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Abstract

We verify that the recently proven infinite families of holographic entropy inequalities
are maximally tight, i.e. they are facets of the holographic entropy cone. The proof is
technical but it offers some heuristic insight. On star graphs, both families of inequalities
quantify how concentrated/spread information is with respect to a dihedral symmetry
acting on subsystems. In addition, toric inequalities viewed in the K-basis show an in-
teresting interplay between four-party and six-party perfect tensors.
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1 Introduction

Recent progress in the AdS/CFT correspondence [1] strongly suggests that the quantum origin
of spacetime geometry involves quantum information theory. A cornerstone of this relation is
the Ryu-Takayanagi (RT) formula [2, 3] and its generalizations [4–7], which relate extremal
areas in spacetime to entanglement entropies of the corresponding quantum state in the holo-
graphically dual theory.

However, certain non-generic quantum states—for example, the GHZ state on four or
more parties—have entanglement entropies, which cannot be consistently interpreted as Ryu-
Takayanagi surfaces [8, 9]. To gain insight into what makes entropies into areas, one would
like to characterize quantum states whose subsystem entropies are marginally consistent with
an RT-like interpretation. Entropies of such states are said to live on facets of the holographic
entropy cone. This paper establishes, for the first time, two infinite families of facets of the
holographic entropy cone.

Nomenclature Linear conditions under which subsystem entropies can be promoted to min-
imal areas are collectively said to define the holographic entropy cone. Indexing such con-
ditions with i, we can exhibit the cone in the form:

∀ i : LHSi ≥ RHSi ⇒ consistent with RT. (1)

By contrapositive, we also have:

∃ i : LHSi < RHSi ⇒ not consistent with RT. (2)

In (1) and (2), quantities LHSi and RHSi are linear combinations of subsystem entropies SX
with positive coefficients. The origin of the nomenclature is that a collection of linear condi-
tions such as (1) cut a cone in the linear space of potential assignments of entropies to regions
(entropy space).

The two best-known conditions, which demarcate the holographic entropy cone are:

LHSSA = SA1
+ SA2

≥ SA1A2
= RHSSA , (3)

LHSMMI = SA1A2
+ SA2A3

+ SA3A1
≥ SA1

+ SA2
+ SA3

+ SA1A2A3
= RHSMMI . (4)

Here ‘SA’ and ‘MMI’ stand, respectively, for the subadditivity of entanglement entropy and for
the monogamy of mutual information. The former is a consequence of quantum mechanics
alone [10] whereas the latter is a strictly holographic condition, which is implied by the Ryu-
Takayanagi proposal [8]. With reference to (1) and (2), we may associate i = 1 ≡ SA and
i = 2≡MMI.

As stated, inequalities (1) might include some redundant conditions, which are implied by
others. For example, one could combine (3) and (4) and list

SA2A3
+ SA3A1

≥ SA3
+ SA1A2A3

, (5)

as an additional yet redundant criterion. Inequality (5) is the strong subadditivity of entangle-
ment entropy; like subadditivity, it is a general property of quantum mechanical states [11].
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In the holographic context, however, strong subadditivity is superfluous because it is implied
by subadditivity and monogamy since (5) = (3) + (4).

One would like to specify the holographic entropy cone without any redundancies—that
is, using the smallest possible number of inequalities. Let us assume that the index i in (1)
refers only to independent inequalities such as (3) and (4) and so excludes any holographically
redundant inequalities like (5). Under the assumption of non-redundancy, the conditions in
(1) are facets of the holographic entropy cone. Each facet defines one independent way for
a state to be marginally consistent with a Ryu-Takayanagi-like interpretation. (Less generic
ways to achieve marginality occur on intersections of facets, which form higher codimension
loci in entropy space.) In summary:

marginally consistent with RT ⇒ LHSi = RHSi for some i, (6)

and LHSi > RHSi for all others.

Prior to this paper, independent ways to achieve marginality were characterized in [8, 9, 12–
14].

New inequalities Recently, reference [15] proved two infinite families of inequalities, which
are obeyed by all entropy vectors that are consistent with an RT interpretation. Restated as
the contrapositive, the result proven in [15] is:

any inequality in [15] is violated ⇒ not consistent with RT. (7)

This assertion has the same structure as (2). In other words, the inequalities in [15] express
necessary conditions for a vector of subsystem entropies to be consistent with an RT interpre-
tation.

The two infinite families of inequalities in [15] enjoy a long list of intriguing properties:

• They hold for a topological reason. The topology in question describes nesting relations
among subsystems, which are encoded by tessellations of the torus and the projective
plane.

• They prove a prior conjecture about the structure of the holographic entropy cone [16]
(see also [17]), which was motivated by Page’s theorem [18] and unitary models of black
hole evaporation [19–23].

• They subsume all but one facet of the holographic entropy cone for mixed states on
N = 5 regions (the sole exception is inequality number 8 in [12]) as well as the N = 7
inequality found in [13].1

• They motivate generalizations of the differential entropy formula [24].

It would be nice to add another property to this list:

• (?) They are all facets of the holographic entropy cone.

In other words, we would like to show that the logical statements (6) and (1)—which are
conjunctions of conditions labeled by i—also include the conditions implied by the inequalities
in [15]. This would also mean that the inequalities in [15] cannot be written as combinations
of other holographic inequalities the way that strong subadditivity could.

1All the inequalities found in [15] assume N odd (equivalently, pure states on an even number of parties).
Therefore, they have no overlap with the inequalities discovered in [14], which are for mixed states on N = 6
regions.
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The present paper proves this claim. To contextualize it, we recall that all previously known
facets of the holographic entropy cone were shown to be facets individually, not as families.2

Therefore, we are establishing here the first two known infinite families of facets of the holo-
graphic entropy cone.

Method When working with states on N disjoint atomic subsystems A1, A2, . . . AN , we must
consider entropies of all non-empty collections of subsystems, for example A1A4 or A2A5A6.
This entropy space is d = (2N − 1)-dimensional; the −1 excludes the empty set.

Consider an inequality LHS ≥ RHS, for which implication (7) holds. This means that the
entire holographic entropy cone lives in the closed half-space LHS≥ RHS, and has no overlap
with the open half-space LHS < RHS. Assume the inequality involves N atomic subsystems
and applies to any state, pure or mixed. To prove the ‘facetness’ of this inequality, it suffices
to find d − 1 entropy vectors, which:

(i) saturate the inequality: LHS= RHS;

(ii) are contained in the holographic entropy cone;

(iii) are linearly independent.

These conditions mean that the hyperplane of saturation LHS= RHS intersects the holographic
entropy cone on a locus of maximal dimension, which is d − 1. Given that the entire cone
resides on one side of the hyperplane, a max-dimensional overlap with the cone is only possible
if the hyperplane is a facet.

We prove that each inequality in [15] is a facet by finding d − 1 = 2N − 2 linearly inde-
pendent vectors, which are contained in the holographic entropy cone and which saturate our
inequalities.

Organization A necessary review and a few useful facts are collected in Section 2. This in-
cludes the statement of the inequalities, which we prove to be facets of the holographic entropy
cone; they are given in (10) and (11). The proofs of their ‘facetness’ are given in Sections 3
and 4. We close with a discussion, which sketches some heuristics about the inequalities and
their proofs. The appendix contains proofs of some technical lemmas.

2 Preliminaries

Notation Our inequalities are most conveniently described in terms of pure states on m+n
disjoint regions, which we denote Ai (1 ≤ i ≤ m) and B j (with 1 ≤ j ≤ n). This is equivalent
to discussing arbitrary (generically, mixed) states on N = m+ n− 1 disjoint regions because
we can always designate one region to be the purifier O and trade all terms containing O for
their complements.

The indices on the Ai and B j are understood periodically (mod m) and (mod n), for ex-
ample Am+1 ≡ A1. The distinction between A- and B-type regions, as well as their indexing,
is arbitrary. This structure reflects the symmetry of the inequalities, which is Dm × Dn for the
toric inequalities and D2m for the projective plane inequalities. In particular, our notation does
not assume or imply any symmetry of the quantum states.

To streamline the discussion, we introduce a special notation for consecutively indexed
k-tuples of A- and B-regions:

A(k)i = AiAi+1 . . . Ai+k−1 , and B(k)j = B jB j+1 . . . B j+k−1 . (8)

2The (m, 1) subfamily of toric inequalities (see (10) below), which is usually referred to as the dihedral or cyclic
family, was known to be valid [9] but had only been verified as facets for m= 3 [8] and m= 5 [9].
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For m and n odd, it is further useful to distinguish largest consecutively indexed minorities
and smallest consecutively indexed majorities of A- and B-type regions:

A±i ≡ A((m±1)/2)
i , and B±j ≡ B((n±1)/2)

j . (9)

2.1 The inequalities

We discuss two infinite families of inequalities:

• Toric inequalities, which are parametrized by m, n both odd:

m
∑

i=1

n
∑

j=1

SA+i B−j
≥

m
∑

i=1

n
∑

j=1

SA−i B−j
+ SA1A2...Am

. (10)

We exclude the special case m = n = 1, which reads SA1
≥ SA1

. Exchanging m↔ n
merely relabels regions without changing the structure of the inequality. In what follows,
without loss of generality, we assume m≥ n.

These inequalities are invariant under Dm × Dn, which acts on regions Ai (respectively
B j) like it does on vertices of a regular m-gon (respectively n-gon).

• Projective plane inequalities, which are parametrized by integer m= n of either parity:

1
2

m−1
∑

j=1

m
∑

i=1

�

SA( j)i B(m− j)
i+ j
+ SA( j)i B(m− j)

i+ j+1

�

+ (m− 1)SA1A2...Am
≥

m
∑

i, j=1

SA( j−1)
i B(m− j)

i+ j
. (11)

We exclude the special case m= 1, which reads 0≥ 0.

These inequalities are invariant under D2m. Its action on the subsystems can be
visualized by placing them on vertices of a regular (2m)-gon in the cyclic order
{B1, A1, B2, A2 . . . Bm, Am}.

A few of these inequalities are already known to be facets of the holographic entropy cone.
This includes the toric inequalities with (m, n) equal to (3, 1) [8], (5, 1) [9], (3,3) [12] and
(5, 3) [13], as well as the projective plane inequalities with m = 2 [8] and m = 3 [12]. Here
we prove that all inequalities (10) and (11) are facets.

2.2 Useful facts and definitions

Which entropy vectors are contained in the holographic entropy cone To prove that
(10) and (11) are facets, we find 2m+n−1 − 2 saturating entropy vectors, which are contained
in the holographic entropy cone. Let us first review how one verifies that an entropy vector is
contained in the holographic entropy cone.

In principle, given a vector of entropies SX (with X ranging over non-empty collections of
fundamental regions Ai , B j), one should find a spatial geometry whose minimal surfaces have
areas SX . Reference [9] proved that it is enough to find a weighted graph such that:

• a subset of its nodes is labeled Ai , B j ,

• the minimal cut through the graph, which separates the collection X from its comple-
ment, has combined weight SX (for all X ).

A few examples of such graphs are shown in Figures 1, 2, 3.
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One can think of the graph as a tensor network, which satisfies the minimal cut prescrip-
tion for computing entanglement entropies. For example, in random tensor network (RTN)
states [25] at large bond dimension subsystem entropies are accurately computed by the min-
imal curt prescription. Therefore, holographic entropy inequalities apply to all RTN states at
large bond dimension—which means that they can detect non-randomness in the tensors. This
is why we stated in the Introduction that quantum states outside the holographic entropy cone
are non-generic in Hilbert space.

In practice, our proof only involves weighted star graphs with one interior central node.
Star graphs are combinatorially manageable because the minimal cut computation of SX has
only two cuts to compare: with the central node on the X -side or on the X̄ -side of the cut. To
state this more explicitly, let ai be the weight of the edge that connects the central node to
node Ai; set a similar definition for b j . (If Ai is absent from the star graph, we let ai = 0.) Let
A be some subset of indices 1≤ i ≤ m; and similarly for B. For a region X defined by

X = (∪i∈AAi)∪
�

∪ j∈BB j

�

, (12)

we have:

SX =min

(

∑

i∈A
ai +
∑

j∈B
b j ,
∑

i ̸∈A
ai +
∑

j ̸∈B
b j

)

. (13)

K-basis We prove that inequalities (10) and (11) are facets of the holographic entropy cone
by finding 2m+n−1−2 saturating entropy vectors, which are linearly independent. In verifying
linear independence we make ample use of the results of [26].

Reference [26] constructed a convenient basis of entropy vectors. Each basis vector has
entropies SX , which are given by minimal cuts on a star graph with an even number of arms
of weight 1; see Figure 1. We call the number of arms in the star graph its membership. The
members of the star are labeled by the regions Ai and B j , including the region that may be
designated as the purifier.

The basis constructed in this way, called K-basis, is complete and not redundant. ‘Not
redundant’ means that all K-basis vectors are linearly independent in entropy space. Com-
pleteness is established by counting K-vectors of all memberships:

⌊(N+1)/2⌋
∑

p=1

�

N + 1
2p

�

= 2N − 1 . (14)

In what follows, K-basis vectors with membership 2p will be called K(2p)-vectors, for example
K2-vectors, K4-vectors etc.

The preceding discussion implies that K-vectors have the following useful properties:

Fact 1 K-vectors satisfy every inequality (10-11) because they are, from their definition, contained
in the holographic entropy cone.

Fact 2 Consider an arbitrarily weighted star graph and collect the regions with non-vanishing
bond weights into a setS. (In other words, S is the set of members of the star.) When we decompose
the entropy vector of the star graph into K-basis components, only K-vectors with members in S
have non-vanishing coefficients. This follows from completeness in the entropy space for S.

Let us briefly illustrate Fact 2. Denote entropy vectors of weighted star graphs with
s⃗(regionweight, . . .). One example of a K-basis decomposition is:

s⃗(X 2
0 , X 1

1 , X 1
2 , X 1

3 , X 0
4) =

1
2 s⃗(X 1

0 , X 1
1 , X 1

2 , X 1
3 , X 0

4) +
1
2 s⃗(X 1

0 , X 1
1 , X 0

2 , X 0
3 , X 0

4)

+ 1
2 s⃗(X 1

0 , X 0
1 , X 1

2 , X 0
3 , X 0

4) +
1
2 s⃗(X 1

0 , X 0
1 , X 0

2 , X 1
3 , X 0

4) . (15)
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Figure 1: Star graphs, which define the K-basis [26], have an even number of external
vertices. The vertices are labeled by subsystems Ai and B j (which we call members)
and all bonds have weight 1. In the rightmost panel, we show two candidate minimal
cuts for a region with three members as an illustration of equation (13).

Fact 2 says that because region X4 has zero weight on the left hand side (it is not a member of
the star), it also has zero weight in all components on the right hand side. The terms on the
right hand side of (15) are K-vectors because each contains an even number of weights 1 and
all others are zero.

From now on, we will drop weight-0 regions from expressions s⃗(regionweight, . . .).

Evaluating the inequality on a star graph Let us temporarily write inequalities (10) and
(11) in the form LHS − RHS ≥ 0. Quantity LHS− RHS sends an entropy vector to a number.
With a slight abuse of language, we call this number the value of the inequality on the graph
or on its corresponding entropy vector.

3 Toric inequalities are facets – The proof

The lemmas in this section, which are not demonstrated in the main text, are proven in the
appendix.

In general terms, our strategy is to find a special family of star graphs such that:

(i) They saturate the toric inequalities (10). In other words, inequalities (10) evaluate to 0
on these graphs.

(ii) The star graphs are in one-to-one correspondence with K-basis vectors, such that their
linear independence is manifest.

If one can find such a family of d − 1 = 2N − 2 vectors (where N = n + m − 1) then the
proof is complete. As stated, condition (ii) above is not precise. That is because the saturating
star graphs relate to K-vectors in several different ways. We discuss them below in separate
subsections.

Before that, we make one simple but useful observation:

Fact 3 Consider two K-vectors whose members are related by a Dm transformation on the A-
members and a Dn transformation on the B-members. (For example, take the pair of K4-vectors
with members {A1, B1, B2, B4} and {A3, B2, B3, B5}.) Evaluating inequalities (10) on the pair gives
the same number.

7
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Figure 2: An illustration of Lemma 3 and Lemma 14. Unmarked bonds have weight 1.

This holds because inequalities (10) are invariant under Dm × Dn.
Stated differently, Fact 3 says that K-vectors are naturally organized into multiplets of the

symmetry Dm × Dn. Evaluating the inequality on a K-vector is an invariant of each multiplet.

3.1 EPR pairs

EPR pairs are K2-vectors. All of them individually saturate the toric inequalities. This property
of the toric inequalities is called superbalance [27].

For easy reference in the future, we highlight again: K2-vectors provide

#2 =
�

N + 1
2

�

(16)

linearly independent entropy vectors, which saturate inequalities (10).

3.2 K4-vectors

The analysis of K4-vectors is somewhat intricate. We organize it into a series of lemmas.
Lemmas 1-3 are proved in the Appendix.

Lemma 1 Every toric inequality evaluated on a K4-vector gives either 0 or 2.

Lemma 2 If a K4-vector does not saturate inequality (10) then its members include one A-type
region and three B-type regions, or vice versa.

Based on the lemma, we henceforth distinguish non-saturating AAAB-vectors and non-
saturating ABBB-vectors.

Lemma 3 Suppose a K4-vector does not saturate some inequality (10). Take any non-member of
that K4-vector and adjoin it with bond weight 2, so as to form a star graph with five arms with
weights {2,1, 1,1, 1}. Then the resulting star graph saturates (10).

Lemma 3 is illustrated in Figure 2.
Next, we need the K-vector decomposition of the five-armed star graph with weights

{2, 1,1, 1,1}:
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Lemma 4 In the notation of equation (15), we have:

s⃗(X 2
0 , X 1

1 , X 1
2 , X 1

3 , X 1
4) =

1
2 s⃗(X 1

0 , X 1
1 , X 1

2 , X 1
3) +

1
2 s⃗(X 1

0 , X 1
1 , X 1

2 , X 1
4)

+ 1
2 s⃗(X 1

0 , X 1
1 , X 1

3 , X 1
4) +

1
2 s⃗(X 1

0 , X 1
2 , X 1

3 , X 1
4)

− 1
2 s⃗(X 1

1 , X 1
2 , X 1

3 , X 1
4) . (17)

This is easily confirmed by a direct calculation.
We now split the star graphs stipulated in Lemma 3 into two classes. Based on Lemma 2,

the members of such a star graph are:

(1) either two A-regions and three B-regions (or vice versa)

(2) or one A-region and four B-regions (or vice versa).

Let us apply Lemma 4 to both cases. Without loss of generality, we adjoin a fifth region to
a non-saturating ABBB-vector s⃗(A1

i , B1
j1

, B1
j2

, B1
j3
). We mark the fifth, weight-2 region with a ∗

in the subscript. We then find:

Case (1): s⃗(A2
∗, A1

i , B1
j1

, B1
j2

, B1
j3
) = 1

2 s⃗(A1
∗, A1

i , B1
j1

, B1
j2
) + 1

2 s⃗(A1
∗, A1

i , B1
j1

, B1
j3
)

+ 1
2 s⃗(A1

∗, A1
i , B1

j2
, B1

j3
) +1

2 s⃗(A1
∗, B1

j1
, B1

j2
, B1

j3
)

− 1
2 s⃗(A1

i , B1
j1

, B1
j2

, B1
j3
) , (18)

Case (2): s⃗(A1
i , B1

j1
, B1

j2
, B1

j3
, B2
∗ ) =

1
2 s⃗(B1

j1
, B1

j2
, B1

j3
, B1
∗ ) +

1
2 s⃗(A1

i , B1
j2

, B1
j3

, B1
∗ )

+1
2 s⃗(A1

i , B1
j1

, B1
j3

, B1
∗ ) +1

2 s⃗(A1
i , B1

j1
, B1

j2
, B1
∗ )

− 1
2 s⃗(A1

i , B1
j1

, B1
j2

, B1
j3
) . (19)

The boxes will be explained momentarily. The goal of this exercise is to derive:

Lemma 5 The star graphs stipulated in Lemma 3 obey the linear relations:

sum of coefficients of non-saturating AAAB-vectors= 0 , (20)

sum of coefficients of non-saturating ABBB-vectors= 0 . (21)

Because this lemma is conceptually important for the structure of the proof, we verify it in the
main text.

Evaluate the inequality on entropy vectors (18) and (19). Because the graphs were
obtained from Lemma 3, this gives 0. On the other hand, evaluating the inequality on
−1

2 s⃗(A1
i , B1

j1
, B1

j2
, B1

j3
) gives −1 because it is the initial non-saturating K4-vector. By Lemma 1,

the terms with positive coefficients in (18) and (19) can only evaluate to 0 or 1. Therefore,
precisely one of them must evaluate to +1. This selects a second non-vanishing ABBB-vector
in the expansion (18, 19).

In Case (1) above, the other non-saturating ABBB-vector in expansion (18) is highlighted
in the box. We know it must be non-saturating because the others are of the AABB type, which
always saturates the toric inequalities (Lemma 2). In Case (2), on the other hand, we have
three candidates for which component is non-saturating; we highlighted them in the boxes in
equation (19). Precisely one of them is non-saturating.

In all cases, the K-vector expansion of the star graph from Lemma 3 contains precisely two
non-saturating K-vectors: the initial non-saturating K4-vector assumed in Lemma 3, and one
other one. Their coefficients in the expansion are −1/2 and +1/2, respectively. Crucially, if
the initial non-saturating K4-vector is of ABBB type then so is the other non-saturating vector
in the expansion; this is clear from equations (18) and (19). (The analysis is identical if we
start from a non-saturating AAAB-vector.) This establishes Lemma 5.
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Saturating entropy vectors built from K4-vectors Consider inequality (10) at some fixed
(m, n). Let us divide the linear span of all K4-vectors in entropy space into three components:

• The linear span of those K4-vectors, which saturate the inequality; call it V0.

• The linear span of non-saturating AAAB-vectors; call it VAAAB.

• The linear span of non-saturating ABBB-vectors; call it VABBB. We have assumed m ≥ n
and excluded (m, n) = (1,1) so m ≥ 3. This leaves out the special possibility n = 1,
which refers to the dihedral inequalities proven in [9]. When n = 1, the space VABBB is
empty.

By Lemma 2, the direct sum V0 ⊕ VAAAB ⊕ VABBB equals the linear span of the K4-vectors.
Lemmas 1 and 3 construct for us a large family of entropy vectors, which live in the holo-

graphic entropy cone and which saturate the (m, n) toric inequality:

• The K4-vectors, which saturate the inequality. By definition, they span V0.

• The star graphs from Lemma 3, which originate from non-saturating AAAB-vectors.
Equations (18, 19) show that they live in VAAAB ⊕ V0.

• The star graphs from Lemma 3, which originate from non-saturating ABBB-vectors. They
live in VABBB ⊕ V0. Again, if n= 1 then this set is empty.

Assuming n ≥ 3, Lemma 5 says that all these vectors live in a codimension-2 subspace of the
span of K4-vectors. It is the codimension-2 subspace described by equations (20-21). If n= 1
then these vectors live in a (codimension-1) hyperplane described by equation (20). This
is because equation (21) does not impose a constraint: the coefficients of saturating ABBB-
vectors trivially add up to zero simply because such vectors do not exist.

Our next task is to show that these vectors do in fact span the entire codimension-2 sub-
space (respectively codimension-1 hyperplane if n = 1) in the linear space generated by K4-
vectors. In other words:

Lemma 6 There are no additional linear dependencies among the inequality-saturating entropy
vectors from Lemmas 1 and 3, other than equations (20) and (21).

The only proof we found is a little clanky; see Appendix. Lemma 6 is equivalent to the following
statement:

Lemma 7 For n≥ 3, there exists a basis for the linear span of K4-vectors of the form:

k⃗AAAB = the average of all non-saturating AAAB-vectors ,

k⃗ABBB = the average of all non-saturating ABBB-vectors , (22)

k⃗i (where each k⃗i saturates the inequality) .

Even though Lemma 7 is essentially synonymous with Lemma 6, we list the latter separately
because it will be handy in the next subsection.

Summary For any fixed (m, n), we have constructed a collection of entropy vectors, which:

• are contained in the holographic entropy cone,

• saturate the (m, n) toric inequality,

• live in the linear span of K4-vectors,
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• span a subspace in that vector space, which is codimension-2 (for n≥ 3) or codimension-
1 (for n= 1).

In this way, K4-vectors provide

#4 =

¨
�N+1

4

�

− 2 (n≥ 3) ,
�N+1

4

�

− 1 (n= 1) ,
(23)

linearly independent entropy vectors, which saturate inequalities (10).

3.3 K6-vectors

We distinguish saturating and non-saturating K6-vectors, just like we did before for K4-
vectors.

We first establish a lemma, which will also be useful for analyzing K-vectors of higher
membership. That is why we phrase it in terms of general K(2p)-vectors.

Lemma 8 Consider the toric inequality at some fixed (m, n). If a K(2p)-vector (p ≥ 3) does not
saturate the inequality then resetting one of its weights to 2p−3 produces an entropy vector, which
does saturate it.

This result, which is illustrated in Figure 3, is essential for our argument. Unfortunately, we
have not been able to find a simple proof of this statement. A valid but complicated proof is
given in Appendix A.3.

Lemma 9 The K-vector expansion of the graph stipulated in Lemma 8 is:

s⃗(X 2p−3
0 , X 1

1 , . . . X 1
2p−1) =

p
∑

q=2

(−1)q(q− 1)!
∏q+1

r=3 (2p− r)

∑

1≤i(·)≤2p−1

s⃗(X 1
0 , X 1

i1
, X 1

i2
, . . . X 1

i2q−1
)

+
p−1
∑

q=2

(−1)q−1(q− 1)(q− 1)!
∏q+2

r=3 (2p− r)

∑

1≤i(·)≤2p−1

s⃗(X 1
i1

, X 1
i2

, . . . X 1
i2q
) . (24)

Figure 3: An illustration of Lemma 8 and Lemma 16. Unmarked bonds have weight 1.
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This equation can be verified by a direct calculation. The sums
∑

i(·)
are over distinct (2q−1)-

and (2q)-tuples, which mark the members of the K-vectors in the expansion. For our purposes,
the important fact is that expansion (24) contains a unique K(2p)-vector with a non-vanishing
coefficient:

coefficient of the unique K(2p)-vector in expansion (24) = (−1)p
Á�

2p− 3
p− 1

�

. (25)

Applied at p = 3, Lemma 9 tells us that the vectors constructed in Lemma 8 saturate the
inequalities by balancing the value of the inequality on the initial K6-vector against its values
on K4-vectors. In particular, a subset of the K4-vectors that appear in (24) at p = 3 must
be non-saturating. Non-saturating K4-vectors were sorted in Lemma 2 into two categories:
non-saturating AAAB-vectors and non-saturating ABBB-vectors. The next question we must
answer is:

• Does the expansion in Lemma 9 (for p = 3) contain both classes of non-saturating K4-
vectors or only one class?

The members of the K4-vectors in the expansion are subsets of the members of the initial
non-saturating K6-vector, which is the starting point in Lemma 8. To answer the above question
with “both,” the six members of the initial K6-vector would have to be of the form AAABBB.
That is because only this combination contains both an AAAB and an ABBB subset.

Indeed, when we apply Lemma 8 to a non-saturating AAABBB-vector, expansion (24) does
contain non-saturating K4-vectors of both kinds. However, a special circumstance occurs there,
which we state as a separate lemma:

Lemma 10 Apply Lemma 8 to a non-saturating K6-vector. Then in the expansion (24) one of
the following holds:

• The coefficients of the non-saturating AAAB-vectors add up to zero.

• The coefficients of the non-saturating ABBB-vectors add up to zero.

Moreover, which circumstance occurs depends on whether we set to 3 the weight of an A-bond or
a B-bond.

We prove this in the Appendix.
We now combine Lemma 10 with Lemma 7. The latter says that expansion (24) can be

written in one of these two forms:

s⃗(X 3
0 , X 1

1 , X 1
2 , X 1

3 , X 1
4 , X 1

5) = −
1
3

s⃗(X 1
0 , X 1

1 , X 1
2 , X 1

3 , X 1
4 , X 1

5) + c k⃗AAAB + saturating, (26)

or:

s⃗(X 3
0 , X 1

1 , X 1
2 , X 1

3 , X 1
4 , X 1

5) = −
1
3

s⃗(X 1
0 , X 1

1 , X 1
2 , X 1

3 , X 1
4 , X 1

5) + c k⃗ABBB + saturating. (27)

The difference is in the appearance of either k⃗AAAB or k⃗ABBB but not both.

Saturating entropy vectors built from K6-vectors Take inequality (10) at some fixed (m, n).
Consider the following collection of vectors:

• The saturating K6-vectors.

• For each non-saturating K6-vector, take one saturating vector, which is constructed in
Lemma 8.
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By construction, these vectors live in the holographic entropy cone and saturate the inequality.
They are clearly linearly independent from each other and from the vector spaces constructed
in Subsections 3.1 and 3.2. This is because each of them has a unique non-zero entry in the
K6-part of the K-basis expansion, viz. equation (25).

Vectors constructed in this way provide

#6 =
�

N + 1
6

�

(n= 1) (28)

linearly independent vectors to the locus of saturation of the (m, n) toric inequality. This is the
final result for n = 1. At n ≥ 3, however, we can add one additional saturating vector, which
is linearly independent of all the rest.

A key observation is that when n ≥ 3, there is at least one saturating K6-vector with
structure AAABBB, to which Lemma 8 can be applied in more than one way: by setting weight
3 in the star graph either to an A-bond or to a B-bond. We state this assertion as a separate
lemma:

Lemma 11 When n ≥ 3, there exists a non-saturating K6-vector, to which Lemma 8 can be
applied both on an A-bond and on a B-bond.

By Lemma 10, the resulting entropy vectors will have expansions (26) and (27).
We now augment our list of saturating entropy vectors by this one additional vector, which

is guaranteed by Lemma 11. If the additional vector is linearly independent from the others,
we will have constructed

#6 =
�

N + 1
6

�

+ 1 (n≥ 3) (29)

linearly independent vectors in the locus of saturation of the (m, n) toric inequality. A meticu-
lous reader might object that linear independence only implies #6 ≥

�N+1
6

�

+ 1. However, we
cannot have #6 >

�N+1
6

�

+1 because otherwise all K4-vectors and all K6-vectors would saturate
the inequality.

As a final step in verifying equation (29), we prove:

Lemma 12 For n≥ 3, take the entropy vectors in the collection:

• Saturating K6-vectors.

• One vector from Lemma 8, constructed for every non-saturating K6-vector.

• For one K6-vector stipulated in Lemma 11, take the other application of Lemma 8, which is
not included in the previous item.

Then there are no linear dependencies among these
�N+1

6

�

+ 1 vectors.

To prove this, expand these vectors in the basis, which consists of K6-vectors and the K4-basis
from Lemma 7. We collect the coefficients of vectors in Lemma 12 into a matrix. The specific
values of the entries are immaterial, only their position and their non-vanishing character
matters. Therefore, we simply mark non-vanishing entries with ‘x’.
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x

saturating K6
...

x

x

non-saturating K6
...

x

x

non-saturating K6
...

x x

k⃗AAAB x x x x

k⃗ABBB x x x

saturating K4 x x x x x x x









































































































It is clear that this matrix has maximal rank.

3.4 K8- through K(n +m)-vectors

If m+n≤ 6 then the preceding sections suffice to prove that the (m, n) toric inequality is a facet
of the holographic entropy cone. In any case, the ‘facetness’ of those specific inequalities—
(m, n) = (3,1), (5,1), (3,3)—was already proven in [8, 9, 12]. From now on we assume
m+ n≥ 8.

Saturating entropy vectors built from K6-vectors Fix (m, n) and 8 ≤ 2p ≤ m + n and
consider the following collection of vectors:

• The saturating K(2p)-vectors.

• For each non-saturating K(2p)-vector, take one saturating vector, which is constructed
in Lemma 8.

By construction, these vectors live in the holographic entropy cone and saturate the inequality.
They are clearly linearly independent from each other and from similarly constructed vectors
with p′ < p. This is because each of them has a unique non-zero entry in the K(2p)-part of the
K-basis expansion, as asserted in Lemma 9 and equation (25).

Because they are in one-to-one correspondence with K(2p)-vectors, we have:

#2p =
�

N + 1
2p

�

. (30)

3.5 Summary

From Section 3.1 to Section 3.4, we have constructed

⌊(N+1)/2⌋
∑

p=1

#2p = 2N − 2 , (31)

linearly independent entropy vectors, which live in the holographic entropy cone and which
saturate the (m, n) toric inequality. This completes the proof.

14

https://scipost.org
https://scipost.org/SciPostPhys.17.3.084


SciPost Phys. 17, 084 (2024)

A1 A1

A4 A4

B2B2

B4

B6

NOT SATURATING
(STAGGERED)

SATURATING
(NOT STAGGERED)

Figure 4: An illustration of Lemma 13.

4 Projective plane inequalities are facets – The proof

There are m regions Ai and m regions B j , so the dimension of entropy space is 22m−1−1. The
analysis is similar to Section 3 but significantly simpler.

4.1 EPR pairs

All EPR pairs saturate the projective plane inequalities because they are superbalanced [27]:

#2 =
�

2m
2

�

. (32)

4.2 K4-vectors

The analysis is easier than for the toric inequalities because there are no ‘selection sectors,’
which would be analogous to non-saturating AAAB-vectors and non-saturating ABBB-vectors.
For the projective plane inequalities, all non-saturating K4-vectors live in one family and we
can achieve saturation by canceling them off one another in arbitrary pairs. We state this in
the form of three lemmas, which are proved in Appendix A.3:

Lemma 13 A K4-vector does not saturate inequality (11) if and only if the following two condi-
tions are met:

• Its members include two A-type regions and two B-type regions.

• Call the two A-members Ai1 and Ai2 with 1 ≤ i1 < i2 ≤ m and call the two B-
members B j1 and B j2 , where the indices (which are valued (mod m)) are taken from
i1 + 1≤ j1 < j2 ≤ i1 +m. With these conventions, the condition is:

i1 + 1≤ j1 ≤ i2 , and i2 + 1≤ j2 ≤ i1 +m . (33)

The lemma is illustrated in Figure 4. Note that condition (33) can equally well be phrased as
a restriction on the i1,2 indices relative to the j1,2 indices:

j1 ≤ i2 ≤ j2 − 1 , and j2 ≤ i1 +m≤ j1 − 1+m . (34)
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Its form is not identical to (33), but it becomes identical after a simple relabeling: j1,2→ j1,2+1
and i1↔ i2. Therefore, in proving lemmas, any reasoning about A-regions will also apply to
B-regions, and vice versa.

Lemma 14 Suppose a K4-vector does not saturate some inequality (11). Take any non-member
of that K4-vector and adjoin it with bond weight 2, so as to form a star graph with five arms with
weights {2, 1,1, 1,1}. Then the resulting star graph saturates the inequality.

Lemma 14 is illustrated in Figure 2.

Lemma 15 Working at fixed m, call d∗ the number of K4-vectors, which do not saturate inequal-
ity (11). Then the vectors obtained in Lemma 14 span a linear space of dimension d∗ − 1.

Summary For any fixed m, K4-vectors which individually saturate inequality (11) and vec-
tors from Lemma 14 together give us

#4 =
�

2m
4

�

− 1 (35)

linearly independent vectors. All of them are contained in the holographic entropy cone.

4.3 K6- through K(2m)-vectors

Lemma 16 Consider the projective plane inequality at some fixed m. If a K(2p)-vector (p ≥ 3)
does not saturate the inequality then resetting one of its weights to 2p − 3 produces an entropy
vector, which does saturate it.

The lemma is illustrated in Figure 3 and proven in Appendix A.3.
Fix m and 3≤ p ≤ m and consider the following collection of vectors:

• The K(2p)-vectors, which saturate the projective plane inequality at m.

• For each non-saturating K(2p)-vector, take one saturating vector, which is constructed
in Lemma 8.

By construction, these vectors live in the holographic entropy cone and saturate the inequality.
They are clearly linearly independent from each other and from similarly constructed vectors
with p′ < p. This is because each of them has a unique non-zero entry in the K(2p)-part of the
K-basis expansion, as asserted in Lemma 9 and equation (25).

Because they are in one-to-one correspondence with K(2p)-vectors, we have:

#2p =
�

2m
2p

�

. (36)

4.4 Summary

From Section 4.1 to Section 4.3, we have constructed

m
∑

p=1

#2p = 22m−1 − 2 (37)

linearly independent entropy vectors, which live in the holographic entropy cone and which
saturate the projective plane inequality m. This completes the proof.
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5 Discussion

It is striking that star graphs are enough to saturate inequalities (10) and (11) in every linearly
independent way. What is more, a very restricted set of star graphs suffices:

• K-basis vectors, see Figure 1,

• star graphs with one unequal weight, so-called flower graphs of [16], see Figure 2 and
Figure 3.

What controls the saturation of the toric inequalities is the distribution of the members of these
star graphs around the m-gon of the Ai subsystems (and the n-gon of the B j subsystems). The
ordering of the regions in the polygons is set by the inequality in question.

Roughly, the toric inequalities applied to star graphs quantify how evenly the members
of the star are distributed on the polygons. This means that a highly uneven selection of
A-members and B-members of the K-vector saturates the inequality. On the other hand, a K-
vector whose A-members and B-members have indices that are relatively evenly distributed
around Zm and Zn is far from saturation. These statements are quantified in the Appendix,
their most explicit form being equation (A.16).

In this way, the toric inequalities encapsulate a kind of interplay between the entangle-
ment structures on the A- and B-regions, which is organized by dihedral symmetry. By ana-
lyzing the inequalities in the K-basis, we see that this interplay plays out primarily at the level
of K4-vectors, see Lemma 5 and equation (23). In particular, the locus of saturation of the
inequality is codimension-2 with respect to the linear span of K4-vectors, but co-dimension-1
once K6-vectors are included. This suggests that the toric inequalities might have a heuristic
interpretation at the level of four-party versus six-party entanglement. It would be clarifying
to find such an interpretation.

As for the projective plane inequalities, applying them to star graphs also measures how
evenly the members of the star are distributed on the m-gons of regions Ai and B j . Unlike
the toric inequalities, however, here the unevenness is measured in relative terms: A-regions
relative to B-regions. This is especially evident with K4-vectors, which do not saturate inequal-
ities (11) if and only if their A-members and B-members have staggered indices; see Figure 4
and Lemma 13 for the quantitative statement. The behavior of higher K(2p)-vectors under
the projective plane inequalities, which is studied in the proof of Lemma 16 and illustrated in
Figure 8, invokes similar heuristics.

Inequalities (10) and (11) were first identified in an effort to prove the conjectured form
of the holographic cone of average entropies [16], which in turn was motivated by an analysis
of black hole evaporation [19,20] and Page’s theorem [18]. In the latter context, star graphs
with one distinct weight model old black holes at various stages of evaporation, the many
uniformly weighted legs of a star graph corresponding to the many components of previously
emitted Hawking radiation. Under this identification, we have shown that evaporating old
black holes saturate all the toric and projective plane inequalities. The qualitative meaning of
the inequalities—capturing how concentrated / diluted information is on an imaginary m-gon
and n-gon of subsystems—also carries over to the black hole context. Recast in that language,
the toric inequalities are unsaturated only if two particles of Hawking radiation develop a
non-vanishing mutual information, conditioned on half of the previously emitted radiation;
see Lemma 17 for the quantitative statement. A similar heuristic interpretation applies to the
projective plane inequalities.
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A Proofs of lemmas

A.1 Preliminaries

The following rewriting of the toric inequalities (10) is useful:

1
2

m
∑

i=1

n
∑

j=1

I(Ai : B j |A−i+1B−j+1)≥ SA1A2...Am
. (A.1)

Here I(X : Y |Z) is the conditional mutual information, SX Z + SY Z − SZ − SX Y Z . The rewriting
follows from adding up two copies of (10), reindexed and with some terms traded for their
complements:

m
∑

i=1

n
∑

j=1

SA+i B−j+1
≥

m
∑

i=1

n
∑

j=1

SA−i+1B−j+1
+ SA1A2...Am

, (A.2)

m
∑

i=1

n
∑

j=1

SA−i+1B+j
≥

m
∑

i=1

n
∑

j=1

SA+i B+j
+ SA1A2...Am

. (A.3)

Rewriting (A.1) is helpful for visualizing which K(2p)-vectors, and why, do not saturate an
(m, n) toric inequality. We develop it presently.

In a K(2p)-vector, a pair of single members have non-vanishing conditional mutual infor-
mation if and only if it is conditioned on a set containing p−1 members. If such a conditional
mutual information is non-vanishing, it equals 2. Therefore, we can rewrite the value of the
inequality on a K(2p)-vector in the following way:

#{pairs (Ai , B j) of K(2p)-members s.t. A−i+1B−j+1 contains p− 1 members} − SA1A2...Am
. (A.4)

To keep track of how many K-vector members are in A−i+1B−j+1, we introduce two functions.
These functions implicitly depend on the K(2p)-vector in question, but we will not write that
dependence explicitly.

g̃(i) = #{A j s.t. i + 1≤ j ≤ i + (m− 1)/2 and A j is a member of the K(2p)-vector} , (A.5)

h̃(i) = #{B j s.t. i + 1≤ j ≤ i + (n− 1)/2 and B j is a member of the K(2p)-vector} . (A.6)

For easy reference in the future, we write explicitly the value of the inequality on a K(2p)-
vector:

#{pairs (i, j) s.t. Ai and B j are members and g̃(i) + h̃( j) = p− 1} − SA1A2...Am
. (A.7)
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m=13 n=11

Figure 5: A K10-vector with six A-members (k = 6) and four B-members (l = 4). The
function g(t) counts other A-members in the ‘almost-semicircle’ clockwise from the
t th A-member. In the middle panel, which displays A-regions, we mark the ‘almost-
semicircles’ for g(1) = 2 (red) and g(2) = 3 (green). In the right panel, which
displays B-regions, we mark the ‘almost-semicircles’ for h(1) = 3 (red) and h(2) = 2
(green).

Equation (A.7) only involves the values of g̃ and h̃ on members of the K(2p)-vector. Once g̃
and h̃ are known on the members, we can forget about the specific indices i and j of those
members. For this reason, we introduce new functions g and h, which remove the information
about non-members:

g(t) = g̃(subscript of the t th A-member of the K(2p)-vector) , (A.8)

h(t) = h̃(subscript of the t th B-member of the K(2p)-vector) . (A.9)

Equivalently, if we label the A-members of the K-vector Ait
(with 1 ≤ t ≤ k where k counts

A-members of the K-vector) then g(t) = g̃(it). Function g(t) looks at consecutive A-members
of the K-vector and, for each of them, counts other A-members that reside in the ‘almost-
semicircle’ right next to it. We say ‘almost-semicircle’ because we have m A-subsystems and
we are counting members in a range of (m− 1)/2 of them.

The definition of g(t) and our other conventions are illustrated in Figure 5.

Examples Suppose that m = 13 and consider a K(2p)-vector, which has six A-members:
{A1, A4, A5, A8, A9, A12}; see the middle panel in Figure 5. The regions A−i+1 have (m−1)/2= 6
elements. Then:

g(1) = 2 , because A4, A5 ∈ A−2 ,

g(2) = 3 , because A5, A8, A9 ∈ A−5 ,

g(3) = 2 , because A8, A9 ∈ A−6 ,

g(4) = 3 , because A9, A12, A1 ∈ A−9 ,

g(5) = 2 , because A12, A1 ∈ A−10 ,

g(6) = 3 , because A1, A4, A5 ∈ A−13 .

So the function g(t) takes on values {2, 3,2, 3,2, 3}.
Every set of A’s and B’s, which gives rise to the same g(t) and h(t), is equivalent for the

purposes of evaluating the inequality. In particular, we do not need to know what m (the total
number of subsystems Ai) is; only knowledge of g(t) is enough. As an illustration, consider
m= 101 and six members of a K-vector: {A1, A10, A31, A59, A60, A82}. They give rise to the same
g(t). Therefore, this selection of six A-members out of m = 101 will behave exactly the same
as our first, m= 13 example.
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m=13 m=13

Figure 6: Illustrations of equation (A.12) (left) and equation (A.13) (right). In each
case, the left hand side counts members in a region, which covers the whole m-gon
except for a small overlap (yellow) and a small leftover (purple). On the left, the
overlap is guaranteed to have no members while the leftover is guaranteed to have
at least one member Ait

. On the right, the leftover is guaranteed to have exactly one
member Ait+g(t)+1

while the overlap may or may not contain members.

Properties of g (t ) They will be useful in the ensuing proofs. The definitions of g(t) and h(t)
are identical, except that they describe A-type (respectively B-type) regions. Thus, although
we phrase the discussion in terms of g(t), the conclusions also apply to h(t).

Once again, we stress that g(t) implicitly depends on the K(2p)-vector. We call the number
of A-members of the K-vector k; the examples above had k = 6 but different m. The domain
of g(t) is {1,2 . . . k}. We use l = 2p− k for the number of B-members.

• The sum of g(t) is:
k
∑

t=1

g(t) =
k(k− 1)

2
. (A.10)

Therefore, the average of g(t) is (k−1)/2. Equation (A.10) holds because for every pair
of K-vector members Ai and A j , either A j ∈ A−i+1 or Ai ∈ A−j+1. The right hand side counts
the pairs.

• g(t) cannot decrease in steps larger than 1. Say A−i+1 contains g(t) members of the K-
vector, the smallest-indexed among them being A j . Then all but one of them are also in
A−j+1, the only exception being A j itself.

g(t + 1)≥ g(t)− 1 . (A.11)

You can see this by comparing the red and green ‘almost-semicircles’ in Figure 5.

• The following inequalities hold because they describe two regions A−j+1, which ‘almost’
cover all Ais once; see Figure 6. In the upper inequality, the A−j+1s overlap in a range
that has no members of the K-vector, but leave out a range which contains at least one
member (Ait

itself). In the lower inequality, the A−j+1s leave out a range that contains
one member (Ait+g(t)+1

) but overlap in a range, which might contain members.

g(t) + g(t + g(t))≤ k− 1 , (A.12)

g(t) + g(t + g(t) + 1)≥ k− 1 . (A.13)
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• Values taken on by g(t):
0≤ g(t)≤ k− 1 . (A.14)

The extreme values 0 and k−1 are achieved only if all the members live in some common
A+j , in which case the full range of g(t) becomes {k− 1, k− 2, . . . , 1, 0}.

• The possible behaviors for g(t) for the smallest values of k (up to cyclic reorderings)
are:

k = 1 : {0} ,
k = 2 : {1,0} ,
k = 3 : {2,1, 0} or {1,1, 1} , (A.15)

k = 4 : {3,2, 1,0} or {2,2, 1,1} ,
k = 5 : {4,3, 2,1, 0} or {3, 3,2, 1,1} or {3,2, 2,1, 2} or {2, 2,2,2, 2} .

• In terms of g(t) and h(t), the value of a toric inequality on a K(2p)-vector with k A-
members and 2p− k B-members is:

#{(t, t ′) such that g(t) + h(t ′) = p− 1} −min{k, 2p− k} . (A.16)

We emphasize that this expression is independent of m and n.

A.2 Proofs of lemmas in section 3

Proof of Lemmas 1 and 2 The lemmas are about K4-vectors so p = 2. We use equa-
tion (A.16) and consult list (A.15) for different splits of 2p = k+ l:

• (k, l) = (4,0) or (0, 4). — Vanishes directly from (A.1).

• (k, l) = (3,1) or equivalently (1, 3). — Since h(t) = 0, we are effectively counting the
number of 1’s in g(t), minus one (because l = 1). This gives 0 when g(t) is {2,1, 0} and
2 when it is {1,1, 1}.

• (k, l) = (2,2)— Here g(t) and h(t) are {0,1}, which can add up to 1 in two ways: 0+1
and 1+ 0. Thus, equation (A.16) gives 2− 2= 0.

Proof of Lemma 3 Without loss of generality, we have g(1) = g(2) = g(3) = 1 and h(1) = 0
because only this structure (or one with A↔ B exchanged) gives a non-saturating K4-vector.
We have two cases to consider:

Case (1): adjoining an A-region with weight 2 ,

Case (2): adjoining a B-region with weight 2 .

In Case (1), the only non-vanishing quantity I(Ait
: B j1 |A

−
it+1B−j1+1) is:

I(Aiaffected
: B j1 |A

−
iaffected+1B−j1+1) = 2 . (A.17)

Since in this case SA1A2...Am
= 1, the graph saturates inequality (A.1) as claimed.

In Case (2), the only non-vanishing conditional mutual informations are:

I(Ait
: B jaffected

|A−it+1B−jaffected+1) = 2 . (A.18)

There are three of them, one for each Ait
. Since in this case SA1A2...Am

= 3, the graph saturates
inequality (A.1) as claimed.
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Proof of Lemma 6 Consider the vectors, which are constructed in Lemma 3 by starting from
non-saturating AAAB-vectors. We must show that these vectors span a linear space whose
dimension equals: dim{non-saturating AAAB-vectors} − 1.

In the proof of Lemma 4, we showed that a single application of Lemma 3 to a non-
saturating AAAB-vector v⃗ produces an entropy vector of the form

1
2 w⃗− 1

2 v⃗ + saturating, (A.19)

where w⃗ is some other non-saturating AAAB-vector. Modding out the saturating part, which
is immaterial for the present purposes, and multiplying by 2 to ease the notation, we see that
Lemma 3 produces vectors of the form:



















+1

−1



















. (A.20)

This is a vector of coefficients of non-saturating AAAB-vectors. All unfilled coefficients are
zeroes. Our claim will follow if we can show that repeated applications of Lemma 3 can
produce vectors like this with any placement of the entries +1 and −1.

This is what we show in the following:

• Any vector of form (A.20)—understood in the basis of non-saturating AAAB-vectors—is
in the holographic entropy cone because it can be generated by repeated applications of
Lemma 3.

The argument is phrased in terms of non-saturating AAAB-vectors, but for n≥ 3 the argument
concerning non-saturating ABBB-vectors is identical.

Lemma 3 operates by adding a fifth member to the initial non-saturating AAAB-vector v⃗.
The membership of the other non-saturating vector w⃗ in (A.19) is a subset of the resulting
quintuple. Therefore, in a single application of Lemma 3, v⃗ and w⃗ (as K4-vectors) must have
three members in common.

For example, consider:

v⃗ = v⃗(A1
1, A1

2, A1
3, B1

1) , and w⃗= v⃗(A1
1, A1

2, A1
4, B1

1) . (A.21)

These vectors can appear together in (A.19)—after a single application of Lemma 3—because
they have three members in common. The difference between v⃗ and w⃗ is in the replacement
A3 → A4. In this way, we can represent single applications of Lemma 3 as hops such as
{A1, A2, A3, B1} → {A1, A2, A4, B1}. One hop changes one member in a quadruple and it is
associated with one application of Lemma 3 and one vector (A.20).

The only other restriction on a hop is that the quadruple after the hop must still be non-
saturating. We call such hops ‘valid.’ In terms of functions g(t) and h(t ′), we see that a
valid hop is one that preserves the structure of g(t) being {1,1, 1} and of h(t ′) being {0}. In
particular, any sequence of hops, which goes from a non-saturating AAAB-vector to a non-
saturating ABBB-vector—where g(t) is {0} and h(t ′) is {1,1, 1}—would have to pass through
an AABB-vector whose g(t) and h(t ′) are both {1,0}. That would be an invalid hop because all
AABB-vectors are saturating. This is the reason why non-saturating AAAB-vectors and ABBB-
vectors do not mix under applications of Lemma 3.
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Now consider a sequence of two hops, for example:

v⃗ = v⃗(A1
1, A1

2, A1
3, B1

1) → w⃗= v⃗(A1
1, A1

2, A1
4, B1

1) ,

w⃗= v⃗(A1
1, A1

2, A1
4, B1

1) → u⃗= v⃗(A1
1, A1

2, A1
4, B1

2) . (A.22)

This represents two applications of Lemma 3, each with one underlying five-armed star graph.
Because the holographic entropy cone is a convex cone, those two entropy vectors can be
added together without leaving the cone. For the vectors in (A.22), this means:
�

1
2 w⃗− 1

2 v⃗ + saturating
�

+
�

1
2 u⃗− 1

2 w⃗ + saturating
�

→
�

1
2 u⃗− 1

2 v⃗ + saturating
�

. (A.23)

This vector is also of the form (A.20) and, by construction, it is also in the holographic entropy
cone. However, the members of the K4-vectors v⃗ and u⃗ do not generally have three members
in common. This happens if the first hop and the second hop switch a different region, for
example if v⃗ and u⃗ are:

v⃗ = v⃗(A1
1, A1

2, A1
3, B1

1) , and u⃗= v⃗(A1
1, A1

2, A1
4, B1

2) . (A.24)

Even though v⃗ and u⃗ do not have three regions in common, vector u⃗− v⃗ is in the holographic
entropy cone because there exists a sequence of valid hops from v⃗ to u⃗ (in this example, via
w⃗). In summary, the existence of a sequence of valid hops from v⃗ to u⃗ is a sufficient condition
for u⃗− v⃗ to be in the holographic entropy cone.

In effect, we have rephrased the highlighted statement above as:

• Any two non-saturating AAAB-vectors are connected by a sequence of valid single-region
hops.

Hops on the B-side, which replace B j → B j′ , can reset the B-content of a non-saturating AAAB-
vector in one shot. The less trivial component of the assertion is that the A-members of a non-
saturating AAAB-vector can also be adjusted by a sequence of single-region hops. This is what
we prove next.

Because the remaining part of the proof concerns only triples of A-regions, from now on
a hop will mean a replacement Ai → Ai′ in a triple {Ai1 , Ai2 , Ai3}. Every triple is characterized
by a function g(t), which must be of the form {1,1, 1} for the resulting AAAB-vector to be
non-saturating. Accordingly, we will say that a hop is valid if it preserves the property of the
triple {Ai1 , Ai2 , Ai3} that its g(t) function is {1,1, 1}.

We have reached the final restatement of our problem. It suffices to show that:

• Any two triples {Ai1 , Ai2 , Ai3} and {Ai′1
, Ai′2

, Ai′3
} whose g(t) functions are {1, 1,1} are

connected through a sequence of valid single-region hops. That is, one can go from any
such triple to another by adjusting one region at a time, without ever losing the property
that the g(t) function is {1, 1,1}.

This suffices to prove Lemma 6 and that is what we demonstrate below.
We prove the claim by describing an explicit sequence of hops algorithmically; see Figure 7.

We start from an initial triple {Ai1 , Ai2 , Ai3} with 1 ≤ i1 ≤ i2 ≤ i3 ≤ m. Define distances
d12 = i2 − i1, d23 = i3 − i2, and d31 = i1 +m− i3.

1. If d12, d23, d31 are {m/3, m/3, m/3} or {(m − 1)/3, (m − 1)/3, (m + 2)/3} or
{(m+ 1)/3, (m+ 1)/3, (m− 2)/3} (depending on m (mod 3)), proceed to step 2. Oth-
erwise, consider the largest of the three quantities |d12− d23|, |d23− d31|, |d31− d12|. In
case of a two-way tie, take either one of the two larger quantities.
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m=15 m=15 m=15

Figure 7: The algorithm by which any triple of A-regions can be deformed into con-
figuration (A.25) without losing the property that its g(t) function is {1, 1,1}.

(a) Make a hop, which decreases the largest of the three quantities. For example, if
|d12 − d23| is the largest and d12 > d23 then the hop Ai2 → Ai2−1 will decrease that
quantity by 2. On the other hand, if |d12 − d23| is the largest and d12 < d23 then
the hop Ai2 → Ai2+1 will decrease that quantity by 2.

(b) Repeat step 1(a) until d12, d23, d31 become {m/3, m/3, m/3} or
{(m−1)/3, (m−1)/3, (m+2)/3} or {(m+1)/3, (m+1)/3, (m−2)/3}, depending
on m (mod 3).

2. Repeat the series of hops Ai1 → Ai1+1, Ai2 → Ai2+1, Ai3 → Ai3+1 to achieve an arbitrary
cyclic shift. If m= 5 or 7, see special instructions in (A.29) below.

This algorithm connects any triple {Ai1 , Ai2 , Ai3} to one of the three canonical configurations:

{A1, A1+m/3, A1+2m/3} or {A1, A1+(m−1)/3, A1+2(m−1)/3}
or {A1, A1+(m+1)/3, A1+2(m+1)/3} . (A.25)

If any initial triple can be brought to this canonical form then we can also reach any final triple,
simply by running the sequence from the final triple to (A.25) backwards. What remains to be
shown is:

• In the algorithm above, when step 1(a) or one hop in step 2 is applied to a triple
{Ai1 , Ai2 , Ai3} whose g(t) is {1, 1,1}, the resulting triple after the hop also has g(t) of
the form {1, 1,1}.

To verify this, observe the following:

g(t) is {1, 1,1} , if and only if max{d12, d23, d31} ≤ (m− 1)/2 ,

g(t) is {2, 1,0} , if and only if max{d12, d23, d31} ≥ (m+ 1)/2 . (A.26)

These equivalences follow directly from the definition of g(t). Now, step 1(a) in the algorithm
never increases max{d12, d23, d31}. As for step 2, in the worst case it can increase:

d31 = (m+ 2)/3 → (m+ 5)/3 . (A.27)

According to (A.26), this could potentially turn g(t) into the form {2,1, 0} only if

(m+ 5)/3 ≥ (m+ 1)/2 , (A.28)

that is if m≤ 7. In these special cases, we can effect the cyclic shift in step 2 like so:

m= 5 : {A1, A3, A5} → {A2, A3, A5} → {A2, A4, A5} → {A2, A4, A1} ,
m= 7 : {A1, A3, A5} → {A1, A3, A6} → {A1, A4, A6} → {A2, A4, A6} . (A.29)

These hops never get to max{d12, d23, d31} ≥ (m+1)/2. This completes the proof of Lemma 6.
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Proof of Lemma 8 The members of the non-saturating K(2p)-vector include k regions Ai
and l = 2p− k regions B j . Without loss of generality, we assume k ≥ l. We are working with
K6- and higher K-vectors, so p ≥ 3.

Using equation (A.1) but rephrasing in terms of it (it are the indices of the members of
the K-vector, with 1≤ t ≤ k), the value of the inequality on a K-vector is:

l
∑

t ′=1

�� k
∑

t=1

1
2

I(Ait
: B jt′ |A

−
it+1B−jt′+1)

�

− 1

�

. (A.30)

The lemma asks us to reset to 2p− 3 the weight of one member of the K-vector, which we are
free to choose. We will reset one of the k A-members of the K-vector—that is, on the side that
has the majority (or half) of its membership. This way, the resetting does not affect the term
−SA1A2...Am

= −SB1B2...Bn
= −l and expression (A.30) is still valid.

Idea of proof The idea of the proof is that 2p − 3 is a sufficiently large weight so that all
the conditional mutual informations in (A.30) vanish, except those where Ait

is at the affected
bond. Then, if we can also show

I(Aiaffected
: B jt′ |A

−
iaffected+1B−jt′+1) = 2 , (A.31)

then we will have demonstrated that the resulting vector saturates the inequality. From here
on we call the subsystem with the altered bond weight Aiaffected

≡ Ait∗
.

To inspect the conditional mutual information in (A.31), we write down all the entropies
it involves using the functions g(t) and h(t ′) defined in (A.8-A.9):

SA−it∗+1B−jt′+1
=min{g(t∗) + h(t ′), 4p− 4− g(t∗)− h(t ′)} ,

SA+it∗
B−jt′+1

=min{2p− 3+ g(t∗) + h(t ′), 2p− 1− g(t∗)− h(t ′)} ,

SA−it∗+1B+jt′
=min{1+ g(t∗) + h(t ′), 4p− 5− g(t∗)− h(t ′)} , (A.32)

SA+it∗
B+jt′
=min{2p− 2+ g(t∗) + h(t ′), 2p− 2− g(t∗)− h(t ′)}= 2p− 2− g(t∗)− h(t ′) .

The right hand sides are all of the form min{quantity, (4p − 4)− quantity} because after the
adjustment of the special weight, the combined weight of all bonds in the star graph becomes
4p− 4.

We now substitute expressions (A.32) into (A.31). This gives one equation with one un-
known variable g(t∗) + h(t ′), which involves four minima. A little algebra reveals that the
equation is solved by the range:

(A.31) holds ⇐⇒ 1≤ g(t∗) + h(t ′)≤ 2p− 3= (k− 1) + (l − 1)− 1 .

Using (A.14), we see that this is automatically satisfied in all circumstances except possibly
in one special case: when g(t) and h(t ′) take on the extreme forms {k − 1, k − 2 . . . 0} and
{l − 1, l − 2 . . . 0}. However, in that scenario the underlying K-vector saturates the inequal-
ity, as is readily seen from (A.16). Since Lemma 8 concerns non-saturating K-vectors, this
circumstance in fact never arises.

This establishes that equation (A.31) holds as an identity. In other words, it does not im-
pose any conditions on which member of the initial K-vector can have its bond weight altered.
As far as condition (A.31) is concerned, any choice will do.

It remains to verify the other condition mentioned in Idea of proof above. We state it as
a separate lemma:
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Lemma 17 Assume p ≥ 3. In any non-saturating K(2p)-vector with k ≥ p A-members and
l = 2p − k ≤ p B-members, there exists a choice of member Ait∗

such that resetting its weight to
2p− 3 causes

I(Ait
: B jt′ |A

−
it+1B−jt′+1) = 0 , (A.33)

for all t ̸= t∗ (for all members Ait
whose bond weight was not altered).

Proof of Lemma 17 If we subdivide Ait∗
into 2p − 3 smaller subregions of weight 1 (main-

taining the structure of a star graph) then quantity (A.33) becomes the conditional mutual
information of one single region and another single region in a K-vector with membership
equal to 4p− 4. This is non-vanishing only if the conditioning region contains exactly 2p− 3
members. Returning to the graph in the lemma, this means that (A.33) can fail only if the
members of the graph are distributed like so:

either : Ait∗
∈ A−it+1B−jt′+1 and all others in A+it

B+jt′ ,

or : Ait∗
∈ A+it

B+jt′ and all others in A−it+1B−jt′+1 . (A.34)

Rephrased in terms of functions g(t) and h(t ′), (A.34) requires t and t ′ such that:

either : t = t∗ − 1 and g(t) = 1 and h(t ′) = 0 ,

or : t = t∗ + 1 and g(t) = k− 2 and h(t ′) = l − 1 . (A.35)

We must prove that these conditions—which imply I(Ait
: B jt′ |A

−
it+1B−jt′+1) ̸= 0—never arise if

we choose t∗ wisely.
Conditions (A.35) require h(t ′) to take on the extreme form {l − 1, l − 2 . . . 0}, i.e. all

B-members must be contained in some B+j . On the other hand, we have already seen that if
g(t) and h(t ′) both take on the extreme forms {k − 1, k − 2 . . . 0} and {l − 1, l − 2 . . . 0} then
the underlying K-vector saturates the inequality. This restricts the set of functions g(t) under
consideration to those with max g(t) = k − 2. Note that g(t) = 1 implies g(t + 2) ≥ k − 2 by
(A.13).

Our task is to prove that for any g(t), which achieves k− 2 but not k− 1, we have:

∃ t∗ such that g(t∗ − 1) ̸= 1 and g(t∗ + 1) ̸= k− 2 . (A.36)

This is a very weak condition, which at large k can be satisfied in multiple ways. We invite the
reader to find a pattern among all functions g(t) such that max g(t) = k−2, which makes the
statement manifest.

To complete the proof formally, we give the following algebraic argument. Because g(t)
achieves both k − 2 and 1, and because it can never decrease in steps larger than 1 (inequal-
ity A.11), it must achieve every value between 1 and k−2 (inclusive) at least once. To maintain
(A.10), it must be that the full range of g(t) contains exactly one additional pair (q, k−1−q).
In total, g(t) can achieve values {1, k − 2} at most four times. Each time g(t) = 1 or k − 2,
conditions (A.36) exclude either t + 1 or t − 1 from acting as t∗. That is, at most four values
of t are prevented from becoming t∗. Thus, if k ≥ 5, a t∗ that satisfies (A.36) exists simply by
counting.

It remains to inspect the cases k = 4 and k = 3. When k = 4, we have the unique (up to
cyclic relabeling) pattern:

g(1) = 2 , g(2) = 2 , g(3) = 1 , g(4) = 1 . (A.37)

We choose t∗ = 2. When k = 3, we have the unique pattern g(1) = g(2) = g(3) = 1, which
appears problematic. Recall, however, that l ≤ k and k + l ≥ 6, so we also have l = 3.
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Moreover, we have already concluded that conditions (A.35) can arise only if the B-regions
are concentrated in one B+j , i.e. when h(t ′) takes on values {2,1, 0}. Thus, the K-vector with
functions g(t) and h(t ′) given by {1, 1,1} and {2,1, 0} saturates the toric inequality, as is seen
from equation (A.16). This completes the proof of Lemma 17 and Lemma 8.

Proof of Lemma 10 In the main text above Lemma 10 we established that non-saturating
AAAB-vectors and ABBB-vectors can simultaneously appear in expansion (24) only if k = l = 3.
The preceding paragraph—at the conclusion of the proof of Lemma 17—says that such K6-
vectors with k = l = 3 are non-saturating only if the functions g(t) and h(t ′) are both of the
form {1,1, 1}. This is what we assume from now on.

Without loss of generality, we set the weight of the bond at Ai1 to 3. Expansion (24)

contains
�6

4

�

= 15 K4-vectors. Among those, there is exactly one K4-vector of ABBB type,
which contains Ai1; its coefficient in expansion (24) is +1/3. On the other hand, there are
exactly two K4-vectors of ABBB-type, which do not contain Ai1 because they contain Ai2 and
Ai3 instead; their coefficients are −1/6. All these vectors are non-saturating, as can be seen by
applying (A.16) to g(1) = 0 and h(1) = h(2) = h(3) = 1. The claim is true because

1× 1
3 + 2×
�

−1
6

�

= 0 . (A.38)

Of course, if we alter the weight of a B j region then the coefficients of the non-saturating
AAAB-vectors will add up to zero.

Proof of Lemma 11 The proof of Lemma 8 makes manifest that the claim is true for K6-
vectors with k = l = 3, such that g(t) and h(t) are both {1,1, 1}. This can be achieved for all
values of m and n. Specifically, given any m, choosing the three A-members of the K-vector to
be {A(m−1)/2, A(m+1)/2, Am} produces {1, 1,1} for g(t).

A.3 Proofs of lemmas in section 4

We start with a rewriting of inequalities (11), which is analogous to (A.1):

1
2

m
∑

i, j=1

I(Ai : Bi+ j|A
( j−1)
i+1 B(m− j)

i+ j+1 )≥ SA1A2...Am
. (A.39)

We again consider a K(2p)-vector with k A-regions and l B-regions (so k + l = 2p). Without
loss of generality we assume k ≤ l so that SA1A2...Am

= l. In analogy to equation (A.4), we can
rewrite the value of the inequality on the K-vector as:

−l +#{pairs (Ai , Bi+ j) of K(2p)-members s.t. A( j−1)
i+1 B(m− j)

i+ j+1 contains p− 1 members} . (A.40)

Proof of Lemma 13 We work with the projective plane inequalities in the form (A.39). We
consider three possibilities:

• Four A-members and zero B-members or vice versa. Such vectors automatically saturate
(A.39).

• Three A-members (call them Ai1,2,3
with 1 ≤ i1 < i2 < i3 ≤ m), and one B-member B j∗ .

The three potentially non-vanishing conditional mutual informations in (A.39) become
I(Ait

: B j∗ |Ait+1Ait+2 . . . A j∗−1), with t = 1,2, 3. They do not vanish if and only if the
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conditioning region A( j∗−it−1)
it+1 contains precisely one of the two remaining A-members,

in which case their value is 2. Stated algebraically, this means

I(Ai1 : B j∗ |A
( j∗−i1−1)
i1+1 ) = 2 ⇐⇒ i2 + 1≤ j∗ ≤ i3 ,

I(Ai2 : B j∗ |A
( j∗−i2−1)
i2+1 ) = 2 ⇐⇒ i3 + 1≤ j∗ ≤ m , or 1≤ j∗ ≤ i1 ,

I(Ai3 : B j∗ |A
( j∗−i3−1)
i3+1 ) = 2 ⇐⇒ i1 + 1≤ j∗ ≤ i2 , (A.41)

and all other conditional mutual informations in (A.39) vanish. Since SA1A2...Am
= 1, no

matter the value of j∗, each of these K4-vectors saturates the inequality.

The argument is nearly identical for three B-members and one A-member.

• Two A-members (call them Ai1,2
with 1 ≤ i1 < i2 ≤ m) and two B-members B j1,2

, so
SA1A2...Am

= 2. We have four potentially non-vanishing conditional mutual informations,

which are I(Ait
: B jt′ |A

( jt′−it−1)
it+1 B(m+it− jt′ )

jt′+1 ) with t, t ′ ∈ {1,2}. Each of these conditional
mutual informations is non-vanishing (and equal to 2) if and only if the conditioning
region

A( jt′−it−1)
it+1 B(m+it− jt′ )

jt′+1 = Ait+1Ait+2 . . . A jt′−1B jt′+1B jt′+2 . . . Bit
, (A.42)

contains precisely one member of the K4-vector. In terms of the placement of j1 and j2,
we have two cases to consider:

(a) i1 + 1 ≤ j1 < j2 ≤ i2. Then I(Ai1 : B j1 | . . .) and I(Ai2 : B j2 | . . .) equal 2 and the two
others vanish. Inequality (A.39) is saturated: 1

2(2+ 2)− 2= 0.

(b) i1+1≤ j1 ≤ i2 but j2 is outside that interval. Then all four conditional mutual infor-
mations I(Ai1,2

: B j1,2
| . . .) = 2 and the inequality evaluates to 1

2(2+2+2+2)−2= 2.

There is also the case where neither j1 nor j2 satisfies i1+1≤ j ≤ i2, but it is equivalent
to case (a) by a reindexing of regions.

In summary, we have found that K4-vectors with structure AAAA, AAAB, ABBB, BBBB, and
AABB (case (a) above) saturate inequality (11). On the other hand, K4-vectors with structure
AABB (case (b) above) do not saturate it. On those vectors, the inequality evaluates to 2.

Proof of Lemma 14 Consider a quadruple {Ai1 , Ai2 , B j1 , B j2}with 1≤ i1 < i2 ≤ m and assume

i1 + 1≤ j1 ≤ i2 , and i2 + 1≤ j2 ≤ i1 +m , (A.43)

i.e. that the underlying K4-vector does not saturate the inequality. Now add a fifth member
B j∗ with weight 2. We stated below conditions (34) that choosing the fifth member to be a
B-region does not implicate a loss of generality. Apply Lemma 4 to the resulting five-armed
graph:

s⃗(B2
j∗
, A1

i1
, A1

i2
, B1

j1
, B1

j2
) = (((((((((1

2 s⃗(B1
j∗
, A1

i1
, B1

j1
, B1

j2
) +(((((((((1

2 s⃗(B1
j∗
, A1

i2
, B1

j1
, B1

j2
)

+ 1
2 s⃗(B1

j∗
, A1

i1
, A1

i2
, B1

j1
) + 1

2 s⃗(B1
j∗
, A1

i1
, A1

i2
, B1

j2
)

− 1
2 s⃗(A1

i1
, A1

i2
, B1

j1
, B1

j2
) . (A.44)

The crossed terms are K4-vectors, which automatically saturate the inequality because their
membership is ABBB. As for the vectors in the middle line, we claim that one of them saturates
the inequality and the other one does not. This is true because (choosing the (mod m) range
of the index j∗ appropriately) we have

either i1 + 1≤ j∗ ≤ i2 , or i2 + 1≤ j∗ ≤ i1 +m . (A.45)
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Therefore, either ( j1, j∗) or ( j2, j∗) fails conditions (33), but not both.
Finally, s⃗(A1

i1
, A1

i2
, B1

j1
, B1

j2
) is the original K4-vector assumed in the lemma; it does not sat-

urate the inequality. In the end, expansion (A.44) contains precisely two non-saturating K4-
vectors, one with coefficient +1

2 and one with coefficient −1
2 . Because the inequality evaluates

to 2 on all non-saturating K4-vectors (we noted so in the proof of Lemma 13), it evaluates to
zero on (A.44).

Proof of Lemma 15 We begin by fixing one canonical non-saturating K4-vector with mem-
bers {A1, Am, Bm, B1}; call this entropy vector v⃗∗. We prove that for any non-saturating K4-
vector v⃗ ̸= v⃗∗, the vector

1
2 v⃗ − 1

2 v⃗∗ + saturating, (A.46)

can be constructed by repeated applications of Lemma 14. Any such vector is linearly indepen-
dent of all saturating vectors and of others constructed in the same way. Then the dimension
of the linear space spanned by vectors (A.46) equals the count of all non-saturating K4-vectors
v⃗ except for v⃗∗, which is what the lemma claims.

The mechanics is similar to the proof of Lemma 6. We will verify that any quadruple
{Ai1 , Ai2 , B j1 , B j2} (with 1≤ i1 < i2 ≤ m) that satisfies

i1 + 1≤ j1 ≤ i2 , and
�

i2 + 1≤ j2 ≤ m or 1≤ j2 ≤ i1
�

, (A.47)

can be reached by a sequence of single-region hops originating from {A1, Am, Bm, B1}, without
ever losing property (A.47). This suffices because a hop corresponds to one application of
Lemma 14. Adding up vectors, which are produced in each hop in the sequence v⃗∗→ . . .→ v⃗,
yields (A.46).

Let us represent quadruple {Ai1 , Ai2 , B j1 , B j2} in the form (i1, i2; j1, j2). We wish to bring
it to (1, m; m, 1) by a sequence of changes, altering one index at a time, without ever losing
property (A.47). An explicit sequence is:

(1, m; m, 1)→ (i1, m; m, 1)→ (i1, m; j1, 1)→ (i1, i2; j1, 1)→ (i1, i2; j1, j2) . (A.48)

Property (A.47) is preserved at every stage. This completes the proof of Lemma 15.

Proof of Lemma 16 The proof is similar to that of Lemma 8. We consider a non-saturating
K(2p)-vector (p ≥ 3) with k members Ait

(1≤ t ≤ k) and l = 2p−k members B jt′ (1≤ t ′ ≤ l).
Without loss of generality, we assume k ≥ l, which also implies k ≥ 3. This assumption means
SA1A2...Am

= l. We will modify the weight of the bond at a region Ait∗
, which does not affect

SA1A2...Am
= l.

We rewrite the value of the inequality in (A.39) in the form analogous to (A.30):

l
∑

t ′=1

�� k
∑

t=1

1
2

I(Ait
: B jt′ |A

( jt′−it−1)
it+1 B(m+it− jt′ )

jt′+1 )

�

− 1

�

, (A.49)

see equation (A.42). As in the proof of Lemma 8, the idea is that resetting the bond weight at
Ait∗

to 2p− 3 causes all the conditional mutual informations in (A.49) to vanish except those
where t = t∗, and the latter all equal 2. These conditions will set (A.49) to zero, thereby
proving the claim. For easy reference, we spell out these sufficient conditions below:

for all t ′: I(Ait∗
: B jt′ |A

( jt′−it∗−1)
it∗+1 B

(m+it∗− jt′ )
jt′+1 ) = 2 , (A.50)

for all t ̸= t∗ and all t ′: I(Ait
: B jt′ |A

( jt′−it−1)
it+1 B(m+it− jt′ )

jt′+1 ) = 0 . (A.51)
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Figure 8: Left: The A-members divide locales for B-members into bins; see equa-
tion (A.52). Right: When precisely two bins are non-empty, one Ait

cannot be cho-
sen as Ait∗

in Lemma 16. Red dots represent members Ait
while green dots represent

members B jt′ .

Consider the set of indices of the A-members {it}kt=1. The conditioning regions in (A.49) nat-
urally partition the indices jt ′ of the B-members into bins Bt :

Bt = {it + 1, it + 2, . . . it+1} (understood (mod m)) . (A.52)

The division is illustrated in Figure 8. We prove the following statements:

1. If all B-members have indices in one bin Bt and all other bins are empty then the under-
lying K-vector saturates the inequality. Therefore, we need only consider cases where
the indices of the B-members fall in at least two bins.

2. Suppose only two bins Bt and Bt+1 are populated. (That is, only two bins are non-empty
and they are consecutive.) Choose any t∗ ̸= t+1 (see Figure 8 for illustration) and reset
the bond weight at Ait∗

to 2p− 3. Then equations (A.50-A.51) hold.

3. Otherwise, choose t∗ arbitrarily and reset the bond weight at Ait∗
to 2p−3. Then equa-

tions (A.50-A.51) hold.

For statement 1 above, without loss of generality, let the indices of the A-members be

1= i1 < i2 < . . .< ik ≤ m , (A.53)

and the indices of the B-members be

2≤ j1 < j2 < . . . jl ≤ i2 . (A.54)

The conditional mutual information I(Ait
: B jt′ |A

( jt′−it−1)
it+1 B(m+it− jt′ )

jt′+1 ) is non-vanishing if and

only if A( jt′−it−1)
it+1 B(m+it− jt′ )

jt′+1 contains precisely p − 1 members, in which case it equals 2. Now

region A( jt′−it−1)
it+1 contains k− t + 1 A-members (for t ̸= 1) and 0 members (for t = 1); we can

capture this simply as k− t+1 by taking 2≤ t ≤ k+1. Meanwhile, region B(m+it− jt′ )
jt′+1 contains

l − t ′ B-members. Thus, using k+ l = 2p, for a non-vanishing conditional mutual information
we must have t + t ′ = p+ 2. In effect, the value of the inequality on this K-vector is:

−l +#
�

(t, t ′) such that 2≤ t ≤ k+ 1 and 1≤ t ′ ≤ l and t = k+3
2 −
�

t ′ − l+1
2

�	

. (A.55)

Because k ≥ l by assumption, t is in the desired range for every 1 ≤ t ′ ≤ l so the value of the
inequality is zero, as claimed.
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From now on we assume that the indices of the B-members fall in at least two bins. This
directly implies condition (A.50). To see this, fix t ′ and let x be the number of members in

A
( jt′−it∗−1)
it∗+1 B

(m+it∗− jt′ )
jt′+1 . Observing that 0≤ x ≤ 2p− 2, compute:

I(Ait∗
: B jt′ |A

( jt′−it∗−1)
it∗+1 B

(m+it∗− jt′ )
jt′+1 )

=min{x+1, 4p−5−x}+min{x+2p−3,2p−1−x} −min{x , 4p−4−x} − (2p−2−x)

= (2p− 2)− |x − 1| − |(2p− 3)− x | . (A.56)

For any 1≤ x ≤ 2p−3 this equals 2, as desired. The only values of x that do not lead to (A.50)
are x = 0 or x = 2p− 2. In other words, the failure of (A.50) implies one of the following:

• x = 2p − 2. That is, A
( jt′−it∗−1)
it∗+1 B

(m+it∗− jt′ )
jt′+1 contains all the members other than Ait∗

and

B jt′ while A
(m− jt′+it∗ )
jt′

B
( jt′−it∗−1)
it∗+1 contains no members.

• x = 0. The other way around: A
(m− jt′+it∗ )
jt′

B
( jt′−it∗−1)
it∗+1 contains all the members other than

Ait∗
and B jt′ while A

( jt′−it∗−1)
it∗+1 B

(m+it∗− jt′ )
jt′+1 contains no members.

In the x = 2p − 2 case, all A-members have indices it∗ ≤ it ≤ jt ′ − 1 and all B-members have
indices jt ′ ≤ js′ ≤ it∗ +m. This means that all B-members live in one bin Bt∗−1. In the x = 0
case, all A-members have indices jt ′ ≤ it ≤ it∗ and all B-members have indices it∗+1≤ js′ ≤ jt ′ .
This means that all B-members live in one bin Bt∗ .

In summary, we have verified that in a non-saturating K-vector (whose B-members are
necessarily split into at least two bins), changing the weight of any bond to 2p−3 automatically
implies equation (A.50). What remains is to prove the part of statements 2 and 3, which
concerns condition (A.51). It is easier to prove the contrapositive. We state it as a separate
lemma, which is analogous to Lemma 17:

Lemma 18 Take a non-saturating K-vector with k members Ait
and l members Bit′

(k ≥ l and
k+ l ≤ 6) and change the weight of the bond at some Ait∗

to 2p− 3. If equation (A.51) does not
hold for any t, t ′ then all B-members live in two consecutive bins Bt and Bt+1 and t∗ = t + 1.

In other words, if after changing the weight of one A-member to 2p − 3 we still have a non-
saturating vector, the special member must have been chosen in violation of Figure 8. Any
other choice would have worked.

Observe that I(Ait
: B jt′ |A

( jt′−it−1)
it+1 B(m+it− jt′ )

jt′+1 ) = I(Ait
: B jt′ |A

(m− jt′+it )
jt′

B( jt′−it−1)
it+1 ). In other

words, because the union of all Ai ’s and B j ’s is in a pure state, two different conditioning

regions—A( jt′−it−1)
it+1 B(m+it− jt′ )

jt′+1 or A(m− jt′+it )
jt′

B( jt′−it−1)
it+1 —define the same conditional mutual in-

formation. By temporarily splitting Ait∗
into 2p− 3 independent subsystems of weight 1 (like

we did in the proof of Lemma 17), we see that the said conditional mutual information is
non-vanishing only if one of the two conditioning regions contains Ait∗

alone and all the other
members live elsewhere. That is, we have two cases to consider:

only Ait∗
∈ A( jt′−it−1)

it+1 B(m+it− jt′ )
jt′+1 , and all others fall in A( jt′−it−1)

it+1 B(m+it− jt′ )
jt′+1 , (A.57)

only Ait∗
∈ A(m− jt′+it )

jt′
B( jt′−it−1)

it+1 , and all others fall in A(m− jt′+it )
jt′

B( jt′−it−1)
it+1 . (A.58)

Assuming (A.57), we see that all the B-members live in B(m+it− jt′ )
jt′+1 = B( jt′−it )

it+1 and all A-members

other than Ait∗
live in A( jt′−it−1)

it+1 = A(m− jt′+it+1)
jt′

. In other words, the indices is of all A-regions
other than Ait∗

satisfy
jt ′ ≤ is ≤ it +m , for all s ̸= t∗ , (A.59)
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while the indices js′ of all the B-members satisfy

it + 1≤ js′ ≤ jt ′ , for all s′ . (A.60)

If there were no Ait∗
, property (A.60) would mean that all B-members live in the bin Bt . With

Ait∗
included, they are divided between Bt and Bt∗ while all other bins are empty. Moreover,

the bins Bt and Bt∗ are necessarily consecutive, so t∗ = t + 1, which is what we wanted to
prove.

Finally, assume (A.58). Then all the B-members live in B( jt′−it−1)
it+1 = B(m− jt′+it+1)

jt′
and all

A-members other than Ait∗
live in A(m− jt′+it )

jt′
= A( jt′−it )

it
. In other words, the indices is of all

A-regions other than Ait∗
satisfy

it ≤ is ≤ jt ′ − 1 , for all s ̸= t∗ , (A.61)

while the indices js′ of all the B-members satisfy

jt ′ ≤ js′ ≤ it +m , for all s′ . (A.62)

Combining the two conditions we find that all B-members have indices between
is + 1≤ js′ ≤ it +m (for all s ̸= t∗). If there were no Ait∗

, this would mean that all B-members
live in one bin, which is indexed by the largest s in (A.61). The inclusion of Ait∗

reveals that
that non-empty bin is indexed by s = t − 2 (mod l). It also splits up the non-empty bin into
two bins Bt−2 and Bt∗ = Bt−1.

This establishes Lemma 18 and therefore Lemma 16.
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