e SciPost Phys. 17, 081 (2024)

A portable parton-level event generator
for the high-luminosity LHC

Enrico Bothmann!*, Taylor Childers?, Walter Giele3, Stefan Hoche?,
Joshua Isaacson® and Max Knobbe!

1 Institut fiir Theoretische Physik, Georg-August-Universitdt Gottingen,
37077 Gottingen, Germany
2 Argonne National Laboratory, Lemont, IL, 60439, USA
3 Fermi National Accelerator Laboratory, Batavia, IL. 60510, USA

* enrico.bothmann@uni-goettingen.de

Abstract

The rapid deployment of computing hardware different from the traditional CPU+RAM
model in data centers around the world mandates a change in the design of event gen-
erators for the Large Hadron Collider, in order to provide economically and ecologically
sustainable simulations for the high-luminosity era of the LHC. Parton-level event gen-
eration is one of the most computationally demanding parts of the simulation and is
therefore a prime target for improvements. We present a production-ready leading-order
parton-level event generation framework capable of utilizing most modern hardware and
discuss its performance in the standard candle processes of vector boson and top-quark
pair production with up to five additional jets.

Copyright E. Bothmann et al. Received 01-12-2023 L)
This work is licensed under the Creative Commons Accepted 26-08-2024

Check for

Attribution 4.0 International License. Published 16-09-2024 updates

Published by the SciPost Foundation. doi:10.21468/SciPostPhys.17.3.081

Contents

1

2

Introduction 2

Basic algorithms 3
2.1 Tree-level amplitudes
2.2 Phase-space integration

(92 BNOV)

Event generation framework

3.1 Summation of partonic channels and running coupling
3.2 Helicity integration

3.3 Event data layout and parallel event generation

3.4 Portability solutions

3.5 Event output

O O NN OOy

Validation 10

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081
mailto:enrico.bothmann@uni-goettingen.de
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.17.3.081&domain=pdf&date_stamp=2024-09-16
https://doi.org/10.21468/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

5 Performance 11
5.1 Baseline CPU performance 14
5.2 Performance on different hardware 15
5.3 Scaling to many nodes 17

6 Summary and outlook 18

A Tabulated performance results 19

B Runtime distribution 19

C Parton-level validation 21

D Data layouts and CPU performance 21

E CPU vectorization 24

References 26

1 Introduction

Monte-Carlo simulations of detector events are a cornerstone of high-energy physics [1, 2].
Simulated events are usually fully differential in momentum and flavor space, such that the
same analysis pipeline can be used for both the experimental data and the theoretical pre-
diction. This methodology has enabled precise tests of the Standard Model and searches for
theories beyond it. Traditionally, the computing performance of event simulations has been of
relatively little importance, due to the far greater demands of the subsequent detector simula-
tion. However, the high luminosity of the LHC and the excellent understanding of the ATLAS
and CMS detectors call for ever more precise calculations. This is rapidly leading to a situation
where poor performance of event simulations can become a limiting factor for the success of
experimental analyses [3-5], especially in view of modern approaches to detector simulation
and reconstruction [6-10]. In addition, the impact of LHC computing on climate change must
be considered, and its carbon footprint be kept as low as reasonably achievable [11]. All high-
performance computing systems that are sufficiently large for the needs of the high-luminosity
LHC consist of a mixture of CPU and GPU architectures. Therefore, any first step in minimiz-
ing the carbon footprint of theory predictions will require fully utilizing these systems through
the development of CPU and GPU algorithms. Furthermore, a portable code would allow for
the quick adoption of new more efficient hardware with minimal additional overhead from
validation of the tools.

Alleviating this problem has been a focus of interest recently. Tremendous improvements
of existing code bases have been obtained from improved event generation algorithms and
PDF interpolation routines [12,13]. Phase-space integrators have been equipped with adap-
tive algorithms based on neural networks [14-19] and updated with simple, yet efficient an-
alytic solutions [20]. Negative weights in NLO matching procedures were reduced systemat-
ically [21,22], and analytic calculations have been used to replace numerical methods when
available [23]. Neural network based methods have been devised to construct surrogate ma-
trix elements with improved numerical performance [24-27]. All those developments have in
common that they operate on well-established code bases for the computation of matrix ele-
ments in the traditional CPU+RAM model. At the same time, the deployment of heterogeneous

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

computing systems is steadily accelerated by the increasing need to provide platforms for Al
software. This presents a formidable challenge to the high-energy physics community, with
its rigid code structures and slow-paced development, caused by a persistent lack of human
resources. The Generator Working Group of the HEP Software Foundation and the HEP Cen-
ter for Computational Excellence have therefore both identified the construction of portable
simulation programs as essential for the success of the high-luminosity LHC. Some exploratory
work was performed in [28-31], and first concrete steps towards generic solutions on modern
GPUs have been reported in [32-38].

In this manuscript we will describe the hardware agnostic implementation of a complete
leading-order parton-level event generator for processes that are simulated at high statisti-
cal precision at the LHC, including Z/y+jets, tt+jets, pure jets and multiple heavy quark
production. Delivering such a framework first at leading order is a natural starting point,
and addresses the computationally most expensive components of state-of-the-art multi-jet
merged LHC simulations [13,39]. The most significant obstacle in these computations is the
low unweighting efficiency at high particle multiplicity, combined with exponential scaling
(in the best case) of the integrand [39]. We demonstrate that new algorithms and widely
available modern hardware alleviate this problem to a degree that renders previously highly
challenging computations accessible for everyday analyses. We make the code base available
for public use and provide an interface to a recently completed particle-level event simulation
framework [40], enabling state-of-the art collider phenomenology with our new generator.

This manuscript is organized as follows. Section 2 recalls the main results of previous stud-
ies on matrix-element and phase-space generation and details the extension to a production-
level code base. Section 3 introduces our new simulation framework, which we call PEPPER,!
and discusses the techniques for managing partonic sub-processes, helicity integration, pro-
jection onto leading-color configurations, and other aspects relevant for practical applications.
Section 5 is focused on the computing performance of the new framework, both in comparison
to existing numerical simulations and in comparison between different hardware. Section 6
presents possible future directions of development.

2 Basic algorithms

The computation of tree-level matrix elements and the generation of phase-space points are
the components with the largest footprint in state-of-the-art LHC simulations [13, 39]. We
aim to reduce their evaluation time as much as possible, while also focusing on simplicity,
portability and scalability of the implementation. Reference [32] presented a dedicated study
to find the best algorithms for the computation of all-gluon amplitudes on GPUs. Here we
extend the method to processes including quarks. We also recall the results of Ref. [20], which
presented an efficient concept for phase-space integration easily extensible to GPUs. We make
a few simple changes in the algorithm, which lead to a large increase in efficiency without
complicating the structure of the code or impairing portability.

2.1 Tree-level amplitudes

We use the all-gluon process often discussed in the literature as an example to introduce the
basic concepts of matrix-element computation. A color and spin summed squared n-gluon

IPEPPER is an acronym for Portable Engine for the Production of Parton-level Event Records.
The PEPPER source code is available at https://gitlab.com/spice-mc/pepper.

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081
https://gitlab.com/spice-mc/pepper

e SciPost Phys. 17, 081 (2024)

tree-level amplitude is defined as

A= ST Aty p) (A2, p)) [[D€k (0, X (0,),

aj...a, i=1 A
(D

where each gluon with label i is characterized by its momentum p;, its color a; and its helicity
A; = £. The squared n-gluon amplitude then takes the form

A,)P = Z ST Ay, p) (Ao pa)) @

7La1 -an

where the A% are the chirality-dependent scattering amplitudes obtained by contracting .A*
with the helicity eigenstates eﬁ of the external gluons. The treatment of color in this calculation
is a complex problem. The most promising approach for LHC physics at low to medium jet
multiplicity is to explicitly sum over color states using a color-decomposition with a minimal
basis [32]. In the pure gluon case, this basis is given by the adjoint representation [41-43]

Aalll 2(pl;--.1pn)= Z (Faoz~"Faan_l)alanAllmln(pl;pozj--.7p0'n,1apn)) (3)

G€ES,_o

where Fy = if abe and £ab¢ are the SU(3) structure constants. The functions A are called
color-ordered or partial amplitudes and are stripped of all color information, which is now
contained entirely in the prefactor. If the amplitudes carry helicity labels, they are often also
referred to as helicity amplitudes. The multi-index & runs over all permutations S,,_, of the
(n — 2) gluon indices 2,...,n — 1. The color basis thus defined is minimal and has (n — 2)!
elements.

For amplitudes involving not only gluons but also quarks, the minimal color basis is given
in terms of Dyck words [44,45]. A Dyck word is a set of opening and closing brackets, such
that the number of opening brackets is always larger or equal to the number of closing ones
for any subset starting at the beginning of the Dyck word. For example for four characters and
one type of bracket, there are two Dyck words, (()) and ()(). In the context of QCD amplitude
computations, every opening bracket represents a quark and every closing one an anti-quark.
Different types of brackets can appear and indicate differently flavored quarks. Similar to the
gluon case in Eq. (3), one may keep two parton indices fixed throughout the computation and
permute all others, as long as the permutation forms a valid Dyck word. The number of partial
amplitudes in this basis is minimal. For n particles and k distinct quark pairs, it is given by
(n—2)!/k!, which is a generalization of the minimal all-gluon (k = 0) result. The color factors
needed for the computations can be evaluated using the algorithm described in [46,47].

There are various algorithms to compute the partial amplitudes A(ps,...,p,) in Eq. (3)
(we now omit helicity labels for brevity). The numerical efficiency of the most promising
approaches has been compared in [32,48-50]. It was found that, for generic helicity configu-
rations and arbitrary particle multiplicity, the Berends-Giele recursive relations [51-53] offer
the best performance. We therefore choose this method for our new matrix-element generator.
The basic objects in the Berends—Giele approach are off-shell currents, J(1,...,n). In the case
of an all-gluon amplitude, they are defined as

102, = 5 {Zv Mo Prsrn (Lo M (k+ 1,1,)
1,n k=1

L @
Z Z VP, (1. ,j)JK(j+1,---J<)Ja(’<+1""’”)}’
=1k=j

4

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

where the p; denote the momenta of the gluons, p; ; = p; +...+ p; and Vg"KA and VZP “} are
the color-ordered three- and four-gluon vertices:

. 8
v,"Mp,q) =i 7%(g'p—q)"+g""(2q+p)—g™2p+q)),
2 5)
V4vpr<7t =i g?s(zgwcgpk _gvpgkk _gvlgpk))

The external particle currents, J,,(i), are given by the helicity eigenstates, €,(p;). The com-
plete amplitude A(p;,...,p,) is obtained by putting the (n — 1)-particle off-shell current
Ju(1,...,n—1) on-shell and contracting it with the external polarization J,,(n):

A(p1,---,pp) =Ju(m)p? JH(1,...,n—1). (6)

A major advantage of this formulation of the calculation is that it can straightforwardly be ex-
tended to processes including massless and massive quarks, as well as to calculations involving
non-QCD particles. The external currents for fermions are given by spinors, and the three- and
four-particle vertices are fully determined by the Standard Model interactions.

2.2 Phase-space integration

The differential phase space element for an n-particle final state at a hadron collider with fixed

incoming momenta p, and p; and outgoing momenta {p;,...,p,} is given by [54]
d’p; 45(4) S
— L p— .
d®,(a,b;1,...,n)= l_[@n) 2F, (2m)*o6 (pa+pb ;pl). 7
For processes without s-channel resonances, it is convenient to parameterize Eq. (7) by
on [17 1 do,
dxydx; &, (a,bs1,...,n) = =~ []_[e dp? Lyt] dy,, ©

where, p; |, y; and ¢; are the transverse momentum, rapidity and azimuthal angle of momen-
tum i in the laboratory frame, and where x, and x; are the Bjgrken variables of the incoming
partons. In processes with unambiguous s-channel topologies, such as Drell-Yan lepton pair
production, one may instead use the strategy of [20] and parameterize the decay of the reso-
nance using the well-known two-body decay formula

1 /(P1p2)?*—pip;

16n2 (p; +p2)?

de,({1,2};1,2) = dcos 0V dg 17, 9
which, as written here, has been evaluated in the center-of-mass frame of the decaying particle.
The t- and s-channel building blocks in Egs. (8) and (9) can be combined using the standard
factorization formula [55]

d®,(a,b;1,...,n)=d®,_,,1(a,b;{1,..m},m+1,...,n) w de,,({1,..,m};1,...,m).
i (10)
We will refer to this minimal integration technique as the basic CHILI method. It is both simple
to implement, and reasonably efficient due to the compact form of the compute kernels [20].

The latter aspect is especially important in the context of code portability and maintenance.
Compared to the first implementation in Ref. [20], we apply two improvements which in-
crease the integration efficiency significantly: 1) In the azimuthal angle integration of Eq. (8),
the sum of previously generated momenta serves to define ¢ = 0. 2) Assuming that particles 1

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

through m are subject to transverse momentum cuts, and assuming n final-state particles over-
all, we generate the transverse momenta of the n —m particles not subject to cuts according
to a peaked distribution given by 1/(p; | + p, o), where p| o = | > Bi.1|/(n —m). We also
use > i—1 Di,1 to define ¢ = 0 for the corresponding azimuthal angle integration.

3 Event generation framework

The construction of a production-ready matrix element generator requires many design choices
beyond the basic matrix element and phase space calculation routines discussed in Sec. 2. In
most experimental analyses, flavors are not resolved inside jets, and the sum over partons can
be performed with the help of symmetries among the QCD amplitudes. In addition, an efficient
strategy must be found to perform helicity sums. For a parallelized code such as PEPPER, two
additional questions must be addressed: how to arrange the event data for efficient calcula-
tions on massively parallel architectures, and how to write the generated parton-level events to
persistent storage without unnecessarily limiting the data transfer rate. We will discuss these
aspects in the following.

3.1 Summation of partonic channels and running coupling

In the PEPPER event generator, the partonic processes which contribute to the hadronic cross
section are arranged into groups, such that all processes within a group have the same partonic
matrix element. For any given phase-space point, the matrix element squared is evaluated only
once, and then multiplied by the running strong coupling times the sum over the product of
partonic fluxes, given by a (uﬁ) Z{I’J}fi(xl,u%)fj(xz,u%) Here, the indices {i,j} run over
all incoming parton pairs that contribute to the group, and the ,uR are the renormalization
and the factorization scale, respectively, which can be evaluated dynarnlcally in PEPPER, i.e. as
various functions of the external momenta. The strong coupling a, and the PDF values f; are
evaluated using a modified version of the LHAPDF v6.5.4 library [56], that supports parallel
evaluation on various architectures via CUDA and Kokkos; this will be further discussed in
Sec. 5.

As an example, for the pp — tt + j process, considering all quarks but the top quark
to be massless, three partonic subprocess groups are identified: gqg — ttg (5 subprocesses:
dd — ttg, uit — ttg, ...), gg — ttq (10 subprocesses: gd — ttd, gd — ttd, gu — ttu,
gl — ttii ...), and gg — ttg (1 subprocess). When helicities are explicitly summed over,
each group of partonic subprocesses contributes one channel to the multi-channel Monte Carlo
used to handle the group. When helicities are Monte-Carlo sampled, one channel is used for
each non-vanishing helicity configuration.

In order to produce events with unambiguous flavour structure, which is necessary for
further simulation steps such as parton showering and hadronization, one of the partonic
subprocesses of the group is selected probabilistically according to its relative contribution to
the sum over the product of partonic fluxes.

3.2 Helicity integration

The PEPPER event generator provides two options to perform the helicity sum in Eq. (2). One
is to explicitly sum over all possible external helicity states, the other is to perform the sum in
a Monte-Carlo fashion. In both cases, exactly vanishing helicity amplitudes are identified at
the time of initialization and removed from the calculation.

The two methods offer different advantages. Summing helicity configurations explicitly
reduces the variance of the integral, but the longer evaluation time can lead to a slower over-

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

all convergence, especially for higher final-state multiplicities. To improve the convergence
when helicity sampling is used, we adjust the selection weights during the initial optimization
phase with a multi-channel approach [57]. This optimization is particularly important in low
multiplicity processes with strong hierarchies among the non-vanishing helicity configurations.

For helicity-summed amplitudes we implement two additional optimizations. Considering
Eg. (6) we observe that a change in the helicity of J,,(n) does not require a recomputation of the
remaining Berends—Giele currents, and we can efficiently calculate two helicity configurations
at once. Furthermore, for pure QCD amplitudes, we make use of their symmetry under the
exchange of all external helicities [58], again reducing the number of independent helicity
states by a factor of two.

3.3 Event data layout and parallel event generation

In contrast to most traditional event generators, which produce only a single event at any
given time, PEPPER generates events in batches, which enables the parallelized evaluation of
all events in a batch on multithreaded architectures. In the first step, all phase-space points
and weights for the event batch are generated. Then the Berends—Giele recursion is run for all
events in the batch to calculate the matrix elements, etc., and finally the accepted events are
aggregated for further processing and output.

To ensure data locality and hence good cache efficiency for this approach, any given prop-
erty of the event is stored contiguously in memory for the entire batch. For example, the
x components of the momenta of a given particle are stored in a single array. This kind of lay-
out is often called a struct-of-arrays (SoA), as opposed to an array-of-structs (AoS) layout, for
which the data of all properties of an individual event would be laid out contiguously instead.

We have tested that the SoA layout is not only required to achieve peak performance on
GPU-like hardware, but also that it does not degrade performance when running serially on a
single CPU thread. We expect this to be the case, given that the code is organised as a pipeline
of relatively simple compute kernels that operate on the common event batch data. Since the
individual kernels are kept simple, they often only operate on a subset of the event data (e.g.
only on the external momenta, or they only update the event weight, etc.) Thus, the SoA
layout allows the CPU to cache locally relevant event data only (instead of caching all data of
a single event, including data for properties that are not being used by a given algorithm).

In App. D, we show CPU results for pp — tt + 3 jets, comparing SoA with AoS perfor-
mance results with different event batch sizes, which is a configurable runtime parameter in
PEPPER. Both layouts profit from increasing the batch size to 10 or 100 events, compared with
processing single-event batches, but the speed-ups are moderate with about 10 %. For more
details, see App. D. We also find that the SoA performance is on-par with the AoS performance.
As expected, we find more significant speed-ups with increased batch size when considering
much simpler processes, such as dd — uil. Here, using a batch size of 100 events yields a
speed-up of about a factor 3 instead, which makes sense given the small amount of data per
event. Also in this case, we find that the SoA layout performs as well as the AoS layout.

The main reason for choosing an SoA layout and batched processing is to parallelize the
generation of the events of an entire batch on many-threaded parallel processing units such
as GPUs, by generating one event per thread. In this case, the contiguous layout of the data
for each event property ensures that also data reading and writing benefits from available
hardware parallelism. Even after this optimization, we find that the algorithm for the matrix
element evaluation described in Sec. 2 is memory-bound rather than compute-bound, i.e. the
bottleneck for the throughput is the speed at which lines of memory can be delivered to/from
the processing units. We address this by reducing the reads/writes as much as possible. For
example, we use the fact that massless spinors can be represented by only two components to
halve the number of reads/writes for such objects.

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

Another consideration is the concept of branch divergence on common GPU hardware.
The threads are arranged in groups, and the threads within each of the groups are operating
in lock-step,? i.e. ideally a given instruction is performed for all of these threads at the same
time. However, if some of the threads within the group have diverged from the others by
taking another branch in the program, they have to wait for the others until the execution
branches merge again. Hence, to maximize performance, it is important to prevent branch
divergence as much as feasible. We do so by selecting the same partonic process group and
helicity configuration for groups of 32 threads/events within a given event batch.®> This implies
that events of the same group that are accepted and then written to storage will be correlated.
Other than in the most trivial setups, for unweighted event generation the low efficiencies
imply that most accepted events are the only event in their group that are accepted, thus
removing this correlation almost entirely. In post-processing, this correlation can be removed
if necessary by a random shuffling of the events.* However, in most applications the ordering
within a sample is not relevant, provided that the entire sample is processed, which should
consist of a large number of such blocks.

With this data structure and lock-step event generation in place, PEPPER achieves a high
degree of parallelization. The parallelized parts of the event generation include the following
steps:

1. Generate random numbers.
2. Generate external momenta with an optional phase-space bias.

3. Apply phase-space cuts (i.e. set the weight of an event to zero if its external momenta
do not pass the cuts).

4. Evaluate phase-space sampling weight.
5. Evaluate dynamical unphysical renormalization and factorization scales ug p.

6. Evaluate the running coupling as(ug), the sum over initial states i, j and the correspond-
ing partonic fluxes f;(x;,Q%)f;(x2,Q%).

7. Sample (or sum) helicities, evaluate helicity sampling weight and calculate external po-
larization vectors.

8. Evaluate amplitudes recursively and sum the squared amplitudes over color configura-
tions.

9. Unweight events against the weight maximum (set event weight to zero if the event is
rejected).

10. Optionally, project onto a leading color configuration.
11. Copy non-zero events from the device to the host.

At this point, non-zero events are written to storage, which is discussed in Sec. 3.5. Further-
more, note that while we can skip events that do not pass the phase-space cuts (see step 3)
easily during serial processing, for parallel processing we will either have threads with non-
passing events doing idle work or wait, or we keep generating events until we have accepted
a sufficient number before proceeding, which would include sort and copy operations. Let us
call these two methods the “take-the-hit” and the “enrichment” method. Which one is more

2A group of threads operating in lock-step is often called a “warp”, and usually consists of 32 threads.
3This group size is configurable at compile time. The default of 32 is chosen to match the GPU warp size.
*Such a shuffling tool for LHEHS files can be found at https://gitlab.com/spice-mc/tools/lheh5_shuffle.

8

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081
https://gitlab.com/spice-mc/tools/lheh5_shuffle

e SciPost Phys. 17, 081 (2024)

efficient will ultimately depend on the phase-space efficiency, i.e. the relative number of events
passing the cuts. We find that for the pp — Z + 5 jets and pp — tt + 4 jets processes, with the
standard cuts defined in Eq. (11), our phase-space efficiencies after optimisation are at 86 %
and 90 %, respectively, such that even an ideal “enrichment” method could not increase the
throughput significantly. We therefore choose to use the trivially implemented “take-the-hit”
method.

3.4 Portability solutions

To make our new event generator suitable for usage on a wide variety of hardware platforms,
we use the Kokkos portability framework [59, 60], which allows a single and therefore easily
maintainable source code to be used for a multitude of architectures. Furthermore, Kokkos
automatically performs architecture dependent optimizations e.g. for memory alignment and
parallelization; C++ classes are provided to abstract data representations and facilitate data
handling across hardware. This data handling needs to be efficient both for heterogeneous
(CPU and GPU) as well as homogeneous (CPU-only) architectures, hence we carefully ensure
that no unnecessary memory copies are made. The code is structured into cleanly delineated
computational kernels, thus separating (serial) organizational parts and (parallel) actual com-
putations. This design facilitates optimal computing performance on different architectures.

The PEPPER v1.0.0 release also includes variants for conventional sequential CPU evalu-
ation and CUDA-accelerated evaluation on Nvidia GPU. Early versions for some components
of these codes were first presented for the gluon scattering case in [32]. The main Kokkos
variant is modeled on the CUDA variant. This allowed us to do continuous cross-checks of the
physics results and the performance between the variants during the development. All vari-
ants support the Message Passing Interface (MPI) standard [61] to execute in parallel across
many cores.

We also developed the CUDA and Kokkos version of the PDF interpolation library LHAPDF.
To evaluate PDF values, LHAPDF performs cubic interpolations on precomputed grids supplied
by PDF fitting groups. Furthermore, the PDF grids are usually supplied with a corresponding
grid for the strong coupling constant, a,. The strong coupling constant and the PDF are core
ingredients of any parton-level event simulation, and the extensive use of LHAPDF justifies port-
ing them along with the event generator. Speed-ups are achieved by the parallel evaluation
and reduction of memory copies required between the GPU and the CPU. Our port of LHAPDF
focuses on the compute intensive interpolation component, and leaves all the remaining com-
ponents untouched. The resulting code will be made available in a future public release of
LHAPDF.

3.5 Event output

The generated (and unweighted) events must eventually be written to disk (or passed on to
another program via a UNIX pipe or a more direct program interface). When generating events
on a device with its own memory, the event information (momenta, weights, ...) must first
be copied from the device memory to the host memory. Since the event generation rate on
the device can be very large, the transfer rate is an important variable. Fortunately, there is
no need to output events which did not pass phase-space cuts or were rejected by the un-
weighting. Hence, PEPPER filters out these zero events on the device and then transfers only
non-zero events to the host. This leads to event transfer rates that can be orders of magnitude
smaller than if all data were transferred, especially for low phase-space and/or unweighting
efficiencies.

We project the events to a leading color configuration in order to store a valid color config-
uration that can be used for parton showers. To that end, we compute the leading-color factors

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

corresponding to the full-color point as described in Sec. 2. We then stochastically select a per-
mutation of external particles among the leading color amplitudes and use this permutation
to define a valid color configuration.

The user can choose to let PEPPER output events in one of three standard formats:

ASCII v3 This is the native plain text format of the HepMC3 Event Record Library [62]. The
events can be written to an (optionally compressed) file or to standard output. The
format is useful for direct analysis of the parton-level events with the Rivet library [63],
for example. There is no native MPI support, such that events are written to separate
files for each MPI rank.

LHEF v3 This is the XML-based LHE file format [64] in its version 3.0 [65], which is widely
used to encode parton-level events for further processing, e.g. using a parton-shower
program. The events can be written to an (optionally compressed) file or to standard
output. There is no native MPI support, such that events are written to separate files for
each MPI rank.

LHEHS5 This is an HDF5 database library [66] based encoding of parton-level events. HDF5
is accessed through the HighFive header library [67]. While the format contains mostly
the same parton-level information as an LHEF file, its rigid structure and HDF5’s na-
tive support for collective MPI-based writing makes its use highly efficient in massively
parallel event generation [40]. HDF5 supports MPI, such that events are written to a
single file even in a run with multiple MPI ranks. LHEHS5 files can be processed with
Sherpa [68,69] and Pythia [70,71]. The LHEH5 format and the existing LHEH5 event
generation frameworks have been described in [39,40].

4 Validation

To validate the implementation of our new generator, we compare PEPPER v1.0.0 with SHERPA
v2.3.0’s [69] internal matrix element generator AMEGIC [72]. In both cases we further process
the parton-level events using SHERPA’s default particle-level simulation modules for the par-
ton shower [73], the cluster hadronization [74] and Sjostrand-Zijl-like [75] multiple parton
interactions (MPI) model [76]. In the case of AMEGIC, the entire event processing is handled
within the SHERPA event generator, while in the case of PEPPER, the parton-level events are
first stored in the LHEHS5 format, and then read by SHERPA for the particle-level simulation, as
described in Sec. 3.5 and Ref. [40].°

The first process we consider is pp — ete™ + njets at (’)(aﬁw) with n = 1,...,4. The
center-of-mass energy of the collider is chosen to be /s = 14TeV. For the renormalization
and factorization scales, we choose ,u}% = ,u% =u’=H 'T2 = mie+e, + Z?:l pii, where m | o+o-
is the transverse mass of the dilepton system and p ; is the transverse momentum of the ith
final-state parton. We employ the following parton-level cuts:

p1;j>30GeV, [n;|<50, AR;>04, 66GeV<m,, <116GeV. (11)

We use the NNPDF3.0 PDF set NNPDF30_nlo_as_0118 [77] to parametrize the structure of
the incoming protons, and the corresponding definition of the strong coupling, via the LHAPDF

>We choose here to include particle-level simulation steps in order to test not only the correctness of the cal-
culation in PEPPER, but at the same time that the event files are written out correctly by PEPPER and read in and
processed correctly by SHERPA. However, including the particle-level simulation might dilute deviations in the
parton-level calculation. Therefore, in App. C, we repeat the validation at the parton level, without any additional
simulation steps.

10

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

v6.5.4 library [56]. Particle-level events are passed to the Rivet analysis framework v3.1.8 [63]
via the HepMC event record v3.2.6 [62]. The two observables we present are the Z boson
rapidity y,, and its transverse momentum pJZ_ as defined in the MC_ZINC Rivet analysis.

The comparison results for these two observables are shown in Fig. 1. The smaller plots
shown on the right display the deviations between the results from PEPPER + SHERPA and
the ones from SHERPA standalone, normalized to the 1o standard deviation of the SHERPA
results. We observe agreement between the two predictions at the statistical level for all jet
multiplicities.

To quantify the agreement, we test the null hypothesis that the deviations are distributed
according to the standard normal using the Kolmogorov-Smirnov test [78-80]. We choose a
confidence level of 95 %; that is, we reject the null hypothesis (i.e. that the two distributions
are identical) in favor of the alternative if the p-value is less than 0.05. We find that all p-values
are greater than 0.05. The individual p-values are quoted in Fig. 1 for each jet multiplicity.

The second process we consider is pp — tt +njets at O(agw) withn =0,...,3. The setup
is identical to the one for Drell-Yan lepton pair production, except that the renormalization and
factorization scales are defined by up = uj = u* = Hy, = mi + mif +20 pii. The top
quark decay chain is performed by SHERPA in the narrow-width approximation as described
in [69]. The observables used for the validation are the azimuthal angle A¢ between two
light jets and the Hy of all jets, as defined in the MC_TTBAR Rivet analysis in its semi-leptonic
mode.

The comparison for these two observables is shown in Fig. 2. Again, the figure on the right
shows the deviations of the PEPPER + SHERPA and the SHERPA standalone predictions for the
different jet multiplicities, normalized to the 10 uncertainty of the SHERPA predictions. We
find agreement between the two results at the statistical level for all jet multiplicities, with the
Kolmogorov—-Smirnov test p-values all being greater than 0.05.

5 Performance

Performance benchmarks of generators for novel computing architectures in comparison to ex-
isting tools are not entirely straightforward. Differences in floating point performance, mem-
ory layout, bus performance, and other aspects of the hardware may bias any would-be one-
on-one comparison. We therefore choose to analyze the code performance in two steps. First,
we compare a single-threaded CPU version of PEPPER to one of the event generators used at
the LHC, thus establishing a baseline. We then perform a cross-platform comparison of PEP-
PER itself. We thereby aim to demonstrate that the CPU performance of PEPPER is on par with
the best available algorithms, and that the underlying code is a good implementation that can
easily be ported to new architectures with reasonable results.

We note that the core algorithms of PEPPER (then referred to as BLOCKGEN) have been stud-
ied in detail in our gluon-only pathfinder study [32], and we refer the reader to this study for
more technical performance results and comparisons with alternative algorithms. In addition,
we provide PEPPER profiling data for ete™ + njets (n =0,...,4) and tt + njets (n=0,...,5)
production runs on an Nvidia V100 GPU for further study [81,82]. However, in the following,
we instead focus on high-level portability and performance comparisons on different architec-
tures. We only repeat here that the performance of PEPPER is still memory bound on the GPU.
In fact, the addition of fermions in PEPPER requires the use of complex-valued currents in the
recursion, which further intensifies memory operations.

11

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

SciPost Phys. 17, 081 (2024)

Z rapidity distribution

2l P
PEPPER MC

PEPPER MC

T T T
5 —— SHERPA
10" F
3 PEPPER-+SHERPA
" n=1 T
10 3 _ _ 77 =1 E
- n=2 B]
-y r
s} r e — —
< ol n=3 . |
S 10°F e B
= —————— qL]
S r n=4 ‘~ =
3 l L
107 E H K
F = Ll 3
pp — ete™ + n jets, /s = 14 TeV
3 =
=~ Particle level incl. MPI+Hadronization |
-2 2 2 2o . 4
10 F |l wr=pr=HF,66GeV<m - <116GeV E
3 ‘F pL, > 30GeV, [n,| <5, AR, > 0.4 L“ 1
3 1 1 1 ‘ E|
—4 —2 0 2 4
Yz
) Z transverse momentum distribution
10° g ———— T ————rry
—— SHERPA
1
107 F PEPPER+SHERPA J
10° ¢) E
=
o 10 ! 3 E
@) E E
~ -
2 2 [
=10 “F 4
Nj F 3
= -3
TE
< E
[1%
—4 + - . _ Uk
10 F pp — e’ e + mjets, /s = 14 TeV ™ E
[Particle level incl. MPI+Hadronization ol]
107%F wh=pup=HE, 66GeV < mi - <116GeV THE
F p., >30GeV, [n;] <5, AR, > 0.4 ['h E
76‘...| il PR | M .
10
10° 10" 10° 10
/
p1 [GeV]

Deviation [o]

Deviation [o]

Fn=1 ' p-value = 0.378 1S
]
- 1d
1a
A
L 15
} } } A~
[n=2 p-value = 0.601]
i } } }]
[n=3 p-value = 0.268]
i } } }]
[n=4 p-value = 0.794]
3 1 1 1 _-
—2 0 2 4
Yz
=1 i " pvalue = 0.859 1
[1
F - q1d
1a
=9
L 15
+H + - A
[n=2 p-value = 0.939]
+ - ;
p-value = 0.989]
s X s —
[n=4 p-value = 0.461]
_.I il iaal L L |||||||‘]
10° 10 10° 10°
P [GeV]

Figure 1: Particle-level validation for two observables for the pp — Z + njets pro-
cess, comparing SHERPA standalone results with PEPPER + SHERPA results, where the
parton-level events are generated by PEPPER and then read in by SHERPA to perform
the additional particle-level simulation. The left plots show the distributions, while
the right plots show the deviations between SHERPA and PEPPER + SHERPA individ-
ually for each n, normalized to the 1o standard deviation of the SHERPA result. For
each n, the p-value of a Kolmogorov-Smirnov test is shown for the hypothesis that
the deviations follow a standard normal distribution.

12

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

SciPost Phys. 17, 081 (2024)

Azimuthal angle between light jet pairs

PEPPER MC

T T T T T T T O [T T T T T T T]
= 3fn=0 p-value = 0.242]
25F —— SHERPA 1= [1
44_| PEPPER+SHERPA = 0F 1
— % 73 - -
wr Lp=0 1= R A S N S
= - skn=1 p-value = 0.542]
L n=1(x07) L] : :
z [T R s S ‘
s = g -3f ;
q 10F = n=2(x0.7) I £ — 2! } } } 1! 09=60'
—% —_ I q;) spn= p-value = 0.]
":’ — n =3 (x0.7) — A oof = .
05 - ") e _]
—— — 73 L a
pp — tt + mn jets at /s = 14 TeV : } } } } } } } :
001 porticle level incl. MPI+Hadronization] 3pn= 3 p-value = 0.459 1
= b = /2 of]
—0.5F pi; >30GeV, |n;| <5, AR;; > 0.4 - sk]
1 1 1 1 1 1 1 [1 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ag A¢
Hrp distribution for all jets
10' F 1 % 3k n=0 p-value = 0.508]
—— SHERPA - X 1
10tk n=0 PEPPER+SHERPA | & or =]
Ay
I = -3F b
o n=1(x10"?) W, ik F + ———————+1 —
__ 10 " sfn=1 p-value = 0.545]
| e = Ny 5]
2 10k 4. n=2(x10"") S - ¥ 1
3 - B = 3l i
‘a 7 - 3 - T 4§ i N . PN | s
2 07k A —6 - | 2 - ———— :
= 10 | n=3(x10"°) L £ gfn=2 p-value = 0.368
= d i e S B 3 s]
T 0% s gt { 2 of]
b _— . =
© = -3]
10*11 I pp — tt 4+ n jets at /s = 14 TeV 4 N + + A+t]
Particle level incl. MPI+Hadronization 3 r n=3 p—value =0.690 7
10718 L wh=nk = Hi /2 E 0 :— —:
p.; >30GeV, [n;| <5, AR;; > 0.4 sk |
—15 N N N P | N L . . s P |
10 -
10° 10 10° 10°
Hy [GeV] Hry [GeV]

Figure 2: Particle-level validation for two observables of the pp — tt +njets process,
comparing SHERPA standalone results with PEPPER + SHERPA results, for which the
parton-level events are generated by PEPPER and then read in by SHERPA to perform
the additional particle-level simulation steps. The left plots show the distributions,
while the right plots show the deviations between SHERPA and PEPPER + SHERPA
individually for each n, normalized to the 1o standard deviation of the SHERPA result.
For each n, the p-value of a Kolmogorov-Smirnov test is shown for the hypothesis
that the deviations follow a standard normal distribution.

13

PEPPER MC

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

(72
i

SciPost Phys. 17, 081 (2024)

pp — eTe” +n jets at /5 = 13TeV pp — tt+n jets at /s = 13 TeV
T T T T T O T T T T T O
10" ¢ Comix™ (def) 1= 10'F 1=
L Comix™ (CHiLI)] § [1 E
—— PEPPER E %
A~ o

2 2 2
KR = Hp =Mz
66 GeV < m ¢ - < 116 GeV
pL, >20GeV, |n;| <5 AR;; > 0.4

107
L 2 2 2
KPR = prp =My

Py, >20GeV, |n;| <5, AR;; > 0.4

Unw. event rate rel. to CoMIx™ (def.)

1 2 3 4 5 0 1 2 3 4
n n

Figure 3: Event rates for generation and storage of unweighted events for ete™+njets
(left) and tt + njets (right). We compare Comix, combined with its default and
with the basic CHILI phase-space generator, and PEPPER, normalized to the CoMIx
result. The asterisk in the CoMiXx label indicates that the generator is used in a non-
default configuration, splitting the process sum into different Monte-Carlo channels,
grouping by gluons, valence and sea quarks. The results were generated on a single
core of an Intel Xeon E5-2650 v2 CPU. For details, see the main text.

5.1 Baseline CPU performance

Figure 3 presents a comparison of the CPU version of PEPPER and the parton-level event gener-
ator CoMIx® [83]. We measure the rate at which unweighted events are generated and stored
for ete™ + njets and ¢t + njets production at the LHC. The center-of-mass energy of the colli-
sion is set to 4/s = 13 TeV, and the partons are required to fulfill p;; > 20GeV, |n;| < 5 and
ARj; > 0.4. For ete” + njets production, an additional cut of 66 GeV < m,+,- < 116GeV is
applied to the invariant mass of the dilepton system. For simplicity, the renormalization and
factorization scales are fixed to ug = up = my in e*e~ +njets production, and to ug = up = m,
in tt 4+ njets production. For better comparability of the measurements, we show CoMix both
in combination with its recursive phase space generator [83] and with the modified basic CHILI
integrator [20] that is also used by PEPPER, cf. Sec. 2 for details. The raw data for Fig. 3 are
listed in App. A.

For eTe™ + njets production, we find that ComMix combined with CHILI yields a slightly
reduced performance compared to CoOMIX combined with its default phase-space integrator.
As observed in [20], the CHILI integrator has reduced unweighting efficiency in this case, but
generates points much faster. Combining these factors results in the slightly reduced efficiency
compared to the Comix default. For PEPPER we observe a large throughput gain compared to
CoMiIX, especially at low multiplicities, while CoMix only begins to outperform PEPPER for
n = 5 additional jets. This nicely reflects the advantages of the different algorithms: The
color-dressed recursion implemented in CoMIX adds computational overhead compared to the
explicit color sum in PEPPER, but the improved scaling takes over at some point. In the tt+jets
production, we observe a better performance of the CHILI integrator comparing the two CoOMIX
results. This is also reflected in the initially increasing gain factor of PEPPER when compared to
the default Comix result. Despite the rather intricate color structure of the tt+jets processes,
PEPPER outperforms COMIX for all jet multiplicities tested here.

5We use a non-default mode for CoMmix, splitting the process into Monte-Carlo channels grouped by gluons,
valence and sea quarks. This is similar to PEPPER’s strategy and increases the efficiency of the event generation.

14

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

The results show that the single-threaded baseline performance of PEPPER is on par with
that of an existing established generator like CoMix. The factorial scaling with multiplicity of
the PEPPER algorithm has no adverse effects in the multiplicity range of interest, where PEPPER
is in all cases as fast or faster than CoMiX. Moreover, the efficiency of the basic CHILI phase-
space generator used by PEPPER is on par with the much more complex recursive multi-channel
phase-space generator implemented in COMIX, confirming earlier results [20].

5.2 Performance on different hardware

After establishing the baseline performance, we now study the suitability of PEPPER for dif-
ferent hardware architectures. A variety of computing platforms were used to measure the
portability and performance. This list defines the architecture labels used in the figures that
follow:

2xSkylake8180 Intel Xeon Platinum 8180M CPU at 2.50 GHz with 768 GB of memory. These
are 28-core processors; and the machine contains two CPUs each. Our performance tests
utilize all 56 cores unless otherwise noted, hence the “2x” in our label.

V100 Nvidia V100(SXM2) GPU with 32 GB of memory.

A100 Nvidia A100 GPU with 40 GB of memory. Similar to the Perlmutter (113 Pflop/s) [84],
Leonardo (304 Pflop/s) [85] and JUWELS (70 Pflop/s) [86] systems.

H100 Nvidia H100 GPU with 80 GB of memory. This is a recent release by Nvidia and a likely
target for next generation supercomputers.

MI100 AMD MI100 GPU with 32 GB of memory.

1/5xMI250 AMD MI250 GPU with 32 GB of memory. Similar to the Frontier (1.6 Eflop/s) [87],
LUMI (531 Pflop/s) [88] and Adastra (61 Pflop/s) [89] systems. Each GPU has two tiles.
In PEPPER, each tile acts as an independent device. Therefore we choose to utilize a
single tile for our performance tests, which is why we include “!/2x” in our label.

PVC Intel Data Center GPU Max Series with 128 GB of memory. This is part of the Sunspot
testbed [90] of the Aurora (1.0Eflop/s) systems [91]. Sunspot is a pre-production su-
percomputer with early versions of the Aurora software development Kkit.

Using a portability framework like Kokkos in the PEPPER event generator is a novel feature
for a production-ready parton-level event generator, and for much of the HEP software stack
in general. We have therefore tested the performance of the Kokkos PEPPER variant against
both a native CUDA and a native single-threaded CPU implementation, and looked at results
on an A100 GPU and an Intel Core i3-8300 CPU at 3.70 GHz CPU. When comparing the event
throughput of the Kokkos and native CUDA implementations on the A100 GPU, we find that
the performance of the Kokkos variant agrees within a factor of two, with the performance gap
disappearing as computational complexity increases, i.e. with increasing process multiplicity.
Generally, the native algorithm outperforms the Kokkos version. This result establishes that
using a portability framework is possible without compromising significantly on performance
when using a GPU, while at the same time giving access to a much wider range of architectures
and computing paradigms. With that, we only show Kokkos result in the following. We note,
however, that our current Kokkos implementation on the CPU does not utilize vectorization ca-
pabilities, while our native C++ implementation does so with the help of the VCL library [92],
which provides significant speedups on the CPU. Because the focus of the analysis here is on
portability, these improvements are not yet included in Figs. 4 and 5. We expect to provide

15

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

T T T T T T
11- gg — tt + ng at /s = 14 TeV

2 2 2
KR = g = m;

pLy > 30GeV, |n;| <5, AR, > 0.4

n FERTTTT BT
PEPPER MC

[—@— 2xSkylake8180
<[@ Vvioo
E—W— A100
E H100
107 F MI100
F—&— 1/2xMI250
1
0

Matrix element rate [1/h]

PVC

Figure 4: Comparison of the throughput achieved for the gg — tt + ng process for
the matrix element evaluation on different computing architectures. For details, see
the main text.

pp — e et 4 n jets at /5 = 13 TeV pp — tt + n jets at /s = 13 TeV
10T T T T T]
10 pL; >20GeV, |n;] <5, AR;; > 0.4]

66 GeV < m i - < 116 GeV

(N
[S)

2 2 _ 2
HRp = Hp =Mz

| I
PEPPER MC
S
©
““PEPPER MC

F —@— 2xSkylake8180
E-@- V100
—¥— A100
F H100
10 MI100
[—#— 1/2xMI250
1
0

Unweighted event rate [1/h]

PVC

1 2 3 4 5 0 1 2 3 4

Figure 5: Comparison of the unweighted event generation and storage rates achieved
for the pp — ete™ + njets (left) and pp — tt + njets (right) processes on different
computing architectures. For details, see the main text.

a Kokkos implementation with vectorization capabilities in the future. For a more in-depth
discussion of CPU vectorization of PEPPER, see App. E.

First we study the performance on different architectures for the evaluation of weighted
parton-level gg — tt+ng events forn =0,...,5 at a fixed centre-of-mass energy, thus testing
the matrix element throughput of PEPPER in a wide range of parton multiplicity. The results
are shown in Fig. 4. For each of the tests, we run an initial set of test runs, probing the ideal
number of events that are processed simultaneously. We find that PEPPER achieves at least an
order of magnitude higher throughput on the H100 GPU than on two 28-core Skylake CPUs.
The results for the other accelerators lie between the H100 and the 2xSkylake8180 result.
The performance on MI100/250 scales slightly worse than the Nvidia GPU with the number of
additional gluons and thus with the memory footprint of the algorithm, but overall the scaling
with multiplicity is qualitatively similar on all architectures. The results show that PEPPER’s

matrix-element evaluation is successfully ported to a wide range of hardware from different
vendors.

16

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

—@— Full event generation
‘Write-out disabled

10°F

PEPPER MC

gg — ttgggg at /s = 14 TeV
[uh=pr =my
L pr; >20GeV, |y;| <5

Polaris @ ALCF, 4 ranks / node]
1 x AMD EPYC Milan / node

4 x NVidia A100 / node

HPE Slingshot 10 i
L PR | L L L PR

Normalized event rate

100 F

10% 10
MPI Ranks

Figure 6: Scaling test of PEPPER event generation on the Polaris system [93] at ALCE
The event rates for the gg — ttgggg process are shown, normalized to the rate on
4 MPI ranks. See the main text for details.

Our next test addresses the generation of full parton-level events including unweighting,
event write-out and partonic fluxes in pp — ete™ + njetsand pp — tt +njets. The event rates
are presented in Fig. 5. The numeric results are tabulated for reference in App. A. Overall,
the results are similar to the ones presented in Fig. 4. One difference is that the event rates
are more on par for very low multiplicities n = 0, 1. This is because the output of the events
becomes the dominant part of the simulation due to the high phase-space efficiency and the
very large matrix-element throughput on GPUs. Details are discussed in App. B. Ignoring the
lowest two multiplicities, we find that the H100 event rates are 20 to 50 times higher than the
2xSkylake8180 ones. Another difference to the matrix element only case is that the scaling
with multiplicity is steeper due to the quickly decreasing unweighting efficiencies. Again, the
scaling is similar on all architectures. These results show that the entire PEPPER pipeline of
parton-level event generation and writeout is successfully ported to a wide range of hardware.

5.3 Scaling to many nodes

Finally, we perform a weak scaling test of Pepper on the Polaris system at ALCF [93]. Polaris
is a testbed to prepare applications and workloads for science in the exascale era and consists
of 560 nodes with one AMD EPYC Milan processor and four Nvidia A100 GPUs each. The
nodes have unified memory architecture and two fabric endpoints, the system interconnect
is a HPE Slingshot 10 network at the time of our study. For our test, we hold the number
of generated events per node constant and increase the number of nodes. We measure the
number of unweighted events in gg — ttgggg production. The gluon flux is evaluated using
the LHAPDF library with its builtin MPI support enabled. Figure 6 shows the event rate as a
function of the number of MPI ranks, normalized to the rate on a single node. Here the number
of MPI ranks is equal to the number of GPUs. We notice that the scaling is violated starting
from about 512 ranks. However, we observe that the scaling violation is entirely due to the
event output via the HDF5 library. We expect to be able to alleviate this problem in the future
through performance tuning of HDF5, similar to the effort reported in [40].

17

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

6 Summary and outlook

PEPPER is a comprehensive framework for production-level parton-level event generation for
collider physics on various computing architectures. It includes matrix-element calculation,
phase-space integration, PDF evaluation, and processing of events for storage in event files. In
addition to its core functionalities, in [40], an extension of existing file formats was introduced
and demonstrated to generate merged samples with Pepper.

Next-to-Leading Order calculations are of great importance to the LHC. By using a gen-
eralized unitarity method, one can utilize PEPPER, with minor extensions, to calculate the
coefficients of the master integrals and the rational part of the one-loop matrix elements. The
numerical aspect of this method, which is well-suited for GPU implementation, involves solving
sets of linear equations generated by evaluating leading-order matrix elements with possible
complex external momenta in integer higher dimensions.

Another important note, is that these calculations use double floating-point precision to
help ensure sufficient accuracy for momentum conservation, and the higher order corrections
require similar precision or sometimes even quad floating-point precision to ensure numerical
stability [94-96]. However, Al applications are dictating the direction of future heterogeneous
computing systems, which tend to require either half or single floating-point precision [97].
To address these concerns we can leverage techniques developed for efficiently using single
(double) floating-point precision to obtain double (quad) floating-point precision [98-100],
or develop other custom data types to handle these calculations, as done in the lattice QCD
community [101].

The development outlined in this paper marks a major milestone identified by the generator
working group of the HEP Software Foundation [4,5] and by the HEP Center for Computational
Excellence [102]. It frees up valuable CPU resources for the analysis of experimental data
at the Large Hadron Collider. The impact of parton-level event generation to the projected
shortfall in computing resources during Run 4 and 5 in the high-luminosity phase of the LHC
is significantly alleviated. In addition, we enable the Large Hadron Collider experiments to
utilize most available (pre-)exascale computing facilities, which is an important step towards
a sustainable computing model for the future of collider phenomenology.

The PEPPER event generator is ready for production-level use in many processes to be
simulated at high fidelity at the LHC, i.e. £*{~+jets, tt-+jets, pure jets and multiple heavy
quark production (e.g. bbbb+jets or tfbb-+jets). The combination with the particle-level
event generation framework in [20] makes it possible to process events with PYTHIA 8 [70]
or SHERPA 2 [69]. An extension of PEPPER to processes such as {v,+jets, VV+jets, yy+jets
and to other reactions with high computing demands will become available in the short term.
The compute performance of the CPU version of PEPPER is better than that of Comix, one of
the leading and most widely used automated matrix element generators for the LHC. We have
shown, for a variety of architectures, that PEPPER can efficiently generate parton-level events,
and we have demonstrated scalability up to 512 Nvidia A100 GPUs on the Polaris system at
ALCE

Acknowledgments

M.K. wishes to thank the Fermilab Theory Division for hospitality during the final stages of
this project. We are grateful to James Simone for his support.

Funding information This research was supported by the Fermi National Accelerator Labo-
ratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab

18

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-
07CH11359. The work of M.K. and J.I. was supported by the U.S. Department of Energy, Of-
fice of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through
Advanced Computing (SciDAC-5) program, grant “NeuCol”. This research used resources of
the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility
under Contract DE-AC02-06CH11357. The work of T.C. and S.H. was supported by the DOE
HEP Center for Computational Excellence. E.B. and M.K. acknowledge support from BMBF
(contract 05SH21MGCAB). Their research is funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) — 456104544; 510810461. This work used computing
resources of the Emmy HPC system provided by The North-German Supercomputing Alliance
(HLRN). This research used the Fermilab Wilson Institutional Cluster and computing resources
provided by the Joint Laboratory for System Evaluation (JLSE) at Argonne National Labora-

tory.

A Tabulated performance results

Table 1 lists the baseline performance data shown graphically in Fig. 3. While the figure shows
ratios, we list here the absolute event rates found for Comix and PEPPER using single-threaded
execution. For additional details, see Sec. 5.1.

Table 2 lists the unweighted events rates on different computing architectures. This is the
raw data for Fig. 5. For additional details, see Sec. 5.2.

B Runtime distribution

In Sec. 5.2, we found that the event rates for the lowest multiplicities are comparably similar
across the different computing architectures, see Fig. 5. To understand this better, we plot the
fractions of computing time spent in different components of the event generation in Fig. 7.
The different components studied are the Berends—Giele recursion for the matrix element eval-
uation, the event output, the evaluation of the strong coupling and partonic fluxes, and the

Table 1: Comparison of the event rates achieved for pp — ete™ + njets (left) and
pp — tt+njets (right) by CoMmix, combined with its default and with the basic CHILI
phase-space generator, and PEPPER. The asterisk in the CoMix label indicates that it is
run in a non-default but more efficient mode, splitting the process sum into different
Monte-Carlo channels, grouping by gluons, valence and sea quarks. The results were
generated on a single core of an Intel Xeon E5-2650 v2 CPU. For details, see Sec. 5.1.

Events / hour CoMmIx* PEPPER Events / hour CoMmIx* PEPPER
CoMix CHILI CoMIx CHILI
pp—oete +1j 1.2e7 9.0e6 7.2e7 pp — tt+0j 9.0e6 1.2e7 3.6e7
pp —ete” +2j 1.2e6 1.0e6 7.2e6 pp — tt+1j 2.4e6 3.3e6 1.2e7
pp —ete” +3j 1.1e5 7.5e4 5.0e5 pp — tt+2j 2.1e5 3.8¢5 2.2e6
pp —ete +4j 6.2e3 4.0e3 1.4e4 pp — tt+3j 1.2e4 2.9e4 1.3e5
pp —>efe” +5j 3.8e2 2.0e2 3.0e2 pp — tt +4j 8.1e2 1.9e3 6.4e3

19

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

Table 2: Comparison of the unweighted event generation (and storage) rates
achieved for the pp — tt + njets and pp — e*e™ + njets processes on different
architectures.

Events / hour 2xSkylake8180 V100 Al100 H100 MI100 !/2xMI250 PVC

pp — tt +0j 5.3e8 1.3e9 1.7¢9 2.5e9 1.6e9 1.5e9 8.5e8
pp — tt+1j 1.2e8 6.2e8 1.0e9 1.4e9 9.4e8 7.8e8 3.8e8
pp — tt+2j 1.6e7 1.4e8 3.2e8 4.1e8 1.9e8 1.9e8 9.7e7
pp — tt+3j 1.4e6 1.0e7 2.2e7 3.5e7 9.4e6 9.2e6 6.3e6
pp — tt+4j 6.4e4 4.8e5 1.0e6 1.7e6 4.0e5 3.0e5 2.8e5
pp —> e et +0j 1.0e9 1.7¢9 1.9e9 29e9 2.1e9 1.8e9 7.9e8
pp—e e +1j 2.2e8 7.3e8 1.2¢9 1.7¢9 1.1e9 6.6e8 4.5e8
pp—e et +2j 2.6e7 2.2e8 3.6e8 4.7e8 2.9e8 2.3e8 1.3e8
pp —e et +3j 1.5e6 2.1e7 4.8e7 5.2e7 3.4e7 3.0e7 1.4e7
pp—e et +4j 6.0e4 7.8e5 2.2e6 2.7e6 1.3e6 1.0e6 6.1e5
pp—>e e +5j 2.6€e3 2.9e4 5.3e4 1.3e5 2.5e4 2.7e4 1.8e4
2 Skylake8180 H100

1.0 &) 1.0 &)

- pp — tt + njets = —— =

Event output E 5

08 Matrix element 75 0.8 1=

B Phase space gj E

PDF & coupling |

0.6 - 0.6 - 9

Fraction of total runtime

0.4 1 04 1
0.2 1 0.2 1
0.0 T T T T T 0.0 T T T T T

0 1 2 3 4 0 1 2 3 4

n n

Figure 7: The fraction of event generation runtime spent on different components of
the pipeline, for the pp — tt + njets process. On the left, we show the data for the
2xSkylake8180 CPU, while on the right we show it for the Nvidia H100 GPU. The
components are Event Output, Matrix element evaluation, Phase space sampling, and
PDF and strong coupling evaluation.

phase space generation. On the left side we plot the data of the 2xSkylake8180 architecture,
while on the right side we plot the data of the Nvidia H100 architecture. These are represen-
tative of a (two-chip) CPU system and a GPU architecture. While on the CPU the majority of
time is always spent on the matrix element evaluation, we have a different situation on the
GPU. Here, for the lowest three multiplicities the majority of time is spent on the event output.
This is because the matrix element evaluation rate on the GPU is so high that the overall rate is
now constrained by the event file write-out. However, in the current implementation of GPU
write-out, only a single CPU core is used. Therefore, the write-out rate could be improved by
utilizing the idle CPUs on each node, an implementation of this procedure is left to a future
version of PEPPER.

20

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

C Parton-level validation

We repeat the validation of Sec. 4, using the same setups and observables as described there.
However, here we omit the particle-level simulation steps, i.e. we only calculate parton-level
events without any further processing. This compares directly the phase-space sampling and
matrix-element generation implementations of PEPPER and AMEGIC. Given a correct imple-
mentation, they should give statistically compatible results.

The comparison results for the two Z+jets observables are shown in Fig. 8. For details on
the presentation and the observables, we refer to Sec. 4. The agreement is again quantified
using a Kolmogorov-Smirnov test. The p-values for each jet multiplicity can be found on the
plot. They are all greater than our chosen confidence level of 5%, i.e. we do not reject the
null hypothesis of the two underlying distributions being identical.

Finally, the comparison results for the two tt+jets observables are shown in Fig. 9. Again,
the results of a Kolmogorov-Smirnov test are quoted on the plot, with all p-values being greater
than 0.05. Thus, also in this case, we do not reject the null hypothesis.

D Data layouts and CPU performance

We study the performance of our struct-of-array (SoA) implementation when running on a
single CPU thread, and compare it with an array-of-structs (AoS) one. With AoS, each event
is represented by a data struct, and all events of a batch are stored in an array of such structs.
Some data members of each event are themselves arrays, such as the four-momenta, or the
complex currents used to matrix elements. This is opposed to an SoA implementation, where
each event property is stored as an array over all events in the batch.

The two approaches yield different caching opportunities.” In Fig. 10, we compare their
performance on an Apple M2 Pro chip for different event batch sizes for the pp — tt + 3 jets
process. The performance is measured in events per hour, normalized to the SoA event rate for
a batch size of one. We find small performance improvements of about 10 % when increasing
the batch size to 10...100 events, with the SoA performance being within a few percent with
the AoS performance, indicating that good cache efficiency is achieved for both data layouts.

For a batch size of 102, the performance degrades significantly for the AoS layout, which
might indicate that not all events fit anymore in one of the caches. This happens earlier com-
pared to the SoA layout, which shows a degraded performance only at a batch size of 104,
since in that case the CPU is able to cache only the locally relevant data, without including
data for properties that are not being read or written to by the given algorithm.

Note that an AoS layout would likely perform significantly better if the iteration over the
events of a given batch would take place in the outer-most loop, while in our implementation
this loop is performed instead at the algorithm level. However, to study this we would need to
completely restructure the code, which is beyond the scope of this study. In addition, catering
for both approaches in a single codebase would likely require severe compromises when it
comes to the readability and maintainability of the code.

7You might also expect them to yield different degrees of CPU auto-vectorization. However, to achieve good
performance on the GPU we had to fuse most kernels of the matrix element recursion into a larger recursion
kernel, to avoid the overhead of starting a large number of very small kernels on the GPU. This means that the
loop over events is a few layers removed from the inner-most loop in this case, which is of course also the most
compute-intense part of the code. This seems to prevent auto-vectorization almost entirely. We study two ways to
CPU-vectorize the code explicitly in App. E. None of these play a role in the current discussion though, as we have
disabled the explicit vectorization for all results obtained in App. D.

21

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

Z rapidity distribution

T T T 10 N T T T
—— AMEGIC | - 3T]
2| <

107 —— Perper 3 4 or]

F i
1@ —SBFn=1 p-value = 0.270 7
{& : : :

10" 3 - 3F 4
= ® Or]
o
_N . g Brn=2 p-value = 0.448]

| i B ! ! N
_gb 107 *CE N T T T
~ S 3 .
© o [
< A oF 1
1 .
10 F 3 -3rn=3 p-value = 0.911 7
E pp — eTe” + njets, /5 = 14 TeV 3 3 } } }
: Parton level : 3 r 7
02k uh=pup = Hf, 66GeV < m_ - <116 GeV | oF ;%H___‘:H__':_ﬁ.:uik]
E p.,; >30GeV, |n,| <5, AR, > 0.4
E = ’ ” 1 -3rn=4 p-value = 0.959
1 1 1 1 1 1
—4 -2 0 2 4 —4 -2 0 2 4
Yz, Yz,
) Z transverse momentum distribution
10 T T T LR LR R | T T &) T T T T T T
E 3F]
—— AMEGIC E r
10' 3 —— PEPPER & 0f -
F Ay
3 = 3Fn=1 p-value = 0.206 7]
0L [al} ol ol P | P
10 g _"I o T ML | T ML |
F 9 3F —
S n=3 [
§ 10 E 0
[= -3 b
S .2 [, h
— 10 E - N]
N E .8 3F]
N E = I]
G £ [1
T 0 .
kS|
10_4 F pp — ete™ + njets| /3 = 14 TeV H]
[Parton level 3 T 7]
10°° F nr=up = Hf, 66GeV < m - < 116 GeV ok]
F p, . >30CeV, [n,| <5 AR, > 0.4
of I ’ v BFn=4 p-value = 0.680 7
107 a1l n il n L a il 11 il n i3l n il n i aaaal
10° 10" 10° 10° 10° 10t 10 10
VA VA
pi [GeV] pi [GeV]

Figure 8: Parton-level validation for two observables for the pp — Z + njets process,
comparing AMEGIC results with PEPPER results. The left plots show the distributions,
while the right plots show the deviations between AMEGIC and PEPPER individually
for each n, normalized to the 1o standard deviation of the AMEGIC result. For each
n, the p-value of a Kolmogorov-Smirnov test is shown for the hypothesis that the
deviations follow a standard normal distribution.

22

PEPPER MC

PEPPER MC

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

do/dHyp [pb GeV]

SciPost Phys. 17, 081 (2024)

Azimuthal angle between light jet pairs

8 T T T T T T T

PEPPER MC

% sk n=0 Ip—valule =0.303]
n=0 — —— AMEGIC - F i
- PEPPER = or 1
5 — 1%
—) -3 b
= — ———t——+——
~ skn=1 p-value = 0.963]
4+ | n=1(x07) = < [1
z —_ [9= L = Of]
-] _ —_ = 2 =3F T
§ f— 220D =2 1 ¢ L —]
3 - T — e — .‘5 gkn=2 p-value = 0.383]
b — — R T 53 []
ae] e - = a ofF 4
ok n =3 (x0.7) i F]
=3r]
pp — tt 4+ n jets at /s = 14 TeV X } } } } } }]
| perton tever 1 3pn= 3 p-value = 0.198 3
pr = pe = Hi /2 0 :— ':
Py, >30GeV, |n;| <5, AR,; > 0.4 5L |
g4l 1 1 1 1 1 1 [1 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 1.0 1.5 2.0 2.5 3.0
Ao Ao
Hr distribution for all jets
. ——— ——T -
10" b Lz) 3k n=0 p-value = 0.497]
—— AMEGIC =]
n=0 L]
10k _ PEPPER a 0 .
= o
5 A —3r]
s Tn=1(x10"") " A~ —t +
10 "F L T sfn=1 p-value = 0.258]
< _ -4 =B .-]
107 F n=2(x107") o i o 0 1
N » oMy 5 3rF L E
7L i) — Y - . = T T
10 J " =3 (x 12) “, " g 3fn=2 p-value = 0.177]
- B S Ty 1)]
107°F - =1 M, b = of - =]
e Ll]
—11 - . _ |— P 1
10 I pp — tt + n jets at /s = 14 TeV . +—+—+— +
Parton lovel skn=3 p-value = 0.382]
10713 o /»sz = #i“ = HE/ﬂ:vl/2 - 0 :‘ ':
P, >30GeV, |n,| <5, ARy, > 0.4 sk]
—15 L b .]
10
10° 10° 10° 10°
Hr [GeV] Hy [GeV]

Figure 9: Parton-level validation for two observables of the pp — tt + njets process,
comparing AMEGIC results with PEPPER results. The left plots show the distributions,

while the right plots show the deviations between AMEGIC and PEPPER individually

for each n, normalized to the 10 standard deviation of the AMEGIC result. For each
n, the p-value of a Kolmogorov-Smirnov test is shown for the hypothesis that the

deviations follow a standard normal distribution.

23

PEPPER MC

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

pp — tt + 3 jets at /s = 14 TeV
1.20 prrer T T T T

—— PEPPER SoA
115 PEPPER AoS T

1.10 - b

PEPPER MC

1.05 b

1.00 - 1

0.95 -

Normalized event rate

2 2 2

HRr = HF = My

pL; > 20GeV, |n;| <5, AR;; > 0.4

080 iaal L il L PR ..“.I, L P ||||||' L il

10" 10° 10°
no. of events per batch

Figure 10: Scaling test of the event generation performance of PEPPER for serial CPU
execution on an Apple M2 Pro chip, comparing a struct-of-array (SoA) with an array-
of-structs (AoS) event data layout. The x axis gives the number of events per event
batch, while the y axis shows the performance given in event throughput, normalised
to the event throughput of the SoA layout with a batch size of one.

Given the kernel-based structure of our code, we have shown that an SoA layout is pre-
ferred even for single-threaded execution on a CPU, and that it is favourable to use batch sizes
of at least ten events (and likely even more for simpler processes or larger cache sizes) to fully
profit from the CPU caches.

E CPU vectorization

As mentioned in Sec. 5.2, the native C++ implementation of PEPPER does use some explicit
CPU vectorization for certain calculations. Currently, it does so by implementing real and
complex four momentum classes with the help of the Vector Class Library (VCL) [92], such
that all the arithmetic operations involving four momenta are compiled using vector intrinsics
of the CPU (if supported by VCL). The advantage is that this is a drop-in replacement: One
can simply replace the four momentum classes, and any code using these classes immediately
profit from the acceleration, without any change. However, there are two disadvantages. One
is that the maximum degree of parallelization is limited by the size of the objects. E.g. for AVX-
512, where CPU vectors are 512 bits wide, only operations including complex four momenta
(which consist of 8 64-bit numbers) would fully utilize the hardware. The second disadvantage
is that only simple operations, i.e. addition, subtraction and multiplication by a scalar, are fast.
Other operations such as scalar products, that need to take a sum over all components, are
only expected to achieve medium efficiency [92]. We can test the performance by measuring
the evaluation time of a compute kernel with non-trivial arithmetics and a sizable contribution
to the overall runtime. A perfect example is the three gluon vertex kernel, which in particular
calculates the complex four-component current

Je = Ua @pPp+Pa)) jb + Ua - J6)Pa—Pb) — b - (2Pg +Pb)) “ Ja - (E.1)

Here, the j are complex four-component currents and the p are real four momenta, and the
subscripts a, b, ¢ label the three outgoing particles of the vertex. This mixes real and complex
vectors and simple component-wise and component-mixing operations. We choose to measure

24

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

Triple-gluon kernel vectorization

10 T T

Scalar (1 lane = 64 bit)

SSE4 (2 lanes = 128 bit)

ARM NEON (2 lanes = 128 bit)
AVX2 (4 lanes = 256 bit)
AVX-512 (8 lanes = 512 bit)
—— Ideal speed-up

* 40
PEPPER MC

Speed-up

0 I I I I
0 2 4 6 8 10

Number of CPU double-precision lanes

Figure 11: CPU vectorization speed-ups of the three gluon vertex evaluation for dif-
ferent vector intrinsics, using a preliminary version of PEPPER that vectorizes calcu-
lations across events using the Highway library [103]. The speed-ups are normal-
ized to the time needed to evaluate the vertex without CPU vectorization, i.e. using
“scalar” code. The SSE4, AVX2 and AVX-512 intrinsics have been tested on an Intel
Xeon Gold 6430 chip, while an Apple M2 Pro chip has been used to test the ARM
NEON intrinsics. The evaluation times have been measured during the generation
of pp — ttjjjj events. Note that the CPU vectorization in the released versions of
PEPPER is less pronounced, as explained in the main text.

the evaluation time in pp — ttjjjj production on an Intel Xeon Gold 6430 with its support
for AVX-512 intrinsics. For 9600 weighted events, the evaluation of the three gluon vertexes
requires 4.8 (15.1) seconds with (without) VCL accelerated four momentum classes enabled.
Thus, a speed-up of about a factor of three is observed, which falls significantly short of the
theoretical factor of eight for double precision arithmetics with 512 bit wide CPU vectorization.

The implemented method discussed so far vectorizes calculations for each individual event.
Given the SoA data layout of PEPPER, see App. D, it is straightforward to study a different way
to vectorize the code, namely to vectorize calculations across several events. This eliminates
both disadvantages discussed above: It scales arbitrarily with the size of the CPU vectors, as
long as we set the event batch size to some integer multiple of the CPU vector size (measured
in double-precision lanes, i.e. multiples of 64 bit). Also, all operations are fully parallel, as
the calculations for the events are completely independent from one another. It can therefore
be expected that more significant speed-ups can be achieved. Ideally, if the overhead is neg-
ligible, the speed-up is equal to the number of CPU double-precision lanes. As a preliminary
test, we port the evaluation of the three gluon vertex to use vector intrinsics via the Highway
library [103], which supports intrinsics on most common platforms.

We again measure the time for the evaluation of the three gluon vertices in pp — ttjjjj
production, on the same Intel Xeon Gold 6430 machine, which supports AVX-512 intrinsics (8
lanes), but also AVX2 intrinsics (4 lanes) and SSE4 intrinsics (2 lanes), such that we can study
the scaling with the number of lanes. In addition, we measure it for an Apple M2 Pro chip
with ARM NEON intrinsics (2 lanes), to establish the portability advantage of the Highway
library as compared to VCL, which does not support ARM and does not plan to do so [92].
To calculate a speed-up, we divide by the time needed on the respective chip when disabling
Highway’s use of intrinsics (the operators are then defined by standard C++ code). Note that
each time measurement is repeated three times, and then the average is used. We only find
small variations across the repetitions which are irrelevant for the present discussion.

25

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081

e SciPost Phys. 17, 081 (2024)

Figure 11 shows the achieved speed-ups versus the number of lanes for the three gluon
vertex evaluation time for the various vector intrinsics used. While the speed-up is nearly ideal
in the 2-lane case, we find speed-ups of 3.8 and 6.9 for the 4- and 8-lane cases, respectively,
indicating that overheads become a relevant factor, possibly exacerbated by a reduction of the
clock-speed in the AVX-512 case [104]. However, we still get close to the ideal speed-up in all
tests and therefore deem this a successful demonstration that PEPPER can be vectorized in this
manner, with only minor modifications that can be implemented on a kernel-to-kernel basis.
The only drawback so far is that in our initial implementation for this demonstration, we lose
readability and maintainability of the kernel code because we decompose the calculation of
the four currents into its 4 real and 4 imaginary components instead of relying on operators
that work directly with the complex currents and four momenta, thus losing the encapsulation
of the details of the calculation. We leave it to future work and applications to determine if
this is a compromise worth making, or to find a way to wrap the operations in such a way as
to sufficiently retain the expressiveness of the kernel code, while still achieving comparable
speed-ups.

References

[1] A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rep. 504, 145
(2011), doi:10.1016/j.physrep.2011.03.005.

[2] J. M. Campbell et al., Event generators for high-energy physics experiments, SciPost Phys.
16, 130 (2024), doi:10.21468/SciPostPhys.16.5.130.

[3] J. Albrecht et al., A roadmap for HEP software and computing R&D for the 2020s, Comput.
Softw. Big Sci. 3, 7 (2019), doi:10.1007/s41781-018-0018-8.

[4] S. Amoroso et al., Challenges in Monte Carlo event generator software for high-luminosity
LHC, Comput. Softw. Big Sci. 5, 12 (2021), doi:10.1007/s41781-021-00055-1.

[5] E. Yazgan et al., HL-LHC computing review stage-2, common software projects: Event gen-
erators, (arXiv preprint) doi:10.48550/arXiv.2109.14938.

[6] G.Amadio et al., GeantV: Results from the prototype of concurrent vector particle transport
simulation in HEP, Comput. Softw. Big Sci. 5, 3 (2021), doi:10.1007/s41781-020-00048-
6.

[7] S. Lantz et al., Speeding up particle track reconstruction using a parallel Kalman filter
algorithm, J. Instrum. 15, P09030 (2020), doi:10.1088/1748-0221/15/09/P09030.

[8] A. Bocci, V. Innocente, M. Kortelainen, E Pantaleo and M. Rovere, Heterogeneous recon-
struction of tracks and primary vertices with the CMS pixel tracker, Front. Big Data 3,
601728 (2020), doi:10.3389/fdata.2020.601728.

[9] G. Aad et al., AtlFast3: The next generation of fast simulation in ATLAS, Comput. Softw.
Big Sci. 6, 7 (2022), doi:10.1007/s41781-021-00079-7.

[10] S.C. Tognini, P Canal, T. M. Evans, G. Lima, A. L. Lund, S. R. Johnson, S. Y. Jun, V. R. Pas-
cuzzi and P K. Romano, Celeritas: GPU-accelerated particle transport for detector simula-
tion in high energy physics experiments, (arXiv preprint) doi:10.48550/arXiv.2203.09467.

[11] P Skands, Computational scientists should consider climate impacts and grant agencies
should reward them, Nat. Rev. Phys. 5, 137 (2023), doi:10.1038/s42254-023-00563-6.

26

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081
https://doi.org/10.1016/j.physrep.2011.03.005
https://doi.org/10.21468/SciPostPhys.16.5.130
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-021-00055-1
https://doi.org/10.48550/arXiv.2109.14938
https://doi.org/10.1007/s41781-020-00048-6
https://doi.org/10.1007/s41781-020-00048-6
https://doi.org/10.1088/1748-0221/15/09/P09030
https://doi.org/10.3389/fdata.2020.601728
https://doi.org/10.1007/s41781-021-00079-7
https://doi.org/10.48550/arXiv.2203.09467
https://doi.org/10.1038/s42254-023-00563-6

e SciPost Phys. 17, 081 (2024)

[12] O. Mattelaer and K. Ostrolenk, Speeding up MadGraph5 aMC@NLO, Eur. Phys. J. C 81,
435 (2021), doi:10.1140/epjc/s10052-021-09204-7.

[13] E. Bothmann, A. Buckley, I. A. Christidi, C. Giitschow, S. Héche, M. Knobbe, T. Martin
and M. Schonherr, Accelerating LHC event generation with simplified pilot runs and fast
PDFs, Eur. Phys. J. C 82, 1128 (2022), doi:10.1140/epjc/s10052-022-11087-1.

[14] E. Bothmann, T Janfen, M. Knobbe, T. Schmale and S. Schumann, Explor-
ing phase space with neural importance sampling, SciPost Phys. 8, 069 (2020),
doi:10.21468/SciPostPhys.8.4.069.

[15] C. Gao, J. Isaacson and C. Krause, i-flow: High-dimensional integration and sampling with
normalizing flows, Mach. Learn.: Sci. Technol. 1, 045023 (2020), doi:10.1088/2632-
2153 /abab62.

[16] C. Gao, S. Hoche, J. Isaacson, C. Krause and H. Schulz, Event generation with normalizing
flows, Phys. Rev. D 101, 076002 (2020), doi:10.1103/PhysRevD.101.076002.

[17] T. Heimel, R. Winterhalder, A. Butter, J. Isaacson, C. Krause, E Maltoni, O. Mattelaer
and T. Plehn, MadNIS - Neural multi-channel importance sampling, SciPost Phys. 15, 141
(2023), do0i:10.21468/SciPostPhys.15.4.141.

[18] A. Butter et al., Machine learning and LHC event generation, SciPost Phys. 14, 079 (2023),
doi:10.21468/SciPostPhys.14.4.079.

[19] T. Heimel, N. Huetsch, FE Maltoni, O. Mattelaer, T. Plehn and R. Winterhalder, The MadNIS
reloaded, SciPost Phys. 17, 023 (2024), doi:10.21468/SciPostPhys.17.1.023.

[20] E. Bothmann, T. Childers, W. Giele, E Herren, S. Hoche, J. Isaacson, M. Knobbe and R.
Wang, Efficient phase-space generation for hadron collider event simulation, SciPost Phys.
15, 169 (2023), doi:10.21468/SciPostPhys.15.4.169.

[21] R. Frederix, S. Frixione, S. Prestel and P Torrielli, On the reduction of negative
weights in MC@NLO-type matching procedures, J. High Energy Phys. 07, 238 (2020),
doi:10.1007/JHEP07(2020)238.

[22] K. Danziger, S. Hoche and E Siegert, Reducing negative weights in Monte Carlo event gen-
eration with Sherpa, (arXiv preprint) doi:10.48550/arXiv.2110.15211.

[23] J. M. Campbell, S. Hoche and C. T. Preuss, Accelerating LHC phenomenology with analytic
one-loop amplitudes, Eur. Phys. J. C 81, 1117 (2021), doi:10.1140/epjc/s10052-021-
09885-0.

[24] K. Danziger, T. JanRen, S. Schumann and E Siegert, Accelerating Monte Carlo event gener-
ation — rejection sampling using neural network event-weight estimates, SciPost Phys. 12,
164 (2022), doi:10.21468/SciPostPhys.12.5.164.

[25] D. Maitre and H. Truong, A factorisation-aware matrix element emulator, J. High Energy
Phys. 11, 066 (2021), doi:10.1007/JHEP11(2021)066.

[26] D. Maitre and H. Truong, One-loop matrix element emulation with factorisation awareness,
J. High Energy Phys. 05, 159 (2023), doi:10.1007 /JHEP05(2023)159.

[27] T. Janfen, D. Maitre, S. Schumann, E Siegert and H. Truong, Unweighting multijet
event generation using factorisation-aware neural networks, SciPost Phys. 15, 107 (2023),
doi:10.21468/SciPostPhys.15.3.107.

27

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081
https://doi.org/10.1140/epjc/s10052-021-09204-7
https://doi.org/10.1140/epjc/s10052-022-11087-1
https://doi.org/10.21468/SciPostPhys.8.4.069
https://doi.org/10.1088/2632-2153/abab62
https://doi.org/10.1088/2632-2153/abab62
https://doi.org/10.1103/PhysRevD.101.076002
https://doi.org/10.21468/SciPostPhys.15.4.141
https://doi.org/10.21468/SciPostPhys.14.4.079
https://doi.org/10.21468/SciPostPhys.17.1.023
https://doi.org/10.21468/SciPostPhys.15.4.169
https://doi.org/10.1007/JHEP07(2020)238
https://doi.org/10.48550/arXiv.2110.15211
https://doi.org/10.1140/epjc/s10052-021-09885-0
https://doi.org/10.1140/epjc/s10052-021-09885-0
https://doi.org/10.21468/SciPostPhys.12.5.164
https://doi.org/10.1007/JHEP11(2021)066
https://doi.org/10.1007/JHEP05(2023)159
https://doi.org/10.21468/SciPostPhys.15.3.107

e SciPost Phys. 17, 081 (2024)

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

W. T. Giele, G. C. Stavenga and J. Winter, Thread-scalable evaluation of multi-jet observ-
ables, Eur. Phys. J. C 71, 1703 (2011), doi:10.1140/epjc/s10052-011-1703-5.

K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, Calculation of HELAS
amplitudes for QCD processes using graphics processing unit (GPU), Eur. Phys. J. C 70, 513
(2010), doi:10.1140/epjc/s10052-010-1465-5.

K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, Fast calculation of
HELAS amplitudes using graphics processing unit (GPU), Eur. Phys. J. C 66, 477 (2010),
doi:10.1140/epjc/s10052-010-1276-8.

K. Hagiwara, J. Kanzaki, Q. Li, N. Okamura and T. Stelzer, Fast computation of Mad-
Graph amplitudes on graphics processing unit (GPU), Eur. Phys. J. C 73, 2608 (2013),
doi:10.1140/epjc/s10052-013-2608-2.

E. Bothmann, W. Giele, S. Hoche, J. Isaacson and M. Knobbe, Many-gluon tree ampli-
tudes on modern GPUs: A case study for novel event generators, SciPost Phys. Codebases 3
(2022), doi:10.21468/SciPostPhysCodeb.3.

E. Bothmann, W. Giele, S. Hoche, J. Isaacson and M. Knobbe, Codebase release 1.0 for
BlockGen, SciPost Phys. Codebases 3-r1.0 (2022), doi:10.21468/SciPostPhysCodeb.3-
rl.0.

A. Valassi, S. Roiser, O. Mattelaer and S. Hageboeck, Design and engineering of a simplified
workflow execution for the MG5aMC event generator on GPUs and vector CPUs, Eur. Phys.
J. Web Conf. 251, 03045 (2021), doi:10.1051/epjconf/202125103045.

A. Valassi, T. Childers, L. Field, S. Hageboeck, W. Hopkins, O. Mattelaer, N. Nichols,
S. Roiser and D. Smith, Developments in performance and portability for Mad-
Graph5_aMC@NLO, Proc. Sci. 414, 212 (2022), doi:10.22323/1.414.0212.

E. Bothmann, J. Isaacson, M. Knobbe, S. Hoche and W. Giele, QCD tree amplitudes
on modern GPUs: A case study for novel event generators, Proc. Sci. 414, 222 (2022),
doi:10.22323/1.414.0222.

A. Valassi et al., Speeding up Madgraph5 aMC@NLO through CPU vectorization and GPU of-
floading: Towards a first alpha release, (arXiv preprint) doi:10.48550/arXiv.2303.18244.

S. Carrazza, J. Cruz-Martinez, M. Rossi and M. Zaro, MadFlow: Towards the automation
of Monte Carlo simulation on GPU for particle physics processes, Eur. Phys. J. Web Conf.
251, 03022 (2021), doi:10.1051/epjconf/202125103022.

S. Carrazza, J. Cruz-Martinez, M. Rossi and M. Zaro, MadFlow: Automating Monte
Carlo simulation on GPU for particle physics processes, Eur. Phys. J. C 81, 656 (2021),
doi:10.1140/epjc/s10052-021-09443-8.

S. Hoche, S. Prestel and H. Schulz, Simulation of vector boson plus many jet
final states at the high luminosity LHC, Phys. Rev. D 100, 014024 (2019),
doi:10.1103/PhysRevD.100.014024.

E. Bothmann, T. Childers, C. Guetschow, S. Hoche, P Hovland, J. Isaacson, M. Knobbe
and R. Latham, Efficient precision simulation of processes with many-jet final states at the
LHC, Phys. Rev. D 109, 014013 (2024), do0i:10.1103/PhysRevD.109.014013.

E A. Berends and W. Giele, The six-gluon process as an example of Weyl-van der Waerden
spinor calculus, Nucl. Phys. B 294, 700 (1987), doi:10.1016/0550-3213(87)90604-3.

28

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081
https://doi.org/10.1140/epjc/s10052-011-1703-5
https://doi.org/10.1140/epjc/s10052-010-1465-5
https://doi.org/10.1140/epjc/s10052-010-1276-8
https://doi.org/10.1140/epjc/s10052-013-2608-2
https://doi.org/10.21468/SciPostPhysCodeb.3
https://doi.org/10.21468/SciPostPhysCodeb.3-r1.0
https://doi.org/10.21468/SciPostPhysCodeb.3-r1.0
https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212
https://doi.org/10.22323/1.414.0222
https://doi.org/10.48550/arXiv.2303.18244
https://doi.org/10.1051/epjconf/202125103022
https://doi.org/10.1140/epjc/s10052-021-09443-8
https://doi.org/10.1103/PhysRevD.100.014024
https://doi.org/10.1103/PhysRevD.109.014013
https://doi.org/10.1016/0550-3213(87)90604-3

e SciPost Phys. 17, 081 (2024)

[42] V. Del Duca, A. Frizzo and E Maltoni, Factorization of tree QCD amplitudes in the high-
energy limit and in the collinear limit, Nucl. Phys. B 568, 211 (2000), doi:10.1016/S0550-
3213(99)00657-4.

[43] V. Del Duca, L. Dixon and E Maltoni, New color decompositions for gauge amplitudes at
tree and loop level, Nucl. Phys. B 571, 51 (2000), doi:10.1016/S0550-3213(99)00809-3.

[44] T. Melia, Dyck words and multiquark primitive amplitudes, Phys. Rev. D 88, 014020
(2013), doi:10.1103/PhysRevD.88.014020.

[45] T. Melia, Dyck words and multi-quark amplitudes, Proc. Sci. 197, 031 (2014),
doi:10.22323/1.197.0031.

[46] H.Johansson and A. Ochirov, Color-kinematics duality for QCD amplitudes, J. High Energy
Phys. 01, 170 (2016), doi:10.1007/JHEP01(2016)170.

[47] T. Melia, Proof of a new colour decomposition for QCD amplitudes, J. High Energy Phys.
12, 001 (2015), doi:10.1007/JHEP12(2015)107.

[48] M. Dinsdale, M. Ternick and S. Weinzierl, A comparison of efficient methods for the compu-
tation of Born gluon amplitudes, J. High Energy Phys. 03, 056 (2006), doi:10.1088/1126-
6708/2006/03/056.

[49] C.Duhr, S. Hoche and E Maltoni, Color-dressed recursive relations for multi-parton ampli-
tudes, J. High Energy Phys. 08, 062 (2006), doi:10.1088/1126-6708/2006/08/062.

[50] S. Badger, B. Biedermann, L. Hackl, J. Plefka, T. Schuster and P Uwer, Com-
paring efficient computation methods for massless QCD tree amplitudes: Closed an-
alytic formulas versus Berends-Giele recursion, Phys. Rev. D 87, 034011 (2013),
doi:10.1103/PhysRevD.87.034011.

[51] E A. Berends and W. T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys.
B 306, 759 (1988), doi:10.1016/0550-3213(88)90442-7.

[52] E A. Berends, W. T. Giele and H. Kuijf, Exact expressions for processes involving a vec-
tor boson and up to five partons, Nucl. Phys. B 321, 39 (1989), do0i:10.1016/0550-
3213(89)90242-3.

[53] E A. Berends, H. Kuijf, B. Tausk and W. T. Giele, On the production of a W and jets at
hadron colliders, Nucl. Phys. B 357, 32 (1991), doi:10.1016/0550-3213(91)90458-A.

[54] E.Byckling and K. Kajantie, n-particle phase space in terms of invariant momentum trans-
fers, Nucl. Phys. B 9, 568 (1969), doi:10.1016/0550-3213(69)90271-5.

[55] E James, Monte-Carlo phase space, Tech. Rep. CERN-68-15, CERN, Geneva, Switzerland
(1968), doi:10.5170/CERN-1968-015.

[56] A. Buckley, J. Ferrando, S. Lloyd, K. Nordstrom, B. Page, M. Riifenacht, M. Schonherr
and G. Watt, LHAPDF6: Parton density access in the LHC precision era, Eur. Phys. J. C 75,
132 (2015), doi:10.1140/epjc/s10052-015-3318-8.

[57] R. Kleiss and R. Pittau, Weight optimization in multichannel Monte Carlo, Comput. Phys.
Commun. 83, 141 (1994), doi:10.1016/0010-4655(94)90043-4.

[58] M.L. Mangano and S. J. Parke, Multi-parton amplitudes in gauge theories, Phys. Rep. 200,
301 (1991), doi:10.1016/0370-1573(91)90091-Y.

29

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081
https://doi.org/10.1016/S0550-3213(99)00657-4
https://doi.org/10.1016/S0550-3213(99)00657-4
https://doi.org/10.1016/S0550-3213(99)00809-3
https://doi.org/10.1103/PhysRevD.88.014020
https://doi.org/10.22323/1.197.0031
https://doi.org/10.1007/JHEP01(2016)170
https://doi.org/10.1007/JHEP12(2015)107
https://doi.org/10.1088/1126-6708/2006/03/056
https://doi.org/10.1088/1126-6708/2006/03/056
https://doi.org/10.1088/1126-6708/2006/08/062
https://doi.org/10.1103/PhysRevD.87.034011
https://doi.org/10.1016/0550-3213(88)90442-7
https://doi.org/10.1016/0550-3213(89)90242-3
https://doi.org/10.1016/0550-3213(89)90242-3
https://doi.org/10.1016/0550-3213(91)90458-A
https://doi.org/10.1016/0550-3213(69)90271-5
https://doi.org/10.5170/CERN-1968-015
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1016/0010-4655(94)90043-4
https://doi.org/10.1016/0370-1573(91)90091-Y

e SciPost Phys. 17, 081 (2024)

[59] H. C. Edwards, C. R. Trott and D. Sunderland, Kokkos: Enabling manycore performance
portability through polymorphic memory access patterns, J. Parallel Distrib. Comput. 74,
3202 (2014), doi:10.1016/j.jpdc.2014.07.003.

[60] C.R.Trott et al., Kokkos 3: Programming model extensions for the exascale era, IEEE Trans.
Parallel Distrib. Syst. 33, 805 (2022), doi:10.1109/TPDS.2021.3097283.

[61] Message Passing Interface Forum, MPI: A message-passing interface standard version 4.0
(2021), https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf.

[62] A.Buckley, P Ilten, D. Konstantinov, L. Lonnblad, J. Monk, W. Pokorski, T. Przedzinski and
A. Verbytskyi, The HepMC3 event record library for Monte Carlo event generators, Comput.
Phys. Commun. 260, 107310 (2021), doi:10.1016/j.cpc.2020.107310.

[63] C. Bierlich et al., Robust independent validation of experiment and theory: Rivet version 3,
SciPost Phys. 8, 026 (2020), doi:10.21468/SciPostPhys.8.2.026.

[64] J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun.
176, 300 (2007), doi:10.1016/j.cpc.2006.11.010.

[65] J. Butterworth et al., Les Houches 2013: Physics at TeV colliders: Standard Model working
group report, (arXiv preprint) doi:10.48550/arXiv.1405.1067.

[66] The HDF group, Hierarchical data format, version 5 (2022), https://www.hdfgroup.org/
HDF5/.

[67] HighFive - HDF5 header-only C++ library, https://bluebrain.github.io/HighFive/.

[68] T. Gleisberg, S. Hoche, E Krauss, M. Schonherr, S. Schumann, E Siegert and J.
Winter, Event generation with SHERPA 1.1, J. High Energy Phys. 02, 007 (2009),
doi:10.1088/1126-6708/2009/02/007.

[69] E. Bothmann et al., Event generation with Sherpa 2.2, SciPost Phys. 7, 034 (2019),
doi:10.21468/SciPostPhys.7.3.034.

[70] T. Sjostrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159
(2015), do0i:10.1016/j.cpc.2015.01.024.

[71] C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3, SciPost
Phys. Codebases 8 (2022), doi:10.21468/SciPostPhysCodeb.8.
C. Bierlich et al., Codebase release 8.3 for PYTHIA, SciPost Phys. Codebases 8-r8.3 (2022),
doi:10.21468/SciPostPhysCodeb.8-r8.3.

[72] E Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0, a matrix element generator in C++, J.
High Energy Phys. 02, 044 (2002), doi:10.1088/1126-6708/2002/02/044.

[73] S. Schumann and E Krauss, A parton shower algorithm based on Catani-Seymour
dipole factorisation, J. High Energy Phys. 03, 038 (2008), doi:10.1088/1126-
6708/2008/03/038.

[74] J.-C. Winter, E Krauss and G. Soff, A modified cluster-hadronisation model, Eur. Phys. J. C
36, 381 (2004), doi:10.1140/epjc/s2004-01960-8.

[75] T. Sjostrand and M. van Zijl, A multiple-interaction model for the event structure in hadron
collisions, Phys. Rev. D 36, 2019 (1987), doi:10.1103/PhysRevD.36.2019.

30

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1109/TPDS.2021.3097283
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1016/j.cpc.2020.107310
https://doi.org/10.21468/SciPostPhys.8.2.026
https://doi.org/10.1016/j.cpc.2006.11.010
https://doi.org/10.48550/arXiv.1405.1067
https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
https://bluebrain.github.io/HighFive/
https://doi.org/10.1088/1126-6708/2009/02/007
https://doi.org/10.21468/SciPostPhys.7.3.034
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.21468/SciPostPhysCodeb.8
https://doi.org/10.21468/SciPostPhysCodeb.8-r8.3
https://doi.org/10.1088/1126-6708/2002/02/044
https://doi.org/10.1088/1126-6708/2008/03/038
https://doi.org/10.1088/1126-6708/2008/03/038
https://doi.org/10.1140/epjc/s2004-01960-8
https://doi.org/10.1103/PhysRevD.36.2019

e SciPost Phys. 17, 081 (2024)

[76] A. De Roeck et al., HERA and the LHC: A workshop on the implications of HERA for LHC
physics: Proceedings part A, CERN, Geneva, Switzerland, ISBN 9789290832652 (2005),
doi:10.5170/CERN-2005-014 (2005).

[77] R. D. Ball et al., Parton distributions for the LHC run II, J. High Energy Phys. 04, 040
(2015), do0i:10.1007/JHEP04(2015)040.

[78] A. N. Kolmogorov, Sulla determinazione empirica di una legge didistribuzione, G. Ist. Ital.
Attuari 4, 89 (1933).

[79] N. V. Smirnov, On the estimation of the discrepancy between empirical curves of distribution
for two independent samples, Bull. Math. L'Université Mosc. 2 (1939).

[80] E J. Massey, Distribution table for the deviation between two sample cumulatives, Ann.
Math. Stat. 23, 435 (1952).

[81] E. Bothmann and M. Knobbe, Profiling results for electron-positron plus jets production
with Pepper, Zenodo (2024), doi:10.5281/zenodo.13283981.

[82] E.Bothmann and M. Knobbe, Profiling results for top pair plus jets production with Pepper,
Zenodo (2024), doi:10.5281/zenodo.13283966.

[83] T. Gleisberg and S. Hoche, Comix, a new matrix element generator, J. High Energy Phys.
12, 039 (2008), doi:10.1088/1126-6708/2008/12/039.

[84] Perlmutter computing system, NERSC, Berkeley, USA (2020), https://www.nersc.gov/
systems/perlmutter.

[85] Leonardo computing system, CINECA, Bologna, Italy (2022), https://
leonardo-supercomputer.cineca.eu.

[86] Juwels computing system, Forschungszentrum Jiilich, Jiilich, Germany (2018), https://
www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels.

[87] Frontier computing system, OLCE Oak Ridge, USA (2022), https://www.olcf.ornl.gov/
frontier.

[88] LUMI computing systema, EuroHPC JU, Luxembourg city, Luxembourg (2023), https://
lumi-supercomputer.eu.

[89] Adastra computing system, GENCI, Paris, France (2007), https://genci.link/en/
centre-informatique-national-de-lenseignement-superieur-cines.

[90] Sunspot testbed, ALCE Argonne, USA (2023), https://www.alcf.anl.gov/news/
argonne-s-new-sunspot-testbed-provides-ramp-aurora-exascale-supercomputer.

[91] Aurora computing system, ALCFE, Argonne, USA (2017), https://www.alcf.anl.gov/aurora.
[92] A. Fog, Vector class library, https://github.com/vectorclass/.

[93] Polaris testbed ALCE, Argonne, USA (2022), https://www.alcf.anl.gov/polaris.

[

94] G. Ossola, C. G. Papadopoulos and R. Pittau, CutTools: A program implementing the OPP
reduction method to compute one-loop amplitudes, J. High Energy Phys. 03, 042 (2008),
doi:10.1088/1126-6708/2008/03/042.

[95] E Cascioli, P Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys.
Rev. Lett. 108, 111601 (2012), doi:10.1103/PhysRevLett.108.111601.

31

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081
https://doi.org/10.5170/CERN-2005-014
https://doi.org/10.1007/JHEP04(2015)040
https://doi.org/10.5281/zenodo.13283981
https://doi.org/10.5281/zenodo.13283966
https://doi.org/10.1088/1126-6708/2008/12/039
https://www.nersc.gov/systems/perlmutter
https://www.nersc.gov/systems/perlmutter
https://leonardo-supercomputer.cineca.eu
https://leonardo-supercomputer.cineca.eu
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels
https://www.olcf.ornl.gov/frontier
https://www.olcf.ornl.gov/frontier
https://lumi-supercomputer.eu
https://lumi-supercomputer.eu
https://genci.link/en/centre-informatique-national-de-lenseignement-superieur-cines
https://genci.link/en/centre-informatique-national-de-lenseignement-superieur-cines
https://www.alcf.anl.gov/news/argonne-s-new-sunspot-testbed-provides-ramp-aurora-exascale-supercomputer
https://www.alcf.anl.gov/news/argonne-s-new-sunspot-testbed-provides-ramp-aurora-exascale-supercomputer
https://www.alcf.anl.gov/aurora
https://github.com/vectorclass/
https://www.alcf.anl.gov/polaris
https://doi.org/10.1088/1126-6708/2008/03/042
https://doi.org/10.1103/PhysRevLett.108.111601

e SciPost Phys. 17, 081 (2024)

[96] E Buccioni, J.-N. Lang, J. M. Lindert, P Maierhofer, S. Pozzorini, H. Zhang and M. E Zoller,
OpenLoops 2, Eur. Phys. J. C 79, 866 (2019), doi:10.1140/epjc/s10052-019-7306-2.

[97] J. Johnson, Rethinking floating point for deep Ilearning, (arXiv preprint)
doi:10.48550/arXiv.1811.01721.

[98] T.J. Dekker, A floating-point technique for extending the available precision, Numer. Math.
18, 224 (1971).doi:10.1007/BF01397083.

[99] Y. Hida, X. S. Li and D. H. Bailey, Quad-double arithmetic: Algorithms, implementation,
and application, in 15th IEEE symposium on computer arithmetic, IEEE Computer Society,
Washington D.C., USA, ISBN 9780769511504 (2001).

[100] Y. Hida, X. S. Li and D. H. Bailey, Algorithms for quad-double precision floating point
arithmetic, in ARITH ’01: Proceedings of the 15th IEEE symposium on computer arithmeti,
IEEE Computer Society, Washington D.C., USA, ISBN 9780769511504 (2001).

[101] K. Clark, D. Howarth, J. Tu, M. Wagner and E. Weinberg, Maximizing the bang per bit,
Proc. Sci. 430, 338 (2023), doi:10.22323/1.430.0338.

[102] High-energy physics center for computational excellence, Argonne National Laboratory,
Lemont, USA, https://www.anl.gov/hep-cce.

[103] J. Wassenberg et al., Highway, https://github.com/google/highway.

[104] D. Lemire, The dangers of AVX-512 throttling: A 3% impact on
Xeon Gold processors? (2018), https://lemire.me/blog/2018/08/15/
the-dangers-of-avx-512-throttling-a-3-impact/.

32

https://scipost.org
https://scipost.org/SciPostPhys.17.3.081
https://doi.org/10.1140/epjc/s10052-019-7306-2
https://doi.org/10.48550/arXiv.1811.01721
https://doi.org/10.1007/BF01397083
https://doi.org/10.22323/1.430.0338
https://www.anl.gov/hep-cce
https://github.com/google/highway
https://lemire.me/blog/2018/08/15/the-dangers-of-avx-512-throttling-a-3-impact/
https://lemire.me/blog/2018/08/15/the-dangers-of-avx-512-throttling-a-3-impact/

	Introduction
	Basic algorithms
	Tree-level amplitudes
	Phase-space integration

	Event generation framework
	Summation of partonic channels and running coupling
	Helicity integration
	Event data layout and parallel event generation
	Portability solutions
	Event output

	Validation
	Performance
	Baseline CPU performance
	Performance on different hardware
	Scaling to many nodes

	Summary and outlook
	Tabulated performance results
	Runtime distribution
	Parton-level validation
	Data layouts and CPU performance
	CPU vectorization
	References

