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Abstract

We propose a real-space formalism of the topological Euler class, which characterizes the
fragile topology of two-dimensional systems with real wave functions. This real-space
description is characterized by local Euler markers whose macroscopic average coin-
cides with the Euler number, and it applies equally well to periodic and open boundary
conditions for both crystals and noncrystalline systems. We validate this by diagnosing
topological phase transitions in clean and disordered crystalline systems with the real-
ity endowed by the space-time inversion symmetry IST . Furthermore, we demonstrated
the topological Euler phases in quasicrystals and even in amorphous lattices lacking any
spatial symmetries. Our work not only provides a local characterization of the frag-
ile topology but also significantly extends its territory beyond IST -symmetric crystalline
materials.
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1 Introduction

Topological phases have garnered attention for their unique properties, originating with the
integer quantum Hall effect which is characterized by the topological invariant called the
Chern number [1–3] and associated chiral edge modes [4, 5]. Mathematically, the Chern
number is derived from the Chern class, a cohomology class characterizing complex vector
bundles. Typically, Chern numbers can be determined from complex Bloch wave functions via
a momentum-space expression that relies on the translation invariance of crystalline solids
[6–9]. However, in open-boundary systems, or in the presence of disorder, the lack of transi-
tional invariance renders the momentum-space expression no longer available. This has led
to the development of a real-space representation of the Chern number [10], including local
Chern markers [11, 12] and the nonlocal Bott index [13, 14], which triggers extensive study
on the real-space characterizations of more topological states of matter [15–41].

Recently, novel topological phases characterized by Euler and Stiefel-Whitney classes have
been proposed in orientable real vector bundles associated with real Bloch states [42–47].
Physically, two-dimensional real wave functions can be topologically classified by the Stiefel-
Whitney numbers [48–50] which are Z2 invariants taking either 0 or 1, and each two-band
subspace may exhibit a fragile topology that is characterized by an integer Euler number
e ∈ Z [51–53]. Similar to the Chern number, the Euler number can be expressed as an integral
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in momentum space for real orientable two-band subsystems, and its parity is identical to the
second Stiefel-Whitney number w2, implying a close relationship between these two classes.
Unlike the Chern insulator, the fragile topology of the Euler class can be tuned by adding trivial
bands, implying its non-additive feature [49, 50]. Nevertheless, such a fragile topology pro-
tects the nonzero superfluid weight in twisted bilayer graphene [54]. Moreover, the Euler class
also serves as non-Abelian topological invariants to characterize the band nodal braiding in
multi-gap systems [55], which is in stark contrast to the single-gap Abelian topology within the
ten-fold way classification [56]. Such multi-gap non-Abelian topology has been implemented
in various systems such as crystalline materials [47,57], acoustic metamaterials [58–60], and
photonic systems [61–64], stimulating rapid recent progress in this ever-growing field [65–68].

Typically, the real Bloch states in crystals are enforced by the space-time inversion sym-
metry IST (time-reversal T combined with inversion P or two-fold rotation C2z) [69], which
can be destroyed locally in the presence of disorder. Moreover, in a finite nonmagnetic sys-
tem with open boundaries, IST symmetry is not even essential for the reality condition. The
limitation of the momentum-space formula makes it urgent to search for a local characteriza-
tion of real topological phases in systems with disorder and more generally in open-boundary
systems inherently lacking translation and IST symmetries, such as quasicrystals [70–75] and
amorphous systems [76–81].

In this Letter, we develop a real-space formalism for Euler class topology in 2D systems.
In an analogy to the Chern class, we introduce a local Euler marker e(r) to directly map the
Euler topology in real space for both crystals and noncrystalline systems. The macroscopic
average of e(r) coincides with the Euler number regardless of periodic or open boundary con-
ditions. We validate our real-space formalism by verifying topological Euler and trivial phases
in clean systems, yielding consistent results with k-space approaches. Additionally, we ap-
ply our method to a particular PT -symmetric disordered system, successfully diagnosing the
disorder-induced topological phase transition. Furthermore, our real-space formalism proves
powerful in characterizing fragile topological phases in quasicrystals and even in amorphous
systems lacking any spatial symmetries.

2 Characteristic class in k- versus r-space

The Euler class is a characteristic class of oriented real vector bundles. It can be constructed us-
ing an orthonormal basis {|un(k)〉}, where |un(k)〉 represents the cell-periodic part of the n-th
occupied Bloch state 〈r |ψn(k)〉= eik·r 〈r |un(k)〉. Utilizing this basis, we obtain the curvature
matrix F with its entries given by:

Fmn(k) = 〈∂[kx
um(k)|∂ky ]un(k)〉dkx ∧ dky , (1)

where [· · · , · · · ] denotes the commutator applied to the index kx and ky . When there are two
occupied bands, the Euler class can be expressed as a differential 2-from in k space,

e(F) = 1
2π

Pf(F)

=
1

2π
〈∂[kx

u1(k)|∂ky ]u2(k)〉dkx ∧ dky , (2)

where Pf denotes the Pfaffian acting on the matrix F . The Euler number e is an integer topo-
logical invariant for two real bands, which can be expressed as a simple k-space integral [82],

e =
1

2π

∫

BZ
〈∂[kx

u1(k)|∂ky ]u2(k)〉dkxdky . (3)

3

https://scipost.org
https://scipost.org/SciPostPhys.17.3.086


SciPost Phys. 17, 086 (2024)

To derive the expression of the Euler number in r -space, we start by replacing the occupied
states in the above expression with a projection operator P̂(k) =

∑

occ |un(k)〉〈un(k)| in the
occupied subspace [11]. After some algebra (see appendix B), we obtain the k-space formula
of Euler number e represented by P̂(k),

e =
1

2π

∫

BZ
d2kPfocc(P̂(k)[∂kx

P̂(k),∂ky
P̂(k)]) , (4)

where Pfocc denotes the Pfaffian taken over the occupied subspace.
To generalize a formula of topological system defined in k space to its real-space form

applicable to disordered system, a standard mathematical framework is the non-commutative
geometry [83], which provides the duality (see the equivalence at least for translational in-
variant systems in appendix C),

∫

BZ

d2k
(2π)2/A

→ Tr ,

∂kx
P̂(k)→

Lx

2π
(Û P̂ Û† − P̂) , (5)

∂ky
P̂(k)→

L y

2π
(V̂ P̂ V̂ † − P̂) ,

where A= Lx L y is the area of the system, Û = exp(2πiX̂/Lx) and V̂ = exp(2πiŶ /L y) are the
unitary position operator, Tr is the trace over the coordinate space, and P̂ is the r -space projec-
tion operator. Note that the order of P̂ is determined by both the site coordinates ri = (x i , yi),
dependent on the lattice size, and the internal index n, matching the order of P̂(k). Therefore,
we can divide the space on which P̂ operates into two subspaces, S(P̂) = l2(T2)⊗RN . Here,
l2(T2) is the coordinate space, where T2 denotes the two-torus, a rectangle with edge length
Lx and L y with periodic boundary conditions (PBC) [14]. And RN is internal space with the
internal degrees of freedom N which are those degrees of freedom except for the coordinate
k or {ri}. Consequently, we arrive at the r -space expression for the Euler number:

e =
1

2π
TrPfocc(P̂[Û P̂ Û†, V̂ P̂ V̂ †]) , (6)

where Pfocc denotes the Pfaffian taken over the occupied submatrix in the internal space (see
appendix D for more details). Formally, Eq. (6) share a similar expression to the real-space
Chern number except for the substituting from Tr to Pfocc. Thus analogous to prior work on
the local Chern marker [11], we propose defining the local Euler marker e(r) as the expression
in Eq. (6) before taking the trace, i.e.,

e(r) =
1

2π
Pfocc(〈r|P̂[Û P̂ Û†, V̂ P̂ V̂ †]|r〉) , (7)

where |r〉 denotes the basis to construct the external space indexed by the Wannier cell r.
The r -space Euler number (6) and local Euler marker (7) apply well to both crystalline and
noncrystalline systems. They not only provide an intuitive local perspective of global topology
but also serve as a valuable tool for distinguishing topological phases in aperiodic systems
without translational symmetry.

3 Remarks on r-space Euler number

Before proceeding, we have a few remarks. First, the analysis we’ve conducted thus far can
be directly applied to the Chern class, and the resultant r -space expression is nothing but
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the Bott index, Bott(Û , V̂ ) = (1/2π)ImTr log(Û V̂ Û−1V̂−1) with Û = P̂ exp(2πiX̂/Lx)P̂ and
V̂ = P̂ exp(2πiŶ /L y)P̂, which offers an equivalent topological classification to the Chern num-
ber [14,15]. However, there are significant differences between the r -space formulation of the
Euler and Chern number. The r -space Chern number only requires a simple trace performed
consistently in both coordinate and internal space. In contrast, for the r -space Euler number,
it becomes essential to distinguish between the coordinate and internal space, which requires
trace and Pfaffian operations, respectively.

Secondly, to decompose the coordinate and internal spaces for extracting the occupied sub-
matrix needed for Pfaffian calculation, we apply a unitary transformation to the eigenstates
which makes P̂ block-diagonal. This unitary transformation corresponds to constructing a set
of composite Wannier functions, which can be determined by an explicit algorithm of localiza-
tion functional minimization proposed by Marzari and Vanderbilt [84,85] (see appendix H.5).
Importantly, while a nontrivial topological invariant may pose a topological obstruction for
constructing Wannier representations composed of exponentially localized states in line with
lattice symmetries [49, 51, 86, 87], it does not hinder the search for composite Wannier func-
tions with optimal power-law decay [88–93].

Thirdly, the distinct treatments of Chern and Euler numbers in real space also lead to
different behaviors in finite samples under open boundary conditions (OBC). It’s well-known
that the summation of the local Chern marker over an entire open system must equal zero,
regardless of whether the system is a Chern insulator or not. This is because the local Chern
marker in the bulk is always offset by the significant deviation at the boundary [11, 14]. In
contrast, the local Euler marker near the open boundary fades away and thus doesn’t suffer
from the counteraction under OBC, making the choice of boundary condition irrelevant for
the r -space Euler number (see appendix E).

4 Tight-binding model

To numerically validate the r -space formula of Euler number, we consider a general PT -
symmetric tight-binding model with the basis (ipx , ipy , dx y , dx2−y2) per site. The Hamiltonian
is given by

H =
∑

iµ

εµc†
iµciµ +
∑

〈i j〉

∑

µν

tµν(ri j)c
†
iµc jν , (8)

where c†
iµ(ciµ) is electron creation (annihilation) operator on the µ orbital at the i-th site. εµ is

the on-site energy and tµν(ri j) is the Slater-Koster parameterized hopping integral [94,95] and
has an inverse-square decay with the distance (i.e., |ri j|−2) [96] (See details in appendix H.1).
It has been proven that a PT -symmetric Hamiltonian can become real-valued through the
Takagi decomposition [49, 97]. Here we intentionally chose the p orbitals to be imaginary,
which results in PT = K̂ with the complex conjugation operator K̂ . The invariance of the
Hamiltonian under PT imposes the reality condition on H. It was previously known that a
fragile topological state with a nontrivial Euler number e = 1 can be achieved by considering a
double band inversion between px ,y and dx2−y2,x y orbitals [98]. Here we verify the validity of
the r -space Euler number in both crystalline and noncrystalline systems based on this model.
We also validate our expression using other models with different Euler numbers, which are
detailed in the appendix I.8.
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Figure 1: (a) Orbital-resolved band structures of the square lattice with a dou-
ble band inversion between px ,y and dx2−y2,x y orbitals. The parameters used
are εpx ,py

= 1.58, εdx2−y2,x y
= -0.42, Vppσ=-0.865, Vppπ=-0.144, Vpdσ=0.173,

Vpdπ=0.135, Vddσ=0.144, Vddπ=0.124, Vddδ=0.259 eV. (b) The variation of the Eu-
ler number as the on-site energy difference ∆ = εp − εd changes. Other parameters
remain unchanged and the lattice size is L = 201. (c) The r -space Euler number as
a function of the disorder strength W in 31×31 square lattices with periodic bound-
ary condition (PBC). (d) The lattice size L dependence of the r -space Euler number
calculated without and with on-site energy disorder (W = 1.0 eV) using PBC and
open boundary condition (OBC). For each L and W , the configuration average is
performed over 100 realizations.

5 Diagnosis of topological phase transitions

With the well-defined r -space Euler number, we first diagnose topological phase transitions in
a square lattice based on the model in Eq. (8). As shown in Fig. 1(a), the orbital-resolved band
structure displays signs of a double band inversion between px ,y and dx2−y2,x y orbitals around
the Γ point, implying their nontrivial electronic topology. We compute the Euler number in
both k-space and r -space, consistently yielding a value of e = 1, thus confirming the nontrivial
Euler topology. We further examine the evolution of the Euler number in both k- and r -
spaces with increasing the on-site energy difference ∆ = εp − εd . In Fig. 1(b), the system
undergoes a topological phase transition from a topological Euler insulator with e = 1 (region
I) to an intermediate gapless state (II) and eventually transitions into a trivial insulator with
e = 0 (III). The calculated r -space Euler number matches with the k-space one, except for the
intermediate gapless phase (region II) where the Euler number is ill-defined. This transition
can be understood by tracing the evolution of band inversion (see appendix I.1): Starting
from a double inverted band order, the nontrivial energy gap gradually decreases to zero with
increasing ∆, then remains closed over a finite ∆ range, and eventually reopens with a trivial
normal band order.
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(a) (c)
D
b

D
b

(b)

Figure 2: Fragile topological state characterized by e = 1 in the Ammann-Beenker-
tiling quasicrystal based on the model in Eq. (8). Parameters are εpx ,py

= 1.58,
εdx2−y2,x y

= -0.42, Vppσ = −1.783, Vppπ = −0.299, Vpdσ = 0.359, Vpdπ = 0.280,
Vddσ = 0.299, Vddπ = 0.257, Vddδ = 0.537 eV. (a) Energy spectrum of the quasicrystal
containing 1168 sites with OBC or twisted boundary condition (TBC). Insert shows
8 corner states (highlighted by red stars) in the bulk gap. (b) Spatial distribution of
the in-gap corner states [red stars in (a)]. (c) The distribution of local Euler markers
e(r) in the quasicrystal with OBC.

Next, we demonstrate the applicability of the r -space Euler number for aperiodic sys-
tems by introducing the disorder term in the on-site energies of the aforementioned model.
We specifically consider disorder term that preserves PT symmetry, which is represented by
Vdis =
∑

i∈τ1/2
λi(c

†
i ci+c†

P icP i)with the random variables {λi} distributed uniformly within the
interval [−W, W ] on half of the sites (τ1/2) in the sample, where W is the disorder strength.
The annihilation operators ci and cP i act on the site at ri and its inversion partner P ri , respec-
tively. The averaged r -space Euler number as a function of W is shown in Fig. 1(c). For mod-
erate disorder, the r -space Euler number e remains around 1, indicating the system remains
topologically nontrivial. Remarkably, as disorder strength W increases, e gradually decreases
to 0, diagnosing a topological phase transition (see appendix I.5). Our results confirm the
disorder-induced topological phase transition classified by the topological Euler class [99,100],
and validate the r -space formalism of Euler number in disordered systems.

We further check the effect of lattice size and different boundary conditions on the r -
space Euler number, as shown in Fig. 1(d). All calculated r -space Euler numbers converge
to the limit of 1 with different rates by increasing the lattice size, demonstrating the faithful
formalism of the Euler number. Importantly, the OBC results exhibit a deviation from PBC due
to the presence of open boundaries, but this difference can be diminished by increasing lattice
size (see appendix I.4).

This suggests that the r -space formula remains reliable regardless of the boundary condi-
tions, which is notably different from the Chern number.

It is also noted that the disordered case converges much slower than the pristine PBC case.
Because the disordered system is close to the critical point, the energy gap reduces signifi-
cantly and the correlation length increases, which demands larger lattice sizes for accurate
calculations of the real-space Euler number 0. Our results show that the r -space Euler number
equals the exact one within a correction of order O(1/(L∆E)) for systems with lattice size L
and energy gap ∆E, which resembles the case of Bott index and Chern number [14].
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(c)(a) (b)

Figure 3: Fragile topological state characterized by e = 1 in the amorphous square
lattice based on the model in Eq. (8). Each atom is assigned with a random dis-
placement following the Gaussian distribution with standard deviation σ = 0.2. Pa-
rameters are L=31, εpx ,py

= 1.58, εdx2−y2,x y
= -0.42, Vppσ=-0.565, Vppπ=-0.044,

Vpdσ=0.773, Vpdπ=0.335, Vddσ=0.444, Vddπ=0.224, Vddδ=0.659 eV. (a) Energy
spectrum of the amorphous square lattice with PBC and OBC. Four corner states
in the gap are highlighted by red stars. (b) Spatial distribution of the corner states
[red stars in (a)]. (c) The distribution of e(r) for the amorphous system with OBC.

6 Fragile topology in quasicrystals and amorphous lattices

As an application of our proposed r -space formula, we explore the Euler topology in qua-
sicrystals and amorphous lattices. Specifically, we consider the 2D Ammann-Beenker-tiling
quasicrystal, which possesses 8-fold rotational symmetry but lacks transitional symmetry. In
the finite octagonal quasicrystal sample with open boundary conditions (OBC), 8 degenerate
states emerge within the bulk gap region (grey area), as shown in Fig. 2(a). The bulk gap
estimation utilizes a twisted boundary condition (TBC) to preserve octagonal symmetry and
eliminate boundary effects (see appendix H.4). We plot the spatial distribution of these in-gap
states [see Fig. 2(b)], and find that they are well localized at 8 corners of the octagonal qua-
sicrystal, implying its feature of higher-order topology. We also examine the local Euler marker
distribution in the finite quasicrystal sample, as depicted in Fig. 2(c). The plot confirms that
the local Euler markers e(r) closely match the expected value of 1 within the bulk but deviate
at the edges. As expected, the average of e(r) over the entire finite sample does not vanish but
yields e ≈ 1, verifying the nontrivial Euler topology of the quasicrystal.

We further study a finite amorphous lattice constructed by assigning random site displace-
ments away from their equilibrium position in an initial square lattice. Consequently, all spatial
symmetries are broken, including P or C2z demanded by IST symmetry for real Bloch states in
periodic crystals. Nevertheless, for the spinless model (8) in any amorphous lattice with OBC,
it is always possible to choose a real gauge so that both the Hamiltonian and eigenstates can
be taken real (see appendix G). This implies that the r -space Euler number is still applicable to
identify its Euler topology. As shown in Fig. 3(a), the energy spectrum of the finite amorphous
lattice with OBC exhibits 4 corner states at the Fermi level in the bulk gap estimated using
artificial PBC (grey area). The spatial distribution of these states supports that they are indeed
localized at 4 corners of the finite sample [see Fig. 3(b)]. As shown in Fig. 3(c), local Euler
markers e(r) are dominated in the internal area but tend to vanish at the boundary of the fi-
nite amorphous sample. The sum of e(r) over the entirety of the finite sample yields a nonzero
Euler number which is expected to converge to the quantized value of 1 with increasing lattice
size.
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7 Conclusion and discussion

We have proposed an explicit real-space formula for the Euler number to identify the fragile
topological phases in both crystalline and noncrystalline systems whose wave functions are
real. Specifically, the local Euler marker e(r) whose macroscopic average coincides with the
Euler number e, is introduced to characterize the topological order in real space. Notably,
this applies equally well to periodic and open boundary conditions. We have validated our
expression by diagnosing the topological phase transition in crystals and disordered systems
with PT symmetry. Furthermore, we have also uncovered the topological Euler phases in
quasicrystals and amorphous lattices without any spatial symmetry. Our work greatly extends
the concept of real-space topological markers to topological states in real Hilbert space and
would hopefully inspire future exploration in more topological characteristic classes in real
space.

Despite the progress made, several critical issues remain open for further investigation.
Given the multi-gap nature of the Euler number, it is essential to develop real-space Wannier
functions that can effectively disentangle the internal space from the full system during nu-
merical calculations. Rigorously defining the Pfaffian marker in real space without reference
to translationally invariant cases remains a challenging task. While the main text presents sev-
eral examples, it does not yet explore a purely amorphous case that operates independently of
any translationally invariant lattices. Additionally, a comprehensive mathematical framework
has yet to be fully developed. We hope this work inspires future research efforts aimed at
applying tools from non-commutative geometry to address the intricate challenges associated
with the Euler number.
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A Orientability of our models

In this section, we examine the orientability of our models. The Euler class e(F) is defined as

e(F) = 1
2π

Pf(F) , (A.1)
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where Pf denotes the Pfaffian acting on the curvature matrix F . Under the basis transforma-
tion O, the Euler class acquires an additional factor det(O), as shown below:

e(F)→ e(O−1FO)

=
1

2π
Pf(O−1FO)

=
1

2π
Pf(OTFO) , (A.2)

where the last equality originates from the orthonormality property of the real wave functions,
which means O−1 = OT . It’s worth noting that for a 2n× 2n skew-symmetric matrix A and an
arbitrary 2n× 2n matrix B, the Pfaffian satisfies the identity Pf(BT AB) = Pf(A)det(B). There-
fore, since the curvature matrix F is skew-symmetric, we can simplify the expression further
as:

e(F)→ 1
2π

Pf(F)det(O)

= e(F)det(O) . (A.3)

For the Euler class e(F) to be a characteristic class, it must remain invariant under any ba-
sis transformation. Therefore, a certain transformation matrix O with det(O) = 1 is essential.
Since O is the transformation matrix between orthonormal basis, it naturally satisfies the con-
dition |det(O)|=1. Thus, system orientability is necessary to prevent det(O) = −1 and ensure
the invariance of the Euler class.

In fact, the orientability of the Brillouin zone is determined by the first Stiefel-Whitney
class w1, which is the total Berry phase of the occupied states over the Brillouin zone [45].
Because the Chern number of a time-reversal symmetric system is always trivial, a complex
smooth gauge can be found in this system. Given a Berry connection A that satisfies F = dA
in this gauge, we have

w1|C =
1
π

∮

C
dk · TrA(k) . (A.4)

Therefore, our models are easily confirmed to be orientable with a trivial w1 = 0, allowing us
to proceed with our discussion on the Euler class and the second Stiefel-Whitney class.

B Derivation of Eq. (4) in the main text

In this section, we derive Eq. (4) in the main text, beginning with the relation between the
Chern and Euler class in a two-dimensional system. Specifically, there is a correspondence
between the first Chern class c1 and the Euler class e:

c1(FC) = e(F) , (B.1)

where FC is the curvature over a complex number field, isomorphic to F over a real number
field through an isomorphism C∼= R⊕R. In particular, for a system with two occupied bands
(Nocc = 2), we can construct a complex Bloch state

|u〉=
1
p

2
(|u1〉+ i|u2〉) , (B.2)

where |un〉 (n= 1,2) represents the cell-periodic part of the n-th occupied Bloch state |ψn(k))〉.
Note that for brevity, we omit the explicit dependence of k in this section for |un(k)〉, |u(k)〉,
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and the projection operator P̃(k). Based on the complex Bloch states, the first Chern class is
given by

c1(FC) =
1

2πi
FC =

1
2πi
〈∂[kx

u|∂ky ]u〉dkx ∧ dky . (B.3)

This allows us to derive the expression of the Euler class from the first Chern class.
To begin with, we can express the first Chern number as a k-space integral:

c1 =
1

2πi

∫

BZ
d2kTr(P̃∂[kx

P̃∂ky ] P̃) , (B.4)

where the integral is over the Brillouin zone (BZ) and P̃ = |u〉〈u| is the projection operator,
with its real and imaginary parts given by:

ReP̃ =
1
2
(|u1〉〈u1|+ |u2〉〈u2|) , (B.5)

and

ImP̃ =
1
2
(|u2〉〈u1| − |u1〉〈u2|) . (B.6)

Using Eq. (B.2), we can rewrite Eq. (B.4) as

c1 =
1

2πi

∫

BZ
d2k〈u|[∂kx

P̃,∂ky
P̃]|u〉 , (B.7)

and then the Euler number is given by

e =
1

4πi

∫

BZ
d2k〈u1|[∂kx

P̃,∂ky
P̃]|u1〉+

1
4πi

∫

BZ
d2k〈u2|[∂kx

P̃,∂ky
P̃]|u2〉

+
1

4π

∫

BZ
d2k〈u1|[∂kx

P̃,∂ky
P̃]|u2〉 −

1
4π

∫

BZ
d2k〈u2|[∂kx

P̃,∂ky
P̃]|u1〉 . (B.8)

To keep the Euler number e real, we can simplify the operators [∂kx
P̃,∂ky

P̃] in Eq. (B.8) to

i[∂kx
ReP̃,∂ky

ImP̃] + i[∂kx
ImP̃,∂ky

ReP̃] , (B.9)

for the first two terms and

[∂kx
ReP̃,∂ky

ReP̃]− [∂kx
ImP̃,∂ky

ImP̃] , (B.10)

for the other terms. Since {|un〉} are orthonormal, we have the following identities:

〈un|um〉= δn,m , (B.11)

and

〈un|∂ki
un〉=

1
2
∂ki
(〈un|un〉) = 0 . (B.12)

Therefore, we have






































∂ki
ReP̃|u1〉=

1
2
(|∂ki

u1〉+ |u2〉〈u1|∂ki
u2〉) ,

∂ki
ReP̃|u2〉=

1
2
(|∂ki

u2〉 − |u1〉〈u1|∂ki
u2〉) ,

∂ki
ImP̃|u1〉=

1
2
(|∂ki

u2〉 − |u1〉〈u1|∂ki
u2〉) = ∂ki

ReP̃|u2〉 ,

∂ki
ImP̃|u2〉= −

1
2
(|∂ki

u1〉+ |u2〉〈u1|∂ki
u2〉) = −∂ki

ReP̃|u1〉 ,

(B.13)
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with ki denoting kx or ky . Since ReP̃ is a Hermitian operator and ImP̃ is an anti-Hermitian
operator, we have:

〈un|∂ki
ReP̃ = (∂ki

ReP̃|un〉)† , (B.14)

and

−〈un|∂ki
ImP̃ = (∂ki

ImP̃|un〉)† , (B.15)

where the additional minus sign in Eq. (B.15) can be canceled by the minus sign in the com-
mutators in Eq. (B.9) and Eq. (B.10).

Therefore, the first term in Eq. (B.8) is

1
4πi

∫

BZ
d2k〈u1|[∂kx

P̃,∂ky
P̃]|u1〉=

1
4π

∫

BZ
d2k〈u1|([∂kx

ReP̃,∂ky
ImP̃] + [∂kx

ImP̃,∂ky
ReP̃])|u1〉

=
1

2π

∫

BZ
d2k(〈u1|∂kx

ReP̃∂ky
ImP̃|u1〉 − 〈u1|∂ky

ReP̃∂kx
ImP̃|u1〉)

=
1

2π

∫

BZ
d2k(〈u1|∂kx

ReP̃∂ky
ReP̃|u2〉 − 〈u1|∂ky

ReP̃∂kx
ReP̃|u2〉)

=
1

2π

∫

BZ
d2k〈u1|[∂kx

ReP̃,∂ky
ReP̃]|u2〉 . (B.16)

The analysis of the second term in Eq. (B.8) is similar, with the only difference being an addi-
tional minus sign from Eq. (B.15) as

1
4πi

∫

BZ
d2k〈u2|[∂kx

P̃,∂ky
P̃]|u2〉= −

1
2π

∫

BZ
d2k〈u2|∂[kx

ReP̃∂ky ]ReP̃|u1〉

=
1

2π

∫

BZ
d2k〈u1|[∂kx

ReP̃,∂ky
ReP̃]|u2〉 , (B.17)

where the last equality holds due to the Hermiticity of ReP̃ and the reality of |un〉. Now, let’s
consider the third term in Eq. (B.8), which is

1
4π

∫

BZ
d2k〈u1|[∂kx

P̃,∂ky
P̃]|u2〉

=
1

4π

∫

BZ
d2k(〈u1|[∂kx

ReP̃,∂ky
ReP̃]|u2〉 − 〈u1|[∂kx

ImP̃,∂ky
ImP̃]|u2〉)

=
1

4π

∫

BZ
d2k(〈u1|[∂kx

ReP̃,∂ky
ReP̃]|u2〉 − 〈u2|[∂kx

ReP̃,∂ky
ReP̃]|u1〉)

=
1

2π

∫

BZ
d2k〈u1|[∂kx

ReP̃,∂ky
ReP̃]|u2〉 . (B.18)

Likewise, the final term in Eq. (B.8) can be expressed as:

1
2π

∫

BZ
d2k〈u1|[∂kx

ReP̃,∂ky
ReP̃]|u2〉 , (B.19)

due to the anti-symmetry of |u1〉 and |u2〉.
Therefore, Eq. (B.8) is now simplified to

e =
2
π

∫

BZ
d2k〈u1|[∂kx

ReP̃,∂ky
ReP̃]|u2〉 . (B.20)
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The relevant operator in the above expression is ReP̃. By introducing the real projector

P̂ :=
occ
∑

n

|un〉〈un| , (B.21)

we obtain the following identities:

P̂ = 2ReP̃ , (B.22)

and

P̂|un〉= |un〉 . (B.23)

Thus, the formula Eq. (B.20) of the Euler number can be further expressed as:

e =
1

2π

∫

BZ
d2k〈u1|P̂[∂kx

P̂,∂ky
P̂]|u2〉 . (B.24)

Due to the symmetry of kx ,y and |u1,2〉, the final form of the Euler number in k-space is

e =
1

2π

∫

BZ
d2kPfocc(P̂[∂kx

P̂,∂ky
P̂]) , (B.25)

which is nothing but the Eq. (4) in the main text. Here Pfocc denotes the Pfaffian taken over
the occupied subspace. To be specific, in the eigenbasis, a general matrix M can be represented
as a block matrix

M=

�

M1 M2
M3 Mocc

�

, (B.26)

where Mocc is the submatrix of M constructed by occupied eigenbasis. Therefore, Pfocc, which
is the Pfaffian taken over the occupied subspace, is defined as

Pfocc(M) := Pf(Mocc) . (B.27)

C Derivation of Eq. (6) in the main text

In this section, we derive Eq. (6) in the main text, demonstrating its equivalence to Eq. (4) in
the main text under translational invariance.

Before proceeding, we first introduce some basic basis for the operators used in the deriva-
tion. Firstly, we use a k-mesh form instead of the continuous form of the system. In real space,
the Hamiltonian Ĥ is constructed under a certain initial local basis {|αr 〉}with |αr 〉= |r 〉⊗|α〉,
i.e.,

Ĥ =
∑

α′r ′,α′′r ′′
|α′r ′〉〈α′′r ′′|Hα′r ′,α′′r ′′ , (C.1)

where α and r denote the internal and coordinate index, respectively. In k space, it is con-
venient to use the Bloch basis {|ψn(k)〉} satisfying |ψn(k)〉 = |k〉 ⊗ |un(k)〉 where {|k〉} is the
plane wave basis with 〈r |k〉 = 1p

A
e−ik·r and A = Lx L y being the area of the system. We can

thus construct the k-space Hamiltonian Ĥ(k) as

Ĥ(k) = 〈k|Ĥ|k〉

=
∑

α′,α′′
|α′(k)〉〈α′′(k)|Hα′,α′′(k)

=
∑

n

|un(k)〉〈un(k)|En(k) . (C.2)
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Here, the second equality is established due to the translational invariance of the Hamiltonian.
Additionally, the cell-periodic Bloch basis {|un(k)〉} is the eigenbasis of Ĥ(k).

Then, we can define the projection operator acting on different basis sets as [85]

P̂ =
occ
∑

nk

|ψn(k)〉〈ψn(k)|

=
∑

k

|k〉〈k|
occ
∑

n

|un(k)〉〈un(k)|

=
∑

k

|k〉〈k|
∑

α′,α′′
|α′(k)〉〈α′′(k)|Pα′,α′′(k)

=
∑

k,α′,α′′
|α′k〉〈α′′k|Pk,α′,α′′

=
∑

α′r ′,α′′r ′′
|α′r ′〉〈α′′r ′′|Pα′r ′,α′′r ′′ . (C.3)

So the k-space projector P̂(k) =
∑occ

n |un(k)〉〈un(k)| can be explicitly represented as a matrix
P(k) under basis {|α(k)〉}. For convenience, we can create a new projection matrix Pk , which
is a quasi-diagonal matrix with P(k) as diagonal blocks. In fact, Pk represents P̂ under basis
set {|αk〉} and is related to P under basis set {|αr 〉} via a unitary basis transformation. Specif-
ically, we can construct a transformation matrix Uk,r with the entries as 〈r |k〉 to denote this
basis transformation. Notice that Uk,r is indeed a unitary matrix in the thermodynamic limit
A→∞. Therefore, we can obtain the r -space projection matrix P under the local basis by
transforming Pk using the the transformation:

Pk = Uk,r PU†
k,r . (C.4)

Now we start to derive Eq. (6). Since the integral is now discretized as

A
(2π)2

∫

BZ
d2k →
∑

k

, (C.5)

we can define its equivalent operation Trk acting on the block index k of Pk . Therefore, the
k-space Euler number can be expressed in the matrix form as

e =
2π
A

TrkPfocc(Pk[∂kx
Pk ,∂ky

Pk]) . (C.6)

In a translational invariant system, the k space and the coordinate space can be connected
via the Fourier transformation. Therefore, we have

∂kx
P̂(k)→

1
δkx
(Pk+δk − Pk)

=
1
δkx
(Uk+δk,r PU†

k+δk,r − Uk,r PU†
k,r )

= Uk,r [
1
δkx
(Uδk,r PU†

δk,r − P)]U†
k,r , (C.7)

where δk = (δkx , 0). If we set δkx =
2π
Lx

, then Uδk,r is just the unitary position matrix

U = ei 2π
Lx

X . Similarly, the relation applies to the other unitary position matrix V = e
i 2π

L y
Y

.
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Based on these quantities defined in r space, the Euler number in Eq. (C.6) can be refor-
mulated as

e =
1

2π
Pfocc

∑

k

Uk,r P[U PU†, V PV †]U†
k,r

=
1

2π
PfoccTr(Uk,r P[U PU†, V PV †]U†

k,r )

=
1

2π
PfoccTr(P[U PU†, V PV †]) ,

(C.8)

where the last equation holds because of the invariant property of the trace under any unitary
transformation. Since the trace and Pfaffian operations act on different individual subspaces,
they are commutative as operators on the Wannier basis with Nocc = 2, which proves exactly
the Eq. (6).

In principle, when δkx
is small enough, one can perform the Taylor expansion up to the

first order,
1
δkx
(Uδk,r PU†

δk,r − P)≈ i[X , P] , (C.9)

to the right side of Eq. (C.7). However, for a PT -symmetric system with real eigenbasis
{|un(k)〉}, both the projection operator Pk and its derivative ∂kx

Pk are supposed to be real-
valued. The first-order expansion term i[X , P], which deviates from the real field R, should
cancel with some other first-order terms (and higher-order terms may contribute significantly)
to ensure the real-valued final expression. Therefore, the additional real-value limitation from
the PT symmetry necessitates the use of the unitary position matrix U instead of the usual
position matrix X in our final expression of the r -space Euler number. This is different from
the case of the Chern number where the first-order expansion is applicable to yield a simplified
r -space formula in Ref. [11,14].

D Numerical implementation of the real-space Euler number

In this section, we demonstrate the practical calculation of Eq. (6) in the main text. We begin
by selecting a suitable basis for expressing the operators in the equation. Once this basis is
established, we can straightforwardly apply trace and Pfaffian operations.

We initially work with a set of local coordinate space bases, from which we construct
diagonal matrices representing the unitary position operators Û and V̂ . The projector P̂ is
defined as

1occ =

�

0 0
0 1

�

, (D.1)

in the eigenbasis of the Hamiltonian, with eigenvalues arranged in descending order. Here, 0
and 1 represent the null matrix and identity matrix, respectively.

To proceed, we diagonalize the Hamiltonian to obtain the eigenvalues and eigenvectors in
the local basis. This allows us to create a unitary transformation matrix from the local basis to
the eigenbasis of the system. In other words, we have

H = ΠDΠ−1 , (D.2)

where D is a diagonal matrix with the eigenvalues in descending order, and the columns of Π
are the corresponding eigenvectors. Subsequently, we determine the explicit expression of the
projector P̂ through this unitary transformation of the basis, as follows:

P = Π1occΠ
−1 . (D.3)
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All operators are now represented in a unified local basis, simplifying the matrix calcula-
tions. To carry out the trace and Pfaffian operations, a basis transformation from the initial lo-
cal basis to a composite Wannier basis is required. This Wannier basis can be constructed from
the eigenbasis by minimizing the Marzari-Vanderbilt localization functional [84,85]. Once we
have the transformation matrix Π from the eigenbasis to the local basis and S from the eigen-
basis to the composite Wannier basis, we can obtain the matrix form of the expression within
the brackets in Eq. (C.8):

M = SΠ−1P[U PU†, V PV †]ΠS−1 . (D.4)

In this basis, the matrix entries are denoted as Mn′n′′,r ′r ′′ . Then the trace operation simply
involves summing over the coordinate index r , expressed as

Tr :=
∑

r ′,r ′′
δr ′,r ′′ . (D.5)

Finally, the r -space Euler number can be obtained by performing the Pfaffian over occupied
space as1

Pfocc(TrM) = Pf(TrM)occ . (D.6)

The final step of basis transformation is crucial for accurately calculating the r -space Euler
number. This transformation is necessary because only on the Wannier basis can we effec-
tively separate the total space into internal and coordinate spaces. When using a set of local
basis functions with high localization properties, such as atomic orbitals, the hopping terms
of the Hamiltonian naturally mix the coordinate and internal spaces. As a result, it becomes
challenging to distinguish the occupied subspace within the internal space, making it difficult
to perform the Pfaffian operation using this basis. On the other hand, the eigenbasis of the
Hamiltonian is not suitable either. Although it allows for the easy identification of the occupied
subspace, this highly delocalized basis presents difficulties in aligning it in a meaningful way
to perform the trace and Pfaffian operations correctly.

E The distinction between the real-space Chern and Euler num-
bers

In this section, we give some remarks on the distinction between the real-space Chern and
Euler numbers. First, the analysis we’ve conducted can be directly applied to the Chern class,
and the resultant r -space expression is nothing but the Bott index,

Bott(Û , V̂ ) =
1

2π
ImTr log(Û V̂ Û−1V̂−1) , (E.1)

with Û = P̂ exp(2πiX̂/Lx)P̂ and V̂ = P̂ exp(2πiŶ /L y)P̂, which measures the commutativity
of the position operators and offers an identical topological classification as the Chern number
[14, 15]. The Bott index can be further simplified by applying the Taylor expansion of the
unitary position operator up to the first order, which yields the conventional r -space formula
of the Chern number in Ref. [11,14]

c1 =
4π
L2

ImTr′(P̂[X̂ , P̂][Ŷ , P̂]) , (E.2)

where X̂ , Ŷ are the usual position operators and Tr′ is the usual trace operation acting on the
whole space, distinguished from the aforementioned Tr acting on coordinate subspace only.

1The package code is available at https://github.com/li-dexin-phy/realeulernum.
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However, there are significant differences between the r -space formulation of the Euler
defined in Eq. (6) and Chern number. This distinction arises because the Chern and Euler
classes are defined by distinct invariant polynomials of the curvature [82]. When calculating
the Chern number in real space, the trace operation is applied to both the internal and coordi-
nate spaces, resulting in a simplified expression with only a single trace operation. In contrast,
when calculating the r -space Euler number, it becomes essential to distinguish between the
coordinate space and the internal space, which requires trace and Pfaffian operations, respec-
tively.

The discussion is more clear in the frame of matrix form. For any operator of the form

M =

�

0 0
0 Mocc

�

with 0 being the null matrix, the relation Trocc M := TrMocc = Tr

�

0 0
0 Mocc

�

always holds. This is because the trace operation is just to sum over the diagonal of the matrix
M , which means that the trace over a specific matrix is equal to the trace over the direct sum
of this matrix and any null matrix. Therefore, we can safely consider the whole space without
further restriction in the occupied space and the result remains the same. However, the Pfaf-

fian does not possess this property, i.e., Pf(

�

0 0
0 Mocc

�

) = 0. What’s more, the ordering of the

basis does not matter for the trace since the sum operation is commutative, while the order-
ing is crucial in the definition of the Pfaffian. Therefore, although a single Tr′ is enough for
calculating the r -space Chern number, it is important to find such a basis that can distinguish
the internal space from the coordinate space.

This distinction is already evident in the k-space scenario. In a periodic lattice, the Bloch
states {|ψn(k)〉} can be transformed into Wannier states, which inherently distinguish the
coordinate space from the internal space. Specifically, in such a translational invariant system,
the Hamiltonian commutes with the translation operator, indicating a common eigenvalue for
both operators. Since the energy index n and k denoting quasi-momentum are independent
of each other, it is straightforward to change the basis of k via the Fourier transformation
to r without mixture from n and derive the Wannier basis. However, if the system lacks
translational invariance, the usual Fourier transformation from Bloch states fails to generate
Wannier states. Consequently, it becomes crucial to consider composite Wannier functions
defined in real space via a unitary transformation from energy eigenstates, without imposing
further restrictions.

Secondly, It is worth noting that there is a gauge freedom in the Wannier functions and the
determination of the exponentially localized Wannier functions is significant [84]. The exis-
tence of the nontrivial Euler number prohibits finding such a basis of Wannier functions, which
means that in a space-time inversion symmetric two-dimensional system, the exponentially lo-
calized Wannier functions can not be constructed in a phase with nontrivial Euler number [49].
Nevertheless, this is not an obstacle to search for the required composite Wannier functions
that are not exponentially localized [88].

F Averaging the local Euler marker in finite systems with OBC

In finite systems with OBC, a striking contrast emerges between the local Chern marker and the
local Euler marker. While averaging the local Chern marker over such systems yields vanishing
results, the same averaging process for the local Euler marker results in non-vanishing values.
This disparity highlights a fundamental distinction between the Chern number and the Euler
number when calculated in finite systems under OBC, as elaborated below.
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To calculate the r -space Chern number c1 in Eq. (E.2), we employ standard position op-
erators X̂ and Ŷ to construct the operator P̂[X̂ , P̂][Ŷ , P̂]. Notably, the imaginary part of this
operator is directly proportional to c1 when subjected to a trace operation [11,14]:

c1∝ ImTr′(P̂[X̂ , P̂][Ŷ , P̂]) . (F.1)

Utilizing the transpose invariance and the cyclic property of the trace operation and consider-
ing the symmetry of operators X̂ and Ŷ , we can rigorously demonstrate the vanishing of the
r -space Chern number under OBC [14]:

c1∝ImTr′(P̂[X̂ , P̂][Ŷ , P̂])

=ImTr′(P̂(X̂ P̂ − P̂ X̂ )(Ŷ P̂ − P̂ Ŷ ))

=ImTr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ P̂2Ŷ − P̂2X̂ Ŷ P̂ + P̂2X̂ P̂ Ŷ )

=ImTr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ P̂ Ŷ − P̂ X̂ Ŷ P̂ + P̂ X̂ P̂ Ŷ )

=ImTr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ Ŷ P̂) , (F.2)

where we utilize the property of the projection operator, P̂2 = P̂. Note that P̂, X̂ and Ŷ are all
Hermitian, we can further simplify c1 by expending the imaginary part as the subtract of the
operator with its conjugate,

c1∝
1
2i
(Tr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ Ŷ P̂)− Tr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ Ŷ P̂)∗)

=
1
2i
(Tr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ Ŷ P̂)− Tr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ Ŷ P̂)†)

=
1
2i
(Tr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ Ŷ P̂)− Tr′(P̂ Ŷ P̂ X̂ P̂ − P̂ Ŷ X̂ P̂)) . (F.3)

This relationship is established through the transpose invariance of the trace operation, i.e.,

Tr′Â= Tr′ÂT , (F.4)

which leads to

ImTr′Â=
1
2i
(Tr′Â− Tr′Â∗) =

1
2i
(Tr′Â− Tr′Â†) . (F.5)

Then, using the well-known cyclic property of trace operation, i.e., for general matrices Â and
B̂, it is known that

Tr′(ÂB̂) = Tr′(B̂Â) , (F.6)

c1 can be further simplified as

c1∝
1
2i
(Tr′(P̂ X̂ P̂ Ŷ P̂)− Tr′(P̂ X̂ Ŷ P̂)− Tr′(P̂ Ŷ P̂ X̂ P̂) + Tr′(P̂ Ŷ X̂ P̂))

=
1
2i
(Tr′(X̂ P̂ Ŷ P̂2)− Tr′(X̂ P̂2Ŷ P̂)− Tr′(X̂ Ŷ P̂2) + Tr′(Ŷ X̂ P̂2))

=
1
2i
(Tr′(X̂ P̂ Ŷ P̂)− Tr′(X̂ P̂ Ŷ P̂)− Tr′(X̂ Ŷ P̂) + Tr′(Ŷ X̂ P̂)

=−
1
2i

Tr′(X̂ Ŷ P̂ − Ŷ X̂ P̂)

=−
1
2i

Tr′([X̂ , Ŷ ]P̂)

=0 , (F.7)

where we have used the the symmetry of operators X̂ and Ŷ

[X̂ , Ŷ ] = 0 . (F.8)
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In summary, the vanishing of the r -space Chern number under OBC arises from a cancel-
lation effect, driven by three key factors:

• Transpose invariance of the trace operation: Tr′Â= Tr′ÂT .

• Cyclic property of the trace operation: Tr′(ÂB̂) = Tr′(B̂Â) .

• Symmetry of standard position operators X̂ and Ŷ : [X̂ , Ŷ ] = 0 .

In contrast, calculating the r -space Euler number doesn’t encounter a similar cancellation
effect, primarily due to the distinct properties of the trace operation and the Pfaffian. First,
the transpose invariance, which holds for the trace operation, does not apply to the Pfaffian.
For a general skew-symmetric matrices Â, we have

PfÂT = Pf(−Â) = ±PfÂ , (F.9)

with the additional sign depending on Nocc. Second, unlike the trace operation, the Pfaffian
lacks the necessary cyclic properties for straightforward cancellation,

Pf(ÂB̂) ̸= Pf(B̂Â) . (F.10)

To be more specific, we now defined a r -space quantity ζ with trace operation only as

ζ=
1

2π
Tr′(P̂[P̂U , P̂V ])

=
1

2π
Tr′(P̂ P̂U P̂V − P̂ P̂V P̂U) , (F.11)

where P̂U = Û P̂ Û† and P̂V = V̂ P̂ V̂ † are defined analogous to the expression of r -space Euler
number.

Since the projector P̂ is Hermitian and Û/V̂ are both unitary operators, it is easy to prove
that both operators are Hermitian operators. In addition, we further express the unitary posi-
tion operators Û† and V̂ † as

Û† = Û−1 = exp(2πi(−X̂ )/Lx) = Î Û Î , and

V̂ † = V̂−1 = exp(2πi(−Ŷ )/LY ) = Î V̂ Î , (F.12)

where Î is the inversion operator. And in PT -symmetric system, the projector P̂ is invariant
under such inversion.

Since both Hamiltonian Ĥ and projector P̂ satisfy the reality condition, the operators share
the transpose invariant property as

P̂T = P̂∗† = P̂† = P̂ ,

Û T = Û ,

V̂ T = V̂ ,

P̂T
U = Û† P̂ Û , and

P̂T
V = V̂ † P̂ V̂ . (F.13)

Now we can obtain the equivalent form of the first term in Eq. (F.11) as

1
2π

Tr′(P̂ P̂U P̂V ) =
1

2π
Tr′(P̂ P̂U P̂V )

T =
1

2π
Tr′(P̂T

V P̂T
U P̂) =

1
2π

Tr′((V̂ P̂ V̂ †)T P̂T
U P̂)

=
1

2π
Tr′(V̂ † P̂ V̂ P̂T

U P̂) =
1

2π
Tr′( Î V̂ Î P̂ Î V̂ † Î P̂T

U P̂) =
1

2π
Tr′( Î P̂V Î P̂T

U P̂) =
1

2π
Tr′( Î P̂V P̂U P̂ Î)

=
1

2π
Tr′(P̂ P̂V P̂U) , (F.14)
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which is just the second term of Eq. (F.11). Therefore, we prove that ζ is trivial. Again, we
notice that Eq. (F.4) and Eq. (F.5) are used in the first and the last equality respectively.

However, in the case of r -space Euler number e, as we have already discussed via Eq. (F.9)
and Eq. (F.10), such cancellation doesn’t exist. Hence, it becomes possible to calculate the
r -space Euler number under OBC.

G Brief discussion of the reality condition in PT -broken systems

Although we focus on the PT -symmetric system in the main text, it is not a constraint on
calculating the r -space Euler number. In k space, since the time reversal T can be consid-
ered a conjugate operator combined with a unitary matrix and a sign flip of k, a T -invariant
Hamiltonian H(k) satisfies H(k) = T̂ H(k)T̂−1 = H⋆(−k) under a proper basis obtained from
Takagi decomposition. Therefore, only in a few time-reversal invariant momenta with k = −k
can we derive a real Hamiltonian. To keep the Hamiltonian real in the whole k-space, an-
other operator such as P and C2z that can reverse the sign of k is essential. However, in r
space, the time reversal T no longer acts on the sign of k. This means that the symmetry
requirement for the reality condition is only the time reversal T . Therefore, in a finite system
with OBC lacking spatial symmetry, we can again obtain the necessary basis from the initial
local basis via a transformation matrix given by the Takagi decomposition. Under the new
basis, the Hamiltonian is real-valued. By solving the eigenvalue problem of the Hamiltonian
in such basis, the transformation matrix constructed by all eigenfunctions of the Hamiltonian
is real-valued as well. This is just the reality condition necessitated for the definition of the
Euler class. Consequently, one can apply the real-space formula of the Euler number to any
nonmagnetic aperiodic systems with open boundary, such as quasicrystals, and amorphous
materials without any spatial symmetries.

H Details of the model and method

H.1 Model

All the calculations are performed based on the tight-binding Hamiltonian in Eq. (8). The
hopping integral tµν(ri j) follows the Slater-Koster parameterization which depends on the
orbital type and the directional cosines of the intersite vector ri j = ri− r j . To be more specific,
the explicit expression of Slater-Koster parameterized hopping integral are listed:

tpx ,px
= l2Vppσ + (1− l2)Vppπ ,

tpy ,py
= m2Vppσ + (1−m2)Vppπ ,

tpx ,py
= lm(Vppσ − Vppπ) ,

tdx2−y2 ,dx2−y2 =
3
4

Vddσ(l
2 −m2)2 + (l2 +m2 − (l2 −m2)2)Vddπ +

1
4
(l2 −m2)2Vddδ ,

tdx y ,dx y
= l2m2(3Vddσ − 4Vddπ + Vddδ) + Vddπ ,

tdx y ,dx2−y2 =
3
2

lm(l2 −m2)Vddσ + 2lm(m2 − l2)Vddπ +
1
2

lm(l2 −m2)Vddδ ,

tpx ,dx2−y2 =
p

3
2

l(l2 −m2)Vpdσ + l(1− l2 +m2)Vpdπ ,

tpy ,dx2−y2 =
p

3
2

m(l2 −m2)Vpdσ −m(1+ l2 −m2)Vpdπ ,
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tpx ,dx y
=
p

3l2mVpdσ + (1− 2l2)mVpdπ ,

tpy ,dx y
=
p

3lm2Vpdσ + (1− 2m2)lVpdπ ,

tpy ,px
= tpx ,py

,

tdx2−y2 ,dx y
= tdx y ,dx2−y2 ,

tdx2−y2 ,px
= −tpx ,dx2−y2 ,

tdx2−y2 ,py
= −tpy ,dx2−y2 ,

tdx y ,px
= −tpx ,dx y

,

tdx y ,py
= −tpy ,dx y

, (H.1)

where r̂i j = (l, m) is the unit direction vector. The hopping strength is chosen to have an
inverse-square decay with the distance as tµν(ri j)∝ |ri j|−2. We adopt the equilibrium inter-
atomic bond length as the unit length a of the systems, which is the lattice constant for the
perfect square lattice and the side length of basic building blocks (square and rhombus) for
the Ammann-Beenker-tiling quasicrystals. In numerical calculations, we set the unit length of
the system a = 1 for simplicity.

We consider a 2D square lattice with a band inversion at the Γ -point in k-space between
degenerate px ,y and dx2−y2,x y orbitals, as shown in Fig. 1(a). In real space, we investigate
L×L supercells of the square lattice with periodic boundary condition (PBC) or open boundary
condition (OBC). For convenience, we choose the lattice size L to be an odd integer, which
allows the supercell to possess an inversion center located at its central site.

H.2 Disorder of on-site energy

The tight-binding Hamiltonian with the onsite disorder is under our consideration as well.
Therefore, we introduce a disorder term to the Hamiltonian H as

H({λi}) = H +
∑

iµ

λic
†
iµciµ , (H.2)

where {λi} is a set of random on-site energy added to one-half sites of the whole sample. Here
{λi} distribute uniformly within the interval of [−W, W ] with W being the disorder strength.
To preserve the inversion symmetry, the on-site energies of the rest sites of the sample are
determined by inversion. Namely, each pair of sites connected by the inversion symmetry
shares the same on-site energy. The calculations are performed in samples with lattice size
L = 31. Because of the random character, we average the r -space Euler number over 100
sample configurations for every W . A higher accuracy can be achieved by adopting samples
with larger sizes and doing the statistical average for more samples.

H.3 Structural disorder

In order to further investigate the applicability of the real-space formula of the Euler number,
we study the effect of in-plane structural disorder in finite samples which lack the translational
periodicity and all other spatial symmetries [101–103]. To illustrate this effect, we assign
random atomic displacement δ = (d cosθ , d sinθ ) away from its equilibrium position for each
atom of the aforementioned 2D perfect square lattice, as depicted in Fig. S7(a). Here, θ is a
random azimuth angle uniformly distributed in the interval [0,2π). The amplitude d of atomic
displacements are determined by Gaussian distributions with standard deviation σ = 0.2. For
the special structural disorder case but preserving the inversion symmetry, one can assign the
random atomic displacement only to the first half of the lattice, and determine the locations
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of atoms in the other half of the lattice by the inversion symmetry. As the structure becomes
disordered, the hopping integrals in Eq. (8) also adjust according to local structural distortions.

H.4 Twisted boundary condition for quasicrystals

For an octagonal sample of the Ammann-Beenker-tiling quasicrystal, we calculate the energy
spectrum using both OBC and the twisted boundary condition (TBC). To apply TBC, we artifi-
cially glued the opposite edges of an octagonal polygon. Specifically, for an octagonal polygon
with the edge width of Led ge, we label the edges as Ep (p = 1,2, · · ·8) anticlockwise. For the
edge Ep, we define a translation operator, which is perpendicular to the edge and translates
the octagon by a distance of 2Led ge. By applying the translation operator to the finite octag-
onal quasicrystal so that edge Ep of the sample connects with the opposite edge E(p+4) mod 8
of the translated image sample. Then we consider the hopping cross the edge between site i
in the octagonal sample and site j̃ in the image sample. These extra hoppings also follow the
Slater-Koster parameterization and have inverse-square decay with the distance (i.e., |ri j̃|

−2).
Therefore, in addition to the intersite hoppings between sites inside the sample, we also con-
sider extra hoppings between sites near opposite edges. Importantly, by applying TBC, we not
only get rid of the effect of the open boundary but also restore the 8-fold symmetry of the
quasicrystal.

H.5 Construction of composite Wannier function

Since the real-space Euler number obtained in Eq. (6) can only be calculated in Wannier basis,
a crucial step in the numerical calculation is to construct the Wannier function in systems even
without the spatial translational symmetry.

One possible way to construct the real-space Wannier function is the functional optimiza-
tion method. The eigenfunctions φm associated with the energy index m can be obtained by
solving the eigenvalue problem of the Hamiltonian H. Then the required composite Wannier
functions Wn are constructed from φm as

Wn =
∑

m

Snmφm , (H.3)

via the unitary transformation S that can be considered as the combination of a phase term
and a band matrix [93], which can be numerically obtained by minimizing the Wannier spread
functional

Ω=
∑

n

�

〈Wn|r2|Wn〉 − 〈Wn|r|Wn〉2
�

. (H.4)

Once the Wannier functions are constructed, the internal and coordinate spaces can be eas-
ily separated and the real-space Euler number can be calculated straightforwardly using the
formula given in Eq. (6).

In the functional optimization process, a key factor is the selection of the initialization. In
our case, this is the initial value of Wn. In principle, the initial Wannier function can be set
arbitrarily. However, to obtain a more efficient and convergent result, the initial function can
be chosen as the Wannier function obtained in a translational invariant system. To be more
specific, for disordered lattices, the Wannier function constructed through the Fourier trans-
formation of the Block functions obtained in perfect lattice is a great initial function. However,
it might be hard to find such a k-space analog in quasicrystal and even totally amorphous sys-
tems. In our work, the initial Wannier function of the quasicrystal is obtained from that of a
16×73 rectangle lattice in Fig. 2.

As for the fully non-periodic systems where the gauge optimization fails to work, other
methods such as the Iterated projected position (IPP) algorithm are supposed to be considered
without the initialization requirement [104].
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(a) (b) (c) (d)

Figure S1: The evolution of band structure around the phase transition in Fig. 1(b).
Orbital-resolved band structures near Γ point for the square lattice based on Eq. (8)
with different on-site energy difference ∆. (a) ∆ = 6.76 eV (region I, e = 1). (b)
∆=∆1 = 6.86 eV (the critical point between region I and II). (c) ∆=∆2 = 7.10 eV
(the critical point between region II and III). (d) ∆= 7.20 eV (region III, e = 0).

Another issue to be clarified is the ordering of occupied states within a certain cell r. It can
be determined by the corresponding diagonal element of the Hamiltonian on the composite
Wannier basis. We also noticed that the local Euler marker is attached to only an additional
minus sign when this ordering is inverted. Therefore, more conveniently, the sign of local
Euler markers can be set to satisfy the continuity of these markers.

H.6 Numerical calculation of the k-space Euler number

Generally speaking, non-accidental degenerate points (nodes) between the nontrivial occupied
bands are common in k-space [47]. To numerically calculate the k-space Euler number in this
context, we employ the following expression:

|e|=
∫

D
e(F)−
∫

∂D
〈u1|∇|u2〉 ·

dk
2π

, (H.5)

where e(F) = (1/π)〈∂[kx
u1(k)|∂ky ]u2(k)〉dkx ∧ dky , and D represents the region in the Bril-

louin zone (BZ) containing those nodes.

I More numerical results

I.1 Band structures around the topological phase transition in Fig. 1(b)

Here we discuss three regions presented in Fig. 1(b) in the main text in detail. These regions
are divided by two critical points∆1 = 6.86 and∆2 = 7.10 eV. As illustrated in Fig. S1(a), there
is initially a double band inversions occurring around Γ point with ∆ < ∆1, which accounts
for the nontrivial band topology with |e| = 1. This is consistent with the calculations of the
r -space Euler number in the main text, demonstrating that the phase in region I is indeed the
Euler insulator.

As the onsite difference ∆ increases, the gap decreases gradually and eventually closes at
∆1, as shown in Fig. S1(b). The closing of the gap indicates a topological phase transition.
However, unlike the usual situation of a single band inversion where the gap reopens immedi-
ately after closure accompanied by a sharp change in the topological invariant, our model has
an intermediate gapless region before the gap reopens at∆2 as shown in Fig. S1(c). From the
perspective of the band topology, region II is a one-band-inverted phase without protection
from the Euler topology, which accounts for the continuous decreasing of the r -space Euler
number in region II [see Fig. 1(b) in the main text]. In addition, the distinction between the
k-space and r -space Euler number in region II is also due to the closed gap that brings up
the discrimination between P̂ projected and the well-defined occupied states. When ∆ > ∆2
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Figure S2: The on-site energy difference ∆ dependence of ∆E and q − |e| with
aE = 3.125 meV. Here q denotes the expected quantized value and is equal to 1
in this case.

as shown in Fig. S1(d), the gap reopens and there is no band inversion at Γ point anymore.
This phase can be adiabatically connected to the atomic limit without gap closure. Therefore,
region III is a trivial insulator with e = 0 as expected.

I.2 Convergence of the real-space Euler number with decreasing band gap

There is a numerical deviation of both k-space and r -space Euler number from an exact inte-
ger in regions I and III near the critical points in Fig. 1(b). Here we examine the numerical
deviation in region I. As presented in the main text, the r -space Euler number equals the exact
one within a correction of order O(1/(L∆E)) for systems with lattice size L and energy gap
∆E. For a system with fixed lattice size L, the numerical correction is inversely proportional to
the band gap: 1− |e| ∝ 1/∆E, where e is the r -space Euler number. To examine the conver-
gence of our r -space formulation as a function of on-site energy difference∆, we calculate the
band gap ∆E and the r -space Euler number in region I for a sample with fixed L. As shown
in Fig. S2, we plot the ∆ dependence of both ∆E and aE/1− |e|, where aE = 3.125 meV is a
fitting parameter. The inverse of the numerical correction fits well with ∆E as expected, in-
dicating that the numerical correction becomes significant near the critical point of the phase
transition. Nevertheless, such numerical correction can be diminished by increasing the lattice
size.

I.3 Convergence of the real-space Euler number with increasing lattice size

To examine the convergence of real-space Euler number as a function of lattice size L, we
further calculate larger systems with the size L up to 90. We consider the pristine lattice with
PBC or OBC and a disordered lattice with W = 1.0 eV. For the disordered case, we perform
an average of the r -space Euler number over 10 samples for each L. As shown in Fig. S3, the
curve of the disordered case has not saturated yet but converges slowly towards the quantized
value of 1. To further check the convergent behavior, we perform a fitting (see the fitting line
in Fig. S3) to estimate the lattice size for the real-space Euler number to reach the quantized
value with the error less than 1%. It is found that the required lattice sizes are L ≈ 355 for
the pristine OBC case and L ≈ 570 for the disordered case respectively, which are beyond the
memory limit of our computational resource. As a comparison, the same estimation for the
pristine PBC case without disorder shows that a much smaller lattice size of L ≈ 63 is required
to reach the same accuracy. This is because the energy gap is ∆E = 0.469 eV in the pristine
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Figure S3: The lattice size L dependence of the r -space Euler number calculated
without and with on-site energy disorder (W = 1.0 eV) using PBC, and without
disorder using OBC. Fitting curves are added for each case.
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Figure S4: The energy gap ∆E versus on-site energy disorder strength W . For each
W , the configuration average is performed over 100 realizations of 51×51 disordered
lattices with PBC.

PBC case, but for the disordered case with W = 1.0 eV, the corresponding averaged gap reduces
significantly to∆E = 0.0583 eV, which is one order of magnitude smaller than the former. This
dependence is illustrated in Fig. S4. As the numeric correction is on the order of O(1/(L∆E))
for systems with lattice size L and energy gap ∆E, the much slower convergence rate of the
disordered case is mainly due to the significant reduction of the energy gap reduction in the
presence of disorder.

I.4 Deviation of real-space Euler number with OBC

In this section, we discuss the deviation of r -space Euler number with OBC. The OBC case
shows a similar linear dependence between 1/L and the numerical deviation∆e = 1−|e| with
slower convergent behavior. This means that the OBC includes an additional effect which is
up to order O(1/L) as well. Notice that the Euler number is obtained by averaging the local
Euler markers at all sites. Since the sites far from boundaries are supposed to preserve similar
properties to those in periodic systems, such deviation originates from the sites close to the
boundary, which contributes O(Led ge/A) = O((L2 − (L − 2)2)/L2) = O(4L/L2) = O(4/L) as
expected. Here Led ge and A are the number of sites in the boundary and the whole sample,
respectively. This additional factor accounts for the slope approximated to 1/4 in Fig. S5,
confirming the effect on r -space Euler number from the edge.
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Figure S5: The inverse of the deviation of the r -space Euler number∆e versus lattice
size L with OBC.

I.5 Local Euler markers in lattices with on-site disorder in Fig. 1(c)

In Fig. 1(c) in the main text, we illustrate another intriguing type of topological phase transi-
tion induced by on-site disorder. The averaged r -space Euler number e decreases from 1 to 0
with increasing the disorder strength W . Here we present the spatial distribution of the local
Euler marker of the sample with PBC at different disorder strengths W , as shown in Fig. S6. At
a relatively weak disorder of W = 1.2 eV, the system maintains its nontrivial Euler characteris-
tics. Predominantly, the grid points exhibit nontrivial local Euler markers e(r) ≈ 1 with a few
isolated points having vanished e(r) ≈ 0, as shown in Fig. S6(a). However, by increasing the
disorder strength W , a noteworthy transformation occurs: the number of trivial points with
e(r) ≈ 0 increases, and the trivial area enlarges in size, eventually leaving the nontrivial area
shrinks to an isolated region in the sample [see Fig. S6(c)]. This isolated nontrivial region
with e(r)≈ 1 diminishes in size gradually as W continues to increase, ultimately fragmenting
into small segments [see Fig. S6(d,e)]. Upon reaching W ≥ 2.2 eV, the situation undergoes a
significant shift. As shown in Fig. S6(f), none of the grid points exhibits nontrivial local Euler
markers, indicating that the system is driven into a trivial phase by strong on-site disorder.

(a)

(d)

(b)

(e)

(c)

(f)

Figure S6: The real-space distribution of local Euler markers e(r) in 31× 31 square
lattices with PBC at different disorder strength W . (a) W = 1.2 eV. (b) W = 1.4 eV.
(c) W = 1.6 eV. (d) W = 1.8 eV. (e) W = 2.0 eV. (f) W = 2.2 eV.
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(c)(a) (b)

(g)(e) (f)

Figure S7: The disordered square lattice model that exhibits band inversions be-
tween the (px , py) and (dx2−y2 , dx y) orbitals. The relevant parameters are as follows:
L = 31, εpx ,py

= 1.58, εdx2−y2,x y
= -0.42, Vppσ=-0.565, Vppπ=-0.044, Vpdσ=0.773,

Vpdπ=0.335, Vddσ=0.444, Vddπ=0.224, Vddδ=0.659 eV. (a) The energy eigenvalues
versus the state index in the vicinity of the Fermi level for the disordered square lat-
tice with PBC and OBC. (b) The spatial distribution of the corner states [red stars in
(a)]. (c) The real-space distribution of the local Euler marker e(r) for the disordered
system with OBC. (e-g) Corresponding results as (a-c) for a trivial state with e = 0
(The onsite energy difference is set to ∆= 6 eV).

Notably, this type of topological phase transition differs from those in disordered Chern insu-
lators and quantum spin Hall insulators, where a sudden jump of topological invariants occurs
at the critical point [25]. Instead, the disorder-induced transition in this model manifests as
a more continuous evolution. Physically, we conjecture this to be due to the disorder-induced
renormalization of the parameter ∆ which dominates the transition from the Euler insulator
to the trivial phase through the intermediate gapless phase, as depicted in Fig. 1(b).

I.6 Euler insulator in lattice with moderate structural disorder

In this section, we study the Euler topology of a square lattice with moderate structural dis-
order. We specifically preserve the inversion symmetry at this stage, for comparison with
the case breaking all spatial symmetries presented in Fig. 3 of the main text. To construct
the structurally disordered square lattice [34,35,79,101–103], we add random displacement
δ = d(cosθ , sinθ ) away from its equilibrium position for each site in one-half sample (τ1/2)
of the square lattice, and assign the displacements for the other half to preserve inversion
symmetry. Here θ and d are determined by uniform distributions in the interval [0,π) and
Gaussian distributions with standard deviation σ = 0.2, respectively. As shown in Fig. S7(a),
the energy spectrum of the structurally disordered lattice with OBC exhibits 4 states at the
Fermi level in the bulk gap obtained using PBC (grey area). We plot the spatial distribution of
these states and find that they are well localized at 4 corners of the sample [see Fig. S7(b)],
implying its higher-order topological feature. Because of the effect of the structural disorder,
the corner states move upwards to the bottom of the unoccupied bulk states. Furthermore, we
analyze the distribution of the local Euler marker in the finite sample with structural disorder,
as shown in Fig. S7(c). The plot confirms that the local Euler markers e(r) are close to the
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(a) (b)

Figure S8: The square lattice model that exhibits band inversions between the
(px , py) and (dx2−y2 , dx y) orbitals. The relevant parameters are as follows: L = 31,
εpx ,py

= 2.73, εdx2−y2,x y
= −0.42, Vppσ = −0.565, Vppπ = −0.044, Vpdσ = 0.773,

Vpdπ = 0.335, Vddσ = 0.444, Vddπ = 0.224, and Vddδ = 0.659 eV. (a) Energy spec-
trum of the square lattice with PBC and OBC. Four corner states in the gap are high-
lighted by red stars. (b) Spatial distribution of the corner states [red stars in (a)].

expected value of 1 in the bulk of the sample, while they deviate in the boundary region. As
expected, the sum of e(r) over the whole finite sample does not vanish but yields the desired
Euler number which should converge to the quantized value with increasing lattice size. Con-
sequently, we can obtain an accurate r -space Euler number by averaging e(r) over an internal
region of the sample to get rid of the boundary deviation. As a comparison, we also perform
a similar calculation for a trivial phase (see the bottom panels in Fig. S7). As illustrated in
Fig. S7(g), the local Euler marker is almost 0 all over the sample, unambiguously indicating
the trivial nature of the state.

I.7 The upward shift of eigenenergies of corner states with decreasing bulk gap

In this section, we discuss the upward shift of eigenenergies of corner states with increasing
on-site energy. As illustrated in Fig. 3 and Fig. S7, introducing structural disorder leads to
the upward shift of the eigenenergies of corner states. In fact, this effect originates from the
decreasing energy gap. In structurally disordered samples, the decrease is attributed to the
increasing disorder amplitude. Additionally, the adjustment of the on-site energy can also
lead to a smaller bulk gap. As discussed in appendix I.1, in region I, we can lift the on-site
energy of p-orbitals such that the bulk gap will decrease and finally vanish at critical point∆1.
Therefore, for comparison purposes, we consider a square model with the same parameters as
in Fig. 3 except for the on-site energy difference. As illustrated in Fig. S8(a), increasing the
on-site energy difference shows a similar upward shift effect to that observed in structurally
disordered lattices. These shifting states near the upper bound of the PBC gap are spatially
localized at four corners, as shown in Fig. S8(b). These results show the similarity between
the effect of on-site energy difference and structural disorder on the upward shifting, which
can be explained as the effect of the decreasing bulk gap.

I.8 Validation in other models with different Euler numbers

In the main text, we present the results based on the tight-binding model with the Euler num-
ber e = 1. Now we show that our proposed r -space formula of the Euler number also applies
to other models with different Euler numbers as well. Different from the tight-binding Hamil-
tonian in Eq. (8) based on the atomic orbital basis, we consider a generic PT -symmetric
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four-band Bloch Hamiltonian H(χ1,χ2)(k) with (χ1,χ2) representing the Euler number of the
upper and lower two-band subspace respectively [99].

Specifically, we take (χ1,χ2) = (2,2) as an example. The time-reversal T̂ and inversion P̂
operators can be expressed as

T̂ = −iΓ22K̂ ,

P̂ = iΓ22 ,
(I.1)

where Γi, j = σi ⊗σ j are 4× 4 Dirac matrices and K̂ is the complex conjugation. The minimal
four-band Hamiltonian H(2,2)(k) can be expressed as

H(2,2)(k) = sink1Γ01 + sink2Γ03 −
�

1
2
+

1
2
(cosk1 + cosk2) +

3
2

cos(k1 + k2)Γ22 +
1
2
Γ13

�

. (I.2)

To calculate the r -space Euler number in a finite L × L supercell of the square lattice, we
construct the real-space Hamiltonian H(2,2) by performing the Fourier transformation to the
Bloch Hamiltonian Hχ1,χ2(k), which yields

H(χ1,χ2) =
∑

i j

∑

µν

∑

k∈BZ

eik·(ri−r j)[H(χ1,χ2)(k)]µνc†
iµc jν . (I.3)

Here, ri is the lattice vector of the i-th site in the square lattice, and c†
iµ(ciµ) is electron creation

(annihilation) operator on the µ orbital at the i-th site. For simplicity, we only consider nearest-
neighbor pairs 〈i j〉 in the lattice. The hopping between site i and j is determined by the
summation over k in the BZ, tµν(ri j) =

∑

k∈BZ eik·(ri−r j)[Hχ1,χ2(k)]µν. The on-site energies
are given by εµ = tµµ(0).

(a)

(c)

(b)

(d)

Figure S9: The topological Euler phase with (χ1,χ2) = (2,2) in a square lattice based
on the minimal four-band model in Eq. (I.3). (a) Band structures of the four-band
model in the square lattice. (b) Energy spectrum of a finite sample with OBC. The
lattice size is L = 31. The bulk gap obtained using PBC is marked in grey. (c) Real-
space distribution of the in-gap states [highlighted by green stars in (b)] which are
localized on two opposite edges of the finite sample. (d) The real-space distribution
of the local Euler marker e(r) in the sample with OBC.
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(a)

(c)

(b)

(d)

Figure S10: The topological Euler phase with (χ1,χ2) = (3, 1) in a square lattice
based on the minimal four-band model. (a) Band structures of the four-band model
in the square lattice. (b) Energy spectrum of a finite sample with OBC. The lattice
size is L = 31. The bulk gap obtained using PBC is marked in grey. (c) Real-space
distribution of the in-gap states [highlighted by green stars in (b)]which are localized
on the edges of the finite sample. (d) The real-space distribution of the local Euler
marker e(r) in the sample with OBC.

The calculated results are shown in Fig. S9. Similar to the Euler insulator with e = 1
presented in the main text, the OBC energy spectrum exhibits some states in the bulk gap.
However, these in-gap states are localized on edges instead of corners of the finite sample [see
Fig. S9(c)]. This indicates distinct topological behaviors from the topological Euler insulator
with e = 1. According to the relation between the second Stiefel-Whitney number and the
Euler number w2 = e mod 2, the Euler insulator with e = 1 is also a Stiefel-Whitney insulator
with w2 = 1 which exhibits higher-order topology with corner states in the presence of ad-
ditional chiral symmetry [49, 105]. In contrast, the Euler phase with e = 2 leads to a trivial
second Stiefel-Whitney number w2 = 0. Nevertheless, the system associated with the nonzero
Euler number still has a fragile band topology [50]. As shown in Fig. S9 (d), we plot the real-
space distribution of the local Euler marker, which exhibits similar bulk domination and edge
diminution behavior as those studied in the main text. Remarkably, the local Euler markers
inside the bulk are close to the expected value of 2, which results in the averaged r -space
Euler number being e = 2.

We further validate our r -space Euler number in another four-band model with different
Euler numbers for occupied and unoccupied bands. Specifically, we chose the minimal model
with (χ1,χ2)=(3,1), which can be formulated as

H(3,1)(k) =





ā
b̄
c̄





T

· Γ ·





ā
b̄
c̄′



 , (I.4)

with

Γ =





−Γ33 −Γ13 Γ01
Γ31 Γ11 Γ03
Γ10 −Γ30 −Γ22



 , (I.5)
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and
ā = sink1 ,

b̄ = sink2 ,

c̄ =
1
2
(1+ (cosk1 + cosk2) + 3cos(k1 + k2)) ,

c̄′ =
1
2
(3− 2(cosk1 + cosk2)− cos(k1 + k2)) .

(I.6)

The results of the minimal model with (χ1,χ2) = (3, 1) are illustrated in Fig. S10. In this
case, the unbalanced |χ1| ≠ |χ2| leads to the lack of additional symmetry of the system [106].
Consequently, although the system is a topological phase with nontrivial Stiefel-Whitney num-
ber w2 = 1 because of the odd Euler number of the occupied bands, there is no additional
symmetry to ensure the localization at the corner. Therefore, this phase does not exhibit the
higher-order corner characteristics of conventional Stiefel-Whitney insulators [107–111].
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