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Abstract

We propose a framework to design and optimize generic photonic quantum circuits com-
posed of Gaussian objects (pure and mixed Gaussian states, Gaussian unitaries, Gaus-
sian channels, Gaussian measurements) as well as non-Gaussian effects such as photon-
number-resolving measurements. In this framework, we parametrize a phase space rep-
resentation of Gaussian objects using elements of the symplectic group (or the unitary
or orthogonal group in special cases), and then we transform it into the Fock representa-
tion using a single linear recurrence relation that computes the Fock amplitudes of any
Gaussian object recursively. We also compute the gradient of the Fock amplitudes with
respect to phase space parameters by differentiating through the recurrence relation.
We can then use Riemannian optimization on the symplectic group to optimize M-mode
Gaussian objects, avoiding the need to commit to particular realizations in terms of fun-
damental gates. This allows us to “mod out” all the different gate-level implementations
of the same circuit, which now can be chosen after the optimization has completed. This
can be especially useful when looking to answer general questions, such as bounding the
value of a property over a class of states or transformations, or when one would like to
worry about hardware constraints separately from the circuit optimization step. Finally,
we make our framework extendable to non-Gaussian objects that can be written as lin-
ear combinations of Gaussian ones, by explicitly computing the change in global phase
when states undergo Gaussian transformations. We implemented all of these methods in
the freely available open-source library MrMustard [1], which we use in three examples
to optimize the 216-mode interferometer in Borealis, and 2- and 3-modes circuits (with
Fock measurements) to produce cat states and cubic phase states.
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1 Introduction

Gaussian quantum mechanics [2–4] is a subset of quantum mechanics that finds applications
in several fields of quantum physics, such as quantum optics [5], quantum key distribution [6],
optomechanical systems [7], quantum chemistry [8], condensed matter systems [9]. In the
context of quantum optics, many of the available states (e.g. coherent, squeezed, thermal),
transformations (e.g. beam splitter, squeezer, displacement, attenuator, amplifier), and mea-
surements (e.g. homodyne, heterodyne) are Gaussian, i.e. characterized by a Gaussian Wigner
function. Gaussian objects are easy to simulate, but in order to access a broader (in fact, uni-
versal) set of states and transformations, one needs to include non-Gaussian effects. One
way to take into account non-Gaussian effects (e.g. photon-number-resolving detection), is
to transform from the Gaussian phase space representation to the Fock space representation.
Hence, studying the Fock space representation of Gaussian objects plays an important role in
optical quantum simulation and optical quantum information processing [10–15].

The Fock space representation of Gaussian objects has been studied in different communi-
ties: in chemical physics, one studies vibronic transitions using the Hermite polynomials as a
computational tool [16–19], and the matrix elements of unitary Gaussian and non-Gaussian
transformations have been evaluated in [20] by using the multimode Bogoliubov transforma-
tion. In the mathematical physics context, these transformations correspond to the Bargmann-
Fock representation of the symplectic group (also known as a metaplectic representation or
oscillator representation), which we can understand as the Fock space representation of the
group of Gaussian transformations [21].

In [22], we introduced a method to compute the Fock space amplitudes of Gaussian unitary
transformations using a generating function. Part of the present work presents a unified picture
of all the Gaussian objects covering pure states, mixed states, and Gaussian channels as well.
While many libraries exist to simulate quantum optical circuits [23–30], and some of them
have automatic differentiation capabilities, ours is the first one to fully exploit the properties
of Gaussian quantum mechanics in Fock- and Phase-space while being differentiable. Thus,
we implemented all of the methods and algorithms derived here in the open-source library
MrMustard [1]. We showcase out methods by performing optimization on photonic circuits
directly. This allows us to generate interesting non-Gaussian states [31].

Besides an open-source library, we present three results, significantly extending what we
did in [22]: (i) In Sec. 3 we introduce a unified, differentiable recursive representation of
pure [11,32] and mixed Gaussian states [10,12,33], Gaussian unitaries [34,35] and Gaussian
channels in Fock space. We emphasize that while the results for states and unitary channels
were already known in the literature, the results for channels, are to the best of our knowl-
edge, presented here for the first time. (ii) In Sec. 4 we compute the global phase of the
composition of Gaussian operations, which allows our method to be extended to states and
transformations beyond the Gaussian ones as proposed in [36]. (iii) In Sec. 5 we show how
to perform a Riemannian optimization of M -modes Gaussian objects directly on the underly-
ing symmetry group, bypassing the need to decompose them into some arrangement of fun-
damental elements and therefore allowing us to optimize a Gaussian quantum circuit as an
entire block. Our method first focuses on the optimization of the Gaussian objects and their
associated symplectic matrices. We illustrate the utility of our methods and library by finding
simple Gaussian circuits for the heralded preparation of cat states with mean photon num-
ber 4, fidelity 99.38%, and success probability 7.39%. Similarly, we obtain cubic-phase states
with cubic-phase gate parameter γ= 0.3ħh and squeezing r = −1, fidelity 99.00%, and success
probability 0.06%. Finally, we also benchmark our Riemannian optimization method showing
that in non-Gaussian state preparation tasks it converges faster and with smaller variance than
Euclidean optimization over parameters of gate-decomposed circuits.
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We will adopt the following notation conventions. The transposition and Hermitian con-
jugation operations are denoted as ·T and ·†. We use boldface for vectors r and matrices S but
denote their components as ri and Si j respectively. We use 0M for the M × M null matrix, 0
for a zero vector, and 0 for a scalar zero. The single-mode vacuum state denotes as |0〉 and
the multimode vacuum state is |0〉. 1M denotes for the M ×M identity matrix. Given a vector
of integers n = (n1, . . . , nM ) we write n! =

∏M
i=1 ni!, |n〉 = |n1〉 ⊗ |n2〉 ⊗ . . .⊗ |nM 〉 and given

a complex or real vector α= (α1, . . . ,αM )T we write αn =
∏M

i=1α
ni
i and ∂ n

α =
∏M

i=1
∂ ni

∂ α
ni
i

. We

write H.c. for Hermitian conjugate term.

2 Gaussian formalism

2.1 Commutation relations

Given an M -mode quantum continuous variable system, the field operators (i.e. annihila-
tion and creation operators) a j , a†

j ; j ∈ {1,2, . . . , M} satisfy the canonical commutation re-
lation [37]:

[ai , a†
j ] = δi j , [ai , a j] = [a

†
i , a†

j ] = 0 . (1)

We can express these relations in a compact way by defining a vector of annihilation and
creation operators z = (a1, . . . , aM , a†

1, . . . , a†
M ), so that we can write

[zi , z†
j ] = Zi j , (2)

with

Z =

�

1M 0M
0M −1M

�

. (3)

An alternative way to describe continuous-variable systems is obtained by defining the hermi-
tian position q and momentum p operators:

q j =
Ç

ħh
2(a

†
j + a j) , p j = i

Ç

ħh
2(a

†
j − a j) . (4)

We can group these operators into a quadrature vector r = (q1, . . . , qM , p1, . . . , pM ) so that r
is related to z by the unitary matrix W :

r =
p

ħhW z , (5)

where

W =
1
p

2

�

1M 1M
−i1M i1M

�

, (6)

and i =
p
−1 is the imaginary unit.

Combining Eq. (2) and Eq. (5), we have:

[r j , rk] = ħh(W †ZW) jk = iħhΩ jk , (7)

where Ω is the skew-symmetric matrix:

Ω=

�

0M 1M
−1M 0M

�

=

�

0 1
−1 0

�

⊗ 1M , (8)

which is central to the description of the symplectic group (see section 5). A brief summary of
properties of the symplectic group can be found in Appendix A.
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2.2 Gaussian states

A Gaussian state is any state whose characteristic functions and quasi-probability distributions
are Gaussian functions in phase space [37]. Some well-known examples are coherent states,
squeezed states, thermal states, and the vacuum state (which is the only state which is at the
same time Gaussian and a number eigenstate).

The characteristic function of a state with density matrix ρ is defined as:

χ(s ;ρ) = Tr(Dsρ) , (9)

where Ds = exp(−is TΩr/ħh) is the Weyl, or displacement, operator and s ∈ R2M is a real
vector in phase space.

For a Gaussian state we write the characteristic function in terms of its mean vector r̄ and
covariance matrix V as [38]

χ(s ;ρ) = exp
�

−1
2 s TΩT VΩs − i r̄ TΩs

�

, (10)

where

r̄i = 〈ri〉 , (11)

Vi j =
1
2
〈ri r j + r j ri〉 − r̄i r̄ j . (12)

Note that the covariance matrix V is a real, symmetric, positive definite matrix.
If we use the amplitude basis z, we find the mean vector µ̄ and the covariance matrix σ:

µ̄i = 〈zi〉=
1
p
ħh

�

W † r̄
�

i , (13)

σi j =
1
2
〈ziz

†
j + z jz

†
i 〉 − µ̄iµ̄

†
j =

1
ħh
(W †VW)i j . (14)

Compared with the real covariance matrix V , we denote the σ as the complex covariance
matrix.

In the remainder of this paper we will write the phase space description of a Gaussian
state as the pair (V , r̄ ) or (σ, µ̄) depending on which basis we use. For example, the vacuum
state |0〉, which satisfies a j|0〉 = 0, has a zero mean vector and covariance matrix V = ħh212 or
σ = 1

212.

2.3 Gaussian transformations

Gaussian unitary transformations are those that map Gaussian states to Gaussian states [38],
thus in the Schrödinger picture, an input Gaussian state ρ is mapped to an output Gaussian
state

ρ 7→ ρ′ = UGρU†
G . (15)

Gaussian unitaries have as generators polynomials of at most degree 2 in the quadratures (or
equivalently in the creation and annihilation operators).

In the Heisenberg picture a Gaussian unitary (parameterized by a 2M × 2M matrix S and
a real vector d with size 2M) transforms the quadrature operators as follows

r 7→ r ′ = U†
G r UG = Sr + d . (16)

Since r ′ is obtained from r by unitary conjugation, it must satisfy the canonical commutation
relations in Eq. (7). This implies that the matrix S satisfies

SΩST = Ω , (17)
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that is, S must be an element of the (real) symplectic group, S ∈ Sp(2M ,R).
An M -mode Gaussian unitary generated by a second-degree polynomial in the quadratures

can be decomposed into an M -mode displacement Dd and an M -mode unitary generated by
a strictly quadratic unitary that is responsible for the symplectic matrix appearing in Eq. (16)
and thus we can write [39]

UG =Dd U(S) , (18)

where Dd is the displacement operator, parametrized by a real vector d of size 2M . We can
also express the M -mode displacement operator as the tensor product of the single-mode dis-
placement operator, with a complex vector γ of size M . The relation between the vector d and
γ can be derived from Eq. (4):

d =
p

2ħh[ℜ(γ),ℑ(γ)] . (19)

The single-mode displacement operator is defined as

D(γ) = exp
�

γa† − γ∗a
�

. (20)

We will also give the definitions of other single-mode Gaussian unitaries, noting that the multi-
mode version is just the tensor product extension of their single-mode version.

The single-mode rotation operator

R(φ) = exp
�

iφa†a
�

, (21)

which has drot = 0 and

Srot =

�

cosφ − sinφ
sinφ cosφ

�

. (22)

The single-mode squeezing operator is defined as

S(ζ) = exp
�

1
2
ζ∗a2 −H.c.

�

, (23)

where ζ= reiδ, and it has dsq = 0 and

Ssq = Srot(δ/2)

�

e−r 0
0 er

�

Srot(δ/2)
T . (24)

An M -mode interferometer with Hilbert space operator [34]

W(J) = exp



i
M
∑

k,l=1

Jk,l a
†
kal



 , (25)

which has dintf = 0, and

Sintf =

�

ℜ(U) −ℑ(U)
ℑ(U) ℜ(U)

�

, (26)

where U = exp [iJ] is a unitary matrix (since J = J†).
Note that Sintf ∈ Sp(2n,R)∩O(2n)∼= U(n) where Sp(2n,R) is the symplectic group, O(2n)

is the orthogonal group and U(n) is the unitary group (cf. Appendix B of Serafini [38]).
A particular instance of an interferometer is the one beamsplitter, parametrized in terms

of transmission angle θ and a phase φ (the energy transmission is given by cos2 θ). In this
case we have

J = i

�

0 θ e−iφ

−θ eiφ 0

�

, U =

�

cosθ −e−iφ sinθ
eiφ sinθ cosθ

�

. (27)
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Note that our definition of interferometer immediately implies that W(J)|0〉= |0〉without any
ambiguity in the global phase of the state on the right hand side.

Gaussian unitaries transform the mean vector r̄ and the covariance matrix V of a Gaussian
state as [2]:

(V , r̄ ) 7→ (V ′, r̄ ′) = (SVST ,Sr̄ + d) . (28)

A deterministic Gaussian channel is the most general trace-preserving map between Gaussian
states. It is characterized by two matrices X , Y and a vector d [38]. The action of the channel
on a Gaussian state (V , r̄ ) is

(V , r̄ ) 7→ (XVX T + Y , X r̄ + d) , (29)

where the matrices X and Y need to satisfy

Y + i
ħh
2
Ω≥ i
ħh
2

XΩX T . (30)

More generally, the action of a Gaussian channel on the characteristic function of an arbitrary
state amounts to

χ(s) 7→ χ ′(s) = χ(ΩT X TΩs)exp
�

−1
2 s TΩT YΩs − idTΩs

�

. (31)

Note that unitary channels such as Eq. (28) are special cases of a Gaussian channels where
Y = 02M and X is symplectic. More generally, when X is not symplectic and thus the channel
is not unitary, the matrix Y represents added noise in the state.

Examples of single-mode Gaussian channels are the pure loss channel (defined in Eq.(5.77)
in the book [38]) by energy transmission 0≤ η≤ 1, which has

X =
p
η12 , Y = ħh2(1−η)12 , d = 0 , (32)

and the amplification channel (defined in Eq.(5.87) in the book [38]) with energy gain g ≥ 1,
which has

X =
p

g12 , Y = ħh2(g − 1)12 , d = 0 . (33)

An example of a multi-mode Gaussian channel is the lossy interferometer parametrized in
terms of a transmission matrix T with singular values bounded from above by 1. For this
channel, we find

X =

�

ℜ(T) −ℑ(T)
ℑ(T) ℜ(T)

�

, (34)

Y = ħh2
�

12M − XX T
�

, (35)

d = 0 . (36)

Note that in the case where T is unitary, then X is symplectic and orthogonal, and thus Y = 02M
recovering the results from the previous subsection.
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3 One recurrence relation to rule them all

We can write M -mode pure states, mixed states, unitaries, and channels in the Fock space
representation as

|ψ〉=
∑

k

ψk |k〉 , (37)

ρ =
∑

j ,k

ρ j ,k | j〉〈k| , (38)

U =
∑

j ,k

U j ,k | j〉〈k| , (39)

Φ[| j〉〈l|] =
∑

i,k

Φk,l,i, j |i〉〈k| , (40)

where the Fock space indices are expressed as a multi-index k = (k1, k2, . . . , kM ). We now
simplify the notation by considering the collections of amplitudesψk , ρ j ,k , U j ,k and Φi, j ,k,l as
instances of a tensor Gk where k is M -dimensional for pure states, 2M -dimensional for mixed
states and unitary transformations, and 4M -dimensional for channels.

One way to produce the Fock space amplitudes of a Gaussian object is to start from a gen-
erating function Γ (α) and then compute its derivatives. The generating function Γ (α) is also
known as the stellar function [40] or the Bargmann function [21]. To obtain the generating
function, one needs to contract each index of a Gaussian object with a rescaled multi-mode
coherent state

e
1
2 ||α||

2
|α〉 , (41)

where ||.|| denotes the vector 2-norm. For example, for a pure state, we have

Γψ(α) = e
1
2 ||α||

2
∑

k

ψk〈α∗|k〉=
∑

k

ψk
αk

p
k!

(42)

= cψ exp
�

αT bψ +
1
2
αT Aψα

�

, (43)

where Aψ is an M × M complex symmetric matrix, bψ is an M -dimensional complex vector
and cψ is the vacuum amplitude.

In the case of density matrices, we obtain an analogous exponential as in (42), except that
Aρ and bρ are of size 2M × 2M and 2M respectively. For unitaries, AU and bU are of size
2M × 2M and 2M , and for channels AΦ and bΦ are of size 4M × 4M and 4M , respectively.
Therefore, all Gaussian objects are characterized by a complex symmetric matrix A, a complex
vector b and a complex scalar c = G0, or conversely given valid A and b and c we can cal-
culate the coefficients Gk by computing derivatives of the appropriate order of the generating
function Γ (α):

Gk = G0
∂ k
αp
k!

exp
�

αT b+
1
2
αT Aα

�

�

�

�

�

α=0
. (44)

In this way we unify the calculation of the Fock space amplitudes of Gaussian objects into a
single method that works in all cases, depending on which triple (A, b, c) one is considering.

In practice (as we will do in the following sections), it is sufficient to apply this method
to the case of mixed states only, as the expressions split naturally thanks to the properties of
the Hermite polynomials (see Eq. (61) to (65)), and one obtains the case of Gaussian pure
states. For transformations, using the Choi-Jamiołkowski duality [41, 42] can treat channels
as mixed states, and if a channel is unitary, the expressions split in the same way as they do for
states (see Eq. (93) to (97)), and one obtains the case of Gaussian unitaries already treated in
Ref. [35].
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Multivariate derivatives of the exponential of a function can be computed with a linear
recurrence formula [35], and in the case the function is a polynomial of degree D, the recur-
rence relation has order D. In our case, the polynomial has degree 2, which means we can
write a linear recurrence relation of order 2 between the Fock space amplitudes:

Gk+1i
=

1
p

ki + 1

 

biGk +
∑

j

q

k jAi jGk−1 j

!

, (45)

with the vacuum amplitude initialized as G0 = c. In this recurrence relation, k+1i is the vector
k with the i-th element increased by 1 (and similarly for k − 1 j , where it is decreased by 1).
We refer to w =

∑

i ki as the weight of the index. In essence, the recurrence relation allows
us to write amplitudes of weight w+ 1 as linear combinations of amplitudes of weight w and
w − 1. By applying it repeatedly, one can reach any Fock space amplitude (in practice, one
eventually reaches a numerical precision horizon [43]).

3.1 Multidimensional Hermite polynomials

For reference, we recall the definition of the multidimensional Hermite polynomials as the
Taylor series of a multidimensional Gaussian function, which has an additional factor of 1p

k!
with respect to the Fock amplitudes:

KA(y , b) = exp
�

y T b+ 1
2 y T Ay

�

=
∑

k≥0

GA
k (b)

k!
yk . (46)

Note the sign of the quadratic term in the exponential, which can differ from other conventions.
In the last equation b ∈ Cℓ is a complex vector, A= AT ∈ Cℓ×ℓ is a complex symmetric matrix
and k ∈ Zℓ0 is a vector of non-negative integers. This notation makes it explicit that

�

ℓ
∏

i=1

�

∂

∂ yi

�ki
�

KA(y , b)

�

�

�

�

�

y=0

= GA
k (b) . (47)

These polynomials satisfy the recurrence relation

GA
k+1i
(b) = biG

A
k (b) +

M
∑

j=1

k jAi, jG
A
k−1 j
(b) , (48)

where 1i is a vector that has a 1 in the i-th entry and 0s elsewhere. Note that GA
0 (b) = 1,

GA
1i
(b) = bi and that GA

1i+1 j
(b) = bi b j + Ai j . The multidimensional Hermite polynomial is

related to the loop-hafnian function introduced in Ref. [44]which counts the number of perfect
matchings of weighted graphs, including self-loops. They are related as follows

GA
k (b) = lhaf(fdiag(Ak , bk)) , (49)

where fdiag fills the diagonal of the matrix in the first argument using the vector in the second
argument. Note that Ak is the matrix obtained from A by repeating its i-th row and column ki
times. Similarly, bk is the vector obtained from b by repeating its i-th entry ki times. Note that
when ki = 0 the relevant row and column of A and entry of b are deleted. The best known

methods to calculate the single loop-hafnian in Eq. (49) requires O(C3
Ç

∏ℓ
i=1(1+ ki)) steps

where C is the number of nonzero entries in the vector k [45].
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We will show below that the Fock representation of a pure Gaussian state, a mixed Gaussian
state, a Gaussian unitary, or a Gaussian channel can all be written as

c ×
GA

k (b)p
k!

, (50)

where c is a scalar, b is a vector of dimension ℓ, A is a square matrix of size ℓ×ℓ and k ∈ Zℓ≥0.
The integer ℓ equals M , 2M , 2M , 4M for pure states, mixed states, unitaries or channels on M
modes respectively.

Note that the quantity in Eq. (50) is potentially the ratio of two large numbers. In particular,
since this quantity represents a probability or a probability amplitude it should be bounded in
absolute value by 1. Thus it is often convenient, especially for numerical purposes, to introduce
renormalized multidimensional Hermite polynomials as

GA
k (b) = c ×

GA
k (b)p
k!

, (51)

which satisfy the recurrence relation in Eq. (45).
Using results from Ref. [22] we can also find the differential of the matrix elements:

dGA
k (b) =

[dc]
c

GA
k (b) +

ℓ
∑

i=1

[d bi]
Æ

kiGA
k−1i
(b) (52)

+
1
2

ℓ
∑

i, j=1

�

dAi, j

�
q

ki(k j −δi j)GA
k−1i−1 j

(b) .

We can use this relation to write a new differential formula for the loop-hafnian with arbitrary
repetitions that generalize the results in Ref. [46]

d [lhaf(fdiag(Ak , bk))] =
ℓ
∑

i=1

[d bi]kilhaf(fdiag(Ak−1i
, bk−1i

)) (53)

+ 1
2

ℓ
∑

i, j=1

[dAi, j]ki(ki −δi j)lhaf(fdiag(Ak−1i−1 j
, bk−1i−1 j

)) .

Note that in the limit of no loops b = 0 and no repetitions ki ∈ {0,1} the last equation re-
produces precisely Eq. (A12) of Ref. [46]. We note that one can obtain significant savings in
traversing the recursions relations of these quantities by carefully exploiting symmetries [47].

3.2 States

In this subsection, we show how to turn the symplectic representation of a Gaussian state
into the metaplectic or Fock space representation of the same object [21]. This follows the
developments in Refs. [10–13,32,33].

To compute the Fock space amplitudes of a Gaussian pure state we need the triple
(Aψ, bψ, cψ) where Aψ and bψ are M -dimensional. If the state is mixed, we need the triple
(Aρ, bρ, cρ) where Aρ and bρ are 2M -dimensional. We are now going to show how to obtain
these triples.

It is convenient to introduce the s−parametrized complex covariance matrix

σs = σ +
s
2
12M , (54)
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by definition σ0 ≡ σ and moreover we use the shorthand notation σ± ≡ σ±1.
We recall the results derived in Ref. [12]. An expression for the metaplectic representation

of the Gaussian state is

〈m|ρ|n〉= cρ ×
M
∏

s=1

∂
ns
αs
∂

ms
α∗s

p

ns!ms!
exp

�1
2 y T Aρ y + y T bρ

�

, (55)

where, relative to Eq. (47), we identified y =
�

α
α∗
�

, k = n ⊕m, ℓ = 2M and used the results
from Refs. [10,33,48] to write together with the definitions in Eqs. (13) and (14)

Aρ = PM

�

12M −σ−1
+

�

= PMσ−σ
−1
+ = PMσ

−1
+ σ− , (56)

bρ =
�

σ−1
+ µ̄

�∗
= PMσ

−1
+ µ̄ , (57)

cρ = 〈0|ρ|0〉=
exp

�

−1
2 µ̄

†σ−1
+ µ̄

�

p

det(σ+)
, (58)

PM =
�

0M 1M
1M 0M

�

, (59)

to finally write

〈m|ρ|n〉= cρ ×
G

Aρ
n⊕m(bρ)p

n!m!
. (60)

The mapσ 7→ σ−1
+ σ− in Eq. (56) is the Cayley transform [49,50]. In the case whereρ = |Ψ〉〈Ψ|

is a pure state it is easy to show that

Aρ = A∗ψ ⊕ Aψ , (61)

bρ = b∗ψ ⊕ bψ , (62)

and then

G
Aρ
n⊕m(bρ) = G

A∗
ψ
⊕Aψ

n⊕m (b∗ψ ⊕ bψ) (63)

= G
A∗
ψ

n (b
∗
ψ)× G

Aψ
m (bψ) (64)

= [G
Aψ
n (bψ)]

∗ × G
Aψ
m (bψ) , (65)

which allows us to write the probability amplitude of a pure state

〈m|Ψ〉= cψ
G

Aψ
m (bψ)
p

m!
, cψ = eiϕΨ

p

cρ , (66)

up to a global phase ϕΨ that cannot be determined from the covariance matrix and vector of
means of the pure Gaussian state. This will be discussed in a later section. Note that the last
equation can be used to write the Hilbert-space ket representing the state as [11]

|Ψ〉= cψ exp





M
∑

i=1

(bψ)ia
†
i +

1
2

M
∑

i, j=1

(Aψ)i, ja
†
i a†

j



 |0〉 , (67)

thus showing that this formalism reduces to the one introduced by Krenn et al. in Refs. [51–54]
when the displacements are zero. Moreover, the Gaussian formulation allows us to easily
include the most common form of decoherence for bosonic modes, namely loss, since this
process is a Gaussian channel.
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We now give a few examples. A displaced squeezed state D(α)S(reiφ)|0〉 (which is the
most general pure single-mode Gaussian state) has

Aψ = − tanh(r)eiφ , (68)

bψ = α+α
∗eiφ tanh r , (69)

cψ =
exp

�

−1
2

�

|α|2 +α∗2eiφ tanh r
��

p
cosh r

, (70)

and its amplitudes in the Fock basis satisfy

ψ
dsq
k+1 =

1
p

k+ 1

�

[α+α∗eiφ tanh r]ψdsq
k −

p

k tanh(r)eiφψ
dsq
k−1

�

. (71)

In the limit of no squeezing, r → 0 we obtain coherent states with recursion relation

ψcoh
k+1 =

1
p

k+ 1
αψcoh

k . (72)

Similarly, in the limit of no displacement, α→ 0 we obtain the recursion relation for squeezed
vacuum states

ψ
sq
k+1 = −

√

√ k
k+ 1

tanh(r)eiφψ
sq
k−1 . (73)

Note that, as expected, this recurrence relation skips odd indices.
For the simple case of M -mode squeezed states with real squeezing parameters ri sent into

an interferometer with unitary U we have that Aψ = −U
�
⊕M

i=1 tanh ri

�

UT .
The thermal state is given by Aρ =

n̄
n̄+1

�

0 1
1 0

�

, bρ = 0 and cρ =
1

1+n̄ , where n̄ is the average
photon number, giving rise to the recurrence relations:

ρth
k1+1,k2

=

√

√ k2

k1 + 1
n̄

n̄+ 1
ρth

k1,k2−1 , (74)

ρth
k1,k2+1 =

√

√ k1

k2 + 1
n̄

n̄+ 1
ρth

k1−1,k2
. (75)

For a squeezed state along the q-quadrature with r > 0 (the symplectic matrix S can be
found in Eq. (24)) that undergoes loss by transmission η (defined in Eq. (32)), we start from
the vacuum state with V = ħh21, we apply the squeezing operator V ′ = SVST , we make the
state pass through the lossy channel V ′′ = XV ′X T + Y , and we obtain its covariance matrix
σ = 1

ħh W †V ′′W . Then it is easy to find Aρ from Eq. (56) that

Aρ =
η

coth2 r − (η− 1)2

�

− coth r 1−η
1−η − coth r

�

. (76)

In the limit of no loss we find Aρ = −[tanh r ⊕ tanh r] while in the limit of zero transmission
we retrieve the single-mode vacuum, Aρ = 02.

3.3 Transformations

We can lift the description of states in the previous section to describe transformations via
the Choi-Jamiołkowski duality in phase space, which allows us to faithfully map a channel by
applying it over one-half of a full-rank entangled state. A Gaussian channel Φ[·] is uniquely
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determined by the triple X , Y ,d and acts on a Gaussian state as (V , r̄ ) 7→ (XVX T +Y , X r̄ +d).
We can then write (see Appendix B and Appendix C for details)

〈i| (Φ [| j〉〈l|]) |k〉= cΦ ×
GAΦ

k⊕l⊕i⊕ j (bΦ)
p

i! j!k!l!
, (77)

where

AΦ = P2MR

�

12M − ξ−1 ξ−1X
X Tξ−1

12M − X Tξ−1X

�

R† , (78)

bΦ =
1
p
ħh

R∗
�

ξ−1d
−X Tξ−1d

�

, (79)

cΦ =
exp

�

− 1
2ħhdTξ−1d

�

p

det(ξ)
, (80)

and

R =
1
p

2

�

1M i1M 0M 0M
0M 0 1M −i1M
1M −i1M 0M 0M
0M 0M 1M i1M

�

, (81)

ξ=
1
2

�

12M + XX T +
2Y
ħh

�

. (82)

For example, for a single-mode amplifier channel with gain g ≥ 1, we find

AΦ =











0 1p
g

g−1
g 0

1p
g 0 0 0

g−1
g 0 0 1p

g

0 0 1p
g 0











, bΦ = 0 , cΦ = 1/g . (83)

For the case of the M -mode lossy interferometer with transmission matrix T we find

AΦ =







0M T ∗ 0M 0M
T † 0M 0M 1M − T †T
0M 0M 0M T
0M 1M − T T T ∗ T T 0M






, (84)

bΦ = 0 , (85)

cΦ = 1 . (86)

This identity allows us to find the probability of measuring an outcome photon number pattern
j = ( j1, . . . , jM ) when the multimode Fock state |i〉 = |i1〉 ⊗ . . . ⊗ |iM 〉 is sent into a lossy
interferometer with transmission matrix T (cf. Appendix E)

〈 j |ΦT [|i〉〈i|] | j〉=
1

i! j!
perm

�

�

1M − T †T T †

T 0

�

j⊕i

�

, (87)

where perm is the permanent. The last equation reduces to the well-known lossless [55–57]
case when 1M − T †T = 0. Finally, note that we can obtain the single-mode pure loss channel
by energy transmission η by setting T =pη in Eq. (84) to obtain

AΦ =







0
p
η 0 0

p
η 0 0 1−η

0 0 0
p
η

0 1−η p
η 0






. (88)
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This substitution illustrates an elegant property of our formalism, namely that Gaussian dual
channels are related to each other by permuting even and odd blocks of rows and columns as
can be seen by comparing Eq. (88) and Eq. (83) showing that indeed pure loss and amplifica-
tion are duals of each other.

Our formalism can also handle non-trace-preserving maps. For example we can express
the Fock damping channel as

Φ[ρ] = e−βa†aρe−βa†a , (89)

which has

AΦ = e−β







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






, bΦ = 0 , cΦ = 1 . (90)

Note that the Fock damping operator e−βa†a itself has triple:

A= e−β
�

0 1
1 0

�

, b = 0 , c = 1 . (91)

In the case where the channel is unitary, we can write Φ[·] = U{·}U† and then we obtain

〈i| (Φ [| j〉〈l|]) |k〉= 〈i|U | j〉〈l|U†|k〉 . (92)

This corresponds to the case where Y = 02M and X = S is symplectic. As we show in the
Appendix D, we can then write

AΦ = A∗U ⊕ AU , (93)

bΦ = b∗U ⊕ bU , (94)

and then we have

〈i| (Φ [| j〉〈l|]) |k〉=
G

A∗U⊕AU

k⊕l⊕i⊕ j (b
∗
U ⊕ bU)

p

i! j!k!l!
(95)

=
G

A∗U
k⊕l(b

∗
U)p

k!l!
×

GAU
i⊕ j (bU)
p

i! j!
(96)

=

�

GAU
k⊕l(bU)

�∗

p
k!l!

×
GAU

i⊕ j (bU)
p

i! j!
. (97)

Comparing Eq. (92) and the last equation we easily identify

〈i|U | j〉= cU

GAU
i⊕ j (bU)
p

i! j!
, cU =

p
cΦeiϕU , (98)

where ϕU is a phase that will be discussed in the next section. Note that the quantities cU , bU
and AU correspond to the C ,µ,−Σ introduced in Eq. (26) of Ref. [22]. This comparison also
allows us to conclude that AU is not only symmetric but also unitary (this can also be seen by
inspecting the form of AU in Eq. (D.10) in the Appendix D).
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Table 1: We derive the triple A, b, c for the channel. We also generalize the results for
transformations in Refs. [22,34] and those for pure states in Refs. [11,32] and mixed
states in Refs. [10, 12, 33]. Moreover, we show the relation of the triple between
channel and transformation, as well as between mixed state and pure state.

Object A b c Refs.

Channel Φ P2MR





12M − ξ−1 ξ−1X

X Tξ−1
12M − X Tξ−1X



R† 1p
ħh
R∗





ξ−1d

−X Tξ−1d





exp
h

− 1
2ħh dTξ−1d

i

p
det(ξ)

This work

Transformation U AΦ = A∗U ⊕ AU bΦ = b∗U ⊕ bU cΦ = c∗U cU [22,34]

Mixed state ρ PM (12M −σ−1
+ ) PMσ

−1
+ µ̄

exp
h

−1
2 µ̄

†σ−1
+ µ̄

i

p
det(σ+)

[10,12,33]

Pure state ψ Aρ = A∗
ψ
⊕ Aψ bρ = b∗

ψ
⊕ bψ cρ = c∗

ψ
cψ [11,32]

4 Global phase of the Fock representation

In the Gaussian representation, transformations are specified by a symplectic matrix and a
displacement vector. However, these two quantities do not uniquely specify the evolution of
a quantum state. For example, when two displacement operators with parameters d1 and d2
are composed in the Gaussian representation, their effect is just another displacement with
parameter d = d1 + d2. However, the unitary representation acquires a global phase:

D(α)D(β) = e(αβ
∗−α∗β)/2D (α+ β) , (99)

i.e. we do not only add up both displacement parameters D(α+β) here, but also get an extra
part e(αβ

∗−α∗β)/2, which is a global phase. Such a global phase is important when evolving linear
combinations of Gaussian states with Gaussian operations [36]. This section will compute this
global phase and provide some examples.

We know that the Fock representation of an arbitrary Gaussian unitary transformation is
parametrized by the triple (AU , bU , cU). The unitary representation of the combination of two
Gaussian transformations U f = U1U2 may have an additional global phase and we are going
to find it.

We begin by calculating the Husimi Q(β ,β ′) function of the composition of U1 and U2 and
we use a resolution of the identity in terms of coherent states to write:

〈β∗|U1U2|β ′〉= 〈β∗|U1 IU2|β ′〉 (100)

=
1
πM

∫

CM

d2Mα〈β∗|U1|α〉〈α|U2|β ′〉 , (101)

where we can replace the Husimi Q functions for generic Gaussian transformations 〈β∗|U1|α〉
and 〈α|U2|β ′〉. After integrating α, the Q function of the composite operator G f is obtained,
which is characterized by:

AU f
= B1 ⊕ D2 +

�

C1 ⊕C T
2

	

Z
�

C T
1 ⊕C2

	

, (102)

bT
U f
= [cT

1 ,dT
2 ] + [d

T
1 , cT

2 ]Z
�

C T
1 ⊕C2

	

, (103)

cU f
=

cU1
cU2

p

det(Y)
exp

�

1
2[d

T
1 , cT

2 ]Z
�

d1
c2

��

, (104)
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where bT
Ui

and AUi
are written in block form:

bT
Ui
=
�

cT
i ,dT

i

�

, (105)

AUi
=





Bi Ci

C T
i Di



 , (106)

and we introduce the auxiliary quantities:

Y = 1M − D1B2 , (107)

Z = ZT =





−D1 1M

1M −B2





−1

=





Y−1B2 Y−1

[YT ]−1 D1Y−1



 . (108)

Eq. (104) gives the global phase for the composite Gaussian operator. The details of this
calculation can be found in Appendix F.

As examples, we show the composition of two single-mode displacements and the compo-
sition of two single-mode squeezers. Recall that they correspond to

D(α) : AU =





0 1

1 0



 , bU = [α,−α∗]T , cU = e−
1
2 |α|

2
, (109)

S(reiδ) : AU =





−eiδ tanh r sech r

sech r e−iδ tanh r



 , (110)

bU = [0,0] , cU =
1

p
cosh r

.

For a composition of displacement operators D(α)D(β), we have

det(1M − D1B2) = 1 , Y = 1 . (111)

We then obtain the global phase:

cU f
= cUα cUβ exp (−α∗β) = cU(α+β) exp

�1
2αβ

∗ − 1
2βα

∗� , (112)

recovering Eq. (99).
For two squeezers S(ζ1),S(ζ2), since bU is zero, we have

det(1M − D1B2) = 1+ ei(δ2−δ1) tanh r1 tanh r2 , (113)

and in turn, we get

cU f
=

cU1
cU2

p

det(1M − D1B2)
(114)

=

p

sech r1 sech r2
Æ

1+ ei(δ2−δ1) tanh r1 tanh r2

, (115)

which coincides with the results from Refs [58,59].
Finally, note that when composing two passive Gaussian unitaries we already know that

there is no extra phase since by construction (cf. Eq. (25)) 〈n|W(J)|0〉= δn,0.
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5 Learning Gaussian states and transformations

Differentiability is a desirable property for a computational model, as it enables gradient de-
scent optimization. Suppose one can write a cost function L in terms of an independent vari-
able (or collection of variables) θ , then the idea of gradient descent is to update the indepen-
dent variable by taking an optimization step on the opposite of the gradient ∂ L repeatedly
thus converging to a local minimum of the cost function.

Normally, we optimize each fundamental Gaussian operator inside the circuit, such as the
displacement, the squeezers and etc. However, with the increasing number of modes, we
obtain a more complicated circuit and the update of each variable becomes heavy work. That
is why we propose the idea to optimize a single Gaussian object (which can be decomposed
into the fundamental Gaussian operators).

All Gaussian objects can be updated in a learning step on the symplectic group, on the
displacement parameters, or on the symplectic eigenvalues. As the latter two are Euclidean
updates, we will not describe them in great detail. In fact, once the relevant Euclidean gradient
has been computed, the update rule can be taken as a single step of gradient descent or one of
its variants (e.g. using momentum). For instance, the update of the displacement parameter
could simply follow the rule

d ←− d − t
∂ L
∂ d

, (116)

using the Euclidean gradient and t is the learning rate.
We will concentrate then on detailing the update on the symplectic group S, which is

endowed in the Riemannian manifold. This section summarizes the basic ideas of gradient
descent on Riemannian manifolds, particularly on the manifold of symplectic matrices and
unitary matrices. In the end, we comment on this global Gaussian operator optimization idea.

Note that in the first four subsections below, the symbols A, B, M , p, R, W , X , Y , Z, γ are
defined locally and do not correspond to previous uses.

5.1 The symplectic group

We describe the manifold of real symplectic 2n× 2n matrices as an embedded sub-manifold
of R2n×2n:

Sp(2n,R) = {S ∈ R2n×2n|SΩST = Ω} , (117)

whereΩ is defined in Eq.(8). Given that the condition SΩST = Ω is quadratic in S, the manifold
of symplectic matrices is not a linear subspace of R2n×2n, which means that we likely leave the
manifold after a naive straight step of gradient descent. In this section, we explain how to
overcome this difficulty.

Note that unless details are relevant, we abbreviate Sp(2n,R) with Sp.

5.2 Tangent and normal spaces

If we differentiate the quadratic condition SΩST = Ω we obtain the linear tangency condition
XΩST + SΩX T = 0. All the matrices X that satisfy the new condition form a linear subspace
of R2n×2n called the tangent space of Sp at the point S:

TSSp= {X ∈ R2n×2n|XΩST + SΩX T = 02n} (118)

= {SΩA|A= AT } . (119)

Eq. (119) is a compact way of parametrizing the tangent space at S using symmetric matrices.
It can be found by imposing X = SΩA in the tangency condition.

17

https://scipost.org
https://scipost.org/SciPostPhys.17.3.082


SciPost Phys. 17, 082 (2024)

As a special case, the Lie algebra of Sp is the tangent space at the identity, i.e.

sp(2n,R) = TeSp(2n,R) (120)

= {X ∈ R2n×2n|XΩ+ΩX T = 02n} (121)

= {ΩA|A= AT } . (122)

We can then define the normal space at S as the linear space containing all the elements that
are orthogonal to TSSp:

NSSp= {W ∈ R2n×2n|Tr(W T X) = 02n, X ∈ TSSp} (123)

= {ΩSB|B = −BT } , (124)

with Eq. (124) showing that we can parametrize the normal space at each point in Sp using
anti-symmetric matrices.

5.3 Riemannian metric on Sp(2n)

A Riemannian manifold such as Sp(2n,R) comes equipped with an inner product 〈·, ·〉S on the
tangent space TSSp at each point S ∈ Sp. The family of inner products forms the Riemannian
metric tensor. The inner product in TSSp is defined as

〈X , Y 〉S = 〈S−1X ,S−1Y 〉= 〈RX , Y 〉 , (125)

where R = S−T S−1 = ΩSSTΩT and note that R−1 = SST .
Consider now a cost function L : Sp→ R. The Euclidean gradient ∂ L at the point S (which

is computed using the embedding coordinates inR2n×2n) is related to the Riemannian gradient
∇L ∈ TSSp by the compatibility condition

〈∇L, X〉S = 〈∂ L, X〉 , ∀X ∈ TSSp . (126)

After rearranging the terms, the condition is equivalent to

〈R∇L − ∂ L, X〉= 0 , ∀X ∈ TSSp . (127)

This means that R∇L − ∂ L ∈ NSSp and therefore, it must be possible to write

R∇L − ∂ L = ΩSB , (128)

for some anti-symmetric matrix B. At the same time we have the tangency condition
∇LΩST + SΩ∇T L = 0. If we replace ∇L from Eq. (128) into the tangency condition, we
obtain an expression for B and we can finally write the Riemannian gradient on the symplec-
tic group:

∇L =
S
2
(Z +ΩZTΩ) , (129)

where Z = ST∂ L.
The symplectic matrix that describes an interferometer belongs to the intersection of the

orthogonal group O(2n) and the symplectic group Sp(2n), which is a unitary group U(n):

U(n) = {M ∈ Cn×n|M†M = MM† = 1n} . (130)

We can go through the same arguments as with the symplectic group and obtain the Rieman-
nian gradient in the unitary group (More calculation details are in Appendix G):

∇L =
M
2

�

Z − Z†
�

, (131)

where Z = M†∂ L.
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5.4 Geodesic optimization on Sp(2n) and U(n)

The shortest curve connecting two points on a Riemannian manifold M is called a geodesic,
and it can be defined by the starting point γ(0) = p and its velocity on the tangent space at that
point: V = γ̇(0) ∈ TpM. For the symplectic and unitary groups, geodesics take the following
form (which can be found by minimizing a variational formulation of the path length between
two points [60,61]):

γSp(2n)(t) = Set(S−1V)T et[S−1V−(S−1V)T ] , (132)

γU(n)e(t) = Met(M†V)T . (133)

By using a geodesic, we guarantee that each update step remains on the manifold.
For gradient descent, we use V = −∇L:

γSp(2n)(t) = Se−tY e−t(Y−Y T ) , (134)

with Y = S−1∇L = 1
2(Z +ΩZTΩ). For the unitary group, we obtain

γU(n)(t) = Me−tY , (135)

with Y = M†∇L = 1
2(Z−Z†) = 1

2(M
†∂ L− (∂ L)†M). We now have a geodesic update formula

that we can apply in place of the usual gradient descent step. The parameter t takes the role
of the learning rate (which we fix depending on the application). For the symplectic group,
we have

Zk← ST
k ∂ L , (136)

Yk←
1
2
(Zk +ΩZT

k Ω) , (137)

Sk+1← Ske−tYk e−t(Yk−Y T
k ) . (138)

For the unitary group, we have

Zk← M†
k∂ L , (139)

Yk←
1
2
(Zk − Z†

k ) , (140)

Mk+1← Mke−tYk . (141)

Finally, we obtain the orthogonal matrix of the interferometer using Eq. (34).

5.5 The Riemannian update step in practice

We concentrate now on detailing the update on the symplectic group and we will take Gaussian
unitaries as a basic example (pure states, mixed states, and channels can have a symplectic
matrix among their parameters, via the Choi-Jamiołkowski duality).

The backpropagation procedure of the gradient calculation is shown in Fig. 1. The Eu-
clidean gradient of the symplectic matrix can be calculated via the chain rule:

∂ L
∂ S
= 2ℜ





∑

X=A,b,c

∑

k

∂ L
∂ Gk

∂ Gk

∂ X
∂ X
∂ S



 . (142)

In this expression, ∂ L
∂ Gk

is the upstream gradient which can be obtained from an Automatic

Differentiation (AD) framework such as TensorFlow, ∂ Gk
∂ X is computed by differentiating the
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Sp(2n, ℝ) × ℝ2n
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Complexify

+ 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transform
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Cost

Function

ℝ

∂L
∂A

,
∂L
∂b

,
∂L
∂c

∂L
∂V

,
∂L
∂r̄

∂L
∂S

,
∂L
∂d

∇L

(V, r̄)

(A, b, c)

(Gk)

(S, d)

∂L/∂d

Figure 1: The detailed forward and backward passes. The Riemannian gradient
∇L for the geodesic update is calculated via the chain rule and Eq. (129), which
backpropagates the gradient of the cost function with respect to the Fock amplitudes
∂ L
∂ Gk

all the way to ∇L, while the gradient ∂ L
∂ d is used directly to optimize d on R2n.

The backpropagation steps can be left to an Automatic Differentiation framework,
except for the Fock to Bargmann step and the conversion between Euclidean and
Riemannian gradient, which we implement ourselves.

recurrence relation in Eq. (45) and ∂ X
∂ S is also handled by the AD framework, and it depends

on the functional relation between the symplectic matrix and X denotes the triple (A, b, c) we
defined in section 3.

Then, we can write the update rule for the real symplectic matrix S to follow a geodesic
path starting at S with a velocity ∇L defined by its Riemannian gradient and guarantee the
updated matrix is still on Sp(2n).

5.6 Discussion

Our single Gaussian object optimization idea, using Riemannian gradient descent, has several
advantages compared with the optimization of each circuit component separately, which we
call Euclidean optimization.

Firstly, the optimization of the circuit before any decomposition in terms of gates with
Euclidean parameters can be considered as the first advantage of our method, which can be
useful for answering theoretical questions involving an extremization over the entire class of
Gaussian states or transformations.

Secondly, our method gives more accurate results than optimizing each component sep-
arately in the Fock representation. This is because to obtain the Fock representation of the
complete circuit one first needs to compute the Fock amplitudes of the circuit elements up to
a cutoff for each of the elements and then multiply them all together. The inaccuracy of each
element in the Fock amplitudes will come from the truncation of Fock space and will accumu-
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Figure 2: Schematic of the connectivity of the 216-mode circuit of the photonic pro-
cessor Borealis [64], where all the nearest neighbour modes are connected by beam
splitters, then all pairs at distance 6 and finally all pairs at distance 36. The arrows
represent beam splitters.

late by contracting each of them. However, our Riemannian optimization keeps them together
as a single Gaussian object (which is equivalent to contracting them in an infinite-dimensional
Fock space).

Last but not least, the Riemannian optimization runs faster and can converge in fewer steps
than the Euclidean optimization. In Appendix I, we show that by choosing the same learning
rate of three different methods, the Riemannian optimization converges much faster than Eu-
clidean optimization in the task of preparing a cat state. Also, some interesting optimization
questions are raised along with the results.

6 Numerical experiments

In this section, we showcase the optimization methods introduced in the previous sections
with three examples. The recurrent methods presented here are implemented in the open-
source library TheWalrus [62] and they are integrated with the optimization methods in the
open-source library MrMustard [1].

6.1 Minimizing the sparsity of the adjacency matrix of high-dimensional Gaus-
sian boson sampling instance

We first analyze high-dimensional Gaussian Boson Sampling (GBS) [63] instances similar to
the 216-mode circuit of the photonic processor Borealis [64]. This is made possible by working
in phase space, as all the components are Gaussian and the cost function involves the A matrix
of the output state (i.e. not its Fock amplitudes). In a D−dimensional high-dimensional GBS
instance with M = dD modes, a set of K ≤ M squeezed modes are sent into an interferometer
composed of layers of beamsplitter gates (with a local rotation gate in the first mode) between
modes i and i+τ with τ ∈ {1, d, d2, . . . , dD−1} as shown schematically for d = 6 and D = 3 in
Fig. 2.

One desirable property of any GBS instance is that its adjacency matrix, which corresponds
to Aψ in our notation, should not have any special property like being banded, sparse, or low-
rank. This is because these types of properties can be exploited to speed-up the classical
simulation of GBS.
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Figure 3: Maximizing the entanglement in Borealis.
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the last mode.
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(b) Three-mode Gaussian transforma-
tion, followed by three displacements
and photon number projections on the
last two modes.

Figure 4: Circuits optimized in the examples.

For high-dimensional GBS instances like the one implemented in Borealis, it is known that
the Aψ is full-rank (since every input is squeezed) and not banded (due to the long-ranged
gates). However, one needs to judiciously choose the parameters of the beamsplitter so that
the distribution of its entries is not heavily dominated by just a few of them. For example,
if the one chooses the rotation gates and the transmission angles of the beamsplitters to be
uniformly random in [−π2 , π2 ] one obtains the distribution shown in blue bars in Fig. 3c and
the Aψ matrix show in Fig. 3a. For these results and following Ref. [64] we fix the phase angle
of the beamsplitter to be π/2, we set the input squeezing parameter in all the modes to be
r = arcsinh 1 ≈ 0.8813736 and take D = 3, d = 6 and thus a total of M = 63 = 216 modes.
Note that the values of the matrix are heavily concentrated, i.e., for each row and column a
few values are overwhelmingly larger than the rest.

We can now use the methods we developed to try to spread-out as much as possible the
entries of the matrix Aψ thus we optimize the cost function

min
∑

i j

(|Aψ|2i j −mean|Aψ|2)2 . (143)

We perform this optimization obtaining the distribution shown with the orange bars in Fig. 3c
and the matrix shown in Fig. 3b. Notice that now the values are more evenly distributed.

6.2 State preparation

In this section, we find explicit circuits that prepare cat states and cubic phase states. For the
cat state preparation we optimize a 2-mode Gaussian state with 3 photons measured in its last
mode. For the cubic phase state preparation we optimize a 3-mode Gaussian state with 16 and
16 photons measured in its last two modes.

6.2.1 Cat state

The cat state that we target is the superposition of two coherent states:

|cat±〉=
|α〉 ± | −α〉
p

2± 2e−2|α|2
, (144)

where |α〉 = D(α)|0〉 is a coherent state. In the last equation the plus and minus signs corre-
sponds to even and odd cat states, respectively.

For this example, we will target the generation of an odd cat state with α = 2 and will
employ the symplectic optimizer in MrMustard (version 0.5.0).

The first circuit (shown in Fig. 4a) consists of a Gaussian transformation followed by a
measurement of 3 photons on the second mode and generates the (approximate) cat state in
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the first mode. We use the symplectic optimizer to train the Gaussian gate. The result is shown
in Fig. 5a with a fidelity of 99.37% and 7.47% success probability.

The code snippet below corresponds to the circuit shown in Fig. 4a:

import numpy as np
from mrmustard.lab import *
from mrmustard.physics import fidelity, normalize
from mrmustard.training import Optimizer
from mrmustard import settings

alpha = 2.0 # coherent state amplitude
cutoff = 100 # fock space cutoff

cat_amps = (Coherent(alpha).ket([cutoff])
- Coherent(-alpha).ket([cutoff]))

cat_target = normalize(State(ket=cat_amps))

# randomly initialized 2-mode trainable Gaussian state
settings.SEED = 7
gaussian = Gaussian(num_modes=2,

symplectic_trainable=True,
cutoffs=[cutoff, 4])

def output():
return gaussian << Fock(3, modes=[1])

def cost_fn():
fid = fidelity(normalize(output()), cat_target)
if fid > 0.99:

prob = output().probability
return 1 - fid - prob

else:
return 1 - fid

opt = Optimizer(symplectic_lr = 0.2)
opt.minimize(cost_fn, by_optimizing=[gaussian],

max_steps=150)

This cost function includes the probability of the state when the fidelity is above 99%.
It should be observed that the Fock space cutoff selected for this optimization (100) was

quite large. However, the choice was deliberately made to demonstrate the speed of our
method: the cat state optimization took approximately three seconds to complete on an M1
MacBook Air using MrMustard version 0.5.0.

6.2.2 Cubic phase state

The ideal cubic phase state is given by the cubic phase gate applied to a momentum squeezed
vacuum state V (γ) = ei γ3ħh x3

|0〉p, which has infinite energy. We target the finite-energy version

ei γ3ħh x3S(r)|0〉 for γ= 0.3ħh and r = −1:

|cubic〉= e
1
10 i x3

e
1
2 (a

†2−a2)|0〉 . (145)
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(a) The cat state obtained with the circuit in
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(b) The target cat state.

Figure 5: Optimized cat state and the target state.

This target state is shown in Fig. 6b. We follow a different optimization strategy than the
one we followed for the cat state. Specifically, even though we target the measurement of
16,16 photons in the last two modes, we find it is beneficial to optimize lower photon number
measurements first and work our way up to the target measurement (16,16 in this case), re-
optimizing the 3-mode Gaussian state for each step. We find a solution with 99.00% fidelity
and probability = 0.06%, which we report in the Appendix.

The symplectic matrix of the 3-mode Gaussian transformation and the displacements are
reported here below. Note that at this stage, as we didn’t commit to a specific circuit design,
but rather we optimized the Gaussian symplectic matrix, we still have a relative amount of
flexibility in realizing this Gaussian transformation in the way that is most convenient given
some constraints (e.g. the order of the gates that the hardware allows for).

7 Extensions to linear combinations of Gaussians

While the set of Gaussian states is rather restrictive, many non-Gaussian states of interest,
such as cat states, Gottesman-Kitaev-Preskill (GKP) states [65], or Fock states, can be exactly
or approximately expanded as linear combinations of Gaussians in phase space [36,66]. This
representation has the nice property that any Gaussian channel can act on these states directly
in phase space, i.e., without requiring to write their Fock representation explicitly. Because
of linearity, we can simply obtain the Fock representation of any states expressible as a linear
combination of Gaussians by obtaining the Fock representation of each Gaussian component.
This argument is equally valid for pure and mixed states. For the case of pure states, it is
important to correctly account for the global phase as described in the previous sections. This
phase will be important for states for which the coefficients cψ have non-trivial dependence on
the displacement and squeezing that describes each individual component, as it is apparent in
squeezed-comb states defined as [67]

|0Comb〉=
1

NComb

N
∑

n=1

|ψn〉 , |ψn〉=D(q̄n)S(r)|0〉 , (146)
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Figure 6: Optimized cubic phase state and the target state.

where recall D(·) and S(·) are the single-mode displacement and squeezing operator defined
in Sec. 2.3, qn = −(N + 1)(d/2) + nd. Note that squeezed-comb states have as limit both cat
states (when the squeezing parameters are zero and N = 2) and GKP states (when r > 0 and
N is large). Note that each element in the linear combination will have a non-trivial phase that
appears in a linear superposition and thus cannot be factored out as a global phase, making
clear the relevance of the results in Sec. 4.

Consider now the density matrix associated with the state above

ρ0Comb
= |0Comb〉〈0Comb| (147)

=
N
∑

n=1

|ψn〉〈ψn|+
N
∑

n=1

N
∑

m=1,m ̸=n

|ψn〉〈ψm| . (148)

On the one hand, the “diagonal” terms |ψn〉〈ψn| correspond to positive semi-definite operators
with Gaussian characteristic functions. On the other hand, the “off-diagonal” terms |ψn〉〈ψm|
do not represent positive semi-definite operators but they still have complex-Gaussian char-
acteristic functions as shown in Appendix A of Ref. [36]. This implies that the recursion rela-
tions derived in this manuscript still hold for each term in the equation above. Finally, note
that certain non-Gaussian operations can also be described in terms of linear combinations of
Gaussian. The Kerr gate

K(κ) = exp
�

iκa†a†aa
�

, (149)

with parameter κ= π/m can be expanded as a linear combination of rotation gates [68]. Thus
the methods we developed, including the global phase will be important when composing this
gate with other Gaussian operators with non-trivial phase terms c so as to achieve universality.

8 Conclusion

In this work we have presented a linear recurrence relation that connects the phase space
and the Fock space representations of Gaussian pure and mixed states, as well as Gaussian
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unitary and non-unitary transformations. While working with Gaussian gates within the phase
space representation is easily achieved using symplectic algebra, it is valuable to implement
fast numerical simulations in Fock representation, in order to include non-Gaussian effects.
Moreover, the recurrence relation is exact and differentiable, which enables accurate gradient
computations and gradient-based optimization.

Since the covariance matrix of Gaussian objects is parametrized by symplectic matrices
that live in a Riemannian manifold, a geodesic-based optimization method is proposed in
this paper. We show some optimization examples using the open-source library MrMustard,
where we implemented our methods. In particular, we optimized the adjacency matrix of a
high-dimensional Gaussian Boson Sampling instance with 216 modes directly in phase space
to highlight the Euclidean optimization functionality of our library.

We then obtained new circuits to generate mesoscopic cat states with unprecedented suc-
cess probability. On the theory side, we also showed how to keep track of the global phase
induced by Gaussian unitary transformations. This paves the way to simulate and optimize
non-Gaussian objects by writing them as linear combinations of Gaussians [36]. Dealing with
non-Gaussian simulation and optimization is a significant challenge in the optical informa-
tion processing community [12, 69]. Our methods offer a promising avenue to address this
challenge.
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A Review of the symplectic formalism

The real symplectic group is defined as

Sp(2n,R) = {S ∈ R2n×2n|SΩST = Ω} , (A.1)

where Ω is defined in Eq. (8).
Some properties of this group:

Ω ∈ Sp(2n,R) , (A.2)

Ω−1 = ΩT = −Ω ∈ Sp(2n,R) , (A.3)

S−1 = −ΩSTΩ ∈ Sp(2n,R) . (A.4)

A real symplectic matrix S can be decomposed as

S = O1ΛO2 , (A.5)

with O1, O2 ∈ C(n) and

λ= Λ⊕Λ−1 , (A.6)

with Λ = diag(λ1, . . . ,λn) and λ j ≥ 1,∀ j ∈ [1, . . . , n]. C(n) denotes the compact subgroup
and C(n) = Sp2n,R ∩ O(2n). It means that any symplectic matrix can be decomposed into a
diagonal and positive semi-definite matrix Λ with two orthogonal groups O1 and O2, which
stands for the passive transformation (interferometer).
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Figure 7: 2M -mode circuit for implementing the Choi-Jamiołkowski duality. Φ is
the channel that is applied on the first half M modes and the two dots represent a
two-mode squeezing operator connecting two modes: one comes from the first M
modes and the other one comes from the second M modes.

B Choi-Jamiołkowski duality

In this section, we employ the Choi-Jamiołkowski duality [38,41,42] to reduce the calculation
of the matrix elements of an arbitrary Gaussian channel in M to the calculation of the matrix
element of a Gaussian state with 2M . We first consider a collection of systems with arbitrary,
but identical, dimensionality N .

We write the state right before the channel Φ is applied to the first half of the modes in
Fig. 7 as

|Ψ〉=
p
N

N−1
∑

n=0

τn|n〉 ⊗ |n〉 , (B.1)

where
∑N−1

n=0 ≡
∑N−1

n1=0 . . .
∑N−1

nM=0, N is a normalization constant to be determined in a moment
and τ is the squeezing parameter of the two-mode squeezing operator connecting the first M
modes and the second M modes. The density matrix of the state |Ψ〉 is simply

|Ψ〉〈Ψ|=N
N−1
∑

m=0

N−1
∑

n=0

τn+m|n〉〈m| ⊗ |n〉〈m| . (B.2)

We can now write the output of the circuit after the application of the channel Φ as

ϱ = (Φ⊗ I) [|Ψ〉〈Ψ|] =N
N−1
∑

m=0

N−1
∑

n=0

τn+mΦ [|n〉〈m|]⊗ |n〉〈m| . (B.3)

We can premultiply the equation above by 〈i| ⊗ 〈 j | and postmultiply by |k〉 ⊗ |l〉 to obtain

(〈i| ⊗ 〈 j |)ϱ (|k〉 ⊗ |l〉) =N τ j+l〈i| (Φ [| j〉〈l|]) |k〉 . (B.4)

In finite-dimensional systems it is convenient to pick τ = (1, . . . , 1) and the normalization N
is simply given by the dimensionality of the system N M . For infinite dimensional systems, if
one were to try to pick the same normalization as for a finite-dimensional, one would obtain
a non-normalizable state |Ψ〉. Thus it is convenient to pick τ = (τ, . . . ,τ) with τ= tanh t < 1
and then

N = (1−τ2)M = (1− tanh2 t)M , (B.5)

τl+ j = (tanh t)
∑M

i=1 li+ ji . (B.6)
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For a rigorous justification of this derivation see sec 5.5 of Serafini [38]. Now consider the
case where the channel Φ is Gaussian parametrized by

X =





Xqq Xqp

Xpq Xpp



 , Y =





Yqq Yqp

Ypq Ypp



 , d =





dq

dp



 . (B.7)

Then the output state is also Gaussian since the input state to the channel is nothing but one-
half of a two-mode squeezed state. In this case, we can write the quadrature covariance matrix
and vector of means of the output state as

V = X̃T (t)
�

ħh
2
14M

�

T (t)T X̃ T + Ỹ =
ħh
2

X̃T (2t)X̃ T + Ỹ , r̄ =















dq

0

dp

0















, (B.8)

where

X̃ =















Xqq 0M Xqp 0M

0M 1M 0M 0M

Xpq 0M Xpp 0M

0M 0M 0M 1M















, Ỹ =















Yqq 0M Yqp 0M

0M 0M 0M 0M

Ypq 0M Ypp 0M

0M 0M 0M 0M















, (B.9)

T (t) =















cosh t1M sinh t1M 0M 0M

sinh t1M cosh t1M 0M 0M

0M 0M cosh t1M − sinh t1M

0M 0M − sinh t1M cosh t1M















, (B.10)

and we used the fact that T (t)T (t)T = T (t)T (t) = T (2t).
In the next appendix, we show that we can associate with the 2M -Gaussian Choi-

Jamiołkowski state the following quantities

Aϱ = E(t)AΦE(t) , (B.11)

AΦ = P2MR





12M − ξ−1 ξ−1X

X Tξ−1
12M − X Tξ−1X



R† (B.12)

= P2MR



14M −





ξ−1 −ξ−1X

−X Tξ−1 X Tξ−1X







R† , (B.13)

bϱ = E(t)bΦ , (B.14)

bΦ =
1
p
ħh

R∗





ξ−1d

−X Tξ−1d



 , (B.15)

cϱ = (1− tanh2 t)M cΦ , (B.16)

cΦ =
exp

�

− 1
2ħhdTξ−1d

�

p

det(ξ)
, (B.17)
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where E(t) = 1M ⊕ (tanh t1M )⊕1M ⊕ (tanh t1M ), PM =
�

0M 1M
1M 0M

�

and

R =
1
p

2















1M i1M 0M 0M

0M 0 1M −i1M

1M −i1M 0M 0M

0M 0M 1M i1M















, ξ=
1
2

�

12M + XX T +
2Y
ħh

�

. (B.18)

Note that ξ is nothing but the qp-Husimi covariance matrix (in units where ħh= 1) of the state
obtained by sending the M mode vacuum state in the process specified by X and Y . Note
that in general, given a covariance matrix V one can always construct (a non-unique) channel
that when applied to the vacuum produces the state with covariance matrix V . To this end
recall that the Williamson decompositions states that any valid quantum covariance matrix
can be written as V = S(Vvac+Vnoise)ST with S symplectic, Vvac is the covariance matrix of the
vacuum and Vnoise positive semidefinite. The channel with X = SO and Y = SVnoiseS

T with
O symplectic and orthogonal but otherwise arbitrary prepares the sought after state when
applied on vacuum.

With these results we can write

(〈i| ⊗ 〈 j |)ϱ (|k〉 ⊗ |l〉) = cϱ ×
G

Aρ
k⊕l⊕i⊕ j (bϱ)
p

i! j!k!l!
. (B.19)

Now we recall a fundamental property that multidimensional Hermite polynomials inherit
from loop-hafnians [44], namely that if E = ⊕ℓi=1Ei is a diagonal matrix then

GEAE
n (Eb) =

�

ℓ
∏

i=1

Eni
i

�

GA
n (b) . (B.20)

We can use the definitions from Eq. (B.11) to Eq. (B.17) together with the Eq. (B.4) and the
relation Eq. (B.19) to find

〈i| (Φ [| j〉〈l|]) |k〉=
(〈i| ⊗ 〈 j |)ϱ (|k〉 ⊗ |l〉)

N τ j+l
=

cϱ
N τ j+l

×
G

Aρ
k⊕l⊕i⊕ j (bϱ)
p

i! j!k!l!
= cΦ ×

GAΦ
k⊕l⊕i⊕ j (bΦ)
p

i! j!k!l!
, (B.21)

which allows us to find the matrix elements of the channel without any reference to the specific
amount of squeezing used to create the two-mode squeezed vacuum.

C Description of the Choi-Jamiołkowski duality in phase-space

The (complex) covariance matrix σ of the Gaussian state obtained by sending M halves of M
two-mode squeezed vacuum states through the channel Φ is given by

σ = W

�

1
2

X̃T (2t)X̃ T +
Ỹ
ħh

�

W † . (C.1)

Note that (T (t))T = T (t) is symmetric, X̃ is symplectic if X =
� Xqq Xqp

Xpq Xpp

�

is symplectic and W
is unitary. Let

Q′ =

�

14M

2
+

1
2

X̃T (2t)X̃ T +
Ỹ
ħh

�

, (C.2)
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then (σ + 14M
2 )
−1 = W(Q′)−1W †. Now we define

Q = LQ′LT , (C.3)

with

L=















1M 0M 0M 0M

0M 0M 1M 0M

0M 1M 0M 0M

0M 0M 0M 1M















. (C.4)

Then we have that Q−1 = L(Q′)−1LT , which implies that LT Q−1L= (Q′)−1. So calculating Q−1

gives (Q′)−1 and therefore (σ + 14M
2 )
−1.

Expressing Q as a block matrix Q =





A B

C D



, we can write Q−1 using Schur complements

as [38]

Q−1 =





ξ−1 −ξ−1BD−1

−D−1Cξ−1 D−1 + D−1Cξ−1BD−1



 , (C.5)

where ξ= A− BD−1C . The blocks A, B, C , and D, are given by

A=
Y
ħh
+
12M

2
+

1
2

cosh(2t)XX T , (C.6)

B =
1
2

sinh 2t





Xqq −Xqp

Xpq −Xpp



=
1
2

sinh 2tXZ , (C.7)

C =
1
2

sinh 2t





X T
qq X T

pq

−X T
qp −X T

pp



= BT =
1
2

sinh2tZX T , (C.8)

D = cosh2(t)





1M 0M

0M 1M



 , (C.9)

where Z =
�

1M 0M
0M −1M

�

. We now use these to calculate the blocks of Q−1 starting with ξ,

ξ= A− BD−1C =
1
2

�

12M + XX T +
2Y
ħh

�

= ξT , (C.10)

which turns out to be independent of t. Next, we find

−ξ−1BD−1 = − tanh(t)ξ−1XZ , (C.11)

−D−1Cξ−1 = − tanh(t)ZX Tξ−1 . (C.12)

Finally, the bottom right block, which can be simplified by substituting the other three blocks,
is given by

D−1 + D−1Cξ−1BD−1 =
�

1− tanh2(t)
�

12M + tanh2(t)ZX Tξ−1XZ (C.13)

= 12M + tanh2(t)Z
�

X Tξ−1X −12M

�

Z . (C.14)
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Putting these blocks together, we get the expanded form of Q−1

Q−1 =





ξ−1 − tanh(t)ξ−1XZ

− tanh(t)ZX Tξ−1
12M + tanh2(t)Z

�

X Tξ−1X −12M

�

Z



 . (C.15)

Now with the form of the inverse known, we can multiply by the remaining matrices to
get the final form of σ−1

+ = (σ +
14M

2 )
−1 = WLT Q−1LW †, with L as in Eq. (C.4)

We can now go back and write the quantity of interest

14M −
�

σ +
14M

2

�−1

= WLT



14M −





ξ−1 − tanh(t)ξ−1XZ

− tanh(t)ZX Tξ−1
12M + tanh2(t)Z

�

X Tξ−1X −12M

�

Z







 LW † (C.16)

= WLT





12M − ξ−1 tanh(t)ξ−1XZ

tanh(t)ZX Tξ−1 tanh2(t)Z
�

12M − X Tξ−1X
�

Z



 LW † . (C.17)

Defining the matrix F =
�

12M 02M
02M Z tanh(t)

�

, we can rewrite the last equation as

14M −
�

σ +
14M

2

�−1

= WLT F





12M − ξ−1 ξ−1X

X Tξ−1
12M − X Tξ−1X



 F T LW † (C.18)

= E(t)R





12M − ξ−1 ξ−1X

X Tξ−1
12M − X Tξ−1X



R†E(t) , (C.19)

where we noted that WLT F = WLF = E(t)R (cf. Eq. (B.18)). To arrive at the expression for
Aρ we simply note [E(t), P2M ] = 0.

We would also like to find

bϱ =
�

σ−1
+ µ̄

�∗
=
�

WLQ−1LW †
�

1
p
ħh

W r̄
��∗
=

1
p
ħh

�

WLQ−1Lr̄
�∗
=

1
p
ħh
(WL)∗Q−1





d

0



 (C.20)

=
1
p
ħh
(WL)∗





ξ−1d

− tanh tZX Tξ−1d



=
1
p
ħh
(WLF)∗





ξ−1d

−X Tξ−1d



=
1
p
ħh

E(t)R∗





ξ−1d

−X Tξ−1d



 . (C.21)

Finally, we can obtain

cϱ = (〈0| ⊗ 〈0|)ϱ (|0〉 ⊗ |0〉) =N 〈0| (Φ [|0〉〈0|]) |0〉=N cΦ . (C.22)

The Husimi covariance matrix of the state Φ [|0〉〈0|] is simply ħhξ and its vector of means is d
and thus we can write

〈0| (Φ [|0〉〈0|]) |0〉=
exp

�

−1
2dT (ħhξ)−1d

�

q

det
�

ξ
�

. (C.23)

D Unitary processes

Now consider a unitary process. In this case we know that Y = 0 and that X = S ∈ Sp2M
where Sp2M is the Symplectic group. Since S is symplectic, then we can write a symplectic
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singular-value decomposition (also known as a Bloch-Messiah or Euler decomposition [70])

S =





ℜ(U1) −ℑ(U1)

ℑ(U1) ℜ(U1)









e−r 0M

0M er





︸ ︷︷ ︸

≡λ





ℜ(U2) −ℑ(U2)

ℑ(U2) ℜ(U2)



= O1λO2 , (D.1)

where U1,U2 are M ×M unitaries and r = ⊕M
i=1ri represents squeezing.

We can now calculate the Schur complement to find

ξ=
1
2

�

12M + SST
�

, (D.2)

ξ−1 = 2O1
12M

12M +λ2
OT

1 , (D.3)

and then we find




12M − ξ−1 ξ−1X

X Tξ−1
12M − X Tξ−1X



=





O1
λ2−12M
λ2+12M

OT
1 O1

2λ
λ2+12M

O2

OT
2

2λ
λ2+12M

OT
1 −OT

2
λ2−12M
λ2+12M

O2



 (D.4)

=





O1 02M

02M OT
2









λ2−12M
λ2+12M

2λ
λ2+12M

2λ
λ2+12M

−λ
2−12M
λ2+12M









OT
1 02M

02M O2



 . (D.5)

Note that

λ2 −12M

λ2 +12M
=





− tanh r 0M

0M tanh r



 ,
2λ

λ2 +12M
=





sech r 0M

0M sech r



 . (D.6)

We can now calculate

R





12M − ξ−1 ξ−1X

X Tξ−1
12M − X Tξ−1X



R†

= R





O1 0M

0M OT
2



R†R





λ2−12M
λ2+12M

2λ
λ2+12M

2λ
λ2+12M

−λ
2−12M
λ2+12M



R†R





OT
1 0M

0M O2



R† (D.7)

=















U1 0M 0M 0M

0M UT
2 0M 0M

0M 0M U∗1 0M

0M 0M 0M U†
2





























0M 0M − tanh r sech r

0M 0M sech r tanh r

− tanh r sech r 0M 0M

sech r tanh r 0M 0M





























U1 0M 0M 0M

0M UT
2 0M 0M

0M 0M U∗1 0M

0M 0M 0M U†
2















†

(D.8)

= −





0M AU

A∗U 0M



 , (D.9)

where

AU =





U1 0M

0M UT
2









tanh r − sech r

− sech r − tanh r









U1 0M

0M UT
2





T

= AT
U . (D.10)

33

https://scipost.org
https://scipost.org/SciPostPhys.17.3.082


SciPost Phys. 17, 082 (2024)

We can also explicitly calculate bΦ to find

bΦ =
1
p

2ħh















dq − idp +U∗1 tanh rU†
1

�

dq + idp

�

−U†
2 sech rUT

1

�

dq − idp

�

dq + idp +U1 tanh rUT
1

�

dq − idp

�

−UT
2 sech rU†

1

�

dq + idp

�















=















α∗ +U∗1 tanh rU†
1α

−U†
2 sech rUT

1 α
∗

α+U1 tanh rUT
1 α
∗

−UT
2 sech rU†

1α















=





b∗U

bU



 , (D.11)

where we wrote d =





dq

dp



 and introduced α= 1p
2ħh
(dq+ idp). Finally, we find for the scalar c

cΦ =
exp

�

− 1
4ħh

�

||d||2 + (dT
q − idT

p )U1 tanh rUT
1 (dq − idp) + c.c.

��

∏M
i=1 cosh ri

=
exp

�

−||α||2 −ℜ
�

α†U1 tanh rUT
1 α
∗
��

∏M
i=1 cosh ri

= |cU |2 .

(D.12)

E Passive processes

Now consider the case of non-unitary passive process specified by a transfer matrix T ,
T †T ≤ 1M . For this process X =

�

ℜ(T) −ℑ(T)
ℑ(T) ℜ(T )

�

and Y = ħh2
�

12M − XX T
�

. Since the process
is passive we know that ξ= 12M . We can simplify the expression to obtain

P2M

�

14M −
�

σ +
14M

2

�−1
�

= E(t)















0M T ∗ 0M 0M

T † 0M 0M 1M − T †T

0M 0M 0M T

0M 1M − T T T ∗ T T 0M















E(t) . (E.1)

Following the Choi-Jamiołkowski relation we gave in Eq. (B.11), the AΦ for the lossy interfer-
ometer is

AΦ =















0M T ∗ 0M 0M

T † 0M 0M 1M − T †T

0M 0M 0M T

0M 1M − T T T ∗ T T 0M















. (E.2)

If we sandwich AΦ with a permutation matrix P4123, we would have:

P4123AΦPT
4123 =















0M 0M 1M − T †T T †

0M 0M T 0M

1M − T T T ∗ T T 0M 0M

T ∗ 0M 0M 0M















. (E.3)
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To get the probability with a measurement of photon number pattern j = ( j1, . . . , jM ) given
the input i = (i1, . . . , iM ), we let k = i, l = j in (77):

GAΦ
i⊕ j⊕i⊕ j (0) = G

P4123AΦPT
4123

P4123(i⊕ j⊕i⊕ j)(0) =
1

i! j!
haf(P4123AΦPT

4123) j⊕i⊕ j⊕i =
1

i! j!
perm





1M − T †T T †

T 0M





j⊕i

. (E.4)

F Global phase of the composition of two Gaussian
transformations

In this section, we find an expression for the global phase of the transformation obtained by ap-
plying two consecutive Gaussian transformations. To this end we find the triplet AU f

, bU f
, cU f

associated with the Q function of the net transformation U f = U1U2 in terms of the triplets
A, b, c specifying the Husimi functions of the transformations U1 and U2.

Eq. (23) of Ref. [22] shows that the Husimi Q function of an arbitrary Gaussian unitary can
be characterized by three quantities C ,µ, and Σ. As we already know the relation between
(C ,µ,Σ) = (cU , bU ,−AU), now we will rewrite the Husimi Q-function for an arbitrary Gaussian
unitary as:

〈α∗|U |β〉= exp
�

−1
2

�

||α||2 + ||β ||2
��

cU exp
�

bT
Uν+

1
2
νT AUν

�

, where ν=





α

β



 . (F.1)

We first compose the two transformations and then insert the resolution of the identity
1
πM

∫

CM d2Mα|α〉〈α|= I to find:

〈β∗|U1U2|β ′〉= 〈β∗|U1 IU2|β ′〉=
1
πM

∫

CM

d2Mα〈β∗|U1|α〉〈α|U2|β ′〉 , (F.2)

where d2Mα = dMℜ(α)dMℑ(α). Using the expressions for the Q-functions of U1 and U2 we
find

1
πM

∫

CM

d2Mαexp
�

−1
2

�

||β ||2 + 2||α||2 + ||β ′||2
��

cU1
cU2

exp
�

bT
U1
ν1 +

1
2
νT

1 AU1
ν1 + bT

U2
ν2 +

1
2
νT

2 AU2
ν2

�

,

(F.3)
where

νT
1 = [β ,α] , νT

2 = [α
∗,β ′] . (F.4)

The integral above can be simplified as

1
πM

cU1
cU2

exp
�

−1
2

�

||β ||2 + ||β ′||2
�

+ cT
1 β + dT

2 β
′ +β T B1β +β

′T D2 β
′� (F.5)

×
∫

CM

d2Mαexp



−1
2[α

T ,αT∗]





−D1 1M

1M −B2









α

α∗



+ [dT
1 +β

T C1, cT
2 +β

′T C T
2 ]





α

α∗







 , (F.6)

where we introduced

bT
Ui
=
�

cT
i ,dT

i

�

, AUi
=





Bi Ci

C T
i Di



 . (F.7)

The last integral can be written explicitly as

πM

p

det(1M − D1B2)
exp





1
2[d

T
1 +β

T C1, cT
2 +β

′T C T
2 ]





−D1 1M

1M −B2





−1



d1 +C T
1 β

c2 +C2β
′







 , (F.8)
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where we wrote
�

α
α∗
�

= M
�

ℜ(α)
ℑ(α)

�

with M =
�

1M i1M
1M −i1M

�

, used the well known

real integral
∫

Rn dnx exp
�

−1
2 x T Ax + bTx

�

=
Ç

(2π)n
det A exp

�1
2 bT A−1B

�

and the fact that

det
�

M T
�−D1 1M
1M −B2

�

M
�

= 22M det(1M − D1B2) (see also Theorem 3 of Appendix A of Fol-
land [21]).

If we define

Y = 1M − B2D1 (note that YT = 1M − D1B2 since D1, B2 are symmetric) , (F.9)

then the inverse appearing in the last equation can be obtained using Schur complements and
is given by,

Z = ZT =





−D1 1M

1M −B2





−1

=





Y−1B2 Y−1

[YT ]−1 D1Y−1



 . (F.10)

This expression allows us to write

〈β∗|U f |β ′〉=
cU1

cU2
p

det(Y)
exp

�

−1
2

�

||β ||2 + ||β ′||2
�

+ cT
1 β + dT

2 β
′ +β T B1β +β

′T D2 β
′�

× exp





1
2[d

T
1 +β

T C1, cT
2 +β

′T C T
2 ]Z





d1 +C T
1 β

c2 +C2β
′







 (F.11)

= exp
�

−1
2

�

||β ||2 + ||β ′||2
�� cU1

cU2
p

det(Y)
exp





1
2[d

T
1 , cT

2 ]Z





d1

c2









︸ ︷︷ ︸

≡cUf

× exp









�

[cT
1 ,dT

2 ] + [d
T
1 , cT

2 ]Z
�

C T
1 ⊕C2

	�

︸ ︷︷ ︸

≡bT
Uf





β

β ′













× exp







1
2[β

T ,β ′T ]
�

B1 ⊕ D2 +
�

C1 ⊕C T
2

	

Z
�

C T
1 ⊕C2

	�

︸ ︷︷ ︸

≡AUf





β

β ′










. (F.12)

G Riemannian gradient of the unitary group

The Riemannian metric of the unitary group at point A is:

〈X , Y 〉A = 〈A−1X , A−1Y 〉12n
= Tr

�

(A−1X)†A−1Y
�

, X , Y ∈ TAU(n,C) . (G.1)

The Riemannian gradient ∇A f at point A of a sufficiently regular function f : U(n,C −→ C)
associated to the Riemannian metric satisfies

∇A f =
1
2

�

∂A f − A∂ †
A f A

�

. (G.2)

Proof. According to the compatibility of the Riemannian gradient with the Riemannian metric
(defined in Eq. (G.1)), we have:

〈∇A f , T〉A = 〈∂A f , T〉euc , ∀T ∈ TASp , (G.3)

36

https://scipost.org
https://scipost.org/SciPostPhys.17.3.082


SciPost Phys. 17, 082 (2024)

that it,

〈∂A f − A−†A−1∇A f , T〉euc = 0 . (G.4)

This implies that ∂A f − A−†A−1∇A f ∈ NAU. So we have, with AA† = 1:

∂A f − A−†A−1∇A f = AN , (G.5)

∂A f =∇A f + AN . (G.6)

Using the tangency condition ∇A f ∈ TAU, we know

(∇A f )†A+ A†∇A f = 0n . (G.7)

Together Eq. (G.7) and Eq. (G.6) with N = N†, we solve

N =
1
2

�

A†∂A f + ∂ †
A f A

�

. (G.8)

Thus we obtain

∇A f = ∂A f − A
1
2

�

A†∂A f + ∂ †
A f A

�

(G.9)

=
1
2

�

∂A f − A∂ †
A f A

�

. (G.10)

H Solution of the cubic phase state optimization

Here we report the symplectic matrix of the Gaussian transformation in circuit 4b:

[[ 0.336437829, -0.587437101, 0.151967502, 2.011467789, 1.858626268, -1.401857238],
[ 1.416888301, 0.409496273, 0.448704546, -1.759418716, -5.552019032, 2.056880833],
[-0.477864655, 0.14143573, -2.111321823, -2.485020087, -4.623168982, 2.511539347],
[-5.701053833, 1.587452315, 0.364136769, -1.343878855, 12.237643127, -2.543280972],
[-2.302558433, 1.344598162, 0.378523959, -2.291630056, 3.35733036 , 0.527469667],
[-1.386435201, 0.479622105, -0.771833605, -1.523680547, 0.579084776, 0.246557173]]

As well as the displacements in x and y of the three displacement gates:

[-0.642981239, 2.326888363, 3.021233284]
[ 2.266497837, -1.655566694, -2.858640664]

Note that we formatted them so that they can be easily copy-pasted from this document to
a Jupyter notebook, or Python file (for instance to create a Numpy array).

I Comparison of Riemannian optimization and Euclidean
optimization

We compare different optimization circuits to show the fast convergence of the Riemannian
method. The 4-mode circuit device has three different structures shown in Fig. 8, which in-
clude three optimization methods:

(a) Symplectic optimization, in which the symplectic matrix of a Gaussian multimode gate
is updated following the Riemannian manifold gradient as in Eq. (138).
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(b) Unitary optimization, in which we update the unitary matrix of the Interferometer on
its Riemannian manifold as in Eq. (141). The squeezing gates are optimized using Eu-
clidean gradients.

(c) Euclidean optimization, in which all the parameters of a gate-decomposed circuit are
updated according to the gradient.

Note that there are several methods to decompose a multi-mode interferometer into a beam-
splitter network (of which many implementations exist [71–75]) and here we just pick one of
them (shown in the circuit (c) of Fig. 8) to show the optimization.

We performed three experiments with a randomly chosen PNR pattern [3, 1,5] on the last
three modes. The cost function to be optimized is the fidelity between the output state and
the target cat state. The learning rate is chosen as 0.003 for the three optimization methods.
This is an important hyperparameter and there is a significant room for further investigation,
however for the sake of fairness we choose the same value for all three of them.

The results are shown in Fig. 9, which represents the average of the loss curves with 20
random seed optimization processes. The green solid line shows that circuit (a) in Fig. 8 has
the fastest convergence achieving unit fidelity in around 10 steps. Surprisingly, the blue solid
line shows that circuit (b) is slower than the orange solid line corresponding to circuit (c).

We analyze the optimization timing distribution of each run in Fig. 10. Two Riemannian
methods (symplectic and unitary group optimization) spend around 1.25 seconds for each
optimization, which is two times faster compared with the Euclidean method which finished
in around 2.5 seconds.

|0〉

G

|cat〉

|0〉 3

|0〉 1

|0〉 5

(a)

|0〉sq

I

|cat〉

|0〉sq 3

|0〉sq 1

|0〉sq 5

(b)

|0〉sq • • |cat〉
|0〉sq • • • • 3

|0〉sq • • • • 1

|0〉sq • • 5

(c)

Figure 8: Four-mode circuit optimization. (a) Four-mode Gaussian transformation
with PNR on the last three modes. This shows the symplectic optimization of the
Gaussian object. (b) Four single-mode squeezed vacuum followed by a four-mode
Interferometer with PNR on the last three modes. This includes both Euclidean opti-
mization of the four squeezed vacuum states and unitary optimization of the interfer-
ometer. (c) Four single-mode squeezed vacuum followed by a beamsplitter network
on every two modes with PNR on the last three modes. This includes both Euclidean
optimization of the four squeezed vacuum states and the beamsplitters.
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Figure 9: Comparison of the cost function in steps for three optimization circuits to
prepare the cat state. The solid line represents the average of cost functions with 20
random seeds. The green solid line corresponds to circuit (a) in Fig. 8, the orange
line corresponds to circuit (c) and the blue one corresponds to circuit (b).
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Figure 10: Time distribution of the training. The green line group corresponds to
circuit (a) in Fig. 8, the orange line group corresponds to circuit (c) and the blue line
group corresponds to circuit (b). In each group, the probability distribution function
and the sample distribution are plotted.
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