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Abstract

This note derives the stochastic differential equations and partial differential equation of
general hybrid quantum–classical dynamics from the theory of continuous measurement
and general (non-Markovian) feedback. The advantage of this approach is an explicit
parameterization, without additional positivity constraints. The construction also neatly
separates the different effects: how the quantum influences the classical and how the
classical influences the quantum. This modular presentation gives a better intuition
of what to expect from hybrid dynamics, especially when used to construct possibly
fundamental theories.
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1 Introduction

It is possible to construct consistent hybrid models where quantum and classical variables
evolve jointly. This can be used, for example, to construct theories in which a classical gravi-
tational field is coupled with quantum matter. The price to pay for this hybrid coupling is only
extra randomness in the dynamics. The conceptual benefit, apart from allowing quantum–
classical dynamics in the first place, is the emergence of a spontaneous collapse process that
can help solve the measurement problem.

Formally, such models are less exotic than they would seem: requiring that the dynam-
ics is Markovian and continuous yields the same dynamical equations as continuous quan-
tum measurement combined with feedback. In fact, this is precisely how hybrid models were
constructed in the context of Newtonian gravity [1–4] and in even earlier works [5], before
the generality of the approach was appreciated [6]. The objective of this technical note is
to explicitly construct the general equations of quantum–classical dynamics from continuous
measurement and feedback. This provides a powerful reinterpretation of recent works. The
only non-trivial starting point is the stochastic master equation (SME) of continuous quantum
measurement, which has been developed in quantum optics and quantum foundations since
the late eighties [7, 8], and is now in standard textbooks [9, 10]. From this direct stochastic
description, a partial differential equation (PDE) à la Fokker-Planck (as used e.g. by Oppen-
heim [11] in more recent developments) can be re-derived. Provided one is familiar with Itô
calculus, or willing to use the simple rules given in the appendix of the present paper, this
gives the shortest and most intuitive path to continuous hybrid dynamics.

In my opinion, presenting the formalism this way comes with a number of additional ben-
efits, regardless of one’s familiarity with quantum optic techniques:

1. One can leverage well understood equations and carry the derivations rigorously directly
in the continuum.

2. The models one obtains are parameterized in a natural and constructive way. More
precisely, there are no extra constraints that need to be fulfilled for the models to be
consistent, and yet the parameterization generates all that is possible.

3. The measurement and feedback formulation provides a very powerful intuition pump
about the physics, allowing to essentially guess most results without computations. Its
merit is its modularity, neatly separating the various contributions to the dynamics: the
intrinsic quantum and classical dynamics, the classical acting on the quantum, and the
quantum acting on the classical.

4. The link with spontaneous collapse models is transparent, allowing to recycle lessons
acquired in this field, in particular regarding spontaneous heating.

In this presentation of hybrid dynamics from measurements, the measurement signal plays a
central role, as the glue between the quantum and classical. This is a useful quantity (con-
ceptually and practically) that does not appear naturally if one starts from general hybrid
dynamics written as a partial differential equation.

Before diving into the equations, it is important to warn the reader. We will see how
quantum classical dynamical models can generically be obtained from the theory of continu-
ous measurement and feedback. This does not mean that one should take this interpretation
literally, especially if one is in the business of building models of Nature that are possibly
fundamental! We do not expect that something in Nature actually carries measurement and
feedback. The equivalence is, of course, only mathematical. This is sufficient to give us access
to a well developed toolbox of techniques and a powerful intuition pump: we usually have a
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better idea of what to expect from measurement and feedback than from general quantum–
classical dynamics.

2 Continuous measurement and feedback

2.1 The stochastic master equation for continuous measurement

Our starting point is the standard stochastic master equation (SME) in Itô form (see appendix
for a quick explanation of Itô calculus), describing the continuous evolution of a quantum
system of density matrix ρ under continuous measurement. Continuous measurement can
also yield quantum state dynamics with discrete jumps, but we restrict the analysis in this
note to continuous (diffusive) dynamics (see remark 6). For a system with density matrix ρ,
which one can take finite dimensional for simplicity, the most general continuous SME is

dρ = −i[H0,ρ]dt +
n
∑

k=1

D[ĉk](ρ)dt +
p
ηk M[ĉk](ρ)dWk , (1)

where the Wk are n independent Wiener processes (or Brownian motions), 0≤ ηk ≤ 1 are the
detector efficiencies, and

D[ĉ](ρ) = ĉρ ĉ† −
1
2

�

ĉ† ĉ,ρ
	

[dissipation / decoherence] , (2)

M[ĉ](ρ) = ĉρ +ρ ĉ† − tr
�

(ĉ + ĉ†)ρ
�

ρ [stochastic innovation] . (3)

The operators ĉk are arbitrary (not necessarily commuting, not necessarily Hermitian) char-
acterizing each detector, and H0 is a Hermitian operator specifying some pre-existing unitary
dynamics. The corresponding “sharp” measurement signals Ik(t) =

drk(t)
dt verify:

drk =
1
2

tr[(ĉk + ĉ†
k)ρ]dt +

1
2
p
ηk

dWk . (4)

This signal equation (4) can be used to express dWk as a function of drk and thus to reconstruct
ρ as a function of the signal using (1)

dρ = −i[H0,ρ]dt +
n
∑

k=1

D[ĉk](ρ)dt +ηk M[ĉk](ρ)
�

2 drk − tr
�

(ĉk + ĉ†
k)ρ
�

dt
�

. (5)

Numerically, this latter equation (5) is typically used to reconstruct quantum trajectories from
experimental measurements, whereas equation (1) is used if one wants to sample quantum
trajectories directly, and numerically generate a signal with the correct law. The continuous
SME (1) has been known since the eighties, and independently invented and reinvented in
mathematics [8,12], quantum optics [13], and foundations [7] (see e.g. Jacobs and Steck for
pedagogical introduction [14]). The simplest way to obtain it is as the limit of infinitely weak
and infinitely frequent measurements (see for example [15–17]). We may however forget its
origin, and simply use it as a provably consistent starting point.

Remark 1 (Diagonal form). We have specified the measurement dynamics in its so called “di-
agonal form”. In particular, the deterministic part of the dynamics is written:

L(ρ) = −i[H0,ρ] +
∑

k

ĉkρ ĉ†
k −

1
2

�

ĉ†
k ĉk,ρ
	

, (6)
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which, historically, is the form introduced by Lindblad [18]. An equivalent representation is
the non-diagonal form, which was introduced at the same time by Gorini, Kossakowski, and
Sudarshan [19]

L(ρ) = −i[H0,ρ] +
∑

α,β

Dαβ

�

L̂αρ L̂†
β
−

1
2

¦

L̂†
β

L̂α,ρ
©

�

, (7)

which seems more general but is equivalent (which is seen by diagonalizing D) provided the
necessary semi-definite positivity constraint D ⪰ 0 is enforced. This non-diagonal form extends
to the complete measurement SME, and we write it explicitly in (19). There, the equation may
also seem more general but is in fact equivalent because of the positivity constraint.

Remark 2 (Regularity). Technically, the sharp signals are only defined as distributions, and one
should define directly the “smooth” signal Ik,ϕ corresponding to the sharp signal integrated
against a smooth function ϕ

Ik,ϕ :=

∫

ϕ(t)drk(t) = “

∫

ϕ(t) Ik(t)dt ” . (8)

Interestingly, before we turn on a general feedback, the correlation functions of the signal

E
�

Ik1,ϕ1
Ik2,ϕ2
· · · IkN ,ϕN

�

, (9)

where E denotes the average over the noise / signal, can be computed exactly [20, 21] for
finite dimensional Hilbert spaces (and well approximated otherwise).

Remark 3 (Efficiencies). If ∀k, ηk = 1, the SME preserves pure states ρ = |ψ〉〈ψ| and could
thus be rewritten as a stochastic Schrödinger equation (SSE) for |ψ〉. Experimentally, the
efficiencies can be quite low, but if we are constructing fundamental models it makes sense to
fix them at 1.

Remark 4 (Non-linearity). The SME is non-linear but this non-linearity is mild, and is purely an
effect of the fixed normalization tr(ρ) = 1. To see this, one can introduce ρ̃ the un-normalized
density matrix, which is equal to ρ at the initial time, and which verifies the linear SME (as a
function of the signal)

dρ̃ = −i[H0, ρ̃]dt +
n
∑

k=1

D[ĉk](ρ̃)dt + 2ηk (ĉkρ̃ + ρ̃ ĉ†
k)drk . (10)

Using Itô’s lemma, one verifies that ρt =
ρ̃t

tr(ρ̃t )
.

Remark 5 (Collapse models). Mathematically, for ĉk ’s taken to be regularized mass density
operators, the SME (1) is exactly the stochastic differential equation of a collapse (or spon-
taneous localization) model [22, 23]. The SME (1) can even reproduce so called dissipative
collapse models [24] by taking general non self-adjoint ĉk ’s. Hence, whether we like it or not,
hybrid quantum–classical models do contain a general collapse model at their core.

In an actual experiment, everything one can know about the system is stored in the signal
trajectories rk(t). The rest, like the state ρt itself, is not directly observable, and is only re-
constructed from rk. Practically, the signal is thus a crucial object, if only because it is the only
thing we have. This is at the very least a hint that it is also a relevant quantity if we are in the
business of building models.
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2.2 General feedback

At this stage, we already have a proto-hybrid model, in the sense that we have a classical signal
rk sourced from a quantum a part ρ. What remains is to have the classical part back-react on
the quantum part. To this end, we may enrich the classical part with a d-dimensional vector
of classical variables z= {za}a=1···d depending on the measurement signals. Intuitively, in the
experimental context, this vector of variables z can be whatever function of past results which
is used in the control loop (the internal state of the controller). Again, if we want to build a
fundamental model, this interpretation is not literal, but merely an intuition pump to guess
the results.

Because it has the regularity of white noise, the signal can only enter linearly in the dy-
namics, and thus the most general adapted Itô process one can construct for zt is

dza = Fa(z)dt +
n
∑

k=1

Gak(z)
p
ηk drk (11)

= Fa(z)dt +
n
∑

k=1

Gak(z)
p
ηk

2
tr[(ĉk + ĉ†

k)ρ]dt +
Gak(z)

2
dWk . (12)

The deterministic Fa(z) part includes Hamiltonian dynamics as a special case, but can in prin-
ciple be more general (e.g. with classical dissipation).

In (12) we extracted
p
ηk away to define G: this is only a notational convenience to make

the feedback finite in the case where ηk = 0, to make the connection with the notations of
Weller-Davis and Oppenheim [6] more transparent. For simplicity, we take z to be a vector of
real variables, and thus F and G are also real.

Now that we have classical variables (controller variables) z, we can have everything de-
pend on them in real time. This “everything” includes the measurement setting, i.e. the op-
erators ĉk → ĉk(z) themselves, the pre-existing unitary dynamics H0 → H(z), and potentially
even the efficiencies ηk → ηk(z). For simplicity, we will not always write their z dependence
explicitly.

As we will see, the SME (1) combined with the classical dynamics (12) is ultimately equiv-
alent to the hybrid equations of [6], and consequently provide the most general Markovian
continuous quantum–classical evolution that one can write. Importantly, owing to the “di-
agonal” form we have worked with from the start, the dynamics trivially preserve complete
positivity of ρ, no matter the value of the parameters. Consistency is built in from the start.

Remark 6 (Jumps). We have focused on dynamics continuous in time and Hilbert space, that
is, without jumps. Time-continuous measurements with jumps also exist (which, experimen-
tally, correspond to photo-detection instead of the homodyne readouts we have used so far).
All the steps we have followed could in principle just as well be followed starting from such
jump measurement dynamics. The resulting quantum–classical trajectories have been dis-
cussed very recently and in a mathematically rigorous manner by Barchielli [25]. In fact, the
jump case corresponds precisely to the type of dynamics that were initially considered by Op-
penheim [11]. The existence of fully continuous yet consistent quantum–classical dynamics
is less expected, and easier to miss, hence why we focus on it in the present note. However,
extending the analysis to the jump case, and better, to a mix of diffusive continuous evolution
and jumps, would certainly be worthwhile.
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3 Connection with continuous hybrid dynamics

3.1 The approach of Oppenheim and collaborators

Another orthogonal approach to derive the dynamics we have outlined is to consider the most
general quantum dynamics preserving a classical sector. To this end, one first introduces a
global density matrix ϱ acting onHtot :=Hquantum ⊗Hclassical such that

ϱt =

∫

ddzρt(z)⊗ |z〉〈z| , (13)

in a fixed basis |z〉. The lack of coherences in Hclassical implies that the variable z ∈ Rd is
classical.1 One then tries to find the most general subset of Lindblad dynamics on ϱ such that
this diagonal structure on Hclassical is preserved. This is, in a nutshell, the strategy followed
by Oppenheim in his seminal paper [11],2 as well as the one of earlier constructions of hybrid
dynamics by Blanchard and Jaczik [26,27].

The most general dynamics obtained in that manner yield two distinct classes of classical
behavior, continuous or with jumps [28]. In the former case, which is the one we focus on here,
one ultimately gets a fairly simple and explicit partial differential equation (PDE) for ρt(z).
This PDE can then be unraveled into a direct stochastic representation for classical variables
jointly evolving with a quantum state according to coupled SDEs. The PDE can be seen as the
Fokker-Planck description of the Langevin dynamics given by the SDEs.

The PDE and unraveled SDEs obtained this way are consistent, as long as the parame-
ters specifying the dynamics verify a set of positivity conditions [28]. However, by a simple
change of variable, (going from “non-diagonal” to “diagonal” form), one can see that the sub-
set of consistent SDEs is exactly the same as the one we have derived from measurement and
feedback.

To follow our objective of deriving everything from measurement and feedback, we now
show how to recover the quantum–classical PDE from the measurement and feedback dynam-
ics, via a straightforward application of Itô calculus. Then, we make the connection with the
original parameterization of Oppenheim and collaborators explicit by breaking the diagonal
form of the parameterization.

3.2 From stochastic to partial differential equation representation

In the Fokker-Planck (or PDE) representation, instead of having random variables ρt and zt
evolving jointly, we have a deterministic equation for an un-normalized ρt(z) heuristically
given by (13). More rigorously, ρt(z) is such that tr[ρt(z)] is the probability distribution pt(z)
of z at time t, and ρt = ρt(zt)/tr[ρt(zt)]. Mathematically, this means that ρt(z) verifies

∀ f ∈ C∞0 (R
d) , E[ρt f (zt)] =

∫

f (z)
ρt(z)

tr[ρt(z)]
p(z)ddz=

∫

f (z)ρt(z)d
dz . (14)

1More precisely, given such a diagonal form, we may assume that z is measured at all time without disturbing
the dynamics. Hence, there exists a natural classical process, which is just this measurement trajectory.

2Although this article [11]might seem like one of the most recent of this hybrid program, it is in fact an updated
version of the first paper by Oppenheim, which appeared on arxiv 5 years earlier, in November 2018.
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To find the partial differential equation obeyed by ρt(z), a simple option,3 is to differentiate
the left-hand side:

d
�

ρt f (zt)
�

=− i f (zt)[H(z),ρ]dt + f (zt)
n
∑

k=1

D[ĉk](ρ)dt + f (zt)
p
ηk M[ĉk](ρ)dWk

+
∂ f (zt)
∂ za

Fa(zt)ρt dt +
∂ f (zt)
∂ za

∑

k

Gak(zt)
p
ηk

2
tr[(ĉk + ĉ†

k)ρt]ρt dt

+
∂ f (zt)
∂ za

∑

k

Gak(zt)
2

ρtdWk

+
1
2
∂ 2 f (zt)
∂ za∂ zb

∑

k

Gak(zt)Gbk(zt

4
ρt dt [Itô correction from d f (zt)]

+
∂ f (zt)
∂ za

∑

k

p
ηk M[ĉk](ρ)

Gak(zt)
2

dt [Itô correction from dρtd f (zt)] ,

(15)

where have used Einstein’s convention of summation on repeated indices for a, b. In this
expression, the non-linear terms in ρt cancel, and taking the average value E removes the
Wiener processes. This gives

d
dt
E
�

ρt f (zt)
�

= E
§

− i f (zt)[H,ρt] + f (zt)
n
∑

k=1

D[ĉk](ρt)dt

+
∂ f (zt)
∂ za

�

Fa(zt)ρt +
∑

k

p
ηk Gak(zt)

2
(ĉkρt +ρt ĉ

†
k)

�

+
1
2
∂ 2 f (zt)
∂ za∂ zb

∑

k

Gak(zt)Gbk(zt)
4

ρt

ª

.

(16)

We now use equation (14) defining ρt(z) to convert the expectation values into integrals
over z:
∫

f (z)
∂ ρt(z)
∂ t

ddz=

∫

ddz
§

− i f (z)[H(z),ρt(z)] + f (z)
n
∑

k=1

D[ĉk](ρt(z))

+
∂ f (z)
∂ za

�

Fa(z)ρt(z) +
∑

k

p
ηk Gak(z)

2
(ĉkρt(z) +ρt(z)ĉ

†
k)

�

+
1
2
∂ 2 f (z)
∂ za∂ zb

∑

k

Gak(z)Gbk(z)
4

ρt(z)
ª

.

(17)

Finally, integrating by parts to bring the derivatives from f to ρ, and noting that the resulting
integral equation is true for all f yields

∂ ρt(z)
∂ t

=− i [H(z),ρt(z)] +
n
∑

k=1

D[ĉk](ρt(z))

−
∂

∂ za

�

Fa(z)ρt(z) +
∑

k

p
ηk Gak(z)

2
(ĉkρt(z) +ρt(z)ĉ

†
k)

�

+
1
2

∂ 2

∂ za∂ zb

�

∑

k

Gak(z)Gbk(z)
4

ρt(z)

�

.

(18)

3This is the strategy that was followed in [29] to get a similar equation for the so called open quantum Brownian
motion which is in some way the simplest continuous quantum–classical system one can think of (the classical
variable is just the integrated signal).
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This partial differential equation (18) is mathematically equivalent, by construction, to the
direct stochastic representation of measurement (1) and feedback (12).

The present parameterization makes the interpretation of each term transparent. In ad-
dition to the intrinsic quantum dynamics with measurement-induced decoherence, we have a
deterministic drift of the classical variables with one part that is intrinsic, given by Fa(z) and
one part that is of quantum origin, given by

p
ηk Gak(z) (ĉkρt(z)+ρt(z)ĉ

†
k)/2. Finally, there is

diffusion, positive by construction, that depends quadratically on G which says how strongly
the signal drives the classical dynamics.

3.3 Non-diagonal form and generality

To get closer to the notation used in [6], we need to break the “diagonality” of our equations
and expand the ĉk in a family of other operators ĉk = Γαk L̂α where Γ is a generic complex
rectangular matrix and the L̂α are generic operators.

With this expansion, the SME for the density matrix can be rewritten as

dρ =− i[H,ρ]dt +
∑

k

§

ΓαkΓ
∗
βk

�

L̂αρ L̂†
β
−

1
2
{ L̂†
β

L̂α,ρ}
�

dt

+
p
ηk Γαk

�

L̂α − 〈 L̂α〉
�

ρ dWk +
p
ηk Γ

∗
αk ρ
�

L†
α − 〈 L̂

†
α〉
�

dWk

ª

,

(19)

with 〈L〉 := tr[Lρ]. For the classical variables za we obtain

dza = Fa dt +
∑

k

Gak
p
ηk

2
Γαk〈L̂α〉dt +

Gak
p
ηk

2
Γ ∗αk〈L̂

†
α〉dt +

Gak

2
dWk . (20)

We may now explicitly relate our parameterization with that of [6] by introducing

Dαβ0 =
∑

k

ΓαkΓ
∗
βk = (Γ Γ

†)αβ ⪰ 0 , (21)

σak =
Gak

2
, (22)

Daα
1 =
�

σ
p
η Γ †
�

aα =
∑

k

σa,k
p
ηk Γ

∗
α,k . (23)

This gives the SME for the quantum density matrix

dρ =− i[H,ρ]dt + Dαβ0

�

L̂αρ L̂†
β
−

1
2
{ L̂†
β

L̂α,ρ}
�

dt

+
∑

k

(σ−1D∗1)kα
�

L̂α − 〈 L̂α〉
�

ρ dWk + (σ
−1D∗1)kαρ
�

L†
α − 〈 L̂

†
α〉
�

dWk ,
(24)

with the generalized inverse where σ−1 := σT (σσT )−1. The classical dynamics is then simply

dza = Fa dt + D∗ aα
1 〈L̂α〉dt + Daα

1 〈L̂
†
α〉dt +
∑

k

σak dWk . (25)

The equations (24) and (25) correspond to the unraveled form of the most general dynamics
presented in [6]. We may choose to parameterize the dynamics this way, as a function of
D0, D1, and σ but the dynamics is then consistent only if non-trivial positivity constraints are
verified. For example we have

D1D−1
0 D†

1 =
1
4

G
p
η Γ †(Γ Γ †)−1Γ

p
ηGT =

GηGT

4
, (26)
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hence, introducing 2D2 = σσT = GGT

4 we have 2D2 ⪰ D1D−1
0 D†

1, which corresponds to the so
called “decoherence diffusion trade off” [6]. Its saturation is straightforward to understand
in the diagonal formalism: it corresponds to setting the measurement efficiencies ηk at 1. In
fact, works on Newtonian gravity were all done with ηk = 1, and were saturating the trade-off
before it was put forward.

Finally, we can rewrite the PDE (18) in terms of the D matrices we just introduced:

∂ ρt(z)
∂ t

=− i[H(z),ρ] + Dαβ0 (z)
�

L̂αρ L̂†
β
−

1
2
{ L̂†
β

L̂α,ρ}
�

−
∂

∂ za

�

D0a
1 (z)ρt(z) + (D

aα
1 L̂αρt(z) +ρt(z)D

aα∗
1 L̂†

α)
�

+
1
2

∂ 2

∂ za∂ zb

�

Dab
2 (z)ρt(z)
�

,

(27)

where D0a
1 = Fa, to get as close as possible to the notations in [6]. This is the most general

parameterization of a second order PDE in z preserving the properties of ρ. We could have
started from it and then realized that ensuring the consistency of the resulting dynamics forces
the non-trivial positivity constraint 2D2 ⪰ D1D−1

0 D†
1.

Emphasizing the glue linking quantum and classical sectors, namely the measurement sig-
nal, we thus obtained a parameterization that is interpretable, consistent by construction (the
parameters themselves are not further constrained by equations), but no less general.

4 The Markovian feedback limit

The dynamics we have considered is already Markovian in z and ρ. However, if the intrin-
sic dynamics of the classical system is much faster than the quantum dynamics, we enter a
regime that corresponds to Markovian (measurement based) feedback [10,30,31]. The equa-
tions then drastically simplify, and the empirical predictions can be computed from a simple
Lindblad equation acting on quantum degrees of freedom only. Historically, the hybrid mod-
els used for gravity immediately took the Markovian feedback limit [1–3] which was relevant
to the Newtonian setting. While it allowed to get quantitative predictions in this relevant
regime, it unfortunately obfuscated the link with the general case. Here, we can simply see
the Markovian feedback limit as a special case.

Deriving the Markovian limit from the dynamics of z is in general problem dependent,
and can be non-trivial if z has non-linear dynamics (see e.g. [32]). However, it is possible
to write all the possible dynamics that one can ultimately get this way. In this endeavor, the
measurement signal again plays the central role.

Concretely, the Markovian limit requires that the backaction the classical variables have
on the quantum part is memoriless, i.e. that it depends only on the instantaneous signal. The
latter has the regularity of white noise, and thus can enter only linearly in the dynamics, which
means that the backaction can appear only in the potential part H(z) = H0 + V (z) with

V (z)dt =
∑

k

b̂k drk , (28)

where the b̂k are Hermitian operators. The fluctuating potential given by equation (28) has to
be interpreted with care, and is notoriously subtle!4 The corresponding unitary acts infinites-
imally after the signal is sourced from the measurement dynamics (1), and thus we should

4Crucially, it is not sufficient to just interpret (28) in Stratonovich form, which gives an incorrect operator
ordering [33].
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understand (28) to mean

ρt + dρt = e−i
∑

k b̂k drk
�

ρt + dρ(meas)
t

�

e+i
∑

k b̂k drk . (29)

where dρ(meas) is given by (1). While this form is intuitively correct, and convenient to carry
further derivations, it can be further motivated by smoothing the signal at a timescale ϵ and
sending ϵ to zero (see e.g. [10]).

Expanding the right-hand side of (28) and using the Itô rule dWk dWℓ = δkℓ dt gives

dρt =− i[H0,ρt]dt +
∑

k

�

D[ĉk](ρt)dt +M[ĉk](ρt)dWk [measurement] (30)

− i
�

b̂k,ρt

�

�

1
2
p
ηk

dWk +
1
2

tr[(ĉk + ĉ†
k)ρt]dt

�

[standard feedback] (31)

−
1

8ηk

�

b̂2
k ,ρt

	

dt [Itô correction from each e±i
∑

k b̂kdrk] (32)

+
1

4ηk
b̂kρ b̂kdt [Itô correction from e±i

∑

k b̂kdrkcross terms] (33)

−
i

2
p
ηk

�

b̂k,M[ĉk](ρt)
�

dt [Itô correction from e±i
∑

k b̂kdrk/meas]

�

. (34)

The non-linear term in the standard (or naively expected) feedback part (31) cancels with the
non-linear part of the Itô correction (34), and the Itô corrections (32) and (33) combine into
a new Lindblad term. With these simplifications one obtains

dρt =− i[H0,ρt]dt +
∑

k

D[ĉk](ρt)dt +M[ĉk](ρt)dWk

+
∑

k

−i
2
p
ηk

�

b̂k, ĉkρt +ρt ĉ
†
k

�

dt +
1

4ηk
D[b̂k](ρt)− i
�

b̂k,ρt

� 1
2
p
ηk

dWk .
(35)

In this Markovian limit, the classical variables no longer have dynamics of their own and are
slaved to the quantum ones via the signal equation (4). Conceptually, the stochastic dynamics
is still important. If this hybrid dynamics is produced effectively in a lab with measurement
and feedback, then the stochastic trajectory can be reconstructed from the measured signal,
and thus we would lose important information by averaging over it. If the hybrid dynamics
is thought to be fundamental, then the signal is not directly observable, but the stochastic
dynamics yields a progressive collapse of the quantum state that is useful for foundational
purposes (e.g. to solve the measurement problem).

If we are interested only in empirical predictions in the hybrid-dynamics-as-fundamental-
model case, then we cannot make better predictions with the stochastic description than with
its average ρ̄ := E[ρ] where E is the stochastic average over the signal. In this Markovian
setup, this gives a simple Lindblad equation

d
dt
ρ̄t =− i[H0, ρ̄t] +

∑

k

−i
2
p
ηk

�

b̂k, ĉkρ̄t + ρ̄t ĉ
†
k

�

+D[ĉk](ρ̄t) +
1

4ηk
D[b̂k](ρ̄t) . (36)

That equation separates neatly the measurement-induced decoherence and the decoherence
induced by the randomness in the feedback. However, because of the peculiar form of the sec-
ond term, the Lindblad structure is not obvious and the unitary contribution from the feedback
is unclear. It is possible to make things more transparent by noting that:

∑

k

−i
2
p
ηk

�

b̂k, ĉkρ̄ + ρ̄ ĉ†
k

�

+D[ĉk](ρ̄) +
1

4ηk
D[b̂k](ρ)

=
∑

k

−i
4
p
ηk

�

b̂k ĉk + ĉ†
k b̂k, ρ̄
�

+D
�

b̂k

2
p
ηk
+ i ĉk

�

(ρ̄) .
(37)
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This forms makes it natural to introduce the effective potential V eff :=
∑

k
1

4
p
ηk

�

b̂k ĉk + ĉ†
k b̂k

�

,
which gives the master equation its alternative form

d
dt
ρ̄t =− i
�

H0 + V eff, ρ̄t

�

+
∑

k

D
�

b̂k

2
p
ηk
+ i ĉk

�

(ρ̄t) . (38)

Remark 7 (Unitary potential and disentanglement). If the Hilbert space of the system can
decomposed into a tensor product of factors (for example, into factors associated to different
distinguishable particles, or different regions of space), and if each ĉk acts on a single factor, the
pure measurement dynamics given by the SME (1) manifestly preserves product states. Then,
if the feedback operators b̂k are also each acting on a single factor, the whole measurement and
feedback dynamics preserves product states at the stochastic level. However, the potential Veff
taken alone is generically entangling if ĉk and b̂k act on different factors. Measurement and
feedback introduce precisely the right amount of decoherence / noise to kill the entanglement
created by the effective potential. Provided one accepts extra decoherence and noise, any
unitary potential Veff can be reproduced through measurement and feedback [34], and thus
simulated in an efficient way classically by evolving a stochastic pure state.

Remark 8 (Principle of least decoherence). In the Markovian feedback limit, the diffusion on
the classical variables becomes pure decoherence on the quantum part. Hence, we now have
two sources of decoherence, one from the measurement and one from the feedback. If we
fix the strength of the effective potential, which is proportional to the product ĉk b̂k, then de-
creasing one source of decoherence mechanically increases the other. Intuitively, lowering
the decoherence coming from the measurement part increases the diffusion of the classical
variables which, via the feedback potential, increases the noise on the quantum part. This ul-
timately gives decoherence at the master equation level. The decoherence–diffusion trade-off
consequently becomes a decoherence–decoherence trade-off, and thus the total decoherence
is lower bounded. Asking that a model be at this decoherence minimum seems like a physically
natural way to fix its parameters, and this is what was called the principle of least decoher-
ence in [35]. Note that the existence of this lower bound is a crucial difference between
hybrid quantum–classical dynamics and simple collapse models (corresponding to measure-
ment without feedback): one cannot escape experimental falsification by reducing decoher-
ence arbitrarily. Provided one falsifies the model at the least decoherence point, one falsifies
all models reproducing a given effective potential.

Remark 9 (Dissipation from pure measurement and feedback). From the Lindblad equation in
the form of (38), we observe an interesting property.5 It is standard to take ĉk = ĉ†

k, which gives
“pure” (or non-demolition, non-dissipative continuous measurement,6) which corresponds to
the intuitive notion of quantum measurement. More precisely, if we measure a single Hermi-
tian ĉ, the stochastic evolution (1) progressively sends ρ to one of the eigenstates of ĉ with a
probability given by the Born rule. Moving away from self-adjoint measurement operators is
equivalent to adding dissipation. From equation (38), we see that even if we start from a pure
measurement in that sense, we can tune the feedback operators b̂k to obtain any non-Hermitian

operator b̂k
2
p
ηk
+ i ĉk in D. Then, upon redefining H0 to absorb the unitary contribution of the

feedback, we can obtain all possible dissipative Lindblad dynamics. This is important because
this means that even if the pure measurement part is without dissipation, driving the quantum
part to infinite temperature, feedback can cool the stationary state down.

5To my knowledge, this observation was first made by Lajos Diósi.
6Note the slightly misleading terminology used in open quantum systems: a term of the form D[ĉ](ρ) appearing

in the Lindblad equation is called a dissipator but it does not induce dissipation in the usual sense if ĉ = ĉ† (only
decoherence).
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The lessons derived in the Markovian feedback limit are important for more general hybrid
quantum–classical models. First, because the latter often reduce to the Markovian feedback
models in appropriate physical limits, and thus the results obtained in the Markovian limit
can meaningfully constrain their parameters. Second, because most conclusions obtained in
the Markovian feedback limit likely subsist at least qualitatively in the general case. For ex-
ample, the fact that diffusion in the classical variables is empirically indistinguishable from
decoherence on the quantum part is true only in the Markovian limit. But this suggests that
in the general case, diffusion in the classical variable likely has very similar consequences to
decoherence, and thus that too much diffusion can be falsified in just the same way.

5 Discussion

5.1 Modular construction of (candidate) fundamental theories

The general idea we have leveraged in this note is that quantum–classical dynamics can be
decomposed into pure measurement, where the quantum only influences the classical, and
a feedback part, where the classical back-reacts on the quantum. I believe this split clarifies
the construction of candidate fundamental theories of Nature (even retrospectively for Oppen-
heim’s approach), and is thus particularly useful for theory builders.

In the context of fundamental theories, the feedback part of the dynamics is usually well
constrained or even already tested. For gravity, we know how quantum matter evolves in a
fixed gravitational background. The answer, quantum field theory in curved space-time, is
not without technical difficulties, but is well tested at least in some limits (e.g. by dropping
an atom in the Earth gravitational field). As far as I know, no one doubts its validity, at least
in the fixed background context. The difficulty lies in sourcing a classical gravitational field
from quantum matter. For this part of the dynamics, there is currently no experimental guide
available, even in the Newtonian limit (since we do not even know if gravity is quantum, hybrid,
or something else entirely). In our construction of hybrid dynamics, this tricky open part, the
“sourcing”, is done by the continuous measurement process, which extracts a classical signal
from quantum degrees of freedom.

For the theory builder, the main choice thus lies in picking the appropriate measured oper-
ators ĉk. In the non-relativistic limit of gravity, it should intuitively be something related to the
mass density of quantum matter at every point∝ M̂(x), or directly to the gravitational field

this matter density produces∝ Φ̂(x) = −
∫

d3y M̂(y)
|x−y| , two options considered in [3]. Even in

the non-relativistic context, this choice yields an infinite amount of decoherence, which can
be regulated by smearing the mass density over a cut-off distance σ. Fortunately, this is fine
for gravity, which has not been tested at very short distances. With this regulator, the former
choice M̂(x) yields a measurement part of the dynamics identical to that of the continuous
spontaneous localization model (CSL) [36], while the latter choice, Φ̂(x), yields the Diósi-
Penrose model [37,38]. The feedback part is Markovian, and thus the complete models, with
the backaction of gravity on matter, are obtained along the lines of section 4.

For these non-relativistic models, there exists a range of continuous measurement rates that
is not yet falsified and compatible with (non-relativistic) observations.7 However, as argued in
remark 8, the models are in principle falsifiable for all values of their parameters. Interestingly,
asking for the model with the least amount of extra decoherence singles out the measured
operator Φ̂(x), and thus gives exactly the decoherence of the Diósi-Penrose model, which was

7In the SME (1), we are free to multiply the measured operator by a constant, to increase or reduce the strength
of the continuous measurement. The dimension of this constant depends on the operator being measured, but is
proportional to the root of a rate.
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only motivated heuristically before [35]. In any case, the existence of such non-trivial models
demonstrates that hybrid quantum–classical gravity need not yield ridiculous paradoxes or
gross experimental violations [4,39]. Of course, this successful non-relativistic sanity check is
not sufficient to demonstrate that hybrid gravity models are viable.

5.2 The (relativistic) measurement part: Collapse phenomenology and diver-
gences

The main merit of Oppenheim’s program [11], further refined and expanded with Layton,
Šoda, Sparaciari, and Weller-Davies [6, 28, 32, 40–43], has been to push hybrid dynamics be-
yond the non-relativistic playground where it had remained confined. More than a model,
these works build and refine a framework, from which one can in principle specify a variety
of models. In our language, the choice of measurement operators ĉk and feedback dynamics
is not fully explicit. Rather, a set of non-trivial requirements are derived that would make the
resulting dynamics properly relativistic and have General Relativity as classical limit. It is not
yet known if there exists choices that satisfy all the requirements jointly and are compatible
with observations.

In my opinion, the measurement part of the dynamics is the most important and difficult
to make consistent with observations for a relativistic theory.8 Indeed, constructing consis-
tent relativistic continuous measurement equations (equivalently relativistic collapse models),
which is required in Oppenheim’s program as in every other attempt at making hybrid dynam-
ics relativistic, is notoriously difficult. The main hurdle is that the standard approach [45]
with local dissipators D[O(x)] generically induces an infinite spontaneous heating of the vac-
uum. One could think of renormalizing this effect, and for various models this can be done
formally [46]. However, the required counter terms are negative and thus break the Lindblad
form of the master equation, which is unacceptable for a fundamental theory.

It is tempting, as a fallback option, to just regularize the dynamics, without renormaliz-
ing with counter terms. But then one should keep in mind that present constraints on non-
relativistic collapse models make the resulting scale dangerously large (far larger than the
Planck scale, and even larger than the nucleon scale [47–49]).

An even bolder alternative is to relax the Markovianity of the measurement part itself,
to covariantly smear the dissipators in space-time. One then enters the realm of so called
non-Markovian unraveling of open systems [50–52] or non-Markovian collapse models [53].
Such models have empirical consequences that are essentially as mild as one desires. While
I once thought this was a promising route, I now think it comes with too much flexibility, as
it seems to allow hiding any fully quantum theory into a collapse equation [54, 55]. Further,
it is known that the resulting stochastic trajectories do not have a continuous measurement
interpretation [56, 57]. As a result, there is no obvious equivalent of the signal that one can
use as quantum–classical glue, and thus no clear route towards consistent hybrid dynamics.

Since the relativistic continuous measurement part is currently difficult to make consistent
on its own after about 35 years of efforts, one may hope that the solution can be found only by
turning on the feedback, and considering the backaction of the classical sector. While the total
amount of decoherence cannot be decreased this way, the asymptotic heating in principle can.
Indeed, from the Markovian feedback limit, we saw in remark 9 that a well chosen feedback
can induce dissipation (and thus in principle cooling). In hybrid models of Newtonian gravity,
the measurement and feedback operators commute [3], and thus no dissipation appears from
the feedback; but this could in principle be an effect showing up only in higher post-Newtonian
orders. However, without further evidence, expectations should remain moderate.

8A similar opinion has been defended independently by Diósi in a recent note [44].
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5.3 The relativistic feedback part: Classical stochastic dynamics

As the measurement part of relativistic dynamics remains an open problem, it is tempting to
temporarily put it aside and explore pure feedback dynamics. In our language, this means
considering dynamics where the measurement operators ĉk are fixed to zero and thus where
the signal (4) becomes pure noise. The dynamics is then no longer really “hybrid”, in the
sense that we obtain a theory of quantum matter moving in a stochastic background sourced
independently of the matter distribution. The freedom only lies in fixing how this pure noise
enters in the classical equations of motion (12).

Recent works by Grudka, Oppenheim, Russo, and Sajjad [58] and Russo and Oppenheim
[59] have discussed promising properties of particular stochastic theories of gravity that can be
constructed this way. Assuming some subtle issues of positivity can be addressed (the kernel
D2 they use in their non-diagonal formulation is, strictly speaking, not positive), they find
in [58] that the models can be made asymptotically safe, i.e. renormalizable in a strong sense.

These works are intriguing, and may well revive the interest in stochastic models of pure
gravity. However, because the problematic continuous measurement part is left unaddressed,
and because this is where most of the identified difficulties of the hybrid program lie, the
implications for the construction of a consistent model of classical gravity coupled to quantum
matter are at the very least unclear. In particular, the favorable renormalizability properties of
a noisy classical sector do not imply anything for the complete hybrid model, since, again, it
is on the quantum part (continuous measurement) that problems have been identified.

5.4 Conclusion

We have reconstructed the most general continuous hybrid quantum–classical dynamics from
the theory of measurement and feedback. This has allowed us to relate various mathematical
formulations of the dynamics, clarify its subtle Markovian limit, and, most importantly, benefit
from a powerful physical intuition pump.

Ultimately, we do not yet know if hybrid quantum–classical dynamics play an important
role in the fundamental laws of our universe. This is certainly an option worth considering, and
it is important to try to address the theoretical difficulties previously mentioned. Meanwhile,
we should remember that quantum–classical dynamics are routinely realized as effective de-
scriptions in the laboratory. This continuous measurement and feedback realization is a way
to re-derive the most general equations but also, currently, their main application.
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A Itô rules for busy physicists

Itô calculus is the mathematical machinery that allows to work with multiplicative white noise
rigorously and without ambiguity. It is well explained in many textbooks, like that of Øk-
sendal [60], and I only summarize here non rigorously what is needed to study hybrid dynam-
ics.

The difficulty in writing stochastic differential equations driven by white noise, i.e. the
derivative of a Brownian motion, is that the latter is not differentiable in the usual sense.
Writing the Brownian motion W , dW

dt is not a well defined function (but it is a distribution).
The idea of Itô calculus is to define the differentiation for such processes implicitly by defining
instead an integral against white noise:

“

∫ T

0

f (t)
dW
dt

dt ” :=

∫ T

0

f (t)dW . (A.1)

While the left-hand side integral integral is a priori problematic, the right-hand side can be
defined rigorously with the Itô integral.

To define the Itô integral, one simply constructs it as the limit of a Riemann sum:
∫ T

0

f (t)dW := lim
N→+∞

N−1
∑

k=1

f (k/N) [W ((k+ 1)/N)−W (k/N)] . (A.2)

Crucially, if f itself depends on W , and unlike with the standard Riemann integral, the spe-
cific choice of Riemann sum matters. For example, replacing f (k/N) with the symmetric
[ f (k/N) + f ((k+ 1)/N)]/2, gives a different stochastic integral, the Stratonovich integral.

Once the Itô integral is defined, and as a pure notational convenience, we may drop the
integral sign and write f (t)dW . This is really just what we would like intuitively, namely
f (t)dW

dt , except multiplied by dt. The previous definition generalizes from W to any stochastic
process with the same (or better) regularity.

Importantly, with this choice of Riemann sum, the Itô integral has zero expectation value

E

�

∫ T

0

f (t)dW

�

= 0 , (A.3)

which is extremely convenient to go from the full stochastic description of continuous mea-
surement dynamics to its averaged Lindblad representation. However, standard differentiation
rules need to be replaced with the Itô rule. Heuristically, the need for a modification comes
because dW is of order

p
dt and thus when Taylor expanding a function, we need to go to

second order in dW to get the order dt right. For a function g of a scalar stochastic process
X t obeying the SDE dX t = a(t)dt + b(t)dW , we have Itô’s lemma:

d f (X t) =
∂ f
∂ X

dX t +
b(t)2

2
∂ 2 f
∂ X 2

dt , (A.4)

which is easily derived from the definition (A.2). Itô’s lemma is equivalent to the simple
“physicist” Itô rule, which consists in expanding everything to second order in dW and using
dWdW = dt. For example, consider a single Brownian motion W and the function W 2

d(W 2) = dW W +WdW + dWdW = 2WdW + dt , (A.5)

which coincides with what one would have obtained from Itô’s lemma. This rule generalizes
naturally to several independent Brownian motions into

dWkdWℓ = δkℓ dt . (A.6)
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Practically, this latter formulation of the rule is convenient when X t is matrix valued, and not
commuting with its differential, a situation in which applying Itô’s lemma in its standard form
can be tedious. For example, we could easily compute the Itô derivative of ρ2 where ρ obeys
the continuous measurement SME (1) using the physicist rule:

d(ρ2) = dρρ +ρ dρ + dρ dρ (A.7)

= −i{[H0,ρ],ρ}dt +
n
∑

k=1

{D[ĉk](ρ),ρ}dt +
p
ηk {M[ĉk](ρ),ρ}dWk,+η2

k M[ĉk]
2(ρ)dt .

(A.8)

This Itô rule (A.6) and the fact that Itô integrals against the Wiener process are zero (A.3) is
about all that one needs for continuous measurement.
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