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Abstract

In gauge theories with fundamental matter there is typically no sharp way to distin-
guish confining and Higgs regimes, e.g. using generalized global symmetries acting on
loop order parameters. It is standard lore that these two regimes are continuously con-
nected, as has been explicitly demonstrated in certain lattice and continuum models. We
point out that Higgsing and confinement sometimes lead to distinct symmetry protected
topological (SPT) phases – necessarily separated by a phase transition – for ordinary
global symmetries. We present explicit examples in 3+1 dimensions, obtained by adding
elementary Higgs fields and Yukawa couplings to QCD while preserving parity P and
time reversal T. In a suitable scheme, the confining phases of these theories are trivial
SPTs, while their Higgs phases are characterized by non-trivial P- and T-invariant theta-
angles θ f ,θg = π for flavor or gravity background gauge fields, i.e. they are topological
insulators or superconductors. Finally, we consider conventional three-flavor QCD (with-
out elementary Higgs fields) at finite U(1)B baryon-number chemical potential µB, which
preserves P and T. At very large µB, three-flavor QCD is known to be a completely Hig-
gsed color superconductor that also spontaneously breaks U(1)B. We argue that this
high-density phase is in fact a gapless SPT, with a gravitational theta-angle θg = π that
safely co-exists with the U(1)B Nambu-Goldstone boson. We explain why this SPT mo-
tivates unexpected transitions in the QCD phase diagram, as well as anomalous surface
modes at the boundary of quark-matter cores inside neutron stars.
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1 Introduction and summary

1.1 Gauge theory phases and Higgs-confinement continuity

Phases of gauge theories play an important role throughout physics. In the standard model
of particle physics, the SU(3)c color gauge fields of QCD are responsible for the confinement
of quarks into color-neutral hadrons. By contrast, the Standard Model Higgs field sponta-
neously breaks – or Higgses – the electroweak SU(2) × U(1) gauge symmetry down to the
diagonal U(1)e.m. gauge group of electromagnetism,1 which realizes a Coulomb phase. In
condensed matter physics, BCS superconductors are described by a composite Higgs field of
electric charge two (describing Cooper paired electrons) that Higgses the U(1)e.m. electromag-
netic gauge group down to its Z2 subgroup.2

It has long been appreciated [3–5] that gauge theory phases in 3+1 dimensions can be
characterized using expectation values of large electric and magnetic loop operators, known
as Wilson and ’t Hooft loops. For instance, the confining phase of pure SU(3)c gauge theory is
characterized by the rapid exponential decay of large fundamental Wilson loops, known as the
area law,3 while the Higgs phase of U(1)e.m. is characterized by an area law for ’t Hooft loops.4

In both cases the area law signals the presence of finite-tension strings: electric confining
strings and magnetic vortex strings, respectively.

More recently, the notion of generalized global symmetries [6] (reviewed in [7,8]), which
act on extended defects, operators, and excitations, has made the understanding of gauge the-
ory phases based on large loop order parameters fully compatible with the Landau paradigm,
wherein phases are characterized by broken and unbroken global symmetries. The general-
ized symmetries most relevant to gauge theories in 3+1d are one-form symmetries, which act
on one-dimensional loop operators and dynamical strings.5 For instance, pure SU(3)c gauge
theory has a Z3 one-form symmetry associated with the center of the gauge group. It can be
thought of as a fully covariant version of the Z3 center symmetry that arises when one con-
siders the theory on a circle, or equivalently at finite temperature T . This symmetry acts on
Wilson loops and it is unbroken in the confining phase at low T (where it characterizes the
confining strings), but spontaneously broken in the deconfined high-T phase [5, 6, 15]. Sim-
ilarly, any U(1)e.m. gauge theory with only electrically charged matter fields has a magnetic
one-form symmetry that detects the magnetic flux of ’t Hooft loops. This symmetry is unbro-
ken in the Higgs phase; it is spontaneously broken in the Coulomb phase, with the massless
photon furnishing the requisite Nambu-Goldstone boson (NGB) [6].

The existence of one-form symmetries is predicated on the absence of certain physically
allowed electrically or magnetically charged particles. For instance, the Z3 one-form symme-
try of pure SU(3)c gauge theory is explicitly broken by dynamical matter in the fundamental
representation, which can end confining strings and screen Wilson loops. Similarly, the mag-
netic one-form symmetry in U(1)e.m gauge theory is explicitly broken if there are dynamical
magnetic monopoles, which can end magnetic vortex strings. In the absence of one-form

1See for instance [1] for a textbook discussion.
2See for instance [2] and references therein.
3In more detail, the area law states that a loop operator supported along a suitably large curve C decays

as e−σA(C), with A(C) the minimal area enclosed by C . The constant σ is the string tension.
4By contrast, the Coulomb phase of U(1)e.m. is characterized by a perimeter law e−M P(C) for large Wilson and ’t

Hooft loops supported on the curve C . Here P(C) is the perimeter of the curve, and M is some scheme-dependent
mass scale, which can be set to any value (including M = 0) by a suitable counterterm.

5If both one-form symmetries and ordinary zero-form symmetries are present, they can act on each other in
several ways, giving rise to a two-group global symmetry (see for instance [9–12], as well as the review [8] for
further references). Moreover, there are situations in which zero- and one-form symmetries act projectively – or
fractionalize – on suitable higher-dimensional defects and excitations, which is an important ingredient in ’t Hooft
anomaly matching, as was recently discussed in [13,14].
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symmetries there is no known sharp diagnostic of confinement. Indeed, it has been shown
via lattice simulations [16,17] that QCD with massive fundamental quarks does not display a
sharp deconfinement phase transition at finite temperature T .6 However this does not exclude
the possibility of a more subtle diagnostic at T = 0, which we will encounter below.

A closely related fact is that theories without one-form symmetries do not admit a sharp
distinction between confining and Higgs phases. In typical examples, both regimes realize a
unique, fully gapped vacuum, without any dynamical degrees of freedom or symmetry break-
ing at long distances.7 In the Higgs regime this can be achieved using scalar fields in the
fundamental representation of the gauge group,8 as long as there are sufficiently many such
fields. Note that Higgsing can occur at parametrically weak coupling, in which case one can
safely discuss the Higgs field (which may be fundamental or composite) and its vacuum ex-
pectation value (vev). However, caution is advised when referring to this regime as a Higgs
phase, since it may be possible to smoothly deform the theory to the confining regime without
encountering a phase transition, as suggested by the generalized Landau paradigm. We will
refer to this scenario as Higgs-confinement continuity.9 It is standard to describe the Higgs
regime in terms of gauge non-invariant fields, most prominently the Higgs field itself. By con-
trast, the confining regime is more naturally described using gauge-invariant composites. In
simple cases, it is possible to match the gapped excitations in the two regimes as well, but this
is not necessary for Higgs-confinement continuity, which only refers to the absence of a phase
transition.10

Foundational results that underpin our understanding of Higgs-confinement continuity
were obtained in [22, 23], where it was shown in some explicit lattice models that the two
regimes are in fact parts of the same phase.11 The exploration of Higgs-confinement conti-
nuity in 3+1d gauge theories was initiated in [18,24]. Since then the phenomenon has been
observed in copious examples (in diverse dimensions), among which supersymmetric theories
furnish a particularly rich set (as reviewed for instance in [25]). In such theories it is often
possible to display the continuity of Higgs and confining regimes explicitly, in part because
the parameters that are being dialed are holomorphic, so that there are no singularities or
phase transitions in real codimension one. All of the above has elevated Higgs-confinement
continuity to the status of standard lore.

6If the quarks are massless, there is a phase transition associated with the restoration of the spontaneously
broken chiral symmetry.

7In condensed matter parlance, there is no topological order or long-range entanglement. Later we will relax
these requirements.

8More precisely, it requires Higgs fields that transform faithfully under the center of the gauge group (e.g. a
two-index symmetric 6s in SU(3)c gauge theory), which necessarily break the one-form center symmetry. Note that
some gauge theories, e.g. conventional QED with charge-one electrons, or QCD with an even number of colors,
have the feature that fermion parity (−1)F is part of the gauge group. Thus bosonic Higgs fields (fundamental or
composite) cannot faithfully represent (−1)F , so that weakly-coupled Higgsing at most reduces the gauge group
to a Z2 subgroup. Despite this feature, such theories do not possess a one-form symmetry, because there are
fermions transforming in the fundamental representation. Since such theories are bosonic, more can be learned by
formulating them on manifolds M4 without a spin structure, if one twists the dynamical gauge fields by the second
Stiefel-Whitney class w2(M4) ∈ H2(M4,Z2).

9Other authors have used “Higgs-confinement complementarity” [18] and “quark-hadron continuity” [19].
10In general the massive particle spectrum within a given phase may undergo drastic, and even sharp, changes

as we dial parameters, e.g. a stable particle may become unstable and decay. This phenomenon is particularly
well studied for BPS particles in supersymmetric theories (starting with [20, 21]), where it is often referred to as
wall crossing, because the changes occur abruptly at sharply defined walls in parameter space. Importantly, wall
crossing does not in general imply a phase transition, i.e. the low-energy effective theory (including background
fields) is typically smooth across the wall.

11It is interesting that the rigorous proof of continuity in [22] relies on inequalities that follow from positivity of
the Euclidean lattice measure. Positivity of the path integral measure will also make an appearance below.
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1.2 Higgsing and confinement as symmetry protected topological (SPT) phases

In this paper we will explore examples where the standard Higgs-confinement lore summa-
rized above breaks down, because the two regimes furnish distinct symmetry protected topo-
logical (SPT) phases,12 or SPTs – a notion we briefly review in section 1.2.1 below, with a
more detailed discussion in section 2. In section 1.2.2 we discuss examples of SPT-enforced
Higgs-confinement transitions in a class of models we term Higgs-Yukawa-QCD theories. A
full account appears in sections 3, 4, and 5.

1.2.1 SPT review

SPTs can be usefully understood from different complementary points of view:

• The modern notion of SPT phases originated in condensed matter physics. Early exam-
ples include the Haldane phases for spin chains in 1+1d (see [27, 28]). Quintessential
examples in 3+1d (which will play an starring role throughout this paper) are topologi-
cal insulators and superconductors, see [29–40] for a highly incomplete sampling of the
vast literature on this subject. The general notion of SPT phases emerged in [41–47],
see [48] and [49] for reviews from a condensed matter and QFT perspective.

In general, SPT phases are fully gapped phases of matter with only short-range entangle-
ment, i.e. they do not have any long range dynamics (gapless or topological) and they
do not display any symmetry breaking – much like the featureless, gapped Higgs and
confined phases described above. Below we review two important examples: (i) SPT
phases with Chern-Simons effective action in 2+1d which describe the long-distance
properties of integer quantum Hall systems; (ii) time-reversal invariant fermionic SPT
phases in 3+1d, which characterize topological insulators and superconductors.

• SPT phases are closely related to the notion of anomaly inflow in QFT [50]. An SPT
phase can be thought of as an anomaly inflow theory for non-dynamical background
fields associated with global symmetries, which gives rise to anomalous (and therefore
necessarily non-trivial) edge modes if studied in the presence of a boundary.

• Mathematically, SPT phases have been characterized [51–53] as deformation classes
of unitary, invertible TQFTs with symmetry.13 Another characterization of invertible
gapped phases (involving suitable spectra in generalized cohomology theories) was pro-
posed in [55–57].

Note that, unlike many field-theoretic analyses, the SPTs considered in condensed matter do
not in general assume relativistic invariance, e.g. they can be meaningful on a lattice. This
will be important in our discussion of QCD at finite baryon density (see section 1.3 below).

Chern-Simons SPT in 2+1 dimensions

Consider a 2+1d theory with an global U(1) zero-form flavor symmetry. Assume that the the-
ory is trivially gapped, with a unique vacuum and no long-range entanglement; in particular,
the U(1) symmetry is not spontaneously broken. It then follows that the low-energy effective

12Even though we focus on examples in 3+1d, this mechanism is very general. With the benefit of hindsight it is
likely that other transitions in diverse dimensions can be similarly interpreted. An example in 2+1d, pointed out
to us by Zohar Komargodski, appears in section 4.2 of [26].

13The notion of invertible TQFTs, which essentially describe topological actions for non-dynamical background
fields, first appeared in [54].
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action is a local functional of the background gauge field A associated with the U(1) symme-
try. This effective action may contain a Chern-Simons term, which (in Euclidean signature)
reads14

SE ⊃
ik
4π

∫

M3

A∧ dA , k ∈ Z . (1)

Let us highlight several important features,15 which have close analogues for all SPTs:

• Invariance under large U(1) background gauge transformations on closed manifolds M3
quantizes the Chern-Simons level k ∈ Z.16

• In the presence of U(1) background fields, the Chern-Simons term contributes a non-
trivial phase to the Euclidean partition function on closed M3.

• If M3 has a boundary ∂M3 = M2, there are anomalous edge modes on M2 that cancel
the U(1) anomaly inflow from the bulk Chern-Simons term onto the boundary.17

• If we dial the continuous parameters of the 2+1d bulk theory without closing its gap,18

then the quantized Chern-Simons level k ∈ Z can only jump discontinuously across a
first-order bulk phase transition to a different gapped SPT phase. Conversely, any jump
in k necessarily signals a bulk phase transition, which may be either first order (if the
gap does not close) or second order (if the gap closes). This phase transition cannot be
characterized in terms of any known symmetry breaking, and hence it falls outside the
Landau paradigm and its generalizations.19

• The Chern-Simons term with quantized level is a valid local counterterm, which must
be fixed once and for all, e.g. by specifying a UV regularization scheme. The value of k
in a given phase then depends on the choice of scheme. By contrast, the amount ∆k by
which k jumps between two gapped phases is scheme independent. A simple example
with∆k = ±q2 is a free Dirac fermion of U(1) charge q, whose real mass m ∈ R is dialed
through m= 0 (where the gap closes), leading to a second order transition there.

Since the U(1) symmetry (together with the bulk gap) is responsible for ensuring these prop-
erties, the background Chern-Simons term above is an SPT protected by that symmetry.

Time-reversal invariant fermion SPTs in 3+1 dimensions

A prototypical example of an SPT-enforced phase transition in 3+1d is furnished by a single
2-component Weyl fermion ψα , with α= 1,2 a left-handed spinor index,20

LWeyl = −iψσµDµψ−
m
2

�

ψψ+ψψ
�

, m ∈ R . (2)

14Here SE is the Euclidean action, so that the path-integral weight is e−SE . We take M3 to be a spin manifold.
15See for instance [58,59] for a detailed discussion of Chern-Simons terms for background fields.
16In the context of 2+1d quantum Hall physics, this means we are dealing with the integer quantum Hall effect,

rather than the fractional one. In the presence of a gap, the latter requires topological order described by a non-
invertible TQFT (with long-range entanglement). By taking the variation of the level-k Chern-Simons term in (1)
with respect to the background gauge field A, one deduces that the quantum Hall conductance is σx y = k in unites
of e2/h, with e the electron charge and h Planck’s constant (see [60–64]).

17In this example the boundary theory on M2 is necessarily gapless and symmetry preserving, but more general
SPT boundaries can also be gapped or spontaneously break some symmetries.

18Here we are assuming infinite volume and no boundary. If present, the boundary may well be gapless.
19By contrast, gapped phases with topological order, whose long-distance dynamics is described by a non-

invertible TQFT, can be thought of as symmetry-breaking phases for suitable generalized symmetries (either exact
or emergent) whose associated topological defects are furnished by the TQFT.

20We use Wess and Bagger conventions [65] for 2-component spinors. Note that a single 2-component Weyl

fermion ψα is equivalent to a 4-component Majorana fermion ΨM = (ψα,ψ
α̇
) in 3+1 dimensions.
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Here Dµ is the spinor covariant derivative on a (generally curved) spacetime manifold M4. The
reality of the (in principle complex) mass m is enforced by the following orientation-reversing
symmetries,21

T :ψα(t, x⃗)→ψα(−t, x⃗) , CP :ψα(t, x⃗)→ iψ
α̇
(t,− x⃗) , T2 = (CP)2 = (−1)F . (3)

Since the theory in (2) is Lorentz invariant, it necessarily has an unbroken CPT symmetry. We
can therefore focus either on T or on CP; we choose to focus on T.

Let us analyze the behavior of the theory as a function of m:

• If m> 0 we can regularize the theory (i.e. choose counterterms) in such a way that the
path integral measure is positive, resulting in a trivial SPT.

• If m< 0, integrating out the massive fermion generates a non-trivial gravitational theta-
angle θg for the background metric,

SE ⊃
iθg

384π2

∫

M4

Tr (R∧ R) , θg = π , (4)

with R the Riemann curvature two-form. Since θg ∼ θg + 2π, it follows that θg = π
is T-invariant. Thus θg = π constitutes a non-trivial SPT protected by time-reversal
symmetry. This SPT can be detected by examining the sign of the partition function on
Riemannian spacetime manifolds M4.22 This SPT describes the bulk of a 3+1d topo-
logical superconductor in condensed matter physics, where it is typically diagnosed by
examining the thermal Hall conductivity on the 2+1d boundary (see section 2.3.3 for
further details). Unlike the partition function on closed spacetime manifolds, this cri-
terion is also available in situations where Lorentz invariance is explicitly broken, as is
typically the case in condensed matter physics, and also in section 1.3 below.

The classification of topological superconductors via θg = 0,π applies if the spacetime
manifold M4 is oriented. A more refined Z16 classification can be obtained by using
the orientation-reversing T-symmetry to place the theory on unorientable spacetime
manifolds M4, or alternatively by examining the anomalous realization of T-symmetry
on 2+1d boundaries, see for instance [49,52,57,66–69].

In this paper we will focus on oriented spacetime manifolds. A more refined analysis
of Higgs-confinement transitions using SPTs on unorientable manifolds will appear in a
companion paper [70].

• At m = 0 the fermion is massless and there is a second-order phase transition. In
more general interacting theories the transition can also be first order. As in the Chern-
Simons example discussed above, this phase transition cannot be characterized in terms
of Landau-type symmetry breaking. Rather, it is enforced by the distinct SPT phases at
positive and negative m.

Note that T-symmetry, which forces m ∈ R and quantizes the (otherwise continuous) gravi-
tational theta-angle to the values θg = 0,π, is crucial. If we explicitly break T by allowing
complex masses m ∈ C, we can interpolate from positive to negative m without encountering
the massless point at m= 0.

21Since a single Weyl fermion does not have a charge conjugation symmetry, what is called CP here (for consis-
tency with the rest of the paper) could just as well be called P. Note also that we use the symbol T for time-reversal
symmetry, while T is reserved for temperature.

22We take M4 to be an oriented four-manifold equipped with a spin structure. If θg = π, the phase of the partition
function on such an M4 is (−1)σ/16, with σ ∈ 16Z the signature of the spin four-manifold M4, e.g. this phase is
non-trivial if M4 is a K3 surface, for which σ = 16.
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A variant of the preceding discussion involves integrating out T-symmetric negative-mass
fermions that are also charged under a flavor symmetry G f . This can give rise to a theta-
angle θ f = π for the G f flavor background gauge fields,23 which constitutes an SPT protected
by T and G f .

The case G f = U(1) corresponds to a (fermionic) topological insulator in condensed mat-
ter physics. It can be realized by a single 4-component Dirac fermion ΨD, which (through-
out this paper) we will represent by a pair ψα,χα of 2-component Weyl fermions, so that
ΨD = (ψα,χ α̇). The free Dirac Lagrangian is then given by

LDirac = −iΨDγ
µDµΨD −mΨDΨD

= −iψσµDµψ− iχσµDµχ −m(ψχ +ψχ) , m ∈ R .
(5)

If ΨD = (ψα,χ α̇) has unit U(1) charge, then ψα,χα have charges (+1) and (−1), respectively.
Taking m > 0 to be the trivial SPT implies that m < 0 has background theta-angle θ f = π for
the U(1) flavor symmetry, while θg = 2π = 0 (modulo 2π), because the masses of both Weyl
fermions flip sign.

1.2.2 SPT-enforced Higgs-confinement transitions in Higgs-Yukawa-QCD

In this section we analyze some examples of non-Abelian gauge theories in 3+1d with both
fermionic quarks and elementary scalar Higgs fields in the fundamental representation. These
theories can be thought of as deformations of QCD with SU(N)c gauge group to which we add
elementary Higgs fields in the SU(N)c fundamental. Importantly, these Higgs fields couple to
the quarks via Yukawa couplings. We broadly refer to this class of models as Higgs-Yukawa-
QCD theories, with schematic Lagrangian

LHiggs-Yukawa-QCD =LQCD +LHiggs +LYukawa . (6)

These theories do not possess any known one-form (or other generalized) symmetries, but
they do have conventional flavor and spacetime zero-form symmetries. Importantly, all of
the vector-like examples we consider will possess an anti-unitary time-reversal symmetry T,24

which enforces reality of the quark masses and Yukawa couplings, and can lead to T-invariant
SPTs of the kind reviewed in section 1.2.1 above.

Within this class of Higgs-Yukawa-QCD models, we will analyze explicit examples with
SU(2)c and SU(3)c gauge group (see below), whose Higgs and confining regimes are both fully
gapped and featureless at long distances, but which are nevertheless separated by at least one
phase transition. These Higgs-confinement phase transitions, which are not expected within
the generalized Landau paradigm, are enforced by the fact that the two regimes constitute
distinct SPT phases for the unbroken global zero-form symmetries:

(C) The confining phase is continuously connected to QCD without Yukawa couplings.25

In the presence of a common, positive Dirac quark mass mq > 0, QCD can be regu-
lated in such a way that its path integral measure is positive on all Euclidean spacetime
manifolds M4 [71–73].26 Since the partition function Z[M4] > 0 is then also positive,
the mq > 0 confining phase constitutes the trivial reference SPT relative to which all
other SPT phases are determined.

23The periodicity of θ f , and hence its non-trivial T-invariant midpoint, are dictated by the global form of the
flavor symmetry group G f .

24In fact all of our examples will also have a parity symmetry P.
25See section 3 for a review.
26Here we take M4 to be a spin manifold, and the statement of positivity also holds in the presence of background

fields for the vector-like flavor symmetries that survive in the presence of a non-zero quark mass mq. As we review
in section 3.4, positivity of the QCD path integral measure depends on a choice of regularization scheme, which
(among other things) trivializes all SPT counterterms when mq > 0. See [74] for a detailed discussion.
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(H) In the Higgs phase, which extends to arbitrarily weak gauge coupling and can thus be
analyzed reliably, the Yukawa couplings LYukawa in (6) contribute Majorana masses for
the quarks, in addition to the Dirac mass mq that is already present in the confining
phase. While the Yukawa couplings ensure that all fermions are massive in the Higgs
phase, some real mass eigenvalues can flip sign relative to the confining phase.

This leads to the θg = π gravitational SPT or the θ f = π flavor SPT (or both) in the Higgs
phase, which is therefore distinct from the trivial confining phase, where θg = θ f = 0.
Note that θg = π requires an odd number of Weyl fermions to flip sign, while θ f = π
requires fermions in suitable G f representations to flip sign.

Since the confining (C) and the Higgs (H) phases above are distinct SPTs, there must be at
least one phase transition between them (which may be first or second order). We can thus use
SPTs to distinguish these two phases,27 even though they are identical as far as the generalized
Landau paradigm is concerned.

Some additional comments are in order:

1.) Since the non-trivial θg ,θ f = π SPTs above give rise to signs in the Euclidean partition
function Z[M4], they can only arise if the positivity of the path integral measure that
holds deep in the confining phase (thanks to [71–73], see above) is ruined. Precisely
this is accomplished by the Yukawa couplings in (6).

2.) The SPT-enforced phase transitions discussed above occur at zero temperature, T = 0.
At finite temperature, SPTs protected by only zero-from symmetries are unstable: the
distinct SPTs that exist at T = 0 generically become continuously connected to the trivial
SPT at finite temperature [75].28 This observation is consistent with our remarks on
finite-temperature QCD in section 1.1 above.

3.) The idea that certain Higgs phases can be interpreted as SPTs was recently explored
in [76, 77].29 These authors analyzed Abelian gauge theories with (exact or emer-
gent) magnetic one-form symmetries,30 as well as zero-form symmetries, and considered
mixed SPTs protected by both kinds of symmetries.31 By contrast, all of our examples
are SU(N) gauge theories with fundamental matter, which only possess zero-form sym-
metries.32 For this reason, the SPT phases we encounter are more akin to those in [74],

27As we have emphasized, which SPT is trivial constitutes an arbitrary choice of scheme. In QCD, enforcing
positivity of the path integral measure for mq > 0 is natural, leading to a trivial SPT in the confined phase.

28This can be illustrated using a free fermion of mass m: finite T amounts to compactifying on S1
β

with β = T−1

and anti-periodic fermion boundary conditions, so that the smallest Matsubara frequency (or Kaluza-Klein
mass) m(T ) satisfies (m(T ))2 = m2 + (T/2)2. At T > 0 we can thus interpolate between positive and negative m
without closing the gap.

29The statement that a given phase is a non-trivial SPT depends on a choice of SPT counterterms that must be
made once and for all; only relative SPT jumps are scheme-independent. The authors of [76, 77] worked in a
scheme that is natural from the point of view of the lattice models they analyzed.

30The setup of [76, 77] can be generalized to non-Abelian gauge theories whose gauge group G is not simply
connected, e.g. G = SO(3). Such theories have a magnetic one-form symmetry given by π1(G).

31SPT phases protected by only one-form symmetries were discussed in [6,9]. They give rise to a refined notion
of confinement in non-Abelian gauge theories without (or with suitably restricted) matter fields, which possess an
electric one-form symmetry associated with the center of the gauge group.

32Another distinction is that the examples in [76, 77] only involve bosonic fields, while our examples involve
fermions. However, fermions are not necessary to engineer a π-jump in θg ,θ f . For instance, we can use an axion
field – a compact boson a ∼ a+2π, which can be thought of as a dynamical version of θg or θ f , with a normalized
to match their periodicity on non-spin manifolds. (However, unlike the standard QCD axion, we do not couple a to
the instanton density of the dynamical gauge fields.) By dialing a suitable T- and P-invariant axion potential V (a)
(e.g. dial λ ∈ R in V (a) = λ cos a), we can engineer a phase transition from a = 0 to a = π (neither of which
spontaneously break T or P, because a does not couple to the dynamical instanton density) that is accompanied
by a corresponding SPT jump in θ f ,θg .
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whose authors analyzed the T-invariant SPTs that can arise in QCD (without elementary
Higgs fields or Yukawa couplings) as one dials the quark mass mq ∈ R.

1.2.3 Example: SU(2) Higgs-Yukawa-QCD

This model is in part motivated by [24], and will be further discussed in section 4. We start
with SU(2)c QCD with N f = 1 Dirac flavor, which amounts to two Weyl flavors,

(ψα)
a
i . (7)

Here a = 1,2 is an SU(2)c color index, and i = 1,2 is an SU(2) f flavor index, i.e. the Weyl
quarks transform in the bifundamental (2,2) of SU(2)c×SU(2) f . To this theory we add a real
scalar Higgs field, which also transforms in the (2,2) representation of SU(2)c × SU(2) f ,

hi
a = (h

i
a)

† . (8)

We take the quarks to have a common positive mass,33

LQCD ⊃ −
mq

2
ϵabϵ

i jψa
iψ

b
j , mq > 0 , (9)

which preserves both the vector-like SU(2) f symmetry and time-reversal symmetry T.
In addition to suitable kinetic terms for all the fields, as well as the quark masses (9), we

add the following terms to the Lagrangian:

• A scalar potential for the Higgs field hi
a,

V (h) = M2
h |h|

2 +λ|h|4 , M2
h ∈ R , λ > 0 . (10)

Here |h|2 is the SU(2)c × SU(2) f invariant norm of hi
a.

• SU(2)c × SU(2) f invariant Yukawa couplings,34

LYukawa =
1
2

�

y1hi
ah j

b + y2h j
ahi

b

�

ψa
iψ

b
j + (h.c.) , y1, y2 > 0 . (11)

Requiring T-symmetry only imposes y1, y2 ∈ R; for now we further restrict to the
case y1, y2 > 0.35 In the presence of these Yukawa couplings the path integral mea-
sure is no longer positive, which raises the possibility of non-trivial SPT phases.

We now explore the phase diagram of the theory (sketched in figure 1) as a function of the
Higgs mass squared M2

h ∈ R:

(C) When M2
h ≫ Λ2

QCD (with ΛQCD the SU(2)c strong-coupling scale), we can integrate
out the heavy Higgs to obtain SU(2)c QCD with N f = 1 flavor and a positive quark
mass mq > 0,36 deformed by irrelevant operators suppressed by powers of Mh. Fol-
lowing section 1.2.2, we choose a scheme in which this confining phase is the trivial
SPT.

33Here ϵab,ϵi j are anti-symmetric SU(2) invariant symbols, which can be used to raise and lower fundamen-
tal SU(2) indices.

34These are irrelevant dimension five operators, so that y1, y2 ∼ 1/ΛUV. This means that we can treat y1, y2 as
small parameters and work to leading order. For the purpose of this example, we ignore operators of dimension
six or higher, i.e. we tune their coefficients to be suitably small as needed.

35The other cases will be considered in section 4. As we will show there the signs of y1, y2 are meaningful in
this model, and changing them gives rise to different SPT phases.

36Following [71–73], we take mq and M2
h to be bare mass parameters, defined with respect to a suitable UV

cutoff.
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𝑀ℎ
2 

Higgs (CFL) Confinement 

SPT 𝜽𝒈 = 𝝅 No SPT 𝜽𝒈 = 𝟎 

Phase Transition 

Figure 1: Phase diagram of SU(2)c Higgs-Yukawa-QCD with one Dirac quark, as a
function of the Higgs mass squared M2

h ∈ R.

(H) When M2
h ≪−Λ

2
QCD, the Higgs field acquires a color-flavor locking (CFL) vev,

hi
a = vδi

a , v > 0 . (12)

Here we take v to be sufficiently large,37 in part to ensure that we are at weak SU(2)c
gauge coupling. The CFL vev (12) completely Higgses the SU(2)c gauge symmetry;
the SU(2) f flavor symmetry is preserved by mixing with the gauge symmetry. Under
this unbroken SU(2) f , the Weyl fermions decompose into a triplet 3 and a singlet 1.38

Substituting the Higgs vev (12) into the Yukawa couplings (11), we find that all fermions
are massive. However, the mass of the 3 triplet Weyl fermions has flipped sign relative
to the confined phase (C), while the 1 singlet mass has not. Since this is an odd number
of sign flips, the Higgs phase has θg = π and is thus a non-trivial SPT.39

Thus the Yukawa couplings y1, y2 > 0 induce an SPT jump, and hence force an unex-
pected Higgs-Confinement phase transition, in accordance with the general discussion in sec-
tion 1.2.2.

Two further comments are in order:

• The authors of [24] considered the same theory without Yukawa couplings, y1, y2 = 0,
and concluded that the Higgs and confining regimes appear to be continuously con-
nected. Indeed there is no SPT jump in this case, and hence no need for a phase transi-
tion. This illustrates the fact that the SPT jump is entirely driven by the fermion masses,
which are not intrinsically linked to the strong non-Abelian gauge dynamics that is at
play in the Higgs-confinement crossover regime.40

• The SPT phases above are protected by time-reversal symmetry T. If T is explicitly bro-
ken, the Yukawa couplings in (11) can be complex, y1, y2 ∈ C. This makes it possible to
smoothly connect positive and negative fermion masses (and hence θg = 0 and θg = π)
without encountering a phase transition, as in the free massive fermion examples in
section 1.2.1 above.

37More precisely, we need v≫ ΛQCD to ensure weak coupling and y1, y2v2 ≳ mq to trigger the SPT jump.
38To see this, note that the Higgs vev hi

a ∼ δ
i
a diagonally identifies SU(2)c and SU(2) f indices. Thus the Weyl

fermions (ψα)ai → (ψα)
j
i become a 2⊗ 2= 3⊕ 1 of the unbroken SU(2) f .

39As we explain in section 4, there is also an SPT for the flavor symmetry group, but the details involve its global
structure, which is SO(3) f = SU(2) f /Z2.

40As we elaborate in section 4, the SPT jump may occur entirely within the weakly-coupled Higgs regime, or it
may occur within the strong-coupling region, depending on how we dial the parameters. We are grateful to Nati
Seiberg for discussions about this issue.
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1.2.4 Example: SU(3) Higgs-Yukawa-QCD

This example (which is further discussed in section 5) is obtained by adding fundamental Higgs
fields and Yukawa couplings to SU(3)c QCD with N f = 3 Dirac flavors,41 which amounts to
three left-right pairs of Weyl fermion quarks,

(ψα)
a
i , (χα)

i
a . (13)

Here a, i = 1, 2,3 are (anti-) fundamental SU(3)c color and SU(3) f flavor indices, respectively.
The left-handed quarks (ψα)

a
i transform in the bifundamental (3,3) of SU(3)c×SU(3) f , while

the right-handed quarks (χα)
i
a transform in the conjugate (3,3), as indicated by the up-down

placement of the indices.
To this theory we add an elementary scalar Higgs field, which (like the right-handed

quarks) transforms in the complex (3,3) of SU(3)c × SU(3) f ,

hi
a . (14)

In addition to the kinetic terms for all fields, we add the following terms to the Lagrangian:

• A positive, SU(3)c × SU(3) f preserving Dirac mass for the quarks,42

LQCD ⊃ −mq

�

ψa
i χ

i
a +ψ

i
aχ

a
i

�

, mq > 0 . (15)

Note that any real quark mass mq ∈ R preserves both time-reversal T and parity P, and
hence by the CPT theorem also charge-conjugation C.43 This mass term also preserves
a vector-like U(1)B baryon number symmetry, under which the quarks have charges

B(ψa
i ) = −B(χ i

a) =
1
3

. (16)

• Yukawa couplings that preserve both SU(3)c × SU(3) f , as well as T, P, and C,44

LYukawa = yϵabcϵ
i jkh

a
i

�

ψb
jψ

c
k +χ

b
j χ

c
k

�

+ (h.c.) , y > 0 . (17)

We can also preserve the U(1)B baryon number symmetry if we assign

B(hi
a) =

2
3

. (18)

Via tree-level Higgs exchange, the Yukawa couplings (17) give rise to an attractive quark-
quark interaction in the parity-even Lorentz scalar and color/flavor anti-symmetric chan-
nel – exactly the same channel that is mediated by one-gluon exchange between the
quarks. This will play an important role in section 1.3, where we discuss QCD at high
baryon density.

• We also add a suitable scalar potential for hi
a that is invariant under all the gauge and

global symmetries of the model. (We spell out the details in section 5.) Below we will
only quote the behavior of the model as a function of the Higgs mass-squared M2

h ∈ R.

41The details of this model are motivated by the behavior of conventional three-flavor QCD (without elementary
Higgs fields) at large chemical potential µB for U(1)B baryon number (see section 1.3 below).

42Since both Nc = Nf = 3 are odd, a negative quark mass mq < 0 (though itself T-invariant) would lead to
spontaneous T-breaking in the IR (see for instance [74,78]), which is not observed in nature.

43The action of these symmetries in QCD are spelled out in section 3.
44Here the reality of y is enforced by T and P, and we can flip the sign of hi

a to achieve y > 0. Thus, unlike
the SU(2)c Higgs-Yukawa-QCD example discussed above, the sign of y is not physically significant here.
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𝑀ℎ
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Higgs (CFL) Confinement 

SPT 𝜽𝒈 = 𝝅 

+ 𝑈ሺ1ሻ𝐵 NGB 

No SPT 𝜽𝒈 = 𝟎 

Phase Transition(s) 

SPT 𝜽𝒈 = 𝝅 No SPT 𝜽𝒈 = 𝟎 

Phase Transition(s) 
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𝜖 = 0: 

𝑈ሺ1ሻ𝐵 

𝜖 ≠ 0: 

𝑈ሺ1ሻ𝐵 

Figure 2: Top Panel: Phases of SU(3)c Higgs-Yukawa-QCD with three quark fla-
vors, as a function of the Higgs mass squared M2

h ∈ R. Bottom Panel: Turning on
the U(1)B-breaking deformation ∆L = ϵ det(hi

a) + (h.c.) lifts the massless NGB in
the Higgs phase.

We proceed to explore the phase diagram (sketched in the top panel of figure 2) of the
SU(3)c Higgs-Yukawa-QCD model as a function of M2

h ∈ R:

(C) When M2
h ≫ Λ

2
QCD we can integrate out the Higgs field, leaving SU(3)c QCD with N f = 3

flavors and a positive quark mass mq > 0, which is in the trivial confining SPT phase.

(H) When M2
h ≪−Λ

2
QCD we can reliably analyze the resulting weakly-coupled Higgs phase.

The scalar potential is chosen to engineer a color-flavor locking (CFL) Higgs vev,

hi
a = vδi

a , v ∈ C , (19)

where we take |v| sufficiently large.45 The SU(3)c gauge symmetry is completely Hig-
gsed; the SU(3) f flavor symmetry is preserved via mixing with the gauge symmetry.

A new feature is that the U(1)B baryon number symmetry is spontaneously broken to
its Z2 fermion number subgroup by the vev of a gauge- and flavor-invariant operator of
baryon number B = 2,

〈det(hi
a)〉= v3 . (20)

Almost all fields acquire a mass (from Higgsing, the scalar potential, or the Yukawa
couplings). The only exception is the massless Nambu-Goldstone boson (NGB) for the
spontaneously broken U(1)B symmetry.

In principle, gapless modes can absorb – or eat – an SPT (which only involves back-
ground fields) via a field redefinition of the gapless dynamical fields, thereby rendering
the SPT meaningless. Whether or not this happens depends on the detailed properties
of the gapless modes. For instance, gapless NGBs for broken symmetries are present in
a variety of physical systems that are also believed support a non-trivial SPT described
by θg = π, e.g. topological lattice superconductors (which have gapless phonons) and
the B-phase of superfluid 3He (with NGBs associated with broken rotations).46 In these

45As before, we assume |v| ≫ ΛQCD and y|v|≳ mq.
46We are grateful to Max Metlitski and Ashvin Vishwanath for emphasizing these examples to us.
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situations, the unbroken T-symmetry protecting the SPT is suitably decoupled from the
spontaneously broken symmetries giving rise to the NGBs.47 However, as we review in
section 2.5, it is in fact possible for a U(1) NGB to eat the θg = π SPT, if there is a mixed
’t Hooft anomaly involving the U(1) symmetry and gravity background fields.

We will argue that the Higgs phase of our SU(3)c Higgs-Yukawa-QCD model furnishes
a gapless SPT where the U(1)B NGB safely coexists with a θg = π SPT protected by T-
symmetry. As in the examples mentioned above, this is due to the fact that the U(1)B
and T symmetries are sufficiently decoupled from one another. We will establish this
below, via a deformation argument that explicitly gaps out the NGB; a complementary
argument based on anomalies appears in section 2.5.

Taking momentarily for granted the fact (established below) that the NGB does not in-
terfere with the SPT, let us analyze the fermion mass matrix in the Higgs phase to show
that we indeed have θg = π there. To this end, note that the CFL Higgs vev (19) iden-
tifies fundamental SU(3)c and SU(3) f indices, so that both the left- and right-handed
quarks decompose as

ψa
i →ψ

j
i ,χ i

a→ χ
i
j = 3⊗ 3= 1⊕ 8 , (21)

under the unbroken SU(3) f symmetry. As we show in section 5, the singlet and octet
masses are given by

M1 = mq ± 4y|v| , M8 = mq ± 2y|v| . (22)

Note that the Majorana mass contribution due to the Yukawa couplings is twice as large
for the 1 singlet fermions, relative to the 8 octet fermions. If |v| is large enough (as we as-
sume), then one singlet and one octet – an odd number – of Weyl fermions have flipped
the sign of their masses relative to the confined phase (C) above, leading to θg = π.
There is also an SPT for the unbroken SU(3) f flavor symmetry that we discuss in sec-
tion 5. An important point, elaborated there, is that the gravitational θg = π SPT is
robust to turning on SU(3) f -breaking Dirac masses (as long as these masses remain real
and positive); by contrast, the fate of the flavor SPT is more subtle.

In summary, the confining phase is gapped and trivial, while the deep Higgs phase sponta-
neously breaks U(1)B (leading to an associated NGB) and also harbors a θg = π SPT.

Note that the pattern of U(1)B symmetry breaking is sufficient to establish that the two
phases are separated by a transition of conventional Landau type, with the SPT just coming
along for the ride, but this is misleading: the physics of U(1)B breaking may be entirely dis-
tinct from that which leads to the SPT jump. This is most obvious in the semi-classical limit,
where U(1)B breaking and Higgsing both occur as soon as hi

a gets a vev, i.e. when M2
h = 0.

By contrast, the SPT jump from θg = 0 to θg = π occurs when the singlet mass M1 in (22)
vanishes, which requires some non-zero, strictly negative M2

h < 0.

47There is considerable interest in gapless SPTs without NGBs, see for instance [79–87]. More recently, this
includes examples that are intrinsically gapless [88]; in particular they are not tensor products of a gapless phase
with an ordinary SPT phase. A simple example of a gapless SPT that is not a tensor product of this kind is a
free massless Dirac fermion in 2+1d, whose U(1) flavor and T symmetries have a mixed parity anomaly [89–91].
This leads to a fractional quantum Hall conductance [92]. Such fractional quantum Hall conductance can also
be realized in gapped systems and thus not “intrinsic” in the definition of [88]. Another example is two Dirac
fermions in 2+1d transform as doublet of SU(2) flavor symmetry, which also has a mixed parity anomaly with a
fractional quantum Hall conductance for SU(2) symmetry. Such non-Abelian symmetry fractional quantum Hall
conductance cannot be realized by TQFTs with unique vacuum on sphere, and it is a new example of intrinsically
gapless SPTs not discussed in [88]. Our examples only involve gapless NGBs stacked with an ordinary SPT, and
the former can be gapped without affecting the latter.
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Quantum mechanically, these estimates are modified due to strong-coupling effects. For
instance, the U(1)B breaking transition (and the Higgs-confinement crossover) are expected
to lie somewhere in the strong-coupling region |M2

h | < Λ
2
QCD. By contrast, the scale of the

SPT jump depends on parameters: taking mq ≫ ΛQCD and y ∼ 1 implies that M1 = 0 deep in
the weakly-coupled Higgs regime, where |v| ≫ ΛQCD. In this case we can definitively say that
there are two separate phase transitions. If we instead take mq ≲ ΛQCD (and again y ∼ 1)
then the SPT jump also merges with the strong-coupling region, in which case it is not clear
whether there will be two distinct phase transitions, or perhaps only one.

Let us sharpen the notion that U(1)B breaking and SPT jump are distinct phenomena.
To this end, we modify the SU(3)c Higgs-Yukawa-QCD theory above by adding the following
dimension-three operator to the Lagrangian,

∆L = ϵ det(hi
a) + (h.c.) , (23)

where ϵ has mass-dimension one. When ϵ ∈ R this operator preserves all symmetries, includ-
ing T and P, except U(1)B baryon number, which is explicitly broken to Z2 fermion number.
Let us examine the effect of this operator on the confining and Higgs phases:

(Cϵ) In the confining phase hi
a is very massive and we can use its equation of motion to

replace ∆L by a highly irrelevant six-quark operator of mass dimension nine, which
does not modify the trivial SPT in the confining phase.

(Hϵ) In the Higgs phase the explicit U(1)B breaking by the operator (23) gives a mass to
the U(1)B NGB, leading to a single gapped vacuum, while the θg = π SPT remains
unaffected.

In the theory with explicit U(1)B breaking via ϵ ̸= 0 we thus find that the confining (Cϵ) and
Higgs (Hϵ) phases are both gapped and featureless – and thus superficially indistinguishable –
but the non-trivial SPT in the Higgs phase forces the existence of a Higgs-Confinement phase
transition (see the lower panel in figure 2).

The preceding discussion also makes it clear the the non-trivial SPT jump between the
confining and Higgs phases remains meaningful even if we take the explicit U(1)B breaking
interaction ϵ → 0. This shows that the massless NBG that emerges in this limit does not
trivialize the SPT.

1.3 Application to QCD at finite baryon density

As our final example, we consider conventional three-flavor QCD (without elementary Higgs
fields), with real, positive quark masses. (See section 6 for a full account.) We often simplify
the discussion by assuming a common positive quark mass mq > 0, though some of our results
are more general and also apply for physical quark masses. QCD with three Dirac flavors
preserves C, P, and T, as well as U(1)B baryon number and (in the case of a common quark
mass) a vector-like SU(3) f flavor symmetry.48

We study this theory at finite baryon number density – more precisely, at finite U(1)B
chemical potential µB. This breaks C and Lorentz invariance, but preserves P, T, as well as
the flavor symmetries. It is therefore meaningful to analyze SPT phases associated with these
symmetries, such as the θg ,θ f ∈ {0,π} SPTs introduced above. Importantly, this is true even
though turning on µB breaks Lorentz invariance, as is familiar from experience in condensed
matter physics (see sections 2.2.3 and 2.3.3 for are more detailed discussion).

48Famously, QCD admits a θ -angle for its SU(3) gauge group. (Note that the value of θ modulo 2π is meaningful,
since we have fixed the quark masses to be positive.) However, experiments constrain |θ | ≲ 10−10 (see chapter
9 of the PDG [93]). Thus taking θ ≃ 0, so that T-symmetry is neither explicitly nor spontaneously broken, is an
excellent approximation.
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Upon Wick rotation to Euclidean signature, a real chemical potential µB turns into a purely
imaginary background Wilson line for the U(1)B flavor symmetry, so that the Euclidean path
integral measure is no longer positive definite. On the one hand this leads to a sign problem for
Monte Carlo simulations, making finite-density lattice studies very challenging. On the other
hand it means that non-trivial SPT phases are (at least in principle) possible. Indeed, one of
our main results (summarized in section 1.3.1 below) is that three-flavor QCD at sufficiently
large µB ≫ ΛQC D, mq is a non-trivial SPT phase.

While the phases of QCD as a function of µB have been thoroughly explored (see the
reviews [94–97]), our understanding remains far from complete. Two regimes that are under
good theoretical control are the asymptotic regimes of very small and very large µB:

• When µB ≪ Mbaryon ∼ ΛQCD, the theory is continuously connected to the standard con-
fined QCD vacuum at µB → 0, i.e. it is a gapped and trivial SPT.

• When µB ≫ ΛQCD, mq, i.e. at very high densities, asymptotic freedom implies that
the theory is in a weakly-coupled, color-superconducting Higgs phase that also sponta-
neously breaks U(1)B, leading to a single massless NGB. This is reviewed in section 1.3.1
below. There we also explain why this high-density phase also harbors a non-trivial SPT
with θg = π.

We conclude this introduction in section 1.3.2 by sketching some implications of the high-
density SPT for the QCD phase diagram and for neutron stars.

1.3.1 High-density QCD as a gapless SPT

At very high densities, i.e. when µB ≫ ΛQCD, mq, QCD is in a weakly-coupled Higgs phase,
which we briefly review (following [95]), with more details in section 6.1. In this regime,
the Fermi surface of the quarks (with Fermi energy µB) is destabilized by attractive single-
gluon exchange, which pairs quarks in the parity-even spin-0 channel that is anti-symmetric in
both color and flavor indices. This leads to a color-flavor locking (CFL) vev for the following
composite Higgs field,

Hi
a ≡ ϵabcϵ

i jk
�

ψb
jψ

c
k +χ

b
j χ

c
k

�

, 〈Hi
a〉= vδi

a , |v| ∼ µB . (24)

This has exactly the same quantum numbers as the fundamental Higgs field hi
a in the SU(3)c

Higgs-Yukawa-QCD model (at µB = 0) considered in section 1.2.4 above, whose vev (19) also
takes the CFL form in (24).

Indeed, we have carefully engineered the SU(3)c Higgs-Yukawa-QCD model so that its
Higgs phase shares many features (summarized below (19)) of the large-µB Higgs phase of
conventional QCD. In both models the SU(3)c gauge symmetry is completely Higgsed at the
scale |v| ∼ µB, and the SU(3) f flavor symmetry is preserved by mixing with the gauge sym-
metry. By analogy with (20), the U(1)B symmetry is spontaneously broken by a vev for the
the following gauge- and SU(3) f -invariant dibaryon operator,

det
�

Hi
a

�

, (25)

which leads to a single massless NGB. BothP andT are unbroken (up to conjugation by U(1)B),
so that we can contemplate SPT phases protected by these symmetries.

Finally, both Higgs phases have the feature that the fermions are massive, leaving only
the massless U(1)B NGB at long distances. In the Higgs-Yukawa-QCD model this is due to
the explicit Yukawa couplings (17), which lead to the fermion masses (22). The fermion gaps
generated in the large-µB regime of ordinary QCD take a very similar form, except that they are
generated through non-perturbative BCS pairing. Ignoring the quark mass (which is legitimate
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Figure 3: Phase diagram for three-flavor QCD with SU(3) f symmetry at T = 0
and U(1)B chemical potential µB. As we increase µB, the theory experiences a
symmetry-breaking (SB) phase transition that spontaneously breaks U(1)B, yielding
a massless NGB (see [19]). We propose at least one additional phase transition within
the U(1)B-breaking phase where the SPT jumps from θg = 0 to its value θg = π in
the CFL Higgs phase at large µB.

at large-µB), the exponential scaling of the pairing gaps in the 1 and 8 of the unbroken SU(3) f
symmetry takes the following form [98],

∆1 = 2∆8 ∼ µBe−
K

g(µB ) , K =
3π2

p
2

, (26)

which closely resembles (22) upon setting mq = 0 there.
Given that the two Higgs phases described above – that of SU(3)c Higgs-Yukawa-QCD in

the vacuum and that of conventional QCD at large µB – appear to be qualitatively identical, it
is also natural to suspect that they realize the same SPT phase. This is indeed the case, as we
argue in section 6.2, so that high-density QCD inherits the gravitational SPT of Higgs-Yukawa-
QCD discussed around (22),

θg = π . (27)

As was the case there, this SPT is robust to breaking SU(3) f via distinct, positive Dirac masses
for the quarks, so that it is also present in high-density QCD with physical quark masses.

As we explain in section 6.2.1, the fact that the Higgs phases of the two models realize the
same SPT is due to the fact that the SPT is essentially determined by the fermions, which enjoy
pairing in the same attractive channel, leading to qualitatively identical gaps. A more complete
deformation argument that explicitly relates the two phases without changing the SPT appears
in section 6.2.2. Importantly, the fermion gaps never close along the entire deformation.

1.3.2 Implications for the QCD phase diagram and neutron stars

In section 6.3, which we briefly summarize here, we consider possible consequences of the
fact that high-density QCD with three flavors is a non-trivial SPT with θg = π.

The first application (discussed in section 6.3.1) is to the QCD phase diagram. We have
already seen above that SPT jumps can enforce unexpected Higgs-confinement transitions in
situations where they cannot be inferred by patterns of symmetry breaking. The presence of
the θg = π SPT in QCD at large µB may similarly trigger new transitions in the QCD phase
diagram. Here we consider the T = 0 phase diagram as a function of µB (though we expect
our conclusions to also have implications at finite temperature), and we continue to focus on
the SU(3) f symmetric case with a common quark mass mq.

17

https://scipost.org
https://scipost.org/SciPostPhys.17.3.093


SciPost Phys. 17, 093 (2024)

 

SPT 

 
𝜽𝒈 = 𝝅 

 

No SPT 

Transition Layer with 

 

𝜽𝒈 = 𝟎 

 

Anomalous Surface Modes 

  

Figure 4: Neutron star with a dense quark-matter core supporting a θg = π SPT, sep-
arated from an outer region with θg = 0 by a transition layer (shaded in green) with
anomalous surface modes. In this diagram we have suppressed the gapless U(1)B
NGB.

In this context, we make contact with the “quark-hadron continuity” proposal of [19] (see
also [99,100]). These authors proposed a simple phase diagram as a function of µB: a gapped
confining phase at small µB and a U(1)B-breaking phase at large µB with an associated gap-
less NGB. These two phases are separated by a single symmetry-breaking transition, which
is believed to occur at typical hadronic densities µSF ∼ ΛQCD, i.e in the confined regime of
QCD. (This is indicated by the left green dot, at lower µB, in figure 3.) The authors of [19]
proposed that the U(1)B-breaking phase smoothly extends to arbitrarily high µB, where QCD
is a weakly-coupled CFL Higgs phase describe in terms of quarks (reviewed in section 1.3.1
above). This was termed quark-hadron continuity in [19]; it is a version of Higgs-confinement
continuity that applies in the U(1)B-breaking superfluid phase.

As we explain in section 6.3.1, it seems likely that this proposal must be modified in light
of the fact that high-density QCD is an SPT with θg = π, whose presence motivates a second
phase transition within the U(1)B breaking phase. (This is indicated by the right green dot,
at higher µB, in figure 3.) This transition is not driven by symmetry breaking, but rather by
the jump of the θg = π high-density SPT to its low-density value θg = 0. The possibility of
such a non-Landau transition within the superfluid phase was also contemplated in [101,102],
though their arguments (which focus on the U(1)B superfluid vortices) seem unrelated to our
SPT considerations (which focus on the unbroken zero-form symmetries and the fermions).

Finally, in section 6.3.2, we briefly comment on the possibility that some neutron stars may
contain quark-matter cores that are sufficiently dense to access the high-density CFL phase of
three-flavor QCD. In this scenario the gravitational SPT jumps from θg = π in the core of the
star to θg = 0 in the outer regions (see figure 4). The transition layer through which this
jump occurs (shaded green in figure 4) then necessarily harbors anomalous surface modes
(e.g. massless fermions, though there are other possibilities), whose thermal Hall conductance
is fixed by the SPT jump ∆θg = π. It is an interesting open question whether such anomalous
surface layers inside dense stars have observable consequences.

2 Aspects of symmetry protected topological (SPT) phases

2.1 What is an SPT phase?

In this section we review the notion of Symmetry Protected Topological (SPT) phases, elabo-
rating on section 1.2.1 (which contains many references). A typical SPT is a gapped theory that
is essentially trivial: it has a unique vacuum, and no dynamical degrees of freedom – massless
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or topological – at long distances. In condensed matter parlance it has neither conventional
nor topological order.49 This implies that all global symmetries – continuous or discrete, or-
dinary or generalized – are unbroken. In the Landau paradigm, such a phase is considered to
be trivial.

What distinguishes an SPT from a genuinely trivial gapped phase is that the SPT has a
topologically non-trivial action for the background fields that we can turn on in the theory,
which reflect its global symmetries:

• We will be discussing relativistic QFTs in 3+1 dimensions, which can be studied on ar-
bitrary spacetime manifolds M4 with Riemannian metric gµν, of either Lorentzian or
Euclidean signature. When we discuss topological terms in the effective action, the Eu-
clidean perspective is typically more convenient.

• In this paper we will restrict to spacetime manifolds that are orientable and carry a spin
structure. The theories we discuss can also be analyzed on manifolds that do not admit
such structures,50 which leads to stronger results that we will present in [70].

• Many of our examples have an internal flavor symmetry group G f . The associated back-
ground fields A are ordinary connections on a principal G f bundle over the spacetime
manifold M4.

The partition function Z[g, A], obtained by path integrating over all dynamical fields, is a
functional of the background fields.51 Because the theory is gapped, it is a local functional,
which can be written in terms of a local effective action Seff[g, A] for the background fields. In
Euclidean signature,

Z[g, A] = e−Seff[g,A] . (28)

The terms in Seff[g, A] are typically of two types:

(i) Non-universal terms, with continuously adjustable coefficients. They are conventional
local counterterms in the background fields, and (if desired) they can be continuously
deformed to zero.

(ii) Topological terms in the background fields, with quantized coefficients. These are typ-
ically purely imaginary in Euclidean signature, i.e. they only affect the phase of the
partition function.52 They can still be thought of as well-defined local counterterms,
albeit rigid ones that cannot be deformed continuously.

The distinguishing feature of these terms is that they implement a generalization of
standard anomaly inflow [50]: they are well-defined on closed spacetime manifolds M4,
but cease to be so in the presence of a boundary M3 = ∂M4. Rather, they enforce the
presence of particular low-energy (massless or topological) degrees of freedom on M3,
whose contribution to the partition function is itself anomalous, in such a way as to
precisely cancel the ambiguity of the bulk terms in the presence of M3. The combined
bulk-boundary system is then well defined and anomaly free.

49In particular, it has a one-dimensional Hilbert space on any spatial manifold.
50For unorientable manifolds this requires a choice of orientation-reversing symmetry such as time-reversal or

parity; for manifolds that do not admit a spin structure, it may require a twist by a suitable internal symmetry,
such as baryon number. SPTs for the flavor and time-reversal symmetries of QCD on unorientable manifolds were
classified in [103].

51It also depends on the topology of M4, as well as the orientation and the spin structure.
52If one chooses to only keep the imaginary topological terms in Seff, the partition function is a pure phase, whose

complex conjugate coincides with its inverse. The resulting theories are known as invertible, and their relation to
SPTs is discussed in [53].
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We will refer to all such quantized anomaly-inflow terms as SPTs, though this use is
somewhat broader then in the condensed matter literature.53 The preceding discussion
makes it clear that SPTs can be usefully approached from two complementary points of
view: via the anomaly-inflow terms for background fields in the bulk, or in terms of the
anomalous boundary degrees of freedom. In this paper we mostly take the former, bulk
point of view.

A familiar example of an SPT, or equivalently of anomaly inflow, is a 2+1 dimensional
Chern-Simons term for a U(1) background gauge field A,

S =
ik
4π

∫

M3

A∧ dA . (29)

Invariance under large gauge transformations on closed spin manifolds M3 implies the quan-
tization condition k ∈ Z. If M3 has a boundary M2 = ∂M3, then a U(1) gauge transformation
changes the partition function as follows,

Z[A+ dλ] = Z[A]exp

�

ik
4π

∫

M2

λdA

�

. (30)

This implies the existence of massless edge modes on M2, which couple to A (they are therefore
charged under the U(1) symmetry), and whose contribution to the partition function is anoma-
lous in such a way as to cancel the anomaly in (30). The anomaly in question is a conventional
local ’t Hooft anomaly associated with the two-point function of the U(1) current.54

For our purposes in this paper, the most important thing about the Chern-Simons SPT
in (29) is the quantization of its coefficient k ∈ Z. If we imagine dialing the continuous
coupling constants of the theory while preserving the U(1) symmetry, and without closing the
bulk gap,55 then k does not change. There are only two ways in which k can change:

a) There is a first-order phase transition to a different (possibly trivial) SPT, so that k jumps
by an integer.

b) Gapless degrees of freedom appear, signaling a second order phase transition. (The value
of k in a massless theory need not be an integer, and is in general not even rational [58,
59].)

Thus two SPTs with different values of k are necessarily separated by a phase transition.
The preceding statements apply to all SPTs: two gapped phases harboring distinct SPTs

are necessarily separated by a quantum phase transition (which could be either first or second
order), occurring at zero temperature. As was already mentioned, this phase transition cannot
be characterized within the Landau paradigm, since no symmetry breaking is assumed to occur
across the transition.

We will now proceed to describe the 3+1 dimensional SPT phases that are relevant for the
analysis in this paper. They are characterized by θ -terms for background gauge and gravity
fields. The associated boundary anomalies enforced by these SPT phases are global parity
anomalies in 2+1 dimensions [109,110].

53The term SPT is typically reserved for situations that require a particular global symmetry. Some invertible
anomaly-inflow actions do not require any such symmetry, see for instance [51,104–108].

54The corresponding ’t Hooft anomaly in 3+1 dimensions, which is associated with a three-point function of
the U(1) current, is associated with a Chern-Simons term ∼

∫

AdAdA in 4+1 dimensions.
55Recall that a boundary, if present, necessarily hosts gapless degrees of freedom to cancel the bulk anomaly.
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2.2 SPT for U(1) symmetry with θ f = π protected by time-reversal

2.2.1 Basic properties

Given a 3+1 dimensional theory with a global U(1) flavor symmetry, consider a θ -term for
the U(1) background gauge field A, with field strength F = dA. In Euclidean signature,

S =
iθ f

8π2

∫

M4

F ∧ F . (31)

It follows from the Atiyah-Singer index theorem that θ f has standard periodicity, θ f ∼ θ f +2π
on a spin manifolds M4 (see for instance appendix A of [111]).

In addition to the U(1) symmetry, the theory may also possess the following additional
discrete symmetries:

• Charge conjugation C, acting as
C : A→−A . (32)

• Parity P, acting as

P : A0(t, x⃗)→ A0(t,− x⃗) , A⃗(t, x⃗)→−A⃗(t,− x⃗) . (33)

• Time reversal T, which is anti-unitary and acts via

T : A0(t, x⃗)→ A0(−t, x⃗) , A⃗(t, x⃗)→−A⃗(−t, x⃗) . (34)

In relativistic theories, CPT is always an exact, unbroken symmetry. When this is the case, it
suffices to focus on two out of the three symmetries, which we typically take to be C and T.
Note that P and T preserve the U(1) charge, while C negates it.

The discrete symmetries above act on θ f as follows,

C : θ f → θ f , T : θ f →−θ f . (35)

Since θ f is a 2π-periodic angle, there are two values that are compatible with T-symmetry
(and hence also with CT),

θ f = 0 , θ f = π . (36)

Thus either T or CT symmetry quantizes the allowed values of θ f , and this leads to SPTs
protected by either T or CT, together with U(1).

The SPT with θ f = 0 is trivial, while the one corresponding to θ f = π is non-trivial. This
can be seen from two complementary points of view:

• The partition function of the bulk SPT on a closed spacetime manifold M4 is given by

Z(θ f = 0,π) = eiθ f I f , I f =
1

8π2

∫

M4

F ∧ F ∈ Z . (37)

Here I f is the U(1) instanton number. Thus Z(θ f ) is always real (as required on general
grounds) but while the θ f = 0 SPT always produces a positive partition function, the
partition function of the SPT at θ f = π can produce a non-trivial sign,

Z(θ f = π) = (−1)I f . (38)
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• The θ f = π SPT represents the anomaly-inflow action for the parity anomaly [109,110]
in 2+1 dimensions: on a manifold M4 with boundary M3 = ∂M4, the θ f = π SPT can
be integrated by parts to produce a Chern-Simons term (29) with level k = 1

2 on M3.56

Since this term flips sign under either T or CT, the partition function of the boundary
degrees of freedom on M3 must compensate by transforming as follows,

T or CT : ZM3
→ ZM3

exp

�

i
4π

∫

M3

A∧ dA

�

. (39)

This mixed anomaly between an orientation-reversing symmetry (which can be either T
or CT) and U(1) in 2+1 dimensions is known as the parity anomaly. The anomaly is Z2-
valued, in accord with the fact that the SPT partition function (38) is a sign.

The anomalous boundary is the defining feature of any SPT, but in some cases the SPT can
also be detected in other ways. For instance, we can detect the non-trivial SPT with θ f = π
in (31) using the Witten effect [112]: a probe Dirac monopole (equivalently, an ’t Hooft line

defect) for the background U(1) gauge field acquires U(1) charge
θ f
2π =

1
2 .

2.2.2 Example: Massive Dirac fermion

Throughout this paper, we will forgo explicit 4-component Dirac fermions. Rather, each Dirac
fermion is represented by a pair of 2-component Weyl fermions,

ψα , χα . (40)

Here α = 1,2 is a left-handed Weyl spinor index.57 Hermitian conjugation exchanges left-
handed undotted Weyl spinors with dotted right-handed Weyl spinors. Thus the hermitian
conjugate fields are

ψα̇ = (ψα)
† , χ α̇ = (χα)

† . (41)

The conventional 4-component Dirac fermion is then given by

ΨDirac =
�

ψα, χ α̇
�

. (42)

The free massive Dirac fermion is described by the following Lagrangian,

L = −iψσµ∂µψ− iχσµ∂µχ −mψχ −mψχ . (43)

In general the mass m can be complex.
The theory (43) enjoys various symmetries, which will play an important role below:

• There is a vector-like U(1) flavor symmetry under which the fields have charges

Q(ψ) = −Q(χ) = 1 . (44)

• Charge-conjugation C negates the U(1) charge Q and exchanges

C :ψα↔ χα . (45)
56This in turn gives rise to a half-integer Hall conductance in units of e2/h, as discussed in section 2.2.3 below.
57We use the conventions of Wess and Bagger [65] for 2-component Weyl spinors. See also [74].
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Figure 5: Phase diagram of a free Dirac fermion as a function of the T-preserving
real Dirac mass m. The m ̸= 0 phases are gapped and trivial but furnish different
SPTs protected by the T and U(1) symmetries. They are separated by a second order
phase transition at m= 0, where a massless Dirac fermion appears.

• Anti-unitary time-reversal symmetry T acts via

T :ψα(t, x⃗)→ψα(−t, x⃗) , χα(t, x⃗)→ χα(−t, x⃗) . (46)

Note that T2 = (−1)F . In order for this to be a symmetry of (43), the mass must be real,
which we will assume henceforth,

T symmetry ⇐⇒ m ∈ R . (47)

Note that T preserves the U(1) charge Q. Thus the symmetry group is U(1)⋊T; this is
the symmetry characterizing a topological insulator in condensed matter physics.

• Parity acts via

P :ψα(t, x⃗)→ iχ α̇(t,− x⃗) , χα(t, x⃗)→ iψ
α̇
(t,− x⃗) . (48)

This symmetry also requires a real Dirac mass m ∈ R, as was the case for T, consistent
with the CPT theorem.58 Note that P preserves the U(1) charge Q.

Some of the examples in this paper are Lorentz-invariant QFTs and therefore obey the CPT
theorem. In those examples we can focus on two out of the three symmetries, e.g. on C and T,
with P implied by the theorem. However, in section 6 we turn on a finite chemical potential µ
for the U(1) charge Q, which amounts to subtracting µQ from the Hamiltonian. This explicitly
breaks C, as well as Lorentz invariance, but preserves T and P. In this situation the CPT
theorem no longer holds, so that T and P are genuinely independent symmetries.

We will now explore the phase diagram as a function of the real mass m: (see figure 5)

• When m> 0 the theory is gapped, and we can regulate the fermion path integral in such
a way that the partition function Z > 0 is real and positive, e.g. by choosing the Pauli-
Villars regulator fermion to have a mass with the same sign as m. Comparing with (38)
we see that this corresponds to the trivial SPT. (See [49] for a detailed discussion.) More
generally, we are free to modify the path integral by an explicit SPT counterterm (31)
with θ f = π in order to ensure that m > 0 corresponds to the trivial SPT. Thus the
statement that m > 0 is the trivial SPT is scheme dependent and tied to a particular
choice of counterterms that we make once and for all.

• When m = 0 the Dirac fermion is massless, and the theory undergoes a second order
phase transition.

58The action of CPT on the fermions is given by

CPT :ψα(x)→−iψα̇(−x) , χα(x)→−iχ α̇(−x) . (49)

Note that (CPT)2 = (−1)F .
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• When m < 0 the Dirac fermion is massive again. In the absence of background fields,
this massive phase is physically indistinguishable from the massive phase at m> 0. This
can be made explicit by a U(1)axial transformations of the fields,

U(1)axial : ψα→ eiϕ/2ψα , χα→ eiϕ/2χα . (50)

This transformation has the effect of rotating the mass m in the complex plane,

U(1)axial : m→ eiϕm . (51)

Thus a rotation with ϕ = π exchanges positive and negative m.

Thanks to the standard axial-vector triangle anomaly, the U(1)axial symmetry is anoma-
lous if we turn on a background field A for the vector-like U(1) flavor symmetry.59 This
leads to the following transformation rule for the partition function,60

Z(eiϕm) = Z(m)exp

�

iϕ
8π2

∫

M4

F ∧ F

�

. (52)

Specializing to ϕ = π, we find that flipping m → −m induces the θ f = π SPT with
partition function (38),

Z(−m) = Z(m)exp

�

iπ
8π2

∫

M4

F ∧ F

�

= Z(m)(−1)I f , (53)

with I f ∈ Z the U(1) instanton number.

Since we have chosen counterterms so that the m> 0 SPT is trivial (θ f = 0), we conclude
that the m< 0 phase necessarily harbors the non-trivial θ f = π SPT.

In short, we find that the m > 0 and m < 0 phases are both gapped and trivial, but differ
by an SPT. By the general logic reviewed in section 2.1, these two phases must be separated
by a phase transition. Here the transition is second order and occurs at the m= 0 point where
the Dirac fermion is massless, but the order of the phase transition is not fixed by the SPT, as
we will now sketch.

It is straightforward to embed the SPT-enforced transition of the free Dirac fermion above
into an interacting model by promoting the bare mass m to a dynamical real scalar field σ,
which is invariant under C, P, and T. If we add a generic real potential V (σ) that contains
both even and odd powers of σ, we can easily engineer a first-order jump from large positive
to large negative vev for σ as we dial parameters. No symmetries are broken across this phase
transition, but the Dirac mass flips sign, leading to a discontinuous jump in the SPT.

The SPT phase discussed above is protected by time-reversal (or parity) symmetry, together
with the U(1) flavor symmetry. If we break time-reversal, we can continuously dial the flavor
theta-angle θ f to any real value, while preserving the U(1) flavor symmetry. In particular,
θ f = π and θ f = 0 are smoothly connected; only T or P pins the theta-angle at θ f = 0,π.
In the free massive fermion example, breaking T allows the fermion mass m to be complex.
We can therefore smoothly connect m > 0 and m < 0 without closing the gap, by passing
through the complex plane. This phenomenon described above is closely related to the space-
of-couplings anomalies or higher Berry phases analyzed in [113–119].

59For now we ignore gravitational backgrounds; we will include them below.
60This formula can be derived using the standard descent formalism, which relates triangle anomalies to index

theorems; see for instance section 2 of [11] for a recent pedagogical discussion with references.

24

https://scipost.org
https://scipost.org/SciPostPhys.17.3.093


SciPost Phys. 17, 093 (2024)

2.2.3 Detecting the θ f = π SPT via 2+1d quantum Hall conductance

Here we mention two (closely related) alternative ways to determine the θ f = π SPT discussed
above, which involves codimension-one defects or boundaries. These alternative diagnostics
have the virtue that they do not require Lorentz symmetry and can therefore be used in non-
relativistic settings – including finite-density QCD (see section 6).

Consider the codimension-one defect that generates the T-symmetry, oriented along a
2+1d submanifold of spacetime. Since this defect implements the action of T, it maps
the θ f = π SPT on one side to θ f = −π, leading to an overall jump by ∆θ f = 2π across
the wall. This has the effect of decorating the T-defect by a U(1) Chern-Simons term with
level k = 1,61 which in turn implies a non-zero quantum Hall conductance σx y = 1, in units
of e2/h (with e the electron charge, and h Planck’s constant), see for instance [39,125].

Similarly, we can consider a symmetry-preserving boundary across which the SPT jumps
from θ f = π to θ f = 0. In this case the Chern-Simons term induced on the boundary is
effectively fractional, k = 1

2 , leading to a correspondingly fractional σx y =
1
2 .

Since the 2π-periodicity of θ f in the bulk is broken in the presence of boundaries, we
should more generally characterize the non-trivial SPT by θ f = (2n+ 1)π with n ∈ Z. The in-
teger n reflects a suitable allowed counterterm on the boundary or wall. This leads to induced
Chern-Simons levels (equivalently, quantum Hall conductivity) k = 1+2n in the T-wall setup,
and k = 1

2 + n in the boundary setup.

2.3 SPT with gravitational θg = π protected by time-reversal

2.3.1 Basic properties

In Euclidean signature, the gravitational theta-term is given by

S =
iθg

384π2

∫

M4

Tr(R∧ R) =
iθgσ

16
= iθg Ig . (54)

Here σ is the signature of the four-manifold M4, which is related to the bA(R)-genus appearing
in the Atiyah-Singer index theorem via

Ig =
σ

16
=

1
2

∫

M4

bA(R) . (55)

Here Ig is the gravitational instanton number. On an oriented spin manifold, the index theorem
implies that
∫

M4
bA(R) ∈ 2Z is an even integer (see for instance appendix A of [111]). It follows

that such manifolds have σ ∈ 16Z, so that Ig ∈ Z and the gravitational theta-angle in (54) has
standard periodicity θg ∼ θg + 2π.

As was the case for the U(1) θ -angle, invariance under an orientation-reversing symmetry,
such as T or CT, quantizes

θg = 0 , θg = π , (56)

leading to purely gravitational SPTs protected by T or CT only. The partition function of the
non-trivial θg = π SPT is given by

Z(θg = π) = (−1)Ig , Ig =
σ

16
∈ Z . (57)

61See [52,120–124] for a discussion of decorated domain walls.
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On a manifold with boundary this SPT can be integrated by parts to produce what is effectively
a level-1

2 gravitational Chern-Simons term,62 whose flip underT orCT transforms the partition
function by a properly quantized gravitational Chern-Simons counterterm. This is the purely
gravitational version of the parity anomaly.

2.3.2 Example: Massive Weyl fermion

Consider a single massive Weyl Fermion ψα with Lagrangian

L = −iψσµ∂µψ−
1
2

m(ψψ+ψψ) , m ∈ R . (58)

Reality of the mass implies invariance under the time-reversal symmetry (see e.g. [126])

T :ψα(t, x⃗)→ψα(−t, x⃗) . (59)

Note that a single Weyl fermion does not have charge-conjugation symmetry.63 As before, we
choose counterterms so that m> 0 corresponds to the trivial SPT.

In order to determine the SPT for m< 0 we again use a U(1)axial transformation, as in (50).
The mixed anomaly between U(1)axial and gravity then implies that the partition function
obeys

Z(eiϕm) = Z(m)exp

�

iϕ
2

∫

M4

bA(R)

�

= Z(m)e
iϕσ
16 . (60)

Comparing with (54) we recognize this as a gravitational theta-angle θg = ϕ. Setting this
angle equal to π, we find that

Z(−m) = Z(m)(−1)Ig , Ig =
σ

16
∈ Z . (61)

Thus the m < 0 phase of the massive Weyl fermion is precisely the non-trivial gravitational
SPT with θg = π.

In summary, the massive Weyl fermion interpolates between the trivial SPT at m > 0,
through the massless point, to the non-trivial θg = π SPT at m< 0.

As we did for the Dirac fermion, it is straightforward to embed this transition into an
interacting model by promoting the bare mass m to a dynamical real scalar field. We can then
study the (generally first order) transition that occurs when the vev of the scalar jumps from
large positive to large negative values.

Let us generalize the preceding discussion to multiple Weyl fermionsψI
α with time-reversal

acting as in (59) for every value of I , that is T : ψI
α(t, x⃗) → ψαI(−t, x⃗). The most general

mass term compatible with this symmetry is

Lmass = −
1
2

mI J

�

ψIψJ +ψ
I
ψ

J
�

, mI J = mJ I = m∗I J . (62)

The real symmetric matrix mI J can be diagonalized, with eigenvalues mI ∈ R, using a real
orthogonal matrix. Since such an orthogonal transformation of the fields does not have a
mixed anomaly with gravity, the value of the gravitational θg -angle is entirely determined by
the number (mod 2) of negative eigenvalues mI , or equivalently by the sign of the determinant
of the mass matrix,

θg =

¨

0 , if det mI J > 0 ,

π , if det mI J < 0 .
(63)

62This in turn gives rise to a thermal Hall conductance κx y = 1/4+n/2 with n ∈ Z, in units ofπ2k2
B T/3h, where T

is temperature, h is Planck’s constant, and kB is Boltzmann’s constant. This is further discussed in section 2.3.3
below.

63The CPT theorem also guarantees invariance under CP :ψα(t, x⃗)→ iψ
α̇
(t,− x⃗).
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Applying this to the example of the free Dirac fermion in (43), we see that the mass matrix

mI J =

�

0 m
m 0

�

, (64)

has determinant det mI J = −m2 ≤ 0. Thus the determinant never changes sign, and hence
both gapped phases of the massive Dirac fermion have θg = 0.

As discussed at the end of section 2.2.2, the θ f = π SPT is protected by both U(1) and
time-reversal symmetry. If T is broken, the SPT can be trivialized. Analogous statements hold
for the θg = π SPT considered here, except that this SPT is only protected by T.

2.3.3 Detecting the θg = π SPT via 2+1d thermal Hall conductance

In analogy with section 2.2.3, we now recall how to determine the gravitational θg = π SPT
using the thermal Hall conductance on codimension-one defects or boundaries. As mentioned
previously, these diagnostics are particularly useful in settings without Lorentz symmetry,
where it is not possible to consider partition functions on Euclidean spacetime manifolds.

First, we consider a T-wall, which maps the SPT characterized by θg = (2n+ 1)π on one
side of the wall to θg = −(2n+1)π on the other side. As before, the integer n ∈ Z parametrizes
possible counterterm ambiguities. The net result is a jump by ∆θg = 2π(2n + 1) across the
wall, which in turn implies that it harbors a gravitational Chern-Simons term whose quantized
coefficient can be characterized by saying that it gives rise to a framing anomaly with chiral
central charge

c =
1
2
+ n . (65)

This in turn induces a non-zero thermal Hall conductance on the wall,

κx y = c =
1
2
+ n , n ∈ Z . (66)

This is measured in units of π2k2
B T/(3h), where kB is the Boltzmann constant, T is tempera-

ture, and h is the Planck constant. Recall that the thermal hall effect involves non-dissipative
heat transport in a direction transverse to the applied temperature gradient. See for in-
stance [125,127–131].

Alternatively, we can consider a symmetry-preserving boundary, where the jump in θg is
half of what it was for the T-wall above. This leads to the following thermal Hall conductivity
(equivalently, chiral central charge),

κx y = c =
1
4
+

n
2

, n ∈ Z . (67)

Examples of anomalous T-symmetric boundary states that saturate this anomaly include odd
numbers of massless 2+1d Majorana fermions (as for instance reviewed in [49]), or certain
gapped states with non-Abelian anyons (see e.g. [66, 132–135]). Note that Abelian anyons
(which can be described by Abelian Chern-Simons gauge theories, possibly stacked with a
fermionic SPT) at most give rise to half-integral c ∈ 1

2Z and are therefore not suitable T-
symmetric boundary states for the θg = π SPT in the bulk.

The previous discussion applies to boundaries that neither explicitly nor spontaneously
break T. There are also boundary states that spontaneously break T, related by the action
of the T-wall discussed above. This implies that the thermal Hall conductance in the two
boundary vacua related by the spontaneously broken T-symmetry differs by 1

2 +n, with n ∈ Z.
In particular, at least one boundary vacuum must have nonzero thermal Hall conductivity.
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2.4 Generalization to Weyl fermions with non-Abelian flavor symmetry

For future reference, consider a collection of massive Weyl fermions ψI
α in a real (possibly

reducible) representation r of a non-Abelian flavor symmetry group G f . Here the index I
runs from I = 1, . . . , dim r, with dim r the real dimension of the representation r. We choose
a common mass m ∈ R for all fermions, so that the mass term mψψ in (58) is replaced
by mδI Jψ

IψJ . We now compute the jump in the SPT as we change the sign of m.
The generalization of (52) and (60) to this case takes the form

Z(eiϕm) = Z(m)exp

�

iϕ
2

∫

M4

Trr

�

bA(R)eF/2π
�

�

= Z(m)exp

�

i(dim r)ϕσ
16

+
iϕ

16π2

∫

M4

Trr F ∧ F

�

.

(68)

Here F is the hermitian non-Abelian background field strength associated with the G f symme-
try. The Dynkin index I(r) of the representation r is defined so that

Trr = 2I(r)Tr□ , (69)

where □ denotes the fundamental representation of G f . The conventionally normalized in-
stanton number for the G f background field F is given by

I(G f ) =
1

8π2

∫

M4

Tr□ F ∧ F . (70)

Note that this is an integer if G f is simply connected; otherwise it may be fractional.
Specializing to ϕ = π in (68), and using (69), (70), we conclude that

Z(−m) = Z(m)ei((dim r)πIg+I(r)πI(G f )) , (71)

with Ig = σ/16 the gravitational instanton number. Thus flipping the mass m→ −m in this
model generates a gravitational theta-angle

θg = (dim r)π , (72)

as well as an SPT protected by the non-Abelian G f symmetry and time-reversal,

S = iθ f I(G f ) =
iθ f

8π2

∫

M4

Tr□ F ∧ F , θ f = I(r)π . (73)

A formula for the Dynkin index I(r) for a general SU(N) representation r is reviewed in
appendix A.

2.5 Gapless SPTs and Nambu-Goldstone bosons

In this section, we have so far assumed that the SPT phases under discussion are gapped,
which is the context in which they are best understood. Recently there has been considerable
interest in gapless SPT phases, see for instance [79–88], and in particular the extent to which
they share the characteristic rigidity of their gapped counterparts. Since we will encounter
some examples of gapless SPTs in our analysis below, we collect various useful observations
about them here.
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Theory Theory + SPT 

Topological Domain Wall: 

Topological b.c. of SPT 

Figure 6: Domain wall defect that implements eating an SPT phase in a theory that is
invariant under stacking with that SPT phase. If the SPT admits a topological bound-
ary condition, then the defect is topological and generates a zero-form symmetry that
has a mixed anomaly with the background fields that participate in the SPT.

2.5.1 Eating SPTs via ’t Hooft anomalies

An important question is whether a particular SPT phase, whose effective action only depends
on background fields, can be removed by performing a field redefinition of the dynamical
fields. In this case the SPT is said to be “eaten” by the dynamical degrees of freedom. One way
in which the SPT can be eaten is that the symmetry protecting it is spontaneously broken, see
for instance [87] for examples of this type.

Here we will only discuss SPTs for unbroken symmetries, but even those can be eaten
by gapless (or long-range entangled topological) degrees of freedom. Examples of this phe-
nomenon have been observed in [86,87,136–139], and all of them involve an ’t Hooft anomaly
(either microscopic or emergent) for the low energy degrees of freedom. This is natural, be-
cause such an anomaly leads to a phase ambiguity in the partition function that depends on
the background fields and that can potentially absorb the SPT.

Let us sketch a partial converse of this statement: an SPT can only be eaten if its back-
ground fields participate in a mixed anomaly with some symmetry. The converse is partial,
because we will assume that the SPT admits a topological boundary condition. This is not true
for all SPTs, but it holds for the θg = π and θ f = π SPTs that are important throughout this
paper (with a suitable restriction to the Cartan torus in the flavor case).

Symmetries are transformations of the dynamical fields that leave the theory invariant.
If our theory can eat an SPT phase, then stacking the theory with that SPT phase consti-
tutes a symmetry operation. Moreover, this symmetry shifts the partition function by a phase
(supplied by the SPT) and therefore it has a mixed anomaly with the background fields that
participate in the SPT. The generator of this anomalous zero-form symmetry is given by a
codimension-one defect that eats the SPT phase, i.e. the two sides of the wall differ by stack-
ing our theory with the SPT. This is shown in figure 6. Since we assumed that the SPT we
are stacking with admits a topological boundary condition, this SPT-eating defect is indeed
topological, as expected for a symmetry generator.

2.5.2 Partition functions and gapless SPTs

One way to diagnose gapped SPT phases is via their partition function in the presence of back-
ground fields on euclidean spacetime manifolds. Here we will make some related observations
in the context of gapless SPTs.64 We distinguish three cases:

64We are grateful to Ryan Thorngren for discussions about the content of this subsection, and for explaining
some of the intuitive arguments underlying [87].
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1.) Let us consider some gapless degrees of freedom whose partition function (in a suitable
scheme) is strictly positive in the presence of all background fields we would like to
consider,

Zgapless > 0 . (74)

In this case the SPT phase of the gapless degrees of freedom is well defined (in particular
they cannot eat any SPT) and trivial. Stacking this gapless phase with any SPT phase
produces a partition function

ZgaplessZSPT , (75)

whose phase is entirely determined by the SPT. In other words, the SPT is not changed
by stacking with gapless modes that satisfy (74).

2.) If the partition function of the gapless degrees of freedom is always non-vanishing (but,
unlike (74) above, cannot be made positive in any scheme),

Zgapless ̸= 0 , (76)

then stacking with an SPT phase leads to a different partition function,

ZgaplessZSPT ̸= Zgapless . (77)

In particular, the SPT we stack with cannot be eaten by the gapless modes, but now they
contribute to the phase of the partition function, and hence to the overall SPT phase.
Examples of this kind in 1+1d are discussed in [87]. An example in 2+1d is a free,
massless Dirac fermion, which effectively has a half-integer Chern-Simons term for its
U(1) symmetry that cannot be cancelled by any integer-quantized Chern-Simons SPT.

3.) Finally, the partition function of the gapless phase can vanish (at least for some choice
of background fields),

Zgapless = 0 . (78)

Precisely this happens in the presence of a suitable anomaly. As we have explained
above, this makes it possible for the gapless modes to eat SPTs, roughly because

ZgaplessZSPT = 0= Zgapless , (79)

so that stacking with the SPT is a symmetry.

2.5.3 Gapless SPT phase with a U(1) Nambu-Goldstone boson

In this paper we will encounter gapless phases that contain a NGB for a spontaneously broken
flavor symmetry U(1)B with background field B. In addition, there can be SPTs for a distinct,
unbroken U(1) flavor symmetry with background field A, as well as gravity, both protected
by an unbroken time-reversal symmetry. Let us take the U(1)B Goldstone boson φ to be a
dimensionless scalar of periodicity φ ∼ φ + 2π. The shift symmetry of φ, with current fφdφ
coupling to B, is the broken U(1)B symmetry.65 In addition, φ has an unbroken, generally
emergent, U(1)(2)C two-form winding symmetry, whose current ∼ ∗dφ couples to a three-form
gauge field C (3) with field strength H(4) = dC (3). All together the low-energy Lagrangian for φ
is,

S =
f 2
φ

2

∫

M4

(dφ − B)∧ ⋆(dφ − B) +
i

2π

∫

M4

φH(4) . (80)

65Here fφ is the decay constant of φ.
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Note that the broken U(1)B symmetry and the unbroken U(1)(2)C winding symmetry have
a mixed ’t Hooft anomaly. In the presentation (80), the theory is manifestly invariant un-
der C (3) background gauge transformations,66 but a U(1)B background gauge transforma-
tion B→ B + dλB shifts

S→ S +
i

2π

∫

M4

λBH(4) . (81)

Comparing with (31) we see that we can absorb a θ f = π SPT by choosing

λB = π ,
1

2π
H(4) =

1
8π2

F ∧ F . (82)

Note that both 1
2πH(4) and 1

8π2 F∧F have integral periods. However, substituting back into (81)
we find a non-vanishing mixed anomaly between the broken U(1)B symmetry and the unbro-
ken U(1), in accord with the general discussion in section 2.5.1.67 Completely analogously,
comparing with (54), we find that we can absorb θg = π SPT by choosing

λB = π ,
1

2π
H(4) =

1
384π2

Tr(R∧ R) , (83)

but this comes at the cost of a mixed U(1)B anomaly with gravity.
Conversely, if the spontaneously broken U(1)B symmetry has no mixed ’t Hooft anomalies

with the unbroken U(1) symmetry or gravity, then the θ f = π and θg = π SPTs cannot be
absorbed by the massless NGB, and hence they continue to be meaningful. This is precisely the
situation that we will encounter below in several examples. In these examples we will be able
to check that the SPTs remain unchanged if we break the U(1)B symmetry explicitly, thereby
giving a mass to the Goldstone boson. Since the SPTs are thus connected to the conventional
gapped setting, this provides another argument that they are robust. The fact that we get a
well-defined SPT when lifting the NGB is directly related to the absence of a mixed ’t Hooft
anomaly involving U(1)B.

3 Review of massive QCD

In this section we review some useful facts about QCD with SU(N)c gauge group and N f flavors
of massive Dirac quarks in the fundamental representation of SU(N)c . The quark masses
explicitly break the axial symmetries of massless QCD; we focus on the unbroken vector-like
symmetries.

3.1 Fields and Lagrangian

Rather than working with 4-component Dirac fermions, we work with pairs of 2-component
Weyl fermions,

(ψα)
a
i , (χα)

i
a , a = 1, . . . , N , i = 1, . . . , N f . (84)

Here α = 1,2 is a left-handed Weyl spinor index,68 which we will generally suppress. The
raised and lowered a-indices are fundamental and anti-fundamental SU(N)c color indices, re-
spectively, so that the pair (ψa

i ,χ i
a) transforms as (N,N) of the SU(N)c gauge group. Likewise,

66If we add to the action a counterterm ∼
∫

M4
B ∧ C (3) then a C (3) gauge transformation leads to a shift ∼ dB.

Clearly such a shift cannot eat an SPT involving only the U(1) background field A or gravity.
67In this example, the mixed ’t Hooft anomaly between the U(1) flavor symmetry and the broken U(1)B symmetry

entirely comes from the mixed ’t Hooft anomaly between the U(1)(2)C two-form symmetry and the U(1)B symmetry.
68We use the conventions of Wess and Bagger [65] for 2-component Weyl spinors. See [74] for a presentation

of QCD in these conventions.
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the lowered and raised i-indices are fundamental and anti-fundamental SU(N f ) flavor indices,
and (ψa

i ,χ i
a) transforms as (Nf,Nf) under SU(N f ).

Hermitian conjugation exchanges left-handed undotted Weyl spinors with dotted right-
handed Weyl spinors; it also exchanges fundamental and anti-fundamental representations
of SU(N)c and SU(N f ). Thus the hermitian conjugate quark fields are

(ψα̇)
i
a = ((ψα)

a
i )

† , (χ α̇)
a
i = ((χα)

i
a)

† . (85)

The conventional 4-component Dirac quarks are then given by

(ΨD)
a
i =
�

(ψα)
a
i , (χ α̇)ai
�

. (86)

In this paper we will mostly discuss the case of N f degenerate quarks, with a common
real Dirac mass mq ∈ R, and vanishing theta-angle, θc = 0, for the dynamical SU(N)c gauge
field.69 The Lagrangian in Lorentzian signature is then given by

L = −
1

4g2
f A
µν f Aµν − iψ

i
aσ
µDµψ

a
i − iχa

i σ
µDµχ

i
a −mq

�

ψa
i χ

i
a +ψ

i
aχ

a
i

�

, mq ∈ R . (87)

Here f A
µν is the SU(N)c field strength (with A= 1, . . . , N2−1 an SU(N)c adjoint index) and Dµ

is the SU(N)c covariant derivative in the appropriate representation.

3.2 Continuous symmetries

The continuous gauge and global symmetries that act faithfully on the quark fields are70

SU(N)c × U(N f ) f × Spin(4)Lorentz

I
. (88)

Here SU(N)c is the gauge group and U(N f ) f is the vector-like flavor symmetry preserved by
the quark mass.71 Note that

U(N f ) =
U(1)Q × SU(N f )

ZN f

, (89)

where U(1)Q is a quark-number symmetry with charge assignments

Q(ψa
i ) = −Q(χ i

a) = 1 . (90)

The quotient I in (88) implements various identifications ensuring that the symmetry action
is faithful. Thus it determines the precise form of the global symmetry group:

• The center of gauge group ZN ⊂ SU(N)c is identified with the central ZN subgroup of
the U(N f ) flavor symmetry. Ignoring spacetime symmetries, the internal flavor symme-
try is therefore always given by

G f =
U(N f )

ZN
. (91)

The central subgroup of G f is the properly normalized baryon number symmetry U(1)B,
under which gauge-invariant baryon operators (constructed out of N suitably color-
antisymmetrized quarks or anti-quarks) have integer charge, B ∈ Z. Note that the ZN
quotient in (91) correctly relates quark- and baryon-numbers,

B =
1
N

Q . (92)
69An anomalous U(1)axial transformation can be used to eliminate θc in favor of a (generally) complex

mass mq ∈ C. Below we will additionally impose time-reversal symmetry, which requires real mq ∈ R.
70See for instance section 4.1 of [114] for a related discussion.
71Whenever we wish to highlight that something pertains to color or flavor we will use the subscripts c and f

respectively, though we will omit them if confusion is unlikely to arise.
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• Fermion parity (−1)F generates a central ZF
2 ⊂ Spin(4)Lorentz. If the number N of colors

is even, then (−1)F is identified with the central element (−1) ∈ SU(N)c of the gauge
group, i.e. fermion number is gauged. In this case the full connected global symmetry
is given by

G f × SO(4)Lorentz =
U(N f )

ZN
× SO(4)Lorentz (N even) . (93)

Such a theory is bosonic: even though it is formulated using fermionic quark fields, all
gauge invariant local operators are bosons and the theory can be studied on non-spin
manifolds.72

• If the number N of colors is odd, then the theory is fermionic, i.e. there are gauge-
invariant local operators that carry fermion number (−1)F and (in the absence of twists,
see below) the theory can only be formulated on manifolds with a spin structure. Note
however that (−1)F is identified with the central element (−1) ∈ G f of the flavor sym-
metry group, so that the full global symmetry is

G f × Spin(4)Lorentz

ZF
2

=
U(N f )/ZN × Spin(4)Lorentz

ZF
2

. (94)

In particular this implies that (−1)F is identified with (−1) ∈ U(1)B ⊂ G f , so that funda-
mental baryons and anti-baryons with B = ±1 are necessarily fermions. This is consistent
with the fact that they contain an odd number N of constituent quarks. This identifi-
cation further implies that the theory can be placed on non-spin manifolds, as long as
the U(1)B background gauge field is taken to be a spinc connection.73

3.3 Discrete symmetries

The QCD Lagrangian (87) is invariant under discrete C, P, and T symmetries. The way these
symmetries act on the quark fields is identical to that described in section 2.2.2 for free Dirac
fermions, and we repeat it here:

C : (ψα)
a
i ↔ (χα)

i
a ,

T : (ψα)
a
i (t, x⃗)→ (ψα)ai (−t, x⃗) , (χα)

i
a(t, x⃗)→ (χα)ia(−t, x⃗) ,

P : (ψα)
a
i (t, x⃗)→ i(χ α̇)ai (t,− x⃗) , (χα)

i
a(t, x⃗)→ i(ψ

α̇
)ia(t,− x⃗) .

(95)

The time-reversal and parity symmetries satisfy

T2 = P2 = (−1)F . (96)

We also observe that both T and P preserve the U(1)B baryon number charge B. Thus QCD at
finite baryon chemical potential µB preserves T and P, but breaks C and thus also CPT. Note
that the CPT theorem does not hold, because Lorentz invariance is broken in the presence of
a chemical potential.

The actions of the discrete symmetries on vector-like gauge fields A, which could be ei-
ther the dynamical SU(N)c color gauge fields, or the U(N f ) flavor background gauge fields,

72This utilizes the symmetry group (SU(N)c × Spin(4)Lorentz)/ZF
2 that arises when N is even. On oriented Rie-

mannian manifolds M4 without a spin structure, the second Stiefel-Whitney class w2(M4) ∈ H2(M4,Z2) of the
tangent bundle is non-trivial, while the gauge fields are connections on an SU(N)c/Z2 bundle. The ZF

2 quotient in
the symmetry group implies that the class that measures the obstruction to lifting the SU(N)c/Z2 gauge bundle to
an SU(N)c bundle is precisely given by w2(M4).

73In general this leads to additional information not accessible on spin manifolds, see e.g. [111,140–143].
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are generalizations of the action on U(1) gauge fields in section 2.2.1. If we represent A by
Hermitian matrices, then

C : A→−A∗ ,

T : A0(t, x⃗)→ A∗0(−t, x⃗) , A⃗(t, x⃗)→−A⃗∗(−t, x⃗) ,

P : A0(t, x⃗)→ A0(t,− x⃗) , A⃗(t, x⃗)→−A⃗(t,− x⃗) .

(97)

3.4 Vafa-Witten positivity

When the quark mass mq > 0 is positive, the QCD path integral measure can be regulated in
a way that makes the path-integral measure positive definite [71–73].74 We refer to this as
Vafa-Witten positivity. It has several important consequences:

• The vector-like G f flavor symmetry is not spontaneously broken [72].

• Parity P, and hence also CT, are not spontaneously broken [73].

• Vafa-Witten positivity continuous to hold in the presence of gravitational background
fields, as well as background gauge fields for the vector-like flavor symmetry G f . QCD
with positive quark mass mq > 0 is gapped, and positivity in the presence of background
fields implies that it is also a trivial SPT phase. See [74] for a related detailed discussion.

Note that ensuring Vafa-Witten positivity in the presence of background fields requires a par-
ticular choice of SPT counterterms.75 A more invariant statement is that QCD is in the same
SPT phase for any mq > 0. By choosing the counterterms in a particular way we can take it to
be the trivial SPT, but this is not strictly necessary.

Below we will deform QCD by adding Yukawa couplings or turning on a chemical poten-
tial µB for the U(1)B symmetry. Both of these deformations invalidate Vafa-Witten positivity,
and hence open the door to potentially non-trivial SPT phases.

4 SU(2) Higgs-Yukawa-QCD

In this section we elaborate on the example introduced in section 1.2.3, which is motivated by
the classic analysis of Higgs-confinement continuity in [24].

4.1 Defining the theory

The model is a deformation of QCD with N = 2 colors and N f = 1 massive Dirac quark flavor
in the doublet representation of the SU(2)c gauge group, i.e. two SU(2)c fundamental Weyl
quarks,

(ψa)α , (χa)α . (98)

Here α = 1, 2 is a left-handed Weyl spinor index, and a = 1,2 is a fundamental SU(2)c color
index. According to the discussion in section 3, the continuous symmetry of this theory is

U(1)B × SO(4)Lorentz . (99)

74Following these references, we work in the presence of a UV cutoff ΛUV and take mq to be the bare (rather
than a renormalized or physical) quark mass.

75This is in addition to the requirement that we set the theta-angle for the dynamical gauge fields to zero, θc = 0,
as we have done throughout.
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Additionally there are the discrete C, T, P symmetries. Note that U(1)B baryon number is
normalized so that

B(ψ) = −B(χ) =
1
2

. (100)

This implies that all gauge-invariant local operators have B ∈ Z. Moreover, the baryons of
this theory, e.g. ϵabψ

aψb with B = 1, are bosons. In fact the entire theory is bosonic, because
fermion number (−1)F is an element of the SU(2)c gauge group, and hence it can in principle
be studied on spacetime manifolds without a spin structure (though we will not do so here),
in accord with the general discussion in Section 3.2 for even N .

The presentation above (which applies for general N) obscures the full global symmetry of
the N = 2 theory we are considering here. Since bot ψa and χa transform in the pseudo-real
doublet representation of SU(2)c , we can use the SU(2)c invariant symbols ϵab,ϵab to raise
and lower the gauge indices,76 putting the left- and right-handed quarks on equal footing:

ψa
i=1 =ψ

a , ψa
i=2 = χ

a . (101)

The fermions ψa
i transform as (2,2) under the following symmetry group,

SU(2)c × SU(2) f
Z2

= SO(4)c, f . (102)

Here SU(2) f is a flavor symmetry under which i = 1, 2 is a doublet index. The Z2 quotient in-
dicates that the central element of (−1) ∈ SU(2) f is gauged, so that the actual global symmetry
of the model is

G f × SO(4)Lorentz , G f =
SU(2) f
Z2

= SO(3) f . (103)

The U(1)B baryon number symmetry in (99) and (100) is the Cartan subgroup of G f , and the
charge-conjugation symmetry C exchanging ψ = ψi=1 and χ = ψi=2 is the associated Weyl
reflection. Note that the SU(2)c gauge theory has no further notion of charge-conjugation
symmetry, so that it is sufficient to enforce T (or equivalently CP) symmetry,

T : (ψa
i )α(t, x⃗)→ (ψa

i )
α(−t, x⃗) . (104)

As before this implies that T2 = (−1)F so that the fermions are Kramers doublets.
Let us add a Dirac mass term for ψa,χa, which is manifestly SU(2) f invariant when ex-

pressed in terms of ψa
i ,

Lmass = −
mq

2
ϵabϵ

i jψa
iψ

b
j . (105)

We also impose time reversal T, which requires mq ∈ R. According to the discussion at the
end of section 3.4, we can choose counterterms and regulate the theory in such a way that
the mq > 0 phase is a trivially gapped SPT phase.

A explained in section 1, theories with a gauged (−1)F symmetry (such as a conventional
electronic superconductor) can never exhibit Higgs-confinement continuity, because Lorentz-
scalar Higgs fields can at most break the gauge symmetry down to the ZF

2 subgroup generated
by (−1)F . Following [24], we therefore add a complex Lorentz-scalar Higgs field in the SU(2)c
fundamental representation, so that (−1)F is no longer gauged and we can completely break
the gauge group,

ha , ha = (h
a)† . (106)

We can reorganize the complex 2-component Higgs doublet into a real 4-component field

ha
i , (ha

i )
† = hi

a . (107)

76We use the same conventions for SU(2) index raising and lowering as for 2-component Weyl spinors.
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Here we choose i = 1,2 to be a doublet index under the SU(2) f flavor symmetry acting on the
fermions.77 Then ha

i transforms in the real, fundamental vector representation of the gauge
and global SO(4)c, f group in (102). This is similar to the Higgs field in the standard model,
with SU(2)c analogous to the weak gauge group and SU(2) f playing the role of the custodial
symmetry. We also take ha

i to transform as a scalar under time-reversal,

T : ha
i (t, x⃗)→ ha

i (−t, x⃗) , (108)

in accord with the relation T2 = (−1)F .
Finally, we add a T- and SO(4)-invariant quartic potential for the Higgs field,

V (h) = M2
h |h|

2 +λ|h|4 , λ > 0 , M2
h ∈ R . (109)

Here |h|2 = ha
i hi

a is the invariant length of the Higgs field.

4.2 SPT-enforced Higgs-confinement transitions from Yukawa couplings

A natural way to avoid the Higgs-confinement continuity in [24] is to evade the Vafa-Witten
theorem by adding Yukawa couplings to the theory. As we will show, this can lead to non-trivial
SPT phases, separated by phase transitions that violate Higgs-confinement continuity.

The field content of our model does not allow for renormalizable Yukawa couplings, but it
does have dimension-5 Yukawa couplings that preserve all gauge and global symmetries,78

LYukawa =
1
2

�

y1hi
ah j

b + y2h j
ahi

b

�

ψa
iψ

b
j + (h.c.) , y1, y2 ∈ R . (110)

Here the Yukawa couplings y1, y2 have dimension of inverse mass, e.g. we could
take y1, y2 ∼

ε
Λ , with ε a small dimensionless coupling. Time-reversal symmetry T re-

quires y1, y2 ∈ R to be real. As we will see the signs of y1, y2 are important; indeed there
is no symmetry that allows us to flip these signs.

The analysis of the confining phase proceeds exactly as before: hi
a has no vev there, and

the Yukawas (110) are irrelevant operators with a small coefficient. We do not expect them to
significantly affect the confining dynamics of the SU(2)c gauge theory, which as before leads
to a gapped and trivial SPT phase.

By contrast, in the Higgs phase ha
i acquires the vev

ha
i = vδa

i , v > 0 . (111)

The Yukawa couplings now contribute to the fermion mass matrix mI J , where I , J = 1,2, 3,4
are SO(4)c, f vector indices,

−
1
2

mI Jψ
IψJ =

1
2

�

−mqϵabϵ
i j + y1vδi

aδ
j
b + y2vδ j

aδ
i
b

�

ψa
iψ

b
j

=
1
2

�

(mq + y1v)δi
aδ

j
b + (−mq + y2v)δ j

aδ
i
b

�

ψa
iψ

b
j .

(112)

In order to switch from the ψa
i to the ψI basis, we use the 4-dimensional Euclidean sigma-

matrices,
(σI

E)
a

i = ((τ⃗)
a

i , iδa
i) , I = 1,2, 3,4 , (113)

77A priori, the SU(2) flavor symmetry acting on the Higgs field is decoupled from the SU(2) f symmetry acting
on the fermions, but in section 4.2 below we add Yukawa couplings that identify them.

78These couplings are reminiscent of the dimension-5 Weinberg operators in the standard model.
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where the extra factor of i for the 4th component is due to Wick rotation. Here (τ⃗)ai stands for
the standard Pauli matrices (τI)ai , with I = 1,2, 3. We then make the change of variables79

ψa
i =

1
p

2
(σI

E)
a

iψ
I . (114)

Note that we have started to assign horizontal slots to color and flavor indices, since they can
now be identified, and this can lead to ambiguities. Substituting into (112) we find

−
1
2

mI Jψ
IψJ = −

1
2
(mq + 2y1v + y2v)ψ4ψ4 +

1
2
(−mq + y2v)

1
2
(τI)ai(τ

J )b jδ
j
aδ

i
bψ

IψJ

= −
1
2
(mq + 2y1v + y2v)ψ4ψ4 +

1
2
(−mq + y2v)

3
∑

I=1

ψIψI .

(115)
Thus the mass eigenvalues are

M1 = mq + (2y1 + y2)v , M3 = mq − y2v , (116)

with degeneracy 1 and 3 respectively, which also indicates their transformation properties
under SU(2)′f . As a consistency check, turning off the Yukawa couplings leads to the common
Dirac quark mass mq.

Thus, as we dial M2
h to larger negative values, thereby increasing the Higgs vev v, we find

– depending on the signs of y1, y2 – that either the singlet fermion mass M1 or the triplet
fermion mass M3 (or both) can flip sign. Deep in the Higgs phase we are at weak coupling
and our semiclassical analysis is reliable:

• If only M1 flips sign, the gravitational SPT jumps to θg = π, but the flavor SPT remains
trivial.

• If only M3 flips sign, we get a jump to θg = 3π, which is equivalent to π modulo 2π.
Because the triplet transforms in the adjoint of SU(2)′f , it also follows from (73) that
the flavor SPT jumps to

θ f = 2π . (117)

Note that this is not the trivial SPT, because the flavor symmetry is SO(3)′f = SU(2)′2/Z2,

so that the instanton number on spin manifolds can be half-integer,80

I(SO(3)′f ) ∈
1
2
Z . (118)

Thus θ f ∼ θ f + 4π and θ f = 2π is the non-trivial, T-invariant SPT at the midpoint.

• If both M1 and M3 flip sign, then θg = 0 and θ f = 2π, so we only have the flavor SPT.

If the signs of the Yukawa couplings are such that there is a non-trivial jump in the SPT, the
passage from confinement at large M2

h > 0 to Higgsing at large M2
h < 0 will not be contin-

uous: there must be a phase transition. In this sense the Yukawa couplings destroy Higgs-
confinement continuity, but this only works because of time-reversal symmetry. As already
mentioned in section 1.2.1, explicitly breaking T allows the Yukawa couplings y1, y2 ∈ C to
be complex, so that we can interpolate between the SPTs and avoid the massless fermion points
by dialing through complex values of M1, M3 ∈ C.

79It can be checked that the matrix (σI
E)

a
i affecting the change of variables is an SO(4)matrix, i.e. it is orthogonal

of unit determinant.
80Recall that the introduction of the Higgs field turned the previously bosonic SU(2)c QCD theory into a theory

that requires a spin structure.
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5 SU(3) Higgs-Yukawa-QCD

In this section we consider QCD with SU(3)c gauge group and N f = 3 quark flavors. We mostly
focus on the degenerate case with equal mass mq for all quarks and SU(3) f flavor symmetry,
but in section 5.4 we explicitly comment on the fate of our results when SU(3) f is broken by
more general quark masses.

We add an elementary Higgs field hi
a in the (3,3) representation of SU(3)c × SU(3) f ,

as well as Yukawa couplings to the quarks, whose particular properties – notably invariance
under parity P and time-reversal T – are motivated by applications to QCD at finite U(1)B
baryon-number density (see section 6 below). The goal of this section is twofold:

1.) To explore the confining and Higgs phases of the model. The former is gapped and trivial,
while the latter spontaneously breaks U(1)B. Additionally, the Higgs phase harbors non-
trivial SPT phases for SU(3) f and gravity (protected by P and T) that we determine.
We also explain why the SPT phases safely co-exist with the U(1)B NGB.

2.) To present another example in which naive Higgs-confinement continuity is thwarted by
an SPT jump between the two phases. To this end we add an explicit U(1)B-breaking
perturbation to gap out the NGB in the Higgs phase, rendering it naively indistinguish-
able from the confining phase. Nevertheless, the non-trivial SPTs in the Higgs phase
enforce at least one Higgs-confinement phase transition.

5.1 QCD with N = 3 colors and N f = 3 flavors

We will consider QCD with three degenerate, massive quark flavors, i.e. SU(N)c gauge theory
with N = 3 colors and N f = 3 Dirac quark flavors. As in section 3, we represent the Dirac
quarks by pairs of 2-component Weyl fermions,

(ψα)
a
i , (χα)

i
a , a = 1, . . . , N = 3 , i = 1, . . . , N f = 3 . (119)

The QCD Lagrangian for general N and N f appears in (87). We repeat here the Dirac masses
for the quarks,

LQCD ⊃ −mq

�

ψa
i χ

i
a +ψ

i
aχ

a
i

�

, mq ∈ R . (120)

The reality of mq is enforced by time-reversal symmetry T and also by parity P, whose action
on the quarks is spelled out in (95).

The vector-like flavor symmetry preserved by the common quark mass is (see section 3.2)

G f =
U(3) f
Z3

= U(1)B × PSU(3) f . (121)

Here U(3) f = (U(1)Q×SU(3) f )/Z3, where Q(ψa
i ) = −Q(χ i

a) = 1 is quark number, and the Z3
quotients lead to

U(1)Q
Z3

= U(1)B ,
SU(3) f
Z3

= PSU(3) f . (122)

The statement that the standard Gell-Mann SU(3) f flavor symmetry of QCD is actu-
ally PSU(3) f reflects the fact that all gauge-invariant local operators that can be constructed
out of quark fields do not transform under the shared Z3 center of the SU(3)c color group and
the SU(3) f flavor symmetry.
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Note that PSU(3) symmetry allows more general background fields than SU(3). In partic-
ular, the PSU(3) instanton number can be fractional,81 even on spin manifolds, where

I(PSU(3) f ) ∈
1
3
Z . (123)

It follows that the flavor theta-angle θ f has periodicity 6π, rather than 2π,

θ f I(PSU(3) f ) , θ f ∼ θ f + 6π , (124)

which in turn implies that the T- and P-invariant SPTs are

θ f I(PSU(3) f ) , θ f = 0, 3π (mod 6π) . (125)

A pleasant simplification is that T and P symmetry enables us to unambiguously detect these
SPTs by restricting to genuine SU(3) f background gauge fields, for which I(SU(3) f ) ∈ Z and
the periodicity of θ f is reduced from 6π to 2π. There is thus a bijection,

θ f I(PSU(3) f ) , θ f = 0,3π (mod 6π) ←→ θ f I(SU(3) f ) , θ f = 0,π (mod 2π) , (126)

which identifies the trivial θ f = 0 SPTs on both sides, as well as the two non-trivial SPTs:
θ f = 3π (mod 6π) ←→ θ f = π (mod 2π). To simplify the presentation, we will mostly
consider SU(3) f background gauge fields for the remainder of the paper, so that θ f ∼ θ f +2π
has standard periodicity.

Let us summarize the behavior of three-flavor QCD as a function of the real Dirac quark
mass mq ∈ R (see for instance [78] for a detailed discussion with references).

• mq > 0: the theory is fully gapped. Moreover, it enjoys Vafa-Witten positivity (see sec-
tion 3.4). This means that it can be regulated in such a way that the Euclidean path
integral measure is positive. This involves setting all theta angles (θc for the dynami-
cal SU(3)c gauge fields and θ f ,θg for flavor and gravity background fields) to zero. The
Euclidean partition function on any four-manifolds M4 is then also positive, so that the
theory is a trivial SPT for all positive quark masses mq > 0.

• mq < 0: If the quark mass is sufficiently large and negative, mq ≪−ΛQCD (where ΛQCD
is the SU(3)c strong-coupling scale), then we can safely integrate out the quarks and
flow to pure SU(3)c gauge theory with θc = π for the dynamical gauge fields. This
theory is expected to spontaneously break T and P, resulting in two degenerate, gapped,
confining vacua (see for instance [144] and references therein). Consequently, SPTs
protected by T and P, such as the θ f ,θg = π SPTs we have been considering, are not
meaningful in this phase (see section 2).

5.2 Higgs fields, Yukawa couplings, and color-flavor locking

We now add to N = N f = 3 QCD an elementary Higgs field hi
a in the (3,3) representation

of SU(3)c×SU(3) f . Here hi
a has precisely the same quantum numbers as the following diquark

operator,
hi

a ∼ ϵabcϵ
i jk
�

ψb
jψ

c
k +χ

b
j χ

c
k

�

, (127)

e.g. it has U(1)B baryon number

B(hi
a) =

2
3

. (128)

81A PSU(3) background gauge field with fractional instanton number can be thought of as an SU(3) configura-
tion with non-trivial ’t Hooft flux.
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Comparing with (95), we also deduce that hi
a is a scalar under P and T,

P : hi
a(t, x⃗)→ hi

a(t,− x⃗) , T : hi
a(t, x⃗)→ hi

a(−t, x⃗) . (129)

Note that the anti-unitary symmetry T complex conjugates vevs, e.g. T : 〈hi
a〉 → 〈h

i
a〉
∗.

Consider a Higgs-Yukawa deformation of QCD defined by the following Lagrangian,

LHiggs-Yukawa-QCD =LQCD +LHiggs +LYukawa . (130)

Here LQCD is the QCD Lagrangian in (87), while

LHiggs = −Dµh
a
i Dµhi

a − V (h) , (131)

with V (h) a suitable Higgs potential to be discussed below. The Yukawa couplings are

LYukawa = yϵabcϵ
i jkh

a
i

�

ψb
jψ

c
k +χ

b
j χ

c
k

�

+ (h.c.) , y > 0 , (132)

so that the entire Lagrangian is invariant under the gauge and flavor symmetries. Note that
the Yukawa couplings preserve P and T (and hence also C) as long as y ∈ R. In fact we can
say more: prior to adding the Yukawa coupling, the U(1)B symmetry acting on the fermions is
not tied to the symmetry that rotates the Higgs field hi

a by an overall phase. We are thus free
to use this symmetry to rotate y by a phase, which is therefore of no physical consequence.
Using this freedom, we take the Yukawa coupling constant to be positive,82

y > 0 . (133)

Let us finally discuss the Higgs potential V (h) in (131). We consider all terms compatible
with gauge and global symmetries, up to quartic order,

V (h) = M2
h (h

a
i hi

a) +λS h
a
i h j

a h
b
j hi

b +λD (h
a
i hi

a)
2 . (134)

Here the Higgs mass-squared M2
h ∈ R is arbitrary real parameter, while λS ,λD ∈ R are single-

and double-trace quartic couplings, respectively. The same class of scalar potentials were
analyzed in [145,146], where it was shown that imposing suitable bounds on λS ,λD leads to
a potential that is bounded from below and triggers a color-flavor locking (CFL) Higgs vev if
we dial sufficiently deeply into the weakly-coupled Higgs phase by taking M2

h ≪−Λ
2
QCD,83

〈hi
a〉= vδi

a , v ∈ C , |v|2 = −
M2

h

2(λS + 3λD)
. (136)

By dialing the couplings λS,D, or higher-order terms in the potential, we could engineer other
vevs for hi

a.84 The reason we focus on the CFL vev is that it characterizes the symmetry-
breaking pattern that arises in high-density QCD, to be discussed in section 6.

82The fact that the sign (and more generally the phase) of y has no physical consequences distinguishes this
model from the SU(2)c gauge theory example analyzed in section 4. There the presence of certain SPTs was
directly tied to the signs of the Yukawas y1, y2 in (110).

83Specifically, we must impose (see appendix A of [145] and section 4.2 of [146])

λS > 0 , λS +λD > 0 , λS + 3λD > 0 . (135)

In principle λD can have either sign; once the sign is fixed, either the second or the third inequality is redundant.
84For instance, we could take 〈hi

a〉 to be of rank two,

〈hi
a〉= diag(v1, v2, 0) , v1, v2 ̸= 0 , (137)

which completely Higgses the SU(3)c gauge group without spontaneously breaking the U(1)B symmetry
(since det(hi

a) = 0). It does however spontaneously break part of the SU(3) f flavor symmetry.
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Let us describe this symmetry-breaking pattern, which is triggered by the CFL vev (136),
in more detail:

• The SU(3)c gauge symmetry is completely Higgsed at the scale |v|; the gluons acquire
a mass ∼ g(|v|)|v|. The quarks are also massive due to the Yukawa couplings; see sec-
tion 5.3 below for a discussion of the quark masses and their relation to SPTs.

• A diagonal combination of the SU(3) f flavor symmetry and the SU(3)c gauge symmetry
is unbroken and furnishes an unbroken PSU(3)′f symmetry, i.e.

SU(3)c × SU(3) f
Z3

→ PSU(3)′f =
SU(3)′f
Z3

. (138)

• Since hi
a carries baryon number B = 2

3 , the CFL vev in (160) spontaneously breaks U(1)B.
The gauge-invariant order parameter for U(1)B breaking is the following SU(3) f singlet
of baryon number B = 2,

det(hi
a) . (139)

Thus the CFL vev leads to the following breaking pattern:

〈det(hi
a)〉= v3 =⇒ U(1)B → ZF

2 . (140)

Here the unbroken ZF
2 ⊂ U(1)B subgroup is generated by fermion parity (−1)F , which

cannot be spontaneously broken. As usual, the spontaneously broken U(1)B symmetry
leads to a massless NGB. It is the only dynamical long-distance degree of freedom in the
CFL Higgs phase.

• Since P is unitary and hi
a is a scalar (rather than a pseudo-scalar, see (129)), it follows

that P remains unbroken in the presence of the complex CFL vev v ∈ C in (136).

By contrast, T is anti-unitary and commutes with B, but not with exponentiated U(1)B
phase rotations. Since T leaves the operator hi

a invariant (see (129)) and complex con-
jugates its vev, it is thus ostensibly broken unless v ∈ R is real.

However, we can define an unbroken time-reversal symmetry T′ by conjugating T with a
suitable element of the spontaneously broken U(1)B symmetry (which effectively rotates
back to real v).

The fact that the CFL Higgs phase of our Higgs-Yukawa-QCD model enjoys unbroken
orientation-reversing symmetries such as P and T′ will be important below, when we
analyze the SPT phases protected by these symmetries.

5.3 SPTs and the phase diagram of SU(3) Higgs-Yukawa-QCD

We now explore the phase diagram (sketched in the top panel of figure 2) as a function of the
Higgs mass-squared M2

h ∈ R:

(C) When M2
h ≫ Λ

2
QCD is positive and large relative to the SU(3)c strong-coupling scaleΛQCD,

we can integrate out the Higgs field, leaving SU(3)c QCD with N f = 3 flavors and a
positive quark mass mq > 0, which we take to be in the trivial confining SPT phase.

(H) When M2
h ≪ −Λ

2
QCD is large and negative, so that we are at weak gauge coupling, the

Higgs field acquires a complex color-flavor locking (CFL) vev (136), whose consequences
for the bosonic fields – all of which are gapped except for the U(1)B NGB – were already
listed below that equation. The fermions, which will all turn out to be massive, are
analyzed below, where we show that they induce both a gravitational and a flavor SPT
with θ f = θg = π.
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In summary, the confining phase is a gapped and trivial SPT, while the Higgs phase spon-
taneously breaks U(1)B, resulting in a massless NGB. It is therefore clearly separated from
the confining phase by at least one symmetry-breaking transition – a fact that follows from
standard Landau-type arguments.

A more refined statement is that the Higgs phase is a gapless SPT with θg = θ f = π, but
this SPT is not necessary to diagnose a transition. As we will explain below, this SPT implies
the existence of other (non-symmetry-breaking) phases transitions – at least for some values
of the parameters in our model.

Before deducing these SPTs by analyzing the fermion masses in the Higgs phase, we must
dispense with an important point that we anticipated in section 2.5: since there is a mass-
less U(1)B NGB, we must ensure that the θ f and θg SPTs cannot be eaten by it, i.e. removed
by a suitable field redefinition of the NGB field. As explained in section 2.5, this happens if
and only if the U(1)B symmetry has a mixed anomaly with either SU(3)′f or gravity. However,
these mixed anomalies vanish (after all, they only involve the vector-like symmetries of mas-
sive QCD), we conclude that any potential θ f and θg SPTs for flavor or gravity background
fields are meaningful. We will therefore proceed with our analysis of SPTs in the gapless Higgs
phase. However, as an additional sanity check, we will verify explicitly (in section 5.4) that
these SPTs are not affected if we add explicit U(1)B-violating interactions that give the NGB a
mass.

We now proceed to analyze the fermion mass terms in the CFL Higgs phase of our model,
including in particular the Yukawa couplings in (132),

−
1
2

mI Jψ
IψJ = mqψ

a
i χ

i
a − yϵabcϵ

i jkh
a
iψ

b
jψ

c
k − yϵabcϵi jkhi

aχ
j
bχ

k
c . (141)

Here I , J = 1, . . . 18. Thanks to the CFL vev (136) proportional to δi
a, we can identify flavor

and color indices. Thus both fermions,

ψi
j , χ i

j , (142)

transform in the 3⊗ 3 = 1⊕ 8 of the unbroken SU(3)′f flavor symmetry, with 8 the traceless
adjoint representation and 1 the singlet trace.

Let us compute the mass for the singlet trace fields,

ψi
j →

1
p

3
δi

jψ1 , χ i
j →

1
p

3
δi

jχ1 . (143)

Here the factor
p

3 ensures thatψ1,χ1 have canonical kinetic terms. Substituting into the mass
terms, and taking the Higgs vev v in (136) to be positive without loss of generality, v > 0, we
find

mqψ1χ1 − 2yvψ1ψ1 − 2yvχ1χ1 =
1
2
(ψ1,χ1)

�

−4yv mq
mq −4yv

��

ψ1
χ1

�

. (144)

The determinant is (4yv)2 − m2
q, with eigenvalues 4yv ± mq. Thus the masses for singlet

fermions are85

M1 = mq ± 4yv , v > 0 . (146)

85Note that the eigenvectors are 1p
2
(ψ1 ±χ1). The change of basis matrix

U =
1
p

2

�

1 1
−1 1

�

, (145)

is real orthogonal.
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Now let us discuss the traceless adjoints. We can write

ϵabcϵ
i jkδa

i = δ
j
bδ

k
c −δ

k
bδ

i
c . (147)

Then using the tracelessness we find the mass term

mqψ
i
jχ

j
i + yvψi

jψ
j
i + yvχ j

i χ
i
j = (ψ χ)

�

2yv mq
mq 2yv

��

ψ

χ

�

. (148)

The determinant is (2yv)2−m2
q with eigenvalues 2yv±mq. Thus the masses for the traceless

adjoint fermions in the 8 of the unbroken SU(3)′f symmetry are

M8 = mq ± 2yv , v > 0 . (149)

Note that the singlet Majorana mass 4yv due to the Yukawa couplings is twice as large as that
for the octet fermions.

We can now finally discuss the structures of the SPTs as a function of mq, yv > 0. We first
do so semiclassically, before commenting on possible quantum effects below:

• For small vevs, in the range

0< yv <
mq

4
, (150)

the SPT phase is trivial.

• At yv = mq/4, the mass of one singlet Weyl fermion flips sign, so that we have

θg = π ,
mq

4
< yv <

mq

2
. (151)

• At yv = mq/2, the mass of one Weyl fermion in the adjoint 8 of SU(3)′f flips sign.
Thus θg does not jump, but we get θ f = Nπ= 3π from the adjoint,

θg = π , θ f = 3π ,
mq

2
< yv . (152)

The extent to which strong-coupling effects, which kick in at scales below ΛQCD, can modify
the semi-classical picture above depends on the quark mass mq:

1.) If mq ≫ ΛQCD, then the vev v needed to reach the first SPT transition yv ∼ mq (assum-
ing y ≲ 1) is already in the weakly coupled Higgs regime v ≫ ΛQCD. Then all the the
SPT jumps associated with the vanishing fermion masses discussed above occur essen-
tially at weak coupling. Thus we expect the three distinct SPT phases described above,
all of which occur within the U(1)B-breaking Higgs phase, to persist.

2.) If mq ≲ ΛQCD, then the semiclassical transitions described above all happen deep within
the strongly coupled regime of the SU(3)c gauge theory. In this case we cannot claim
to reliably describe the jumps themselves. However we can completely reliably describe
the asymptotic SPT phase at large vev v≫ ΛQCD, which is characterized by

θg = π , θ f = 3π= π (mod 2π) . (153)

Even though we are primarily interested in the theory with mq > 0, it is an interesting
fact that the SPTs that arise deep within the Higgs phase only depend on |mq|, i.e. they are
symmetric under mq→−mq. This is not the case in the confining phase, where T is unbroken
for mq > 0, but spontaneously broken when mq is sufficiently negative. The phase diagram for
different mq, at fixed and large negative Higgs mass-squared M2

h ≪−Λ
2
QCD, is sketched in fig-

ure 7. Note that the asymptotic phase at large negative M2
h is always an SPT with θ f = θg = π,

as already emphasized above.
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Higgs (CFL): Fixed 𝑀ℎ

2 ≪ 0 

𝑚𝑞 ≫ |𝑀ℎ
2| 

𝜽𝒈 = 𝝅 No SPT 𝜽𝒈, 𝜽𝒇 = 𝝅 𝜽𝒈 = 𝝅 No SPT 

|𝑚𝑞| ≪ |𝑀ℎ
2| 𝑚𝑞 ≪ −|𝑀ℎ

2| 

Figure 7: Phase diagram of SU(3) Higgs-Yukawa-QCD with three flavors in the
weakly-coupled CFL Higgs phase at M2

h ≪−Λ
2
QCD. As we dial the quark mass mq ∈ R,

we trigger different SPT phase. At small quark masses, equivalently at large nega-
tive M2

h , the SPT phase is characterized by θg = θ f = π. We have omitted the mass-
less NGB for the spontaneously broken U(1)B symmetry, which is present throughout
the phase diagram.

5.4 Breaking flavor symmetries

The purpose of this section is explain what happens to the Higgs-Yukawa-QCD model analyzed
above if we break some of the flavor symmetry. We consider two kinds of breaking:

Breaking the SU(3) f Flavor Symmetry. We can do this by allowing independent quark
masses mu,d,s for the three flavors, as long as these are real and positive,

mu, md , ms > 0 . (154)

This preserves C, P, and T, but it explicitly breaks the SU(3) f flavor symmetry to its Car-
tan subgroup, U(1)1 × U(1)2. The gravitational SPT is completely robust against this flavor-
breaking perturbation, and so is our conclusion that the confining and CFL Higgs phases are
characterized by θg = 0 and θg = π, respectively. To study the fate of the SU(3) f flavor
SPT, we first reduce the SU(3) f background field strength F to the conventional normalized
Abelian field strengths F1, F2 of the U(1)1 × U(1)2 Cartan subgroup,

F = diag (F1, F2,−(F1 + F2)) . (155)

This in turn implies that the SU(3) f flavor SPT reduces as follows,

θ f

8π2

∫

M4

Tr□ F ∧ F =
2θ f

8π2

∫

M4

F1 ∧ F1 +
θ f

4π2

∫

M4

F1 ∧ F2 +
2θ f

8π2

∫

M4

F2 ∧ F2 . (156)

Thus the θ f = π flavor SPT in the Higgs phase leads to a 2π theta-angle for U(1)1 or U(1)2,
which is trivial on spin manifolds. However, the off-diagonal theta-term

(θ f = π)

4π2

∫

M4

F1 ∧ F2 , (157)

can be detected on spin manifolds, e.g. on S2
1×S2

2 by threading one unit of F1-flux through S2
1 ,

and one unit of F2-flux through S2
2 .

Breaking the U(1)B Baryon Number Symmetry. This is interesting, because it allows us to
lift the gapless NGB associated with U(1)B breaking in the Higgs phase. To this end, we deform
the theory by adding to it the following dimension three operator,

∆L = ϵ det(hi
a) + (h.c.) , (158)
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where ϵ has mass-dimension one. When ϵ ∈ R this operator preserves all symmetries, ex-
cept U(1)B, which is explicitly broken to its Z2 fermion number subgroup. The effects of this
operator on the confining and Higgs phases at large positive and negative M2

h (see the lower
panel in figure 2) are as follows:

(Cϵ) In the confining phase hi
a is heavy and can be integrated out. This leaves a highly irrel-

evant six-quark operator of mass dimension nine, which does not modify the trivial SPT
in the confining phase.

(Hϵ) In the Higgs phase the operator (158) gives the U(1)B NGB a mass-squared ∼ ϵ, leading
to a single gapped vacuum supporting the θg = π SPT, which is unaffected.

The lessons from this are twofold: first, we learn that the θg = π SPT in the Higgs phase is
decoupled from the U(1)B NGB, and therefore also meaningful in the ϵ → 0 limit in which
the NGB becomes massless. Second, the theory with ϵ ̸= 0 furnishes another example of a
model with completely gapped and featureless confining (Cϵ) and Higgs (Hϵ) phases, which
are nevertheless separated by a Higgs-confinement transition enforced by an SPT jump.

6 Three-flavor QCD at finite baryon density

In this section we consider conventional QCD, i.e. SU(3)c gauge theory, with N f = 3 light Dirac
quarks (u, d, s). Despite the various sources of C, P, and T violation in the standard model of
particle physics, the QCD subsector of the theory is (to an impressive degree) invariant under
all of these symmetries – they are neither explicitly nor spontaneously broken. This translates
into the statement that the physical quark masses mu, md , ms > 0 are all real and positive, at
zero θ -angle for the dynamical SU(3)c gauge fields. While some of our analysis below applies
to general quark masses of this kind, we will simplify parts of the discussion by assuming a
common positive quark mass,

mq = mu = md = ms > 0 . (159)

We will study this theory at finite chemical potential µB for U(1)B baryon number, which
is the grand canonical counterpart of finite baryon density. In Lorentzian signature, µB = A0
is the time component of the U(1)B background gauge field Aµ. Consequently, activating µB
breaks some of the symmetries of QCD:

• Charge-conjugation C maps µB →−µB and is explicitly broken; so are Lorentz boosts.

• Parity P and time-reversal T are preserved,86 as are any flavor symmetries preserved
by the quark masses, such as U(1)B, and in the case of a common quark mass mq > 0,
a vector-like SU(3) f (Gell-Mann) flavor symmetry. Spacetime translations and spatial
rotations are also good symmetries.

The fact that the orientation-reversing symmetries P and T are preserved means that we
can ask whether the phases one encounters at finite µB are SPTs protected by these symmetries,
such as the θg ,θ f ∈ {0,π} gravitational and flavor theta-angles using throughout the paper. As
explained in section 1, the fact that Lorentz invariance is explicitly broken does not in principle
invalidate these SPTs (as is familiar from many examples in condensed matter physics, where
Lorentz symmetry is always broken). It does however complicate the analysis, because we can
no longer rely on a host of relativistic tricks, e.g. detecting SPTs by analyzing the theory on
suitably non-trivial Euclidean spacetime four-manifolds M4.

86This is compatible with the broken C symmetry: since Lorentz symmetry is explicitly broken, the CPT theorem
no longer holds.
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Another feature of turning on a real chemical potential A0 = µB in Lorentzian signature
is that this turns into a purely imaginary background Wilson line AE

4 = iµB for the Wick ro-
tated U(1)B background gauge field AE

µ in Euclidean signature. Consequently the Euclidean
path integral measure is no longer positive definite.87 This has two important consequences:

1.) There is a so-called sign problem for Monte Carlo simulations, making lattice studies of
finite-density QCD very challenging, as reviewed in [149,150].

2.) The positivity assumptions of the Vafa-Witten theorem (see section 3.4) no longer hold,
which raises the possibility of non-trivial SPT phases. Indeed we will argue below that
three-flavor QCD at sufficiently large µB ≫ ΛQC D, mu, md , ms is a non-trivial SPT.

The QCD phase diagram as a function of µB is very rich. Despite much effort, it is only
partially understood (in large part due to the sign problem); see the reviews [94–97] for a
summary of what is known. However, the asymptotic regimes of very small and very large µB
are under good theoretical control:

• When µB ≪ Mbaryon ∼ ΛQCD, the theory is effectively at zero density and continuously
connected to the standard confined QCD vacuum at µB → 0, i.e. it is a gapped and trivial
SPT.

• WhenµB ≫ ΛQCD, mu, md , ms, i.e. at very high densities, asymptotic freedom implies that
the theory is in a weakly-coupled, color-superconducting Higgs phase that also sponta-
neously breaks U(1)B, leading to a single massless NGB. This is reviewed in [95]; we
will sketch the essentials in section 6.1 below.

We then proceed to argue (in section 6.2) that high-density QCD realizes exactly the
same SPT phase as the weakly-coupled Higgs phase of SU(3)c Higgs-Yukawa-QCD (at
zero density) analyzed in section 5 above. This implies that high-density QCD also har-
bors non-trivial gravitational and flavor SPTs described by θg = θ f = π, in addition to
the massless U(1)B NGB.

In section 6.3 we consider some implications of the fact that high-density QCD is a non-
trivial SPT phase. We first examine possible consequences for the QCD phase diagram, focusing
on the simplified case of a common quark mass mq > 0 with SU(3) f flavor symmetry. This
case was analyzed in [19], under the assumption that mq ≲ ΛQCD; these authors proposed that
the confining low-density phase and the U(1)B breaking high-density phase are separated by
a single symmetry-breaking transition of Landau type at µB ∼ ΛQCD. We explain why the non-
trivial θg = π SPT at high densities suggests a second transition within the U(1)B breaking
phase, in tension with the Higgs-confinement (or “quark-hadron”) continuity proposal of [19].

Finally, we briefly mention possible implications of the SPT for neutron stars, which furnish
a realization of cold, dense QCD matter in nature.

6.1 Color-flavor-locking (CFL) at high densities

Here we briefly review (following [95]) the behavior of three-flavor QCD at very large baryon
chemical potential, µB ≫ ΛQCD, mu, md , ms. In this regime the differences between the quark
masses can be largely ignored, and we will assume a common non-zero quark mass mq > 0,
which preserves an SU(3) f flavor symmetry.88

87Although we only study the case of real chemical potential, it is also interesting to consider the case of purely
imaginary chemical potential [147], which amounts to real AE

4 and does not suffer from a sign problem (see
also [148]).

88The story changes slightly if the quarks are exactly massless: in this case the high-density CFL phase has
additional NGBs due to chiral symmetry breaking [151].
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In the absence of interactions, the quarks form a degenerate Fermi gas with Fermi en-
ergy µB. The light modes near the Fermi surface have large momenta ∼ µB, which implies
that the effective gauge coupling g(µB) ≪ 1 is very small thanks to asymptotic freedom. To
study the BCS pairing instabilities of the Fermi surface, it suffices to consider one-gluon ex-
change between pairs of quarks. The most relevant attractive interaction is in the parity-even
spin-0 (i.e. scalar rather than pseudo-scalar) channel, and it is anti-symmetric in both color and
flavor indices.89 This leads to a two-quark condensate with the following quantum numbers,
or equivalently an expectation value for the following composite Higgs field [151],

Hi
a ≡ ϵabcϵ

i jk
�

ψb
jψ

c
k +χ

b
j χ

c
k

�

, 〈Hi
a〉= vδi

a , |v| ∼ µB . (160)

Not coincidentally, the quantum numbers of the composite Higgs field Hi
a above are exactly

the same as those of the elementary Higgs field hi
a in the SU(3)c Higgs-Yukawa-QCD model (at

zero density), introduced in (127). Indeed, we have intentionally engineered the properties
of the elementary field hi

a in the latter model to replicate the physics of the composite field Hi
a

in high-density QCD. In addition to having identical quantum numbers, the scalar potential
for hi

a in (131) was chosen to trigger the Color-Flavor-Locking (CFL) vev in (136) in the Higgs
phase, which exactly matches the CFL vev of Hi

a in (160).
Since both models lead to weakly-coupled Higgs condensates with identical quantum num-

bers, many qualitative aspects of the physics are very similar:90

• The SU(3)c gauge symmetry is completely Higgsed at the scale |v| ∼ µB, leading to
vector boson masses ∼ g(|v|)|v| ∼ g(µB)µB (see section IV.F in [95]).

• The SU(3) f flavor symmetry is preserved by mixing with the gauge symmetry.

• The U(1)B symmetry is spontaneously broken, leading to a single massless NGB. The
gauge-invariant order parameter is the following six-quark (or hexaquark) operator,
which has baryon number two and is otherwise flavor neutral,

det
�

Hi
a

�

, B
�

det
�

Hi
a

��

= 2 . (161)

In the ordinary QCD vacuum at µB = 0 the operator det(Hi
a) has been conjectured [152]

to create a particle known as the H-dibaryon – an exotic bound state of two baryons.
The H-dibaryon will make an appearance in section 6.3.1 below.

• Parity P is unbroken, and T is unbroken after a suitable conjugation by U(1)B. As in
Higgs-Yukawa-QCD, this means that we can contemplate SPT phases protected by these
symmetries.

• The U(1)B NGB is the only gapless mode. In particular, the fermions acquire non-
perturbative pairing gaps. As in Higgs-Yukawa-QCD, the fermions decompose into a
singlet 1 and an octet 8 of the unbroken SU(3) f flavor symmetry, and the respective
gaps differ by a factor of two. The exponential scaling of these gaps was found in [98],

∆1 = 2∆8 ∼ µBe−
K

g(µB ) , K =
3π2

p
2

. (162)

89Pairing in the spin-0 channel is favored because it is enhanced by the spherically symmetric Fermi surface.
Since one-gluon exchange is attractive in the color anti-symmetric channel (and repulsive in the color-symmetric
channel), restricting to spin-0 also implies anti-symmetry in flavor. Finally, the fact that the scalar channel is
favored over the parity-odd pseudo-scalar one is not visible in perturbation theory and requires considerations
involving QCD instantons. See section II.A of [95] for more details.

90Of course there are also differences, e.g. finite-density QCD is not Lorentz invariant and the sound speed in
the high-density U(1)B superfluid phase is not the speed of light.
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Note that the gap exponent scales as 1/g, rather than the 1/g2 scaling familiar from
standard BCS theory. This enhancement of the gap is due to the fact that the pairing
interaction is long range, because it is mediated by gluons that are initially massless,
before acquiring masses due to screening; by contrast, a short-range pairing interaction
would lead to 1/g2. Comparing with section 5, where the fermion gap due to Higgs-
ing is ∼ y|v|, we see that the role of the dimensionless Yukawa coupling y is played
by e−K/g(µB).91

6.2 Determining the SPT phase of high-density QCD

We have seen above that the weakly-coupled Higgs phase of SU(3)c Higgs-Yukawa-QCD (in the
vacuum) and the weakly-coupled CFL phase of high-density QCD appear to be qualitatively
identical: they realize the same symmetry-breaking pattern, leading to a phase that is fully
gapped except for the massless NGB of the spontaneously broken U(1)B symmetry.

We will now argue that the two phases are also identical as far as SPTs are concerned,
i.e. both support SPTs that (in relativistic terms) can be summarized by theta-angles for back-
ground gravity and the SU(3) f flavor symmetry,

θg = θ f = π . (163)

6.2.1 Argument based on quark pairing

If we subscribe to the idea that the SPT in both phases is entirely due to the (ultimately almost
free) fermions, then it seems plausible that the SPTs should also be the same. This is because
the fermions essentially have the same fate in the two models – albeit in a somewhat different
order:

(i) In QCD at large µB, the Fermi surface is initially gapless, before gluon exchange leads to
pairing and the fermion gaps (162).

(ii) Higgs-Yukawa-QCD at µB = 0, but deep within its Higgs phase, pairs fermions in exactly
the same channel (via the Yukawa couplings), leading to gaps that have exactly the same
structure (including the relative factor of 2 in (162)), though the overall magnitude of
the gap is set by y|v|, rather then by BCS pairing. Once the fermions acquire these gaps,
it can be checked explicitly that turning on a chemical potential µB deforms but never
closes said gaps.92

A consistency check of this picture is that the SPT phase can (at least in principle) be de-
termined at µB = 0, as we do in the Higgs-Yukawa-QCD model. This is so because charge-
conjugation C, which flips µB → −µB and is unbroken at µB = 0, does not have a mixed
anomaly with the symmetries that protect the SPT. If present, such an anomaly would render
the SPT at µB = 0 ambiguous.

91As mentioned at the beginning of section 6.1, we focus on the regime where the chemical potential µB is much
larger than the quark masses – sufficiently large so that ∆1,∆8≫ mu, md , ms.

92For a single free Dirac quark whose gap (equivalently, Majorana mass) ∆ > 0 is much larger than its Dirac
mass mq (so that mq can be ignored), the dispersion relation at 3-momentum k⃗ and chemical potential µB for the
vector-like U(1)B symmetry acting on the quark is

ω±(k⃗) =
q

(|k⃗| ±µB)2 +∆2 , (164)

see e.g. equation (30) in [95]. This shows that the fermions are never gapless – a conclusion that remains un-
changed if we include mq, as long as ∆≳ mq.
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6.2.2 Deforming to zero-density Higgs-Yukawa-QCD

We will now sketch an explicit deformation that connects the CFL phase of high-density QCD
and the Higgs phases of zero-density Higgs-Yukawa-QCD, without changing the SPT. Crucially,
the fermions will remain gapped throughout the deformation. By contrast, the deformation
will at intermediate stages give rise to new massless bosons, but we argue that they do not
affect the SPT phase.

Let us start with three-flavor QCD at very largeµB ≫ ΛQCD, so we are in the weakly-coupled
phase reviewed in section 6.1 above.93 In particular, the composite Higgs field in (160) gets a
CFL vev

〈Hi
a〉= vδi

a , |v| ∼ µB , (165)

leading to Higgsing at the scale µB and a gapless U(1)B NGB. In order to focus on the SPT, we
will follow the discussion in section 5.4 and simplify our life by lifting the NGB via a U(1)B
breaking interaction involving the (highly irrelevant) H-dibaryon operator,

∆L = ϵ det
�

Hi
a

�

+ (h.c.) , ϵ > 0 . (166)

This explicitly breaks U(1)B, but preserves all other symmetries (in particular those that protect
the SPTs we are interested in). Once we turn on this interaction, µB is demoted from U(1)B
chemical potential to a Lorentz-breaking but otherwise acceptable coupling in the Lagrangian.
(This is possible because we are working at finite µB, rather than at finite baryon density, which
would be destabilized by the interaction (166).) One possible worry is that this coupling,
unlike a chemical potential, is renormalized, but the theory is very weakly coupled and we are
only working to first order in ϵ. This is sufficient to give the NGB a mass-squared ∼ ϵ. It also
pins the phase of the complex vev v in (166) to be real and positive,

v ∼ µB > 0 . (167)

In order to make contact with Higgs-Yukawa-QCD, we now add to the theory above a
fundamental scalar Higgs field

hi′
a , (168)

which is transforms as a 3 of SU(3)c , with anti-fundamental index a = 1, 2,3, but is not directly
coupled to the fermions. It therefore has its own flavor symmetry,

U(3)′f =
U(1)′B × SU(3)′f

Z3
, (169)

which acts on the index i′ = 1,2, 3 and is unrelated to the SU(3) f flavor symmetry acting on
the fermions.94 If we fix unitary gauge and remove all the NGBs eaten by the SU(3)c gauge
fields from Hi

a, then all components of hi
a effectively become physical,

hi′
a → hi′

j . (170)

Equivalently, we could work with the gauge-invariant composite Ha
j h

i′
a .

We also add for hi′
a the scalar potential (134) of the SU(3)c Higgs-Yukawa-QCD theory in

section 5. At very large positive mass M2
h ≫ Λ

2
QCD for the field hi′

a we can integrate it out and
recover the finite-density QCD theory we started with.

93We also assume that the quark masses mu, md , ms ≲ ΛQCD, as is the case in real QCD. Without this assumption
some inequalities that appear in the subsequent argument have to be modified slightly.

94Before breaking U(1)B , the symmetry group is
�

U(3) f × U(3)′f
�

/Z3, where the Z3 quotient is due to identifi-
cation of the diagonal Z3 flavor symmetry with the center of the SU(3)c gauge group.
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The next step is to dial M2
h through zero to large (but not too large) negative values,

−µ2
B ≪ M2

h ≪−Λ
2
QCD . (171)

Since the gauge theory is pinned in the weakly-coupled Higgs phase by the large vev v ∼ µB
in (167), the scalar hi′

j is effectively decoupled from the rest of the theory as we dial M2
h

from large positive values into the range (171). Moreover, its Euclidean partition function
on any four-manifold M4 (which is meaningful since the scalar preserves Lorentz invariance)
is manifestly positive, even as we dial through the symmetry-breaking transition at Mh = 0,
where new massless modes appear. Thus the presence of the scalar does not eat or change the
SPT phase of the finite-density QCD theory that we are trying to determine. See section 2.5.2
for a discussion of this type of argument for analyzing gapless SPTs.

At the point Mh = 0 the scalar hi′
j undergoes a phase transition to a symmetry-breaking

phase with a CFL vev of the form

hi′
j = v′δi′

j , v′ ∈ C . (172)

This spontaneously breaks the SU(3) f × SU(3)′f symmetry to its diagonal subgroup, and it

also breaks the U(1)′B symmetry that rotates hi′
j by an overall phase. This gives rise to massless

NGBs, which do not affect the SPT thanks to the positivity of the hi′
j partition function discussed

above.
Another consequence of the h-vev v′ in (172) is that the scale of Higgsing is shifted,

v→
Æ

v2 + |v′|2 , v ∼ µB , (173)

but for now we have |v′| ≪ v thanks to (171), so this effect is small.
Next, we add the Yukawa coupling (132) present in the SU(3)c Higgs-Yukawa-QCD model

to the combined theory,

LYukawa = yϵabcϵ
i jkh

a
i

�

ψb
jψ

c
k +χ

b
j χ

c
k

�

+ (h.c.) = yHa
i hi

a + (h.c.) , y > 0 . (174)

This interaction identifies i = i′, explicitly breaking the SU(3) f ×SU(3)′f symmetry to its diag-

onal subgroup; it also explicitly breaks the U(1)′B symmetry acting on hi
a. Thus all symmetries

that were previously spontaneously broken, and gave rise to gapless NGBs, are now explicitly
broken, so that all NGBs are gapped out. The Yukawa coupling (174) also aligns the previously
misaligned vevs of the composite and elementary Higgs fields in color and flavor space,

〈Hi
a〉= vδi

a (v ∼ µB > 0) , 〈hi
a〉= v′δi

a (v′ > 0) . (175)

A similar alignment also occurs for the total fermion gaps, since it is energetically favorable
for these to be as large as possible. This implies that the fermion gaps (162) due to pairing at
the Fermi surface and the gaps induced by the Yukawa couplings (174) add,

∆total
1 = 2∆total

8 ∼ µBe−
1

geff + yv , yv > 0 . (176)

Here we have replaced the gauge coupling g(µB) in (162) by an effective coupling geff > 0
that captures the total pairing interaction at the Fermi surface, which receives contributes
from both gluon exchange, and the Yukawa couplings together with Higgs boson exchange.
As we have emphasized, both of these interactions lead to pairing in the same channel. In
the regime µB ≫ v′ both the gluons and the Higgs are light at the Fermi surface, leading to a
long-range pairing interaction. By contrast, if v′≫ µB then both bosonic mediators are heavy
at the Fermi surface and can be integrated out, leading to contact interactions.
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Finally, we can lower the chemical potential µB, while keeping M2
h and hence v′ fixed. This

lowers the scale of Higgsing from µB to v′ according to (173), and it also changes the fermion
gaps according to (176), but the theory remains gapped throughout. At µB = 0 we recover
the Higgs phase of Higgs-Yukawa-QCD at zero density, with a small mass for the U(1)B NGB
that is inherited from (166) via (174). This completes the argument.

6.3 Possible implications of the SPT

In this section we discuss several possible physical consequences of the fact that three-color
QCD at very high baryon density is a non-trivial SPT with θg = θ f = π.

6.3.1 Unexpected transitions in the QCD phase diagram

We have shown that SPT jumps can can enforce Higgs-confinement transitions in theories
where they cannot be anticipated by symmetry-breaking considerations in the spirit of Landau.
We have also shown that QCD at very large U(1)B chemical potential µB ≫ ΛQCD is a nontrivial
SPT with θg = θ f = π, as well as well as a U(1)B breaking superfluid. It is therefore natural
to suspect that the SPT may trigger new, unexpected transitions in the QCD phase diagram as
a function of µB.95

We will consider this question in the somewhat simpler SU(3) f flavor symmetric context
with a single common quark mass mq ≲ ΛQCD. This case was also considered in [19] (see also
the closely related work [99,100]), where a simple phase diagram with a single transition was
proposed as a function of µB (see figure 8):

(C) When µB < µSF ∼ ΛQCD the theory is gapped and confining.

(SF) When µB ∼ µSF, there is a phase transition to a superfluid (denoted by SF) regime
with spontaneously broken U(1)B symmetry. Since this transition is believed to occur at
typical hadronic densities, i.e. at µSF ∼ ΛQCD, it should be possible to describe it using the
confined hadronic degrees of freedom of conventional zero-density QCD. The authors
of [19] proposed that this phase smoothly extends to arbitrarily high µB, where QCD is
known to be a weakly-coupled CFL Higgs phase that also breaks U(1)B (see section 6.1).
This is a version of Higgs-confinement continuity that applies within the U(1)B breaking
superfluid phase and was termed quark-hadron continuity in [19].

As we now explain, we consider this picture to be in tension with the SPT phases at low
and high densities that we have established: a trivial SPT in the confining phase at µB < µSF,
and a non-trivial SPT with θg = θ f = π in the high-density CFL phase at µB ≫ ΛQCD.
The only way these SPTs are compatible with the quark-hadron continuity proposal of [19]
is that if the U(1)B superfluid transition at µB = µSF exactly coincides with the SPT jump
from θg ,θ f = 0 to θg ,θ f = π. While we cannot rule this out rigorously (after all, the transition
occurs deep within the strong-coupling region), we find it implausible – essentially because
the two phenomena are not intrinsically intertwined and their coincidence would seem like a
finely-tuned accident.96 To wit:

(i) Applying the same Landau-style reasoning to the SU(3)c Higgs-Yukawa-QCD model in
section 5 also leads to the proposal that there should only be two phases, separated by

95As before, we consider the theory at zero temperature, but in general new features on the T = 0 boundary of
the QCD phase diagram also have implications at finite temperature.

96It is well known that QCD with physical quark masses displays a number of finely tuned phenomena, e.g. the
famously shallow binding of the deuteron. For this reason we cannot simply dismiss the apparent fine tuning
mentioned above out of hand.
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Figure 8: Proposed phase diagram for three-flavor QCD at finite baryon density. As
we increase the chemical potential for U(1)B, the theory experiences a symmetry-
breaking (SB) phase transition that spontaneously breaks the U(1)B symmetry, re-
sulting in Nambu-Goldstone bosons (NGB). We propose at least one additional phase
transition due to the jump of the SPT phase from θg = 0 at lower densities to θg = π
in the CFL Higgs phase at high densities.

a single U(1)B breaking transition. However, there we explicitly established the exis-
tence of additional transitions, where the SPTs jump – at least for some values of the
parameters.

(ii) Below we discuss a simple, minimal model for the U(1)B breaking superfluid transition
at µB = µSF ∼ ΛQCD in terms of the lightest confined, hadronic degrees of freedom. This
simple model can accommodate the jump of the flavor SPT from θ f = 0 to π, but it
is not sufficient to explain the SPT jump from θg = 0 to π, suggesting a second SPT-
enforced phase transition within the superfluid phase, i.e. at higher values of µB > µSF
(see figure 8).

Before we discuss the model in point (ii) above, we pause to mention that the possibility of
a non-Landau phase transition within the superfluid phase was already contemplated in [101]
(with subsequent related work in [102]), where the superfluid vortices associated with the
spontaneously broken U(1)B symmetry were analyzed. The properties of these vortices (which
the authors of [101] deduced using a purely bosonic Landau-Ginzburg-type effective model)
appear to be unrelated to our SPT considerations (which focus on the unbroken symmetries
and are entirely driven by the fermions).

Returning to point (ii) above, we will now review the picture for the U(1)B breaking tran-
sition µB = µSF put forward in [19], before elaborating on it by analyzing the SPTs. This
picture involves the H-dibaryon particle, already introduced around (161), which is a parity-
even spin-0 scalar that is also an SU(3) f flavor singlet and carries baryon number B = 2. It
can therefore be created by the six-quark operator in (161), see also (160), which we repeat,

H = det
�

Hi
a

�

, Hi
a ≡ ϵabcϵ

i jk
�

ψb
jψ

c
k +χ

b
j χ

c
k

�

. (177)

The existence of such an exotic bound state in zero-density QCD was first proposed in [152],
by appealing to a strong chromo-magnetic attraction among the six quarks in (177) within
the context of the MIT bag model for hadrons. While the H-dibaryon has not been observed
experimentally (see [153,154] for some recent searches), its existence is on more solid footing
in the SU(3) f flavor-symmetric case with a single quark mass mq that we are considering here.
Additional theoretical evidence includes lattice simulations (see e.g. the recent study [155] and
references therein) and Skyrme-type constructions using three-flavor chiral Lagrangians (see
e.g. [156,157] and references therein).
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The proposal of [19] is that the U(1)B breaking superfluid transition at µB = µSF is driven
by Bose condensation of the H-particle. For future reference, we note that this transition is
plausibly first order, see [158,159]. We will now refine this picture by considering the behavior
of the SPTs in the vicinity of the transition.

We employ a simple effective Lagrangian that summarizes the interactions of the H-particle
and the lightest spin-1

2 baryons, which transform in the adjoint 8 of SU(3) f . Note that all of
these are color-neutral confined degrees of freedom, as is appropriate at hadronic densities.
Gauge-invariant interpolating fields with B = ±1 that describe the 8 baryons are

(Bα)
j
i = ϵabcϵ

jklϵβγ(ψα)
a
i (ψβ)

b
k(ψγ)

c
l , ( eBα)ij = ϵ

abcϵ jklϵ
βγ(χα)

i
a(χβ)

k
b(χγ)

l
c . (178)

Both of these are traceless in the flavor indices, (Bα)ii = ( eBα)
i
i = 0, as required for an 8

of SU(3) f . For our purposes, it will suffice to consider a crude effective Lagrangian that
treats H,B, eB as elementary fields, with canonical kinetic terms. This is surely too crude to
capture the strong interactions among these particles, but it may give useful clues about the
SPTs. There are mass terms for all fields, as well as Yukawa couplings Y8 that describe the
interaction of H with two 8 baryons,

L HB eB
masses + Yukawas = −M2

H |H|
2 −M8 baryon

�

(Bα) ji ( eBα)
i
j + h.c.
�

− Y8H
�

(Bα) ji (Bα)
i
j + ( eB

†
α̇)

j
i ( eB

†α̇)ij
�

+ (h.c.) . (179)

At µB = 0 we are describing QCD in the standard Lorentz-invariant vacuum, where the fol-
lowing inequalities hold

M2
H > 0 , M8 baryon > 0 , Y8 > 0 . (180)

The first inequality ensures that 〈H〉 = 0, so that U(1)B is unbroken and MH is the mass of
the H-particle. The remaining inequalities follow from T and P symmetry,97 and the require-
ment that the µB = 0 confining phase is a trivial SPT.

For simplicity, we assume that MH < 2M8 baryon, so that the H cannot decay into baryon
pairs.98 In this case the H-particle has the smallest baryon number per unit mass and is ex-
pected to condense at µB = µSF ∼

1
2 MH , triggering the U(1)B-breaking transition. The fate

of the SPTs depends on the strength of this first-order transition. If the transition is suffi-
ciently strong, then the vev 〈H〉 jumps to sufficiently large values to ensure that the Majorana
mass ∼ Y8|〈H〉| of the baryons can overwhelm their Dirac mass M8 baryon. If this happens, half
of the 16 Weyl fermions comprising the 8 Dirac baryons experience a sign flip for their real
mass eigenvalues. This does not affect the gravitational SPT, which remains

θg = 0 . (182)

However, comparing with (73) we see that the flavor SPT jumps to θ f = I(r)π, where r = 8
is the adjoint of SU(3) f , with Dynkin index I(r) = 3 (see appendix A). We thus find that the
superfluid phase described by H-condensation is also a non-trivial flavor SPT with

θ f = 3π∼ π (mod 2π) . (183)

97Note the actions of C, P, and T in (95) on the baryons,

C : (Bα)
j
i ↔ ( eBα)ij , P : (Bα)

j
i → i( eB†α̇) j

i , T : (Bα)
j
i → (B

α) j
i . (181)

98The picture is only slightly modified if MH > 2M8 baryon. In this case the U(1)B-breaking transition occurs
at µB ∼ M8 baryon <

1
2 MH and is triggered by BCS pairing of the 8 baryons in the channel with the quantum

numbers of the H.

53

https://scipost.org
https://scipost.org/SciPostPhys.17.3.093


SciPost Phys. 17, 093 (2024)

If the U(1)B-breaking transition is only weakly first order, then Y8|〈H〉| < M8 baryon and
the 8 baryon masses remain positive at the transition. In this case the flavor SPT jump is
delayed to higher values of µB, forcing another transition. We will now argue that such a
delayed SPT jump, accompanied by another transition at µB > µSF, is much more plausible
for the gravitational SPT.

The discussion above shows that the coupling of the 8 baryons to the H-particle, together
with H-condensation at the U(1)B-breaking transition, can (at least in principle) also account
for the jump of the flavor SPT to its large-µB value θ f = π. However, it does not account for
the gravitational SPT θg = π that is present in the large-µB CFL Higgs phase. As explained in
section 6.2, this SPT is ultimately due to the fact that the total number of quarks in three-flavor
QCD, i.e. (N f = 3)× (Nc = 3) = 9, is odd.

The apparent mismatch between the 9 elementary quarks in the Higgs regime and the 8
familiar spin-1

2 baryons in the confined regime was addressed in the context of the quark-
hadron continuity proposal of [19], by appealing to the possibility of a 9th confined spin-1

2
baryon that is a singlet 1 under the SU(3) f symmetry,

bα , ebα . (184)

If such a baryon exists at all, it is expected to be considerably heavier than the 8 baryons,

M1 baryon≫ M8 baryon . (185)

The reason is Fermi statistics: in a constituent quark description it is not possible to main-
tain anti-symmetry in color, flavor, and spin without exciting some quarks to higher orbitals,
resulting in a heavier baryon.

By analogy with (179), we add Yukawa couplings of the 1 baryons to the H-particle,

∆L = Y1H
�

bαbα + b†
α̇b†α̇
�

+ (h.c.) , Y1 ∈ R . (186)

A vev for H then splits the singlet baryon into two Weyl fermions with real masses

M1 baryon ± Y1|〈H〉| . (187)

If the vev |〈H〉| at the U(1)B-breaking transition is so large as to make one of these masses
negative, then the gravitational SPT jumps to its large-µB value

θg = π . (188)

This would lead to a picture consistent with the quark-hadron continuity proposal of [19],
with the additional feature that the SPTs jump to their large-µB values precisely at the U(1)B-
breaking transition.

However, depending on the size of the (in principle large) mass difference (185) between 1
and 8 baryons (as well as other factors, e.g. the size of the Yukawa couplings Y1,8, which we
assume to be comparable), it seems more plausible that the larger vev 〈H〉 ∼ M1 baryon/Y1
that is needed to flip the sign of the singlet baryon mass is only attained at higher values
of µB > µSF, leading to a new phase transition within the U(1)B superfluid phase (indicated
in figure 8), where the gravitational SPT jumps from θg = 0 to π.

6.3.2 New phenomena inside neutron stars

Neutron stars are cold, compact astrophysical objects whose description requires a detailed
understanding of QCD at finite density and very low temperatures. Conversely, astrophysical
observations of neutron stars can enhance our understanding of this challenging region of the
QCD phase diagram. See for instance the recent reviews [97,160].
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Figure 9: Neutron star with a dense quark-matter core supporting a θg = π SPT (red
text), separated from an outer region with θg = 0 (blue text) by a transition layer with
anomalous surface modes (green region and text) characterized by a non-vanishing,
quantized thermal Hall conductance κx y . In this diagram we have suppressed the
gapless U(1)B NGBs.

It has long been an intriguing possibility that some neutron star cores may be sufficiently
dense to contain inner regions of deconfined quark matter, surrounded by outer regions of
confined hadronic matter, see e.g. [161–164] for very recent discussions informed by modern
astrophysical observations, with references to the vast literature on this subject. As reviewed
in [161], the quest to identify quark matter inside neutron stars in part hinges on our ability
to identify sharp consequences of the putative quark-matter cores. We would like to briefly
highlight one new such consequence, which follows from the fact that high-density QCD is a
non-trivial SPT with θg = π (i.e. a topological superconductor), as was shown in section 6.2.

Crudely speaking, neutron stars explore the QCD phase diagram as a function of µB, start-
ing with large µB in the high-density core of the star and dropping to smaller µB in the lower-
density outer regions. Let us assume that there are neutron stars whose cores access the
deconfined CFL Higgs phase at large µB, which we now know to also support a θg = π SPT. As
we march radially outward from the core, we will eventually encounter a phase transition at
which the SPT jumps from θg = π in the interior to θg = 0 in the outer region (see figure 9).
The two phases are separated by a transition layer (the green region in figure 9), whose width
and surface tension depend on the details of the phase transition.99

As we have argued in section 6.3.1, the SPT transition where θg jumps is plausibly distinct
from the U(1)B-breaking superfluid transition at hadronic densities; in figure 8, the SPT tran-
sition is the green dot on the right (at larger µB), while the U(1)B-breaking transition is the
green dot on the left (at smaller µB). If we assume that these transitions are first order, the
resulting picture is similar to the one recently explored in [164], where the authors consid-
ered hybrid stars with a sequence of phases separated by multiple transition layers (or domain
walls). Luckily, our comments below are very general, and hence robust. They only rely on the
existence of a quark core with θg = π, which is separated from an outer region with θg = 0
by a transition layer. Essentially no further details are needed.

As explained in section 2, an SPT jump always implies anomalous edge modes at bound-
aries. A variant of this statement is that an SPT jump across a transition layer or domain wall
always implies anomalous surface modes on the wall. In particular, in section 2.3.3 we re-
called that a jump ∆θg = π in the gravitational theta-angle leads to a non-trivial thermal Hall
conductance on the domain wall; for T-symmetric walls it is

κx y =
1
4
+

n
2

, n ∈ Z . (189)

99We continue to use a scheme in which the SPT in the outer confined regions (as well as outside the star) is
trivial, but this is only for convenience. The SPT jump across the transition layer is scheme independent.
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Here κx y is measured in units of π2k2
B T/3h, where kB and h are the Boltzmann and Planck

constants, respectively, and T is the temperature. Recall that the thermal Hall effect, whose
magnitude is controlled by κx y , involves non-dissipative heat flow in the direction transverse
to the temperature gradient.

The detailed nature of the anomalous surface modes is not uniquely fixed by κx y . As we
reviewed in section 2.3.3, possible candidates include an odd number of massless 2+1d Majo-
rana fermions or gapped, non-Abelian anyons (both with T-symmetry); another possibility is
spontaneous T-breaking at the surface. It is clearly desirable to understand the extent to which
these anomalous surface modes have observable implications for neutron stars. We leave this
interesting question to future work.
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A Dynkin index for SU(N) representations

In this appendix we review the Dynkin index for general SU(N) representations. For more
details, see e.g. [165].

The Dynkin index I(r) for an SU(N) representation r can be computed from

I(r) =
dim r

2(N2 − 1)
C2(r) , (A.1)

where dim r is the dimension of the representation r and C2(r) is its quadratic Casimir. An
explicit formula for the latter can be written down in terms of the Young tableau associated
with the representation r, whose row lengths are {ℓi}N−1

i=1 with ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓN−1. Then

C2(r) = Nnr −
n2

r

N
+

N−1
∑

i=1

ℓi(ℓi + 1− 2i) , (A.2)

where nr is the total number of boxes in the Young tableau.
Let us list some useful examples:

• The fundamental representation □ has Young tableau (ℓi) = (1,0, · · · , 0), so that

I
� �

=
N

2(N2 − 1)

�

N −
1
N

�

=
1
2

. (A.3)

• The adjoint representation has Young tableau (ℓi) = (2, 1, · · · , 1), which gives

I(adjoint) = N . (A.4)
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• The two-index antisymmetric representation has Young tableau (ℓi) = (1,1, 0,0 · · · , 0),

I
� �

=
N(N − 1)/2
2(N2 − 1)

�

2N −
4
N
− 2
�

=
N − 2

2
. (A.5)

• The two-index symmetric representation has Young tableau ℓ= (2,0, · · · , 0),

I
� �

=
N(N + 1)/2
2(N2 − 1)

�

2N −
4
N
+ 2
�

=
N + 2

2
. (A.6)
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