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Abstract

In the absence of directional motion it is often hard to recognize athermal fluctuations.
Probability currents provide such a measure in terms of the rate at which they enclose
area in the reduced phase space. We measure this area enclosing rate for trapped col-
loidal particles, where only one particle is driven. By combining experiment, theory,
and simulation, we single out the effect of the different time scales in the system on
the measured probability currents. In this controlled experimental setup, particles in-
teract hydrodynamically. These interactions lead to a strong spatial dependence of the
probability currents and to a local influence of athermal agitation. In a multiple-particle
system, we show that even when the driving acts only on one particle, probability cur-
rents occur between other, non-driven particles. This may have significant implications
for the interpretation of fluctuations in biological systems containing elastic networks in
addition to a suspending fluid.
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1 Introduction

How do you determine that a system is out of thermal equilibrium? Naturally, if you observe
the system evolving in time or you see directional motion, the answer is trivial. However, if the
system fluctuates around a steady state, it is not straightforward to distinguish between ther-
mal and athermal fluctuations. For example, we know that living systems are far from thermal
equilibrium, however, it may be hard to determine if some observed fluctuations in them stem
from thermal noise or from biological activity [1–4]. There have been several approaches to
address this issue in living systems [5–7] and in synthetic and biomimetic systems, such as in
vibrated granular beds [8] and reconstituted biopolymer networks [9, 10]. One approach is
to look for violations of the fluctuation-dissipation theorem [1,5,6,11,12]. However, this en-
tails not only measuring the spontaneous fluctuations in the steady state but also requires the
application of some external perturbation to measure the system’s non-equilibrium response.

Alternative non-invasive approaches based on stochastic thermodynamics search for en-
tropy production or irreversibility in the fluctuations [13–17]. Here we build on these ap-
proaches, which allow, in a model-free manner to quantify deviations from equilibrium using
any two measured degrees of freedom. Specifically, we consider nonequilibrium probability
currents in a reduced phase space of the system. The phase space of a complex system is gen-
erally high dimensional, and includes the positions and momenta of all particles, yet one can
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consider the projection onto a two-dimensional plane spanned by any two measurable quan-
tities. During the system’s temporal evolution, its trajectory in this reduced phase space will
encircle an area. The rate at which this area increases – the area enclosing rate (AER) – serves
as a measure to quantify nonequilibrium probability currents.

As proof of principle, this approach was applied to a simple theoretical model of two masses
connected with springs and in contact with two different heat baths [4]. This approach has
gained considerable attention via applications to biological [18, 19], climate [20] and elec-
tronic systems [21,22]. However, the direct connection between the underlying activity in the
system and its manifestation in the AER is not fully understood.

We use holographic optical tweezers to tune the nonequilibrium driving of a colloidal sys-
tem, and measure the AER as a function of driving strength and interparticle separation. In
this system, particles are coupled via long-ranged hydrodynamic interactions, and are driven
by stochastic repositioning of the optical traps at a constant rate. Such stochastic repositioning
of optical traps have been previously used to study Brownian particles in an active bath [23],
heat fluxes between hydrodynamically interacting beads in optical traps [24,25], and the con-
ditions for the validation of a quasi fluctuation-dissipation theorem [12]. Using experiments,
analytical theory and numerical simulations, here we show how hydrodynamic interactions
give rise to algebraic scaling of the AER with particle separation. We relate the amplitude and
rate of trap repositioning to the strength of nonequilibrium fluctuations in the system, and
their subsequent effect on the AER. The dynamics of this system is governed by three time
scales: the trap repositioning rate, the hydrodynamic relaxation rate, and the measurement
rate. We show that the interplay between these scales is crucial for optimal observation of
the probability currents, as measured by the AER. Finally, we show that in a multiple-particle
system, even when the driving acts on one degree of freedom, probability currents occur also
between other, non-driven degrees of freedom.

This article is organized as follows. After the introduction in Section 1, we present the
experimental details in Section 2 and the details of numerical simulations in Section 3. In
Section 4 we compare the results from numerical simulations with that from experiments
for a system of two particles. Section 5 recalls the theoretical framework for calculating the
AER starting with the Langevin equation while Section 6 extends the framework to include
hydrodynamic interactions. In Section 7 we present results for the AER in case of a system
of two hydrodynamically interacting particles where one of the particles is optically driven,
and in Section 8 we extend our analysis to a system of three particles. Finally we discuss our
results in Section 9.

2 Experimental design

Our experimental setup, schematically shown in Fig. 1a, consists of two or three colloidal par-
ticles (silica, diameter d = 1.5± 0.08 µm) suspended in double distilled deionized water and
trapped optically. We trap each particle in a separate optical trap and we independently and
dynamically control the position of each trap with trap positioning precision of 10 nm. The
motion of the colloidal particles in the experiments is three-dimensional, but we focus only on
the one-dimensional projection of their motion along the line connecting the traps, which we
define as the x-axis. See Ref. [26] for a theoretical study of the effects of the motion of two
interacting beads on a plane. Each optical trap creates an effective potential that is usually ap-
proximated by a parabolic form, U(x) = k

2(x− xtrap)2, with xtrap the position of the trap, x the
position of the particle, and k the effective stiffness of the trap, which we control by modifying
the laser intensity. In our setup, one of the particles is driven randomly by rapidly switching
the location of its optical trap along the x-axis. That trap’s new position is updated at regular
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Figure 1: (a) Schematic illustration of our two-particle experimental setup. One
particle is in a trap that remains at xtrap,2 = x0,2 throughout the experiment. The
second particle is driven by a trap with a position xtrap,1(t) that is regularly switched
along the x-axis around an average position x0,1. The trajectories of the particles
are plotted below the traps. As a result of the driving, the trajectory of the driven
particle is stretched along the x-axis. (b) The area enclosing rate (AER) is defined
as the growth rate of the area enclosed by the trajectory in the phase space spanned
by the x motion of the two particles; x1(t) and x2(t). Here we show in gray a
short portion (100 s) of the full phase-space trajectory, and in blue, the trajectory
smoothed over a 25 s window, to highlight the average circulation in phase space.
Areas swept in the counterclockwise direction are colored light blue and clockwise
in orange. Experimental parameters are r/d = 4 and b0 = 73 ± 10 nm.

time intervals τ and drawn from a normal distribution, p(xtrap)∼ exp
�

−
�

xtrap − x0

�2
/(2b2

0)
�

centered at the particle’s reference position x0. We vary the nonequilibrium driving strength
by changing the standard deviation b0 in the driven trap’s position distribution. The inter-
action between the particles is governed by the distance r between the average positions of
neighboring traps. Fig. 1b corresponds to a setup with r = 4d and b0 = 73 ± 10 nm.

We use a home-built holographic optical tweezers setup [27–29] to project and switch the
location of the optical traps. The setup is based on a continuous-wave laser operating at a
wavelength of λ = 532 nm (Coherent, Verdi 6W) with a Gaussian beam profile. The laser
beam is projected on to a spatial light modulator (Hamamatsu, LCOS-SLM, X10468-04) and is
thus imprinted with a phase pattern. The beam is then relayed to the back aperture of a 100x
oil immersion objective (NA 1.42) mounted on an Olympus IX 71 microscope. An optical trap
is formed at a position prescribed by the phase pattern at the sample plane of the microscope.
Switching the trap location is done by changing the phase pattern at a rate of 1/τ= 36±1 Hz.

The motion of the particles is recorded by a CMOS camera (FLIR, Grasshopper, GS3-U3-
2356M) at 120 fps. We use conventional video microscopy [30] to extract the trajectories of the
particles with 20 nm spatial resolution. To enhance the AER measurement, we trap particle 1
in a stiff trap that ensures its immediate response to the trap’s displacement, while particle 2 is
placed in a soft trap that allows a large displacement in response to a mechanical perturbation.
In Fig. 2 the position distribution of both particles is compared between static conditions (blue)
and when particle 1 is driven (orange). We obtain the effective stiffness k of each trap by
employing the equipartition theorem for the non-driven case, i.e. 1

2 k〈∆x2〉 = 1
2 kB T , where

kB T is the average thermal energy at room temperature, and 〈∆x2〉 is the measured variance
of the position of each particle in its trap.
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Figure 2: Position distribution within the traps of the driven particle 1 (a) and
the non-driven particle 2 (b) in a two-particle experiment with driving strength
b0 = 110 ± 10 nm and dimensionless trap separation r/d = 4. Both distribu-
tions are wider when particle 1 is driven (orange) than they are when both traps are
static (blue).

We consider the phase space projected onto the two-dimensional space spanned by the
x displacements δx1 = x1 − x0,1 and δx2 = x2 − x0,2 of each particle from its mean trap
position. Plotting the average two-dimensional probability density and current (Fig. 3a) we
observe a non-vanishing probability current. We calculate the time-averaged AER from the dy-
namical trajectories by summing the triangular areas defined by every two consecutive points
on the system’s trajectory and the origin in this phase space (Fig. 1b), and dividing by the
duration of the measurement. The area enclosed by the trajectory, A12, has positive contribu-
tions for counterclockwise circulation and negative contributions for clockwise circulation. In
Fig. 3b we show the evolution of the AER as a function of averaging time for several different
experiments performed in the same conditions. Clearly, A12 reaches a steady value after ap-
proximately 80 s. Hence, all our measurements of the AER include trajectories of at least this
duration. It is difficult to infer the plateau values from the main panel of Fig. 3b. Therefore,
the figure includes an inset which zooms in on the long-time behavior, and clearly shows that
the plateau value is non-zero. From the distribution of the steady state values that we obtain
(see Fig. 3b, inset), we estimate the error of our measurement of the AER to be 10 nm2/ms.
This is also the value of A12 that we measure for systems with no driving.

3 Description of numerical simulations

In this section we briefly describe the details of numerical simulations, before we present the
comparison of our experimental results with extensive two-dimensional Stokesian dynamics
simulations [31] in the following section. This simulation protocol is well suited to calculate
the thermal motion of many particles subjected to external forces and interacting via hydrody-
namic interactions and hard-core repulsion [29]. Our simulations consider two-dimensional
motion, and use the Rotne–Prager approximation [32] for the hydrodynamic interactions be-
tween the particles, as given by Eq. (14) below. The trap repositioning is done only for parti-
cle 1 and only along the x-axis which connects the particles. The simulations were performed
with a simulation time step of 10−5 s for typical durations of 600 s. Similar to the experiments,
we used a diameter d = 1.5 µm for the particles, and the dynamic viscosity of water is given by
η= 0.89×10−3 Pa · s. The homemade simulation code is based on previous simulations [29],
and is publicly available [33].
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Figure 3: Probability currents in two-particle experiments with b0 = 110 ± 10 nm
and r/d = 4. (a) phase space projected onto the two-dimensional space spanned by
the displacements δx1 = x1− x0,1 and δx2 = x2− x0,2 of the two particles from their
corresponding mean trap positions, color coded for probability density. The arrows
indicate probability currents. The data is taken by averaging over 13 experiments,
each of duration ∼500 s, hence a total of 780,000 frames, (b) The AER of several
experiments in the same conditions, plotted vs averaging time. The inset shows a
close up view of the AER at long averaging times, showing the variations between
repetitions of the experiment and highlights that the AER for all the experiments
saturates at non-zero values.

4 Comparison of results from experiments and numerical simula-
tions

In this section we present the comparison of experimental results with those from numerical
simulations. The minimal system exhibiting nonequilibrium probability currents requires two
degrees of freedom. Thus, we consider the one-dimensional motion of two colloidal particles,
optically trapped and driven as described above. We note that this system is reminiscent of the
mass-spring model considered in [13] and discussed below. However, here particles influence
one another via hydrodynamic interactions, and they are driven by the colored noise resulting
from the stochastic trap repositioning at regular time intervals.

Figure 4 shows results from simulations and experiments for a fixed average distance of
r = 2d between the traps, and varying driving amplitudes b0. The trap stiffnesses obtained
from the experiments and used in the simulations were k1 = 2 pN/µm, k2 = 0.5 pN/µm. As
seen in the figure, the experiments and simulations indicate a b2

0 scaling of the AER with the
driving amplitude. For weaker driving, the experimental AER is below the noise level, which
we estimate from experiments without driving. Simulations predict AER which is higher by a
factor of 5-10 compared to experiments.

The simulations and experiments presented in Fig. 5 show a 1/r decay of the AER with the
distance r between the traps. Similar to Fig. 4, we again see that the simulations give larger
AER than the experiments. For each trap separation r we measure somewhat different trap
stiffnesses, and we show here results of simulations, in which we used traps with stiffnesses
same as in Fig. 4. Note that the simulations presented here use the same measurement fre-
quency of 120 fps as the experiments, in order to properly describe all the time scales in the
experiments, even though the numerical time step in the simulations is much smaller.

We suggest that proximity of the particles to the boundary walls could explain the smaller
values of AER observed in the experiments. The experiments were performed at an estimated
distance of ∼ 2 µm from the bottom wall while the height of the sample cell was ∼ 20 µm,
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Figure 4: AER vs. driving strength for two particles separated by a distance of r = 2d
in experiments (green) and simulations (blue). The horizontal dotted line indicates
the noise level, obtained from the AER measured in experiments without driving, and
the dashed lines are guides to the eyes showing the b2

0 scaling of AER with driving
strength.

and the distances between the spheres were 3 − 8 µm. Under these conditions, momentum
is absorbed by both the bottom and top glass walls [34]. Indeed, the presence of walls leads
to weaker hydrodynamic interactions between the particles, and causes it to decay faster with
the distance between them as compared to the case without walls [35–37]. Thus, the motion
of each particle due to the motion of other particles is smaller, and this results in a lower AER.
However, because of the noise in the experimental data, the lack of precise information on
the distance to the walls and the limited range of distance between the particles which can be
explored, we are unable to provide a quantitative description of the effect of the walls. In order
to check for other sources which might lower the AER in the experiments, we ran simulations
replacing the parabolic traps with Gaussian traps mimicking the experiments, however, this
resulted in AER values very close to the ones obtained with parabolic traps. We also performed
simulations considering the effect of the size and spherical shape of the particles [38], however
these too could not explain the discrepancy.

Figure 5: AER vs. the normalized distance between two particles for driving strengths
b0 = 55 nm (a) and b0 = 110 nm (b), in experiments (green) and simulations (blue).
The horizontal dotted line indicates the noise level, obtained from the AER measured
in experiments without driving, and the dashed lines are guides to the eyes showing
the 1/r scaling of AER with distance.
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In the following sections, we present theoretical analysis explaining the 1/r decay of AER
with distance and its b2

0 increase with driving amplitude. This analysis will allow us to reveal
the relations between the different time scales in the system and their effect on the AER. We
will also discuss three-particle systems, where one particle is driven, and non-zero AER exists
also in the phase space defined by the two non-driven particles. In our experimental system,
this AER with three particles is below the noise level, but we clearly observe it in simulations.

5 Theoretical framework – From Langevin equation to AER

In this section we will recall previous results on how to compute the AER starting with a
Langevin equation driven by white noise [21, 39]. This will set up the framework we subse-
quently use to obtain analytical results of the AER. We will also recall previous results on the
AER for a mass-spring model [4, 13] and highlight that the theoretical results for this system
are incapable of explaining the experimental results presented in Section 3. Consider a sys-
tem with N degrees of freedom, which evolves with time according to the following Langevin
equation of motion

dδ⃗x
d t
= Vδ⃗x + Fξ⃗ , (1)

with the column vectors

x⃗ =









x1
x2
...

xN









, δ⃗x =









δx1
δx2

...
δxN









, ξ⃗=









ξ1
ξ2
...
ξN









, (2)

denoting all the coordinates, their deviations from their equilibrium positions, and uncorre-
lated Gaussian white noise with unity variance, namely 〈ξi(t)ξ j(t ′)〉= δi jδ(t− t ′). The N×N
matrix V captures the deterministic dynamics, and the N×N matrix F provides the amplitude of
the noise. Equation (1) allows each of the different noise terms to act on all coordinates. Note
that at first we present the analysis of the AER assuming the noise is white, and originates from
thermal fluctuations, while the driving in our experiments and simulations contains a charac-
teristic time scale τ of trap repositioning. In Section 7 we present the analysis of AER taking
into account the colored nature of the noise [40]. We refer the interested reader to Ref. [41]
for studies of the nonequilibrium steady-state distribution of the position of a damped particle
confined in a harmonic trapping potential and experiencing active noise with short-time cor-
relations. In Eq. (1) we may consider x⃗ to contain all degrees of freedom of the system. Then
for n particles in d dimensions, the dimension of all vectors and matrices above is N = nd.

The Langevin equation (1) corresponds to the following Fokker-Planck equation, which
gives the time evolution of the probability density ρ(δ⃗x , t) of the system,

dρ(δ⃗x , t)
d t

=∇ · [Vδ⃗xρ(δ⃗x , t)] +∇ ·D∇ρ(δ⃗x , t) , (3)

where

D=
1
2

FFT , (4)

is the diffusion matrix, and the superscript T denotes the transpose of a matrix. The steady-
state solution is a Gaussian distribution with covariance matrix C obtained by solving the
Lyapunov equation [4]

VC+CVT = −2D . (5)
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The mean AER in the phase space projection spanned by δx i and δx j is then given by the (i, j)
element of the matrix A, which is given by [21,39],

A=
1
2

�

VC−CVT
�

. (6)

Note that A is antisymmetric, Ai j = −A ji , and the diagonal elements of A are trivially zero.
While non-zero AER is a signature of broken detailed balance and therefore the non-

equilibrium nature of the system, the necessary and sufficient condition for detailed balance
to be broken is [42]

B= VD− (VD)T ̸= 0 . (7)

In case of a system at equilibrium with a symmetric matrix V together with a diagonal matrix
D with identical diagonal elements—i.e. all the particles are at the same temperature—B= 0,
and therefore detailed balance is satisfied.

To demonstrate how this general framework is employed, we consider the simple mass-
spring system [4,13] schematically shown in Fig. 6, where particle 1 is in contact with a heat
bath at temperature T +∆T , which is different from the temperature T of the heat bath that
particle 2 is in contact with. The particles themselves are connected to each other and to rigid
walls at the ends via springs with stiffnesses k j as shown in the figure.

The deterministic response matrix V is given by

V=
1
γ

�

−(k1 + k2) k2
k2 −(k2 + k3)

�

, (8)

with γ the friction coefficient. The diffusion matrix is

D=
kB

γ

�

T +∆T 0
0 T

�

. (9)

The noise matrix F is obtained by the Cholesky decomposition of D= 1
2FFT as

F=

√

√2kB

γ

�p
T +∆T 0

0
p

T

�

. (10)

We note that there are several ways to decompose D but the final result in terms of AER does
not depend on which decomposition is used. The Cholesky decomposition is widely used
because of the important property that the existence of Cholesky decomposition of a matrix
means that the matrix is positive definite which ensures that the eigenvalues are positive. In
the case of the diffusion matrix, this ensures that the diffusion coefficients are non-negative.

Figure 6: Schematic diagram of two particles connected with springs.
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The matrix B is obtained as

B=
k2kB∆T
γ2

�

0 −1
1 0

�

. (11)

Solving Eq. (5) gives the covariance matrix, the elements of which are

C11 =
kB

Z1

�

T (2k2
2 + k2

3 + k1k2 + k1k3 + 3k2k3) +∆T (k2
2 + k2

3 + k1k2 + k1k3 + 3k2k3

�

, (12a)

C12 = C21 =
kBk2

Z1
[T (k1 + 2k2 + k3) +∆T (k2 + k3)] , (12b)

C22 =
kB

Z1

�

T (k2
1 + 2k2

2 + 3k1k2 + k1k3 + k2k3) +∆T k2
2

�

, (12c)

with Z1 = 2k1k2
2 + k2

1k2 + k1k2
3 + k2

1k3 + k2k2
3 + 2k2

2k3 + 4k1k2k3.
Finally the AER is obtained from Eq. (6) as [4]

A=
k2kB∆T

γ(k1 + 2k2 + k3)

�

0 1
−1 0

�

. (13)

The AER scales linearly with the temperature difference ∆T , and for identical springs
k1 = k2 = k3, it does not depend on the stiffness of the springs. We present extension of
these results to a system of three particles in Appendix B. Note that the AER is independent of
the distance between the particles, which does not enter the equations of motion. The mass-
spring model therefore cannot be used to explain the experimental system we have because
in our system we observe distance dependence of the AER as seen in Fig. 5. We note that,
however, for a heterogeneously driven large elastic network of beads, tracking a pair of beads
can result in measures of broken detailed balance that scale as a power law with the distance
between beads [43].

6 Theory for trapped colloids suspended in fluid

In order to account for the distance dependence of the AER, which could not be explained
by the mass-spring model in the previous section, in this section we consider a system of n
spherical particles interacting hydrodynamically in a liquid with drag coefficient γ = 3πdη,
where η is the dynamic viscocity of the liquid. Similarly to the analysis in the previous section,
also here we will assume for now that the system is driven by white noise. To use the general
prescription presented above for calculating the AER, we need to identify the matrices V and
F entering the Langevin equation (1). For this physical system, the hydrodynamic interac-
tions can be calculated within the Rotne–Prager approximation [32] that is suitable for well
separated particles. The hydrodynamic interaction tensor is then given by [29,32]

Rαβi j =







δαβ
γ , if i = j ,

3d
8γri j

�

δαβ +
rαi j r

β
i j

r2
i j

�

+ d3

16γr3
i j

�

δαβ − 3
rαi j r

β
i j

r2
i j

�

, if i ̸= j ,
(14)

where i, j are indices referring to particles, and α,β denote spatial coordinates. The diameter
of the particles is d, while ri j denotes the distance between particles i and j. The tensor Rαβi j

serves as a mobility tensor, namely, if a force f βj is applied on particle j in direction β , the

resulting velocity of particle i in direction α is vαi = Rαβi j f βj . As shown below, this enters both
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Figure 7: Schematic diagram of a one-dimensional array of particles in harmonic
potentials.

the deterministic response matrix V and the noise matrix F. All our results from simulations are
from two-dimensional motion using the Rotne Prager tensor given by Eq. (14). The choice of
the Rotne-Prager tensor ensures momentum conservation in the simulations. Our analytical
results however consider the Oseen tensor which keeps only terms up to order 1/r in the
interaction tensor. The good agreement of analytical and simulation results presented in the
subsequent sections validate that considering interaction tensor up to order 1/r is sufficient
for the studies presented here. We also verified that simulations using interaction terms up to
order 1/r are sufficient.

In our analytical derivations, we consider the effects of hydrodynamic interactions on the
one-dimensional motion of particles along the direction between them. The particles are in
harmonic potentials of generally different stiffnesses ki . The equilibrium positions of the par-
ticles are separated by a distance r. The schematic for such a system of particles is shown in
Fig. 7. For this one-dimensional situation, the Rotne-Prager tensor for hydrodynamic interac-
tion reduces from Eq. (14) to R= H/γ, where the elements of H are given by

Hi j =

¨

1 , if i = j ,
3d
4ri j

, if i ̸= j ,
(15)

and we have kept terms only up to order 1/r.
Here we first consider the exactly solvable situation, in which particle 1 is in contact with a

heat bath at temperature T +∆T while the other particle(s) are in contact with a heat bath at
temperature T , as depicted for two particles in Fig. 8a. Subsequently, in Section 7, we will con-
sider the experimental situation, depicted for two particles in Fig. 8b, in which all the particles
are in contact with a heat bath at ambient temperature T , and the trap of particle 1 is regu-
larly repositioned, according to the experimental protocol described in Section 2. The former
case corresponds to a Langevin equation driven by white noise for which we use the analytical
expressions of the AER presented above, while the latter case corresponds to a Langevin equa-
tion with colored noise, for which we use the prescription of Ref. [40] to analytically calculate
the AER. The two-temperature and the colored noise are separate out-of-equilibrium issues.
We present the two-temperature case as an example to compare between the mass-spring sys-
tem and the system of optically trapped particles. The colored noise case, on the other hand,
mimics the experimental system where the trap position of one of the particles is repositioned
periodically thereby driving the system out of equilibrium.
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Figure 8: Schematic diagram of two particles in harmonic traps. (a) particle 1 is in
contact with a heat bath at temperature T +∆T and particle 2 is in contact with
a heat bath at temperature T . (b) both particles are in contact with a heat bath at
temperature T , and the trap of particle 1 is stochastically repositioned.

For the white-noise case, the dynamics is given by Eq. (1) with the drift matrix

V=
1
γ

HṼ , (16)

where the elements of Ṽ are given by Ṽi j = −kiδi j . The noise matrix F is obtained from
the Cholesky decomposition of twice the diffusion matrix D. It is not clear how to define a
system with two temperatures and hydrodynamic interactions, since temperature implies the
fluctuation-dissipation relation and with hydrodynamic interactions, it is non-local. Nonethe-
less, if we try to relate this to masses and springs, there are multiple ways to define D, and we
consider the following choice,

D=
kB

γ

�

T +∆T J(T +∆T )
J(T +∆T ) T + J2∆T

�

, (17)

where J = 3d
4r is the dimensionless parameter quantifying the distance between the particles.

As detailed in Appendix C, following the prescription of Section 5 we arrive at the detailed
balance matrix

B=
J(1− J2)k2kB∆T

γ2

�

0 1
−1 0

�

, (18)

and the AER matrix

A=
J(1− J2)k2kB∆T
(k1 + k2)γ

�

0 1
−1 0

�

. (19)

Note that here and in what follows we apply the prescription in Section 5 assuming that J is
constant. This assumption is valid only when r >>

p

〈∆x2〉. This is always true in the cases
we consider because

p

〈∆x2〉 ≈ b0. The largest driving strength we consider, i.e. b0 = 110 nm
is much smaller than the shortest distance between the trap positions, i.e. r = 2d = 3 µm.
Moreover, we do not assume J to be fixed in the simulations, yet the theoretical results with
fixed J agree remarkably well with the simulation results. This a posteriori justifies the as-
sumption in the theory that J is fixed.

The AER scales linearly with the temperature difference ∆T , as in the mass-spring model
discussed above. Crucially, for hydrodynamic interactions, to leading order the AER scales lin-
early with J and hence as 1/r, as we observe in experiments and simulations. The∆T scaling
is expected and identical to that obtained for the corresponding mass-spring model as seen
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in Eq. (13) [4]. However, the algebraic decay with distance resulting from the hydrodynamic
interactions is different from the springs model, for which there is no dependence on particle
separation.

7 Theory for optically-driven colloidal particles

In this section we consider a system of two hydrodynamically interacting particles where par-
ticle 1 experiences nonequilibrium driving which results from the stochastic repositioning of
its trap as depicted in Fig. 8b, and thus mimics our experimental set up. This is different from
the situation analyzed above, which considered only white noise. Due to the repositioning of
the trap, the noise in our experiments is colored, and we employ the prescription discussed in
Ref. [40], as outlined below. We consider the one-dimensional motion of two particles, and
write the Langevin equation of motion as

dδ⃗x
d t
= Vδ⃗x +

1
γ

H f⃗ . (20)

For two particles δ⃗x =

�

δx1
δx2

�

is the δx-displacements of the particles, V= −1
γH

�

k1 0
0 k2

�

sets

the deterministic force applied on each particle, H =

�

1 J
J 1

�

is the mobility matrix relating

the force on each particle to the velocity of each particle, with J = 3d
4r the dimensionless

strength of the hydrodynamic interactions. The stochastic active force acting on the particles

is f⃗ =

�

fa(t)
0

�

, only the first element of which is non-zero since only the trap of particle 1 is

repositioned.
The system also experiences thermal fluctuations, but they obey detailed balance, and thus

do not generate probability currents in phase space. Moreover, these fluctuations are uncor-
related with the active forces that arise from trap repositioning, thus there are no probability
currents resulting from the interaction between the thermal fluctuations and the active fluc-
tuations. Therefore, for calculating the AER, we consider only the fluctuations resulting from
the active force, and do not include thermal fluctuations in the analysis. This is similar to
the results presented above for white noise, where the AER depends only on the temperature
difference ∆T and not on the ambient temperature T .

The active driving force is the deterministic force pulling particle 1 toward its stochasti-
cally varying trap position, xtrap(t), which is updated at time intervals τ. The total force on
particle 1 at time t is −k1[x(t) − xtrap(t)]. The first term, −k1 x(t) is included in the first,
deterministic term Vδ⃗x in Eq. (20), while the second term, k1 xtrap(t) is the stochastic active
force that appears in the second term 1

γH f⃗ in Eq. (20). Thus we identify the active force as
fa(t) = k1 xtrap(t). Consider two arbitrary times, t1 ≤ t2 along the overall time evolution of
the system, measured from the beginning of the experiment. We have non-zero contribution
to the force correlation function only if t2 is before the next repositioning event, namely only
for t2 − t1 + t < τ. The two-time correlation function of the active force is thus

〈 fa(t1) fa(t2)〉=
∫ τ

0

d t
τ
θ (s+ t −τ) f (t1) f (t2) =

k2
1

τ

∫ τ−s

0

d t〈x2
trap〉= k2

1 b2
0

�

1−
s
τ

�

, (21)

where s = t2 − t1 ≥ 0.
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Comparing Eq. (20) to Eq. (1), we identify fa(t) =
p

γk1 b0ξ(t), and therefore the noise
correlation is 〈ξ⃗(t1)ξ⃗(t2)〉= 1G(s), where

G(s) =
k1

γ

�

1−
s
τ

�

, 0≤ s ≤ τ . (22)

Considering only the non-equilibrium part, in Eq. (1) the lower triangular noise matrix is given
by

F=

√

√k1

γ
b0

�

1 0
J 0

�

, (23)

from which we obtain the diffusion matrix

D=
k1 b2

0

2γ

�

1 J
J J2

�

. (24)

7.1 Infinite imaging rate

Following the colored noise analysis in Ref. [40], the spreading matrix S(s) is generally defined
as

S(s) = 2

∫ ∞

0

d teVt G(t + s) . (25)

Upon using Eq. (22) for G(s), we obtain for s ≥ 0

S(s) =
2k1

γτ

�

V−1e(V(τ−s))V−1 − (τ− s)V−1 − (V−1)2
�

. (26)

Solving the Lyapunov equation using Eq. (C.3) for the drift matrix and Eq. (24) for the diffusion
matrix, we obtain the equal-time white-noise equivalent covariance matrix Cw as

Cw =
b2

0

2(k1 + k2)

�

k1 + k2(1− J2) k1J
k1J k1J2

�

. (27)

Finally, using the spreading matrix at time s = 0, from Eq. (26) we obtain the AER as [40]

A=
1
2

�

SVCw −CwVTST
�

. (28)

Up to leading order in J , the AER reads

A=
J b2

0k1

(k1 + k2)τ



1+
k2 exp
�

− k1τ
γ

�

− k1 exp
�

− k2τ
γ

�

k1 − k2





�

0 1
−1 0

�

. (29)

The scaling of the AER as seen in Eq. (29) can be intuitively expected because given a typical
displacement b0 of particle 1, the typical displacement of particle 2 resulting from hydrody-
namic coupling should be J b0. Then the area is given by the product of the two displace-
ments and thus |A12| ∝ J b2

o . Figure 9 shows how our simulations with fast imaging perfectly
agree with this theoretical result of the AER. We choose k1 = 10 pN/µm, k2 = 4 pN/µm,
γ = 0.0126 pN · s/µm and vary τ in the simulations. Figure 9, therefore, describes the effect
of varying the trap repositioning rate 1/τ on the AER. The AER peaks close to k1τ/γ= 1, i.e.
when the relaxation time γ/k1 is comparable to the trap repositioning time τ. In the subse-
quent sections we present several results for the AER, albeit restricted to the case k1τ/γ≫ 1,
i.e. for slow repositioning which is relevant to our experiments. In our experimental set-up,
1/τ= 36 Hz, and k1 = 2 pN/µm, thus k1τ/γ= 4.4. In the subsequent simulations we choose
1/τ = 36 Hz, same as in our experimental set-up. To ensure that all subsequent simulations
are in the slow repositioning limit, we will use k1 = 10 pN/µm, for which k1τ/γ= 22.
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Figure 9: AER vs. k1τ/γ for two particles separated by a distance of r = 2d,
and a driving strength of b0 = 110 nm. Simulations at very fast imaging rate of
104 fps are compared with the theoretical Eq. (29). The simulations are with fixed
k1 = 10 pN/µm, k2 = 4 pN/µm and γ = 0.0126 pN · s/µm while τ is varied to get
different values of k1τ/γ.

7.2 Finite imaging rate

In Fig. 10a we show the AER as a function of the driving amplitude with a fixed average
separation of r = 2d between the particles. The simulation results at a high imaging rate
of 104 fps agree very well with the analytical expression given by Eq. (29). Interestingly,
we see that the measured AER is significantly smaller in simulations with the experimental
imaging rate of 120 fps. This is because a lower imaging rate corresponds to temporal coarse-
graining in phase space, thereby reducing the measured area. Figure 12 in Appendix A shows
how the AER increases with imaging rate to eventually saturate for fast imaging. Figure 10b,
which plots the AER as a function of average distance between the particles for a fixed driving
amplitude of b0 = 110 nm, exhibits the same effect of the imaging rate. It also shows excellent
agreement between the theoretical prediction and the results from simulations at high imaging
rate of 104 fps.

Figure 10: Simulation results of AER for a system of two particles with hydrody-
namic interactions. (a) AER vs. driving at interparticle distance r = 2d, (b) AER vs.
distance at driving strength b0 = 110 nm. Dashed line is Eq. (29), and simulation
results are shown for two imaging rates, as indicated in the legend.
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8 AER for a pair of non-driven particles when a third particle is
driven

So far we considered the direct effect of driving. Namely, we probed the AER between a driven
particle and another particle, which responds to the driving via the hydrodynamic interactions
between them. In extended systems, one expects nonequilibrium fluctuations to propagate.
The minimal system for studying this propagation is of three particles, where the first particle
is driven, and we measure the AER in the phase space projection of the other two particles. In
this section we address the question whether the AER computed from non-driven particles can
detect non-equilibrium signatures of a system where there may be untracked driven particles.
This is specifically crucial for biological systems where it is not always possible to track all
degrees of freedom.

Let us first consider a system of three particles, where particle 1 is in contact with a heat
bath at temperature T +∆T , which is different from the temperature T of the heat baths that
particles 2 and 3 are connected to. As discussed in the previous section, the AER depends only
on the temperature difference ∆T , and therefore in what follows we set T = 0. The particles
are in optical traps of generally different stiffnesses k j , and interact hydrodynamically.

We present the drift, diffusion, noise and the covariance matrices in Appendix D. The
resultant detailed-balance matrix has non-diagonal elements given by

B12 =
J
�

4k2 + 2Jk3 − J2(4k2 + k3)
�

kB∆T

4γ2
, (30a)

B13 =
J
�

4k3 + 8Jk2 − J2(4k2 + k3)
�

kB∆T

8γ2
, (30b)

B23 =
J2 [2(k3 − k2) + J(4k2 + k3)] kB∆T

4γ2
. (30c)

Note that for three particles connected with springs (see Appendix B), B23 = 0, while here
B23 ̸= 0.

Keeping terms up to the lowest order in J , the non-diagonal elements of the AER are
obtained as

A12 =
Jk2kB∆T
γ(k1 + k2)

, (31a)

A13 =
Jk3kB∆T

2γ(k1 + k3)
, (31b)

A23 =
J2 [2(k3 − k2) + J(4k2 − k3)] (k1k2 + k1k3 + k2k3)kB∆T

4γ(k1 + k2)(k1 + k3)(k2 + k3)
. (31c)

The full expressions for arbitrary J are given in Appendix D. As expected, the AER is propor-
tonal to the temperature difference ∆T between the heat baths. The AER A12 in the subspace
of particle 1 and particle 2, and A13 in the subspace of particle 1 and particle 3 are inversely
proportional to the distance between the particles. Equation (31c) gives non-zero AER A23
also in the subspace of the non-driven particles, namely, particle 2 and particle 3, while only
particle 1 is driven. The AER in this subspace decays faster with distance than in the subspace
of driven–non-driven pairs. Interestingly, when k2 ̸= k3 it decays as 1/r2 but when k2 = k3 it
decays as 1/r3 in the leading order in J . The detailed-balance matrix B, as seen from Eq. (30)
exhibits the same scaling behaviour with J and ∆T .

Let us now consider the experimentally relevant case, namely, a system of three particles,
with particle 1 driven by stochastically repositioning its trap, and where we follow the mo-
tion of all three particles along the line connecting them. We could not obtain closed form
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expressions of the AER for this case, and in what follows, we use the matrix equation (28) to
numerically obtain the exact values of the AER for any set of parameter values.

Within the framework presented in Section 7, i.e. with hydrodynamic interactions and
colored noise driving, and considering only the non-equilibrium contributions, the lower tri-
angular noise matrix is given by

F=

√

√k1

γ
b0





1 0 0
J 0 0
J
2 0 0



 , (32)

from which the diffusion matrix is

D=
k1 b2

0

2γ





1 J J
2

J J2 J2

2
J
2

J2

2
J2

4



 , (33)

and the drift matrix is given by

V= −
1
γ





k1 Jk2
J
2 k3

Jk1 k2 Jk3
J
2 k1 Jk2 k3



 . (34)

Solving the Lyapunov equation using Eq. (34) for the drift matrix and Eq. (33) for the diffusion
matrix, we obtain the elements of the equal-time white-noise equivalent covariance matrix Cw,
up to leading order in J , as

(Cw)11 =
b2

0

�

4k1k2 + 4k1k3 + 4k2k3 + 4k2
1 − J2(4k1k2 + k1k3 + 5k2k3)

�

8(k1 + k2)(k1 + k3)
, (35a)

(Cw)12 = (Cw)21 =
J b2

0k1

2(k1 + k2)
, (35b)

(Cw)13 = (Cw)31 =
J b2

0k1

4(k1 + k3)
, (35c)

(Cw)22 =
J2 b2

0k1

2(k1 + k2)
, (35d)

(Cw)23 = (Cw)32 =
J2 b2

0k1(k1k2 + k1k3 + 2k2k3)

4(k1 + k2)(k1 + k3)(k2 + k3)
, (35e)

(Cw)33 =
J2 b2

0k1

8(k1 + k3)
. (35f)

The full expressions for arbitrary J are given in Appendix E. We follow the procedure for col-
ored noise, as described in Section 7, to obtain the theoretically predicted AER using Eq. (28).

We simulate a system of three particles, with particle 1 driven along the x-axis as before,
and we measure the AER between all pairs of particles using a high imaging rate of 104 fps.
Figure 11a shows the AER as a function of driving amplitude for all pairs of particles. The
simulations were performed with an average distance of r = 2d between each pair of neigh-
bouring particles. A repositioning rate of 1/τ = 36 Hz was used, while the trap stiffnesses
were k1 = 10 pN/µm, k2 = 4 pN/µm, k3 = 5 pN/µm. The simulation results show a clear
scaling of AER with b2

0 in agreement with the theoretical predictions according to Eq. (28).
Moreover, noting that particle 1 is driven and that the average distance between particle 1 and
particle 3 is twice that between particle 1 and particle 2, we see that A13 is smaller than A12
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Figure 11: AER for a system of three particles in a harmonic potential with hydro-
dynamic interactions between the particles. (a) AER vs. driving for r = 2d, (b) AER
vs. distance for b0 = 110 nm.

because of the 1/r dependence due to hydrodynamic interactions. Remarkably, we observe
non-zero AER A23 also for the non-driven pair of particles, albeit the values are much smaller
than for the driven-non-driven pairs. This non-zero AER for the non-driven pair of particles is
too small to be detected in the experiments, but the simulations clearly exhibit it.

Figure 11b shows the AER as a function of average distance between neighboring particles
for all pairs of particles. The simulations were performed with a fixed driving amplitude of
b0 = 110 nm. Consider the results from the simulations with the stiffnesses same as in Fig. 11a.
These results are labelled k2 ̸= k3 in Fig. 11b. We observe that the measured AER between
the driven-non-driven pairs follow the scaling of A12,A13 ∝ 1/r, while A23 ∝ 1/r2 which
agree very well with the theoretical predictions according to Eq. (28), and is the same as in
the two-temperature case, as given by Eq. (31). Interestingly, when k2 = k3, as with the
two-temperature case, A23 ∝ 1/r3, that is, it decays much faster than when the stiffnesses
are unequal. This is exactly what we observe in the simulation results labeled k2 = k3 in
Fig. 11b, where we chose k2 = k3 = 4 pN/µm. This fast decay with distance makes it difficult
to experimentally detect the non-zero AER for non-driven pairs of particles.

Despite this agreement in the functional dependence on distance in the two-temperature
case and in the experimental driving protocol, the ratios between the prefactors of r in A are
different for the two cases. From Eqs. (31a) and (31b) we see that for the case of heat baths
at different temperatures A12

A13
= k2(k1+k3)

k3(k1+k2)
. With r = 8d – which is large enough such that

the leading order in J gives the dominant contribution to the AER – and the other parameters
same as used in the simulations presented in Fig. 11b this leads to A12

A13
= 1.7 which differs from

A12
A13
= 2.2 resulting from numerically evaluating the colored noise case given by Eq. (28). Sim-

ilarly, A12
A23
= 4k2(k1+k3)(k2+k3)

J(k1k2+k1k3+k2k3)(2(k3−k2)+J(4k2−k3))
which is obtained using Eqs. (31a) and (31c).

Again with r = 8d and the other parameters same as used in the simulations presented in
Fig. 11b this leads in case of k2 ̸= k3 to J · A12

A23
= 6.5 whereas numerically evaluating the col-

ored noise case given by Eq. (28) results in J · A12
A23
= 17.5. In the case of k2 = k3 we obtain for

the two temperature case J2 · A12
A23
= 1.6 which is different from J2 · A12

A23
= 3.7 in the colored

noise case.
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9 Discussion

We have studied the AER to quantify probability currents in a system of hydrodynamically
coupled colloidal particles, in which one particle is optically driven. Using this model system,
we could identify and decouple the contributions of different experimental parameters, such
as driving strength and frequency, interparticle distance, and imaging rate.

We found that due to hydrodynamic interactions between the particles, the AER decays
algebraically with inter-particle separation; this contrasts with the fixed AER in elastic systems
with local driving. It is, therefore, essential to understand the nature of coupling of the tracked
degrees of freedom which are used to measure the AER. For example, a stronger signal would
be obtained from objects that are directly connected. Tracer particles attached directly to a
biopolymer network, such as actin, would report on motor activity, such as myosin, signifi-
cantly better and to much larger distances than if embedded in the fluid. We also demonstrate
that the AER peaks when the driving time scale τ is comparable to the relaxation time scale
γ/k. This result is in accord with previous work [23] showing that heat dissipation, another
measure of distance from thermal equilibrium, peaks under similar conditions. This result im-
plies that if driving frequency (or relaxation time) can be tuned in the system, one may be able
to extract the typical relaxation time (or driving frequency), or alternatively enhance the AER
measurement signal in this manner. Another method to ensure proper measurement of the
AER is to use an imaging rate that is fast enough compared to the driving and the relaxation
time scales.

It is interesting to note that driving one particle can generate probability currents among
other non-driven particles. This means that a single active agent can propagate its activity
within a series of interacting objects via probability currents. The theoretical approach used in
our analysis to calculate the expected AER due to hydrodynamic interactions can be adapted
to other interaction types and to larger numbers of particles. This tool could serve as a means
to design a system that propagates activity via probability currents in an optimal manner.

Here we focused on the AER as an obervable to detect and quantify non-equilibrium dy-
namics. It is closely related to the cycling frequency and the entropy production rate which
have also been employed as non-equilibrium measures [16, 18]. The cycling frequency is de-
fined as the rate at which a trajectory revolves in coordinate space and its elements are given
by [18]

ωi j =
1
2

�

VC−CVT
�

i j
Æ

det(C[i,j])
=

Ai j
Æ

det(C[i,j])
, (36)

where C[i, j] is a 2×2 matrix with elements {{Cii ,Ci j}, {C ji ,C j j}}. Thus the cycling frequency
differs from the AER only by the normalization factor given by the determinant of the Covari-
ance matrix. The entropy production rate (EPR), on the other hand, for a linear system is
related to the AER via the relation [16]

EPR= Tr(AC−1ATD−1) . (37)

The advantage that the AER and the cycling frequency have over the EPR is due to the fact that
they can be computed directly from the raw single particle tracking data. Moreover they can be
computed for any two degrees of freedom, while the EPR requires measuring all the degrees of
freedom in the system. Indeed the AER can be leveraged, in case of multidimensional systems,
to perform a dissipative component analysis to identify the components which contribute the
most to EPR, and provide lower bounds on the EPR [16].

We showed that the AER can be a useful observable to detect signatures of non-equilibrium
dynamics in a system of two or more particles. In case of a single particle, if it is driven such
that it exhibits directional motion (say if the trap driving it moves in circles, rather than along
a line) then there would clearly be an observable current in physical space, and we won’t
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need to search for probability currents in phase space. However, for single-particle systems,
if currents are noisy and hard to observe, in principle, one can still detect and quantify them
with the AER in physical space. Indeed, Ref. [13] considered probability fluxes to quantify
nonequilibrium motion of a beating flagellum of Chlamydomonas reinhardtii by decomposing
its motion into different modes.
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A AER dependence on frame acquisition rate

Figure 12 shows how the AER varies with the frame acquisition rate, and highlights that at
small frame rate the estimated AER values are lower than the steady state value and only
for fast imaging do the estimated AER values converge. This is because a lower imaging rate
corresponds to temporal coarse-graining in phase space, thereby reducing the measured area.

B AER for three particles connected with springs

We consider three particles, where particle 1 is in contact with a heat bath at temperature
T +∆T , which is different from the temperature T of the heat bath that particles 2 and 3
are connected to. Again, we set T = 0. The particles themselves are connected to each other
and to rigid walls at the ends via springs with spring constants k j . This is an extension of the
two-particle case considered in Ref. [4].

Figure 12: AER vs. imaging frame rate for two particles separated by a distance of
r = 2d and different driving strength b0 as shown in the legend.
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The matrix V is given by

V=
1
γ





−(k1 + k2) k2 0
k2 −(k2 + k3) k3
0 k3 −(k3 + k4)



 , (B.1)

while for the diffusion matrix we choose the form

D=
kB

γ





∆T 0 0
0 0 0
0 0 0



 , (B.2)

and write the noise matrix as

F=

√

√2kB

γ





p
∆T 0 0
0 0 0
0 0 0



 . (B.3)

Solving the Lyapunov equation, we obtain the elements of the covariance matrix,

C11 =
kB∆T

Z3

�

2k2
2k3

3 + 2k3
2k2

3 + k2
2k3

4 + 2k3
2k2

4 + k2
3k3

4 + 2k3
3k2

4 + 4k1k2k3
3 + k1k3

2k3

+k1k2k3
4 + k1k3

2k4 + k1k3k3
4 + 4k1k3

3k4 + 3k2k3k3
4 + 8k2k3

3k4 + 5k3
2k3k4

+6k1k2
2k2

3 + 2k2
1k2k2

3 + k2
1k2

2k3 + 3k1k2
2k2

4 + k2
1k2k2

4 + k2
1k2

2k4 + 4k1k2
3k2

4

+k2
1k3k2

4 + 2k2
1k2

3k4 + 11k2k2
3k2

4 + 10k2
2k3k2

4 + 14k2
2k2

3k4 + 9k1k2k3k2
4

+16k1k2k2
3k4 + 11k1k2

2k3k4 + 4k2
1k2k3k4

�

, (B.4a)

C12 =
k2kB∆T

Z3

�

2k2
2k2

3 + 2k2
2k2

4 + 3k2
3k2

4 + 2k2k3
3 + k2k3

4 + k3k3
4 + 2k3

3k4 + 2k1k2k2
3

+k1k2
2k3 + k1k2k2

4 + k1k2
2k4 + k1k3k2

4 + 2k1k2
3k4 + 6k2k3k2

4 + 8k2k2
3k4

+5k2
2k3k4 + 4k1k2k3k4

�

, (B.4b)

C13 =
k2k3kB∆T

Z3

�

2k2k2
3 + 2k2

2k3 + k2k2
4 + 2k2

2k4 + k3k2
4 + 2k2

3k4 + 4k2k3k4

�

, (B.4c)

C22 =
kB∆T

Z3

�

2k2
2k3

3 + 2k3
2k2

3 + k2
2k3

4 + 2k3
2k2

4 + k1k3
2k3 + k1k3

2k4 + 5k3
2k3k4

+k1k2
2k2

3 + k1k2
2k2

4 + 4k2
2k3k2

4 + 5k2
2k2

3k4 + 3k1k2
2k3k4

�

, (B.4d)

C23 =
k3kB∆T

Z3

�

2k2
2k2

3 + k2
2k2

4 + 2k3
2k3 + 2k3

2k4 + k1k2
2k3 + k1k2

2k4 + 3k2
2k3k4

�

, (B.4e)

C33 =
kB∆T

Z3

�

2∆T k2
2k3

3 + 2k3
2k2

3 + k1k2
2k2

3 ++k2
2k2

3k4

�

, (B.4f)

where

Z3 = 6k1k2
2k3

3 + 6k1k3
2k2

3 + 4k2
1k2k3

3 + 2k2
1k3

2k3 + 2k3
1k2k2

3 + k3
1k2

2k3 + 2k1k2
2k3

4 + 4k1k3
2k2

4

+ k2
1k2k3

4 + 2k2
1k3

2k4 + k3
1k2k2

4 + k3
1k2

2k4 + k1k2
3k3

4 + 2k1k3
3k2

4 + k2
1k3k3

4 + 4k2
1k3

3k4

+ k3
1k3k2

4 + 2k3
1k2

3k4 + k2k2
3k3

4 + 2k2k3
3k2

4 + 2k2
2k3k3

4 + 6k2
2k3

3k4 + 4k3
2k3k2

4 + 6k3
2k2

3k4

+ 8k2
1k2

2k2
3 + 4k2

1k2
2k2

4 + 4k2
1k2

3k2
4 + 8k2

2k2
3k2

4 + 4k1k2k3k3
4 + 12k1k2k3

3k4 + 12k1k3
2k3k4

+ 4k3
1k2k3k4 + 15k1k2k2

3k2
4 + 18k1k2

2k3k2
4 + 28k1k2

2k2
3k4 + 10k2

1k2k3k2
4 + 18k2

1k2k2
3k4

+ 15k2
1k2

2k3k4 ,
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and we note that the remaining elements of C can be obtained from the symmetry of C.
The detailed-balance matrix is obtained as

B=
k2kB∆T
γ2





0 −1 0
1 0 0
0 0 0



 , (B.5)

and the AER matrix has non-diagonal elements given by

A12 = −
k2kB∆T
γQ1

�

k1k2 + 2k1k3 + k1k4 + 3k2k3 + 2k2k4 + 3k3k4 + 2k2
3 + k2

4

�

, (B.6a)

A13 = −
k2k3kB∆T
γQ1

(k2 + 2k3 + k4) , (B.6b)

A23 = −
k2

2k3kB∆T

γQ1
, (B.6c)

where

Q1 = k2
1k2 + 2k2

1k3 + k2
1k4 + 2k1k2

2 + 8k1k2k3 + 4k1k2k4 + 4k1k2
3 + 4k1k3k4 + k1k2

4

+ 6k2
2k3 + 4k2

2k4 + 6k2k2
3 + 8k2k3k4 + 2k2k2

4 + 2k2
3k4 + k3k2

4 .

C Covariance matrix for a system of two particles in contact with
heat baths at different temperatures

We consider the diffusion matrix to be given by

D=
kB

γ

�

T +∆T J(T +∆T )
J(T +∆T ) T + J2∆T

�

, (C.1)

where J = 3d
4r is the dimensionless parameter quantifying the distance between the particles.

The Cholesky decomposition D= 1
2FFT gives

F=

√

√2kB

γ

� p
T +∆T 0

J
p

T +∆T
p

T (1− J2)

�

. (C.2)

The drift matrix is

V=
−1
γ

�

k1 Jk2
Jk1 k2

�

. (C.3)

Solving Eq. (5) gives the covariance matrix, the elements of which are given by

C11 =
kB

k1(k1 + k2)

�

T (k1 + k2) +∆T (k1 + k2 − J2k2)
�

, (C.4a)

C12 = C21 =
JkB∆T
k1 + k2

, (C.4b)

C22 =
kB

k2(k1 + k2)

�

T (k1 + k2) + J2k2∆T
�

. (C.4c)
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D Three colloidal particles driven by temperature difference

The matrix V is given by

V=
−1
γ





k1 Jk2
J
2 k3

Jk1 k2 Jk3
Jk1
2 Jk2 k3



 , (D.1)

while we consider the diffusion matrix to be given by

D=
kB

γ





∆T J∆T J
2∆T

J∆T J2∆T J2

2 ∆T
J
2∆T J2

2 ∆T J2

4 ∆T



 . (D.2)

The Cholesky decomposition of D= 1
2FFT gives

F=

√

√2kB

γ





p
∆T 0 0

J
p
∆T 0 0

J
p
∆T
2 0 0



 . (D.3)

Solving the Lyapunov equation, we obtain the elements of the covariance matrix C,

C11 =
kB∆T
4k1Z4

�

16k1k2
2 + 16k2

1k2 + 16k1k2
3 + 16k2

1k3 + 16k2k2
3 + 16k2

2k3 + 32k1k2k3

− 4J2(8k1k2
2 − 4k2

1k2 − 2k1k2
3 − k2

1k3 − 9k2k2
3 − 9k2

2k3 − 5k1k2k3)

+ 16J3(k2k2
3 + k2

2k3 − k1k2k3) + J4(k1k2
3 + 16k1k2

2 + 8k1k2k3)
�

, (D.4a)

C12 =
JkB∆T

2Z4

�

8k1k2 + 8k1k3 + 8k2k3 + 8k2
3 − 4J(k2

3 + k2k3)

−2J2(k2
3 − 4k1k2 + k1k3 − k2k3) + J3(k2

3 − 4k2k3)
�

, (D.4b)

C13 =
JkB∆T

2Z4

�

4k1k2 + 4k1k3 + 4k2k3 + 4k2
2 − 8J(k2

2 + k2k3)

+J2(4k2k3 − 4k2
2 − 4k1k2 − k1k3) + 2J3(4k2

2 − k2k3)
�

, (D.4c)

C22 =
J2kB∆T

Z4

�

4k1k2 + 4k1k3 + 4k2k3 + 4k2
3 − 4Jk2

3

+J2(k2
3 − 4k1k2 − k1k3 − 4k2k3)

�

, (D.4d)

C23 =
J2kB∆T

2Z4

�

4k1k2 + 4k1k3 + 8k2k3 − 10Jk2k3 − J2(4k1k2 + k1k3)
�

, (D.4e)

C33 =
J2kB∆T

4Z4

�

4k1k2 + 4k1k3 + 4k2k3 + 4k2
2 − 16Jk2

2 ,

+J2(16k2
2 − 4k1k2 − k1k3 − 4k2k3)

�

, (D.4f)

where

Z4 = 4k1k2
2 + 4k2

1k2 + 4k1k2
3 + 4k2

1k3 + 4k2k2
3 + 4k2

2k3 − 4J2k1k2
2 − 4J2k2

1k2 − J2k1k2
3

− J2k2
1k3 − 4J2k2k2

3 − 4J2k2
2k3 + 8k1k2k3 − 4J3k1k2k3 ,

and we note that the remaining elements of C can be obtained from the symmetry of C.
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The full expressions of the elements of the AER presented in Eq. (31) are

A12 = −A21 =
JkB∆T
4γQ2

�

16k2
2k3 + 16k1k2

2 + 16k2k2
3 + 16k1k2k3 + 8J(k1k2k3 + k1k2

3)

− 4J2(6k1k2k3 + k1k2
3 + 8k2

2k3 + 8k1k2
2 + 10k2k2

3) + 2J3(13k2k2
3 − 4k1k2k3 − k1k2

3)

+J4(16k2
2k3 + 16k1k2

2 − 4k2k2
3 + 8k1k2k3 + k1k2

3)
�

, (D.5a)

A13 = −A31 =
JkB∆T
8γQ2

�

(2− J)(16J3k2
2k3 − 16J3k1k2

2 − 4J3k2k2
3 − 8J3k1k2k3 (D.5b)

− J3k1k2
3 + 24J2k2

2k3 − 8J2k2k2
3 − 8J2k1k2k3 − 2J2k1k2

3 + 4Jk2
2k3

+ 4Jk2k2
3 − 16Jk1k2

2 + 20Jk1k2k3 + 4Jk1k2
3 + 8k2

2k3 + 8k2k2
3 + 8k1k2k3 + 8k1k2

3)
�

,

A23 = −A32 = −
J2kB∆T

4γQ2
(2k2 − 2k3 − 4Jk2 + Jk3)

× (4k1k2 + 4k1k3 + 4k2k3 − 4J2k1k2 − J2k1k3 − 4J2k2k3) , (D.5c)

where

Q2 = −4J3k1k2k3 − 4J2k2
1k2 − J2k2

1k3 − 4J2k1k2
2 − J2k1k2

3 − 4J2k2
2k3 − 4J2k2k2

3 + 4k2
1k2

+ 4k2
1k3 + 4k1k2

2 + 8k1k2k3 + 4k1k2
3 + 4k2

2k3 + 4k2k2
3 .

E Full expressions of the covariance matrix presented in Eq. (35)

The full expressions of the elements of the equal-time white-noise equivalent covariance matrix
Cw presented in Eq. (35) are

(Cw)11 =
b2

0

8Z2

�

16k1k2
2 + 16k2

1k2 + 16k1k2
3 + 16k2

1k3 + 16k2k2
3 + 16k2

2k3 + 32k1k2k3

− 32J2k1k2
2 − 16J2k2

1k2 − 8J2k1k2
3 − 4J2k2

1k3 − 36J2k2k2
3 − 36J2k2

2k3

− 20J2k1k2k3 + 16J3k2k2
3 + 16J3k2

2k3 − 16J3k1k2k3 + J4k1k2
3

+ 16J4k1k2
2 + 8J4k1k2k3

�

, (E.1a)

(Cw)12 =
J b2

0k1

4Z2

�

8k1k2 + 8k1k3 + 8k2k3 + 8k2
3 − 4Jk2

3 − 4Jk2k3 − 2J2k2
3

− 8J2k1k2 − 2J2k1k3 + 2J2k2k3 + J3k2
3 − 4J3k2k3

�

, (E.1b)

(Cw)13 =
J b2

0k1

4Z2

�

4k1k2 + 4k1k3 + 4k2k3 − 8Jk2
2 + 4k2

2 − 4J2k2
2 + 8J3k2

2 − 8Jk2k3

− 4J2k1k2 − J2k1k3 + 4J2k2k3 − 2J3k2k3

�

, (E.1c)

(Cw)22 =
J2 b2

0k1

2Z2

�

4k1k2 + 4k1k3 + 4k2k3 − 4Jk2
3 + 4k2

3 + J2k2
3 − 4J2k1k2 (E.1d)

− J2k1k3 − 4J2k2k3

�

,

(Cw)23 =
J2 b2

0k1

4Z2

�

4k1k2 + 4k1k3 + 8k2k3 − 10Jk2k3 − 4J2k1k2 − J2k1k3

�

, (E.1e)

(Cw)33 =
J2 b2

0k1

8Z2

�

4k1k2 + 4k1k3 + 4k2k3 − 16Jk2
2 + 4k2

2 + 16J2k2
2 − 4J2k1k2

− J2k1k3 − 4J2k2k3

�

, (E.1f)
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where

Z2 = 4k1k2
2 + 4k2

1k2 + 4k1k2
3 + 4k2

1k3 + 4k2k2
3 + 4k2

2k3 − 4J2k1k2
2 − 4J2k2

1k2 − J2k1k2
3

− J2k2
1k3 − 4J2k2k2

3 − 4J2k2
2k3 + 8k1k2k3 − 4J3k1k2k3 ,

and note that the other elements are given by the symmetric property of Cw.
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