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Abstract

Conventional holographic tensor networks can be described as toy holographic maps
constructed from many small linear maps acting in a spatially local way, all connected
together with “background entanglement”, i.e. links of a fixed state, often the maximally
entangled state. However, these constructions fall short of modeling real holographic
maps. One reason is that their “areas” are trivial, taking the same value for all states,
unlike in gravity where the geometry is dynamical. Recently, new constructions have
ameliorated this issue by adding degrees of freedom that “live on the links”. This makes
areas non-trivial, equal to the background entanglement piece plus a new positive piece
that depends on the state of the link degrees of freedom. Nevertheless, this still has the
downside that there is background entanglement, and hence it only models relatively
limited code subspaces in which every area has a definite minimum value. In this note,
we simply point out that a version of these constructions goes one step further: they
can be background independent, with no background entanglement in the holographic
map. This is advantageous because it allows tensor networks to model holographic maps
for larger code subspaces. In addition to pointing this out, we address some subtleties
involved in making it work.
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1 Introduction

We would like the explicit form of some holographic map. Already, what we have understood
about their general structure has led to deep conceptual lessons, on topics such as the emer-
gence of spacetime [1] and the black hole information paradox [2].

Holographic tensor networks [3–5] are a useful tool in this endeavor. Described in detail in
later sections, these tensor networks can be understood as holographic maps for toy models,
involving finite dimensional quantum systems. What is nice is that they share some of the
striking features of real holography – such as a rudimentary version of an emergent geometry
with an extra spatial dimension, and something like the quantum extremal surface (QES)
formula [6–8]. Moreover, their simplicity makes it tractable to prove precise statements, for
example offering rigorous insight into why a QES-like formula is inevitable in holography
[3,9,10].

However, so far these toy holographic systems are unlike real holography in important
ways. Hence the insight they can offer is limited. Two of the most glaring shortcomings are
that these models do not include time evolution1 and typically have rigid, fixed geometries.
These problems are related: in gravity, the geometry is dynamical.

It seems worth thinking about whether these shortcomings can be improved, so that tensor
networks might continue to offer insight into the structure of holographic maps. The goal of
this note is to take a step in this direction. We will not add time evolution, but we will construct
a tensor network free from any fixed geometry in a way that seems conducive to later adding
time evolution resembling gravity.

Let us summarize the network now. First, how might we make a tensor network without
a rigid, fixed background? As a first guess, we might imagine a model in which we consider
more than just one tensor network, allowing (somehow) for a “superposition of tensor net-
works”, each with a different geometry. This is a decent first step towards modeling gravity.
However, it fails to model the fact that in gravity we do not allow arbitrary quantum states on
a given geometry. There are constraints that the geometry must satisfy. These constraints are
important and related to having good time evolution matching that of the dual theory. Really,
we would like to construct a model akin to a “superposition of tensor networks” but in which
the geometries of the tensor networks are required to satisfy some constraints.

A version of this has already been accomplished in [15–17].2 As reviewed in Section 3,
these models add degrees of freedom that “live on the links”. This largely fixes the problem,
because different states of these link degrees of freedom can be interpreted as different geome-
tries, and the link degrees of freedom can be made to satisfy constraints (such as Gauss’ law).
Therefore these are indeed holographic tensor networks with multiple geometries obeying
constraints.

That said, these existing constructions arguably only go part of the way. They involve a
background geometry, in a manner we’ll explain. The main goal of this note is to point out
that a version of these constructions goes all the way, continuing to work even without the
background geometry, once we have incorporated link degrees of freedom in the appropriate
way. We explain this in Section 4. Thus we arrive at our goal: a tensor network incorporating
multiple geometries, possibly all very distinct, and satisfying certain constraints. In Section
4.2 we address a subtlety in how to get this to work in one spatial dimension.

1See e.g. [11,12] for discussions of the difficulty of including it; c.f. [13,14] for one approach to a solution.
2See [18] for another idea to obtain a non-fixed geometry. Also see [19] for a model closely related to the one

in this paper. The difference between that paper and this one is in which aspects of the model we study. We focus
more on deriving a holographic entropy formula and related subtleties.
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2 Conventional tensor networks

Conventional holographic tensor networks are constructed as follows [3–5]. First we define
“bulk” and “boundary” Hilbert spaces, which starts by picking a graph Γ , composed of vertices
and links connecting pairs of vertices. We then select some of the univalent vertices (connected
to a single link) to be in the set of “boundary vertices” denoted {xbdry} and the rest to be in
the set of “bulk vertices” denoted {xbulk}. To each bulk vertex (respectively boundary vertex),
we assign the Hilbert space of a qudit of dimension dbulk (respectively dbdry). Then the total
bulk Hilbert space is

Hbulk =
⊗

x∈{xbulk}
Hx , (1)

and the total boundary Hilbert space is

Hbdry =
⊗

x∈{xbdry}
Hx . (2)

As a definite example, consider this graph and vertex assignment:

(3)

The white (black) circles denote bulk (boundary) vertices. The thin blue links are drawn just
to represent Γ ; they have no Hilbert space associated to them.

Now we want to define a “holographic map”, which is just an approximate isometry3

V : Hbulk→Hbdry. Holographic tensor networks are a special kind of holographic map whose
typical construction proceeds as follows. To each link (x y) connecting vertices x and y , asso-
ciate a bipartite Hilbert space Hx y ⊗Hy x , with dimHx y = dimHy x = Dx y . Now, for each link
pick a state |φx y〉 ∈Hx y ⊗Hy x . Often one chooses |φx y〉= |MAX〉=

∑

i |i〉x y |i〉y x /
Æ

Dx y for
all links. This defines a special state on all the links that will be important momentarily,

⊗

〈x y〉
|φx y〉 ∈

⊗

〈x y〉
Hx y ⊗Hy x . (4)

We have used 〈x y〉 to denote the set of all links (x y). Finally we introduce the tensors. For
each vertex of Γ we associate the following collection of Hilbert spaces:

HTx
:=Hx ⊗

�

⊗

y nn x
Hx y

�

, (5)

where “y nn x” is the set of all vertices y connected to vertex x by a link (y “nearest neighbor”
to x). For each bulk vertex, we pick a state 〈Tx | in the dual Hilbert space H∗Tx

. We call 〈Tx | a
tensor. This gives us the state

⊗

x∈{xbulk}
〈Tx | ∈

⊗

x∈{xbulk}
H∗Tx

. (6)

3An ϵ-approximate isometry V satisfies ∥V †V − 1∥ ≤ ϵ for ϵ > 0, where ∥X∥ is the operator norm of X . This
definition of holographic map can be generalized to allow non-isometric V [2], but this subtlety won’t be important
for us.
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We treat the boundary vertices differently.4 Because we chose them to each have exactly one
associated link, it follows that for every x ∈ {xbdry}we have HTx

=Hx⊗Hx y . We now assume
that dbdry ≥ Dx y for all x y and let Wx : Hx y → Hx be some isometry, possibly different for
each x . Let W :=

∏

x∈{xbdry}Wx .
We can finally define the holographic tensor network: it is the linear map V : Hbulk→Hbdry

given by

V =W

 

⊗

x∈{xbulk}
〈Tx |

! 

⊗

〈x y〉
|φx y〉

!

. (7)

We visualize this map for the example above as

(8)

Here the white squares denote the tensors 〈Tx |, the black dots denote5 Wx , the (vertical and
horizontal) black lines connecting them denote the states |φx y〉, and the (diagonal) black lines
dangling from the tensors denote bulk inputs. Given some state |ψ〉 ∈ Hbulk, we draw V |ψ〉
as

(9)

Again the white circles each denote a bulk Hx , and the dashed lines connecting them to a bulk
input denote acting that tensor on that Hx . This completes the construction of a conventional
holographic tensor network.

How do we choose each 〈Tx |? Different answers to this question are different tensor net-
works. One particularly nice option is the “random tensor network”, in which we choose each
independently at random [5]: pick some fiducial state 〈0| ∈ H∗Tx

, and then choose a unitary
Ux at random according to the Haar measure on the group of unitaries acting on H∗Tx

, and

4This is slightly more general than the usual constructions, which often just take Hbdry to be
⊗

x∈{xbdry}Hx y . We
can reduce to that case by setting W = 1.

5We abuse notation by drawing Wx and Hx for x ∈ {xbdry} the same way.
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let 〈Tx | = 〈0|Ux . The resulting tensor network is nice because it has a number of properties
resembling the AdS/CFT duality. For example, in the regime in which Dx y ≫ dbulk (for all x y),
boundary entropies satisfy a quantum minimal surface formula. This means the following. Let
HR be an arbitrary auxiliary Hilbert space. Say we are given a |ψ〉 ∈Hbulk⊗HR and resulting
boundary state V |ψ〉 ∈Hbdry ⊗HR. Let B ⊆ {xbdry} be a subset of the boundary vertices. The
normalized density matrix of B in state V |ψ〉 is then

ρ =
trBR[V |ψ〉 〈ψ|V

†]
〈ψ|V †V |ψ〉

, (10)

where B denotes the complement of B in {xbdry}. The von Neumann entropy of B in state
V |ψ〉 is defined as

S(B)V |ψ〉 := − tr[ρ logρ] . (11)

The quantum minimal surface formula satisfied by random tensor networks says that6

S(B)V |ψ〉 =min
b

�

〈ψ|Â(b)|ψ〉+ S(b)|ψ〉
�

, (12)

where the minimization is over all homology regions b of B.7 Here the area operator is

Â(b) :=
∑

〈x y〉∈∂ b

S(x y)|φx y 〉1 , (13)

where 1 is the identity operator on Hbulk and ∂ b denotes the set of links connecting x ∈ b to
y ∈ b̄. (In the common case where all |φx y〉= |MAX〉, it follows that Â(b) =

∑

x y∈∂ b log Dx y1.)
The analogy to gravity comes from interpreting Â(b) as the operator measuring the area asso-
ciated to the quantum extremal surface. This formula then bears a strong resemblance to the
quantum extremal surface (QES) formula in gravity [6–8,20,21].

3 Link degrees of freedom

One could raise the following complaint with the tensor networks from Section 2: the “area
operators” Â(b) are trivial: for a fixed b, every state is an eigenstate with the same eigenvalue.
This is not like gravity in which the geometry is dynamical and areas fluctuate. To ameliorate
this issue, a number of papers [15–17] have modified this setup with two tweaks. First, they
add to Hbulk some degrees of freedom that can be envisioned as living on the links, such as
a bulk gauge field. Second, they add to the holographic map (the tensor network) some rule
for how these new link degrees of freedom should be acted on by the tensors. The effect is
to modify the area operator to include a new positive term that depends non-trivially on the
state of these link degrees of freedom. We present one way to do this now.8

The bulk Hilbert space will be that of a lattice gauge theory, along with some matter at the
vertices. Let G be a compact Lie group (though finite groups also work), and let HG := L2(G)

6This should really be an approximate equality, with corrections suppressed by the ratio of various entropies
in the problem. The approximation becomes increasingly good in the limit that all Dx y are much bigger than the
dimension of Hbulk, and if the area of the minimal cut is much less than the area of all other cuts. From now on
we will ignore these corrections. Also note that the simplest thing to compute in a random tensor network is the
Renyi entropy Sn, which gives the formula (12) for the von Neumann entropy from analytic continuation to n= 1.

7That is, we consider all cuts γ in Γ that are homologous to B, denoting the vertices between γ and B by b. The
minimization is over such γ.

8The papers [15–17] present somewhat different constructions than ours below, but they end up with the same
principal result (30) and (31).
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be the Hilbert space of a particle on that group manifold. This Hilbert space admits the fol-
lowing decomposition (see for example Appendix A of [22]):

HG =
⊕

µ

Hµ ⊗Hµ∗ , (14)

where µ indexes the irreducible representations (irreps) of G, Hµ is the Hilbert space trans-
forming under irrep µ, while Hµ∗ transforms under the conjugate representation. Both have
finite dimension we’ll call dµ. We can therefore write an orthonormal basis as

|µ; i j〉= |µ; i〉 ⊗ |µ; j〉 ∈HG , (15)

where µ indexes the irrep and i, j index the states in Hµ,Hµ∗ respectively. We will use many
copies of this HG momentarily. In addition, we will introduce a qudit at every vertex, with
Hilbert space Hx = Cdbulk . For simplicity we will have these qudits transform trivially with
respect to G.9

To build our lattice gauge theory, we take Γ and assign an orientation to each link.10 Then
to each link we assign a Hilbert space HG , and to each bulk vertex we assign a Hilbert space
Hx . This is our “pre-gauged” Hilbert space Hpre. Our “physical” Hilbert space is the subspace
Hphys ⊆ Hpre that satisfies Gauss’ law. A state satisfies Gauss’ law if it is invariant under a
gauge transformation at each vertex. In the basis (15), this means that at each bulk vertex we
demand that the irreps fuse to the identity irrep.

Let’s look at this in our example (3) for, say, the top left bulk vertex. There are three links
attached to this vertex, and so in the pre-gauged Hilbert space a complete basis is given by
states of the form

(16)

Once we impose Gauss’ law at this vertex, one index from each of the kets is completely de-
termined by the Clebsch-Gordan coefficients Cµµ

′µ′′

ji′ j′′ , which ensure that those irreps are fusing

to the trivial irrep at that vertex.11 Which of the two indices is involved depends on the orien-
tation. We will adopt the convention that for a link oriented towards a vertex it is the second
index that is involved, so

(17)

Furthermore, µ,µ′, and µ′′ are related. For example if G = SU(2) and µ = µ′ = 1, then µ′′

can only be 0,1, or 2. No other choices can fuse to the trivial irrep. Once we impose Gauss’s

9We can of course allow this matter to be charged. This ends up allowing for an interesting interplay between
the state of the bulk matter and the geometry. We simply start with uncharged matter for simplicity. We discuss
charged matter further in Section 4.2.

10Different choices of orientation will end up with the same physics.
11For n-valent vertices with n> 3, there are generally many ways to fuse a given set of µ to the trivial irrep. That

wouldn’t change anything about the discussion below, but if we wanted we could simplify by always choosing the
graph to be composed only of trivalent vertices.
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law at every bulk vertex we arrive at our physical Hilbert space,

Hbulk =

 

⊗

x∈{xbulk}
Hx

!

⊗

 

⊗

〈x y〉H
(x y)
G

Gauss

!

, (18)

where we have labelled each HG by the link (x y) it lives on. Now all i, j indices are fixed
except for those associated to boundary vertices, and the irrep indices µ are all related to each
other by which fusions are allowed. This completes our description of our new bulk Hilbert
space.

Now we turn to the holographic map. We would like a map composed of tensors acting
in a spatially local way like in Section 2, but modified to act on this new Hbulk. The trick is
we’ll first define a new kind of tensor that takes as input a link state in HG and outputs a
state in a factorized Hilbert space. Specifically, we define a tensor S(x y) : H(x y)

G →Hx y
G ⊗H

y x
G

to implement the following factorization (the usual embedding into the “extended Hilbert
space” [23])

S(x y) : |µ; i j〉(x y)
G 7−→

1
Æ

dµ

dµ
∑

k=1

|µ; ik〉x y
G |µ; k j〉y x

G . (19)

We will draw this as a triple intersection of black lines, so for example

.

(20)

This should be interpreted as follows. The top (oriented, blue) line represents the state
|µ; i j〉 ∈ H(x y)

G . The solid black lines (forming a triple intersection) represent the map (19).
The dashed line indicates that the state |µ; i j〉 is being input into this map. The output is the
state

∑

k |µ; ik〉 |µ; k j〉/
Æ

dµ ∈H
x y
G ⊗H

y x
G . We’ll let

S :=
⊗

〈x y〉
S(x y) , (21)

be the product of all link-factorizers.
We combine this with the old tensors in the following way. After each link has passed

through this link-factorizing map, at each vertex we once again have a set of naturally associ-
ated Hilbert spaces: the same as (5) but now also with HG factors,

HT ′x
:=Hx ⊗

�

⊗

y nn x
Hx y

�

⊗

�

⊗

y nn x
Hx y

G

�

. (22)

Now as before, for each bulk vertex we pick a state 〈T ′x | in the dual Hilbert space H∗T ′x , giving
us a state

⊗

x∈{xbulk}
〈T ′x | ∈

⊗

x∈{xbulk}
H∗T ′x . (23)

7
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Figure 1: Example tensor network V from (24) acting on Hbulk from (18). At the
top is Hbulk, with the white circles representing the qudits Hx and the oriented blue
lines representing the Hilbert space of the lattice gauge theory

⊗

〈x y〉H
(x y)
G /Gauss.

At the bottom is the tensor network V , with the white squares representing one set
of tensors (i.e. the states (23)), the triple-intersection black lines representing the
link-factorization tensors (19), the black lines (adjacent to them) representing the
link state (4), and the black dots representing Hbdry (or more precisely, the map W ).
The vertical dashed lines indicate where each part of Hbulk is input into the tensor
network.

The boundary vertices we treat by similarly generalizing their Wx . The holographic map is
then just

V =W

 

⊗

x∈{xbulk}
〈T ′x |

! 

⊗

〈x y〉
|φx y〉

!

S . (24)

We visualize this acting on (18) as in Figure 1. It is important to note the links of the tensor
network are now double lined, in contrast to the single lines of (8). This is because every link
still carries one line representing the background entanglement (4), but now also carries the
link-factorization tensor (20). That is,

(25)

8

https://scipost.org
https://scipost.org/SciPostPhys.17.3.090


SciPost Phys. 17, 090 (2024)

Let’s now specialize to random tensors for the white boxes. We immediately run into a
problem: if G is a Lie group, then HG is infinite and therefore so is HT ′x

. It is not so clear how
to pick a random unitary acting on an infinite dimensional Hilbert space. There are a couple
ways to handle this. We will use a simple one, simply truncating each HG at some large value
of µ, say µ̂ (as in e.g. [17]).

This tensor network now has very nice properties that allow us to compute entropies like
before. Indeed, we can obtain a dramatic conceptual simplification by taking all Dx y to be
very large, much larger than dµ̂. Then nothing stops us from imagining that this is really the
original kind of tensor network from Section 2, with Hx →Hx ⊗

�
⊗

y nn x H
x y
G

�

. That is, for
V from (24), we can let V = eVS for isometry eV : SHbulk → Hbdry. Given a state |ψ〉 ∈ Hbulk,
the state V |ψ〉 is equally well obtained by acting eV on S |ψ〉. What’s nice is that eV is a tensor
network just like (7). This helps because we can now import its equations like (12). Let’s see
how this works. Say we have some state |ψ〉 ∈Hbulk, and we have picked some bulk subregion
b ⊆ {xbulk}. We want to compute the entropy S(b)S|ψ〉 of this subregion in the state S |ψ〉. The
relevant density matrix is ρ on

⊗

x∈b

�

Hx ⊗
�
⊗

y nn x H
x y
G

��

. Now let ∂ b denote the set of
links connecting x ∈ b to y ∈ b̄. We know from S that the µ in Hx y

G for all (x y) ∈ ∂ b are
the same for Hy x

G . Therefore those µ are decohered, and we can decompose ρ to be block
diagonal like

ρ = ⊕{µ}p{µ}ρ{µ} , (26)

where {µ} denotes the set of µ on the links in ∂ b and p{µ} are probabilities. These ρ{µ}
are normalized density matrices in which the Hx y

G are restricted to definite values of µ for
x y ∈ ∂ b. Importantly, there’s even more we can say about these ρ{µ}. The form of S tells us
that we can write

ρ{µ} = eρ{µ} ⊗
1d{µ}
d{µ}

, (27)

where 1d{µ} is the identity operator acting on
⊗

x y∈∂ b H
x y
G , and eρ{µ} is a normalized density

matrix acting on the other factors. Therefore,

S(b)S|ψ〉 = − tr[ρ logρ]

= −
∑

{µ}

p{µ} log p{µ} −
∑

{µ}

p{µ} tr[ρ{µ} logρ{µ}]

= −
∑

{µ}

p{µ} log p{µ} −
∑

{µ}

p{µ} tr[eρ{µ} log eρ{µ}] +
∑

{µ}

p{µ} log d{µ} .

(28)

Now we can use (12) to compute the entropy of boundary subregions:

S(B)
eVS|ψ〉 =min

b

�

〈ψ|S†Â(b)S|ψ〉+ S(b)S|ψ〉
�

, (29)

with 〈ψ|S†Â(b)S|ψ〉 =
∑

x y∈∂ b log Dx y (here for simplicity specializing to the case
|φx y〉 = |MAX〉). This is an interesting answer, but we would like the answer for V instead of
eV . Fortunately, by construction S(B)V |ψ〉 = S(B)

eVS|ψ〉! All that’s different is the interpretation
of the terms on the right hand side of (29). For V , the factors Hx y

G are not part of Hbulk, and
so their entropy – the third term in the last line of (28) – is not a part of S(b)|ψ〉. Instead, those
terms must be interpretted as part of the area term. We end up with

S(B)V |ψ〉 =min
b

�

〈ψ|Â′(b)|ψ〉+ S(b)|ψ〉
�

, (30)

where
Â′(b) =

∑

(x y)∈∂ b

log(Dx y)1+
∑

{µ}

p{µ} log(d{µ})1d{µ} , (31)

and S(b)|ψ〉 is just the first two terms in the last line of (28).

9
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This is a success! The area operator is no longer proportional to the identity. As emphasized
in [15–17], this is exactly what we would like for modelling a gauge field on top of a given
fixed background. The first term of (31) represents the area from the fixed background, while
the second term represents the contribution from the gauge field. This is like the results of
[15–17]. Indeed, while the construction of our tensor network (24) differed in some details
from [15–17], the main idea is similar pertaining to these two terms. See equations (4.15)
and (4.16) of [15], equation (2.26) of [16], and equations (4.11) and (4.12) of [17].

4 Background independence

One can wonder: do tensor networks need this background entanglement? Could one work
if we took it away, Dx y → 1? After all, this would be desirable for matching AdS/CFT: in
gravity we expect that given a QES, we can project onto states with fairly arbitrary values
of the area [24, 25]. In contrast, given area operator (31) there is a minimum value of the
area,

∑

(x y)∈∂ b log Dx y . That’s not terrible: it still models the encoding of subspaces of the
AdS Hilbert space HAdS in which all states have values of the area larger than some minimum
value, which happens if we have a fixed background geometry. But it would be nice to have a
tensor network without this minimal value, to model the encoding of larger subspaces of HAdS
without a common background.

At first, it might seem like we can’t remove the background entanglement. Indeed, our
derivation of (30) used that the Dx y were very large. Nevertheless, it turns out that this
was just a convenient simplification, and not a necessary part of a good tensor network! The
point of this section is to explain carefully how we still get a good holographic tensor network
– with a quantum minimal surface formula – even without the background entanglement.
The entanglement necessary for the map to be suitably isometric will instead come from the
factorization of the link degrees of freedom with (19). Certain states of the link degrees of
freedom will be good and holographic.

4.1 Background independent tensor network

The tensor network we’ll consider will act on the sameHbulk as before, (18). All that is different
is that instead of (24), the tensor network is now

V =W

 

⊗

x∈{xbulk}
〈T ′x |

!

S , (32)

where these 〈T ′x | are defined as in (23) with Dx y = 1. We depict this graphically in an example
in Figure 2.

Let’s convince ourselves this works, with an example. Let’s say the 〈T ′x | are random tensors,
and let’s specialize to G = SU(2) for definiteness. As a warmup, consider the following lattice

10
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gauge theory state:

(33)

We have labelled the value of µ on each link, here all definite numbers L, L′, L + L′. We have
neglected the i, j indices of Hµ,Hµ∗ from (14) because they are unimportant (and again the
internal ones are fixed by gauge invariance). We’ll imagine the qudits living on the vertices
are all together in some state | eψ〉 ∈

�
⊗

x∈{xbulk}Hx

�

⊗HR, where R is some reference system
introduced for generality to purify the qudits. Let the total state of the lattice gauge theory,
qudits, and reference be |ψ〉.

Now take this |ψ〉 and act our tensor network (32). The first step is to apply S, which
embeds each link into the factorized Hilbert space. Next we apply the random tensors, which
for each x ∈ {xbulk} was

〈T ′x | ∈
�

Hx ⊗H
x y1
G ⊗H

x y2
G ⊗H

x y3
G

�∗
. (34)

What’s important now is that we have specialized to particular irreps on each link. So for
example, at any given vertex we have

〈T ′x | ∈H
∗
x ⊗ (HL ⊗HL∗)

∗ ⊗ (HL′ ⊗HL′∗)
∗ ⊗ (HL+L′ ⊗H(L+L′)∗)

∗ . (35)

Recall that 〈T ′x | will act on the state S |ψ〉. Let’s investigate the structure of S |ψ〉 on these
factors. In (35), within each of these parentheses we have two factors. In the state S |ψ〉, one

Figure 2: Example tensor network V from (32) acting on Hbulk from (18). Everything
is the same as in Figure 1, except there is no background entanglement, i.e. we have
set Dx y = 1. This is depicted here by each white square tensor being connected by
only one line – the tensor (20).

11

https://scipost.org
https://scipost.org/SciPostPhys.17.3.090


SciPost Phys. 17, 090 (2024)

factor from each is fused together by the Clebsch-Gordan coefficients into a definite state, say
|ΩL,L′,L+L′〉. So the only part of 〈T ′x | that matters is the part that looks like 〈t L,L′,L+L′

x | 〈ΩL,L′,L+L′ |,
where say

〈t L,L′,L+L′
x | ∈H∗x ⊗H

∗
L∗ ⊗H

∗
L′ ⊗H

∗
L+L′ ,

〈ΩL,L′,L+L′ | ∈H∗L ⊗H
∗
L′∗ ⊗H

∗
(L+L′)∗ ,

(36)

and 〈t L,L′,L+L′
x | is random within that Hilbert space. The part of 〈T ′x | outside the subspace

where those three factors are in 〈ΩL,L′,L+L′ | just has zero overlap with S |ψ〉, because |ψ〉 sat-
isfies Gauss’ law. And with extraordinarily high probability over the choice of random unitary,
〈T ′x | will overlap this subspace. (Alternatively, instead of picking 〈T ′x | completely at random,

we could just choose to define 〈T ′x | =
∑

µ,µ′,µ′′ 〈t
µ,µ′,µ′′
x | 〈Ωµ,µ′,µ′′ | with just 〈tµ,µ′,µ′′

x | random,
similar to [16]. The end result is similar.)

The other factor from each is maximally entangled with factors associated to other vertices,
e.g. Hx y1

G is maximally entangled with Hy1 x
G . As a result, this 〈t x | is exactly like the random

tensors from the original tensor network (7), with Hx y replaced by this µ-sector of Hx y
G . In

other words, this tensor network, acting on this state with fixed irreps, encodes the state of
the qudits exactly like a tensor network from Section 2:

(37)

This is the main result of this section. Let’s say it differently using equations. We recall S maps
each link

|µ; i j〉ab 7−→
1

Æ

dµ

dµ
∑

k=1

|µ; ik〉ac |µ; k j〉d b = |µ; i j〉ab

 

1
Æ

dµ

dµ
∑

k=1

|µ; kk〉cd

!

, (38)

where we have labelled each Hµ,Hµ∗ factor by a, b, c, d to help keep track of them. The second
factor is a µ-dependent maximally entangled state that was just added by S. The first factor
is the part of the Hilbert space that was already there in Hbulk, and it remains in the original
bulk state. It is the second factor that effectively plays the role of the |φx y〉 of the conventional
tensor networks in Section 2. The 〈t L,L′,L+L′

x | play the role of the 〈Tx |. It follows from all of
this that the entropy of boundary subregions satisfies a quantum minimal surface formula,12

but we will delay discussing it because its nicest features will become clearer.
Given this match (37), what have we gained? The advantage happens when we consider

more general lattice gauge theory states. For example, consider the superposition

(39)

12To get a nice formula with small corrections now requires that L and L′ are sufficiently big.

12

https://scipost.org
https://scipost.org/SciPostPhys.17.3.090


SciPost Phys. 17, 090 (2024)

for L1 ̸= L2. Our tensor network (32) acts linearly, and so by (37) the boundary state can be
thought of as the superposition of the states prepared by two tensor networks with different
background geometries:

(40)

This lesson generalizes. States in Hbulk with definite values of µ on each link can be under-
stood in terms of a conventional tensor network with background entanglement determined
by the gauge theory state. Superpositions of these gauge theory states can be understood as
superpositions of conventional tensor networks.

Part of this was said before: It has already been said that adding link degrees of freedom
can be understood as allowing superpositions of tensor networks, see e.g. [17]. What is new
here is that the conventional tensor networks in the superposition need not have any simi-
larities in their geometry. We can make this new feature especially striking: nothing stops us
from considering an all-to-all Hbulk, in which all pairs of vertices are connected by a link. Then
the “background geometry” of the corresponding conventional tensor networks can look com-
pletely different: some states of Hbulk might have the topology of a (triangulation of a) disk,
while others are (triangulations of) higher genus surfaces. This is because the trivial irrep µ0
is one dimensional, dµ0

= 1, and so a link assigned that irrep has no entanglement across it,
hence contributing zero area, and we might as well regard it as not even being there.

It follows from the above that for many gauge theory states (with e.g. sufficiently large µ
on the links), these background independent tensor networks (32) satisfy a quantum minimal
surface formula,

S(B)V |ψ〉 =min
b

�

〈ψ|Â(b)|ψ〉+ S(b)|ψ〉
�

, (41)

where
Â(b) =

∑

{µ}

p{µ} log(d{µ})1d{µ} , (42)

with {µ} the set of irreps on the links in ∂ b (as in (26)) and S(b)|ψ〉 the first two terms in the
last line of (28). This is exactly what we wanted: the area of any given surface is determined
completely by the state of the gauge field, with no extra term providing a minimum.

4.2 1d and background independence

Here’s an interesting subtlety. Let’s try to use a background independent tensor network like
(32) with a 1-dimensional version of Hbulk from (18), like

(43)

The problem is that gauge invariant states have exactly the same µ on each link; that’s what
Gauss’ law says. To see why this is bad, let’s again specialize to G = SU(2), where we find that

(44)
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Now let’s try to compute the entropy S(B) for B either of the two black circles. All bond
dimensions are equal, so the minimal b in the formula (41) can have many problems. For
example, it can be maximally degenerate, with every cut an equally minimal surface, say if the
qudits are in a product state. More problematically, if any bulk legs are in a mixed state, then
neither boundary region will include that leg in its minimal b. (Though the entire boundary
might still include the entire bulk in its minimal b.) This is not like what we expect in 1-
dimensional versions of AdS/CFT, where small amounts of bulk entropy are not enough to
greatly change the position of the quantum extremal surface of the left or right boundary.

We can improve this model by incorporating charged matter. Here is an example. Let’s add
to our Hbulk from (18) an additional degree of freedom at every bulk vertex x , with Hilbert
space Hx ,c = ⊕µHµ. Here µ labels the irreps of G, just like in (14). Gauss’ law now requires
that at every vertex, the two gauge field links and this charged matter fuse to the trivial irrep.
So now we can have bulk states like

(45)

where again the L, L′ label the irreps, and now we have included vertical lines on each bulk
vertex to represent the new charged degree of freedom. The (appropriate generalization of
the) tensor network (32) now satisfies

(46)

On the right hand side, the charged matter is labelled L′ to remind us that its state is related
to the dimension on the bonds. This is better, because the bond dimensions of each link can
be different from one another.

5 Conclusion

We have shown that there is a straightforward way to build holographic tensor networks that
include geometries that are completely distinct, but nonetheless all must satisfy some con-
straints. This is a step towards adding time evolution in a way that resembles gravity. There,
the constraints play a key role in having the bulk dynamics match those of the dual CFT. It will
be interesting future work to incorporate different constraints, beyond just Gauss’ law, making
the bulk theory more like gravity and the holographic map more realistic.
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