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Vincentas Mulevičius1,2⋆, Ingo Runkel3 and Thomas Voß3

1 Erwin Schrödinger Institute for Mathematics and Physics, Vienna, Austria
2 Institute of Theoretical Physics and Astronomy, Vilnius University, Lithuania

3 Fachbereich Mathematik, Universität Hamburg, Germany

⋆ vincentas.mulevicius@ff.vu.lt

Abstract

Levin–Wen models are a class of two-dimensional lattice spin models with a Hamilto-
nian that is a sum of commuting projectors, which describe topological phases of matter
related to Drinfeld centres. We generalise this construction to lattice systems internal
to a topological phase described by an arbitrary modular fusion category C. The lattice
system is defined in terms of an orbifold datum A in C, from which we construct a state
space and a commuting-projector Hamiltonian H

A
acting on it. The topological phase

of the degenerate ground states of H
A

is characterised by a modular fusion category C
A

defined directly in terms of A. By choosing different A’s for a fixed C, one obtains pre-
cisely all phases which are Witt-equivalent to C. As special cases we recover the Kitaev
and the Levin–Wen lattice models from instances of orbifold data in the trivial modular
fusion category of vector spaces, as well as phases obtained by anyon condensation in a
given phase C.
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1 Introduction

A topological phase of matter is identified by a variety of exotic phenomena, most notably
topological ground state degeneracy, that is, the dimension of the ground state space depends
only on the topology of the system, not its size. Topological phases of matter can be modelled
by physical systems whose effective theory at low energies is a topological quantum field theory
(TFT). We refer to e.g. [51, Sec. 4] and [58, Ch. 6] for the physical background. In (2+1)-
dimensions, there are two widely studied types of TFTs: state sum TFTs, also called Turaev–
Viro–Barrett–Westbury models [11, 54], and surgery TFTs, aka. Reshetikhin–Turaev models
[50, 53]. The surgery TFTs are more general, in that they reproduce the state sum TFTs as a
special case.

The algebraic input datum defining a surgery TFT is a modular fusion category (MFC) C.
The same datum describes a distinguishing characteristic of a 2-dimensional topological phase
of matter, namely the braiding statistics and the fusion rules of its point-like excitations, called
anyons. We will often refer to such a topological phase of matter as “phase C”.

If the MFC C is given by the Drinfeld centre Z(S) of a spherical fusion category S, two
related special features occur. Firstly, the surgery TFT for Z(S) has an equivalent state sum
description defined directly in terms of S (see e.g. [55]), and secondly, the corresponding
topological phase of matter can be realised via a local lattice model. Such models include
Kitaev’s toric code and its variations – the quantum double models obtained from finite groups
or, more generally, finite-dimensional semisimple Hopf algebras, as well as Levin–Wen models,
see Figure 1. Levin–Wen models are defined in terms of spherical fusion categories S and are
universal in the sense that they provide a local description of all phases given by Drinfeld
centres Z(S). For a generic phase C no similar local lattice realisation is known.

The goal of this paper is to provide a weaker “non-local” version of a lattice realisation for
phases that possibly are not Drinfeld centres. Non-locality here means that the overall state
space of the lattice model will not in general be of the form (Cn)⊗N , i.e. it will not consist of
N independent degrees of freedom Cn. Instead, the state space is a lattice of anyonic particles
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Figure 1: Hierarchy of lattice descriptions of topological phases of matter. The inner
white boxes are local lattice models for phases corresponding to Drinfeld centres.
The outer gray box amounts to the non-local lattice models introduced in this paper.
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On the spaces of states for a surface in phase C with excitations X and X ∗ as shown above we
introduce a commuting-projector Hamiltonian HA. The Hamiltonian is defined in terms of a
so-called orbifold datum A in C which we discuss in more detail below. The ground state space
of HA will again be a topological phase of matter, but now for a different MFC CA, i.e. our
model “condenses phase C into phase CA”.

We refer to this construction as “internal Levin–Wen model” for two reasons. Firstly, as
illustrated in (1), our model is formulated internally to a fixed ambient phase C. Secondly, if
we choose the phase C to be trivial, i.e. if we take C to be the MFC VectC of finite dimensional
vector spaces, the possible condensed phases CA turn out to be exactly the Drinfeld centres.
In fact, in this particular case the lattice models defined here turn out to be local, and, for an
appropriate choice of A, are equivalent to the original Levin–Wen lattice systems.

Universality of internal Levin–Wen models

Our models unite and generalise two seemingly different constructions encountered in the
study of topological phases: that of Levin–Wen string-net models and that of (bosonic) anyon
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condensation. The latter in particular uses the aforementioned idea of bringing together (con-
densing) a number of anyons in an existing phase C to make up a new phase [9]. The anyons
being condensed are taken to have bosonic properties – trivial twist and (almost) trivial self-
braiding (see [9, Sec. III]). The mathematically precise statement is that this construction
requires a condensable algebra A in the initial phase C [38]. The condensed phase is given by
the MFC Cloc

A of the so-called local A-modules and tends to be simpler than the initial phase
since its total quantum dimension is smaller: DimCloc

A = DimC/(dim(A))2 (in particular Cloc
A

tends to have fewer simple objects (anyon species) than C).
We will see later in this section (and in detail in Section 5) that such anyon condensations

constitute examples of internal Levin–Wen models with the initial phase C being arbitrary,
possibly even chiral, i.e. non-equivalent to a Drinfeld centre, and the phase of the ground
states being Cloc

A . In particular, if the initial phase does happen to be non-chiral, i.e. C ∼= Z(S),
the choice of the so-called Lagrangian algebra A∈ Z(S) condenses Z(S) to the vacuum phase
VectC. Interestingly, the Levin–Wen model, which is also an example of our internal Levin–
Wen models, does exactly the opposite – starting with excitations in the vacuum phase (i.e.
local degrees of freedom) it produces a non trivial phase Z(S), i.e. in some sense they invert
the condensation procedure. This is not a coincidence, as our models are in fact capable
of implementing both the anyon condensation and its inversion procedures in an arbitrary
(possibly chiral) phase C. This follows from the analysis [47] of the properties of the oribifold
data – the algebraic structures used in the construction of our models.

The ability to produce a more intricate phase out of a given one is where we see the
biggest advantage of introducing the internal Levin–Wen models. At their core, they describe,
assuming a full control over an anyon species C, what states of several anyons in C to start with
and how to braid/fuse them etc. so that another phase with new anyons would emerge. While
in this paper we will only focus on defining the internal Levin–Wen models as well as showing
that our definition reproduces some known constructions, let us outline one example, which
we believe not be covered by previous constructions. Namely, consider two chiral topological
phases, one of them being the Ising phase with 3 anyons, and the other being the su(2)10 phase,
which has 11 anyons. The su(2)10 phase contains a condensible algebra, usually referred to
as the E6 algebra, whose underlying object is 0⊕6 (see [39, Sec. 6]). The condensed phase is
known to be of Ising type, so in this example the number of anyon species was indeed reduced.
Our model now allows one to explicitly invert the condensation, i.e. construct a state space
and a commuting projector Hamiltonian inside the Ising phase, whose ground state space
constitutes the su(2)10 phase:

Ising su(2)10

ground state phase of an
internal Levin–Wen model

condensation of E6 algebra

. (2)

For example, the anyon X = X ∗ to be inserted at the vertices of the lattice as in (1) in this
instance can be chosen to be X = 1

⊕4 ⊕ σ (where we denote by 1,ϵ,σ with ϵ ⊗ ϵ ∼= 1 and
σ⊗σ ∼= 1⊕ ϵ the Ising anyons). The Hamiltonian is constructed as outlined below, with the
input data explicitly provided in [46]. We leave the more detailed analysis of this example for
future work.

Finally, let us comment on which other phases one can construct out of the initial phase C
with the help of internal Levin–Wen models. Recall that two MFCs C and D are called Witt-
equivalent [24] if there exists a spherical fusion category S and an equivalence C⊠ eD ≃ Z(S)
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(of ribbon categories), where ⊠ denotes the Deligne product and eD denotes the MFC D with
inverse braiding and twist. In other words, two possibly chiral phases C and D are Witt equiv-
alent if the product C ⊠ eD is non-chiral. For example, choosing D = VectC, we see that the
Witt-class of the trivial phase VectC consists precisely of the Drinfeld centres (i.e. the non-
chiral phases). A more physical description of Witt-equivalence is the requirement that there
exists a gapped domain wall separating the phases C and D [29, 34, 36, 37]. It is shown
in [47, Thm. 7.3] that two MFCs C and D are Witt equivalent if and only if there exists an
orbifold datum A in C, such that CA ∼= D as ribbon categories. An orbifold datum in C consti-
tutes the input for an internal Levin–Wen model in C, which implies that the possible phases
of ground state-spaces are exactly those that are Witt-equivalent to C.

In this language, one can state a universality property of the original Levin–Wen models:
Collectively they provide lattice realisations of all phases in the trivial Witt-class. After these
preparations, we can also state the similar universality property for our models:

Internal Levin–Wen models are universal in the sense that starting from the initial
phase C, collectively they provide internal-to-C lattice realisations of all phases in
the Witt-class of C.

The relation between the various models discussed so far is summarised in Figure 1.

Construction of internal Levin–Wen models

The main tool used in the construction of our models is a three-dimensional defect TFT. Specif-
ically, the defect TFT we need is of surgery type and is an extension of the Reshetikhin–Turaev
TFT [50,53], which includes surface defects in addition to the line defects already present in
the original definition. Mathematically, the defect TFT is a symmetric monoidal functor

Zdef
C :ÕBorddef

3 (D
C)→ VectC , (3)

defined in terms of a MFC C [21]. Here DC is the set of labels for surface and for line de-
fects, andÕBorddef

3 (D
C) is a category of three-dimensional bordisms as morphisms between

two-dimensional surfaces as objects. The bordisms contain “foams” of line and surface defects
labelled by data in DC . These foams intersect the boundary surfaces transversally, so that these
surfaces contain point and line defects (see Figures 3, 5a below for examples of defect bor-
disms). We will review the category of defect bordisms, as well as the definition of Zdef

C and
its properties in Sections 2.1 and 2.2.

Let X be an object of C (which need not be simple) and consider a surface ΣX with m point
defects labelled by X and n point defects labelled by X ∗ as shown in (1). To ΣX , the TFT Zdef

C
assigns a complex vector space which will be the state space VX of the internal Levin–Wen
model on ΣX :

VX = Zdef
C (ΣX ) . (4)

One can express VX as a Hom-space of the category C. For example, if Σ is a sphere we have

VX
∼= C(1, X⊗m ⊗ (X ∗)⊗n) . (5)

Here C(U , W ) denotes the vector space of morphisms from U to W in C, and 1 denotes the
tensor unit of C. Note that if C is VectC, then X is a vector space, X ∗ ∼= X is its dual, and (5)
can be written as VX

∼= X⊗(m+n). That is, for C = VectC – the trivial ambient topological phase
– the state space is indeed local.

To construct the commuting projector Hamiltonian, we need the additional input of an
orbifold datum A in C. This consists of a label A in DC for a surface defect, a label T for a
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line defect forming the junction of three surface defects, and two labels α, α for point defects
where two such lines cross. More details including the conditions A has to satisfy can be found
in Section 2.3.

We furthermore need to choose a lattice (or, in mathematical terms, a graph) Γ on the
surface ΣX whose vertices are trivalent and are given by the point defects on ΣX . For example,
a local patch of the lattice Γ on ΣX could be:

. (6)

We will assume that the lattice Γ is fine enough so that the complement of Γ in ΣX consists of
a disjoint union of discs, which we refer to as faces.

For a face f on ΣX (with respect to Γ ), consider the defect bordism C f : ΣX → ΣX which
has the underlying topology of a cylinder ΣX × [0,1] and contains vertical X or X ∗-labelled
line defects everywhere except for around the face f . Near f , the bordism is given by the
following arrangement of point, line and surface defects:

C f = . (7)

This bordism (7) is slightly simplified (for example all orientations are missing), and we explain
the full version and all its ingredients in Section 3.1. Here we just note that the labels of the
various defects are prescribed by the orbifold datum A: the surface defects in C f are labelled
by A, the line defects joining three surface defects by T , and the crossings of two T -lines by α
or α (depending on the orientations, see Section 2.3). X is chosen such that T is a subobject
of X .

Applying the defect TFT Zdef
C to the cylinder C f gives a linear map

Pf := Zdef
C (C f ): VX → VX . (8)

We show in Section 3.1 that Pf is a projector, P 2
f = Pf , and that these projectors commute

amongst themselves, Pf Pf ′ = Pf ′Pf for all faces f , f ′ of ΣX with respect to Γ . The Hamiltonian
HA on VX is simply minus the sum of all face projectors,

HA = −
∑

f

Pf . (9)

Again, this expression is slightly simplified, and we refer to Section 3.1 for the full version. One
important aspect of this paper is that we describe the face projectors Pf not only abstractly as
the value of a TFT on a bordism, but also as explicit linear maps on the state space expressed
as a Hom-space as in (5). This is done in Section 4.
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The ground state space V0 = V0(ΣX ,A, Γ ) ⊂ VX of HA is simply the intersection of the
images of all the face-projectors. The key observation is now that HA and V0 describe a new
topological phase, namely that for the MFC CA. To support this claim, let us denote by Σ the
surface without any defects underlying ΣX . We show (Theorem 8 together with the equiva-
lence in (33)):

Theorem 1. For any choice of a trivalent graph Γ on Σ such that Σ \ Γ is a disjoint union of
discs, we have an isomorphism of vector spaces

V0(ΣX ,A, Γ )∼= ZRT
CA (Σ) . (10)

The theorem implies in particular that V0(ΣX ,A, Γ ) is independent of the choice of Γ , pro-
vided Σ\ Γ is a disjoint union of discs. The ground states thus depend only on the topology of
Σ and not on the microscopic details of the lattice.

Remark 2. As the name suggests, the original use of an orbifold datum A was to define
an orbifolding procedure for TFTs, or rather a generalisation thereof beyond group symme-
tries [20, 22]. Internal Levin–Wen models can in fact be defined for any orbifold datum in
any defect TFT, not just the Reshetikhin–Turaev type theories we consider here. The gener-
alised orbifold procedure was originally introduced for two-dimensional conformal field the-
ories in [27]. Considering all such generalised orbifolds simultaneously can be understood as
a completion procedure. This has been made precise for 2d TFTs in [19], for 3d TFTs in [15],
and in terms of condensation monads and Karoubi-envelopes in [31].

We treat three examples of internal Levin–Wen models in detail, thereby illustrating how
the general model reduces to previous constructions of topological phases of matter:

1. Condensable algebras (Section 5.1): For the orbifold datum AA constructed from a
condensable algebra A∈ C, i.e. a simple symmetric commutative ∆-separable Frobenius
algebra, one finds that the condensed phase CAA

agrees with the MFC of so-called local
modules in C [45], which is precisely the description of the phase obtained by condensing
A, see e.g. [9,38].

2. Levin–Wen models (Section 5.2): Given a spherical fusion category S, one can define
an orbifold datum AS in VectC such that the Hamiltonian HAS is essentially the original
Levin–Wen Hamiltonian from [43] (we include edge projectors and allow for slightly
more general vertex projectors).

3. Kitaev models (Section 5.3): As a generalisation of the original toric code model
[35], one can formulate a state space and Hamiltonian in terms of a finite-dimensional
semisimple Hopf algebra K [7]. We give an orbifold datum AK in VectC, such that the
Hamiltonian HAK

agrees with the Hamiltonian of the Kitaev model.

There are many aspects of internal Levin–Wen models not covered in this paper, and to
which we hope to return in the future. The three most notable omissions are, firstly, the
description of anyon excitations in the condensed phase obtained from A in order to show
that their fusion and braiding indeed agree with those of CA. Secondly, we expect there to be
an analogue of the string net description of Levin–Wen state spaces as given in [5, 43] also
for the internal Levin–Wen models. Thirdly, the models listed in 1.–3. above are all already
well-studied, and one should investigate some truly new examples. As mentioned before, an
interesting candidate would be the Fibonacci-type orbifold data found in an Ising modular
category [46], which results in the su(2)10 WZW phase.
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Relation to other works

Let us discuss some relations of our construction of internal Levin–Wen models to other works.
Condensation monads. There is a strong connection to the work [31]. In that work, a gen-
eral algebraic language to describe condensations of n-dimensional phases is formulated: The
algebraic datum needed to describe such a process is a condensation monad in a (weak) n-
category X , in a sense encoding the information of the defects of an n-dimensional phase.
A condensation monad A can be thought of as a higher analogue of an idempotent on an
object S ∈ X and is then used to construct a commuting-projector Hamiltonian internal to
the phase S realising the phase comparable to the “image” of A. Although it is the local sys-
tems (i.e. obtained when S is the trivial phase and related to fully-extended TFTs) that are
arguably of the greatest interest in this setting, the idea of internal models is mentioned as
well (see [31, Sec. 1.3]).

Our model can be seen as a special case of this construction with n = 3, X = B(AlgC)
(delooping of the monoidal bicategory of algebras in a MFC C, bimodules and bimodule mor-
phisms) and A given by the orbifold datum A. In our setting, the 3-dimensional TFT cor-
responding to the condensed phase is oriented so that the orbifold datum A has a built-in
datum of a “homotopy fixed point of SO(3)”, which for general condensation monads is not
necessary, cf. [31, Rem. 1.4.7]. One advantage of the description of internal Levin–Wen mod-
els given here is that it is very explicit: we give a concrete vector space as state space and a
concrete linear map as Hamiltonian (Section 4).
Boundary theories of Walker–Wang models. A closely related commuting-projector model
is described in [34, § II B], which lives on the boundary of a Walker–Wang model [57]. The
latter can be thought of as a three-dimensional generalisation of Levin–Wen models (and are
more general than the three-dimensional models given already in [43]). The approach in [34]
is via A-enriched categories (for a unitary MFC A). From the A-enriched category one can
obtain a unitary fusion category X such that Z(X ) ∼= ZA(X )⊠A for a unitary MFC ZA(X )
(the enriched centre). The phase ZA(X ) can be realised via a commuting-projector model
that lives on the boundary of the Walker–Wang model obtained from A.

This is indeed closely related to how the condensed phase CA obtained from an orbifold
datum can be described. Namely, by [47, Prop. 7.4] we have CA ⊠ eC ∼= Z(L), where as above,
eC is C with inverse braiding and twist, and L can be thought of as a category of line defects
living on the interface of the phases C and CA.

The main difference between the boundary Walker–Wang models and our internal Levin–
Wen models seems to be the following: the former provide one with a way to realise the
initial (2+1)-dimensional phase C by the means of a (3+1)-dimensional local lattice model
with boundary. This realisation is flexible enough to include domain walls and other defects
on the (2+1)-dimensional boundary theory. Our models on the other hand provide one with
a procedure to condense defects in the initial phase C to some other phase CA independently
on how the phase C is realised. For example, our models can be “compiled to run” on top of
the boundary Walker–Wang models, but can also be implemented in other systems realising
the initial phase C. In particular, our model is intrinsically (2+1)-dimensional, and there is no
need to pass to 4d in order to define the Hamiltonian and to compute it as a spacific linear
map.

The similarities of the mathematical tools used in both of these models does not seem
to be coincidental and it would be interesting to give a more detailed relation between the
commuting-projector model of [34] and the internal Levin–Wen model defined here.
Anyon condensation and gauging finite groups. As mentioned before, the idea of bringing
together a number of anyons in an existing phase to make up a new phase was originally
considered in terms of a condensable algebra A in a given phase C [9, 38]. The condensed
phase is given by the MFC Cloc

A of local A-modules.
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If there is a finite group G acting on C, it may be possible to obtain a new phase by gauging
G. This may be obstructed, and it may be possible in several ways. Technically, if C is the
neutral part of a G-crossed ribbon fusion category B×G , one can pass to its equivariantisation
B×,G

G which is again a MFC. For more details and the interpretation in the context of topological
phases see [2,14,25].

Both of these constructions stay within a given Witt-class and are special cases of passing
from C to CA. But iterating condensations and gaugings does not span the entire Witt-class, so
the internal Levin–Wen models are more general in that regard.
Anyonic chains. There is a different class of models where one builds lattice models which
are non-local in the sense that they start in an ambient theory of anyons, the so-called anyonic
chains [3, 30, 48]. These are 1-dimensional spin chains, and the Hamiltonians typically stud-
ied are not of the commuting projector type, but instead are gapless and produce interesting
conformal field theories as critical points.

The internal Levin–Wen model shares the idea of starting in a given anyonic system, but the
model here is a 2-dimensional spin system and we use a commuting-projector Hamiltonian.
This Hamiltonian is gapped by construction and its purpose is to produce a new topological
phase of matter via its ground states.
Further directions. The recent works [13,41] give a parameter-dependent Hamiltonian which
can implement the transition from one Witt-trivial phase Z(S) to another such phase ob-
tained by anyon condensation. It would be interesting to study these transitions also in the
present setting of internal Levin–Wen models. In the context of tensor network models one
can use boundary conditions in Turaev–Viro–Barrett–Westbury to create interesting states in
the ground state space of the Levin–Wen Hamiltonian [42]. The latter has a direct generali-
sation to our internal Levin–Wen models that would be interesting to investigate. A version
of Levin–Wen models which are defined also for non-semisimple input categories was devel-
oped in [32,33]. Here too it would be very interesting to see if an analogous generalisation is
possible for internal Levin–Wen models.

2 Prerequisites

In this section we review the construction of 3-dimensional topological quantum field theories
(TFTs) of Reshetikhin–Turaev type [53, Ch. IV], including its version incorporating line and
surface defects [21], their so-called generalised orbifolds [20, 22], as well as the required
algebraic notions of modular fusion categories (MFCs) [53, Sec. II.1], [4, Ch. 3], Frobenius
algebras [26, 28] and orbifold data. The exposition skips most of the technicalities, a more
detailed summary is available e.g. in [17, Sec. 3&4], which is mostly followed here.

2.1 TFT with line defects

Let | be an algebraically closed field of characteristic zero. For the application to topological
phases of matter one can of course set | = C. A modular fusion category (MFC) is a ribbon
fusion category C with non-degenerate braiding. We will often omit the tensor product symbol
between objects of C to have less cluttered formulas, e.g. we often write X Y instead of X ⊗ Y .
Recall that C is called:

• fusion if it is |-linear, monoidal, rigid, finitely semisimple and the monoidal unit 1 ∈ C
is a simple object; we denote by

IrrC , (11)

a fixed set of representatives of isomorphism classes of simple objects of C such that
1 ∈ IrrC ,
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• spherical if each object X ∈ C has an associated dual object X ∗ ∈ C as well as compatible
left/right (co-)evaluation morphisms evX : X ∗X ⇄ 1 :ßcoevX , eevX : X X ∗ ⇄ 1 : coevX ,
such that the left and right categorical trace coincide. We write tr f ∈ EndC 1

∼= | for the
trace of f ∈ EndC X and dX = tr idX for the categorical dimension of X ∈ C. We denote
by DimC :=
∑

i∈IrrC
d2

i the global dimension of C,

• ribbon if C is spherical and equipped with braiding {cX ,Y : X Y
∼
−→ Y X }X ,Y∈C , such that for

each object X ∈ C the left/right twist morphisms θ l
X ,θ r

X ∈ EndC X , defined as left/right
partial traces of cX ,X , are equal,

• non-degenerate if it is a ribbon fusion and the s-matrix si j = tr(c j,i ◦ ci, j), i, j ∈ IrrC is
non-degenerate.

For X , Y ∈ C we denote the space of morphisms X → Y by HomC(X , Y ) or just C(X , Y ) for
short.

Given a MFC C and a square root D = (DimC)1/2 of the global dimension, one can define
the Reshetikhin–Turaev TFT (RT TFT), which is a symmetric monoidal functor

ZRT
C :ÕBordrib

3 (C)→ Vect| , (12)

where the source category is a certain central extension of the category Bordrib
3 (C). The latter

has compact oriented 3-dimensional bordisms with embedded C-coloured ribbon graphs as
morphisms and oriented closed surfaces with C-coloured framed points (or punctures) as ob-
jects. In this paper we will only use it to evaluate bordisms whose underlying topology is that
of the cylinder Σ× [0, 1] for some oriented surface Σ. The central extension ofÕBordrib

3 (C) is
in general introduced to eliminate a gluing anomaly, which in the case of composing cylinders
can be ignored.

As we will not require most of the technicalities needed to define the functor (12), we only
present here some of its properties:

1. Define the object

L =
⊕

i∈IrrC

i ⊗ i∗ ∈ C . (13)

Consider an object of Bordrib
3 (C) of the form Σ = (Σ, P), where Σ is an oriented closed

connected surface of genus g, and P = {p1, . . . , pn} is a finite set of framed points, each of
which carries a label by an object X i ∈ C (we will call such points punctures). Set |pi|= +
if the framing of pi ∈ P coincides with the orientation of Σ and |pi| = − otherwise and,
for an object X ∈ C, denote X+ = X , X− = X ∗. One has:

ZRT
C (Σ, P)∼= C(1, X |p1|

1 · · ·X
|pn|
n L⊗g) . (14)

2. Given objects (Σa, P), (Σb,Q) as in part 1, a morphism (Σa, P)→ (Σb,Q) in Bordrib
3 (C)

is a pair M = (M , R), where M : Σa → Σb is a bordism and R is an embedded ribbon
graph, intersecting the boundary at points P ∪Q. The linear map ZRT

C (M) is given by
postcomposition

C(1, X |p1|
1 · · ·X

|pn|
n L⊗ga)→ C(1, Y |q1|

1 · · ·Y
|qm|
m L⊗gb) ,

f 7→ ΩM ◦ f , (15)

with a morphismΩM ∈ C(X
|p1|
1 · · ·X

|pn|
n L⊗ga , Y |q1|

1 · · ·Y
|qm|
m L⊗gb). In particular, when eval-

uating with ZRT
C one can compose the coupons of embedded graphs, see Figure 2.
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Figure 2: ZRT
C is invariant under skein relations: replacing the ribbon graph in the

dotted ball on the left-hand side by the corresponding coupon on the right-hand side
does not change the value of ZRT

C .

3. In case one takes C = Vect|, the trivial MFC of finite dimensional vector spaces, the ex-
pression (14) simplifies to X |p1|

1 · · ·X
|pn|
n , the tensor product of the vector spaces labelling

the punctures and their duals. The evaluation (15) of a bordism (M , R) is then obtained
by forgetting the topology of M and reading off R as a string diagram in Vect|.

Remark 3. A modular fusion category C describes a (2 + 1)-dimensional topological order;
the objects of C are interpreted as possible particle-like excitations (anyons) on a surface. The
space of states of a surface having several such particles is exactly the space ZRT

C (Σ) assigned
to a surface Σ ∈ Bordrib

3 (C) with marked points. A ribbon graph embedded in the cylinder
Σ × [0, 1] describes a process in which the particles move around the surface and possibly
interact at points, labelled by morphisms in C.

2.2 TFT with line and surface defects

A defect TFT [12, 18, 20, 23] is a symmetric monoidal functor having the source category
Borddef

n (D) of stratified1 bordisms, with strata carrying labels from a so-called defect datum
D. The RT TFT (12) can be generalised to an instance of such defect TFTs [21], see also
[15,29,37,40],

Zdef
C :ÕBorddef

3 (D
C)→ Vect| . (16)

The defect datum DC consists of: symmetric∆-separable Frobenius algebras in C (labels for 2-
strata, i.e. surfaces), their (multi-)modules (labels for 1-strata, i.e. lines) and (multi-)module
morphisms (labels for 0-strata, i.e. points). The overhat denotes a central extension analogous
to that in (12), which as before will be ignored here.

Below we will rely on the graphical calculus of string diagrams to depict morphisms. Our
convention is to read diagrams from bottom to top. String diagrams for spherical categories
have oriented strands and can be deformed up to a plane isotopy, with downwards orientation
denoting the dual object and the cups/caps denoting the (co)evaluation morphisms. In the
case of a ribbon category, string diagrams can be read as isotopy classes of ribbon tangles with
fixed base points.

1A stratification of a manifold M is a filtration into subspaces M = Fn ⊇ Fn−1 ⊇ · · · ⊇ F0 ⊇ F−1 = ∅, subject to
certain non-degeneracy conditions. In particular, F j \F j−1 is a (possibly empty) j-dimensional manifold whose con-
nected components are called j-strata (or points, lines, surfaces depending on dimension). See e.g. [18, Sec. 2.1]
for more details.
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The precise definition of the defect TFT (16) is laid out in [21, Sec. 5] and summarised
in [17, Sec. 3.2]. Here we will only need some properties of it. In particular, let us review the
notions used in defining the set of labels DC:

• A symmetric ∆-separable Frobenius algebra A ∈ C is a simultaneous algebra/coalgebra

object in C, whose product µ = , coproduct ∆ = , unit η = , and counit ϵ =
in addition satisfy the identities

A A

A A

=

A A

A A

=

A A

A A
︸ ︷︷ ︸

Frobenius

,

A

A∗

=

A∗

A
︸ ︷︷ ︸

symmetric

,

A

A

=

A

A

︸ ︷︷ ︸

∆-separable

. (17)

• A module of a Frobenius algebra is just a module of the underlying algebra. For Frobe-

nius algebras, each module is also a comodule via M
(∆◦η)⊗idM−−−−−−→ AAM

idA⊗Â−−−→ AM , where
Â: AM → M is the action.

• For a∆-separable Frobenius algebra A∈ C, the relative tensor product of a right module
K ∈ C and a left module L ∈ C can be expressed as the image of an idempotent:

K ⊗A L = im

K L

K L

A
. (18)

• If A, B ∈ C are Frobenius algebras, so is their product AB ∈ C, where we take the multi-

plication to be ABAB
cB,A
−−→ AABB → AB and the comultiplication AB → AABB

c−1
B,A
−−→ ABAB.

Given two sets of algebras A1, . . . , An ∈ C, B1, . . . , Bm ∈ C, a multimodule is a (A1 · · ·An)-
(B1 · · ·Bm)-bimodule. Equivalently, it is an object M ∈ C, which has a left action for each
Ai and a right action for each B j , such that, for i < j and k < l,

MAi A j

M

=

MAi A j

M

,

M BlBk

M

=

M BlBk

M

,

MAi Bk

M

=

MAi Bk

M

. (19)

• Given two multimodules M , N as above, a multimodule morphism is a (A1 · · ·An)-
(B1 · · ·Bm)-bimodule morphism M → N . Equivalently, it is a morphism f : M → N in C
commuting with the Ai- and B j-actions.

It is convenient to generalise the graphical calculus of C to accommodate the morphisms be-
tween relative products of multimodules of symmetric ∆-separable Frobenius algebras. This
is done by using surface diagrams, where a surface depicts an algebra action, see Figures 3
and 4.

12

https://scipost.org
https://scipost.org/SciPostPhys.17.3.088


SciPost Phys. 17, 088 (2024)

AB

C
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⟲

⟲

⟲

⟲

⟲

⟳

f

N K L

L f

M K
A

N K LC CB
A

BBB

Figure 3: Replacing a stratification of a manifold (depicted for the cylinder of the
torus T2 × [0, 1]) by a ribbon graph. Cf. [17, Fig. 1].

Remark 4. It was explained in [18] that a 3-dimensional defect TFT has an associated tri-
category with duals, whose k-morphisms are labels for codimension-k strata. For Zdef

C it is
the monoidal bicategory (equivalently, tricategory with one object) Frobs∆ of symmetric ∆-
separable Frobenius algebras, their bimodules and bimodule morphisms in C. The surface
diagrams are exactly the ones coming from the graphical calculus of tricategories [8] in this
case.

Roughly, the defect TFT (16) works by replacing the 2-strata of a morphism in Borddef
3 (D

C)
with networks of ribbon graphs and evaluating with ZRT

C , see Figure 3. This implies the fol-
lowing properties of it:

1. The category Bordrib
3 (C) can be seen as a subcategory of Borddef

3 (D
C), where stratifica-

tions do not have 2-strata. The restriction of Zdef
C to this subcategory is precisely the TFT

ZRT
C , see [21, Rem. 5.9].

2. For an object Σ ∈ Borddef
3 (D

C), let CΣ : Σ → Σ in Borddef
3 (D

C) be the stratified cylin-
der bordism Σ× [0,1] and denote by R(CΣ, t) the corresponding bordism in Bordrib

3 (C)
obtained as in Figure 3 (here t denotes the collection of ribbon graphs replacing the
2-strata of CΣ). One has:

Zdef
C (Σ)

∼= im ZRT
C (R(CΣ, t)) . (20)

3. Evaluation with Zdef
C is invariant upon performing graphical calculus of surface diagrams

of symmetric ∆-separable Frobenius algebras inside stratified balls [18, Sec. 3.3].

4. For the choice C = Vect|, the evaluation with Zdef
C only depends on the topology of the

union of 2-, 1- and 0-strata, and not on their embeddings into the 3-manifold. For an
arbitrary MFC C the embedding does make a difference, for example the dimension of
the vector space assigned to a torus with a single defect line depends on whether the
line is contractible (cf. [21, Sec. 5]).

2.3 Internal state-sum construction

The internal state-sum or generalised orbifold takes as input a defect TFT and a so-called
orbifold datum and produces a new TFT of the same dimension [15, 16, 19, 20, 27]. We will
use the internal state sum construction for RT TFTs and will review it in some detail in this
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section. In Section 3 we will employ this construction to define the Hamiltonian of the internal
Levin-Wen model, and to compute its space of ground states.

The defect TFT we consider is Zdef
C for a MFC C as reviewed in the previous section. An

orbifold datum for C is a tuple
A= (A, T,α,α,ψ,φ) , (21)

where

• A∈ C is a symmetric∆-separable Frobenius algebra and so has (co)product and (co)unit
such that the relations (17) are satisfied. Note that A is a label for a surface defect in
Zdef
C , see Figure 4a.

• T ∈ C is an A-A⊗A-bimodule, i.e. a label for a line defect with three adjacent A-labelled
surfaces as in Figure 4b. Equivalently a multimodule having one left A-action and two
right A-actions, which will be denoted by:

Â0=

TA

0
, Ã1=

1

T A

, Ã2=

T A

2
, (22)

and which satisfy the mutimodule conditions (19), which in this case read

T A AA

0

1

2

=

T A AA
0

1

2

. (23)

Note that the dual object T ∗ ∈ C can be seen as an A⊗A-A-bimodule, whose actions are
defined/denoted by:

Ã0:= 0

T ∗ A

, Â1:=

T ∗A

1 , Â2:=

T ∗A

2 . (24)

• α : T ⊗2 T ⇄ T ⊗1 T : α are A-A⊗ A⊗ A bimodule morphisms between two relative
tensor products of multimodules T , turning α, α into labels for the two point defects as
in Figures 4c–d. Here and below ⊗i denotes the relative tensor product over A where
A acts to the left by Ãi and to the right by Â0. Equivalently, α and α can be given by
balanced morphisms α: T ⊗ T → T ⊗ T , α: T ⊗ T → T ⊗ T in C, meaning that they
commute with various A-actions as follows:

T TA A A A
2
1

1
0

2

A

1
α

=
α

T TA A A A

0
2

2
10

A
0

,

α

A A A AT T

1
2

2
10

A

2

=
α

A A A AT T

2
1

1
0

0

A
0

. (25)
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A

(a)

A
A

T

T

A

(b)

T

T
T

α

T

(c)

T

T
T

T

α

(d)

A
ψ

(e)

φ

(f)

Figure 4: Defect configurations labelled by the entries of an orbifold datum.

• ψ: A → A is an A-A-bimodule isomorphism, i.e. a label for an invertible point defect

on an A-labelled 2-stratum, see Figure 4e. Acting with [1
η
−→ A

ψ
−→ A] on a multimod-

ule one obtains multimodule morphisms, which in the case of T we denote (assuming
i, j ∈ {0, 1,2} in the last equation):

ψ0 :=

T

A
0

ψ , ψ1 :=

T

A
ψ

1
, ψ2 :=

T

2
A
ψ , ψi, j :=ψ j ◦ψi . (26)

• φ ∈ |× is a scalar, i.e. a label for an invertible point defect on a canonically labelled
3-stratum, see Figure 4f.

Moreover, an orbifold datum has to satisfy conditions (O1)–(O8) listed in Appendix A as string
diagrams in Figure 22 and as surface diagrams in Figure 23.

Given an orbifold datum A in C, the internal state sum construction applied to the defect
TFT Zdef

C from Section 2.2 yields a symmetric monoidal functor

ZorbA
C :ÕBord3→ Vect| , (27)

whose construction we now review.
Given a bordism M : Σ → Σ′ in Bord3 one assigns to it an admissible 2-skeleton, i.e. a

stratification S such that its 3-strata are contractible and each point has a neighbourhood
which locally looks like one of the stratifications depicted in Figure 4a–d (see Figure 5a for an
example). One defines an admissible 1-skeleton of a surface in a similar way, for example S
restricts to admissible 1-skeleta Γ , Γ ′ on the boundary components Σ, Σ′. For an admissible
2-skeleton S of M , we denote by S(A) the A-decoration of S, which is obtained by assigning
the labels A, T , α, α respectively to 2-, 1- and positively/negatively oriented 0-strata of S
(Figure 4a–d), as well as using ψ and φ (Figure 4e,f) to perform the Euler completion on 2-
and 3-strata of S. The latter means that each 2-stratum F ⊆ S gets an additional point defect
labelled by ψχsym(F) and each 3-stratum U ⊆ S an additional point defect labelled by φχsym(U),
where χsym is the symmetric Euler characteristic of the corresponding stratum, defined as

χsym(−) := 2χ(−)−χ(−∩ ∂M) . (28)

15

https://scipost.org
https://scipost.org/SciPostPhys.17.3.088


SciPost Phys. 17, 088 (2024)

(a)

φ φ

ψ

ψ

ψ2
ψ2

ψ2

ψ2

φφ

φ φ

ψ ψ

ψ
ψ

ψ

ψ

ψ

ψ

ψ2

ψ2

ψ2
α α

αα

α

α

ψ2

φφ

(b)

Figure 5: (a) An admissible skeleton of a manifold (depicted for the cylinder of a torus
T2 × [0,1]). (b) Euler completion of 2- and 3-strata of an A-decorated admissible
skeleton by point insertions ψ and φ.

In particular, if e.g. F is contractible, it receives an additional ψ2-insertion if ∂M ∩ F =∅ and
a ψ-insertion otherwise (2-strata of an admissible skeleton can only intersect ∂M at a single
connected component), see Figure 5b for an illustration.

The internal state-sum TFT ZorbA
C is constructed as follows: Let S(A) denote the A-

decoration of an admissible 2-skeleton of a bordism M : Σ → Σ′ in Bord3. On the bound-
aries Σ, Σ′ it restricts to stratifications Γ (A), Γ ′(A), which we appropriately call A-decorations
of admissible 1-skeleta. We denote by (M , S(A)): (Σ, Γ (A))→ (Σ′, Γ ′(A)) the corresponding
stratified bordism in Borddef

3 (D
C). Evaluating it with the defect TFT Zdef

C one obtains the linear
map

ΨΓ
′

Γ (M) := Zdef
C (M , S(A)) : Zdef

C (Σ, Γ (A)) −→ Zdef
C (Σ

′, Γ ′(A)) . (29)

The notation ΨΓ
′

Γ (M) intentionally does not mention the admissible 2-skeleton S, as one has
(see [20, Thm. & Def. 3.10]):

Proposition 5. The linear mapsΨΓ
′

Γ (M) in (29) depend on the choice of S only at the boundary
of M , i.e. only on Γ , Γ ′.

This is a direct corollary to an orbifold datum A being subject to the identities (O1)–(O8)
upon evaluating with Zdef

C . Indeed they ensure that away from boundary the skeleton can be
modified by what we call the admissible BLT (bubble–lune–triangle) moves (see Figure 6); any
two skeletons restricting to Γ (A), Γ ′(A) at the boundary can be related by a finite sequence of
such moves [16, Thm. 2.12].

One can now define the functor ZorbA
C in (27) as follows:

• For a fixed surface Σ ∈ Bord3, let us abbreviate ΨΓ
′

Γ := ΨΓ
′

Γ (Σ × [0,1]). For three A-
decorated admissible 1-skeleta Γ , Γ ′, Γ ′′ one has by definition ΨΓ

′′

Γ ′ ◦ Ψ
Γ ′

Γ = Ψ
Γ ′′

Γ , i.e. the
set {ΨΓ

′

Γ }Γ ,Γ ′ forms a directed system of linear maps. One takes

ZorbA
C (Σ) := colimΓ ,Γ ′ Ψ

Γ ′

Γ . (30)

• For a morphism M : Σ→ Σ′ in Bord3, one takes

ZorbA
C (M) :=
�

ZorbA
C (Σ) ,→ Zdef

C (Σ, Γ (A))
ΨΓ
′
Γ (M)−−−−→ Zdef

C (Σ
′, Γ ′(A))↠ ZorbA

C (Σ′)
�

, (31)
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B
⇄

L
⇄

T
⇄

Figure 6: Bubble, lune and triangle (BLT) moves on admissible skeleta.

where the inclusion/projection morphisms in (31) come from the structure maps and
the universal property of the colimit in (30).

Let us list some properties and results on the TFT ZorbA
C .

1. Given a surface Σ ∈ Bord3 and an arbitrary admissible 1-skeleton Γ of Σ, the map ΨΓΓ
is an idempotent. An explicit choice for the colimit in (30) is given by its image so that
one has

ZorbA
C (Σ)∼= imΨΓΓ ⊆ Zdef

C (Σ, Γ (A)) . (32)

2. It was shown in [45] that given an orbifold datum A in a MFC C one can construct a
ribbon (multi)fusion category CA. In [16,17] it was shown how ZorbA

C can be generalised
to a TFT Bordrib

3 (CA)→ Vect|, i.e. having the source category of bordisms with embedded
CA-coloured ribbon graphs.

3. We call A simple if the aforementioned category CA is fusion, i.e. its monoidal unit is a
simple object. For a simple orbifold datum A in a MFC C, the category CA was shown
to be MFC as well (see [45, Thm. 3.17]). Moreover, fixing a square root of the global
dimension

p
DimC yields a canonical choice for the square root

p

DimCA. The orbifold
TFT is then equivalent to the corresponding RT TFT (see [17, Thm. 4.1]):

ZorbA
C
∼= ZRT

CA . (33)

In practice, ZorbA
C (M) is obtained by (i) picking an A-decorated admissible 2-skeleton S(A)

of M , (ii) converting it into a C-coloured ribbon graph as shown in Figure 3 and (iii) then
evaluating it with the RT TFT ZRT

C .

3 Internal Levin–Wen models

In this section we lay out the details of the main construction of this paper, that of an anyonic
lattice system in a topological phase described by a MFC C. In a nutshell, this is done by
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picking an orbifold datum A in C and taking the Hamiltonian of the system to be the sum of
commuting projectors, whose composition is precisely the idempotent (32), projecting on the
state-space, assigned by the internal state-sum TFT to the underlying surface containing the
lattice, which serves as the degenerate space of ground states of the system.

3.1 State space, Hamiltonian, ground state

The usual way to define a quantum-mechanical system is to give a pair (V, H) consisting of a
Hilbert space of states V and a Hamiltonian H : V → V , i.e. a self-adjoint operator describing
the evolution of states. In this paper we work with a simplified picture where V simply a vector
space and H a linear map.

Internal Levin–Wen data

We construct the internal Levin–Wen model from an input (C,A,Λ,γ, X ,π, ı,Σ, Γ ), where (in
the diagrams below, surfaces are drawn in paper plane orientation, i.e. as shown in Figure 4)

• C is a modular fusion category;

• A= (A, T,α,α,ψ,φ) is an orbifold datum in C;

• (Λ,γ): Λ is a left A-module and γ: Λ→ Λ is an A-module morphism such that the trace
trγ2, seen as a morphism A→ A in the category of A-A-bimodules, is equal toψ2 : A→ A,
or in terms of surface diagrams:

Λ
γ2

A

= ψ2

A

. (34)

• (X ,π, ι): X ∈ C is an object and

π : X ⇄ Λ∗ ⊗A T ⊗A⊗A (Λ⊗Λ) : ı (35)

are projection/inclusion morphisms, i.e. such that π ◦ ı = id and ı ◦ π is an idempo-
tent (i.e. π and ι split an idempotent of X projecting onto the relative tensor product
Λ∗ ⊗A T ⊗A⊗A (Λ⊗ Λ)); the morphisms π, ı and their duals ı∗, π∗ can be used to label
point defects with five adjacent lines labelled by X , T and Λ as well as three A-labelled
surfaces in the following configurations:

X

TΛ∗

π

Λ

Λ

A
A A

,

X

TΛ∗

ı

Λ

Λ
A

A
A

,

X ∗

T ∗ Λ

ı∗

Λ∗

Λ∗

A
AA

,

X ∗

T ∗ Λ

π∗

Λ∗

Λ∗
A

A
A

, (36)
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so that the idempotent splitting identities become

X

TΛ∗

ı

Λ

Λ

π

Λ

Λ

Λ∗ T

=

TΛ∗ Λ

Λ

,

Λ∗

Λ∗

Λ

ΛΛ∗

Λ∗

π∗
ı∗

X ∗

T

T

=

T ∗Λ∗
Λ∗

Λ

. (37)

• (Σ,Λ): Σ is a compact oriented surface and Γ ⊆ Σ is an admissible 1-skeleton. An
example of an admissible 1-skeleton Γ shown in a patch of Σ is

+
+

+−

−
−

. (38)

We review some examples of the above data in Section 3.2 and discuss the model for those
data in more detail in Section 5. For now let us just mention that the entries can be interpreted
as follows:

• C is the input for the RT TFT ZRT
C , which will serve as the ambient theory.2

• A is the main constituent in defining the lattice theory inside ZRT
C and determines the

degenerate ground state space of the model.

• (Σ, Γ ) is the topological datum for the lattice model. Roughly the vertices of Γ can be
thought of as the places for point excitations (anyons) on a surfaceΣ on which the theory
ZRT
C lives, and the edges of Γ indicate their entanglement, favoured by the Hamiltonian.

The other entries are in principle optional as one always has canonical choices for them. Choos-
ing to include them however provides one with a richer set of examples which moreover are
easier to compare with existing lattice models in the literature:

• (Λ,γ) will be used when defining the terms of the Hamiltonian constructed from the
edges of Γ . The orbifold datum A always provides one with the canonical choice Λ= A,
γ=ψ.

• (X ,π, ι) will be used to define the state space, as well as the terms of the Hamiltonian
constructed from the vertices of Γ . The orbifold datumA provides one with the canonical
choice X = T , π= ι = idT .

State space

The state space V ≡ VX of the model is defined as follows: Let Γ0 be the set of vertices (0-strata)
of Γ and for a vertex v ∈ Γ0 let |v| = ± denote its orientation. Γ0 also provides a stratification
of Σ by a set of oriented punctures. We denote by Γ0(X ) the labelled stratification, where each

2Technically the algebraic input for ZRT
C also includes a choice for the square root of the global dimensionp

DimC, but we will only use this TFT to evaluate bordisms with the underlying topology of a cylinder Σ× [0, 1],
in which case

p
DimC can be ignored.
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point v ∈ Γ0 ⊆ Σ has the label X |v| with X+ := X , X− := X ∗ as before. The state space of the
internal Levin–Wen model is then defined to be

V := Zdef
C (Σ, Γ0(X )) = ZRT

C (Σ, Γ0(X )) , (39)

i.e. it is the vector space assigned by the RT TFT to a surface with X - or X ∗-labelled punctures
at the vertices of Γ , cf. (1).

For explicit computations one can use the algebraic expression (14) for the RT TFT state
spaces (cf. Section 4 below). For example, assuming X to be self-dual, i.e. X ∼= X ∗, and Σ to
be the 2-sphere S2 results in V ∼= C(1, X⊗n), where n= |Γ0| is the number of vertices. In other
words, the dimension of V is the multiplicity of the trivial anyon 1 ∈ C in the n-fold fusion of
X -anyons. This illustrates the non-locality of the model as one cannot write V as U⊗n for some
vector space of states U assigned to each vertex (unless already X = 1⊕N ).

Hamiltonian

We now turn to defining the Hamiltonian H ≡ HA of the system. For each component
c ∈ Γ0 ⊔ Γ1 ⊔ Γ2 (i.e. vertex, edge, face) we will define a certain stratified cylinder

(Σ× [0,1], Sc): (Σ, Γ0(X ))→ (Σ, Γ0(X )) . (40)

To each such cylinder we can in turn assign a linear map

Pc := Zdef
C (Σ× [0, 1], Sc) ∈ End V , (41)

to which we will refer as the projector of the component c. The total Hamiltonian of the system
is then defined to be

H =
∑

c∈Γ0⊔Γ1⊔Γ2

(1− Pc) =
∑

v∈Γ0

(1− Pv) +
∑

e∈Γ1

(1− Pe) +
∑

f ∈Γ2

(1− Pf )

= HV +HE +HF , (42)

where we have grouped the summands into the vertex, edge and face Hamiltonians HV, HE
and HF respectively. The summands of the identity in (42) are only to ensure that the ground
state energy of the system is zero, omitting them does not change the model.

It remains to define the stratifications Sc as in (40) for each component in Γ0 ⊔ Γ1 ⊔ Γ2:

• for a vertex v ∈ Γ0, Sv consists of parallel X - or X ∗-labelled lines Γ0(X )× [0,1] with two
additional point insertions on the line v × [0,1] labelled with π and ı if |v| = + and ı∗

and π∗ if |v|= −, whose neighbourhoods are as in (36), see Figure 7a;

• for an edge e ∈ Γ1 connecting source and target vertices vs, vt ∈ Γ0, one constructs Se by
similarly adding π and ı insertions on vs × [0, 1] and vt × [0, 1] and then cross-joining
the Λ-lines as well as the A-surfaces which lie on the strip ei × [0,1], on which one also
adds a ψ−2-insertion, see Figure 7b;

• for a face f ∈ Γ2 bounding a vertex-edge chain v1
e1−→ v2 . . .

el−1−−→ vl = v1 the stratification
S f is obtained by first cross-joining the lines vi × [0, 1] and vi+1× [0,1] along the edges
ei as it was done for Sei

, and then inserting a horizontal A-labelled surface with a ψ2-
insertion, which joins the previous network of defects at T -labelled lines and α- or α-
labelled points as shown in Figure 7c.
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Proposition 6. The maps Pc , Pc′ commute for all components c, c′ ∈ Γ0 ⊔ Γ1 ⊔ Γ2. Moreover, if
c′ ⊆ c then Pc ◦ Pc′ = Pc′ ◦ Pc = Pc , in particular all Pc are idempotents.

Proof. It is clear that the vertex projectors Pv , v ∈ Γ0 commute, as they are defined by the
networks of defects as in Figure 7a, which are localised around the strips v×[0,1] of Σ×[0,1]
and upon composing Pv′ ◦Pv can be moved pass each other. That they are idempotents follows
from the identities (37).

The commutation of the edge projectors Pe, e ∈ Γ1 can again be shown using (37). For
example, in the case of two edges sharing a vertex, one first joins the Λ-lines and the A-surfaces
and then deforms the resulting network of defects, see Figure 8a, at which point the insertion
of the identity (37) allows one to separate them again. If v ∈ Γ0 is either the source or the
target vertex of e, a similar argument can be used to show that Pe “absorbs” Pv , i.e. one has
the identity Pe ◦ Pv = Pv ◦ Pe = Pe. The idempotent property of Pe follows from (37) and (34)
as illustrated in Figure 8b.

That the face projectors Pf , f ∈ Γ2 commute with each other can be shown using the
identities (O1)–(O8) defining an orbifold datum, which, as mentioned in Section 2.3, can
equivalently be seen as implying the oriented BLT moves on the skeleta, shown in Figure 6.
For example, in the case of two faces sharing an edge, part of the computation showing the
commutativity is sketched in Figure 8c, where the labels for strata and theψ- and φ-insertions
are omitted for brevity. Identities (37) and a similar computation as in Figure 8b show that
Pf “absorbs” the projectors of the components c′ ⊊ f . Finally, one can show that Pf is an

X ∗ X X

T
Λ

Λ

Λ

π

ı

(a)

X ∗ X

T

Λ
Λ

Λ

π

ı
Λ

Λ

Λ

ı∗

π∗

T

γ

γ
ψ−2

(b)

φ

ψ2

φ

α α

γ

γ

πı∗

ıπ∗

T

Λ

Λ

(c)

Figure 7: Examples of stratified cylinders (Σ × [0,1], Sc) for the component c of
Γ being (a) a vertex (b) an edge (c) a face. Only the relevant patch of Σ× [0, 1] is
shown. Evaluating these cylinders with the defect TFT Zdef

C one obtains the projectors
Pc used in the Hamiltonian (42). The orientations of surfaces are as in Figure 4, in
particular here they coincide with the paper plane orientation.
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X X

ıγ
ψ−2

π

X X

X

X

ψ−2

γ
⇝

X X

γ
ψ−2

X X

X

X

ψ−2

γ ⇝

X X

γ

ψ−2

X X

X

X

ψ−2
γ

(a)

X ∗ X

ıΛπ
∗ γ
ψ−2

Λ πı∗ γ
ψ−2

X ∗ X

⇝

X ∗ X

ψ−4

X ∗ X

γ2

(b)

⇝ ⇝

(c)

Figure 8: Sketches for computations showing that (a) edge projectors commute; (b)
edge projectors are indeed idempotents; (c) face projectors commute.

idempotent as follows: one makes the top horizontal defect “crawl” onto the bottom one using
the L (or (O2)–(O7)) and T (or (O1)) moves and in the end removes the newly created bubble
defect using the B (or (O8)) move. An instance of this computation is shown in Figure 9.

Remark 7. As explained in Section 2.2, the defect TFT Zdef
C works by replacing the stratification

with a ribbon graph and evaluating with ZRT
C (see Figure 3). Let us make the choice Λ= A, in

which case γ =ψ and Λ⊗A T ⊗A⊗A (Λ⊗Λ) ∼= T . The stratified cylinders in Figures 7b and 7c
defining the maps Pe and Pf become the cylinders with ribbon graphs sketched in Figure 10.
In Figure 10b, the φ-labelled points become scalar factors upon evaluation with ZRT

C , and the
ψ2

1-insertion uses the notation (26).

Ground state

Let V0 ⊆ V be the subspace of ground states of an internal Levin–Wen model (C,A,Λ,γ,
X ,π, ι,Σ, Γ ), i.e. the 0-eigenspace of the Hamiltonian (42). At the heart of the construction of
the internal Levin–Wen models is the following relation to the internal state-sum TFT ZorbA

C
from Section 2.3.
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Figure 9: Computation showing that Pf is an idempotent.
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Figure 10: Examples of ribbon graphs replacing the stratifications for edge and face
projectors in Figures 7b and 7c under assumptions Λ= A, γ=ψ.
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Theorem 8. One has an isomorphism of vector spaces

V0
∼= ZorbA

C (Σ) . (43)

Proof. It follows from Proposition 6 that the maps Pc for each component c ∈ Γ0 ⊔ Γ1 ⊔ Γ2 are
simultaneously diagonalisable and can only have 0 and 1 as eigenvalues. The form (42) of the
Hamiltonian then in turn implies that the subspace V0 ⊆ V is the common eigenspace of all
Pc ’s corresponding to the eigenvalue 1, or equivalently

V0 =
⋂

c∈Γ0⊔Γ1⊔Γ2

im Pc = im
∏

c∈Γ0⊔Γ1⊔Γ2

Pc = im
∏

f ∈Γ2

Pf , (44)

where in the second equality we used that Pc ’s are commuting idempotents and in the third
that the vertex and the edge projectors are absorbed by the face projectors. In terms of the
defect TFT Zdef

C , the map on the right-hand side of (44) is obtained by evaluating the cylinder
Σ× [0,1] filled with the networks of defects as in Figure 7c for each face f ∈ Γ2, which upon
evaluating can be joined into a connected network of defects by a similar computation as in
Figure 8b, which then looks exactly like an admissible A-decorated skeleton of Σ× [0, 1] (cf.
Figure 5), except near the boundary components {0} × Σ, {1} × Σ, where it has X -labelled
lines, Λ-labelled arcs with γ-insertions and π±-, ı±-labelled points. Let us define the maps

m : Zdef
C (Σ, Γ0(X ))⇄ Zdef

C (Σ, Γ (A)) : c , (45)

by collecting the latter near-boundary strata and adding a ψ−1-insertion to every A-labelled
surface adjacent to a Λ-labelled line. Again using a similar calculation as in Figure 8b one then
gets the identity m ◦ c = id. Furthermore, by functoriality of Zdef

C , one obtains the decomposi-
tion

∏

f ∈Γ2

Pf = c ◦ ΨΓΓ ◦ m , (46)

where ΨΓΓ is as in (29). Altogether, one has

V0 = im
∏

f ∈Γ2

Pf
∼= imΨΓΓ , (47)

where in the second step we used that c is injective and that m is surjective. The statement of
the theorem now follows from (32).

Recall from Section 2.3 that from the MFC C and the orbifold datum A one obtains a new
MFC CA. If we combine the above theorem with the isomorphism of TFTs in (33), we get the
isomorphism of vector spaces

V0
∼= ZRT

CA (Σ) . (48)

This lends strong support to the claim that the Hamiltonian H and its ground states V0 describe
the topological phase CA. Indeed, we expect CA to describe the anyonic excitations of the
model. This is true for the examples discussed in Section 5.

By the results of [47], any other MFC which is Witt-equivalent to C can be obtained as CA
for an orbifold datum A in C. In this sense, the internal Levin-Wen models are universal for a
given Witt class.

3.2 Examples of internal Levin–Wen data

Let us now look at some of the examples of the input datum (C,A,Λ,γ, X ,π, ι,Σ, Γ ) defining
an internal Levin–Wen model. We keep the surface Σ and the graph Γ ⊆ Σ arbitrary and focus
on the algebraic entries needed to define the Hamiltonian (42), most importantly the orbifold
datumA in the MFC C. The Hamiltonian itself will be computed in the more detailed treatment
of these examples in Section 5.
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3.2.1 Condensable algebras

As usual, a commutative algebra A∈ C is defined using the braiding of C via the condition

A A

A

=

A A

A

=

A A

A

, (49)

where either equality implies the other. A commutative Frobenius algebra A is automatically
cocommutative (i.e. analogous identities as in (49) hold for the comultiplication). A com-
mutative symmetric ∆-separable Frobenius algebra A in a MFC C is called condensable if it
is in addition haploid, i.e. one has dimC(1, A) = 1. A condensable algebra A ∈ C yields the
following simple orbifold datum [22, Prop. 3.4]:

A =
�

A, T = A, α= α=

A A

AA

, ψ= idA, φ = 1
�

, (50)

where the actions (22) are by multiplication with the multimodule identity (23) implied by
the commutativity of A. We expressed α, α as balanced maps and the property (25) again
holds by commutativity.

To obtain from (50) an internal Levin–Wen datum, one chooses the remaining entries
canonically. The resulting model is summarised in Table 1.

It was shown in [45] that in this case the MFC CA is equivalent to the category Cloc
A of local

modules of the commutative algebra A∈ C. See e.g. [26] for more on local modules and [38]
for how Cloc

A arises from condensing A in the context of topological phases of matter.

3.2.2 Internal Levin–Wen data from a spherical fusion category

In this section we will construct internal Levin–Wen data in C = Vect| from a spherical fu-
sion category S. The orbifold datum AS associated to S is the one from [22, Prop. 4.2], [45,
Sec. 4.2] where it was also shown that the generalised orbifold TFT (27) is isomorphic to the
Turaev–Viro–Barrett–Westbury-TFT from S - or alternatively the MFC CAS associated to AS is
equivalent to the Drinfeld centre Z(S). We will review this orbifold datum here and extend it
to an internal Levin–Wen datum.

Let I = IrrS denote a set of representatives of the irreducibles of S as in (11). We define
T and T ∗ as direct sums of Hom-spaces

T := ⊕i, j,k∈IS (k, i j) , T ∗ := ⊕i, j,k∈IS (i j, k) . (51)

Table 1: Internal Levin-Wen model data from a condensable algebra A.

MFC C arbitrary

Frob. alg. A a condensable algebra in C
T,α,α,ψ,φ as in (50)

Λ,γ A as left module over itself, idA

X ,π, ι A, idA, idA
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The trace pairing establishes T and T ∗ as dual to each other:

ev: T ∗ ⊗ T → | , bγ⊗µ 7→ trS (bγ ◦µ) = i jk

bγ

µ

,

coev: |→ T ⊗ T ∗ , 1| 7→
∑

λ

λ⊗ bλ . (52)

Here the first expression is only defined for compatible µ and bγ, i.e. µ ∈ S (k, i ⊗ j) and
bγ ∈ S (i ⊗ j, k), and the second expression is understood as a sum over dual bases. If µ and bγ
are non-compatible, i.e. if the codomain of µ does not coincide with the domain of bγ or vice
versa, we define ev(bγ⊗µ) = 0.

For elements λ: c → a ⊗ b, µ: b → d ⊗ e in T and bγ: f ⊗ e → c, bδ : a ⊗ d → f in T ∗, we
define the F -symbol and F for similarly compatible morphisms ρ,τ ∈ T and bθ , bη ∈ T ∗

Fλbγ
µbδ
=

bγ

bδ

µ

λ

f

, F
ρ bθ

τbη =
τ

ρ

c

bθ

bη

. (53)

Here f is the codomain of bδ and c is the domain of bη. We extend F and F to non-compatible
morphisms, λ,µ, . . . by setting it 0. For compatible basis elements λ,µ ∈ T and dual basis
elements cλ′′,cµ′′ ∈ T ∗ we have the following invertibility condition:

∑

λ′,µ′
d f dc F

µ′cλ′′

λ′cµ′′
Fλ
Òµ′

µÒλ′
=

¨

1 , if λ′′ = λ, µ′′ = µ ,

0 , otherwise.
(54)

We can now give the orbifold datum AS in C = Vect| (cf. [22, Prop. 4.3], [45, Sec. 4.2]):

A :=
⊕

i∈I

| (direct sum of trivial Frobenius algebras) , (55a)

T :=
⊕

i, j,k∈I

S(k, i j) , (55b)

α: λ⊗µ 7→
∑

λ′,µ′
Fλ
Òµ′

µÒλ′
·µ′ ⊗λ′ , (55c)

α: λ′ ⊗µ′ 7→
∑

λ′′,µ′′
, F
λ′cµ′′

µ′cλ′′
·µ′′ ⊗λ′′ , (55d)

ψ2 := diag(di)i∈I := ⊕i∈I di · idi (ψ is a choice of square root) , (55e)

φ2 :=
1

DimS
=
�

∑

i∈I

d2
i

�−1

(φ is a choice of square root) . (55f)

The A-A⊗A bimodule structure on T is taken to be such that, denoting 1i ∈ A, i ∈ I the unit of
the i-th copy of | in A, the action by 1k-1i ⊗ 1 j projects onto S(k, i j) ⊆ A.

We extend this to an internal Levin–Wen datum by taking

Λ= A as a left-regular module over itself, with γ=ψ , (55g)

X =
⊕

i, j,k∈I

x , (55h)
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Table 2: Internal Levin-Wen model data from a spherical fusion category S.

MFC C Vect|

Frob. alg. A
⊕

i∈I |

T
⊕

i, j,k∈I S(k, i j)

α, α given by F -symbols (55c), (55d)

ψ2 diag(di)i∈I

φ2 (DimS)−1 =
�∑

i∈I d2
i

�−1

Λ,γ Λ= A with left regular action, γ=ψ

X
⊕

i, j,k∈I x

π, ι sums of splittings id : S (k, i j)
ιi jk
→ x

πi jk
→ S (k, i j)

where x = |N and N is the maximum multiplicity of simples in all the i ⊗ j, i.e.

N = max
i, j,k∈I

dim ,S (k, i j) . (56)

We then choose mono- and epimorphisms

S(k, i j)
ιi jk
→ x , x

πi jk
→ S(k, i j) , (57)

for i, j, k ∈ I = IrrS satisfying πi jk ◦ ιi jk = id. Having Λ = A we can identify
T = Λ ⊗A T ⊗A⊗A (Λ ⊗ Λ). In turn, this allows us to take the direct sums of the ιi jk and
πi jk for ι : T → X ,π : X → T .

An overview of the orbifold data from a spherical fusion category and the additional data
for the internal Levin–Wen model is given in Table 2. In Section 5.2 we will show how to
obtain the original Levin–Wen model using this data.

3.2.3 Internal Levin–Wen data from Hopf algebras

In this section we present an internal Levin–Wen datum constructed from a semisimple, finite-
dimensional Hopf algebra K in Vect|, where | is an algebraically closed field of characteristic
0. In Section 5.3 we illustrate how the internal Levin–Wen model for this datum recovers the
Kitaev model based on K .

Prerequisites on Hopf algebras

We start by reviewing some prerequisites on Hopf algebras. For more details and proofs, con-
sider e.g. [44, 49]. For the remainder of this section we denote K = (K ,µ,η,∆Ho,ϵHo, S) a
semisimple, finite-dimensional Hopf algebra over C with multiplication µ, unit η, comultipli-
cation ∆Ho, counit ϵHo and antipode S. Since below we will also make use of the canonical
Frobenius algebra structure on K , in this section we write∆Ho, ϵHo for the coalgebra structure
leading to a Hopf algebra, and∆Fr, ϵFr for that of the Frobenius algebra (see below for explicit
expressions).

We use Sweedler notation ∆Ho(h) = h(1) ⊗ h(2) for the comultiplication of K and denote
1K the unit element of K . Since the Hopf algebra K is semisimple, it has a unique normalised
Haar integral λ ∈ K and cointegral

∫
: K → |. They are defined by the properties

hλ= ϵHo(h)λ= λh , ϵHo(λ) = 1=
∫
(1K) ,∫

(h(1)) · h(2) =
∫
(h) · 1K =

∫
(h(2)) · h(1) , (58)
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for any h ∈ K . The Haar (co-)integrals fulfil some useful identities, in particular we have for
h, k ∈ K:

λ(1) ⊗λ(2) = λ(2) ⊗λ(1) ,
∫
(hk) =

∫
(kh) , (59a)

hλ(1) ⊗λ(2) = λ(1) ⊗ S(h)λ(2) , λ(1)h⊗λ(2) = λ(1) ⊗λ(2)S(h) , (59b)
∫
◦S =
∫

, S(λ) = λ ,
∫
(λ) =

1
|K |

, (59c)

where we write |K | := dim| K . Associated to the Hopf algebra K there is a ∆-separable,
symmetric Frobenius algebra structure A= KFr = (K ,µ,η,∆Fr,ϵFr) on the vector space K with
the same multiplication µ and unit η as the Hopf algebra K . The comultiplication and the
counit are given by

∆Fr : K → K ⊗ K , ϵFr : K → | ,

h 7→ hλ(1) ⊗ S(λ(2)) , h 7→ |K | ·
∫
(h) . (60)

The fact that λ is normalised (i.e. ϵHo(λ) = 1) ensures that KFr is ∆-separable and symmetry
follows from the cyclic invariance of

∫
in (59a). This is the Frobenius algebra A used for the

orbifold datum (21) defined in this section.

Orbifold data from Hopf algebras

For the (A, A⊗ A)-bimodule T of the orbifold datum we take the vector space T = K ⊗ K with
the K-actions:

Â0 : A⊗ T → T , hÂ0 [m⊗ n] = h(2)m⊗ h(1)n ,

Ã1 : T ⊗ A→ T , [m⊗ n]Ã1 h= mh⊗ n ,

Ã2 : T ⊗ A→ T , [m⊗ n]Ã2 h= m⊗ nh . (61)

Here and in the following we distinguish the two copies of K in T = K ⊗ K in a larger tensor
product by putting them in square brackets.

We consider the relative tensor products T ⊗1 T, T ⊗2 T as subspaces of T ⊗ T = K⊗4 by
identifying them with the images of the corresponding idempotents (18). Explicitly, these
images are given by

T ⊗1 T =
��

aS(λ(1))⊗ b
�

⊗
�

λ(3)c ⊗λ(2)d
�

| a, b, c, d ∈ K
	

,

T ⊗2 T =
��

a⊗ bS(λ(1))
�

⊗
�

λ(3)c ⊗λ(2)d
�

| a, b, c, d ∈ K
	

. (62)

We now define the maps α,α as balanced maps:

α: T ⊗ T → T ⊗1 T ⊆ T ⊗ T ,

[a⊗ b]⊗ [c ⊗ d] 7→
�

S(λ(1))⊗ b(1)d
�

⊗
�

λ(3)a⊗λ(2)b(2)c
�

,

α: T ⊗ T → T ⊗2 T ⊆ T ⊗ T ,

[a⊗ b]⊗ [c ⊗ d] 7→
�

a(2)c ⊗ S(λ(1))
�

⊗
�

λ(3)a(1)d ⊗λ(2)b
�

. (63)

The remaining parts of the orbifold data are defined by ψ= idK and φ = 1p
dim K

. The proof of
the following proposition is given in Appendix B.
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Table 3: Internal Levin-Wen model data from a semisimple Hopf algebra K .

MFC C Vect|

Frob. alg. A KFr

T K⊗2 with the K-actions (61)

α, α (63)

ψ idK

φ 1p
dimK

Λ,γ Λ= K with left regular K-action, γ= idK

X , X ∗,π, ι K⊗3 (64)

Proposition 9. The tuple (A= KFr, T,α,α,ψ,φ) is an orbifold datum.

We now extend this orbifold datum to an internal Levin–Wen datum by providing the
remaining entries (Λ,γ, X ,π, ι). For the left A-module Λ we simply take Λ = K with the left
regular K-action on itself. This allows us to identify T = Λ∗ ⊗A T ⊗A⊗A (Λ⊗Λ). We also take
γ= idK . Finally, we choose X = K ⊗ K ⊗ K together with the maps:

π: X → T , ι : T → X ,

a⊗ b⊗ c 7→ a(2)b⊗ a(1)c , b⊗ c 7→ S(λ(1))⊗λ(3)b⊗λ(2)c . (64)

A direct computation using the normalisation of the Haar integral shows that π ◦ ι = idT .
We define the dual objects K∗, T ∗, X ∗ using the (co-)integrals of K , instead of just taking the

dual vector space - this allows us to relate them to the Kitaev model more easily. In particular,
we set K∗ = K as vector space, together with the (co-)evaluation maps given by the Frobenius
(co)pairing on K:

coev: |→ K ⊗ K∗ , ev: K∗ ⊗ K → | ,

1 7→∆Fr(1K) , h⊗ k 7→ ϵFr(hk) . (65)

Similarly we set T ∗ = K ⊗K and X ∗ = K ⊗K ⊗K , with (co-)evaluation maps induced by those
of K . The dual K-actions on T ∗ from (24) can be shown to be

Ã0 : T ∗ ⊗ K → T ∗ , [m⊗ n]Ã0 h= mh(2) ⊗ nh(1) ,

Â1 : T ∗ ⊗ K → T ∗ , hÂ1 [m⊗ n] = hm⊗ n ,

Â2 : T ∗ ⊗ K → T ∗ , hÂ2 [m⊗ n] = m⊗ hn . (66)

The maps dual to π and ι are

ι∗ : X ∗→ T ∗ , π∗ : T ∗→ X ∗ ,

a⊗ b⊗ c 7→ ba(2) ⊗ ca(1) , b⊗ c 7→ λ(1) ⊗ bS(λ(2))⊗ cS(λ(3)) . (67)

An overview of the orbifold datum from a finite-dimensional semisimple Hopf algebra and
the additional datum for the internal Levin–Wen model is given in Table 3.

Remark 10. The MFC CA for the orbifold datum A defined in this section is equivalent to the
category of K-Yetter-Drinfeld modules or the category of D(K)-modules for the Drinfeld double
D(K). We do not show this here, but only give a quick sketch: (i) The category CA as defined
in [45] can be shown to be the category of so called K-Hopf bimodules - the two K-coactions
can be derived from the maps τ1 and τ2 from [45]; (ii) The category of K-Hopf bimodules
was shown to be monoidally equivalent to the category of K-Yetter–Drinfeld modules in [52].
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Figure 11: (a) The standard surface Σg,n ⊆ R3 with the genus g = 2 and the number
of punctures n = 3, defined as the boundary of the standard handlebody in R3. (b)
The standard handlebody Mg,n( f )with embedded ribbon graph and coupon labelled
by f ∈ C(1, X X ∗X L⊗2).

4 Explicit computations

In the previous section we defined the internal Levin–Wen model in terms of the defect TFT
Zdef
C . This definition allowed us to use the graphical calculus of surface diagrams, which made

it easy to demonstrate some of the properties of the model (e.g. that the face projectors Pf are
idempotents, see Figure 9). Any explicit computation however requires unpacking both the
definition of Zdef

C , and that of the TFT with embedded ribbon graphs ZRT
C . Even though this is

a standard procedure as summarised in Section 2.2, it is illustrative to explain it in the context
of our lattice model. In this section we describe how to compute the projectors in general
(Section 4.1) as well as work out the concrete linear maps for three examples of edges and an
example of a hexagonal face on a 2-torus (Section 4.2).

4.1 Projector maps explicitly

Let (C,A,Λ,γ, X ,π, ı,Σ, Γ ) be an internal Levin–Wen datum. Throughout this section we use
the simplifying assumptions Λ = A, so that one can take γ = ψ and Λ⊗A T ⊗A⊗A (Λ⊗Λ) ∼= T
as in Remark 7.

The state space as a Hom-space

Here we construct an isomorphism Φ between the state space V = ZRT
C (Σ, Γ0(X )) from (39) and

a Hom-space of C of the form (14). Let Σg,n be the standard genus g surface with n-punctures,
defined as a subspace of R3 as in Figure 11a. The isomorphism Φ is determined by a choice of
a homeomorphism

ϕ : Σg,n −→ (Σ, Γ0(X )) . (68)

Note that this automatically fixes an order on the set of vertices: Γ0 = {v1, . . . , vn}.
Recall from (13) that L =

⊕

i∈IrrC i ⊗ i∗ ∈ C. In what follows it will be useful to introduce
the object C =
⊕

i∈IrrC i, so that L is a subobject of C ⊗ C∗ with the projection/inclusion maps
L⇄ C ⊗ C∗ denoted by

C C∗

L

,

C C∗

L

. (69)
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Consider the handlebody Mg,n( f ) in Figure 11b. The coupon is labelled by a morphism
f ∈ C(1, X |v1| · · ·X |vn|L⊗g). As a bordism in Bordrib

3 (C), we have Mg,n( f ): ∅ → Σg,n. Denote
by Cϕ : Σg,n→ (Σ, Γ0(X )) the mapping cylinder for ϕ. The isomorphism

Φ: C(1, X |v1| · · ·X |vn|L⊗g) −→ ZRT
C (Σ, Γ0(X )) = V , (70)

is given by

Φ( f ) =

�

C(1, X |v1| · · ·X |vn|L⊗g)
ZRT
C (Mg,n( f ))
−−−−−−−→ ZRT

C (Σg,n)
ZRT
C (Cϕ)−−−−→ ZRT

C (Σ, Γ0(X ))

�

. (71)

That this is indeed an isomorphism is one of the properties of RT TFT as discussed in Sec-
tion 2.1. By abuse of notation we will use Φ to identify V with the Hom-space which is the
domain of Φ. We will comment on the irrelevance of the choice of ϕ in Remark 12 below.

The remainder of this section is devoted to describing the projectors Pc : V → V in (41) by
expressing them as linear maps of the form (15), i.e. as post-composition with an appropriate
endomorphism,

Pc( f ) = Ωc ◦ f , for some Ωc ∈ EndC(X
|v1| · · ·X |vn|L⊗g) . (72)

For a morphism h: Q→ R let us write h+ := h and h− := h∗ : R∗→Q∗, the dual morphism.
For a vertex vi ∈ Γ0 the endomorphism Ωvi

giving rise to the vertex projector is particularly
simple:

Ωvi
= idX |v1 | ⊗· · · ⊗ (ı ◦π)|vi | ⊗ · · · ⊗ idX |vn | ⊗ idL⊗g . (73)

Edge and face projectors will turn out to be more involved and will need extra preparation.

The half-braiding of L

The object L ∈ C has natural half-braiding morphisms γ = {γX : X ⊗ L
∼
−→ L ⊗ X }X∈C , defined

by

⊕

i, j∈IrrC

∑

q
bX i j

q bX i j
q
∗

i i∗X

Xj j∗

=
∑

p

X L

L X

bX
p bX

p
∗

CC
, (74)

where {bX i j
q } forms a basis of C(X i, j) and {bX i j

q } is its dual basis of C( j, X i) with respect to
the composition pairing, i.e. one has

bX i j
q′ ◦ bX i j

q = δqq′ · id j ,
∑

j,q

bX i j
q ◦ bX i j

q′ = idX i , (75)

and on the right-hand side of (74) we have collected the index triple (i, j, q) into a single index
p and introduced the morphisms

bX
p = [X C ↠ X i

bX i j
q
−−→ j ,→ C] , bX

p = [C ↠ j
bX i j

q
−−→ X i ,→ X C] . (76)

This makes the pair (L,γ) an object of the Drinfeld centre Z(C). See e.g. [10, Sec. 9] and [5,
Thm. 2.3] for more details on this half-braiding.
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Transporting a puncture along a path

To proceed further we will find it convenient to have an explicit description of the action of
some mapping class groupoid elements on the vector space (14). In particular, we look at how
to permute the punctures by moving one of them along a path.

To this end, let γ: [0, 1] → Σg,n be a simple path between two punctures, i.e. such that
γ(0) = v j , γ(1) = vk and γ((0, 1)) does not contain any punctures and has no self-intersections.
Furthermore, we assume the tangent vectors γ̇(0), γ̇(1) of γ at points v j and vk not to lie on the
y-axis in the conventions of Figure 11a, i.e. one can unambiguously say whether γ leaves v j to
the left or right, and whether it approaches vk from the left or right. This is to account for the
framing dependence of the punctures when moving them along a path (cf. Figure 12a). Define
a permutation τγ on [n] = {1, 2, . . . , n} as follows: set ε= +1 if γ̇x(1)< 0 and−1 if γ̇x(1)> 0;
take the map eτ: [n]→ 1

2Z to be eτ( j) = k + ε1
2 and id on [n] \ { j}; then τ is the composition

of eτ with the unique order preserving map im eτ→ [n] (for example, the permutation for the
path in Figure 12a sends (1,2, 3) to (2,1, 3)). The aforementioned element of the mapping
class groupoid then has the action whose form is

C(1, X |v1|
1 · · ·X

|vn|
n L⊗g) → C(1, X

|v
τ-1
γ 1|

τ-1
γ 1 · · ·X

|v
τ-1
γ n|

τ-1
γ n L⊗g) ,

f 7→ σγ(X
|v1|
1 , . . . , X |vn|

n ) ◦ f ,
(77)

where σγ is a certain natural transformation between two functors C⊠n→ C

σγ : ((−)⊗n ⊗ L⊗g)⇒ ((−)⊗n ◦τγ)⊗ L⊗g) , (78)

with (−)⊗n : C⊠n → C denoting the n-fold tensor product functor and τγ being interpreted as
the permutation endofunctor on C⊠n.

The maps σγ can be obtained as follows: Take the puncture v j ∈ Γ0 on the standard han-
dlebody as in Figure 11b and move it along the path γ while shifting the other punctures so
that at the end of the move they are in the standard positions. The strand connected to v j will
then braid with the other strands connected to the coupon f , as well as with the C-labelled
strands at the cores of the handles. This braiding pattern is what constitutes the map σγ and,
depending on γ, can come as a concatenation of simple paths of three types:

• γ does not wrap around a handle. Assuming that γ passes neither through nor over the
arc of a handle, allσγ does is braid the strand at the end of the puncture v j with the other
punctures and possibly the L-labelled strands assigned to the handles as in Figure 11b.
Note that because of the framing the strand of v j might acquire twists. An example is
shown in Figure 12a.

• γ wraps around the meridian of a handle. If γ passes through the arc of a handle, the
L-labelled strand is split into a pair of C- and C∗-labelled strands using the inclusion
morphism L→ CC∗ (see (69)), which then braid with the strand of v j and get projected
back onto L as in Figure 12b.

• γ wraps around the parallel of a handle. If γ passes over the arc of a handle, σγ incor-
porates the halfbraiding (74) of the object L ∈ C. This is because after moving v j along
γ, the strand at the end of it will have a segment which is parallel to one of the C-
labelled arcs as in Figure 11b, at which point one can utilise (76) and (75) as illustrated
in Figure 12c.

For later convenience, we also introduce what could be called the “γ-twisted associator” natural
transformation between two functors C⊠(n+1)→ C

aγ : ((−)⊗(n+1) ⊗ L⊗g)⇒ ((−)⊗n ◦τγ)⊗ L⊗g) ◦ ⊗ j, j+1 , (79)
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⇝
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C
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Figure 12: Three types of paths to transport punctures on the standard surface.
(a) first type braids the punctures away from handles; (b) second type transports
a puncture through a handle; (c) third type transports a puncture over a handle
(here the sum over the (multi-)index p is implied, see (74)–(76)). The ribbon graph
embedded into the standard handlebody is modified as shown. A generic path can
be composed from the paths of these three types.

where ⊗ j, j+1 : C⊠(n+1)→ C⊠n is the functor taking the tensor product of j and ( j+1) ⊠-factors,
as follows:

aγ(X1, . . . , Y, X j , . . . , Xn)

:= σ−1
γ (X1, . . . , X j , . . . , (XkY ), . . . Xn) ◦σγ(X1, . . . , (Y X j), . . . , Xk, . . . Xn) . (80)

Precomposing with aγ has the effect of i) unfusing the (Y X j)-labelled puncture into separate
Y - and X j-labelled punctures next to each other; ii) transporting Y away from X j and next to
Xk along the path γ, while leaving X j and Xk in their positions; iii) fusing Y and Xk into a
single (XkY )-labelled puncture:

X1 X j Xk XnY

X1 X j Xk Y Xn

... ... ...

... ... ...

L⊗g

L⊗g

=

X1 X j Xk XnY

X1 X j Xk Y Xn

... ...... ...

... ... ...

L⊗g

L⊗g

. (81)

When using aγ we will usually omit all the arguments except for that of the object, labelling
the puncture which is being transported, assuming that the others are clear from the context,
for example:

aγ(Y ) = aγ(X1, . . . , Y, X j , . . . , Xn) , a−1
γ (Y ) = a−1

γ (X1, . . . , Y, X j , . . . , Xn) . (82)
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Remark 11. As we will see below, the natural transformations aγ do appear in the explicit
expression of the Hamiltonian of the internal Levin–Wen model introduced in Section 3. The
use of aγ reflects the fact that the ambient topological phase C is already a non-local anyonic
model, as it involves the braiding of the MFC C. In the special case of the trivial MFC C = Vect|,
the maps σγ and aγ depend only on the permutation τγ and not explicitly on the path γ, i.e.
all they do is permute the tensor factors.

Edge projectors

Let e be an edge of Γ with the source and the target vertices v j and vk, respectively. Recall
from Remark 7 that in terms of the TFT ZRT

C , the edge projector Pe is obtained by evaluating a
cylinder with a ribbon graph similar to the one in Figure 10a. As explained in the beginning
of the section, one obtains the map Pe in the form (72) by taking the surface Σ to be the
standard surface as in Figure 11a. This puts the endpoints of the X±-labelled strands in the
standard positions and the horizontal A-labelled strand within the strip e×[0,1] of the cylinder
Σ×[0,1]. We assume that on the standard surface each vertex of Γ has one of the two possible
neighbourhoods

x
+

0
1

2

,
−

1

2

0 x , (83)

in particular so that each edge starts ‘to the left’ of a vertex and ends ‘from the right’, with
the 0-labelled edge starting/ending on the x-axis. The indexing of the half-edges in (83) is
introduced as a convention to be the same as that of A-actions Â0, Ã1, Ã2 on T and Ã0, Â1,
Â2 on T ∗ (see (22), (24)). We set s(e), t(e) ∈ {0, 1,2} to be the indices of the edge e at the
source and the target respectively (note that s(e) = 0 is only possible if |v j| = + and t(e) = 0
is only possible if |vk|= −).

One defines the morphism Ωe in (72) as follows:

Ωe = (idX |v1 | ⊗· · · ⊗ ı|vk| ⊗ · · · ⊗ ı|v j | ⊗ · · · ⊗ idX |vn |) (84a)

◦ (idX |v1 | ⊗· · ·⊗Ãt(e) ◦ ⊗ · · · ⊗ idT |vj | ⊗· · · ⊗ idX |vn |) (84b)

◦ ae(X
|v1|, . . . , T |vk|, . . . , A, T |v j |, . . . , X |vn|) (84c)

◦ (idX |v1 | ⊗· · · ⊗ idT |vk | ⊗· · ·⊗Âs(e) ◦(∆ ◦η⊗ idT |vj |)⊗ · · · ⊗ idX |vn |) (84d)

◦ (idX |v1 | ⊗· · · ⊗π|vk| ⊗ · · · ⊗π|v j | ⊗ · · · ⊗ idX |vn |) . (84e)

Figure 14 below contains three concrete examples of this expression: one for each type of path
in Figure 12 for ae(A) in step (84c).

Face projectors

Let f be a face of Γ . Analogously to the edge projectors, to obtain Pf in the form (72) one
replaces the stratification of the cylinder as in Figure 7c by a ribbon graph as in Figure 10b and
takes Σ to be the standard surface with the endpoints of X±-labelled strands at the standard
positions. The vertex-edge chain bounding f can then be taken to be

v f (1)
e1−→ v f (2)

e2−→ · · ·
el−→ v f (l+1) = v f (1) . (85)

Here f (1), . . . , f (l) ∈ {1, . . . , n} are the vertex indices and e1, . . . , el denote the edges of Γ
between them with the convention that:
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i) f (1) is maximal out of f (1), . . . , f (l),

ii) the orientation v f (i)
ei−→ v f (i+1) is the opposite to the orientation of this edge as induced

by the orientation of the face f .

Note that the orientation of the edge ei in Γ may or may not coincide with the orientation

v f (i)
ei−→ v f (i+1) depending on i. We set |ei| = +1 if these orientations coincide and |ei| = −1

otherwise and take s(ei), t(ei) ∈ {0, 1,2} to mean respectively s(ei), t(ei) if |ei| = +1 and
t(ei), s(ei) if |ei|= −1. Note also that in case f is degenerate, not all indices f (1), . . . , f (l) and
the edges e1, . . . , el need to be distinct.

The steps to obtain the morphism Ω f defining Pf can be sketched as

+

-

- v f (1)
v f (2)

v f (l)

...
f ⇝

ψ2

α
α

α

⇝
ψ2

2

α αα

T |v f (1)|T |v f (2)|T |v f (l)|

T |v f (1)|T |v f (2)|T |v f (l)|

...

. (86)

The last step in particular involves taking a planar projection of the ribbon graph as in Fig-
ure 10b and straightening its coupons so that they can be unambiguously read as morphisms in
C. This step is the most tedious and requires some case analysis, which is listed in Table 4. In its

first column we list the 6 different configurations of the pair of edges v f (i−1)
ei−1−−→ v f (i)

ei−→ v f (i+1)
at vertex v f (i) and the second column depicts the corresponding α/α-labelled junction in the
stratification defining Pf in terms of the defect TFT Zdef

C as in Figure 7c. The third column then
shows the corresponding morphism

ωi : T±T±→ T±T± , (87)

replacing the junction in the projection of the ribbon graph. The fourth column introduces
the morphisms hψi which are used to handle the ψ2-insertion on the horizontal surface, for

example in the configuration of the first row, ωi ◦ hψi replaces

ψ

α , (88)

as is incidentally already evident in (86).
Finally, let us denote:

coev1 :=

¨

coevT ⊗ id
T |vf (1) | , if |e1|= +1 ,

id
T |vf (1) | ⊗ßcoevT , if |e1|= −1 ,

ev1 :=

¨

evT ⊗ id
T |vf (1) | , if |e1|= +1 ,

id
T |vf (1) | ⊗ eevT , if |e1|= −1 .

(89)
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Table 4: Possible configurations of a face f at a vertex v f (i) and the corresponding
α/α-labelled junctions in the stratification S f as in Figure 7c. The morphisms ωi are
conventional choices for the planar projection of the α/α- labelled coupons when
replacing S f by a ribbon graph as in Figure 10b. Precomposition with the morphisms

hψi adds a ψ-insertion on the horizontal surface, cf. (88).

Configuration at
the vertex v f (i)

Neighbourhood of the
α/α-labelled junction

ωi hψi

+
v f (i)

f
α

1⃝

2⃝3⃝

4⃝

α

T

T

T

T

1⃝ 2⃝

3⃝ 4⃝

T T

ψ1

+
v f (i)

f α

1⃝ 2⃝

3⃝
4⃝

T T

α

T T
1⃝ 2⃝

3⃝ 4⃝

T T

ψ1

+
v f (i)

f
α

2⃝

1⃝

3⃝

4⃝ α

T

T

T

T

1⃝ 2⃝

3⃝ 4⃝

T T

ψ2

-
v f (i)

f
α 1⃝

2⃝

3⃝

4⃝ α

TT ∗

T T ∗

3⃝ 1⃝

4⃝ 2⃝

TT ∗
ψ1

-
v f (i)

f α

1⃝
2⃝

3⃝
4⃝

α

T

T T ∗

T ∗

2⃝ 3⃝

4⃝
1⃝

T ∗T

ψ2

-
v f (i)

f
α

1⃝

2⃝

3⃝

4⃝ T T ∗

TT ∗

α

2⃝ 4⃝

1⃝ 3⃝

T ∗T

ψ2
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One then defines the morphism Ω f as follows:

Ω f = φ
2

· (idX |v1 |⊗· · ·⊗
�

ψ
|v f (l)|1/2
s(el ),t(el−1)

◦ ı|v f (l)|
�

⊗· · ·⊗
�

ψ
|v f (1)|1/2
s(e1),t(el )

◦ ı|v f (1)|
�

⊗· · ·⊗idX |vn |) (90a)

◦ (idX |v1 | ⊗· · · ⊗ ev1⊗· · · ⊗ idX |vn |) (90b)

◦ a−|e1|
e1
(T ∗) (90c)

◦
�

idX |v1 | ⊗· · · ⊗ (ω1 ◦ (h
ψ
1 )

2)⊗ · · · ⊗ idX |vn |

�

◦ a|el |
el
(T ) (90d)

◦ a|e1|
e1
(T ∗) (90e)

◦

� l
∏

i=2

(idX |v1 | ⊗· · · ⊗ωi ⊗ · · · ⊗ idX |vn |) ◦ a|ei−1|
ei−1
(T )

�

(90f)

◦ (idX |v1 | ⊗· · · ⊗ coev1⊗· · · ⊗ idX |vn |) (90g)

◦ (idX |v1 |⊗· · ·⊗
�

π|v f (l)| ◦ψ|v f (l)|1/2
s(el ),t(el−1)

�

⊗· · ·⊗
�

π|v f (1)| ◦ψ|v f (1)|1/2
s(e1),t(el )

�

⊗· · ·⊗idX |vn |) . (90h)

A concrete example of this expression is written out in Figure 15 below. Note that steps (90c)
and (90e) are somewhat redundant: all they do is move a T ∗ puncture away and back along e1.
This is to avoid even more case analysis which would otherwise be needed in step (90d).

Remark 12. The expressions (84) and (90), as well as (70) of the state space V , evidently
depend on the choice of the diffeomorphismϕ into the standard surface, as it dictates the order
of the vertices of Γ and the expression of the map ae for a given edge e ⊆ Γ . A different choice
ϕ′ of this diffeomorphism yields a different form of the state space V ′ and an isomorphism
ρ(ϕ′◦ϕ−1): V

∼
−→ V ′, obtained from the action of the mapping class group element of ϕ′◦ϕ−1

on the standard surface Σg,n. For each component of the graph c ⊆ Γ , the corresponding
projector P ′c built from ϕ′ is related to Pc by conjugation: P ′c = ρ(ϕ

′◦ϕ−1)◦Pc ◦ρ−1(ϕ′◦ϕ−1).
The model (V ′, H ′), where the Hamiltonian H ′ is obtained by similarly conjugating (42), is
therefore equivalent to (V, H).

4.2 Computation on the torus

In this section we look at a concrete example, illustrating the expression (72) for the edge and
face projectors, and in particular the formulas (84) and (90) for the morphisms Ωc in terms of
which they are defined.

Let (Σ, Γ ) be the 2-torus with the admissible 1-skeleton Γ as shown in Figure 13a, which has
8 vertices, 12 edges and 4 faces; we will consider the projectors of three edges, marked as e, e′,
e′′ in the figure, and of the face f , which in the figure is shaded. As explained below (70), one
starts by picking a homeomorphism into the standard surface ϕ : Σ → Σg=1,n=8. The image
ϕ(Γ ) for our choice of ϕ is as shown in Figure 13c. The order of the vertices in Figure 13 is
the one imposed by ϕ, which means that we can denote them by v1, . . . , v8 with |vi| = + for
i = 1, 6,7, 8 and |vi|= − for i = 2, 3,4, 5. Consequently, the state space in the form (70) is:

V = C(1, X X ∗X ∗X ∗X ∗X X X L) . (91)

We now turn to describing the morphisms Pe, Pe′ , Pe′′ , Pf in terms of the expression (72).
In particular we need to untangle the definition of the morphisms

Ωe , Ωe′ , Ωe′′ , Ω f ∈ EndC(X X ∗X ∗X ∗X ∗X X X L) , (92)

laid out in (84) and (90):
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e′′
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+

−
−
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e′′
e′

e

(c)

Figure 13: (a) Example of T2 with 1-skeleton. (b) Intermediate step in the mapping
to the standard surface Σ1,8. Next, one embeds this figure as a doughnut in R3 and
further deforms it to arrive at (c). Note that the punctures in (c) are aligned such
that each of them has a neighbourhood as in (83).

• As shown in Figure 13c, the edge e starts at v3 and ends at v7 with s(e) = 1 and t(e) = 1.
As e passes neither through nor over the arc of the handle of the standard torus, it is
of the 1st type shown in Figure 12. The morphism ae(A) featuring in (84c) is therefore
obtained by twisting the A-labelled strand of the idempotent (18) and braiding it with the
X±-labelled strands. The precise expression can be read off to be the one in Figure 14a.

• The edge e′ starts at v2 and ends at v6 with s(e′) = 2 and t(e′) = 2. It passes through
the handle of the standard torus and therefore is of the 2nd type in Figure 12, meaning
that ae′(A) will contain the projection/inclusion morphisms (69). The expression for Ωe′

is then the one in Figure 14b.

• The edge e′′ between v4 and v1, with s(e′′) = 1 and t(e′′) = 2, passes over the handle
of the standard torus and is of the 3rd type in Figure 12, therefore ae′′(A) contains the
halfbraiding (74). The expression for Ωe′′ is shown in Figure 14c.

• Using the convention below (85), the vertex-edge chain bounding the face f is read from
Figure 13 to be

v7
e1−→ v6

e2−→ v5
e3−→ v1

e4−→ v2
e5−→ v3

e6=e
−−→ v7 , (93)

i.e. f (1) = 7, f (2) = 6, . . . , f (6) = 3. As the directions of the corresponding edges of
Γ are the same as in the chain (93), we have |ei| = +1 for all i = 1, . . . , 6, and so (89)
yields coev1 = coevT ⊗ idT and ev1 = evT ⊗ idT . The morphisms ωi , i = 1, . . . , 6 are

picked according to Table 4: the configuration of the face f at
e1−→ v6

e2−→ is the one in the

first row, at
e2−→ v5

e3−→ is the one in the fourth row, . . . , at
e6−→ v7

e1−→ is the one in the first
row (the latter also determines hψ1 = idT ⊗ψ1.). The morphisms a±1

ei
(T±), i = 1, . . . , 6,

are determined similarly as when defining Ωe, Ωe′ , Ωe′′ above. The final expression for
Ω f is shown in Figure 15.
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Ωe =

ı∗

π∗

π

ı

X X ∗ X ∗ X ∗ X ∗ X X X L

X X ∗ X ∗ X ∗ X ∗ X X X L

T T
A

1

1

(84e)
(84d)

(84c)

(84b)
(84a)

(a)

Ωe′ =

ı∗

π∗

π

ı

X X ∗ X ∗ X ∗ X ∗ X X X L

X X ∗ X ∗ X ∗ X ∗ X X X L

T T

A
2

2

C C

(b)

Ωe′′ =

π

ı

ı∗

π∗

X X ∗ X ∗ X ∗ X ∗ X X X L

X X ∗ X ∗ X ∗ X ∗ X X X L

T T
A

1

2

γA

(c)

Figure 14: The map Ωe in (84) for the edges e, e′, e′′ in the T2 example from Fig-
ure 13c.

5 Examples

In Section 3.2 we reviewed three examples of internal Levin–Wen data: one in an arbitrary
MFC C which is obtained from a condensable algebra in it, and two in the trivial MFC C = Vect|
which are obtained from a spherical fusion category S and a Hopf algebra K respectively. In
this section we explain them in more detail, in particular how the Hamiltonian (42) simplifies
in each of these cases. As a reference example, for the latter two instances we specialise the
computation from Section 4.2.

5.1 Condensations

Let A be a condensable algebra in a MFC C and consider the internal Levin–Wen datum as in
Section 3.2.1. In this case, as one has X = T = A∼= A∗ (the latter isomorphism follows from A
being symmetric), the state-space of the model in the form (70) reads

V = C(1, A⊗n ⊗ L⊗g) , (94)

where g is the genus of the surface Σ and n is the number of vertices of the graph Γ ⊆ Σ.
Since in this particular Levin–Wen datum one has π = ι = idA, (73) yields Pv = idV for

all vertices v ∈ Γ0. This also allows us to simplify the expressions (72), (84) for the projector
Pe associated to an edge v j

e
−→ vk of Γ by removing the lines (84a), (84e). Since ψ = idA,

one can also disregard ψ−2 in (84b). For an edge vk
e
−→ vk+1 which does not braid with other
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Ω f = φ2 ·

π π π

ı ı ı

ı∗ ı∗ ı∗

π∗ π∗ π∗

X X ∗ X ∗ X ∗ X ∗ X X X L

X X ∗ X ∗ X ∗ X ∗ X X X L

T T T T T T

T

T T T T T T

T

T

T

T

T

(90h)

α

α

α

α

α

α ψ2
1

(90g)

(90f)

(90e)

(90d)

(90c)

(90b)

(90a)

ψ
1/2
0,1 ψ

∗1/2
1,0 ψ

∗1/2
1,0 ψ

∗1/2
1,0 ψ

1/2
0,1 ψ

1/2
0,1

ψ
1/2
0,1 ψ

∗1/2
1,0 ψ

∗1/2
1,0 ψ

∗1/2
1,0 ψ

1/2
0,1 ψ

1/2
0,1

Figure 15: The map Ω f in (84) for the face f in Figure 13c.

punctures or wraps around the handles of Σ, Ωe is simply the idempotent (18) projecting the
tensor factor A⊗A at the position (k, k+1) of A⊗n⊗ L⊗g onto a single A-factor. In other words,
the image of Pe is obtained by fusing the two A-punctures, so that one has

im Pe
∼= C(1, A⊗(n−1) ⊗ L⊗g) . (95)

One can similarly simplify the expressions (72), (90) for the projector Pf associated to a

face bounding the vertex-edge chain v f (1)
e1−→ v f (2) · · ·

el−1−−→ v f (l). Using the expressions for the
α/α-morphisms in the orbifold datum (50) and the identities (17), (49) one has for example
(cf. (86))

AAA

AAA

...

=

A

A

...

A

A

A

A

, (96)

i.e. in this instance of internal Levin–Wen datum the projector of the face f is the composition
of the projectors of the bounding edges:

Pf = Pel−1
◦ · · · ◦ Pe1

. (97)

Consequently, (44) implies that the ground state space is the common image of all the edge
projectors:

V0 = im
∏

e∈Γ1

Pe . (98)

We now note that the argument leading to (95) can be successively repeated for a collection
of edges S ⊆ Γ1 forming a spanning tree of Γ . On the surface Σ this has the effect of fusing all
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A-labelled punctures into a single one, which leaves a (non-trivalent) graph on Σ having one
vertex and |Γ1 \ S| edges. One therefore has

V0 ⊆ im
∏

e∈S⊆Γ1

Pe
∼= C(1, A⊗ L⊗g) . (99)

Since A is haploid, for g = 0, i.e. when Σ = S2, this already implies dim V0 = 1, meaning that
the ground state is not degenerate. This is in accord with Theorem 8 and (33), as a TFT of
Reshetikhin–Turaev type always assigns a 1-dimensional state space to the 2-sphere. On the
2-torusΣ= T2, V0 is in general a proper subspace in (99). To see this, let us explicitly compute
the image on the right-hand side of (98): we collapse all vertices into a single A-puncture as
described above taking the initial admissible skeleton to be the one in Figure 13. This results
in a non-trivalent graph on T2 with some parallel edges, which can be subsequently removed,
as they result in applying the same idempotent twice when computing the image (98):

e′

e′′
⇝

e′

e′′ ⇝ e′′

e′

. (100)

This leaves two edges, denoted above by e′ and e′′, each of which has the associated projector
on the space C(1, A⊗ L), whose forms are f 7→ eΩe′ ◦ f and f 7→ eΩe′′ ◦ f for endomorphisms
eΩe′ , eΩe′′ ∈ EndC(A⊗ L). Choosing an analogous parametrisation by the standard surface as
shown in Figure 13c, the endomorphisms eΩe′ , eΩe′′ can be read off similarly as Ωe′ ,Ωe′′ in Fig-
ure 14, the difference being that most of the X=A-labelled strands are not present due to the
initial fusing step, and A-A-crossings and A-twists are not present due to A being commutative:

eΩe′ =

L

C C

A

A

LA

, eΩe′′ =

LA

γA

A

LA

. (101)

This yields V0 as the image of the projector C(1, A⊗ L) ∋ f 7→ eΩe′′ ◦ eΩe′ ◦ f . By Theorem 8
and (33), the dimension of V0 is given by the number |IrrCloc

A
| of isomorphism classes of simple

local A-modules. Explicitly, a basis {vα} of V0 is given in terms of simple local A-modules Mα,
α ∈ IrrCloc

A
via

vα =
�

1

(∆◦η)⊗coevMα−−−−−−−−→ AAMαM∗α
id⊗ρ⊗id
−−−−−→ AMαM∗α

id⊗ι
−−→ AL
�

. (102)

Here ι is obtained by decomposing Mα into simple objects i of C and embedding into L via
coevi (recall (13)). Since we do not need this basis below, we skip the details.

5.2 Original Levin–Wen models

In this section we show how the model based on the internal Levin–Wen datum from Sec-
tion 3.2.2 reproduces the original Levin–Wen model from [43].
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⊕
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PE−→
⊕
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l

m
k

j
i

S(k,i j)

S(lm,k)

Figure 16: The vector spaces V ⊇ VV ⊇ VE.

5.2.1 The state space

Let Σ be a compact oriented surface and Γ ⊆ Σ an admissible 1-skeleton. As the internal
Levin–Wen datum we use has the underlying modular fusion category (MFC) Vect|, there are
a few simplifications:

• The object L defined in (13) is simply given by L = |.

• All braidings and twists are trivial.

• The state space is V = Hom|
�

|, X⊗Γ0
� ∼= X⊗Γ0 , where Γ0 is the set of vertices of Γ (com-

bine (39) with (14)). Here, X⊗Γ0 := ⊗v∈Γ0 X |v| is a Γ0-fold tensor product of the X or X ∗

with every copy of X or X ∗ associated to one vertex according to the orientation of the
vertex.

Since X = ⊕i, j,k∈I x (recall (55h)) for a set I = IrrS of representatives of irreducible elements
in S. V can be written as a direct sum of subspaces associated to colourings of the graph Γ as
follows (see Figure 16):

• Half-edges are coloured by objects i, j, k, · · · ∈ I .

• In every such colouring we associate a copy of the vector space x or x∗ to every vertex,
depending on the orientation of that vertex.

• The state space is the vector space ⊕x⊗Γ0 = ⊕⊗v∈Γ0 x |v|, where we sum over every such
colouring.

Vertex and edge projectors and their image

The vertex projector Pv is a direct sum of maps x → x over all colourings of (the half-edges
attached to) v. On one colouring by a triple (i, j, k), Pv acts by applying the idempotent map

x
πi jk
−−→ S (k, i j)

ιi jk
−→ x , (103)

from (57). The map Pv thus projects to a subspace of x which we can identify with S(k, i j).
Note that this subspace is only non-zero if the triple (i, j, k) is admissible, i.e. if the multiplicity
of k in i⊗ j is non-zero. Similarly, if the vertex is coloured with x∗, we can identify the image
of the projector Pv with S (i j, k).

Let PV : V → V be the product of the Pv ’s and denote the image of PV by VV. Explicitly, VV
is the direct sum of graphs with half-edges coloured by I , but now taking the vector spaces
S(k, i j) or S(i j, k) instead of x and x∗ as in Figure 16

For every edge e in Γ connecting vertices v and w we now consider the edge projector Pe.
We restrict our description to the situation in Figure 16, where the two vertices are distinct,
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one is positively oriented and the other is negatively oriented. We give the projector on a
colouring of v by (i, j, k) and w by (l, m, n) by a composition of maps:

x∗ ⊗ x
ι∗lmn⊗πi jk
−−−−−→ S (lm, n)⊗S (k, i j)

δkn−→ S (lm, k)⊗S (k, i j)
π∗lmk⊗ιi jk
−−−−−→ x∗ ⊗ x . (104)

A priori, the two colourings of the half-edges of e at v and w do not need to coincide. This
map projects onto the space of admissible colourings, where both half-edges of e are coloured
by the same simple object of S. This holds analogously for any other configuration of the edge
e and the two vertices v and w.

Write PE : V → V for the product of the Pe ’s and set VE = im(PE). The image VE is a subspace
of VV and can be described as the direct sum over colourings of edges of Γ by I (rather than
half-edges), see Figure 16.

Face projectors

We will now compute the face projector for the face from the torus example in Figure 13. The
face projector is given by the string diagram in Figure 15. As we are working with orbifold
data in Vect|, the braidings and twists are trivial. Disregarding those, the face projector is a
composition of the maps π, ι, their duals, the (co-)evaluation of T , the maps and

α′ :=
�

T ∗ ⊗ T
id⊗ coevT−−−−−→ T ∗ ⊗ T ⊗ T ⊗ T ∗

id⊗α⊗id
−−−−−→ T ∗ ⊗ T ⊗ T ⊗ T ∗

evT ⊗ id
−−−−→ T ⊗ T ∗
�

. (105)

Lemma 13. The map α′ is given on λ ∈ S(k, i j) ⊆ T and bµ ∈ S(lm, n) ⊆ T ∗ by

α′ (bµ⊗λ) =
∑

σ,τ

Fλbµ
σbτ
τ⊗ bσ . (106)

Proof. We compute the map (105) step-by-step:

bµ⊗λ
id⊗ coevT7−−−−−→
∑

σ

bµ⊗λ⊗σ⊗ bσ
id⊗α⊗id
7−−−−−→
∑

σ,τ,ρ

Fλbρ
σbτ
bµ⊗ρ ⊗τ⊗ bσ

evT ⊗ id
7−−−−→
∑

σ,τ,ρ

Fλbρ
σbτ

trS (bµ ◦ρ) τ⊗ bσ =
∑

σ,τ

Fλbµ
σbτ
τ⊗ bσ . (107)

We further simplify the diagram in Figure 15 by taking its ’middle’ part without the φ2-
factor only, i.e. omitting the maps π,π∗, ι, ι∗ and ψ1/2

i, j ,ψ∗1/2i, j at the top and the bottom. The
latter introduce some dimension factors which we will include in the final formula by hand.
The resulting diagram is depicted in Figure 17. In it we also indicate the labels of the concrete
elements ε, · · · ∈ T and bδ, · · · ∈ T ∗ which occur in the computation below. Each of them
is assumed to be in the subspace of type S(k, i j) ⊆ T or S(i j, k) ⊆ T ∗ for some i, j, k ∈ I .
Some of the domains can be partially read off from Figure 18, for example the domain of γ is
a ∈ I , others can be deduced from identities (25) of α and α morphisms, for example we take
σ ∈ S( f , k f ′) for k ∈ I .

We now have everything set to compute the face projector. In every step of the computation
only two tensor factors change while the other tensor factors are left invariant. Thus, to make
the computation more legible we leave out any tensor factors not required in a particular step.
In Figure 17 the steps (108a)–(108h) in the computation below are separated by dashed lines
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1
DimS
︸ ︷︷ ︸

=φ2

·

α

α′

α

α′

α′

α

T T ∗ T ∗ T ∗ T T

T

(108h)

(108g)

(108f)

(108e)

(108d)

(108c)

(108b)

(108a)

T T ∗ T ∗ T ∗ T T

ψ2
1

ε bλ bµ bδ γ ν
σ
bσ

σ′

γ′

σ′′

Òδ′τ ε′

τ′ Òλ′

τ′′ Òµ′

π

ε′ Òλ′ Òµ′ Òδ′ γ′ ν′

Figure 17: The simplified version of the diagram (90) in C = Vect|. The steps in
computation (108) are separated by dashed lines.

and labelled accordingly. This yields:

ε⊗bλ⊗bµ⊗bδ⊗γ⊗ν
···⊗coevT⊗···7−−−−−−−→
∑

k,σ

�

· · ·⊗γ⊗σ⊗bσ⊗· · ·
�

(108a)

···α···
7−−−→
∑

k,γ′,σ′,σ

F
γcσ′

σÒγ′

�

· · ·σ′⊗γ′⊗bσ · · ·
�

=
∑

···

�

· · ·
�

�

· · · bδ⊗σ′ · · ·
�

(108b)

···α′···
7−−−→
∑

δ′,σ′′,...

�

· · ·
�

Fσ
′
bδ

δ′Óσ′′

�

· · ·σ′′⊗Òδ′ · · ·
�

7→
∑

···

�

· · ·
�

�

ε⊗σ′′ · · ·
�

(108c)

···α···
7−−−→
∑

ε′,τ,...

�

· · ·
�

F
εbτ

σ′′Òε′

�

· · ·τ⊗ε′ · · ·
�

7→
∑

···

�

· · ·
�

�

· · · bλ⊗τ · · ·
�

(108d)

···α′···
7−−−→
∑

λ′,τ′,...

�

· · ·
�

Fτ
bλ

λ′Òτ′

�

· · ·τ′⊗Òλ′ · · ·
�

7→
∑

···

�

· · ·
�

�

· · · bµ⊗τ′ · · ·
�

(108e)

···α′···
7−−−→
∑

µ′,τ′′,...

�

· · ·
�

Fτ
′
bµ

µ′cτ′′

�

· · ·τ′′⊗Òµ′ · · ·
�

7→
∑

···

�

· · ·
�

�

· · ·ν⊗τ′′
�

(108f)

···α◦(idT ⊗ψ2
1)···7−−−−−−−−−→
∑

ν′,π,σ,...

�

· · ·
�

· dk · F
νbπ

τ′′Òν′

�

· · · bσ⊗π⊗ν′
�

(108g)

··· 1
DimS ·evT ···
7−−−−−−−−→
∑

ν′,π,σ,...

�

· · ·
�

· dk · F
νbπ

τ′′Òν′ ·
1

DimS
· trS(bσ ◦π)
�

· · ·⊗ν′
�

=
∑

ν′,...

�

· · ·
�

· dk · F
νbσ

τ′′Òν′ ·
1

DimS

�

· · ·⊗ν′
�

. (108h)
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Gathering all the terms as well as the previously omitted factors due toψ1/2
i, j ,ψ∗1/2i, j -insertions,

we obtain the following formula for the face operator:

ε⊗bλ⊗bµ⊗bδ⊗γ⊗ν 7−→
∑

k,a′,b′,c′,d ′,e′, f ′∈I

∑

ε′,λ′,µ′,δ′,γ′,ν′

σ,σ′,σ′′,τ,τ′,τ′′

�

dadbdcdd ded f da′db′dc′dd ′de′d f ′
�1/2 · dk

DimS

· Fγbσ
′

σbγ′ · F
σ′bδ
δ′bσ′′
· Fεbτσ′′bε′ · F

τbλ
λ′bτ′′
· Fτ

′
bµ

µ′bτ′′
· Fνbστ′′bν′

·
�

ε′⊗Òλ′⊗Òµ′⊗Òδ′⊗γ′⊗ν′
�

. (109)

To see how the labels on the face have transformed, see Figure 18.

5.2.2 Comparison with the original Levin–Wen model

Let us now compare the original Levin–Wen string net model from [43] with our model. To
obtain the 6-index symbols F i jm

kln ∈ | from [43], we have to restrict ourselves to spherical fusion
categories where every multiplicity dim S (k, i j) for simple objects i, j, k ∈ I is at most one.
Then:

• The state space V in our model is slightly bigger than the one in [43], as we colour half-
edges with irreducible objects and [43] colours edges. The difference can be bridged by
considering the image of the edge projectors instead of V . Because of this, there is no
analogue for edge projectors in [43].

• The vertex projectors of our model are analogues for the electric charge operator from
[43, Eq. (11)].

• The F -symbols F i jm
kln in [43] are dependent only on irreducible objects i, j, k, l, m, n ∈ I ,

while our F -symbols are defined in terms of elements of the Hom-spaces between these
objects. By choosing appropriate bases of the Hom-spaces and renormalising the F -
symbols, we can translate between the two settings. For this it is essential, that the
Hom-spaces are at most one-dimensional.

• For a hexagonal lattice, the face projector of the internal Levin–Wen model is given
by (109), i.e. a sum over products of six F -symbols. After an appropriate translation, we
obtain the same formulas as for the magnetic flux operator from [43, Eq.’s (12),(13)],
we skip the details.

fa

b

c d

e

γ

ε

bδ

bλ

bν

bµ

7→





sum and
coefficients
from (109)



 ·

f ′a′
b′

c′ d ′

e′

γ′

ε′

bδ′

bλ′

bν′

bµ′

Figure 18: Computation of the face projector (cf. (109)). The input vertices are
coloured with γ,ε,ν ∈ T and bδ, bλ, bµ ∈ T ∗ with the relevant tensor factors in the
domains being a, b, c, d, e, f ∈ I . The output vertices are labelled similarly.
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f

a

b

cd

e
g

Figure 19: A 1-skeleton for the torus with labels a, . . . , g ∈ H for the six edge ends at
the two bottom left vertices.

Finally, a quick argument shows that the space of ground states V0 coincides with the one
from [43]: By Theorem 8 and (33), we have V0

∼= ZRT
CA
(Σ), where C = Vect| and A= AS is the

orbifold data from the spherical fusion category S. By [45, Thm. 4.1], CAS is equivalent to the
Drinfeld centre Z(S) as ribbon categories. Then

V0
∼= ZRT

Z(S)(Σ)
∼= ZTV

S (Σ)
∼= HLW

S (Σ) , (110)

where we denote by ZTV
S the Turaev–Viro–Barrett–Westbury TFT based on the spherical fusion

category S and by HLW
S the space of ground states of the Levin–Wen model from [43]. The last

equivalence is shown in [6, Thm. 3.1].

5.3 Kitaev models

The original Kitaev model [35] was generalised in [7] to an input of a finite-dimensional
semisimple Hopf algebra K . In this formulation, the ground states and excited states of the
Kitaev model were proven in [1, 6] to be isomorphic to those of the Levin–Wen model with
spherical fusion category K-rep of finite-dimensional K-modules. In this section we discuss
the internal Levin–Wen model obtained from a finite-dimensional semisimple Hopf algebra K
as in Section 3.2.3. We find that our model reproduces an appropriately chosen Kitaev model
based on K .

The state space

For our example we consider the admissible 1-skeleton Γ on the torus in Figure 13. It has 8
vertices, hence, since we have C = Vect| and L = |, the state space (70) takes the form

V = Hom| (|, X X ∗X ∗X ∗X ∗X X X )∼= K⊗24 , (111)

where we used X = K⊗3 ∼= X ∗ (see Table 3). This can be seen as an assignment of a copy of K
to every half-edge of the graph Γ , see Figure 19.

In what follows we compute the projectors for a vertex, an edge, and a face of the 1-skeleton
Γ . We compare these projectors to the ones of the Kitaev model associated to a modified graph
Γ ′. To obtain Γ ′ one simply adds an additional vertex in the middle of every edge of Γ , see
Figure 20. We do this in order to identify the state space V = K⊗24 of the internal Levin–Wen
model with the extended Hilbert space H = K⊗24 of the Kitaev model: the internal Levin–Wen
model labels every half-edge of Γ with K , whereas the Kitaev model labels every edge of Γ ′

with K .
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X ∗

X
∼= K5

K4
K3

K0 K2

K1

Figure 20: Modifying the graph Γ by inserting additional vertices provides an isomor-
phism to the state space of the Kitaev model. Here we identify X = K⊗3 = K0⊗K1⊗K2
and X ∗ = K⊗3 = K3 ⊗ K4 ⊗ K5.

Vertex projectors

For a vertex labelled with a ⊗ b ⊗ c ∈ K⊗3 = X the vertex projector is the map ι ◦π : X → X
(see (64)):

ι ◦π (a⊗ b⊗ c) = ι
�

a(2)b⊗ a(1)c
�

= S(λ(1))⊗λ(3)a(2)b⊗λ(2)a(1)c
= aS(λ(1))⊗λ(3)b⊗λ(2)c . (112)

Similarly we obtain for the dual map π∗ ◦ ι∗ : X ∗→ X ∗ (see (67)):

π∗ ◦ ι∗ (d ⊗ e⊗ g) = λ(1)d ⊗ eS(λ(2))⊗ gS(λ(3)) . (113)

These are precisely the vertex projectors Aλv of the Kitaev model (cf. [56, Sec. 4]).

Edge projectors

We now turn to the edge projector taking the edge labelled by a and d in Figure 19 as example.
Removing the unnecessary tensor factors in the general formula (84), one arrives at the map

(π∗ ⊗ ι) ◦ β ◦ (ι∗ ⊗π) : X ∗ ⊗ X → X ∗ ⊗ X , (114)

where β is the map taking T ∗ ⊗ T to the relative tensor product T ∗ ⊗A T , i.e. coming from
the composition of (84d),(84b) and implementing an idempotent similar to the one in (18),
where the coproduct ∆Fr in (60) is used. In this configuration, the relative tensor product is
taken with respect to the action Â0 on T and its dual action Ã0 on T ∗. Computing the map
yields

(π∗ ⊗ ι) ◦ β ◦ (ι∗ ⊗π) ([d ⊗ e⊗ g]⊗ [a⊗ b⊗ c])

= (π∗ ⊗ ι) ◦ β
��

ed(2) ⊗ gd(1)
�

⊗
�

a(2)b⊗ a(1)c
��

= (π∗ ⊗ ι)
��

ed(2)S(λ
1
(1))⊗ gd(1)S
�

λ1
(2)

��

⊗
�

λ1
(4)a(2)b⊗λ

1
(3)a(1)c
��

=
�

λ2
(1)dS
�

λ1
(1)

�

⊗ eS(λ2
(2))⊗ gS(λ2

(3))
�

⊗
�

λ1
(2)aS(λ3

(1))⊗λ
3
(3)b⊗λ

3
(2)c
�

, (115)

where here and below we denote by λ1,λ2,λ3, . . . different copies of the normalised Haar
integral λ ∈ K (see (58)).

Again comparing with the Kitaev model we see that this map is a composition of two vertex
projectors Aλv of the original Kitaev model together with an additional vertex projector for a
vertex added in the middle of the connecting edge labelled with a and d in Figure 19 as in
Figure 20 (cf. [56, Sec. 4]).
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Figure 21: Vertex labels used in the computation of the face projector.

Face projectors

The computation for the face projectors is more involved. We will compute the face projector
Pf for the face f of the torus example in Figure 13, which, as in Section 5.2, boils down to
evaluating the diagram in Figure 15. Since we again work with an orbifold datum in Vect|, here
too the braiding and twist morphisms are trivial. Furthermore, we again omit the projectors
π, ι∗ and embeddings ι,π∗, i.e. we only compute the projector on T T ∗T ∗T ∗T T obtained from
the ‘middle’ part of the diagram in Figure 15. The outcome is the same as the diagram in
Figure 17, but read for the orbifold datum based on the Hopf algebra K instead. In particular,
one has ψ= id and φ2 = 1

|K | , see Table 3. The computation is performed for the input shown
in Figure 21, where two elements of K are used to label each of the six vertices, reflecting the
fact that we have T = K⊗2 = T ∗. The map α′ in (105) in this case reads:

α′ : [a⊗ b]⊗ [c ⊗ d] 7→
�

a(2)c ⊗ a(1)d(2)λ(1)
�

⊗
�

S(λ(2))⊗ bd(1)
�

. (116)

We provide a detailed computation of this map, as it is similar to other computations for the
internal Levin–Wen datum based on K , where we provide fewer details for brevity:

[a⊗ b]⊗ [c ⊗ d]
··· coevT7−−−−→ [a⊗ b]⊗ [c ⊗ d]⊗

�

λ1
(1) ⊗λ

2
(1)

�

⊗
�

S(λ1
(2))⊗ S(λ2

(2))
�

···α···
7−−−→ [a⊗ b]⊗

�

S(λ3
(1))⊗ d(1)λ

2
(1)

�

⊗
�

λ3
(3)c ⊗λ

3
(2)d(2)λ

1
(1)

�

⊗
�

S(λ1
(2))⊗ S(λ2

(2))
�

evT ···7−−−→ |K |2
∫ �

aS(λ3
(1))
�∫ �

bd(1)λ
2
(1)

�

·
�

λ3
(3)c ⊗λ

3
(2)d(2)λ

1
(1)

�

⊗
�

S(λ1
(2))⊗ S(λ2

(2))
�

(59c)
= |K |2

∫ �
λ3
(1)S(a)
�∫ �

bd(1)λ
2
(1)

�

·
�

λ3
(3)c ⊗λ

3
(2)d(2)λ

1
(1)

�

⊗
�

S(λ1
(2))⊗ S(λ2

(2))
�

(59b)
= |K |2

∫ �
λ3
(1)

�∫ �
λ2
(1)

�

·
�

λ3
(3)a(2)c ⊗λ

3
(2)a(1)d(2)λ

1
(1)

�

⊗
�

S(λ1
(2))⊗ S(S(bd(1))λ

2
(2))
�

(58)
= |K |2

∫ �
λ3
�∫ �

λ2
�

·
�

a(2)c ⊗ a(1)d(2)λ
1
(1)

�

⊗
�

S(λ1
(2))⊗ S(S(bd(1)))

�

(59c)
=
�

a(2)c ⊗ a(1)d(2)λ
1
(1)

�

⊗
�

S(λ1
(2))⊗ bd(1)
�

. (117)

Now we can compute the face projector for the Levin-Wen datum based on K . Similarly as
in (108), in each step of the computation below only two tensor factors change - so again we
attempt to make it more legible by leaving out any tensor factors not required in a particular
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step. The steps (118a) to (118h) in the computation below correspond to the steps (108a)–
(108h) separated by dashed lines in Figure 17. We then have:

[e⊗g]⊗ [h⊗i]⊗ [ j⊗k]⊗ [c⊗d]⊗ [a⊗b]⊗ [m⊗n]

··· coevT ···7−−−−−→ ···[a⊗b]⊗
�

λ1
(1)⊗λ

2
(1)

�

⊗
�

S(λ1
(2))⊗S(λ2

(2))
�

··· (118a)
···α···
7−−−→···
�

a(2)λ
1
(1)⊗S(λ3

(1))
�

⊗
�

λ3
(3)a(1)λ

2
(1)⊗λ

3
(2)b
�

··· = ···[c⊗d]⊗
�

a(2)λ
1
(1)⊗S(λ3

(1))
�

··· (118b)
···α′···
7−−−→···
�

c(2)a(2)λ
1
(1)⊗c(1)S(λ3

(1)(1))λ
4
(1)

�

⊗
�

S(λ4
(2))⊗dS(λ3

(1)(2))
�

···

7→ [e⊗g]⊗
�

c(2)a(2)λ
1
(1)⊗c(1)S(λ3

(1)(1))λ
4
(1)

�

··· (118c)
···α···
7−−−→
�

e(2)c(2)a(2)λ
1
(1)⊗S(λ5

(1))
�

⊗
�

λ5
(3)e(1)c(1)S(λ

3
(1)(1))λ

4
(1)⊗λ

5
(2)g
�

···

7→ ···[h⊗i]⊗
�

e(2)c(2)a(2)λ
1
(1)⊗S(λ5

(1))
�

··· (118d)
···α′···
7−−−→···
�

h(2)e(2)c(2)a(2)λ
1
(1)⊗h(1)S(λ5

(1)(1))λ
6
(1)

�

⊗
�

S(λ6
(2))⊗iS(λ5

(1)(2))
�

···

7→ ···
�

S(λ6
(2))S(λ

5
(1)(1))⊗iS(λ5

(1)(2))
�

⊗ [ j⊗k]⊗
�

h(2)e(2)c(2)a(2)λ
1
(1)⊗h(1)λ

6
(1)

�

··· (118e)
···α′···
7−−−→···
�

j(2)h(3)e(2)c(2)a(2)λ
1
(1)⊗ j(1)h(2)λ

6
(1)(2)λ

7
(1)

�

⊗
�

S(λ7
(2))⊗kh(1)λ

6
(1)(1)

�

···

= ···
�

j(2)h(3)e(2)c(2)a(2)λ
1
(1)⊗ j(1)h(2)λ

7
(1)

�

⊗
�

S(λ7
(2))λ

6
(1)(2)⊗kh(1)λ

6
(1)(1)

�

···

7→ ···[m⊗n]⊗
�

j(2)h(3)e(2)c(2)a(2)λ
1
(1)⊗ j(1)h(2)λ

7
(1)

�

(118f)
···α···
7−−−→···
�

S(λ1
(2))⊗S(λ2

(2))
�

⊗
�

m(2) j(2)h(3)e(2)c(2)a(2)λ
1
(1)⊗S(λ8

(1))
�

⊗
�

λ8
(3)m(1) j(1)h(2)λ

7
(1)⊗λ

8
(2)n
�

··· (118g)
··· 1
|K | ·evT ···
7−−−−−−→ 1

|K | ·|K |
2
∫ �

m(2) j(2)h(3)e(2)c(2)a(2)λ
1
(1)S(λ

1
(2))
� ∫ �

S(λ8
(1))S(λ

2
(2))
�

···

= |K |
∫
(m(2) j(2)h(3)e(2)c(2)a(2)))

∫ �
S(λ8

(1))S(λ
2
(2))
��

λ5
(3)e(1)c(1)S(λ

3
(1)(1))λ

4
(1)⊗λ

5
(2)g
�

⊗
�

S(λ6
(2))S(λ

5
(1)(1))⊗iS(λ5

(1)(2))
�

⊗
�

S(λ7
(2))λ

6
(1)(2)⊗kh(1)λ

6
(1)(1)

�

⊗
�

S(λ4
(2))⊗dS(λ3

(1)(2))
�

⊗
�

λ3
(3)a(1)λ

2
(1)⊗λ

3
(2)b
�

⊗
�

λ8
(3)m(1) j(1)h(2)λ

7
(1)⊗λ

8
(2)n
�

= |K |
∫
(m(2) j(2)h(3)e(2)c(2)a(2))

∫
(S(λ2))
�

λ5
(3)e(1)c(1)S(λ

3
(1)(1))λ

4
(1)⊗λ

5
(2)g
�

⊗
�

S(λ6
(2))S(λ

5
(1)(1))⊗iS(λ5

(1)(2))
�

⊗
�

S(λ7
(2))λ

6
(1)(2)⊗kh(1)λ

6
(1)(1)

�

⊗
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S(λ4
(2))⊗dS(λ3

(1)(2))
�

⊗
�

λ3
(3)a(1)S(λ

8
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3
(2)b
�

⊗
�

λ8
(3)m(1) j(1)h(2)λ

7
(1)⊗λ

8
(2)n
�

=
∫
(m(2) j(2)h(3)e(2)c(2)a(2))

�

λ5
(3)e(1)c(1)S(λ

3
(1))λ

4
(1)⊗λ

5
(2)g
�

⊗
�

S(λ6
(2))S(λ

5
(1)(1))⊗iS(λ5

(1)(2))
�

⊗
�

S(λ7
(2))λ

6
(1)(2)⊗kh(1)λ

6
(1)(1)

�

⊗
�

S(λ4
(2))⊗dS(λ3

(2))
�

⊗
�

λ3
(3)a(1)S(λ

8
(1))⊗λ

3
(2)b
�

⊗
�

λ8
(3)m(1) j(1)h(2)λ

7
(1)⊗λ

8
(2)n
�

. (118h)

It follows that our face projector is a composition of the vertex and face projectors of the
Kitaev model. In more detail, the face projector Pf is the following sequence of operations in
the Kitaev model:

i) Add a vertex in the middle of every edge. Previously unlabelled edges are labelled by
1K ∈ K . This step comes from the fact we used T instead of X in the computation (118).

ii) Apply the vertex projectors Aλv for all vertices adjacent to the face.

iii) Apply the face projector B
∫

f (cf. [56, Sec. 4]).

Finally, we give a quick overview of the comparison of the internal Levin–Wen model and
the Kitaev model:
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Internal Levin–Wen model Kitaev model

admissible, trivalent graph Γ modified graph Γ ′

internal LW-datum AK finite-dimensional, semisimple Hopf algebra K

state space V extended space T
ground states V0 protected space M
face projectors face projectors

vertex and edge projectors vertex projectors

6 Conclusion

We have introduced the concept of internal Levin–Wen models, a novel approach to describ-
ing and realising topological phases of matter. By employing the notion of an orbifold datum
within a given phase, these models provide a powerful framework for condensing anyons and
transitioning between different 2-dimensional topological phases. Internal Levin–Wen mod-
els are not only mathematically intriguing but also offer a deeper understanding of the rela-
tionships between various phases of matter. They bridge the gap between previously studied
models, such as Levin–Wen and Kitaev models, as well as the more abstract model for anyon
condensation using separable commutative algebra objects in a given phase, providing a uni-
fying perspective on these examples and the ones yielded by the instances of orbifold data
beyond those discussed in this work, such as in [46].

The internal Levin–Wen models are characterised by their commuting-projector Hamilto-
nians, which are constructed out of defects in the initial phase C, arranged into a lattice config-
uration. The ground state spaces of these Hamiltonians give rise to new topological phases of
matter, which, depending on the input, can yield an arbitrary phase which is Witt-equivalent
to C. Unless C is the trivial phase, the model fails to be local, meaning that unlike conven-
tional lattice models, where the state space consists of independent degrees of freedom at
each lattice site, internal Levin–Wen models introduce a lattice of anyonic particles, resulting
in a collective, non-local state space. The non-locality results in more involved computations,
which nevertheless are mostly repetitive in nature and can be carried out for example using
computer algebra. To illustrate this point we have performed a number of computations in the
context of internal Levin–Wen models in varying degrees of abstraction. We have shown how
one gets an explicit formula for the terms of the Hamiltonian based on an arbitrary orbifold
datum and specialised them for the instances when it is obtained from a separable commuta-
tive algebra in C, a spherical fusion category and a semisimple finite-dimensional Hopf algebra.
The outcomes of these computations demonstrate the aforementioned relation between the in-
ternal Levin–Wen models and those of anyon condensation, original Levin–Wen and the Kitaev
models.

Future directions building on this work may involve a deeper exploration of the properties
of the internal Levin–Wen Hamiltonian, such as the analysis of excitations and the development
of a string-net description of the ground state space. Additionally, the notions of orbifold data
in defect TFTs, on which this work relies, are versatile enough to suggest similar applications to
the study of topological phases on manifolds with other tangential structures than orientations
and/or beyond the setting of semisimplicity.
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A Conditions on orbifold data

Below we list the conditions on an orbifold datum (A, T,α,α,ψ,φ) in terms of string diagrams
(Figure 22) and in terms of surface diagrams (Figure 23).
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Figure 22: Conditions on a 3-dimensional orbifold datum (A, T,α,α,ψ,φ).
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Figure 23: Conditions on a 3-dimensional orbifold datum (A, T,α,α,ψ,φ). Cf. [17,
Fig. 18].

B Proof of proposition 9

In this section we give a proof that the tuple (A= KFr, T,α,α,ψ,φ) in Section 3.2.3 defines
an orbifold datum. More precisely, we show that it fulfils the identities (O1), (O3), (O6) and
(O8) in Figure 22. The remaining conditions can be shown by analogous computations. We
denote elements of K or K by letters a, . . . , f , distinguish different copies of the Haar integral
λ = λ1 = λ2 = . . . by upper indices and remind the reader that ψ = idK is trivial. The
computations use the identities (58), (59a), (59b), (59c).
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To show identity (O1) we compute both sides of it separately. The left-hand side reads
(α⊗ idT ) ◦
�

idT ⊗τT,T

�

◦ (α⊗ idT ), where τT,T denotes the swap of the tensor factors. We
compute this map as an endomorphism of T⊗3 = K⊗6 by applying the maps in the composition
step-by-step. The two copies of K belonging to one copy of T are indicated by square brackets,
e.g. [a⊗ b] ∈ K⊗2 = T . The left-hand side of (O1) then yields:

[a⊗ b]⊗ [c ⊗ d]⊗ [e⊗ f ]
α⊗idT7−−−→
�

S(λ1
(1))⊗ b(1)d
�

⊗
�

λ1
(3)a⊗λ

1
(2)b(2)c
�

⊗ [e⊗ f ]
idT ⊗τT,T
7−−−−−→
�

S(λ1
(1))⊗ b(1)d
�

⊗ [e⊗ f ]⊗
�

λ1
(3)a⊗λ

1
(2)b(2)c
�

α⊗idT7−−−→
�

S(λ2
(1))⊗ b(1)d(1) f
�

⊗
�

λ2
(3)S(λ

1
(1))⊗λ

2
(2)b(2)d(2)e
�

⊗
�

λ1
(3)a⊗λ

1
(2)b(3)c
�

. (B.1)

The right-hand side of (O1) yields:

[a⊗ b]⊗ [c ⊗ d]⊗ [e⊗ f ]
idT ⊗α7−−−→ [a⊗ b]⊗

�

S(λ1
(1))⊗ d(1) f
�

⊗
�

λ1
(3)c ⊗λ

1
(2)d(2)e
�

α⊗idT7−−−→
�

S(λ2
(1))⊗ b(1)d(1) f
�

⊗
�

S(λ2
(3))a⊗λ

2
(2)b(2)S(λ

1
(1))
�

⊗
�

λ1
(3)c ⊗λ

1
(2)d(2)e
�

idT ⊗α7−−−→
�

S(λ2
(1))⊗ b(1)d(1) f
�

⊗
�

S(λ3
(1))⊗λ

2
(2)b(2)S(λ

1
(2))λ

1
(3)d(2)e
�

⊗
�

λ3
(3)λ

2
(4)a⊗λ

3
(2)λ

2
(3)b(3)S(λ

1
(1))λ

1
(4)c
�

=
�

S(λ2
(1))⊗ b(1)d(1) f
�

⊗
�

λ2
(3)S(λ

3
(1))⊗λ

2
(2)b(2)d(2)e
�

⊗
�

λ3
(3)a⊗λ

3
(2)b(3)c
�

, (B.2)

where we have used the identities ϵ(λ1) = 1 and S(λ3
(1))⊗λ

3
(2)k = kS(λ3

(1))⊗λ
3
(2) for k = λ2

(3)
in the last step. By comparing with the left side we conclude that (O1) holds.

For (O3) we compute the left-hand side of the identity:

[a⊗ b]⊗ [c ⊗ d]
α
7−→
�

S(λ1
(1))⊗ b(1)d
�

⊗
�

λ1
(3)a⊗λ

1
(2)b(2)c
�

α
7−→
�

S(λ1
(1))λ

1
(4)a⊗ S(λ2

(1))
�

⊗
�

λ2
(3)S(λ

1
(2))λ

1
(3)b(2)c ⊗λ

2
(2)b(1)d
�

=
�

a⊗ S(λ2
(1))
�

⊗
�

λ2
(3)b(2)c ⊗λ

2
(2)b(1)d
�

=
�

a⊗ bS(λ2
(1))
�

⊗
�

λ2
(3)c ⊗λ

2
(2)d
�

. (B.3)

The right-hand side of (O3) is given by the formula in (62), which is identical to the left-hand
side we just computed.

We now compute the left side of (O6):

[a⊗ b]⊗ [c ⊗ d]
id⊗ coevT7−−−−−→ [a⊗ b]⊗ [c ⊗ d]⊗

�

λ1
(1) ⊗λ

2
(1)

�

⊗
�

S(λ1
(2))⊗ S(λ2

(2))
�

idT∗ ⊗α⊗idT7−−−−−−−→ [a⊗ b]⊗
�

S(λ3
(1))⊗ d(1)λ

2
(1)

�

⊗
�

λ3
(3)c ⊗λ

3
(2)d(2)λ

1
(1)

�

⊗
�

S(λ1
(2))⊗ S(λ2

(2))
�

evT ⊗ idT∗⊗T7−−−−−−−→ |K |2
∫
(aS(λ3

(1)))
∫
(bd(1)S(λ

2
(1)))
�

λ3
(3)c ⊗λ

3
(2)d(2)λ

1
(1)

�

⊗
�

S(λ1
(2))⊗ S(λ2

(2))
�

=
�

a(2)c ⊗ a(1)d(2)λ
1
(1)

�

⊗
�

S(λ1
(2))⊗ bd(1)
�

ßcoevT⊗idT⊗T∗7−−−−−−−−→
�

S(λ2
(1))⊗ S(λ3

(1))
�

⊗
�

λ2
(2) ⊗λ

3
(2)

�

⊗
�

a(2)c ⊗ a(1)d(2)λ
1
(1)

�

⊗
�

S(λ1
(2))⊗ bd(1)
�

idT∗ ⊗α⊗idT7−−−−−−−→
�

S(λ2
(1) ⊗ S(λ3

(1)))
�

⊗
�

λ2
(3)a(2)c ⊗ S(λ4

(1))
�

⊗
�

λ4
(3)λ

2
(2)a(1)d(2)λ

1
(1) ⊗λ

4
(2)λ

3
(2)

�

⊗
�

S(λ1
(2))⊗ bd(1)
�
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idT∗⊗T ⊗ eevT7−−−−−−−→ |K |2
∫
(λ4
(3)λ

2
(2)a(1)d(2)λ

1
(1)S(λ

1
(2)))
∫
(λ4
(2)λ

3
(2)bd(1))

·
�

S(λ2
(1))⊗ S(λ3

(1))
�

⊗
�

λ2
(3)a(2)c ⊗ S(λ4

(1))
�

= |K |
∫
(λ4
(3)λ

2
(2)a(1)d(2))
�

S(λ2
(1))⊗ bd(1)λ

4
(2)

�

⊗
�

λ2
(3)a(2)c ⊗ S(λ4

(1))
�

=
�

λ2
(1) ⊗ bd(1)S(d(2))S(a(1))S(λ

2
(2))
�

⊗
�

λ2
(4)a(3)c ⊗λ

2
(3)a(2)d(3)
�

=
�

S(λ2
(1))⊗ bS(a(1))S(λ

2
(2))
�

⊗
�

λ2
(4)a(2)c ⊗λ

2
(3)a(3)d
�

=
�

aS(λ2
(1))⊗ bS(λ2

(2))
�

⊗
�

λ2
(4)c ⊗λ

2
(3)d
�

. (B.4)

Here we used the identity
∫
(λ(1)k)S(λ(2)) =

1
|K |k for k ∈ K . The right-hand side of (O6) yields:

�

[a⊗ b]Ã0 S(λ(1))
�

⊗
�

λ(2) Â0 [c ⊗ d]
�

=
�

aS(λ(1))⊗ bS(λ(2))
�

⊗
�

λ(4)c ⊗λ(3)d
�

, (B.5)

which is identical to the left-hand side as expected.
Finally, we show one of the identities in (O8), starting with the left-hand side:

a
id⊗ coevT7−−−−−→ a⊗
�

λ1
(1) ⊗λ

2
(1)

�

⊗
�

S(λ1
(2))⊗ S(λ2

(2))
�

(µ⊗Â0)◦∆(1K )⊗idT∗7−−−−−−−−−−−−→ aS(λ3
(1))⊗
�

λ3
(3)λ

1
(1) ⊗λ

3
(2)λ

2
(1)

�

⊗
�

S(λ1
(2))⊗ S(λ2

(2))
�

ßcoevT7−−−→ aS(λ3
(1)) · |K |

2
∫
(λ3
(3)λ

1
(1)S(λ

1
(2)))
∫
(λ3
(2)λ

2
(1)S(λ

2
(2)))

= aS(λ3
(1)) · |K |

2
∫
(λ3
(3))
∫
(λ3
(2)) = |K | · a =

1
φ2
· a . (B.6)
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