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Abstract

We consider continuous time-crystalline phases in dissipative many-body systems of
atoms in cavities, focusing on the role of short-range interatomic interactions. First,
we show that the latter can alter the nature of the time crystal by changing the type of
the underlying critical bifurcation. Second, we characterize the heating mechanism and
dynamics resulting from the short-range interactions and demonstrate that they make
the time crystal inherently metastable. We argue this is generic for the broader class of
dissipative time crystals in atom-cavity systems whenever the cavity loss rate is compa-
rable to the atomic recoil energy. We observe that such a scenario for heating has several
similarities to the one proposed for preheating in the early universe, where the oscillat-
ing coherent inflation field decays into a cascade of exponentially growing fluctuations.
By extending approaches for dissipative dynamical systems to our many-body problem,
we obtain analytical predictions for the parameters describing the phase transition and
the heating rate inside the time-crystalline phase. We underpin and extend the analyt-
ical predictions of the heating rates with numerical simulations, which also show that
the metastable regime exists when the inherent stochastic nature is taken into account.
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1 Introduction

Following the first conceptualization of time-crystalline phases of matter [1,2], it was quickly
proven that such phases cannot appear in thermal equilibrium [3–5]. However, it is possible to
realize such phases in periodically driven systems, both closed [6–11] and dissipative [12,13].

Among the latter, systems of atoms in optical cavities have emerged as an ideal platform
to realize continuous time-crystalline phases [14–16], where an effectively time-independent
drive of the atomic system is counterbalanced by the loss of photons out of the cavity mirrors.
In these phases, continuous time-translation invariance is spontaneously broken, and oscilla-
tions persist even though the system possesses a macroscopic number of degrees of freedom,
among which energy can be redistributed via interactions.

Since the phase space of scattering by cavity-mediated interactions between atoms is lim-
ited due to their long range, redistribution of energy through these processes is inefficient
[17–19]. However, the intrinsic atomic short-range interactions allow for efficient redistri-
bution of energy among the atoms. Indeed, experiments show strong indications that these
interactions are one of the main fundamental limiting factors to the measured lifetime of the
time crystal [12].

Despite their crucial role, short-range atomic interactions have not been theoretically in-
vestigated so far in a systematic way for continuous time crystals in atom-cavity setups. In this
work, we undertake this task. We not only provide a complete picture of the possible destabi-
lization processes but also show that short-range interactions can alter the nature of the time
crystal itself.

In Section 2 we describe the model under consideration, which has a simple and experi-
mentally realizable mechanism for the appearance of time-crystalline phases for an interact-
ing BEC coupled to two cavity modes [20]. In Section 3 approaches for classical non-linear
dissipative systems is extended to our many-body problem and we obtain an analytic descrip-
tion of the time crystal in terms of cavity-induced critical bifurcations and show how inter-
atomic interactions can modify the nature of the latter. These results are used in Section 4,
where we identify the dominating scattering processes responsible for energy redistribution
among the atoms. Using these scattering processes we compute the dependence of the energy-
redistribution rates on external parameters identify the corresponding time scales. Lastly, in
Section 5, we show numerically that for realistic noise levels, the metastability of the time
crystal is fully determined by the redistribution rates due to inter-atomic interactions.

The analytic understanding of the results, underpinned with numerical analysis, allows
for a deep insight into the generic features of the phenomenology beyond the specific model
considered and provides orientation for future investigations both in theory and experiment.
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2 Model

The system considered is an ultracold gas of bosonic atoms in a BEC state, dispersively coupled
with equal strength to two modes of an optical cavity. In this regime, a photon imparts a recoil
momentum of Q = 2π/λ to an atom, with λ being the wavelength of the photon in a given
mode. In the thermodynamic limit, the atomic BEC at momentum k is described by a complex
field ψk satisfying the Gross-Pitaevski mean-field equations. Furthermore, in the limit of a
small transverse extend of the BEC compared to the cavity waist we can simplify the model to
one spatial dimension [19,20]

i∂tψk =k2ψk + U
∑

q,q′
ψqψq′ψ̄q+q′−k +

η̃
p

2

∑

j=1,2

Re
�

φ j

� �

ψk+Q +ψk−Q

�

, (1)

where the bar denotes complex conjugation. This equation has been written in units of the
recoil energy ER = ħh2Q2/2m and in the rotating frame of the laser. The time-dependence
of the fields is kept implicit and the atom field has been normalized to 1. The cavity-mode
wavelengths have been chosen to be equal, as we assume the modes differ in the transverse
direction [20]. The coupling strength η̃ can experimentally be tuned by the strength of the
transverse pump while the atoms are interacting with each other through a contact interaction
of strength U . The complex field φ j corresponds to the coherent cavity-field amplitude which
satisfies the equation

i∂tφ j =
�

∆ j − iκ
�

φ j +
η̃

2
p

2

∞
∑

k=−∞
ψ̄k

�

ψk+Q +ψk−Q

�

, (2)

where the cavity field has been normalized by the square root of the atom number. The cavity
linewidths, κ, have been assumed to be identical for both modes. In the following we will
consider κ on an energy scale similar to the recoil energy, as realized for instance in [21]. In the
actual implementation of the dispersive atom-cavity coupling, the characteristic frequency of
each cavity mode∆ j corresponds to the detuning of the mode frequency with respect to laser-
driven two-photon transitions [20]. The steady state of this model can break time-translation
invariance when the two detunings have opposite signs. With this in mind the detunings are
parametrized as ∆1 = −

�

∆− δ2
�

and ∆2 = ∆ +
δ
2 . By choosing 0 < δ < 2∆ the negative

detuning has the smallest amplitude |∆1|< |∆2|.
The mean-field description of this system becomes exact in the thermodynamic limit [22].

It, however, does not give rise to a unique steady state of the atomic system. To determine the
latter, one needs to include quantum fluctuations [23]. The time scale needed to reach this
steady state does grow inversely with the system size. For the large atomic clouds considered
here, the relaxation to this steady state is thus irrelevant on the experimental time scale. Ad-
ditionally, for a system with a finite number of atoms, the openness of the cavity gives rise to
an additional stochastic term in the cavity equation. The strength of the stochastic term scales
with κ/

p
N , with N being the number of atoms. We will initially consider the limit of N →∞

and in Sec. 5 show that the conclusions remain valid also for finite system sizes.

3 Nature of the time crystal

Below a critical coupling strength ηc , all atoms are in the homogeneous state ψ0, and the
coherent part of the cavity fields is empty. This configuration is denoted as the normal phase
(NP) and it is always a fixed point of the equations of motion Eqs. (1) and (2). As η̃ is in-
creased beyond ηc the NP fixed point becomes unstable and the system enters a state where
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a fraction of the atom population is transferred to ψ±Q and the coherent fields of the cavity
becomes finite. This symmetry-broken state is often referred to as the superradiant (SR) or
self-organized state [24, 25]. The frequency ωc of the excitation becoming undamped above
ηc , can be derived through a linear expansion around the NP fixed point [26] (see [27] for an
alternative approach). This is done by considering a small perturbation to the state NP state
and only keeping the terms linear in the perturbation. One can then derive an equation for
when the perturbation becomes unstable, indicated by a zero real part of the eigenvalue of the
resulting Jacobian of the linear system.

The frequency of the unstable perturbation is determined by the imaginary part of the
eigenvalue. It is found that an unstable mode can appear for three different frequencies of
the critical mode. The determination of which the three possible modes that ends up man-
ifesting in the system is set identifying which of the three modes require the smallest corre-
sponding values of ηc . The first of the three potential instabilities is a static solution with
ωc = ωc,s = 0. The second frequency at which the system can become critical is a resonance
at the energy of the Bogoliubov excitation of the BEC at the recoil momentum with frequency
ωc =ωa =

p

ER (ER + 2U) and lastly, there is a possibility of an instability at a frequency given
by

ωc =

√

√δ2

4
+
Æ

(4∆2 −δ2) (∆2 + κ2)−∆2 −κ2 , (3)

which is solely determined by cavity parameters, that is, it does not depend on U and ER.
This feature, which can be attributed to the fact that the cavity is the only dissipation channel,
implies a robustness of this self-sustained periodic signal to perturbations of the nonlinear
medium that causes this signal to appear in the first place. To determine which mode that
becomes unstable one identifies which mode leads to the smallest real critical coupling given
by

ηc = lim
κa→0

√

√

√

√

√

ω2
a + κ2

a −ω2
c

ER
∑

j=1,2

∆ j

�

∆2
j+κ

2−ω2
c

�

ω4
c+2ω2

c

�

κ2−∆2
j

�

+
�

∆2
j+κ

2
�2

, (4)

where κa is the atom lifetime which we, for simplicity consider infinitely long. always depends
on both cavity and atom parameters [26]. The phase diagram will therefore depend on all
parameters of the model.

In Fig. 1(a) the frequency of the critical mode at ηc is plotted as a function of κ and ∆
and is a good order parameter for distinguishing the three different phases of the system. For
∆ < δ/2 both cavity modes have a positive detuning and the system always exhibits static
superradiance (SSR), characterized by a critical mode with zero frequency. SSR requires a
finite critical atom-cavity coupling such that the critical mode is a polariton. For ∆ > δ/2
one of the modes acquires a negative detuning. Differently from a positively-detuned mode,
a negatively-detuned one disfavors a superradiant density modulation. The competition be-
tween the two cavity modes induces an oscillating superradiant phase (OSR) [20,28], which
also requires a finite coupling strength such that the critical mode is again a polariton. Instead,
when the solution with ωc = ωa has a real critical coupling, ηc in Eq. (4) vanishes, making
the critical mode purely atomic. We refer to this instability as the atomic instability (AI).

Both the OSR and AI critical modes break continuous time-translation invariance and can
thus potentially signal a continuous time-crystal phase. However, whether the latter is stable
is determined by non-linear effects not included so far. In order to capture these in the present
interacting many-body system, we perform a systematic perturbative expansion in the relative
distance from the critical point η = (η̃−ηc)/ηc . The resulting effective non-linear equation
is of the Stuart-Landau form (see e.g. [29]), and is an equation of motion for the collective
degrees of freedom which are excited in the SR phases. These degrees of freedom constitute
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Figure 1: The critical frequency of the instability is shown in the lower plot of a) as a
function of ∆ and κ. By tuning ∆ the critical mode change from exhibiting static to
oscillating superradiance and a purely atomic instability over a large range of cavity
loss rates. The upper plot shows the critical frequency and coupling along the dashed
line in the lower plot. In b) the sign of the cubic interaction as a function of∆ and U
is plotted for κ = 0.4ER. This determines the stability of the symmetry-broken state
beyond the linear analysis. For for the entire figure δ = 0.2ER.

the so-called center manifold and are defined by the critical mode, which is composed of both
cavity modes as well as of the zero and recoil momentum components of the BEC, ψ0 and
ψ±Q. Within the center manifold and to leading order in η the recoil momentum component
is given by

ψ±Q(t) =
p
ηR
�

c+eiωc t + c−e−iωc t
�

, (5)

with c± being the atomic components of the critical-mode eigenvector obtained from the linear
analysis [26]. The cavity fields have the same form with c± replaced by the cavity components
of the critical mode. Finally, since to leading order the only occupied atom components are
ψ0 and ψ±Q, these are linked by normalization such that

ψ0 =
r

1−
�

�ψQ

�

�

2 −
�

�ψ−Q

�

�

2 ∼ b0 + b+ei2ωc t + b̄+e−i2ωc t , (6)

with b0 = 1 − ηR2
�

|c+|
2 + |c−|

2� and b+ = −ηR2c+ c̄−. The perturbative approach yields an
equation of motion for the amplitude, R, in the symmetry-broken phase:

Ṙ= γR− g rR3 , (7)

where γ is the exponential growth rate of the critical mode obtained from the linear analysis,
which in this case can be shown to be positive. The non-linearity of the center manifold or in
other words, the strength of the self-interaction of the excitations present in the critical mode,
is quantified by g r (see Appendix A.2 for closed expressions for these quantities and the proof
of the sign of γ). For stable time-crystalline and static solutions, R must be time-independent,
real, and positive:

R=
√

√ γ

g r
> 0 . (8)

As γ > 0, our analytic solutions can only be stable if g r > 0. This is physically clear since
otherwise the attractive self-interaction would lead to a first order transition into a phase that
requires higher-order non-linearities for stabilization.
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The sign of g r is shown in Fig. 1(b). If ωc is pushed to ωa, gr = 0 i.e. the self-interaction
vanishes as the critical mode is purely atomic, which corresponds to the white region in
Fig. 1(b). As the fraction γ/g r goes to zero as ωc approaches ωa (see Eq. (A.23)), the AI
phase has no stable time-crystaline solution.

Short-range interactions between the atoms qualitatively modify g r and lead to two sepa-
ratrices in Fig. 1(b). The expression for the separatrix Uc2(∆), drawn with a solid line is given
in Eq. (A.19), while the separatrix Uc1(∆) between the white and the blue region, is defined
by the condition that the energy cost of a Bogoliubov excitation, ωa, equals∆. When U > Uc1
the self-interactions of the critical mode become finite and repulsive as ωc <ωa, leading to a
finite cavity component of the critical mode.

It is further remarkable that the sign of the self-interactions can be changed via U . Indeed,
within the blue region in Fig. 1(b), that is, for Uc1 < U < Uc2, the self-interactions of the
critical mode are attractive: gr < 0. This is due to the fact the short-range repulsion U , which
penalizes density modulations and in particular excitation of the recoil component ψ±Q, is
not sufficient to counteract the decrease of energy due to coupling to the negatively detuned
cavity mode. The resulting instability of the OSR solution corresponds to a subcritical Hopf
bifurcation [30] of Eq. (6). On the other hand, when U > Uc2 (green region in the figure),
the short-range repulsion penalizes density-modulations enough to change the sign of the
self-interaction of the critical mode and thus stabilize the OSR phase. This corresponds to a
transition from a subcritical to a supercritical Hopf bifurcation.

4 Energy redistribution

Up to this point, the OSR time crystal is found to exist in a stable fashion as a supercritical
Hopf bifurcation. Its infinite lifetime is a consequence of the coherent scattering between the
atomic modes with momentum q = 0 and q = ±nQ, with n being a positive integer. Only
the n = 1 modes belong to the CM but the higher-order integer modes only lead to a small
renormalization of the amplitude of the OSR phase. This happens because the nQ modes all
scatter effectively with the cavity such that a steady state is found with an occupation of the
n> 1 modes that is exponentially decreasing with n. For this reason we refer to the manifold
with all the nQ modes as the extended center manifold. However, the atomic interactions
allow for scattering of occupation into modes where q ̸= nQ. We will refer to those as the
not-center-manifold (NCM) modes. As these modes are not coupled effectively to the CM
modes by the cavity they can exhaust the occupation in the nQ modes and thereby destroy the
coherent nature of the OSR phase. To fully assess the stability of the OSR phase, one has to
allow for the redistribution of energy including the NCM modes. Hence, one needs to treat
the many-body problem of scattering between quasi-particles and a time-dependent coherent
field.

Let us first predict which NCM modes initially participate in the scattering process, assum-
ing we are only slightly into the OSR phase. If one also considers the regime of small U , which
is the experimentally relevant one [21], then the occupation of an NCM mode is described by
a collision that is first order in U . If all NCM modes are initially unoccupied, then the incom-
ing modes must belong to the center manifold. From Eqs. (5) and (6) it is seen that there
are essentially five occupied components in the stable OSR phase. The dominant component
is a zero frequency and zero momentum component with weight b0. Then there are compo-
nents carrying momentum ±Q at the frequency ωc with weight c± and finally the smallest
contribution comes from the zero momentum modes with frequency 2ωc which are weighted
by b+. As the scattering is momentum and energy conserving the fastest-growing NCM mode
results from scattering between the atomic components b0 and c± of the center manifold, as
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Figure 2: a) The dynamic nature of the OSR phases combined with finite atom-
interaction leads to occupation of atom modes out of the center manifold, through
the symmetric and asymmetric process illustrated here. b) The scaling of the growth
rates, computed from the Floquet quasi-energies of the linearized equations, for the
asymmetric channel marked with orange stars, with a square-root fit (orange line)
and the scaling of symmetric channel marked with red stars, with a linear fit (red
line). The same parameters as in Fig. 3 have been used.

illustrated in Fig. 2(a). For this process, the outgoing NCM modes with energies εq,εq′ have to
satisfy q+q′ =Q, εq+εq′ =ωc . Since here q ̸= −q′, we call this the asymmetric channel. Near
the critical point, we can approximate εq with the Bogoliubov dispersion of the BEC excita-
tions in the absence of the cavity field, which for small U reads ωB(k)≈ ERk2+U . This yields
q = Q/2+

p

ωc − ER/2− 2U/
p

2 and q′ = Q− q. From the approximation of the CM compo-
nents in Eqs. (5) and (6), we predict an exponential growth of these two Bogoliubov modes
with a rate Γ = Γas ym∝ U

p
η. This asymmetric channel can be closed off if ωc < ER/2+ 2U ,

which leaves us with a different channel where the component b0 scatters with b+, or c+ with
c−. Both these processes produce a symmetric NCM pair with q = −q′ =

p

ωc − U . One repre-
sentative process of this symmetric channel is shown in Fig. 2(a). In contrast to the asymmetric
counterpart, we predict Γ = Γs ym∝ Uη for the symmetric scattering processes.

In order to further verify the above predictions, we have linearized Eqs. (1) and (2) around
the OSR phase and extracted the rate by computing the Floquet quasi-energies. The details
of these calculations can be found in Appendix B and the resulting growth rates are shown
in the lower panel of Fig. 3. It is seen that the predicted momentum (orange marks for the
asymmetric channel and red mark for the symmetric channel) is only reliable close to the phase
transition as the dispersion of the NCM mode is quickly modified due to the growing oscillating
density modulation. We also find an additional momentum component that grows (marked
in green), which arises from the scattering between a negative momentum NCM mode in the
symmetric channel and the recoil component of the center manifold. The computed growth
rates for the symmetric and asymmetric modes are shown in Fig. 2(b), and in both cases, an
excellent agreement with our simple predictions based on Fig. 2(a) is demonstrated. Finally,
in order to fully confirm our predictions, we performed a full numerical integration using a
Runge-Kutta-4 routine, starting from the OSR phase at η = 0.06, corresponding to the white
dashed line in the lower panel of Fig. 3. After evolving the system for 200 periods we compared
the momentum distribution with the predictions based on the Floquet quasi-energies and find
excellent agreement, as shown in the upper panel of Fig. 3.
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Figure 3: The lower plot shows the exponential growth rates of the atomic modes
outside of the center manifold. The parameters are equivalent to those in Fig. 1 with
∆ = 0.6ER resulting in ωc = 0.586ER, and we choose U = 0.01ER. The orange ticks
indicate the predicted momentum based on the asymmetric channel, while the red
tick signifies the symmetric channel momentum. The green tick is the atom mode
coupled to the symmetric channel through the cavity. The upper plot shows the
resulting atom distribution after 200 periods at the dashed line in the lower plot,
both with numerical integration of Eqs. (1) and (2) in blue and from the linearized
prediction with the dashed green line.

As long as the NCM modes with the largest occupation are still small compared to unity,
i.e. the time crystal has not melted yet, the CM modes still satisfy

∑

q=0,±Q

�

�ψq

�

�

2 ≈ 1 .

The rate of the fastest-growing NCM modes therefore sets the time scale on which the cascade
becomes relevant. This time scale is explicitly given by τ = ln a0/Γ , where a0 is the initial
seed in the NCM modes. This initial seed is determined by the temperature of the system and
energy of the fastest growing NCM mode.

5 Metastable nature of time crystal

In the previous section, we have established that atom interactions lead to scattering from the
CM to NCM modes with q ̸= nQ, with n ∈ Z+. We have identified the fastest-growing NCM
modes and that they grow exponentially. As these NCM modes are not coupled via the cavity
to the CM modes, one expects them to evolve incoherently, such that the coherent nature of
the OSR will be destroyed once the occupation of the NCM modes becomes non-negligible. To
verify this, in this section, we will analyze the full numerical solution of Eqs. (1) and (2) in
more detail.

Before discussing this we note that the numerical calculations require very dense momen-
tum grids. This is because the NCM modes have to be numerically broadened such that they
can be sampled on a finite grid. The artificial linewidth corresponds to a time scale, which
has to be much smaller than the simulated time. Here we use a broadening of 2 × 10−6ER,
allowing us to reach simulation times of order 105/ER. As quantum fluctuations have been
neglected a small finite seed is needed for all the NCM modes and we initialize all the NCM
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Figure 4: a) The effective cavity potential felt by the atoms resulting from the full
numerical solution of Eqs. (1) and (2) for the same parameters as Fig. 3 apart from
U = 0.1ER. The insets show a zoomed-in view of Vc(t) from the early and late time
regions respectively (the arrows indicate the regions the insets are parts of). b) The
power spectrum of the Fourier transform performed on the finite interval marked by
the blue (tearly ∈ {0, 600}E−1

R ) and green (tlate ∈ {3400, 4000}E−1
R ) shaded regions

in plot (a). The red line indicates the predicted ωc while the orange line is at 3ωc .
c) The corresponding momentum distribution of the atomic modes within the stable
OSR region in blue (t1 = 250E−1

R ) and after its destruction in green (t2 = 3250E−1
R ).

The red lines indicate the momentum of the fastest-growing modes predicted by sym-
metric channel scattering predictions.

modes with a constant magnitude of 10−11, corresponding to a0 discussed at the end of the
previous section. Additionally, it is also necessary to go to large momentum values to ensure
the results are fully converged (we truncate at |kmax| = 5.4Q). The resulting numerical mo-
mentum grids are thus very long O(4 × 104). To fully understand the stability of the OSR
phase it is also necessary to include the fact that a finite number of atoms gives a stochastic
nature to the equations due to the openness of the cavity. This limits the magnitude of the
numerical time step as the noise appears correlated on a time scale of ∆t, with ∆t being the
numerical time step. We therefore require that ∆t ≪ 1/Emax where Emax ∼ k2

max is the largest
energy scale in our simulation. The simulations therefore require a small time step (we use
∆t = 5× 10−4 and a Runge-Kutta-2 routine for the deterministic part [31]). All parameters
apart from U will be kept the same as those used in Fig. 3 such that ωc = 0.586ER leading to
a characteristic periode of T = 2π/ωc = 10.735E−1

R . To verify that the asymmetric channel is
closed whenωc < ER/2+2U , while simultaneously decreasing the computation time, we con-
sider U = 0.1ER. As the symmetric channel grows with a rate proportional to η, the increase
of U by a factor of 10 ultimately results in an increase of the NCM growth rate by ≈ 2.45.
Consequently, the necessary simulation time is more than halved even though the asymmetric
scattering channel is closed.

The resulting effective cavity potential felt by atoms, defined as

Vc(t) = ηc
η+ 1
p

2

∑

j=1,2

Re
�

φ j(t)
�

, (9)

is plotted in Fig. 4(a). Vc(t) is good observable as it not only describes the optical potential felt
by the atoms but also, up to a constant prefactor, corresponds to measuring the x-quadrature
of the cavity field. For early times one observes perfectly coherent oscillations expected from
the stable OSR phase. After the blue shaded region, which stops at t = 600E−1

R ≈ 56T the
amplitude of Vc starts being perturbed as the occupation of the NCM modes becomes relevant.
The exponential growth and following cascade lead to a sharp decrease in the amplitude of
optical potential and a loss of its temporal coherence.
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The loss of coherence is more clearly seen in Fig. 4(b) where the power spectrum of the
Fourier transform of the two shaded regions in Fig. 4(a) is shown. For early time the spectrum
is clearly dominated by a peak at the predicted frequency (marked in red) and a small contri-
bution from a higher harmonic at 3ωc . The finite width for early times is a consequence of the
finite interval of the Fourier transform combined with the use of a window function to avoid
aliasing. The spectrum of the long-time region clearly shows that no coherent oscillation is
present in the cavity fields. At late times, there is a competition between synchronization via
the cavity that favors the OSR phase, and decoherence caused by scattering involving NCM
modes. The amplitude of the incoherent oscillations in this region is therefore related to the
magnitude of U . To highlight the fact that the loss of coherence is an effect of having lost
occupation in the CM modes, Fig. 4(c) shows the occupation of the atomic modes, averaged
over one period T , for a time within the early and late time regions respectively. Here the
early time occupation shows all occupation is basically in the CM modes (q = {0,±Q}). For
late times this occupation has been completely redistributed to a continuum of momentum
modes with the most occupied mode being the symmetric modes predicted at q = ±

p

ωc − U
which are marked with red lines. It is worth pointing out that, as predicted, the asymmetric
momentum modes seen in Fig. 3 are absent. The broad nature of the atomic distribution at
late times is a result of the exponential growth of the initial NCM modes together with the fact
that the occupied NCM modes act as sources for occupying new NCM modes, leading to an
exponentially growing cascade of modes out of CM and into the NCM.

From the perspective of the growing NCM modes, this cascade can be understood as the
unstable regime of parametric resonance with the center manifold modes acting as parametric
drive via the short-range interactions. This is analogous to preheating in the early universe
[32, 33], where the weakly interacting and oscillating, coherent inflation field decays into a
cascade of exponentially growing fluctuations, leading to extreme non-equilibrium conditions
inaccessible to perturbative methods and finally to thermalization [34]. Explicitly, the CM
modes take the role of the inflaton field and the growing NCM modes resemble the particles
created by the oscillating field. The analytic discussion we have presented corresponds to the
linearized classical regime [35], which at later times will be superseded by increasingly non-
linear effects leading to a cascade of even more quickly growing fluctuations that eventually
thermalize [36]. At this point, a conceptual difference between the closed evolution considered
for the early universe, and the driven open cavity model we discuss here emerges. Our model
never fully thermalizes. Instead, it reaches a highly non-trivial state that corresponds to a
compromise between thermalization due to short-ranged interactions and the flow equilibrium
imposed by drive and dissipation.

5.1 Finite size of atom clouds

Any experiment will necessarily be performed with a finite number of atoms, N , in the cloud.
As mentioned, in Section 2, the openness of the cavity then gives rise to a stochastic term in
the cavity equations such that they take the form

i∂tφ j =
�

∆ j − iκ
�

φ j +
η̃

2
p

2

∞
∑

k=−∞
ψ̄k

�

ψk+Q +ψk−Q

�

+
s

κ

N
∆W (t) , (10)

where ∆W (t) is the Wiener increment [31]. To verify that the metastable OSR phase is not
just robust towards atomic perturbation but also cavity noise we have performed the numerical
calculations with different atom numbers (effectively changing the noise level). In principle
one should compute several trajectories. Here, however, we are not interested in the noise-
averaged state at late times but merely in the characteristic lifetime of the OSR phase. As the
latter is much longer than any microscopic time scale of the system, it is faithfully obtained

10

https://scipost.org
https://scipost.org/SciPostPhys.17.3.089


SciPost Phys. 17, 089 (2024)

0.5 1. 1.5 2. 2.5

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1. 1.5 2. 2.5 0.5 1. 1.5 2. 2.5 0.5 1. 1.5 2. 2.5 0.5 1. 1.5 2. 2.5 0.5 1. 1.5 2. 2.5

Figure 5: Plot of the Fourier spectrum of Vc(t) for different atom numbers which
is inversely related to the noise level. The parameters are kept equivalent to those
in Fig. 4. As the time crystalline phase is only metastable the Fourier transform is
performed on finite region with t ∈ {0, 600E−1

R } as the early time result in Fig. 4(b).
The red line indicates the predicted ωc .

already from a single trajectory. To this extent, the Fourier spectrum for different levels of
noise has been plotted in Fig. 5. Here it is seen that the time-crystalline order emerges once
the cloud contains 103 atoms or more. It should be pointed out that we are considering a
setup with a subrecoil linewidth of κ = 0.4ER which is comparable to relevant experimental
setups [21] in which N = 105. We thus predict that the metastable region of the OSR phase is
stable against realistic noise levels.

5.2 Cavity parameters

Of particular experimental relevance is the question regarding the dependence of the lifetime
of the OSR phase on the choice of cavity parameters. So far, we have investigated the depen-
dence of the lifetime on the frequency of the CM components. However, the same frequency
can be generated with an infinite number of different cavity parameters. This is because one
can depart from the simple fully symmetric cases discussed here and include different loss
rates for the different cavity modes and different coupling to the atomic cloud. Experimen-
tally the latter can be easily controlled by changing the power in the corresponding pump
sideband. So the question then becomes, given that the CM oscillates at a set frequency does
it matter how the cavity is configured to achieve this frequency? Our analysis shows that,
for small U , the scattering out of the OSR phase, which sets the lifetime, is contained in the
first-order scattering processes between the atomic CM components of the atoms illustrated
in Fig. 2(a). The magnitude of the atomic CM components therefore have to depend on cav-
ity parameters directly (and not just through ωc) to impact the lifetime of the OSR phase.
Using the full analytic description of the OSR phase derived in Appendix A.2, one finds that
the time-averaged magnitude of the recoil components in CM, given in Eq. (A.27) is only a
function of η, U , ωc and ER. In this model the lifetime of the OSR phase is thus independent
of the specific cavity configuration. This should be contrasted with the previous results for
the frequency of the OSR phase in Eq. (3), which was shown to be independent of U and as
such stable against interatomic interactions. Apart from this intriguing duality, the fact that
the lifetime is not explicitly depending on the cavity configuration gives a large amount of
freedom for experimental realizations.
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6 Conclusion

We have analyzed the role of short-range interactions on the nature and stability of continuous
time crystals in dissipative many-body systems of ultracold bosonic atoms in cavities.

First, we have shown that short-range interatomic interactions can alter the nature of the
time crystal by transforming the underlying classical bifurcation from sub- to supercritical.

Second, we have studied the effect of interatomic interactions on the time crystal. Our
analysis shows that when the system can only dissipate energy through the cavity, the inter-
atomic interactions makes the time crystal inherently metastable. This can be understood from
the fact that the time crystalline phase requires superradiance and thus coherent scattering of
cavity photons between the atomic states. The interatomic interactions deplete the superradi-
ant mode by populating atomic states that scatter incoherently. In the absence of an ordering
principle, like a low temperature in thermal equilibrium, the depletion proceeds until the time
crystalline phase ceases to exist.

We showed that near the transition, the amplitude of atomic component of the time crys-
talline phase is independent of the details of the underlying critical polaritonic mode. Instead
it only depends on the frequency of the oscillations and the proper dimensionless distance
from the critical point. The cavity dissipation is therefore not able to efficiently cool the sys-
tem [37–39] (NCM modes can be de-excited only at higher order in our expansion, see Ap-
pendix B). This suggests that the metastable nature we identified is generic for these cavity
systems [40], as long as the cavity linewidth is comparable to the recoil energy. We note
that time-dependent Hartree-Fock approximations would miss this heating [41], as they lack
collisions, and thus redistribution [42].

While we that the time crystalline phase is only metastable, we have shown that its life-
time increases significantly by considering ωc < ER/2 + 2U which prohibits the asymmetric
scattering processes that lead to much higher growth rates. As interatomic interactions can
be weak in dilute systems, the time-crystalline phases can appear stable on a time scale of the
order of hundreds of periods, consistent with numerical predictions in related models [43,44].
We numerically show this statement to hold true, also in the presence of realistic noise levels.

Finally, we pointed out that cascading effect responsible for the destruction of the time
crystalline phase is analogous to preheating in the early universe. It will be interesting to
pursue this analogy deeper into the highly excited regime using appropriate atom-photon di-
agrammatic approaches [45,46].

Acknowledgments
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A Center manifold coefficients

The two-cavity mode system considered is a simplification of the N cavity mode system dis-
cussed in [26]. In this reference the standard methods of stability analysis and bifurcation
theory [29, 30] is applied to understand the origin of the limit cycle, which we use as the
foundation for our exploration. We refer the interested reader to reference [26] for a more
detailed derivation of the critical frequency and coupling. In this appendix, we instead focus
on a self-contained derivation of the analytical description of the center manifold dynamics.
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The starting point is the equations of motion in Eqs. (1) and (2), which we use to define
the autonomous system of non-linear first order ODE’s

v̇= F(v) . (A.1)

Here v is a vector containing the two complex cavity fields and all the complex atom fields
with the different discretized momenta. As both cavity modes transfer the same longitudinal
momentum (Q) and the BEC is initially homogeneous, the emerging critical mode only con-
tains the cavity fields, the homogeneous atom state and the ±Q atom modes. These modes
constitute the center manifold

vcm =
�

φ0,φ1,ψ0,ψQ,ψ−Q

�T
. (A.2)

The normal phase X0 = (0, 0,1, 0,0)T is a fixed point of F . When η̃ < ηc this fixed point is
stable but becomes unstable for η̃≥ ηc .

As stated in the main text, slightly past the critical point the symmetry-broken state can be
approximated as

u=
p
µRvReiωc t + c.c. , (A.3)

where µ = η̃ − ηc is the absolute distance to the critical point and ωc is the frequency of
the unstable right eigenvector vR. We will write the equations of motion in terms of the real
(xα) and imaginary part (pα) of the complex fields in which the center manifold is spanned
by vectors of the form

vR =
�

vR
c1

,vR
c2

,vR
Q,vR
−Q

�T
, (A.4)

with vR
α = (xα, pα)

T . The approximation in Eq. (A.3) only describes the new fixed point well if
the bifurcation is of the supercritical form, which means that the self-interaction of the critical
mode is repulsive. The linear coefficient in the amplitude equation Eq. (7) is given by the real
part of

λ=
∑

i, j

vL
i

�

∂ L
∂ µ

�

i, j
vR

j , (A.5)

where the latin indices run over all components in the center manifold
i, j ∈ {xc1, pc1, xc2, pc2, xQ, pQ, x−Q, p−Q}. The Jacobian matrix L = ∇F |X0

evaluated at the
normal-phase fixed point X0 and vL (vR) is the left (right) critical eigenvector. We define the
linear coefficient as γ= Re (λ). The cubic coefficient of Eq. (7) is given by the real part of

g = −
1
2

∑

i, j,k,q

vL
i

∂ 3Fi

∂ X j∂ Xk∂ Xq

�

�

�

�

X0,µ=0
vR

j v
R
k v̄R

q = −vL
i (N0)

j,k,q
i vR

j v
R
k v̄R

q , (A.6)

where the cubic coefficient in the main text is g r = Re (g). Within the center manifold there
is no contribution to quadratic contribution from ∂ 2F because the center manifold obeys a
reflection symmetry, which originates from the fact that the coupled Eqs. (1) and (2) posses a
Z2-symmetry. This symmetry is that the equations are invariant under the simultaneous phase
shift of the atoms by ψk→ eiπk/Qψk and the cavity fields φ j →−φ j .

A.1 The critical eigenvector

To compute λ and g we use that the symmetry results in the right and left eigenvector com-
ponents for each mode α ∈ {c1, c2,Q,−Q} are related by

vL
α = ±σxvR

α , (A.7)
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whereσx is the first Pauli spin-1/2 matrix. Furthermore, the eigenvectors are normalized such
that Eq. (A.7) is realized with the upper sign. The two effective interaction parameters can
now be written solely in terms of the right eigenvectors

λ=
∑

i, j

��

14 ⊗σx

�

vR
�

i

�

∂ L
∂ µ

�

i, j
vR

j ,

g = −
∑

i, j,k,k,q

��

14 ⊗σx

�

vR
�

i (N0)
j,k,q
i vR

j v
R
k v̄R

q .
(A.8)

The cavity eigenvector components are connected to the atomic eigenvector components
through the definition of the critical eigenvector

(L0 − iωc)v
R = 0 , (A.9)

which leads to the relation

vR
c j
= −
p

2ηcβ j

�

1 0 1 0
κ+iωc
∆ j

0 κ+iωc
∆ j

0

�







xQ
pQ
x−Q
p−Q






, (A.10)

where

β j =
∆ j

2

∆2
j + κ

2 −ω2
c − 2iωcκ

∆4
j + 2∆2

j

�

κ2 −ω2
c

�

+
�

κ2 +ω2
c

�2 . (A.11)

From the critical eigenvalue condition det (L0 − Iωc) = 0 one finds

η2
cβ = η

2
c

∑

j=1,2

Reβ j =
ω2

a −ω
2
c

2ER
,

Imβ j = 0 .

(A.12)

Linearizing around the normal phase means that the short-range interaction only couples the
modes Q and −Q in a symmetric manner. As the cavity also couples identically to these two
modes, the components of the critical eigenvector obeys xQ = x−Q = xa and pQ = p−Q = pa.
Using this symmetry xa and pa can be connected through Eq. (A.9) and one finds

pa =
iωc

ER
xa = iω̃xa , (A.13)

where the dimensionless frequency ω̃ = ωc/ER has been introduced for later convenience.
Now vR can be fully expressed through the parameters of our theory and xa. A closed-form
expression for xa can be found through the normalization condition

∑

i

vL
i vR

i = 1→ xa =
1
2

 

4η2
c

∑

j

�

β2
j
κ+ iωc

∆ j

�

+
iωc

ER

!−1/2

. (A.14)

This form of xa guarantees the upper sign in Eq. (A.7).

A.2 Computing g r and γ

By substituting the critical eigenvector into Eq. (A.5) one finds the expression

λ=
8
ηc

x2
aη

2
cβ =

2η2
cβ

ηc

�

4η2
c

∑

j

�

β2
j
κ+iωc
∆ j

�

+ iωc
ER

�

=
ω2

a −ω
2
c

ER

1

ηc

�

4η2
c

∑

j

�

β2
j
κ+iωc
∆ j

�

+ iωc
ER

� .

(A.15)
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The expression for g is

g = x2
a |xa|

2ER

�

Ũ
�

3+ 2ω̃2 + 3ω̃4
�

+ 4
�

1− ω̃2
� �

3+ ω̃2
�

�

= x2
a |xa|

2ERWa

�

Ũ , ω̃
�

,

(A.16)

where the dimensionless interaction is defined as Ũ = U/ER.
It is clear that the only part that makes both λ and g complex is in x2

a . As the coefficients
for our theory are related to the real part of λ and g, it is relevant to extract the real part of x2

a

Re
�

x2
a

�

= η2
cκ

∑

j
β2

j

∆ j
�

�

�

�

4η2
c

∑

j

�

β2
j
κ+iωc
∆ j

�

+ iωc
ER

�

�

�

�

2

=
η2

cκ

2
�

�

�

�

4η2
c

∑

j

�

β2
j
κ+iωc
∆ j

�

+ iωc
ER

�

�

�

�

2

∑

j

∆ j

�

∆2
j + κ

2 −ω2
c

�2
+ 4ω2

c

�

∆2
j −ω

2
c

�

�

∆4
j + 2∆2

j

�

κ2 −ω2
c

�

+
�

κ2 +ω2
c

�2�2 .

(A.17)

This directly shows that the only dependence on U in xa is through ηc in Eq. (4). Due to the
complexity of the full closed form expression of g it is insightful to consider the behavior of
Re
�

x2
a

�

and Wa separately.
First considering Wa

Wa

�

Ũ , ω̃
�

= Ũ
�

3+ 2ω̃2 + 3ω̃4
�

+ 4
�

1− ω̃2
� �

3+ ω̃2
�

. (A.18)

The interesting feature of Wa is the fact that it has a sign change through a zero-crossing at a
critical frequency ω̃0 such that Wa

�

Ũ , ω̃0

�

= 0. The closed form expression for ω̃0 is

ω̃0 =

√

√

√ Ũ − 4+ 2
p

2
p

8− 4Ũ − Ũ2

4− 3Ũ
=

√

√

1+
Ũ
2
+O(Ũ2) . (A.19)

This exactly defines the separatrix Uc2 shown as a black line in Fig. 1(b). Fig. 1(b) is plotted
as a function of∆ and notωc because of the atom instability. In the regime where κ < ER, the
equations simplify because near∆∼ ER one has thatωc ≈∆. This means that one can replace
ω̃0 with ∆/ER instead of substituting in the full expression in Eq. (3). The relevant quantity
that one should compare ω̃0 to is the dimensionless frequency of the bare atomic instability,
which happens at

ω̃a =
p

1+ 2Ũ , (A.20)

and which sets the dashed separatrix Uc1 in Fig. 1(b). For Ũ = 0 the frequencies ω̃0 and
ω̃a coincide, which means that there will be no cubic interactions for the atomic instability
without short-range interactions. As Ũ is made finite we see from the expansion in Eq. (A.19)
that ω̃a > ω̃0 for small Ũ < 1. By keeping the full expression for ω̃0, one finds that the critical
Ũc where ω̃a = ω̃0 is

Ũc =
p

2 , (A.21)

which is the intersection point of the separatrices at finite U with∆=
p

1+ 2
p

2ER. Below this
interaction strength, ω̃0 is smaller than ω̃a. The effect is that Wa(Ũ , ω̃a)< 0 for all Ũ < Ũc .

To determine the nature of the interactions one has to determine the sign of Re
�

x2
a

�

. This
sign is fixed by the numerator of Eq. (A.17) and using the parametrization discussed in the
main text one finds

∑

j=1,2

∆ j

�
�

∆2
j +κ

2 −ω2
c

�2
+ 4ω2

c

�

∆2
j −ω

2
c

�
�

=
δ

2

 
�

δ2 + 4κ2
�2

16
+∆2

�

3δ2 + 4κ2
�

+ 8∆4

!

. (A.22)
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So for any values of κ, ∆ and |δ|, the sign of Re
�

x2
a

�

is set by the sign of δ. This means that
for a chosen sign of δ the sign of Wa determines whether the non-linear self-interactions are
repulsive or attractive. Additionally this also means that γ > 0. If δ > 0 then ωc < ωa and
both η2

cβ in Eq. (A.12) and Re
�

x2
a

�

are greater than zero. If δ < 0 then ωc > ωa and both
η2

cβ and Re
�

x2
a

�

are negative such that γ is again positive.
Next consider the fraction γ/g r which determines the magnitude of the stable time-

crystalline phase. By using the above derived relations one can show that it scales with
p
ε in

the limit where ω2
c →ω

2
a − ε with ε≪ {ER,∆1/2,κ}

lim
ω2

c→ω2
a−ε

γ

g r
= lim
ω2

c→ω2
a−ε

8
ηc

ω2
a −ω

2
c

2ER

Re
�

x2
a

�

Re
�

x2
a

�

|xa|
2ERWa (U/ER,ω/ER)

= lim
ωc→ωa

32
ηc

ω2
a −ω

2
c

2E2
RWa (U/ER,ω/ER)

�

�

�

�

�

4η2
c

∑

j

�

β2
j
κ+ iωc

∆ j

�

+
iωc

ER

�

�

�

�

�

= lim
ω2

c→ω2
a−ε

32
√

√

√

√

ω2
a−ω2

c

ER
∑

j=1,2

∆ j
�

∆2
j +κ

2−ω2
c

�

ω4
c +2ω2

c

�

κ2−∆2
j

�

+
�

∆2
j +κ

2
�2

ω2
a −ω

2
c

2E2
RWa (U/ER,ω/ER)

×

�

�

�

�

�

4η2
c

∑

j

�

β2
j
κ+ iωc

∆ j

�

+
iωc

ER

�

�

�

�

�

= 32
p
ε

√

√

√ER
∑

j=1,2

∆ j

�

∆2
j+κ

2−ω2
a

�

ω4
a+2ω2

a

�

κ2−∆2
j

�

+
�

∆2
j+κ

2
�2

2E2
RWa (U/ER,ω/ER)

ωa

ER
+O

�

ε3/2
�

.

(A.23)

This is important as it proves that the AI region does not possess a stable time-crystalline
solution, to leading order in µ, as ε→ 0 for the AI.

The fact that we have analytical expressions for all the important quantities also allows us
to show some intriguing features of the time-crystalline phase within the center manifold. The
first important feature was discussed in the main text, namely that the frequency of OSR phase
is independent of the atom parameters. The second important feature we will show now is
that the time-averaged occupation in the recoil field is only indirectly depending on the cavity
parameters. As stated in the conclusions, this is means that our heating discussion is more
generic, as it does not depend on the specific cavity configuration. If we write Eq. (5) using
xa and pa the occupation in the recoil mode is given by

�

�ψQ(t)
�

�

2
=

1
2

�

|xa|
2 + |pa|

2�

=
µ

4
R2
�

2|xa|
2 + x2

a exp(i2ωc t) + x̄2
a exp(−i2ωc t)

+ 2|pa|
2 + p2

a exp(i2ωc t) + p̄2
a exp(−i2ωc t)

�

.

(A.24)

Due to the periodicity of the system the time average is given by

¬
�

�ψQ

�

�

2¶

T
=

∫ 2π/ωc

0

�

�ψQ(t)
�

�

2
dt =

µ

2
R2
�

|xa|
2 + |pa|

2�=
µ

2
R2|xa|

2 �1+ ω̃2
�

, (A.25)
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where pa have been eliminated through Eq. (A.13). Using the results from Eqs. (A.15)
and (A.16) we find

R2 =
Re (λ)
Re (g)

=
4
�

ω̃2
a − ω̃

2
�

ηc|xa|
2Wa

�

Ũ , ω̃
� . (A.26)

Inserting this into Eq. (A.25) we find

¬
�

�ψQ

�

�

2¶

T
=

2η
�

ω̃2
a − ω̃

2
� �

1+ ω̃2
�

Wa

�

Ũ , ω̃
� , (A.27)

which only depends on the atom parameters, the OSR frequency, and the relative depth into
the OSR phase, η. The same ω̃ can be generated with many different cavity configurations,
for example by changing δ and having a small κ or even more generally by departing from the
fully symmetric case presented here.

B Including fluctuations outside the center manifold

While our theory within the center manifold predicts that the time crystal is stable also with
finite interactions U , it does not capture atom modes outside of the center manifold. The
contact interaction allows occupation in the center manifold to scatter to the other atom modes
with momenta different from±Q and 0. Inside the OSR phase the NCM modes can be occupied
due to the presence of the OSR. This leads to heating and potentially also the destruction of
the time crystal in the long time limit. One way to describe this is to linearize around the OSR
solution vosr(t)

v(t) = vosr(t) +δv(t) . (B.1)

This leads to an equation for the fluctuations

v̇= v̇osr + δ̇v= F(vosr +δv) = F(vosr) + ∇F |v=vosr
δv+O

�

δv2
�

→ δ̇v= ∇F |v=vosr
δv+O

�

δv2
�

≈ Josr(t)δv ,
(B.2)

where Josr(t) is a time-dependent matrix-valued function. Using the approximate fixed point
from the analytical OSR solution we can derive an approximate form of Josr(t). Due to the
periodicity of the OSR solution Josr(t) can be expanded in a discrete Fourier series of the form

Josr(t) =
4
∑

n=−4

Mneinωc t . (B.3)

The coupling to the cavity in Eq. (1) is proportional to a product of a NCM mode and a cavity
field. To first order in fluctuations there is therefore no coupling between cavity fluctuations
and the NCM modes. For the leading-order heating mechanism δv only includes the atom
modes with momentum k /∈ {0,Q,−Q} and is therefore solely described by Eq. (1) with the
cavity fields replaced by the OSR solution. It is for this reason that we are able to use the simple
scattering description, discussed in the main text, to predict the momentum of the growing
modes.

Because the cavity loss has already been used to stabilize the OSR phase within the center
manifold this means that the cavity is not able to cool down the NCM modes at the linear
level. As one includes higher orders in fluctuations the cavity fluctuations can potentially start
cooling down the NCM but as this is a higher-order effect, fine tuning would be needed to make
it overcome the first-order heating before the system has thermalized and the OSR phase is
destroyed.
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To verify our simple scattering predictions we derive Josr(t) from Eq. (1). The linearized
equation for the NCM mode with momentum k is

i∂tψk =
�

−Ω̇+ k2 − U
�

�ψ̂0

�

�

2
+ 2U

�
�

�ψ̂0

�

�

2
+
�

�ψ̂Q

�

�

2
+
�

�ψ̂−Q

�

�

2��
ψk + U

�

ψ̂2
0 + 2ψ̂−QψQ

� ¯̂
ψ−k

+
η̃
p

2

∑

j

Re
�

ψ̂ j

� �

ψk+Q +ψk−Q

�

, (B.4)

where the hat has been used to identify the OSR components that are approximated as un-
changed within the linearization. The overall phase of the atoms is set by Ω̇ and chosen such
that Im{ψ0}= 0 within the center manifold [26]. Within the linearization the value is

Ω̇=
η̃
p

2

∑

j

Re(φ j)
ψQ + ψ̄Q +ψ−Q + ψ̄−Q

2ψ0

+ U
�

2−ψ2
0 +

1
2

��

ψQ + ψ̄Q

� �

ψ−Q + ψ̄−Q

�

+
�

ψQ − ψ̄Q

� �

ψ−Q − ψ̄−Q

��

�

. (B.5)

From Eq. (B.4) we see that the finite occupation of the cavity field leads to coupling of the k
NCM mode with the NCM mode at k±Q. As the occupation of the NCM fields are small and we
consider ωc < ER, one can truncate after one recoil kick such that |k| < Q. This is confirmed
by the full numerical solution of Eqs. (1) and (2) shown in the main text. With this truncation
each NCM,ψk, couples to the seven other fields {ψ̄k, ψ−k, ψ̄−k, ψk−Q, ψ̄k−Q, ψ−k+Q, ψ̄−k+Q}.
For each value of k we therefore find a Josr(t) given by

Josr(t) = i























−mk 0 0 −gk −mQ −gQ 0 0
0 m̄k ḡk 0 ḡQ m̄Q 0 0
0 −gk −mk 0 0 0 −mQ −gQ
ḡk 0 0 m̄k 0 0 ḡQ m̄Q
−mQ −gQ 0 0 −mk−Q 0 0 −gk

ḡQ m̄Q 0 0 0 m̄k−Q ḡk 0
0 0 −mQ −gQ 0 −gk −mk−Q 0
0 0 ḡQ m̄Q ḡk 0 0 m̄k−Q























, (B.6)

with the vector δvT = (ψk, ψ̄k, ψ−k, ψ̄−k, ψk−Q, ψ̄k−Q, ψ−k+Q, ψ̄−k+Q)T and the five differ-
ent entries being

mk = k2 + U − 2U
�

ψ̂2
Q +

¯̂
ψ2

Q

�

−
η̃
p

2

∑

j

Re(φ̂ j)
ψ̂Q +

¯̂
ψQ

ψ̂0

,

mk−Q = mk→k−Q ,

mQ =
η̃
p

2

∑

j

Re(φ̂ j) + 2Uψ̂0

� ¯̂
ψQ + ψ̂Q

�

,

gk = U
�

2ψ̂2
Q + ψ̂

2
0

�

,

gQ = 2Uψ̂Qψ̂0 .

(B.7)

Inserting the OSR solutions into Eq. (B.7) one finds an analytical expression for Josr(t) which
is periodic such that Josr(t) = Josr(t + T ) with T = 2π/ωc . We then employ standard Floquet
theory by numerically time-evolving the eight equations over one period T . This allows us to
find the fundamental matrix Φ(t) which is defined as the solution to

∂tΦ(t) = Josr(t)Φ(t) , (B.8)
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with the initial condition Φ(0) = 18. The eigenvalues λi of the monodromy matrix M = Φ(T )
determines the growth rates of the NCM modes Γi = Re(log(λi)/T ). To understand the ini-
tial heating effects we only need to investigate the eigenmode with the largest growth rate
Γ = max(Γi). By Computing Γ as a function of k we are able to compute the growth rates of
the different channels as plotted in Fig. 3.
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