1)-Rep(G(D−1)

π ), respectively. On
the electric (magnetic) boundary, the electric defects (gauge fluxes) become the trivial defect.

7See appendix B for an introduction on symmetry categories.
8See appendix C for an introduction on the SymTFT. We note that the SymTFT has also been called categori-

cal symmetry [22, 113–115], holographic categorical symmetry [116], topological holography [117], topological
symmetry [118], and symmetry topological order (SymmTO) [119,120].
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Since the gauge fluxes are trivial on the magnetic boundary and they correspond to the sym-
metry charge, Bsym is the magnetic boundary, and the symmetry category is indeed Eq. (19).

This expression for S is abstract and hides a lot of physical insights. Therefore, we will
now focus on better understanding the emergent symmetry and the SymTFT construction by
working through simple examples.

3.1 Invertible homotopy defects

Let us first consider the case where all homotopy defects are invertible. By this, we mean that
they are classified by [Sk,M]f ≃ πk(M) and their fusion is described by the groups πk(M),
which are necessarily Abelian. Then, G(D−1)

π =
∏D−2

r=0 G(r) is a trivial higher group and just a
direct product of G(r) = πr+1(M). The symmetry category (19) becomes

S = (D− 1)-VecĜ(D−1)
π

, (20)

where Ĝ(D−1)
π =
∏D−2

r=0 Ĝ(r) is a trivial (D− 1)-group with Ĝ(r) = Hom(πD−r−1(M), U(1)) the
Pontryagin dual of πD−r−1(M). This symmetry category describes finite r-form Ĝ(r) symme-
tries and their condensation defects [133].

We can understand this symmetry more transparently, and also for the continuous case, us-
ing that the homotopy groups describe its symmetry charges. Since they are Abelian, they are
direct products of Z and ZN in physically relevant phases. So, the (D− k− 1)-form symmetry’s
charges are labeled by Z and ZN , and the corresponding symmetry groups are U(1) and ZN ,
respectively. In general, as in Eq. (20), the (D− k− 1)-form symmetry is invertible and de-
scribed by Hom(πk(M), U(1)). Therefore, if codimension k+ 1 invertible homotopy defects
are classified by Zn

N ×Z
m, there is an emergent Zn

N × U(1)m (D− k− 1)-form symmetry.
Many ordered phases have SSB patterns that give rise to invertible homotopy defects. A

simple example is an isotropic magnet where SO(3)
ssb
−→ SO(2). The 1st homotopy group of

M≃ S2 is trivial while π2(M) = Z, so there is an emergent U(1)(D−3) symmetry. A related ex-

ample is a noncollinear anti-ferromagnet where SO(3)
ssb
−→ 1. It has codimension 2 homotopy

defects classified by π1(SO(3))≃ Z2 and thus an emergent Z(D−2)
2 symmetry.

Let us demonstrate this explicitly in a simple case. Consider the partition function of a
non-linear sigma model

Z(MD) =

∫

D[O] e−S(O,MD) , (21)

where, from the coset construction, O : MD→M is the Goldstone field and S is the general
effective Euclidean action [134–137]. For codimension k+ 1 homotopy defects classified by
πk(M) = Z, the topological charge [O|Σk

]f ∈ Z can be expressed as Qtop[Σk] =
∫

Σk
∗ J top using

the (D− k) form current J top [138].9 In the absence of homotopy defects, ∗ J top is closed and
is the generator of the de Rham cohomology of M pulled back to MD using O [139].

We can reveal the emergent symmetry explicitly by constraining the partition function
to only integrate over fields satisfying d∗ J top = 0. Enforcing this using a (D− k− 1)-form
Lagrange multiplier field λ, the partition function becomes

Zeff(Md) =

∫

D[O]D[λ]e−S(O,MD)− i
∫

MD
dλ∧∗ J top

. (22)

Since Qtop ∈ Z, the λ is a (D− k− 1)-form U(1) gauge field.

9The simplest example is ∗ J top = dθ where θ : MD → R/Z. More generally, J top is a properly normalized topo-
logical term constructed from the Maurer-Cartan form O−1 dO.
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The partition function Zeff has a new symmetry absent from Z: it is invariant under the
transformation

λ→ λ+ Γ , dΓ = 0 . (23)

Turning on a (D− k)-form background field A for this symmetry introduces the gauge redun-
dancy

λ→ λ+ Γ , A→A+ dΓ . (24)

Minimally coupling A, we replace dλ in Eq. (22) by dλ−A. This introduces the term
iA ∧∗ J top into the effective action, revealing that the Noether current of this symmetry is
J top. Thus, the generator of the symmetry is

T (α)k (Σk) = e
iα
∫

Σk
∗ J top

, (25)

and whenΣk and CD−k−1 link it transforms the homotopy defect H(CD−k−1) = e
i
∫

CD−k−1
λ

by e iα.
Since Qtop ∈ Z, the parameter α ∈ [0,2π) and T (α)k generates a U(1)(D−k−1) symmetry.

3.2 Higher-form symmetry homotopy defects

It is straightforward to generalize our discussion on invertible homotopy defects of 0-form
invertible symmetries to those arising from spontaneously breaking an invertible higher-form

symmetry G(p)
ssb
−→ H(p). As mentioned in footnote 3, they are classified by the target space

M= Bp(G/H), and since G is always an Abelian group, they are always invertible. We’ll
consider two simple cases before stating the general result.

For the SSB pattern Z(p)N
ssb
−→ Z(p)M , where N/M is a positive integer, the order parameter

manifold is M= BpZN/M and homotopy defects are classified by

πk(B
pZN/M ) = πk−p(ZN/M ) =

¨

ZN/M , k = p ,

0 , k ̸= p .
(26)

Therefore, there are codimension (p+ 1) ZN homotopy defects in this SSB phase. Since these
are the emergent symmetry’s charges, it is a Z(D−p−1)

N/M symmetry. We remark that when M = 1,
this SSB pattern is realized in p-form BF theory (i.e., in ground states of p-form toric code).
In this theory, the homotopy defects are the gauge fluxes, and the Z(D−p−1)

N symmetry is the
magnetic symmetry [140].

For the SSB pattern U(1)(p)
ssb
−→ Z(p)M , the order parameter manifold is M= BpS1, and the

homotopy defects are classified by

πk(B
pS1) = πk−p(S

1) =

¨

Z , k = p+ 1 ,

0 , k ̸= p+ 1 .
(27)

Therefore, there are codimension (p+ 2) Z homotopy defects in this SSB phase and, when they
cannot end, an emergent U(1)(D−p−2) symmetry. When M = 1, this SSB pattern is realized in
p-form Maxwell theory. The homotopy defects are the magnetic world volumes (e.g., ’t Hooft
lines), and the U(1)(D−p−2) symmetry is the magnetic symmetry [7].

To write down a general expression for the emergent symmetry, we can use the p-loop
space ΩpM of M. For the two SSB patterns considered above, at the level of homotopy

ΩpM≃ ZN/M and ΩpM≃ S1, respectively. For a general G(p)
ssb
−→ H(p) SSB pattern, the order

parameter manifold will satisfy ΩpM≃ G/H and each emergent (D− k− p− 1)-form sym-
metry will be described by the Pontryagin dual of πk(ΩpM).
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3.3 Codimension 2 homotopy defects

We next consider codimension 2 homotopy defects. They are classified by the conjugacy classes
Cl(π1(M)) of π1(M). When π1(M) is Abelian, Cl(π1(M)) = π1(M) and the discussion
from Sec. 3.1 applies. Here we will consider general finite π1(M), which can be Abelian
or non-Abelian. From the previous general discussion, when these homotopy defects cannot
end, there is a (D− 2)-form symmetry whose symmetry charges are labeled by Cl(π1(M)).
The symmetry category is given by Eq. (19) with only the codimension 2 homotopy defects
included. Therefore, it is

S = (D− 1)-Rep(π1(M)) , (28)

which describes a Rep(π1(M)) (D− 2)-form symmetry and its condensation defects. In
Sec. 4.1, we consider a general model in D = 3 that has codimension 2 homotopy defects
for which we find an expression for the topological defect generating the Rep(π1(M)) 1-form
symmetry.

There are numerous ordered phases whose SSB patterns give rise to codimension 2 ho-
motopy defects. Since we already discussed examples of invertible codimension 2 homotopy
defects in 3.1, let us consider examples where π1(M) is non-Abelian. A generic example is
an Eilenberg–MacLane space M= K(F, 1) of a finite non-Abelian group F . The only nontriv-
ial homotopy group is π1(M) = F , and the emergent symmetry is (D− 1)-Rep(F). A more

physical example is an ordered phase with the SSB pattern SO(3)
ssb
−→ Z2 ×Z2, which occurs

in biaxial nematic liquid crystals [97] and certain spin-1 quantum magnets [108, 141]. In
this ordered phase, π1(M) =Q8, where Q8 is the Quaternion group. Therefore, when the
codimension-2 homotopy defects in this spin-1 magnetic phase cannot end, there is an emer-
gent (D− 1)-Rep(Q8) symmetry, which includes a Rep(Q8) (D− 2)-form symmetry.

As shown in the beginning of this section, the symmetry category can also be deduced
using the SymTFT. Let us consider the construction in greater detail for this simple case.
We first set D = 2 and consider the (2+ 1)-dimensional quantum double model D(π1(M)).
Its topological defect lines—its anyons—are the objects (Cl(k),αk) of Z(Vecπ1(M)), where
Cl(k) is the conjugacy class of k ∈ π1(M) and αk an irreducible representation of the cen-
tralizer C(k) = {a ∈ π1(M) | ak = ka} of k [142]. D(π1(M)) has a topological boundary B
where the (Cl(k),1) topological defect lines can end [143]. Therefore, treating D(π1(M)) as
a symTFT, the topological boundary B describes a symmetry whose charges are labeled by
Cl(π1(M)), which is precisely what we are seeking.

The symmetry category S is, therefore, the fusion category describing the topological de-
fects on the boundary B . We can find S using the correspondence [22, 117, 119, 143–145]
between topological boundaries of D(K) and gapped phases of (1+ 1)-dimensional theories
with a K symmetry [146,147]. The boundaryB corresponds to a trivial K SPT phase and its
gapped excitations are K charges, which are described by Rep(K) [22]. Heuristically, (Cl(k),1)
topological defects become the trivial topological defect onB , so a general topological defect
(Cl(k),αk) on B is described by Rep(K) since it “forgets” its Cl(k) label. Therefore, setting
K = π1(M), the topological defects on B are described by Rep(π1(M)) and the symmetry
category is S = Rep(π1(M)).

For general D, we consider D+ 1 dimensional pure π1(M) gauge theory as the symTFT,
which has topological defects labeled by the objects in Z((D− 1)-Vecπ1(M)). Using that

Z((D− 1)-VecK) = Z((D− 1)-Rep(K)) , (29)

there is a topological boundary whose topological defects are labeled by (D−1)-Rep(π1(M)).
This is also the boundary where gauge fluxes, codimension 2 topological defects labeled by
Cl(π1(M)), can end [22]. Therefore, the symmetry category is S = (D− 1)-Rep(π1(M)), in
agreement with Eq. (28).
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3.4 Codimension 1 homotopy defects

As mentioned, the symmetry category Eq. (19) does not include symmetries arising from codi-
mension 1 homotopy defects (i.e., domain walls), which are classified by π0(M). Here we
will explore these emergent symmetries and, for simplicity, restrict ourselves to the symmetry-

breaking pattern G
ssb
−→ H where G is a finite group and H is a normal subgroup. The SSB

phase is then gapped, and the homotopy defects are all codimension 1. They are measured
by comparing the order parameter O at two points in MD. Therefore, in the absence of do-
main walls—in the ground state subspace—O becomes a topological defect that generates a
(D− 1)-form symmetry.

In this case, π0(M)≃M is a finite group that classifies invertible codimension 1 homo-
topy defects and their fusion. Furthermore, the local order parameters that acquire a vev are
labeled by and fuse according to Rep(M). Since they are the topological defects generat-
ing the symmetry, we find that they generate a Rep(M) (D− 1)-form symmetry. This is a
non-invertible symmetry when M is non-Abelian, and when M is Abelian, it is an invertible
described by the Pontryagin dual of M.

We can also deduce this using the SymTFT. Since π0(M) =M, the charged objects are
codimension 1 and labeled by group elements of M. We consider the (D+ 1) SymTFT that

describes the ground states of a M ssb
−→ 1 SSB phase. It has local topological defects labeled

by Rep(M) and codimension 1 topological defects labeled by group elements of M. Bsym is
the boundary where this codimension 1 topological defect is trivial. The topological defects of
Bsym are then the local topological defects, and therefore the symmetry is a Rep(M) (D− 1)-
form symmetry.

For example, consider a ZN spin ferromagnetic phase with the SSB pattern ZN
ssb
−→ ZM ,

where N/M is a positive integer. The order parameter manifold is M= ZN/M , which is self-

Pontryagin dual, and so there is an emergent Z(D−1)
N/M symmetry in the ground state subspace. G

can also be non-Abelian. For example, consider G = S3, the symmetric group of degree 3. For

the SSB pattern S3
ssb
−→ Z3, the order parameter manifold is M= Z2, so there is an emergent

Z(D−1)
2 symmetry. On the other hand, for S3

ssb
−→ 1, the order parameter manifold is M= S3

and so there is an emergent Rep(S3) (D− 1)-form symmetry.
Since the local topological defect O is the order parameter, it interacts nontrivially with

the codimension 1 topological defect T (g)D−1 generating the G 0-form symmetry. Indeed, when
O transforms in the representation R ∈ Rep(G),

T (g)D−1(Σ)Oi(x) =

¨

R(g)i j O j(x) , link(Σ, x) ̸= 0 ,

Oi(x) , link(Σ, x) = 0 ,
(30)

where g ∈ G. This defines an action of the G 0-form symmetry on the emergent (D− 1)-form
symmetry. When the emergent symmetry is invertible, this action is encoded by the group
homomorphism

ρ : G→ Aut(M) , (31)

and the total symmetry is a split D-group G(D) = (G,M,ρ).

4 Disordering

As shown in Sec. 3, when a 0-form invertible symmetry G is spontaneously broken, there is
an emergent generalized symmetry S at low energies. However, this emergent symmetry is
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Ordered
Defect-suppresed 

disordered

G ssb⟶ H

𝒮 ssb⟶ 𝒮S S
G ssb⟶ G

𝒮 ssb⟶ 𝒞CS

Figure 3: Spontaneously breaking the emergent symmetry S to a subcategory C re-
stores G and drives a phase transition to a non-trivial disordered phase. The ordered
and defect-disordered phases have district SSB patterns, making the critical point be-
tween them a possible generalized DQCP. When S is an invertible 0-form symmetry,
the critical point is an ordinary DQCP.

not spontaneously broken in the ordered phase.10 A cheeky reason why is that if it were,
then ordinary ordered phases would have topological orders and emergent photons, which is
certainly not true. The better explanation comes from a hallmark feature of homotopy defects
in ordered phases: their energy cost grows as they are separated/enlarged in space—they are
confined. Therefore, the homotopy defects obey an “area law” at low energies in the ordered
phase and appear as gapped extended objects in the spectrum. So, the emergent symmetry S
is not spontaneously broken.

While S is not spontaneously broken when it emerges in the ordered phase, nothing gen-
erally prevents it from becoming spontaneously broken. Of course, it is not always possible for
parts of S to spontaneously break due to generalized Mermin-Wagner-Coleman theorems. An
invertible finite (continuous) p-form symmetry can only spontaneously break when D > p+ 1
(D > p+ 2) [7,38]. We expect this criterion also to apply when the symmetry is non-invertible.
Therefore, the emergent symmetry associated with finite [Σk,M]f can only spontaneously
break if k ≥ 1, and for nonfinite [Σk,M]f if k ≥ 2.

Undergoing a phase transition that spontaneously breaks S causes the homotopy defects
to obey a “perimeter law” at low energies, which signals that the homotopy defects are decon-
fined. Furthermore, in Lorentzian signature, where we call something a defect if it extends
in the time direction and an operator acting on the Hilbert space, the excitations created by
homotopy operators will form a condensate since they carry S symmetry charge. These fea-

tures completely contradict the aforementioned ones of the G
ssb
−→ H phase. Therefore, it is not

possible to spontaneously break both G and S simultaneously, and spontaneously breaking S
must drive a transition to a disordered phase.

The S SSB phase will generally have topological order and emergent photons and will be
enriched by the microscopic G symmetry [148, 149]. Indeed, for finite S, it will correspond
to the deconfined phase of G(D−1)

π gauge theory. Furthermore, spontaneously breaking S will
give rise to new homotopy defects, and thus, there will be new emergent symmetries in the S
SSB phase at low energies.

Since spontaneous breaking S restores the G symmetry, it induces a direct transition be-
tween two different SSB phases. If the transition is continuous order and S is an invertible
0-form symmetry, the critical point is a deconfined quantum critical point (DQCP) [150]. For

example, Ref. [151] studied a transition between an SO(3)
ssb
−→ U(1) phase in D = 3, where

S describes a U(1)(0) symmetry, and the S SSB phase, and the critical theory is the same as
the original DQCP proposed by Ref. [152]. When S is a generalized symmetry, the critical
point would then be a generalized DQCP (see Fig. 3). Models with generalized DQCPs can be

10For higher-form symmetries discussed in Sec. 3.2, we expect the emergent symmetry to be spontaneously
broken due to a mixed ’t Hooft anomaly [68].

15

https://scipost.org
https://scipost.org/SciPostPhys.17.3.080


SciPost Phys. 17, 080 (2024)

emergent 2-𝖱𝖾𝗉(π1(G/H))
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exact G(0)
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Figure 4: Shows the proposed phase diagram in D = 3 of an (I) ordered phase with
codimension 2 homotopy defects and its (II) trivial and (III) defect-suppressed disor-
dered phases, labeled by their symmetry breaking patterns. The vertical axis shows
the suppression of the homotopy defects, while the horizontal axis controls the fluc-
tuations of the local order parameter. When the defect suppression goes to infinity,
the 2-Rep(π1(G/H)) symmetry is exact. Using the gauge theoretic language of the
eO presentation (see Sec. 2.2), regions I, II, and III are the Higgs, confined, and de-
confined phases, respectively, of G(D−1)

π gauge theory.

constructed by taking a model with an ordinary continuous SSB transition and then gauging
a finite subgroup of the symmetry that controls the transition [153].

We expect it is impossible to have both G and S simultaneously not spontaneously broken.

Since S emerges because of homotopy defects arising from spontaneously breaking G
ssb
−→ H,

heuristically, restoring G should cause a qualitative change to the homotopy defects and also
the realization of S. If the conjecture made in Sec. 5 is correct, this could be due to a mixed
’t Hooft anomaly between G and S. Therefore, starting in the ordered phase and restoring
G, S must either spontaneously break or no longer emerge, leading to nontrivial or trivial
disordered phases, respectively.

The easiest way to spontaneously break S is to disorder while suppressing homotopy de-
fects, preventing them from proliferating and destroying S. When this defect suppression is
infinity and S is an exact symmetry (e.g., Eq. (22)), the trivial disordered phase is inaccessible,
and any disordered phase will spontaneously break S. When the defect suppression is large
but finite, the S SSB phase will persist only if S is a higher-form symmetry because emergent
higher-form symmetries are exact [88] (see Fig. 4).

Defect-suppressed disordered phases have been studied previously in particular mod-
els [103, 106–108, 141, 151, 154–156]. Here we interpret these examples in terms of the
emergent symmetry S being spontaneously broken. This offers a general, unifying frame-
work that can be applied predictively to ordered phases in any dimension, regardless of how
complicated their homotopy defects are.

The emergent symmetry can spontaneously break in other ways. A particularly interest-
ing scenario is when it is a continuous symmetry and has conserved currents from which its
generators are constructed [7,157]. Taking the wedge product of these currents yields a new
conserved composite current corresponding to a new symmetry that transforms topologically
linked homotopy defects [92]. Therefore, condensing topologically linked homotopy defects
spontaneously breaks part of the emergent continuous symmetry and provides an alternative
route to a nontrivial disordered phase. As an example, consider a two-component super-

fluid in D = 4, where U(1)× U(1)
ssb
−→ 1 and there are Goldstone fields θ1,θ2 ∈ R/Z. In the

deep IR, there are two emergent U(1)(2) symmetries with currents ∗ j1,2 = dθ1,2. Addition-
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ally, there is an emergent U(1)(1) symmetry whose conserved current is the composite current
∗ j = dθ1∧dθ2. While the 2-form symmetries cannot spontaneously break, the 1-form symme-
try can, giving rise to a nontrivial disordered phase with emergent photons. A microscopic
mechanism for spontaneously breaking this 1-form symmetry was discussed in Ref. [158].

In the remainder of this section, we contextualize this abstract discussion and explore ex-
amples of defect-suppressed disordered phases using the eO presentation of the order param-
eter and simple Euclidean lattice models. We build the spacetime lattice MD by triangulating
MD and will denote 0-simplices (lattice sites) by i, 1-simplices (edges) that connect i and j as
(i j), 3-simplices (triangles) whose corners are i, j, and k as (i jk), etc.

4.1 Suppressing codimension 2 homotopy defects

The simplest example where the emergent symmetry S can spontaneously break is in D = 3

when the symmetry breaking pattern G
ssb
−→ H has an order parameter manifold M≡ G/H

with finitely many classes of codimension two homotopy defects. In this case, since π1(M)
is finite, the emergent symmetry is S = 2-Rep(π1(M)) (see Sec. 3.3). For simplicity, we will
assume that H is a finite subgroup of G and that G is connected.

To describe these homotopy defects’ dynamics, we use the eOi ∈ eG presentation of the or-
der parameter Oi ∈M discussed in Sec. 2.2. Since we require eO to have no codimension 2
homotopy defects, we choose eG to be the universal cover of G as it satisfies π1(eG) = 0. So, on
each 0-simplex i resides a eG degree of freedom eOi and on each 1-simplex (i j) resides an eH
degree of freedom ehi j ≡ eh−1

ji , where eH is the cover of H the lifts it to a subgroup of eG. These

degrees of freedom are related by the eH gauge redundancy

eOi ∼ eλi
eOi , ehi j ∼ eλi

ehi j
eλ†

j , (32)

where the gauge parameter eλi ∈ eH, which enforces physical eO configurations to correspond
to O configurations.

The homotopy defects are strings in spacetime, residing on the 1-simplices of the dual
lattice, which are equivalently the 2-simplices of the direct lattice. They are detected by O’s
homotopy class along a loop, which in the eO presentation is probed by integrating ehi j along a
loop. Therefore, the homotopy defects are violations of the flatness condition
(deh)i jk = ehi j
eh jk
ehki = 1 and correspond to eH gauge fluxes, which are classified by Cl( eH) [159].

We can directly verify this from the exact sequence Eq. (15). Because eH is finite here, it
provides the exact sequence

0→ π1(M)→ eH → 0 . (33)

Therefore, π1(M)≃ eH and codimension 2 homotopy defects are indeed classified by Cl( eH).
When the homotopy defects are gapped and cannot end, the ground state always satisfies

(deh)i jk = ehi j
eh jk
ehki = 1 on all 2-simplices. Therefore the Wilson loop

TΓ (γ) = Tr
∏

(i j)∈γ

Γ (ehi j)≡ χΓ
�

∏

(i j)∈γ

ehi j

�

, (34)

where Γ : eH → GL(dΓ ,C) is a dΓ dimensional irrep of eH and γ is a path-ordered 1-cycle, is
a topological defect. Furthermore, when γ is contractible TΓ (γ) detects homotopy defects
enclosed by γ. The fusion rule of the topological defect TΓ (γ) follows from multiplying char-
acters χΓ :

TΓa(γ)× TΓb(γ) =
∑

c

N c
ab TΓc (γ) , (35)

where N c
ab ∈ Z≥0 are the multiplicative coefficients of the tensor product Γa ⊗ Γb. Therefore,

TΓ generate a Rep( eH) 1-form symmetry, which we denote as Rep( eH)(1). By 1-gauging TΓ , we
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can find topological surface defects that generate 0-form symmetries [133], and the symmetry
category describing both the 0-form and 1-form symmetries is S = 2-Rep( eH) [27].

Since S is a finite symmetry, its homotopy defects are its symmetry defects. Therefore, we
can diagnose the spontaneous symmetry breaking of Rep( eH)(1) using TΓ . When the Wilson
loop corresponds to a gapped string in the spectrum—the gauge charges are gapped—the
Rep( eH)(1) symmetry is spontaneously broken since its homotopy defects are gapped. However,
if the Wilson loop is proliferated—the gauge charges are condensed—the Rep( eH)(1) symmetry
is not spontaneously broken.

An effective theory that describes the Rep( eH)(1) SSB phase transition is eH gauge theory
with an eO Higgs term and a eG symmetry transforming eO. In the Higgs phase, the gauge charges

condense, generating a G
ssb
−→ H SSB pattern and ensuring that S is not spontaneously broken.

It, therefore, corresponds to the ordered phase. On the other hand, in the deconfined phase,
the gauge charges are gapped, so the eG symmetry is not spontaneously broken but Rep( eH)(1)

is. Therefore, the deconfined phase is the defect-suppressed disordered phase.
As an example, let us consider G = SO(3), whose universal covering space is
eG = Spin(3) ≃ SU(2), and arbitrary H.11

eOi are SU(2) rotors, but since SU(2)∼= S3, it is
convenient to represent them as the complex spinors zi ∈ C2 satisfying z†

i zi = 1. The original
SO(3) symmetry is realized as an SU(2) symmetry transforming zi . To write down the Higgs
term, we denote by A the fundamental representation of SU(2) restricted to eH. The effective
Euclidean action is then

S = K
∑

(i jk)

[1−δ(deh)i jk ,1] + J
∑

(i j)

z†
i A(ehi j)z j , (36)

where the first term K ≫ 0 penalizes codimension 2 homotopy defects while the second term
is the Higgs term. Using properties of characters of finite groups, we can rewrite this as

S = K
∑

(i jk)

�

1−
1

| eH|

∑

Γ

dΓTr
�

Γ
�

(deh)i jk

��

�

− J
∑

(i j)

z†
i A(ehi j)z j . (37)

When J ≫ K , the model is in the Higgs phase and the gauge charges created by z are
condensed. This causes the gauge fluxes to be confined, which signals the emergence of the
unbroken Rep( eH) 1-form symmetry represented trivially. Because z transforms under eG, the
Higgs phase spontaneously breaks eG. Due to the eH gauge redundancy, the physical symmetry

spontaneously broken is eG/ eH, and the SSB pattern is equivalent to G
ssb
−→ H. When J ≪ K , it

is in the deconfined phase of eH gauge theory. The gauge charges are gapped and deconfined
excitations, so eG is not spontaneously broken. Furthermore, in the IR, (deh)i jk = 1 and there
is an emergent Rep( eH)(1) symmetry faithfully represented.

For general G, the Rep( eH)(1) SSB phase has non-chiral bosonic topological order, which
is the same topological order in the quantum double model D( eH) (see Sec. 3.3), enriched by
the G symmetry. When eH is Abelian, it is an Abelian topological order, but when eH is non-
Abelian and Rep( eH)(1) is a non-invertible symmetry, there will be non-Abelian anyons. The
anyons, which at low energies are the topological defect lines, are described by the braided
fusion category Z(Vec

eH). Because there are more topological defect lines at low energies than
those described by Rep( eH), there are additional emergent 1-form symmetries. The symmetry
category for these topological orders was explored in Ref. [160]. These new symmetries arise

11The finite subgroups H of G = SO(3) are the cyclic groups Zn, the dihedral groups Dn of order 2n, the tetrahe-
dral group T , the octahedral group O, and the icosahedral group I . Therefore, the possible eH are the cyclic groups
Zn, the binary dihedral groups 2Dn of order 4n, the binary tetrahedral group 2T , the binary octahedral group 2O,
and the binary icosahedral group 2I . The particular case of H = D2 ≃ Z2 ×Z2, where 2D2 ≃Q8, was discussed in
Sec. 3.3 and Ref. [108].
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from the homotopy defects of Rep( eH)(1)
ssb
−→ 1, just as the Rep( eH)(1) symmetry arose from the

homotopy defects of G
ssb
−→ H.

4.2 Suppressing hedgehogs

The simplest example of an emergent continuous symmetry that can spontaneously break
arises from homotopy defects in D = 4 called hedgehogs that occur when π1(M) = 0 while
π2(M) = Z. Using the results from Sec. 3.1, they are associated with an emergent U(1) 1-
form symmetry. An order parameter manifold M that produces this is the Eilenberg-MacLane
space K(Z, 2)≃ CP∞. However, we will consider the more physically relevant M= S2 that

arises from the SSB pattern SO(3)
ssb
−→ U(1) in isotropic ferromagnets and focus only on the

codimension 3 homotopy defects.
An S2 order parameter is typically parametrized by Oi ∈ R3 subject to the constraint

|Oi|2 = 1, as in the O(3) sigma model. We construct the eO presentation of O using the double
covering space eG = SU(2) of G = SO(3) since eG = SU(2)∼= S3 satisfies π2(eG) = 0, which lifts
H = U(1) to eH = U(1). As in Sec. 4.1, we’ll represent the SU(2) rotors eOi by eOi ∈ C2 satisfy-
ing eO†

i
eOi = 1, so the original SO(3) symmetry is realized as an SU(2) symmetry transforming
eOi . Since eH = U(1), there is also a U(1) gauge field ai j = −a ji and gauge redundancy

eOi ∼ e iλi eOi , ai j ∼ ai j + (dλ)i j , (38)

where (dλ)i j = λ j −λi and the gauge parameter λi ∈ R/2πZ. This enforces physical eO config-
urations to correspond to O configurations. We note that eOi and ai j are precisely the degrees
of freedom of the CP1 presentation of the O(3) sigma model [161].

Hedgehogs are strings in D = 4 spacetime and reside on the 1-simplices of the dual lattice,
which correspond to 3-simplices of the direct lattice. They are detected by O’s homotopy
class along a 2-cycle Σ2, which in the eO presentation is encoded by 1

2π

∑

(i jk)∈Σ2
fi jk ∈ Z

where fi jk = (da)i jk = ai j + a jk − aik is a U(1) 2-cocycle. Therefore, a hedgehog resides on
a 3-simplex (i jkl) if (d f )i jkl ̸= 0, so they correspond to ’t Hooft lines—magnetic monopole
worldlines—of the gauge theory.

While we have managed to represent the homotopy defects by the gauge fields, they man-
ifest themselves through the topology of the gauge group eH = U(1) via π1( eH) = Z. So, we
still do not have control over their dynamics. Therefore, just as we presented the Oi order
parameter using eOi , we must choose a new presentation of the gauge field ai j . To trivialize
π1( eH), we take the universal cover of eH and consider R gauge fields eai j . To ensure physical eai j
configurations correspond to ai j configurations, we introduce a Z 2-cochain gauge field ni jk
and enhance the gauge redundancy (38) to

eOi ∼ e i eλi eOi ,

eai j ∼ eai j + (deλ)i j + 2πmi j ,

ni jk ∼ ni jk + (dm)i jk ,

(39)

where the gauge parameters eλi ∈ R and mi j ∈ Z. In this new presentation, the hedgehogs are
the gauge fluxes of ni jk and appear as violations of the flatness condition (dn)i jkl = 0.

When the hedgehogs are gapped and cannot end, the ground state always satisfies
(dn)i jkl = 0 on all 3-simplifies. There is then the topological defect surface

T2(Σ2) = e iα
∑

(i jk)∈Σ2
ni jk . (40)
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Since
∑

(i jk)∈Σ2
ni jk ∈ Z, which is the number of hedgehogs inΣ2, α ∈ R/2πZ and T2 generates

the aforementioned U(1) 1-form symmetry. In the language of gauge theory, this corresponds
to the magnetic symmetry.

Using this presentation of the order parameter, we construct the effective Euclidean action

S = K
∑

(i jkl)

(dn)2i jkl − g
∑

(i jk)

(efi jk − 2πni jk)
2 − J
∑

(i j)

eO†
i e ieai j eO j + h.c. (41)

The first term penalizes Hedgehog configurations,12 the second is a U(1) Maxwell term, and
the third is a Higgs term. Let’s assume that K > 0 is large and consider the phases of S when
tuning g/J . The phase diagram resembles model (36) in Sec. 4.1. When J ≫ g, it is in the

Higgs phase because eOi condenses, but this also gives rise to the SSB pattern SO(3)
ssb
−→ U(1)

and corresponds to the ordered phase. Indeed, eO and O are related by Hopf’s map
Oa = eO†σa
eO, where {σa} are the Pauli matrices, so if eO condenses so does O. When J ≪ g,

the Maxwell term dominates and the model is in a Coulomb phase where the gauge charges are
gapped, so SO(3) symmetry is not spontaneously broken, but the emergent U(1)(1) symmetry
is. This is the defect-suppressed disordered phase.

The U(1)(1)
ssb
−→ 1 SSB pattern in the defect-suppressed disordered phase generates gapless

Goldstone modes that correspond to the photons of the Coulomb phase [7]. Furthermore, it
will generate new homotopy defects and, therefore, new emergent symmetries. As discussed
in Sec. 3.2, its homotopy defects are the Wilson loops, and the new emergent symmetry is the
U(1)(1)e electric symmetry. It is not an exact symmetry because Wilson loops can end on gauge
charges. So, it emerges in the Coulomb phase below the gauge charges gap. Notice that when
J = 0, this is an exact symmetry and corresponds to the transformation ai j → ai j + Γi j where
(dΓ )i jk = 0.

5 ’t Hooft anomalies

Emergent symmetries can have ’t Hooft anomalies, which can be self-anomalies or mixed
anomalies between emergent and exact symmetries. Formally, this means that the low-energy
effective theory with background gauge fields turned on violates gauge invariance by a phase
that local counterterms cannot remove. However, this phase can be canceled by an SPT state
in one higher dimension through anomaly-inflow, allowing ’t Hooft anomalies to be character-
ized by SPTs. In this section, we investigate the ’t Hooft anomalies affiliated with the emergent
symmetry S we have been discussing.

5.1 Mixed anomalies

The fact that G homotopy defects carry S symmetry charge suggests there is a mixed ’t Hooft
anomaly between G and S [162]. Instead of striving for a rigorous understanding with general
S, we conjecture that this is indeed always true. The (D+ 1)-dimensional SPT characterizing
this mixed anomaly can be constructed by proliferating “decorated defects” [55,163–165], par-
ticularly S homotopy defects consistently decorated by G SPTs. We will support our conjecture
for general S using physical reasoning and by considering examples.

A primary motivation for our conjecture is a physical consequence of it. Due to anomaly
matching, a mixed ’t Hooft anomaly between G and S prevents the ground state from being
trivial whenever both G and S exist. This obstruction exists whenever S can emerge. There-
fore, the ground state cannot be trivial whenever there are gapped homotopy defects. This is,

12The K →∞ limit is completely hedgehog-free. This can alternatively be achieved using a 1-cochain Lagrange
multiplier that sets (dn)i jkl = 0, as is done in generalized Villain models [111].
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in fact, consistent with the widely believed folklore that to transition from an ordered phase to
the trivial disordered phase, one must proliferate all flavors of homotopy defects [166–171].
Indeed, proliferating all of the homotopy defects would prevent S from ever emerging, de-
stroying any ’t Hooft anomalies involving S and removing the obstruction.

The nature of the defect-suppressed disordered phase transition discussed in Sec. 4 pro-
vides additional evidence supporting this conjecture. It is a direct transition between two

distinct SSB patterns, one where G
ssb
−→ H and S is unbroken and another where G is unbro-

ken but S is (see Fig. 3). The transition from the defect-suppressed disordered phase to the
ordered phase is driven by proliferating the S homotopy defects. However, proliferating these

homotopy defects must also condense G symmetry charges to ensure G
ssb
−→ H, so the S ho-

motopy defects must be decorated by G symmetry charges. When S is an invertible 0-form
symmetry and the transition is an ordinary DQCP, the decoration is a manifestation of a mixed
anomaly between the symmetries [172–176]. It is natural to expect that when S is a gen-
eralized symmetry, this decoration remains a manifestation of a mixed anomaly between S
and G.

Let us now consider a simple scenario where the microscopic symmetry group G is a Lie
group and S describes a finite (D− 2)-form symmetry. The codimension 2 G homotopy defects
charged under S are trivialized in the eO presentation by taking eG to be the universal cover of
G. When eO transforms in a finite-dimensional irreducible unitary representation of eG, which
corresponds to an irreducible projective representation of G [177], it carries fractional G sym-
metry charge [148,178,179]. This also can apply for a continuous (D− 3)-form symmetry, as
we saw in Sec. 4.2. In both of these cases, the S homotopy defects—the defects that prolif-
erate to restore S—are Wilson lines in the eO presentation. Since the Wilson lines can end on
eO, they too carry fractional G symmetry charge, which is a manifestation of a mixed ’t Hooft
anomaly between G and S [180–183].

The examples in Sec 4 with G = SO(3) all had mixed anomalies that manifested them-
selves as symmetry fractionalization. Indeed, since eO transformed under the fundamental
representation of eG = SU(2), The Wilson lines carried spin 1/2—fractional SO(3) symmetry
charge.

Another general scenario is when S is a continuous symmetry such that it has a conserved
Noether current. A sufficient, but not necessary, condition to diagnose a mixed anomaly be-
tween G and S is through a particular violation of the current conservation law in the presence
of G background fields. For U(1) higher-form symmetries, this Noether current will be the
topological currents J top discussed in Sec. 3.1. In this case, it was shown by Ref. [92] that a
general class of mixed anomalies between G and the U(1) higher-form symmetries exists that
manifest in violations of d∗ J top = 0.

We now consider some simple examples of the emergent mixed ’t Hooft anomaly in ordered
phases for D = 4. We’ll restrict to examples where S is an invertible symmetry so the SPT that
characterizes the mixed anomaly can be easily discussed.

5.1.1 ZN ferromagnet

Let us first consider a ZN ferromagnet, an ordered phase where ZN
ssb
−→ 1. There are codimen-

sion 1 homotopy defects classified by ZN and, in D = 4, an emergent Z(3)N symmetry in the

ground state subspace. Since Z(3)N cannot spontaneously break in D = 4, there is no defect-
suppressed disordered phase.

The ground state subspace is described by the topological field theory

S =
2π i
N

∫

M4

b ∪ dφ , (42)
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whereM4 is a triangulation of spacetime, φ is a ZN -valued 0-cochain, ∪ is the cup product, d
is the simplicial codifferential, and b is a ZN -valued 3-cochain. The microscopic ZN symmetry
is generated by the topological defect

T3(Σ3) = e
2π i

N

∑

(i jkl)∈Σ3
bi jkl , (43)

where Σ3 is a 3-cycle, and the emergent Z(3)N symmetry is generated by the local topological
defect

T0(i) = e
2π i

N φi . (44)

T0 supported on a 0-sphere T0(S0) = e
2π i

N

∑

i∈S0 φi detects the codimension 1 homotopy defects.
It equals one in their absence, which signals that the ZN symmetry is spontaneously broken.

It is well known that the ZN and Z(3)N symmetries in (42) realize a mixed ’t Hooft
anomaly [62,66,88]. A manifestation of this anomaly is seen in the correlation function

〈T3(Σ3)T0(S
0)〉= e

2π i
N link(Σ3,S0) . (45)

Going to five-dimensional spacetimeM5 and turning on background ZN and Z(3)N gauge fields
A(1) ∈ H1(M5,ZN ) and B(4) ∈ H4(M5;ZN ), the anomaly is characterized by the SPT

SSPT =
2π i
N

∫

M5

A(1) ∪ B(4) . (46)

It is straightforward to generalize this to the SSB patternZ(p)N
ssb
−→ 1 in D-dimensional space-

time. The emergent symmetry is now Z(D−p−1)
N and the low-energy effective theory has the

same form as Eq. (42), but with φ and b replaced by ZN -valued p and (D− p− 1)-cochains,
respectively. There is still a mixed ’t Hooft anomaly, which is characterized by a topological
action like Eq. (46) but with A and B now ZN (p+ 1) and (D− p)-cocycles, respectively.

5.1.2 Superfluid

A bosonic superfluid is an ordered phase where U(1)
ssb
−→ 1. The order parameter manifold is

M= S1, so in D = 4 there codimension 2 homotopy defects classified by Z and an emergent
U(1)(2) symmetry. Since U(1)(2) cannot spontaneously break in D = 4, there is no defect-
suppressed disordered phase.

The ordered phase at long wavelengths is described by the S1 nonlinear sigma model
(NLSM)

S =
1

2g2

∫

M4

dO ∧ ∗ dO , (47)

where O : M4→ R/2πZ. The Noether current of the microscopic U(1) symmetry is
∗ j = 1

g2 ∗ dO, so the U(1) symmetry is generated by the topological defect

T (α)3 (M) = e
iα
g2

∫

M ∗ dO
. (48)

The topological defect line that generates the emergent U(1)(2) symmetry is

T (β)1 (C) = e
iβ
2π

∫

C dO , (49)

which detects codimension 2 vortices linking with C .
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It is well known that the U(1) and U(1)(2) symmetries form a mixed anomaly [63,67,69,
88,92,184]. A manifestation of it is in the correlation function

〈T (α)3 (M)T
(β)
1 (C)〉= e

iαβ
2π link(M ,∂ C) . (50)

Going to 5-dimensional spacetime M5 and turning on U(1) and U(1)(2) background gauge
fields A(1) and B(3), the anomaly is characterized by the SPT

SSPT = i

∫

M5

B(3) ∧
dA(1)

2π
. (51)

This action reveals that the anomaly can be detected by turning on A(1) and observing that the
U(1)(2) symmetry’s Noether current is no longer conserved and violated by ∗ dA(1)

2π .

It is again straightforward to generalize this to U(1)(p)
ssb
−→ 1 in D-dimensions. O is re-

placed with a p-form U(1) gauge field, causing the S1 NLSM (47) to become p-form Maxwell
theory. The SPT takes the same form as Eq. (51), but with A and B now (p+ 1)-form and
(D− p− 1)-form fields, respectively.

5.1.3 Isotropic ferromagnet

An isotropic ferromagnet in D = 4 is an ordered phase with the SSB pattern SO(3)
ssb
−→ U(1),

which we considered in Sec. 4.2. Its order parameter manifold is M= S2, so its homotopy
defects are hedgehogs and there is an emergent U(1)(1) symmetry. At long wavelength, it is
described by the S2 NLSM

S =
1

2g2

∫

M4

dO ∧ ∗ dO , (52)

where O : M4→ S2. It is convenient to parametrize S2 using the unit vector n ∈ R3 and con-
sider the O(3) sigma model

S =
1

2g2

∫

M4

d4 x |∇n|2 . (53)

The topological defect surface generating the U(1)(1) symmetry is

T (α)2 (Σ2) = e
iα
8π

∫

Σ2
dSi j ε

i jkln·(∂kn×∂ln) . (54)

As mentioned towards the beginning of this section, the U(1)(1) symmetry’s homotopy de-
fects carry fractional SO(3) symmetry charge, so there is a mixed anomaly between the SO(3)
and U(1)(1) symmetries. Going to a triangulated 5-dimensional spacetime M5 and turning
on background SO(3) and Z(1)2 ⊂ U(1)(1) gauge fields A(1) and B(2) ∈ H2(M5;Z2), respectively,
this symmetry fractionalization anomaly is charactered by the SPT [181]

SSPT = iπ

∫

M5

ω2(A
(1))∪ β(B(2)) , (55)

where ω2(A(1)) ∈ H2(M5,Z2) is the 2nd Stiefel-Whitney class of the SO(3) bundle and
β(B(2)) ∈ H3(M5,Z2) is the image of Bockstein homomorphism

β : H2 (M5,Z2)→ H3 (M5,Z2) . (56)

Introducing the lift eB(2) of B(2) to Z4 coefficients that satisfies B(2) = eB(2) mod 2, it has the
explicit form β(B(2)) = 1

2 deB(2). A “decorated defect” construction for this SPT was discussed
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in Refs. [54,55]. Furthermore, given the form of SSPT, this mixed anomaly would not manifest
by violating a Noether’s current conservation law.

Generalizing to arbitrary D-dimensional spacetime is straightforward. The only change
is that the emergent symmetry would be U(1)(D−3), so the background field B of the Z(D−3)

2
subgroup will be a representative of HD−2(MD+1,Z2). Consequently, in SSPT, the Bockstein
homomorphism would be modified to β : HD−2 (MD+1,Z2)→ HD−1 (MD+1,Z2).

6 Discussion

In this paper, we explored the rich landscape of generalized symmetries that emerge in generic
ordered phases. This provides a general physical setting relevant to numerous fields in physics
in which generalized symmetries appear and have physical consequences. We explored the
categorical description of these symmetries in Sec. 3 and discussed their spontaneous sym-
metry breaking in Sec. 4 and their ’t Hooft anomalies in Sec. 5. Here we summarize some
interesting future directions.

While we investigated the structure of the emergent symmetry S, we did not generally
consider the mathematical structure formed by the microscopic symmetry group G and S.
The only instance in which this was considered was in Sec. 3.4 where we found that when S
was invertible and transformed codimension one homotopy defects, G and S formed a split
higher-group. It is natural to wonder if, for general invertible S, the emergent symmetry can
mix with G to form a nontrivial higher group. This was studied in Ref. [92] for continuous
invertible S, and it would be interesting to investigate finite invertible S as well. Furthermore,
it would also be interesting to consider the general case where S can be non-invertible.

Throughout the paper, we assumed that the microscopic symmetry G was an internal sym-
metry. However, it would be interesting to consider spacetime symmetries. In a crystal, where
continuous spatial symmetries are spontaneously broken to a discrete subgroup, the homo-
topy defects are known to have restricted mobility [6] (i.e., they are subdimensional parti-
cles [185, 186]). For example, in two-dimensional space, dislocations and disclinations are
lineons and fractons, respectively, due to a local dipole moment conservation law [187–190].
Therefore, the emergent symmetry S would be a dipole-like higher-form symmetry [191,192].
It would be interesting to see if there are crystals, or other ordered phases, with emergent mul-
tipole symmetries [193–195] or subsystem symmetries.

Furthermore, this paper focused on conventional ordered phases whose low-energy phases
are described by a nonlinear sigma model without any topological terms. It would be inter-
esting to explore these symmetries when the related nonlinear sigma model has a nontrivial
θ term or Wess–Zumino–Witten (WZW) term. The former can affect the interplay of the sym-
metries we have considered with other symmetries in the theory, and the latter can change the
symmetry’s higher-categorical structure entirely. Preliminary discussion for how WZW terms
affect these symmetries can be found in Ref. [104], and we leave a more thorough investigation
to future work.

Lastly, as noted in Sec. 4, the transition between the ordered and defect-suppressed dis-
ordered phases may be a deconfined quantum critical point (DQCP) involving generalized
symmetries. Studying this phase transition and DQCPs that spontaneously break only gen-
eralized symmetries in greater detail would be interesting. For example, whereas DQCPs of
ordinary symmetries can be generally understood using WZW terms [176,196,197], it would
be interesting to understand possible analogs for generalized symmetries.

Note added. Upon completion of this work, we noticed a recent independent work [198]
in which the mathematical structure of the generalized symmetries associated with homotopy
defects was also studied. Where our results overlap, they agree.
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A Based and free homotopy classes

In Sec. 2.1, we discussed the classification of homotopy defects in SSB phases. While homotopy
defects are classified by [Σk,M]f, the free homotopy classes of based maps Σk→M, it is
convenient to consider the based homotopy classes [Σk,M]b. Here we will briefly compare
these two types of homotopy. We refer the reader to Sec. 1.4 of Ref. [199] for a more rigorous
discussion.

A map f : A→ B is a based map if A and B are based spaces and f maps the basepoint
of A to the basepoint of B. Therefore, if the basepoints of A and B are a and b, respectively,
then f (a) = b. Using the based map f , we obtain a homotopy h : A× I → B, and letting t
parametrize I , since f is a based map h(a, t = 0) = h(a, t = 1) = b. However, h need not map
a to b for 0< t < 1. If it does, then h is a based homotopy, and if it doesn’t, then it is a free
homotopy.

Two maps f1 : A→ B and f2 : A→ B that are freely homotopic may not be based homotopic.
Put differently, letting [ fi]f ∈ [A, B]f and [ fi]b ∈ [A, B]b, it is possible that [ f1]f = [ f2]f while
[ f1]b ̸= [ f2]b. Therefore, the number of based homotopy classes is always greater than or
equal to the number of free homotopy classes. A simple example of this is the based map
S1→ S1 ∨ S1, as shown in Fig. 5.

In the context of homotopy defects detected by Σk ≃ Sk, letting A= Sk and B =M, this
means that the set of free homotopy classes [Sk,M]f is a subset of the based homotopy classes
πk(M). So, the kth homotopy group of M does not directly classify codimension k+ 1 ho-
motopy defects [95].

Free homotopy

(a)

(c)

(b)

Figure 5: The based maps γ : S1→ S1 ∨ S1 in (a) and (b) are not based homotopic,
(c) but are freely homotopic. Under the free homotopy, the base point of S1 forms a
loop based at the base point of S1 ∨ S1.
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T (a0)
D−1

T
(b1)
D−2

T (b0)
D−1

T
(a1)
D−2

T
(a 2)
D−3

T
(a 3)
D−4

T
(b2)
D−3

Figure 6: Shows the layering structure formed by codimension 1, 2, 3, and 4 topo-
logical defects.

Free homotopy classes of f : A→ B can be found from the based homotopy classes of f .
Indeed, under a free homotopy h : A× I → B between two based maps f1 and f2 that are not
based homotopic, the base point a ∈ A forms a loop based at the base point b ∈ B (e.g., Fig. 5c).
In terms of the free homotopy h, it implies that h(a, t) = α(t), and since h is a homotopy, α
depends only on its class [α]b ∈ π1(B, b). This defines an action of π1(B) on [A, B]b that
connects freely homotopic elements of [A, B]b, and provides a one to one correspondence

[A, B]b/π1(B)↔ [A, B]f . (A.1)

Setting A= Sk and B =M yields Eq. (7) in the main text.
The action of π1(B) on [A, B]b is defined by Eq. (A.1), but it does not have a general closed

expression. However, when A= S1, the action of π1(B) is easy to understand. Consider based
loops γ1 : S1→ B and γ2 : S1→ B such that [γ1]f = [γ2]f but [γ1]b ̸= [γ2]b. Furthermore, sup-
pose that under the free homotopy between γ1 and γ2, the S1 base point’s path forms the
loop α ∈ π1(B). For instance, γ1 can be the loop in Fig. 5a, γ2 in Fig. 5b, and α in Fig. 5c.
While γ1 and γ2 are not be based homotopic, γ1 and α−1 ◦ γ2 ◦α generally are. Therefore,
[γ1]b = [α−1 ◦ γ2 ◦α]b, which letting · denote the product in the fundamental group π1(B),
[γ1]b = [α−1]b ·[γ2]b ·[α−1]−1

b . So, the action of π1(B) on [S1, B]b is given by conjugation.
This of course means that the free homotopy classes of S1→ B are the same as the conjugacy
classes of π1(B)

B The symmetry category

As discussed in Sec. 1, the modern perspective of symmetries in a many-body system is that
they correspond to topological defects [7] (see footnote 1). For invertible 0-form symmetries,
the mathematical structure that describes their topological defects fusion is a group. A natural
question now arises: what is the mathematical structure that encodes the topological defects’
fusion rules Eq. (2) and takes the role of the symmetry group G?

The expectation is that these properties in D-dimensional spacetime can be captured by a
(D− 1)-category S, which we call the symmetry category since it replaces the symmetry group.
Using a (D− 1)-category to describe generalized symmetries is very natural because topolog-
ical defects of different dimensions form a layering structure, as shown in Fig. 6. Topological
defects of different dimension are encoded in S as follows:

1. The objects of S are codimension 1 topological defects {T (a0)
D−1} and generate the trans-

formations of 0-form symmetries.
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2. The 1-morphisms Hom(T (a0)
D−1, T (b0)

D−1) are topological interfaces between T (a0)
D−1 and T (b0)

D−1.

Therefore, they are codimension 2 topological defects {T (a1)
D−2} and Hom(T (1)D−1, T (1)D−1) gen-

erate 1-form symmetry transformations.

3. The 2-morphisms are topological interfaces between two codimension 2 topological de-
fects T (a,b;A)

D−2 and T (a,b;B)
D−2 in Hom(T (a)D−1, T (b)D−1). Therefore, they are codimension 3 topo-

logical defects {T (a2)
D−3} and Hom(T (1,1;1)

D−2 , T (1,1;1)
D−2 ) generate 2-form symmetry transforma-

tions.

4. One can continue this iteratively for n-morphisms (n≤ D− 1), which are codimension
n+ 1 topological defects and generate to n-form symmetries.

Including the fusion property Eq. (2) makes S into a monodial (D− 1)-category. In fact,
for general discrete symmetries, S is a multi-tensor (D− 1)-category [22, 23, 26, 27, 31]. If
there are only finite symmetries, S reduces to a multi-fusion (D− 1)-category. Furthermore, if
there are no (D− 1)-form symmetries, S reduces to a tensor (D− 1)-category, or if there are
only finite symmetries, then a fusion (D− 1)-category.

The symmetry category of an anomaly-free invertible 0-form symmetry described by the
finite group G is S = (D− 1)-VecG . This is the (D− 1)-category formed by G-graded (D− 1)-
vector spaces and includes two types of topological defects:

1. Codimension 1 invertible topological defects {T (g)D−1}, where g ∈ G, that generate the G
0-form symmetry. These are the objects of (D− 1)-VecG .

2. Trivial topological defects of all codimensions larger than 1, which correspond to the
n-morphisms (n> 0) of (D− 1)-VecG .

For a 0-form G symmetry with a ’t Hooft anomaly classified by [ω] ∈ HD+1(BG, U(1)), the
symmetry category is S = (D− 1)-VecωG , which is the (D− 1)-category formed by G-graded
(D− 1)-vector spaces twisted by the (D+ 1)-cocycle ω.

The most general invertible symmetry is described by a D-group G(D), which contains r-
form G(r) symmetries of all degrees 0≤ r ≤ D− 1. When all G(r) are finite, and the symmetry
is anomaly-free, the symmetry category is (D− 1)-VecG(D) and includes two types of topological
defects:

1. Codimension (r + 1) invertible topological defects {T (gr )
D−r−1}, where gr ∈ G(r), that gen-

erate the G(r) r-form symmetries.

2. Topological defects, of various codimension obtained by higher-gauging [133] the G(r)

symmetries. These topological defects are called condensation defects and can be in-
vertible or non-invertible.

If there is a ’t Hooft anomaly, the symmetry category is instead given by S = (D − 1)-VecωG(D)
where [ω] ∈ HD+1(BG(D), U(1)).

Another commonly encountered symmetry category is S = (D− 1)-Rep(G), which is a
(D− 1)-category formed by the (D− 1)-representations of a finite group G. It arises, for in-
stance, by gauging a (D− 1)-VecG to produce a new theory with a (D− 1)-Rep(G) symme-
try [18, 22, 27]. As a symmetry category, (D− 1)-Rep(G) includes two types of topological
defects:

1. One dimensional topological defects {T (π)1 }, where π ∈ Rep(G), which generates a

Rep(G) (D− 2)-form symmetry. When G is Abelian, {T (π)1 } are invertible and described
by the Pontryagin dual of G. When G is non-Abelian, they are non-invertible.
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2. Condensation defects obtained by higher-gauging {T (π)1 }.

More generally, if one gauges a finite D-group G(D) symmetry, the new theory has a symmetry
described by the (D− 1)-representation of the D-group, which is captured by
S = (D− 1)-Rep(G(D)).

C The SymTFT

It is fruitful to describe a symmetry in a way that separates its symmetry category S from the
D-dimensional physical theory enjoying the symmetry. For invertible symmetries, this can be
accomplished using the representation theory of groups. What about generalized symmetries?
When the symmetry is finite (i.e., S is a multi-fusion (D− 1)-category), a useful way to do so
is using the symmetry topological field theory (SymTFT) Z(S) associated with the symmetry
S [22,23,71,113–131].

Z(S) is a TFT in (D+ 1)-dimensional spacetime MD × I with special boundary conditions
on ∂ I . There is the topological boundaryB sym that provides a physical realization of the data
in S, independent of the physical theory, and the boundary Bphys which is not necessarily
topological and depends on the details of the theory. Z(S) is defined by the requirement that
it has a topological boundaryB sym whose topological defects form the symmetry category S.
It is related to the physical theory by an interval compactification, as shown in Fig. 7.

Since Z(S) has a topological boundary condition described by S, its bulk topological de-
fects are described by the Drinfeld center Z(S) of S [122, 123]. The topological defects in
Z(S) correspond to the topological defects and charged objects of S. Only upon imposing the
correct topological boundary conditionB sym can one distinguish which is which. The topolog-
ical defects on theB sym boundary of Z(S) (e.g., T s

1 in Fig. 7) are described by S and become
the topological defects of the physical theory after interval compactification. The topologi-
cal defects that can end on the B sym and Bphys boundaries (e.g., T c

1 in Fig. 7) become the
operators charged under S in the physical theory.

By construction, for two physically distinct theories both with an S symmetry, their symme-
tries are both described by the same SymTFT Z(S) with the sameB sym boundary but different
Bphys boundaries. That said, two different symmetries S1 and S2 can also have the same
SymTFT Z(S) if Z(S1) = Z(S2). While their bulks are the same, their topological boundaries
B sym

S1
andB sym

S2
of Z(S) would be different. In fact, if two symmetries have the same SymTFT,

they are related under gauging [22, 23], and therefore, changing the topological boundary
conditions corresponds to gauging the symmetry.

⟶
ℬ sym ℬ phys

Ts1 Ts1

Tc1 O

M2 × I M2

Interval

Compactification

Figure 7: Upon interval compactification, (left) the symTFT Z(S) becomes (right)
the physical theory with S symmetry. The topological defect T s

1 ∈ Z(S) is a topolog-
ical defect on B sym, so T s

1 ∈ S. The topological defect T c
1 ∈ Z(S) ends on B sym, so

T c
1 ̸∈ S and instead becomes O after interval compactification and carries S symme-

try charge.
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There is a general way to construct Z(S) when S describes an invertible symmetry. As
discussed in appendix B, the symmetry category of a general invertible finite symmetry is
S = (D− 1)-VecωG(D) where [ω] ∈ HD+1(BG(D),R/Z). To construct Z(S), we first consider the
(D+ 1)-dimensional S-SPT TG(D) SPT described by

ZG(D) SPT = e2π i
∫

MD+1
A∗ω , (C.1)

where MD+1 is a closed spacetime and the background field A belongs to a homotopy class
[MD+1, BG(D)]. Of course, if S is anomaly-free (i.e., [ω] = [0]), this is the trivial G(D) SPT.
The SymTFT is found by gauging the SPT ZG(D) SPT (making A dynamical):

Z(S) = TG(D) SPT/G(D) . (C.2)

The topological boundary B sym for S will generally be the Dirichlet boundary condition for
the G(D) gauge fields.

When G(D) is a direct product of Abelian finite r-form symmetries

G(D) =
D−1
∏

r=0

G(r) , (C.3)

with G(r) = ZNr
, we can find a Lagrangian description of Eq. (C.2). In this simple case, the

G(D) gauge fields are a collection of G(r) (r + 1)-cocycles. The SymTFT is the generalized
Dijkgraaf-Witten theory

ZsymTFT =
∑

{ar+1}

e2π i
∫

MD+1
ω(a1,··· ,aD) , (C.4)

where an ∈ Hn(MD+1, G(n−1)). It is convenient to rewrite this as

ZsymTFT =
∑

{cr+1,bD−r−1}

e2π i
∫

MD+1

∑

r
cr+1∪ dbD−r−1

Nr
+ω(c1,··· ,cD) , (C.5)

where the sum is over cn ∈ Cn(MD+1, G(n−1)) and bn ∈ Cn(MD+1, Ĝ(D−n−1)), with Ĝ(r) is the
Pontryagin dual of G(r), and d and ∪ are the simplicial codifferential and cup product, respec-
tively. The equations of motion are

2π
Nr

dcr+1 = 0 , (C.6)

dbD−r−1 = Nr
δ

δcr+1
ω(c1, · · · , cr+1, · · · , cD) . (C.7)

We now consider spacetime with a boundary and set MD+1 = MD × I with the left and
right boundary conditions B sym and Bphys, respectively. As mentioned, the B sym describing
S = (D− 1)-VecωG(D) will satisfy Dirichlet boundary conditions for cr+1 and Neumann bound-
ary conditions for bD−r−1. This means that cr+1|B sym is a background field while bD−r−1|B sym

remains dynamical. Notice that the boundary where cr+1 is Neumann while bD−r−1 is Dirichlet
is generally incompatible with the equations of motion due toω. This is a manifestation of the
’t Hooft anomaly characterized by [ω] that prevents the anomalous parts of G(D) from being
gauged.

When the symmetry is anomaly-free, the simplest topological defects of the symTFT are

T (c)r+1(Mr+1) = e
2π
Nr

i
∫

Mr+1
cr+1 , (C.8)

T (b)D−r−1(MD−r−1) = e
2π
Nr

i
∫

MD−r−1
bD−r−1 , (C.9)
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and they satisfy

〈T (c)r+1T (b)D−r−1〉= e
2π i
Nr

link(Mr+1,MD−r−1) . (C.10)

T (c)r+1 can end on the aforementioned B sym boundary, while T (b)D−r−1 remains dynamical topo-
logical defects on this boundary. Thus, the symmetry category is formed by the topological
defects T (b)D−r−1 and their condensation defects. On this boundary, T (b)D−r−1 transforms the ends

of T (c)r+1 according to Eq. (C.10), and therefore generates the anomaly-free version of the sym-
metry Eq. (C.3).
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