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Abstract

Recently, extended gapless phases with emergent SU(2); conformal invariance occupy-
ing finite regions in the phase diagrams have been found in one-dimensional spin-1/2
models with nonsymmorphic O;, symmetry groups. In this work, we investigate the ques-
tion of whether the conditions for emergent SU(2); invariance can be loosened. We find
that besides the nonsymmorphic O group, the other four smaller nonsymmorphic cubic
groups including O, Ty, T; and T can also give rise to emergent SU(2), invariance. Mini-
mal spin-1/2 models having these nonsymmorphic cubic groups as symmetry groups are
constructed, and numerical evidences for the emergent SU(2), invariance are provided.
Our work is useful for understanding gapless phases in one-dimensional spin systems
with nonsymmorphic symmetries.
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1 Introduction

Nonsymmorphic symmetries are a class of crystalline symmetry operations which involve a
combination of fractional lattice translations and rotations or reflections [1]. In recent years,
there are increasing research interests in studying the consequences of nonsymmorphic sym-
metries in condensed matter systems. Among the investigations of nonsymmorphic symme-
tries, the noninteracting and weakly interacting systems have been well-studied [2-13] includ-
ing topological insulators, hourglass fermions, Dirac insulators and topological semi-metals,
whereas strongly correlated nonsymmorphic systems remain much less explored [14-16]. It
is worth to note that there is a special category of nonsymmorphic symmetry groups named
“spin-space groups” [17], in which the spins are allowed to rotate independently from the
spatial coordinates, different from the usual magnetic space groups where the rotations in the
spin and orbital spaces are combined in a spin-orbit coupled manner.
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One-dimensional (1D) Kitaev spin models are 1D versions of the generalized Kitaev spin-
1/2 models on the honeycomb lattice [18-35], which can be constructed by selecting one or
several rows out of the honeycomb lattice. Recent studies on 1D Kitaev spin models (such
as Kitaev-Heisenberg-gamma model, Kitaev models with Dzyaloshinskii-Moriya interactions,
etc.) have revealed rich nonsymmorphic spin-space symmetry group structures, leading to
exotic strongly correlated properties, including emergent conformal symmetries [24,34], non-
local string order parameters [22, 28], and magnetic phases with exotic symmetry breaking
patterns [24, 25, 28].

Particularly, with the help of a unitary transformation called six-sublattice rotation, the
symmetry group of the 1D Kitaev-gamma model [24] has been shown to be isomorphic to the
Oy, group in the sense of modulo lattice translation symmetries, where Oy, is the full octahedral
group, the largest crystalline point group with 48 group elements, or more rigorously, the
symmetry group Gy satisfies the non-split short exact sequence 1 — Z — Ggr — O, — 1[31].
It has been analytically proved and numerically verified that the nonsymmorphic O, symmetry
stabilizes an extended gapless phase which has an emergent SU(2); conformal symmetry at
low energies. This is an interesting and exotic result since an extended phase with emergent
SU(2); conformal symmetry occupying a finite region in the phase diagram usually arises from
a full SU(2) symmetry, not discrete symmetry groups. It is worth to note that while the 1D spin-
1/2 gamma model lies in the gapless phase, the pure Kitaev model does not [24]. Hence the
1D spin-1/2 gamma model can be viewed as the minimal model realizing the nonsymmorphic
Oy, symmetry with an emergent SU(2); conformal invariance at low energies.

In this work, we investigate the question: Is it possible for a smaller nonsymmorphic sym-
metry group to stabilize an extended phase of emergent SU(2); conformal invariance? We
find that the answer to this question is yes, and in fact, the nonsymmorphic counterparts of all
the five cubic point groups Oy, O, Ty, T; and T can lead to emergent SU(2), invariance. We
note that T = A, is the smallest cubic point group among the five where A, is the alternating
group of order 12. The nonsymmorphic T group is the smallest group which can achieve the
goal of stabilizing SU(2); invariance, namely, an emergent SU(2); invariance is not possible
for nonsymmorphic planar groups. For all the five nonsymmorphic cubic groups, minimal
models are constructed, which can be viewed variants of the 1D gamma model. Using density
matrix renormalization group (DMRG) simulations [36-38], numerical evidence for emergent
SU(2), invariance are provided for all the minimal models.

It is worth to note that two scenarios need to be distinguished depending on whether
the Hamiltonian after the six-sublattice rotation has three-site or six-site periodicities. The
minimal model for nonsymmorphic O, group with a six-site periodicity in the six-sublattice
rotated frame can be obtained from the 1D gamma model by adding a Dzyaloshinskii-Moriya
interaction [34], from which minimal models of other nonsymmorphic groups with six-site
periodicities can be constructed as variants. We find that if the rotated Hamiltonian is three-
site periodic, then all the five nonsymmorphic cubic symmetry groups can stabilize an extended
SU(2); phase. On the other hand, for the six-site periodic case, only the nonsymmorphic Oy,
O, and T, groups can do the job.

The rest of the paper is organized as follows. In Sec. 2, a brief review is given for the
1D spin-1/2 gamma model and the related nonsymmorphic O;, symmetry, emergent SU(2),
conformal invariance, and nonsymmorphic nonabelian bosonization formulas. In Sec. 3, the
nonsymmorphic T group is constructed, and the existence of an extended gapless phase with
an emergent SU(2); conformal symmetry is proved. A minimal model realizing the nonsym-
morphic T group is also constructed, and DMRG numerical evidence on the SU(2); invariance
is presented. In Sec. 4, the nonsymmorphic T}, group is constructed, and the corresponding
minimal model — the asymmetric gamma model — is discussed in details. Sec. 5 is devoted
to discussing the nonsymmorphic O group and the corresponding minimal model. In Sec. 6,
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Figure 1: Bond patterns of the Kitaev-gamma chain (a) without sublattice rotation,
(b) after the six-sublattice rotation, (¢) with a nonzero DM interaction after six-
sublattice rotation. The black squares represent the unit cells. This figure is taken
from Ref. [34].

the nonsymmorphic T; symmetry and the corresponding minimal model are constructed and
investigated. In Sec. 7, the cases of six-site periodicity are studied, including a review of the
Oy, case, and investigations of the O and T, cases. Finally, in Sec. 8, the main results of this
work are summarized.

2 Review of the 1D symmetric gamma model

In this section, we give a brief review of the 1D spin-1/2 symmetric gamma model, its hid-
den nonsymmorphic O, symmetry group structure, and the emergence of SU(2); conformal
invariance at low energies.

2.1 Symmetric gamma model and the nonsymmorphic O, symmetry

The Hamiltonian of the 1D spin-1/2 symmetric gamma model is defined as
_ B B
Ho= > T(sxsf+sPse), )
<ij>eybond
in which (a, 3,y) form a right-handed coordinate system, and the pattern for the bond v is
shown in Fig. 1 (a).
To discuss the symmetry group of the symmetric gamma model, it is useful to consider a
unitary transformation Ug, called six-sublattice rotation, defined as
Sublattice 1: (x,y,2) — (x',y’,2’),
Sublattice 2 : (x,y,2) — (—x',—2',—y’),
Sublattice 3 : (x,y,2) — (v',2',x’),
Sublattice 4 : (x,y,2z) — (—y’,—x’,—2"),
Sublattice 5 : (x,y,2z) — (2, x’,y’),
Sublattice 6 : (x,y,2z) — (—2',—y’,—x’), 2)
in which “Sublattice i” (1 < i < 6) represents all the sites i + 6n (n € Z) in the chain, and

we have abbreviated S* (S'*) as a (a’) for short (@ = x,y,z). It can be verified that the
transformed Hamiltonian Hg. = (Us) ™' HsrUs acquires the following form,

Hyp= > (-D)(spesie+s/s?), 3)

<ij>€ybond
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in which (a,f3,y) form a right-handed coordinate system, and the pattern for the bond
Y = X,z,y is shown in Fig. 1 (b), having a three-site periodicity. Explicit forms of Hgp and Hg.
are included in Appendix A.

In the Ug frame, the Hamiltonian H gr is invariant under the following symmetry transfor-
mations,

T (87,87, S = (=87, =87, =S,
. / ly  ar: /: /. ly
R, T, (87587,87) = (i1, 85158111
RII : (S{XJS;yDSi/Z) - (_S:]_Z_la_s:l_{la_séx_l s

R(X,m) :(S,87,8%)— (S7,—S ,—SP),

1

R(y,m) :(S7,8”,8F) - (=8/*,87,—SF),

1

6. R(Z,m) :(S,S7”,S%)— (—S*,—s”,S5),

gk wdh =

in which 7 is the time reversal operation; I is the spatial inversion operation with inversion
center located at site 2; R(1, ¢ ) denotes a global spin rotation around fi-direction by an angle
¢; T, denotes the spatial translation by one lattice site; T,, represents the translation operator
by n sites; R, is the spin rotation around (1, 1, 1)-direction by an angle —27/3; and R; is a
mt-rotation around the (1,0,—1)-direction. The symmetry group G is generated by the above
symmetry transformations as

GSI" = <T:RaTa’RII:R(-)%; TC):R(.)A,’ TE))R(Q) ﬂ:)> H] (4)

in which <...> represents the group generated by the elements within the bracket. It is worth
to note that Ggr is a spin-space group [17], since the rotations are restricted in the spin space,
not of a spin-orbit coupled structure (all symmetry groups discussed in later sections in this
work are spin-space groups). Since T3, = (R,T,)® generates an abelian normal subgroup
of Ggr, the quotient Ggr/<T5,> is a group. It has been proved in Ref. [24] that Ggr is a
nonsymmorphic group and satisfies

Gsr/<T3,> = Oy, (5)

where Oy, is the full octahedral group, which is the largest three-dimensional crystalline point
group. The group Ggr satisfies the following short exact sequence,

1> <T3,>—>Ggr—0,— 1, (6)

and the rigorous mathematical meaning of “nonsymmorphic” is that the above short exact
sequence is non-split [31].

We note that as discussed in Ref. [26], Eq. (5) has an intuitive understanding by observing
that all the symmetry operations in Eq. (4) act as symmetries of a three-dimensional (3D)
spin cube when restricted in the spin space as shown in Fig. 2. On the other hand, it is known
that the symmetry group of a 3D cube is the O, group [41], hence it is not a surprise that the
symmetry group Ggr is intimately related to the Oy, group.

2.2 Emergent SU(2); conformal invariance

Remarkably, it has been verified by DMRG numerics that Hg. (equivalently Hgr) has an emer-
gent SU(2); conformal symmetry at low energies, described by the Sugawara Hamiltonian of
the (1+1)-dimensional SU(2); Wess-Zumino-Witten (WZW) model,

2 - - - -
,H:?TEV(JL'JL +Jgr " JR), 7
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Figure 2: Actions of the symmetry operations in Eq. (4) in the spin space as symme-
tries of a 3D spin cube. Time reversal operation corresponds to the inversion of the
spin cube, which is not shown in the figure. This figure is taken from Ref. [26].

in which v is the velocity; fL and fR are the left and right WZW currents, respectively, defined
as

-

1 .
J, =——1tr[(8,8)g'5],
4
.1 . .
Jp=—tr[g'(5;¢)3], (8)
4m

where g is the SU(2); primary field which is a 2 x 2 SU(2) matrix. In addition, the following
nonsymmorphic nonabelian bosonization formulas have been proposed in Ref. [24] which
build the connections between the spin operators S;{“ (k € Z, a = x,y,z) and the SU(2);
WZW degrees of freedom,

S

j+3n = Dg,j‘]g + Dg,j‘]}({x + (_)j+3anaNa 5 (9)

in which: N% = itr(go®) where ¢® (a = x,y,2) is the Pauli matrix; n is the unit cell index;
1 < j < 3 is the site index within a unit cell; D{ i Dy P> cr P> Cy ; are bosonization coefficients
satisfying

_nY _ _
Di,1 = Dv,z = DJv(,:; =D,
_ _nY _pnY _ _ _
D§,1 = Di,z =D; 5= Dv,l = Df,z = Di,s =Dy, (10)

and

z _ Y _px
Cv,l_cv,Z_CV,S_Cl’

cf,l=cj’2=c{’3=c{’1=c§,2:c§,3:c2’ (11)

in which v = L, R. In the sense of low energy properties, the above nonsymmorphic nonabelian
bosonization formulas apply to any model with nonsymmorphic O, symmetry and emergent
SU(2); conformal invariance.

We note that the spin-1/2 symmetric gamma model serves as the minimal model having
nonsymmorphic Oy, symmetry and emergent SU(2); conformal invariance. There are other
terms which preserve the nonsymmorphic O, symmetry and keep the SU(2); conformal invari-
ance. An example of such additional terms is the 1D Kitaev term (so that the model becomes
the more general Kitaev-gamma model), as discussed in details in Ref. [24].
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2.3 Generalizations of SU(2); invariance to other nonsymmorphic symmetry
groups

As previously reviewed, a nonsymmorphic O, symmetry group leads to an emergent SU(2);
conformal invariance at low energies. Then a natural question is: Is it possible to lower the
symmetries of the symmetric gamma model, while at the same time maintaining the emergent
SU(2); conformal symmetry? Furthermore, what is the smallest nonsymmorphic symmetry
group required to ensure the emergent SU(2); conformal invariance? In the following sec-
tions, we will answer the above questions, by demonstrating that: 1. the required smallest
nonsymmorphic symmetry group is the smallest cubic group, i.e., the T group; 2. all the five
cubic groups Oy, O, Ty, T4, T can stabilize the emergent SU(2); conformal symmetry.

We note that the symmetric gamma model is the minimal model realizing the O, non-
symmorphic symmetry. It also serves as the parent model for a number of models, which
are minimal models for different nonsymmorphic cubic groups. These other models can be
constructed by adding one or several of the following terms to the Hamiltonian Hgr,

>, Dy (S¢s? —sPs®),
<ij>€ybond
> (-)'D(sgst —sPs®,

<ij>eybond

(12)
y y Y
0 D (S518) STy — S8,
J

j j+1 T 2175 2541
i—1 y y y
QD (Y TS S] S + 81188 ),
J

which will discussed in detail in later sections,
On the other hand, although the five nonsymmorphic cubic groups all lead to SU(2); con-
formal invariance, they still have different low energy properties in the sense that the corre-
sponding nonsymmorphic nonabelian bosonization formulas are different. The expressions of

the nonsymmorphic nonabelian bosonization formulas will be explicitly derived for all the five
cubic groups.

3 Nonsymmorphic cubic T group

In this section, we demonstrate that the nonsymmorphic cubic T group is the smallest non-
symmorphic symmetry group required for the emergent SU(2); conformal invariance. We
first show that the nonsymmorphic T group indeed leads to an SU(2); conformal invariance
at low energies. Since the other four nonsymmorphic cubic groups contain the nonsymmor-
phic T group as a subgroup, it follows that all the five nonsymmorphic cubic groups are able to
produce SU(2); conformal invariance. Second, we show that if the symmetry group is lowered
from cubic to planar, then the SU(2); conformal invariance is in general broken. The above
two reasonings establish the fact that the nonsymmorphic cubic T group is indeed the minimal
one for ensuring SU(2); conformal symmetry.

3.1 Construction of the nonsymmorphic T group

The cubic T point group is isomorphic to the alternating group A4, which has the following
generator-relation representation,

T = <a,b|a® = b% = (ab)® =e>, (13)

where a, b are the two generators and e is the identity element in the group.
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By removing the symmetry operations 7 and R;I from Eq. (4), we consider the following
symmetry group Gr,

Gy = <R, T,,R(x,m),R(y,m),R(2,m)>. (14)
We are going to show that
Gr/<T3,>=T. (15)
Let’s define
a =R,T,, b’ =R(%,m). (16)

Notice that a’b’(a’)™! = R(%, ), and R(2, m)R(%, ) = R(}¥, 7). As a result, a’ and b’ can be
chosen as the generator of Gy, i.e.,

Gr=<d,b’>. 17)
This means that it is enough to prove the following identity
Gr/<T3,>=<d,b'>/<T3,>. (18)

To prove Eq. (18), we first show that G;/<Ts,> is a subgroup of T by proving that the
relations in Eq. (13) are satisfied by a’, b’ in the sense of modulo T5,. To see this, simply
notice the following identities,

(a')’ = (@'b')’ = Ts,,

(') =1. (19)
Then, to prove the isomorphism between Gr/<T5,> and T, it is enough to further show that

the number of group elements in G;/<T;,> is no smaller than that of T. In fact, there are
twelve distinct elements in Gy given by

l=e,
R, m)=d'b' ()7},
R(§,m)=a'b'(a')'V,
RE m) =D,

27
R(_B(lz 1) 1)5_?) Ta = a/)

~
~
s -

(1,1,1), 2?”) T_o=(a)?,
1 2
R(_(1,_1,_1),_§) T, =db'ab/(d)?,

R (i(1,—1,—1), 2?“) T, =a'b(@)y b (),

3

1 2n Pl IN=120 11 N2 - IN—1
R _3(_1,1’_1),_? Ta:ab(a) b(ab) (a) 5

1 27 ITl o IN—=1721.7 1170 IN—1
R _3(_191’_1))? T—aza[b (a) ]bab(a) )

=]
Ve
<JJ|H

(=1,-1, 1),—2?”) T, = b/ (),

R (i(—l,—l, 1), 2?”) T_o=b'(a) (b)), (20)
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Figure 3: Decorated cube with the symmetry group as the T group.

Since the above twelve operations act in distinct ways in the spin space (as can be seen from
the left hand side of the equalities in Eq. (20)), they also act differently in the quotient group
Gy /<Ts,>. Hence we have |G;/<T;,>| > 12. On the other hand, |T| = 12, and as a result
|Gr/<T5,>| > |T|. Combining with the already proved fact that G /<T5,> is a subgroup of
T, we see that the two must be isomorphic to each other.

We note that there is an intuitive understanding of the isomorphism in Eq. (15). If the
spatial components in the symmetry operations in Eq. (20) are temporarily ignored, then it
can be observed that all the operations restricted within the spin space leave the decorated
cube in Fig. 3 invariant. On the other hand, the symmetry group of the decorated cube in
Fig. 3 is the cubic T group, hence it is not a surprise that Gy is intimately related to the cubic
T group.

3.2 Emergent SU(2); conformal symmetry

Having established the isomorphism in Eq. (15), we next prove that Gy is enough to ensure
the emergent SU(2); conformal invariance. The strategy is to take the 1D spin-1/2 symmetric
gamma model in Eq. (3) as the unperturbed system, and then consider all the perturbations
allowed by the symmetry group Gy. The conclusion of emergent SU(2), invariance follows by
showing that the low energy field theory up to relevant and marginal terms (in the sense of
renormalization group (RG)) remain to be the SU(2); WZW model.

In 141 dimension, the relevant and marginal terms correspond to the operators having
scaling dimensions smaller than and equal to two, respectively. Using the facts that the SU(2),
WZW current operators and the primary fields have scaling dimensions equal to 1 and 1/2,
respectively, the relevant and marginal terms are exhausted by the following terms, which can
be analyzed by applying the symmetry transformation properties summarized in Appendix B.

1) The dimension 1/2 operators € = tr(g) and N* (a = x, y, 2) are forbidden by Ts,, since
g changes sign under T3,,.

2) The dimension 1 operators J; (a = x, y,z and v = L, R) are forbidden by R(/§, 1) where
B # a, since J;; changes sign under R(f, m) where a # B (a, B € {x, y,2}).

3) The dimension 3/2 operators J'e, Jge, JI'N P and JEN P are forbidden by T 34, Since
the signs of JJ (N*) remains unchanged (changed) under Tj,.

4) The dimension 2 operators are in general of the forms J/'J f , J}‘;Jf ,and J f‘Jf , where
a, B € {x,y,z}. In the continuum limit, the translation operator T, becomes an internal sym-
metry, which acts as identity on J;* and J§. There are four irreducible representations of the
T group, given by A, E;, E, and T [42] (note: whether the symbol T refers to the representa-
tion T or the cubic group T should be clear from the context). Both span{J/|a = x, y,z} and

span{Jg|a = x,y,z} correspond to the T representation, which is three-dimensional, where
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span{...} represents the vector space spanned by the elements within the bracket. Using the
tensor product rule T® T =A® E; ® E, ® T, we see that the only terms which are invariant
under the T group (i.e., corresponding to the A representation) are J; - J;, Jg - Jg and J; - Jz.

Based on the above analysis, the low energy Hamiltonian compatible with the nonsym-
morphic cubic T group is

Hy=HO — uf dxJ; - Je, (21)
in which

27T > o - -
H(l()) = f dX?(VLJL "]L +VRJR 'JR)
27’[ - - 17 -
= dX?V(AJL'JL +A JR'JR): (22)

where v = /v, and A = 4/v;/vg. Notice that because of a lack of time reversal and
inversion symmetries, the velocities of the left and right movers are in general different, which
is different from the case of nonsymmorphic O, symmetry in Eq. (7). We will absorb the
velocity v into a redefinition of time in what follows, or effectively, v = 1.

Next we show that the Hamiltonian H; in Eq. (21) has an emergent SU(2); conformal
symmetry at low energies when u > 0, i.e., a positive u is an irrelevant operator in the RG
sense. The strategy is to study the one-loop RG flow of the coupling u, by taking Hgo) as the
unperturbed system. To facilitate the RG analysis, we will take the following more general
version of the Hamiltonian [40]

H=H"— > uaf dxJ4IS, (23)
a=x,y,2

such that Eq. (21) corresponds to the special case u, = u in Eq. (23).

We use the standard method of operator product expansion (OPE) to derive the one-loop
RG flow equations [39,40] for v, A, and u. In imaginary time, all the information of the system
is encoded in the following time ordered product,

T (e_ [ drdx zazx,y,z(—uan‘J;?)) i (24)

in which J* and J§ are the operators in the interaction picture defined by the unperturbed

Hamiltonian 7—[50), ie.,

0 0)
Ji(T,x)= e (t=0,x)e” " = J(z),

Je(T,x) = eTH(lmJR(T = O,x)e_TH(l()) =J3 (), (25)
where
z2=AT+ix,
F=2"1r—ix. (26)

Notice that since A can be different from 1, 2 may not be the complex conjugate of z. According
to the chiral SU(2); WZW theory, the operator product expansions (OPE) of J* and Jy are
given by [43]

o i€gp,J] (W)
JHEIL (W) = 0 L oE Mfgiw) + (I w) + 0z —w),
5 . J’Y -/
JEENIE () = ——— 2 Capy L V) V@) +0E —w),  @7)

8m2(z —w')2  2m(z —w')
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in which (AB)(w) represents the normal ordered product of the OPE A(z)B(w), i.e., the O(1)
term in the Laurent expansion of A(z)B(w) in terms of z —w, and similarly for (AB)(w’) in the
anti-holomorphic sector.

Expanding Eq. (24) to second order, we obtain

1 +f dtdx Z u JiJg

a=x,y,z

deldxldfzdxz Z Z u uﬂJ“(zl)J“(zl)Jﬁ(zz)Jﬁ(zz)+ (28)

a=x,y,z f=x,y,2

in which z and %’ are given in Eq. (26); 7_, x_, z_, Z_ are

T_=T1—7T2,

X_ = X;—Xg,

2_=AT_+ix_,

g =2t —ix_, (29)

and f , indicates that the integration is subject to a real space cutoff g, i.e., the integration
range is restricted to

\/lTl—T2|2+|X1—X2|ZZCl. (30)

To perform RG, we increase the real space cutoff from a to ba, by integrating over the fields
within the range

a < /|t =152 +|x; — x5)2 < ba. (31)

Using the OPE in Eq. (27) and integrating over the modes in Eq. (31), the second order term
in Eq. (28) contains the following terms

ba
f dexf dr_dx_ 87r2( v Z (ua)Z(JaJ}‘;)(g/)
ba

a=x,y,z

1 ba 1 o
T3 Jba‘”d" f df—d"—m > W PUHIE)

a=x,y,z

ba
__fbadrdxf dr_dx_——— nzzi Z Z Z (eaﬁy)Zu uﬁJY(z)JY(z) (32)

— 0=X,Y,2 B=X,Y,2 Y=X,),%

in which f . “ means that the integration is restricted within the range in Eq. (31). The inte-

. b
grations f a “d7_dx_ can be evaluated as

ba 1
dt_dx_ =0,
L (=)

ba
dt_dx_—— =0,
L (2 )2

ba
dr dx.—~ =Inb il . (33)
a 22 4+ (A1—-2)2
Hence Eq. (32) reduces to
[—Inb (e pr ) Uglp] J dxJ'J?. (34)

11
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Clearly, there is no renormalization of v and A, i.e.,

dv —0

dlnb

da

dlnb_o’ (35)

but there is a renormalization of u,,.
Since the tree level scaling for u, vanishes (as J E‘Jg is marginal where a = x,y,z), we
obtain the following one-loop RG flow equations,

du, u,u,
dinb 271+ (A 1-A)%/4
du}’ _ UzUy
dinb  2ny/T+ (A1 —AP/4
du, Uyly

(36)

dinb — 2n/T+ (A 1—A%2/4

in which a factor of two is included since both (eam)zuauﬁ and (eg ay)zuﬁ u, contribute to the
renormalization of u,. In the special case u, = u, Eq. (36) becomes

du u?

dinb — 2my/T+(A 1—AR/4

(37)

It is clear from Eq. (37) that u is marginally irrelevant (relevant) when u > 0 (u < 0). When
A =1, Eq. (37) reduces to the standard RG flow equations for v; = v in Ref. [40].

Hence, in the extreme infrared limit when u > 0, the low energy Hamiltonian flows to Hgo)
in Eq. (22). That is to say, the system has an emergent SU(2); conformal invariance, but with
different velocities for the left and right movers. Notice that since u is indeed positive for the
symmetric gamma model (as this model is numerically verified to have emergent SU(2); con-
formal symmetry), it must remain positive at least when the perturbations are small enough.
That is to say, for the models with a nonsymmorphic cubic T symmetry group, there exists an
extended region in the phase diagram which has an emergent SU(2); conformal invariance at
low energies.

By closing this subsection, we derive the nonsymmorphic nonabelian bosonization
formulas which are consistent with the nonsymmorphic T symmetry group. Since
{1,R(%, m),R(¥,m),R(2,m)} (= Z, x Z,) is a subgroup of the symmetry group Gr, there is no
cross-directional terms in the bosonization formulas, i.e., S]‘." does not contain J?, NP where
B # a. Requiring the left and right hand sides of Eq. (9) to be covariant under the nonsym-
morphic T group, we obtain

D}, = Dil,z =Dj,= D?) )

D}, =D}, = Di/,3 = Dy) )

Dy, =Dj,=D}5= Dév), (38)
and

Ci=Cy=Cy=¢C,
CY=C5=Cy=0C,,
C] =Cy=Ci=Cs, (39)
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in which v = L,R. We note that since there is no time reversal nor inversion symmetry, in
general Dﬁ” #+ D‘(AR) (u=1,2,3). Egs. (38,39) reduce back to the nonsymmorphic O, case in
Egs. (10,11) by imposing the conditions D!SL) = DISR) =D,, Dy =D, and C, = Cs.

The SU(2); WZW model combined with the nonsymmorphic nonabelian bosonization for-
mulas enable the derivations of the spin correlation functions. Under proper normalizations,
the SU(2); WZW model predicts

U 0) = Bup sy
-
af (7 —w')2 ’
1
P S a—wE@ —w)

In the static case, the above equations can be simplified into

VEEWEW)) =6

(N*(z,2")NP(w,w")) =6 (40)

Sup
X2

Sup
X2

e+ )P () =—

T+ )8 () =—

Sup
x| °

in which both x and r are spatial coordinates and the time 7 is implicitly set to zero. Then com-
bining with the nonsymmorphic nonabelian bosonization formulas, we obtain the following

static spin correlation functions S**(r) = (S¥S{, ) as

(N*(r + x)NP(r)) = (41)

. (T n
S (r)=85%(r)+ (=)'S;%(r) +sin (g’") S/3,1)(T) +cos (gr) Sz/3.2)T)

. (21 2T
+sin (?r) S;‘g/g,(l)(r) + cos (?r) Sg‘/"g,(z)(r) , (42)

in which S7%(r) (a = x, y, 2) is given by

1/2
S2(r) =Aaw, (43)

where
Ay = %[(Cz)z +CyC3+ CyC1 ],
Ay = %[(Cg)z + C3C1 + C5C,],
A, = %[(C1)2+C1C2+C163]- (44)

We note that the logarithmic factor in Eq. (43) arises from the marginally irrelevant operator
J, 1.+ Jg in the low energy field theory in Eq. (21). For finite size periodic systems, r should be
replaced by r; = % sin(7-) according to conformal field theory on cylinders. The expressions
of other five Fourier components in Eq. (42) are included in Appendix C.

3.3 T as the smallest group realizing SU(2); conformal invariance

Finally, we argue that if the symmetry group is lowered from cubic to planar, then in gen-
eral the emergent SU(2); conformal invariance will be lost. Let’s consider the dimension 2

13
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operators J f‘JIQ . Without loss of generality, let’s also assume that the system has time rever-
sal symmetry, since if the SU(2); conformal invariance is already lost in the presence of time
reversal symmetry, it must also be lost when time reversal symmetry is absent. Since time re-
versal switches the left and right movers, it requires the symmetric combination J f‘Jlf +J f Jg.
For such symmetric combinations, the spatial inversion can also be effectively viewed as an
internal symmetry acting as identity, since in view of representations of inversion symmetry,

J f‘J}? +J f J¢ has no difference from J*J P, where spatial inversion acts trivially on the vector
space span{J%*|a = x, y,z}.

Hence, we see that for the quadratic terms J LO‘J}f +J f Jg , the action of the nonsymmorphic
symmetry group effectively reduces to a subgroup of SU(2), and again in view of represen-
tations, there is no difference to consider J*J#, where span{J%|a = x, y,z} is a vector rep-
resentation (i.e., angular momentum 1) of the SU(2) group. Using the angular momentum
addition rule, we have 18 1 = 0® 1@ 2, where “n” (n € Z) represents the representation of the
SU(2) group with the value of the angular momentum equal to n. Keeping only the symmetric
combinations, this becomes 1 ® 1 = 0 ® 2. When the symmetry group is lowered from cubic
to planar, we should consider U(1) instead of SU(2), i.e., the planar nonsymmorphic group
effectively acts as a subgroup of U(1). In the planar case, the quintet sector (i.e., the sector of
angular momentum 2) can be further decomposed, which contains an L* = 0 state, where L*
is the quantum number for the U(1) group. Notice that this state is not invariant under cubic
symmetry groups, since the decomposition of the quintet sector according to cubic groups is
in general 2 = E @ T which does not contain any one-dimensional irreducible representation,
where E and T represent the two- and three-dimensional irreducible representations of the
cubic groups.

In this way, we see that the low energy field theory for a planar nonsymmorphic group is
in general at most of the XXZ type (i.e., at most having emergent U(1) symmetry), thereby
spoiling the emergent SU(2); conformal symmetry. We note that there may be other operators
with scaling dimensions smaller than 2 which are allowed by more general nonsymmorphic
planar groups. However, since SU(2); conformal invariance is already broken at the level of
dimension 2 operators, it must also be broken in more general cases where additional operators
are allowed by symmetries.

Based on the above analysis, we conclude that the nonsymmorphic cubic T group is the
smallest group required for an emergent SU(2); conformal symmetry at low energies. Here
we emphasize that it is still possible for the system to have emergent SU(2); conformal in-
variance for planar nonsymmorphic groups under special circumstances, for example, at the
continuous phase transition points between Luttinger liquid and ordered phases (i.e., a tran-
sition from planar XXZ to axial XXZ models) [32]. However, in this case, the region having
emergent SU(2); conformal invariance does not occupy an extended volume in the phase dia-
gram, or to say, such region has zero measure and requires fine tuning. On the other hand, the
SU(2); conformal invariance ensured by nonsymmorphic cubic group symmetries is a generic
symmetry property of the model, not requiring any fine tuning.

3.4 The asymmetric-gamma-octupole model

We consider the following “asymmetric-gamma-octupole model”

Hyrq = Hap + Q(ZSf_lsjy S —Zsjy_lsfsjyﬂ), (45)
J J
in which the asymmetric gamma term H,y is defined as
Hy=Hg+ . (2)7'D(sesl —sfse), (46)
<ij>€ybond
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Figure 4: S¥*(r.)/ In'/?(r;) as a function of r; on a log-log scale where the slope is
—1.042, in which r; = % sin(5-). DMRG numerics are performed for the asymmetric-
gamma-octupole model in the Ug frame on a system of L = 144 sites using periodic
boundary conditions. The parameters are chosen as I} =—0.8, I, = —1.2, 2 =0.3.

and the Q term is a spin-octupolar term. We note that the D term in Eq. (46) is a staggered site-
dependent Dzyaloshinskii-Moriya interaction which can be generated by a staggered electric
field along z-direction.

Similarly, H), in the six-sublattice rotated frame is defined as Hy., = (Us) 'HarqUs,
given by

/ _ /3 ﬁ ‘a Yy /ﬁ ar o’Yr /ﬁr
Hypo= 2. (—rlsf‘sj‘?‘—rzsi sj)+QZ(sj_llsj s —si s’ SJ.H), (47)
j

<ij>eybond
inwhichI; =T+ D, I, =T'—D; vy = x,3, y has a three-site periodicity as shown in Fig. 1 (b);
y; =< j—1,j> and (a;, B;, y;) form a right-handed coordinate system; y, =< j,j+ 1> and
(ar, By, 7,) form a right-handed coordinate system. The explicit expressions of Hyrq and Hy .,
are included in Appendix A. It can be verified that H), is invariant under all the symmetry
operations in Eq. (4) except 7 and R;I. Hence the symmetry group Gurq satisfies

Garg = Gr, (48)

where Gr is defined in Eq. (14). This shows that H,r provides a concrete realization for the
nonsymmorphic T group, and we expect that the system has an emergent SU(2); conformal
symmetry at low energies for a range of nonzero D and 2. We note that there are many other
terms which preserve the nonsymmorphic T symmetry, and Eq. (45) is only one of the many
possibilities.

We discuss the numerical evidence for the emergent SU(2); invariance by comparing
numerical results with the predictions in Eq. (43). Fig. 4 shows the numerical results of
S*(rp)/ In'/?(r;) as a function of r; on a log-log scale for the asymmetric-gamma-octupole
model H)., in Eq. (47) in the Ug frame at I} = —0.8, I, = —1.2, and £ = 0.3, obtained from
DMRG simulations on a system of L = 144 sites using periodic boundary conditions, in which
r, = %sin(%) in accordance with conformal field theory on finite size systems. The slope
extracted from Fig. 4 (a) is —1.042, which is very close to —1, consistent with the prediction
of the SU(2); WZW model in Eq. (43).

3.5 Numerical evidence for velocity difference in left and right chiral sectors

In Eq. (22), we have proved that because of a lack of inversion and time reversal symmetries,
for the case of the nonsymmorphic T group, the velocities in the left and right chiral sectors
have different values. Here we numerically demonstrate such velocity difference.
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1.55 1.6 1.65
log 7y,

Figure 5: [rLSj;"(rL)]2 versus log(r; ) for J, = 0 (blue points) and J, = 0.13 (orange

points), in which r; = % sin(%-). DMRG numerics are performed for HIQZF)Q defined in

Eq. (55) on a system of L = 144 sites using periodic boundary conditions.

In general, the left and right sectors are coupled by the marginal term u f dxJ, - Jp in Eq.
(21). To decouple the two chiral sectors, we use a trick by adding a next-nearest neighboring
Heisenberg term. The model that we consider is the following “asymmetric-gamma-octupole-
J, model”,

Ho = Hrg +JZZ§1' Sita.- (49)
i

In the low energy field theory, the J, term renormalizes the marginal coupling u in Eq. (21).
At a critical value J,., the coupling u vanishes, and the logarithmic correction in the corre-
lation functions at J, = J,. disappear. In Fig. 5, [r;S* (r;)]? as a function of log(r;) is
plotted by the blue hollow circles, in which the parameters are taken as I}, = —0.8, I, = —1.2,
Q = 0.3, and J, = 0, the same as those in Fig. 4. Clearly, the approximately linear relation
between [r,S7* (r;)]? and log(r; ) is consistent with the prediction of the logarithmic correc-
tion in Eq. (43). When J, = 0.13 is further added to the Hamiltonian, the numerical results
of [r,S7* (r;)]? as a function of log(r;) become the orange hollow circles in Fig. 5, which is
approximately flat with a vanishing slope, indicating an absence of the logarithmic correction
and a critical value J,, close to 0.13.

Next, we consider periodic chains with odd lengths, where J, is taken as J,, such that
the two chiral sectors are decoupled. As discussed in Ref. [44] (see Table I therein), when the
velocities in the left and right chiral sectors are the same, the energy spectrum for systems with
an SU(2); xSU(2)r symmetry exhibits a four-fold ground state degeneracy for odd periodic
chains, two coming from the left chiral sector and the other two coming from the right chiral
sector, which is numerically confirmed for the spin-1/2 J;-J, Heisenberg chain with system
size L = 19 shown in Fig. 6 in Ref. [44].

On the other hand, when the velocities are different, it is expected that the four-fold ground
state degeneracy is split into two groups, each having a two-fold degeneracy. Fig. 6 (a) shows
the energies E — E, of the four lowest states at different odd system sizes L with periodic
boundary conditions, where the energies are measured from the ground state energy E, of
the corresponding system size. The parameters are taken as [} = —0.8, I;, = —1.2, 2 = 0.3,
and J, = 0.13 in DMRG numerical calculations. The splitting of the four states into two
degenerate groups can be clearly seen in the figure. Furthermore, according to Ref. [44], the
energy splitting between the lowest energy states in the two chiral sectors is predicted to be
%, where v; and vy are the velocities in the left and right chiral sectors, respectively.
In Fig. 6 (b), E5(L) — Ey(L) versus L are plotted on a log-log scale, where E, and E,, are the
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Figure 6: Energies E — E, of the four lowest states (denoted by the symbols “star”,
“square”, “circle”, and “cross”) measured from the ground state energy E, as a func-
tion of the system size L (a) on linear scale, and (b) on a log-log scale. DMRG nu-
merics are performed for H/(azr)g defined in Eq. (49) atT; =—0.8, I, =—1.2, 2=10.3,
and J, = 0.13, with periodic boundary conditions.

energies of the third and first lowest states, respectively. As can be seen from Fig. 6 (b), the
relation is linear with a slope —1, consistent with the prediction AL~ where A = (v, —vg)/4.

4 Nonsymmorphic cubic T}, group

In this section, the nonsymmorphic T;, group is discussed. We construct the nonsymmorphic
Ty, group, give the minimal model with nonsymmorphic T symmetry, and present numerical
evidence obtained from DMRG simulations.

4.1 Construction of the nonsymmorphic T}, group

The cubic T}, group contains 24 group elements. In the language of crystalline point groups,
the Tj, group can be obtained from the T group by including the spatial inversion operation,
i.e.,, T, = T x Z,. In our case, time reversal operation 7 plays the role of inversion since 7
changes the sign of the spin operators. The set of generators of G, can be obtained from Eqg.
(17) by adding T, as

Gr, = <T,R,To,R(3, m)>, (50)

which satisfies
Gr, /<T3,>=Ty. (51)

We note that there is an intuitive understanding of the isomorphism in Eq. (51). If the
spatial components in the symmetry operations in Eq. (50) are temporarily ignored, then it
can be observed that all the operations restricted within the spin space leave the decorated
cube in Fig. 7 invariant. On the other hand, the symmetry group of the decorated cube in Fig.
7 is the cubic Ty group, hence it is not a surprise that Gy, is intimately related to the cubic Tj,
group. Notice that Fig. 7 has a larger symmetry group than Fig. 3, since the former is also
invariant under inversion (corresponding to time reversal) while the latter is not.
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Figure 7: Decorated cube with the symmetry group as the Tj, group.

Next, we derive the nonsymmorphic nonabelian bosonization formulas which are consis-
tent with the nonsymmorphic T} group. Since T is a subgroup of T}, the relations in Egs.
(38,39) also apply to the T} case. Further imposing the time reversal symmetry, we obtain the
following constraints for the bosonization coefficients

@ _ R’ _
pY =p® = p,
W) _ R’ _
p{H =p® = p,,
p{" =p® = p,, (52)

in addition to those in Egs. (38,39). Using the nonsymmorphic bosonization formulas and the
SU(2); conformal field theory, the component S7%(r) of the spin correlation function (S'SY, )
(a = x,y,2) in the Uy frame can be shown to be same as the case of the cubic T group given

in Eq. (43).

4.2 The asymmetric gamma model

We consider the “asymmetric Gamma model” H,r defined in Eq. (46). More explicitly, the
Hamiltonian can be written in the following form,

_ Y Yy
Hur = D (118}, 1S5+ TS5, 1S3 )+ > (118585, 1 + 1555, 155.,1), (53)
n n

in which I' = (I} +15)/2, D = (I; — I)/2. In what follows, we sometimes parametrize I'; and
I, as
I =cos(0), I, =sin(6). (54)

Clearly, when I} =T, Eq. (53) reduces to the symmetric gamma model defined in Eq. (1).
Performing the six-sublattice rotation Ug defined in Eq. (2), Hyr becomes H, . = (Ug) tHar U,
given by
o BB
Hyp= Y, (-nsgst—nslst), (55)
<ij>eybond

in which y = x, 2, y has a three-site periodicity as shown in Fig. 1 (b). Explicit expressions of
Hyr and H)p. = (Ug) *H,rUg are included in Appendix A.

It can be verified that when I} # I, all the symmetries in Eq. (4) remain to be the sym-
metries of H,. except R;I. Hence the symmetry group Gar of H). is

Gar = <T,R,T,,R(x,m),R(J,m),R(Z, T)>. (56)
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Comparing with G in Eq. (14), we see that G, has an additional time reversal symmetry.
Thus, as discussed in Sec. 4.1, we have

GAF == GTh B (57)

i.e., the asymmetric gamma model has a nonsymmorphic T} symmetry, and it is expected that
there is an extended region in the phase diagram of the asymmetric gamma model which has
an emergent SU(2); conformal symmetry.

Before proceeding on presenting numerical evidences for the asymmetric gamma model,
we make some comments on the properties of this model. We first discuss the unitarily equiv-
alent relations in the asymmetric model. For convenience, we work with the unrotated frame
and consider Hp.

First, notice that a global spin rotation R(Z, ) around z-axis by 7 changes the signs of both
I and I, hence there is the equivalent relation

(T, 5p) ~ (I, —-T,), (58)

i.e.,, 8 ~ m+ 0 up to a unitary transformation. Second, spatial inversion with respect to the
middle point of a bond switches I} and T, hence

(0, 5) ~ (Ty, 1), (59)

i.e., 0 ~ m/2—0. Third, it can checked that by performing R(¥, 7) on odd sites and R(x, 1)
on even sites, I} is sent to —I; whereas I, remains unchanged, hence there is the equivalence

(1—‘1’ FZ) ~ (_Fla FZ) 5 (60)

i.e., 8 ~ m— 6. Based on the above discussions, we see that it is enough to consider the
parameter region 6 € [t/4, w/2].
Another interesting property is that the asymmetric gamma model is exactly solvable via
a Jordan-Wigner transformation when one of T; and T vanishes. Because of the equivalent
relations in Egs. (58,59,60), it is enough to consider the case I, = 0, I} > 0. Then the model
becomes
Hrl =0 Z(Sgn—ls;n + Sgnsgrwl) : (61)

n

In fact, by the following two-sublattice unitary transformations V,

Sublattice 1: (Sy_1,Sy. 1,S5,1) = (=S5, 1,—S3. 1,—S5._1), )
Sublattice 2: (S} ,S;5,S5,) — (=S5.,—S5.,—S5 ).

Hry, in Eq. (61) can be mapped to the following 1D Kitaev model via the identification I} = K,

Hg= Y. KSIS, (63)
<ij>€ybond

in which the bond pattern for y is shown in Fig. 1 (a). On the other hand, it is known that

the 1D spin-1/2 Kitaev model can be solved by a Jordan-Wigner transformation [45], whose

spectrum contains a Majorana flat band and a helical Majorana. Therefore, H, is also exactly

solvable with an infinite ground state degeneracy.

From this discussion, we see that the physics at (I; = 0,I3) and (I3, I, = 0) is different
from the phase of emergent SU(2); conformal invariance. Hence we expect that the spin-1/2
asymmetric gamma model has an emergent SU(2); conformal symmetry in a neighborhood
of I} =1, i.e., 6 = m/4. However, the SU(2); conformal symmetry does not extend to the
special points I} = 0 or I, = 0, indicating a phase transition in between. This is verified by
our DMRG numerical simulations to be discussed shortly.
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Figure 8: (a) S*(r;) as function of r on a log-log scale where the slope is —0.9089,
() [r, 83" (r;)]? versus log(r; ) for J, = 0 (red points) and J, = 0.075 (black points),
in which r; = %sin(%). DMRG numerics are performed for the asymmetric gamma
model defined in Eq. (55) at & = 0.357 on a system of L = 144 sites using periodic
boundary conditions.

4.3 Numerical evidence for emergent SU(2), invariance

Next we discuss the numerical evidence for the emergent SU(2); conformal invariance in the
asymmetric gamma model. We compare the numerical results on central charge and spin cor-
relation functions with the predictions from the SU(2); WZW model. Because of the equivalent
relations in Egs. (58,59,60), we restrict to the range 6 € [7/4, /2]. Notice that 8 = /4 is
the symmetric gamma model, and 6 = 7/2 corresponds to I} = 0.

According to Ref. [24], the 6 = /4 point (i.e., the spin-1/2 1D symmetric gamma model)
has an emergent SU(2); invariance at low energies. Based on the analysis in Sec. 3.2, we
expect that there is a range of 6 around 6 = 7/4 which has emergent SU(2),; invariance.
Fig. 8 (a) shows the numerical results at & = 0.357 for S**(r,) as a function of r; on a
log-log scale, obtained from DMRG simulations on a system of L = 144 sites using periodic
boundary conditions. The extracted exponent from the slope of the fitted line in Fig. 8 (a) is
—0.9089, very close to the predicted value —1 in Eq. (43). The 9% deviation from 1 arises
from the logarithmic correction in Eq. (43). To further study the logarithmic correction, we
plot [Szx(rL)rL]2 as a function of log(r; ) as shown by the red dots in Fig. 8 (b). It is clear that
the red dots approximately have a linear relation, which is consistent with the prediction in
Eq. (43). Furthermore, the logarithmic correction in S** can be killed by introducing a second
nearest neighbor Heisenberg term J, ) ; S §l~+2 into Hy. in Eq. (55) [40], similar to Sec. ??.
As shown by the black dots in Fig. 8 (b), the relation between [Sﬁx(rL)rL]2 and log(r;) has
already become very flat at J, = 0.075, indicating a significant suppression of the logarithmic
correction and a critical value J,, very close to 0.075.

To determine the range of the phase of emergent SU(2); conformal invariance, we have nu-
merically calculated the central charge (denoted as ¢) in the narrow region 6 € [0.457,0.57],
as shown in Fig. 9 (a). Clearly, the value of the central charge remains very close to 1 un-
til 6 = 0.497, where it suddenly drops to zero, indicating an SU(2); phase in the region
0 € [0.257,0.497] and a different phase for 8 € [0.497,0.57]. In Fig. 9 (b), the fits for
central charge at 6 = 0.46257 and 6 = 0.497 are shown by the black and red lines, respec-
tively. It can be seen from Fig. 9 (b) that a good linear fit with ¢ = 0.946 can be obtained
from the black points, whereas the red points are far from a ¢ ~ 1 linear relation. As discussed
in Sec. 4.2, the existence of a phase different from SU(2); in the neighborhood of 6 = 0.5n
is expected, since 8 = 0.57 is an exactly solvable point which has an infinite ground state
degeneracy.
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Figure 9: (a) Extracted values of the central charge for the asymmetric gamma model
in the region 6 € [0.457,0.57], (b) numerical data for the linear fits of the central
charge at 8 = 0.46257 (black) and 6 = 0.497 (red). DMRG numerics are performed
for the asymmetric gamma model defined in Eq. (55) on a system of L = 144 sites
using periodic boundary conditions.

5 Nonsymmorphic cubic O group

In this section, we discuss the nonsymmorphic cubic O group, construct the minimal model
having emergent SU(2); conformal invariance, and present numerical evidence obtained from
DMRG simulations.

5.1 Construction of the nonsymmorphic O group

The cubic O group contains 24 group elements. In the language of crystalline point groups,
the O group can be obtained from the O; group by removing the spatial inversion operation,
i.e., O, = O x Z,. In our case, time reversal acts as the inversion in the spin space, hence the
nonsymmorphic O group G, can be constructed as

Go = <R,T,,R;I,R(%, m),R(J, ™), R(Z, m)>, (64)

which satisfies
Go/<T3,>=0. (65)

It is useful and interesting to construct the generators of G,. Let’s define

R =(R,T,)™,
S'=R,T,) " RjI-R,T,-R(¥,m). (66)

It can be verified that the actions of R’ and S’ are given by

R': (87,57,87) = (571,87 1,5%1),
" (87,87,57) = (S5 =851, S7.)). (67)
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U

Figure 10: Decorated cube with the symmetry group as the O group.

In fact, the group G, can be generated by R, S, i.e.,
Go = <R’,S'>, (68)
which can be seen from the following constructions by comparing with Eq. (64),
R, Ty = (R/)_l 5
Ryl = (SVR(S)RY,
R(%,m)=R'(S*®R)™,
R(y,m)=R)(SVR,
R(z,m) = (§)%. (69)

The cubic point group O is isomorphic to the permutation group S,, which has a generator-
relation representation

O0=<R,S|R>*=8*=(RS)*>=e>. (70)
It can be verified that
(R/)S = T—3a )
(=1,
(R'S")? =1, (71)

which satisfy the relations in Eq. (70) in the sense of modulo T;,. Therefore,
<R’,§8'>/<T5,> C O. In addition, it can be verified that <R’,S">/<T;,> contains at least 24
distinct group elements. Since |O| = 24, we conclude that

<R,§'>/<T;,> =0, (72)

which proves Eq. (65).

We note that there is an intuitive understanding of the isomorphism in Eq. (65). If the
spatial components in the symmetry operations in Eq. (64) are temporarily ignored, then it
can be observed that all the operations restricted within the spin space leave the decorated
cube in Fig. 10 invariant. On the other hand, the symmetry group of the decorated cube in
Fig. 10 is the cubic O group, hence it is not a surprise that G, is intimately related to the cubic
O group. Notice that Fig. 10 has a larger symmetry group than Fig. 3, since Fig. 10 is also
invariant under R; shown in Fig. 2, while Fig. 3 is not.
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Next, we derive the nonsymmorphic nonabelian bosonization formulas which are consis-
tent with the nonsymmorphic O group. Since T is a subgroup of O, the relations in Egs.
(38,39) also apply to the O case. Further imposing the R;I symmetry, we obtain the following
constraints for the bosonization coefficients

(L) _ (@)
D2 - D3 >
®) _ n®
p® = pi®
CZ = C3 ) (73)

in addition to those in Egs. (38,39). Using the nonsymmorphic bosonization formulas and the
SU(2), conformal field theory, the component S>%(r) of the spin correlation function (S{'S{, )
(a=x,Yy,2) in the Ug frame can be shown to be given by Eq. (43) in which C, and C; should

be set as equal.

5.2 The gamma-octupole model

We consider the following “gamma-octupole model”
Hg=T Y. (stsf+sPse)+ad’(sx s7sy, —s7 5787, ), (74)
J

<ij>€ybond

which in addition to Hg, also contains a spin-octupolar term (i.e., the Q term).
Performing the six-sublattice rotation Ug defined in Eq. (2), Hpo becomes
H{,, = (Us) 'HrqUs, given by
r_ ragla BB ra o' g!B ray oy oy
Hyg=-T > (sesp+sPsf)va) (sns)sf—smsisln). 09
j

<ij>eybond

in which vy = x,z,y has a three-site periodicity as shown in Fig. 1 (b); v; =< j—1,j >
and (ay, f8;,7;) form a right-handed coordinate system; y, =< j,j+ 1> and (a,, f3,,7,) form
a right-handed coordinate system. Explicit expressions of Hrq and Hy, = (Ug) *HrpqUs are
included in Appendix A.

Because of the spin-octupolar term, it is clear that Hy, does not have time reversal sym-
metry. However, as can be checked, Hy,, is invariant under all other symmetries in Eq. (4)
except 7. Therefore, the symmetry group Grgq is

Grq = Go, (76)

where G, is defined in Eq. (64). This shows that Hyq provides a concrete realization for the
nonsymmorphic O group, and it is expected that the system has an emergent SU(2); conformal
symmetry at low energies for a range of Q around zero. We note that there are many other
terms which preserve the nonsymmorphic O symmetry, and the choice of the Q-term is only
one such possibility.

Next, we discuss numerical evidence for the emergent SU(2), invariance by comparing
numerical results with the prediction in Eq. (43). Fig. 11 shows the numerical results of
§7*(rp) as a function of r; on a log-log scale for the gamma-octupole model in the Ug frame
defined in Eq. (75) at T' = —1, and Q = 0.3, obtained from DMRG simulations on a system
of L = 144 sites using periodic boundary conditions. The slope extracted from Fig. 4 (a) is
—1.043, which is very close to —1, consistent with the prediction of SU(2); WZW model in
Eq. (43).
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Figure 11: S3*(r,)/ In'/ 2(r;) as function of r; on a log-log scale where the slope
is —1.043, in which r; = %sin(%). DMRG numerics are performed for the gamma-
octupole model in the Ug frame on a system of L = 144 sites using periodic boundary
conditions. The parameters are chosen asT' =—1, 2 =0.3.

6 Nonsymmorphic cubic T; group

In this section, we construct the nonsymmorphic cubic T; group, give the minimal model for
T,; group which has emergent SU(2); conformal invariance, and present numerical evidence
obtained from DMRG simulations.

6.1 Construction of the nonsymmorphic T; group

The cubic T; group contains 24 group elements. The T; group is isomorphic to S, similar
to the O group. However, the difference is that while all the elements in O are proper (i.e.,
having determinant equal to 1), T; contain 12 improper elements (with determinant equal to
-1).

The generators of the nonsymmorphic cubic T; group Gr, can be obtained by slightly
modifying the generators for G,. Adding 7 to S’ in Eq. (66), we define

R// — (Ra Ta)—l ,
S”" =T -(R,T,) *-RiI-R,T,-R(J,m). (77)

The group Gr, is generated by the two generators in Eq. (77), i.e.,
Gr, = <R",8">. (78)
Using the same method in Sec. 5.1, it can be straightforwardly seen that Gy, satisfies
Gr,/<T3,>=S,. (79)

The difference from the nonsymmorphic cubic group G, lies in the additional 7 operation in
the definition of S”, which generates improper symmetry operations in Gy -

We note that there is an intuitive understanding of the isomorphism in Eq. (79). If the
spatial components in the symmetry operations in Eq. (77) are temporarily ignored, then it
can be observed that all the operations restricted within the spin space leave the decorated
cube in Fig. 12 invariant. On the other hand, the symmetry group of the decorated cube in
Fig. 12 is the cubic Ty group, hence it is not a surprise that Gr, is intimately related to the
cubic T, group. Notice that Fig. 12 has a larger symmetry group than Fig. 3, since the former
is also invariant under R; followed by an inversion (corresponding to time reversal) in Fig. 2,
while the latter is not.
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Figure 12: Decorated cube with the symmetry group as the T; group.

Next, we derive the nonsymmorphic nonabelian bosonization formulas which are consis-
tent with the nonsymmorphic T; group. Since T is a subgroup of T, the relations in Egs.
(38,39) also apply to the T, case. Further imposing the 7R;I symmetry, we obtain the follow-
ing constraints for the bosonization coefficients

) _ p®
DZ - D3 ’
®) _ (L)
D2 - D3 ’
C2 = C3 5 (80)

in addition to those in Egs. (38,39). Using the nonsymmorphic bosonization formulas and the

SU(2), conformal field theory, the component S7%(r) of the spin correlation function (S{'Sy, )

(a=x,y,2) in the Ug frame can be shown to be given by Eq. (43) in which C, and C5 should
be set as equal.

6.2 The gamma-staggered-octupole model
We consider the following “gamma-staggered-octupole model”

_ i—1 y Yy Yy
Hrq, = Her +Q, Z(—)J (s;‘_ls V8%, +57,5%S ].H) ) (81)
j

where Hgr is defined in Eq. (1), and the Q, term represents a spin-octupolar interaction with
a staggered sign.

Performing the six-sublattice rotation Ug defined in Eq. (2), Hrq, becomes
Hi,, = (Us)'Hrg,Us, given by
/ — ag/ BB ‘a 1o/ a oty o/Br
Hig =-T > (sese+sPsP)+a, > (sshsh +ssTsh),  (82)

<ij>€ybond J

in which y = x,z, y has a three-site periodicity as shown in Fig. 1 (b); y; =< j—1,j > and
(a;, B;, 1) form a right-handed coordinate system; y, =< j,j+ 1 > and (a,, ,,7,) form a
right-handed coordinate system. Explicit expressions of Hrq, and Hfﬂz are included in Ap-
pendix A.

It can be checked that Hll“szz is not invariant under 7 nor R;I, but the combination 7RI is
a symmetry of Hf%. Furthermore, it is straightforward to see that all the elements in G are

symmetries of HICQz, hence the symmetry group Grq X of anz is

Gro, = <TR;I,R,Tq,R(X, ),R(¥, 7),R(2, T)>. (83)
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Figure 13: S7*(r,)/ In'/ 2(r;) as function of r; on a log-log scale where the slope
is —1.043, in which r; = %sin(%). DMRG numerics are performed for the gamma-
staggered-octupole model in the Ug frame on a system of L. = 144 sites using periodic
boundary conditions. The parameters are chosen as I' = —1, 2, =0.3.

It is not hard to show that
Grq, = Gr,, (84)

where Gy, is defined in Eq. (78). To see this, simply notice that one the one hand, the gen-
erators R” and S§” of Gr, can be obtained from the elements within the bracket of right hand
side of Eq. (83); and on the other hand, all the elements in the bracket of right hand side of
Eq. (83) can be constructed from R” and S”, since

TRII — (R//)—]_S//(R//)—l(S//)—Z(R//)Z , (85)

and the constructions for R, T,, R(&, ) (a = x, y,z) are the same as those in Eq. (69) except
that R" and S’ should be replaced by R” and S”, respectively.

The above discussions show that Hrq, provides a concrete realization for the nonsymmor-
phic T; group, and we expect that the system has an emergent SU(2); conformal symmetry
at low energies for a range of Q, around Q, = 0. We note that there are many other terms
which preserve the nonsymmorphic T; symmetry, and the choice of the Q,-term is only one
such possibility.

Next, we discuss numerical evidence for the emergent SU(2), invariance by comparing
the numerical results with the predictions in Eq. (43). Fig. 13 shows the numerical re-
sults of S7*(r)/ InY/ %(r;) as a function of r; on a log-log scale for the gamma-staggered-
octupole model in the Uy frame defined in Eq. (82) at I} = —1 and Q, = 0.3, obtained from
DMRG simulations on a system of L = 144 sites using periodic boundary conditions, in which
r, = %sin(%). The slope extracted from Fig. 13 (a) is —1.043, which is very close to —1,
consistent with the prediction from SU(2); WZW model in Eq. (43).

7 The cases of six-site unit cells

In previous sections, the systems all have a three-site periodicity in the Ug frame. Remarkably,
as shown in Ref. [34], it is possible for an emergence of SU(2); conformal symmetry even
when the unit cell contains six sites. This is a surprising result since naively the six-site unit
cell corresponds to an integer spin, not satisfying the conditions of the Lieb-Schultz-Mattis-
Affleck theorem [46-49] where half-odd integer spin is required. It has been established in
Ref. [34] that the SU(2); invariance is protected by a nonsymmorphic symmetry group Grp,,
satisfying Grp, /<Teq> = Oy, in the Us frame.
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In this section, we ask the similar questions as Sec. 2.3: Can we lower the nonsymmorphic
Oy, symmetry for the case of six-site unit cell while maintaining the emergent SU(2); conformal
invariance at low energies; and what is the smallest nonsymmorphic symmetry group which
can stabilize an extended SU(2); phase in this case? For a brief summary of the results in this
section, we find that not all nonsymmorphic cubic symmetry groups can stabilize an SU(2),
phase in the case of six-site unit cell. In fact, besides Oy, only the O and T,; groups can do the
job.

7.1 Review of the symmetric 1D gamma mode with a Dzyaloshinskii-Moriya
interation

In this subsection, we briefly review the 1D spin-1/2 symmetric gamma model with an ad-
ditional Dzyaloshinskii-Moriya (DM) interaction studied in detail in Ref. [34]. By adding
DM(Sf‘Sf —Siﬁ SJ‘?‘) to the Hamiltonian on bond y =< ij > in Eq. (1), we obtain the following
Kitaev-DM model,

Hp, = ., (1isesl+1,sfse), (86)
<ij>€ybond

where Iy =T+ Dy, I, = I' — D,,. After performing the Uy transformation, the transformed
Hamiltonian H{, = (Us) 'Hrp,  Us becomes
M M

Hy, = > (-Tsese—r,slsf), 87)

<ij>€ybond

in which this time, the bond y has a six-site periodicity as shown in Fig. 1 (c), and the conven-

tions for the spin directions in Eq. (87) are: (y, a, 8) form a right-handed coordinate system

when y € {x,y,z}; (v,a, B) form a left-handed coordinate system when y € {x,y,Z}; and

Sf = S;.l (u = x,y,2). Explicit expressions of Hrp and HICDM are included in Appendix A.2.1.
In the Ug frame, HfDM is invariant under the following transformations

T (5787.87) = (=8, =S, =5,
— / /
R Tt (57%,87,87) = (5155115, S10).
RII : (Sl{x:Sl{y,Si/Z) - (_S;Z_l’_S;)Ll:_S:;x_l s

o o (88)
R(%,m): (S%,87,8%)—(S,—S”,—S[),
R(J,m):  (SP,87,8%) = (=8/,8”,—S/),

R(Z,m) 1 (S%,87,8%) = (=S, —S/,87).

AR A

Clearly, though HfDM is invariant under Tg,, T3, is no longer a symmetry of the model. Com-
paring with Eq. (4), it can be seen that the only difference is a replacement of R, T, by
(ReT,)*> = R,'Ty,. The symmetry group Grp  for the gamma-DM model in the Uy frame
is generated by the symmetry operations in Eq. (88), and it has been proved in Ref. [34] that
Grp,, satisfies

Grp,, /<Teq> = Oy, (89)

Since Eq. (5) for the symmetric gamma model can be alternatively rewritten as
Gsr/<T3,> = Oy X Zy where Zy = <T3,>/<Tg,>, we see that Grp,, is halved compared
Wlth Gs]’*.
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As discussed in Ref. [34], in the phase diagram parametrized by 8 (where 6 is defined
through I; = cos(0), I, = sin(6)), HICDM has an extended gapless phase having emergent
SU(2); conformal invariance at low energies. The nonsymmorphic nonabelian bosonization
formulas are given by

S(X

j+6n — Dg,j‘]g + Dg,ng +(-) C](-xNa , (90)

in which the bosonization coefficients satisfy (v = L,R)

X —_—nY —nz —nY —nZ — px _—
Dv,l_Dv,S_Dv,S_Dv,l_Dv,S_Dv,S_DZ’

zZ _nX _—_ny _—

Dv,l_Dv,S_Dv,S_Dl’

X _nY —_—n%2 —n/ —Nn2 —nx —nY —n’
Dv,Z_Dv,4_Dv,6_D2_Dv,Z_Dv,4_Dv,6_D2’

y _ _ _ /
Dv,z—Di,Af—Df,s—Dl- (91)

7.2 Symmetry analysis of the low energy field theory

In this subsection, we perform a symmetry analysis of the low energy field theory to figure out
what nonsymmorphic symmetry groups can stabilize a gapless of emergent SU(2); conformal
invariance at low energies. The 1D spin-1/2 gamma-DM model in Eq. (87) is taken as the
unperturbed starting point for the analysis.

Using the methods similar to Sec. 3.1, Sec. 4.1, Sec. 5.1, Sec. 6.1, the nonsymmorphic
cubic groups T, Ty, O and T, in the present case of six-site unit cells can be constructed as

Gr = <R'Tyq,R(%, m),R(F, m),R(2, T)>, (92)
Gy, = <T,R' Ty, R(%,7),R(J, n),R(Z, 7)>, (93)
Go = <R;I,R'Tyq,R(X,m),R(¥, ),R(Z, m)>, (94)
Gr, = <TR;LR,' Tyq,R(%, m),R(J, M), R(Z, )>. (95)

We note that neither G; nor GTh can stabilize a gapless phase with emergent SU(2); invariance,
since € = tr(g) is allowed by both symmetry groups, which is a relevant operator in the RG
sense and opens a gap in the system.

Next we show that the low energy field theory remains to be the SU(2); WZW model (up
to marginally irrelevant operators) for both the O and T; groups. The symmetry analysis is as
follows.

1) Dimension 1/2 operators: € = tr(g) is forbidden by R, for G, and forbidden by TR;I
for GTd; N¢ (a=x,y,2) are forbidden by R(/§, n) (B € {x,y,2}, B # a) for both G, and GTd.

2) Dimension 1 operators: J) (a = X, y,z and v = L,R) are forbidden by R(/§, ) (B # a)
for both G, and Gr,.

3) Dimension 3/2 operators: J{'e, J5e are forbidden by R(f,m) (B # a) for both G, and
GTd; (J, +Jg)- N is allowed by G,, whereas J; - N and J - N are both allowed by GTd.

4) Dimension 2 operators: J; - J; +Jy - Jz and J; - Jy are allowed by G,, whereas J; - J;,
Jr - Jp and J; - J; are allowed by GTd.

Hence, the low energy field theory compatible with G, is

~ 2 - - - - - - - - -
Ay = f dx?nv(JL Ty T TR +wf dx(J, +J3) -N—uf dxJ, - T, (96)
and the field theory compatible with G 18
~ 2 - - - - - — - — - -
HO == J dX?TEV(AJL .JL +A_1JR'JR)+J dX(WLJL N +WRJR 'N)_UJ deL 'JR, (97)
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in which v is velocity, A, w, w;, wg, u are coupling constants. On the other hand, it has been
shown in Ref. [34] that both J; - N and J, - N are total derivatives in the SU(2); WZW model,
given by

(J; -N)(z,2') = —3i0,e(z,2"),

(Jr-N)(z,2") = 3i8ye(2,2'), (98)
inwhich z = At+ix and 2’ = A~'7—ix are the holomorphic and anti-holomorphic coordinates,
respectively, where 7 is the imaginary time, x is spatial coordinate, and appearances of A and
A1 in the expressions of z and Z’ are due to the fact that the velocities may not be the same
for left and right movers as discussed in Sec. 3.2. As a result, J; -N and fR - N have no effects
on the low energy properties, since their space-time integration vanish in the action in the
path integral. Then according to the RG analysis in Sec. 3.2, we see that as long as u > 0 in
Egs. (96,96), the system has an emergent SU(2); conformal invariance at low energies. This
establishes the fact that both the nonsymmorphic O and T,; groups can stabilize an extended
SU(2), phase in the present case of six-site unit cells.

The nonsymmorphic bosonization formulas can be derived similarly as before. For the O
group, the coefficients in Eq. (9) satisfy

Dif,l = Dil,s = Di,s = Di/,l = Di,s = D)vc,s = DEV) )

D}, =Djs= Di,s = ng) )

Dy, = Di/,4 =Dle=Dy =Dy, = Dil,s = D;(V) )

D}, =Dy =D =D, 99
whereas for the T; group, they satisfy

Di,= D{,s =Djs= D}}?/,l =Dps=Dps= DéL) )

Dzjzc,l = D})z/,:s =Dps = Dz/,l =Dj5= Df,s = DéR) )

Df,l = Df,a = Dil,s =D, = D;zc,3 = Dz}z/,s =Dy,

Df,z = DLy,4 = Df,e = D}Zz,z = D})z(,4 = Dﬁz/,e = D;(L) >

Dg,z = DI}Q/A = Dzzz,e = Dz,z = Df,4 = Di/,6 = D;(R) >

y — —_—nY = — —n’
DL,2 - Df,4 - Df,e - DR,Z - DI§,4 - DIJQC,6 - Dl : (100)

7.3 O group: The gamma-DM-octupole model

The minimal model for the nonsymmorphic O group with six-site unit cells in the Ug frame is
the gamma-DM-octupole model defined in the original frame as follows,

— y y y
Hrp, o = Hrp, + Q(Zs;_lsj 8%y — Zsj_lsjsjﬂ) , (101)
j j

in which Hyp  is defined in Eq. (86). Explicit expressions of the Hamiltonians in the original
and U frames are included in Appendix A.2.2.

Using the nonsymmorphic nonabelian bosonization formulas in Eq. (99), the w-wavevector
component S} *(r) of the spin correlation function (S7SY) in the Ug frame can be derived as

A, N B, In"2(r/ry)

Sy (N=— , (102)
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Figure 14: (a) S*(r,) as function of r; on a log-log scale where the slope is —0.9266,
(b) [rLSﬁ‘(rL)]2 versus log(r;), in which r; = %sin(%). DMRG numerics are per-
formed for the gamma-DM-octupole model in the Ug frame on a system of L = 144
sites using periodic boundary conditions. The parameters are chosen as I'; = —0.8,
I, =—0.12,2=0.3.

in which
A =1 [_D(L) (ZD(L) _op/0) L p) _ D’(”) +2op® (D(R) 4+ p/® L p® _ D’(R))]
X 6 2 2 2 1 1 2 2 2 1 1 4
1
B, = 6cz(zc2 +2C,+Cy +Cy). (103)

Next, we discuss numerical evidence for the emergent SU(2), invariance by comparing
numerical results with the prediction in Eq. (102). In Fig. 14 (a), the numerical results of
§7*(ry) as a function of r; are shown for the gamma-DM-octupole model in the U frame at
[N =—0.8, I, =—1.2, and 2 = 0.3, obtained from DMRG simulations on a system of L = 144
sites using periodic boundary conditions. In the r >> 1 limit, the 1/r? term in Eq. (102) can
be ignored, hence Eq. (102) predicts an exponent close to 1. The slope extracted from Fig.
14 (a) is —0.9266, which is very close to —1, consistent with the prediction of SU(2); WZW
model. In fact, the 7% deviation of the exponent from 1 is due to the logarithmic correction in
Eq. (102). To further study the logarithmic correction, [rLSf‘(rL)]2 is plotted against log(r;)
as shown in Fig. 14 (b). As can be seen from Fig. 14 (b), the relation is very linear, consistent
with the theoretical prediction in Eq. (102) in the r > 1 limit.

7.4 T, group: The gamma-DM-staggered-octupole model
The minimal model for the nonsymmorphic T; group with six-site unit cells in the Ug frame is
the gamma-DM-staggered-octupole model defined in the original frame as follows,

Hrp,q, = Hrp,, +Qp ) (—) (S, 875%, +87,5%s7,)), (104)
j

in which Hrp,, is defined in Eq. (86). Explicit expressions of the Hamiltonians in the original
and U frames are included in Appendix A.2.3.

Using the bosonization formulas in Eq. (100), the m-wavevector component S**(r) of the
spin correlation function (S7SY) in the Uy frame can be derived as

A, B, In'2(r/ry)

ST (=" + (105)
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Figure 15: (a) S*(r,) as function of r; on a log-log scale where the slope is —0.9272,
(b) [rLSf‘(rL)]2 versus log(r;), in which r; = %sin(%). DMRG numerics are per-
formed for the gamma-DM-staggered-octupole model in the Uy frame on a system
of L = 144 sites using periodic boundary conditions. The parameters are chosen as
I, =—0.8, T, =—0.12, Q, = 0.3.

in which

1
A, = 2[D3"(=D;" + Dy =Dy + Dy — ¥ + D))

®(_p® 4 p/® L) _ p@)
+D, (=D, + Dy —Dy+ Dy’ —D;” +D})],

1
B, = 6cz(zc2 +2C,+C+Cyp). (106)

Next, we discuss numerical evidence for the emergent SU(2), invariance by comparing
numerical results with the prediction in Eq. (105). In Fig. 15 (a), numerical results of S**(r)
as a function of r; on a log-log scale are shown for the gamma-DM-staggered-octupole model
in the Ug frame at I} = —0.8, I, = —1.2, and Q = 0.3, obtained from DMRG simulations
on a system of L = 144 sites using periodic boundary conditions. In the r > 1 limit, the
1/r? term in Eq. (105) can be ignored, hence Eq. (105) predicts an exponent close to 1.
The slope extracted from Fig. 15 (a) is —0.9272, which is very close to —1, consistent with
the prediction of SU(2); WZW model. In fact, the 7% deviation of the exponent from 1 is
due to the logarithmic correction in Eq. (105). To further study the logarithmic correction,
[rLSf["(rL)]2 is plotted against log(r;) as shown in Fig. 15 (b). As can be seen from Fig. 15
(b), the relation is very linear, consistent with the theoretical prediction in Eq. (105) in the
r > 1 limit.

8 Conclusion

In summary, we have studied the nonsymmorphic groups which can lead to extended gap-
less phases with emergent SU(2); conformal invariances in one-dimensional spin-1/2 models.
We find that all the five nonsymmorphic cubic groups including Oy, O, Ty, T4 and T can sta-
bilize SU(2); phases, whereas nonsymmorphic planar groups cannot. Minimal models are
constructed for the corresponding nonsymmorphic cubic groups, and numerical evidence of
emergent SU(2); conformal invariance are provided in the constructed models. Our work is
useful for understanding gapless phases in 1D spin systems having nonsymmorphic symme-
tries.
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A Explicit forms of the Hamiltonians

In this appendix, we give the explicit forms of the Hamiltonians for the models.

A.1 Three-site unit cell
A.1.1 Oy group: Symmetric gamma model

In the original frame, the Hamiltonian is

S.y

_ Y 4 Z
Hapy1onv2 = 1(S5,4155,40 S 2n+27>

2n+1 2n+1

_ z x X Z
H2n+2,2n+3 - 1—‘(S'Zn+252n+3 + SZn+252n+3) .

In the Ug frame, the Hamiltonian is

/ —_ 'y 'y 4 /%
H3n+1,3n+2 - 1—'(‘S'E’m-kl53n+2 + 53n+183n+2 ’

/ _ Ix Ix 'y 'y
H3n+2,3n+3 - 1—‘('S'3n+253n+3 + 53n+253n+3 ’

/ — 2 /z /x /x
H3n+3,3n+4 - l—‘(SBn+383n-4—4 + 53n+353n+4 :

A.1.2 T group: Asymmetric-gamma-omega model

In the original frame, the Hamiltonian is

— Y z 4 y x Q¥ b'e _ oY ¢x Y
H2n+1,2n+2 - F182n+182n+2 + F252n+152n+2 + Q(Szn‘92n+152n+2 52n52n+152n+2 ’

— X z 4 X x QY X _ oY ox y
H2n+2,2n+3 - F182n+182n+2 + F252n+152n+2 + Q(Sznszn+152n+2 SZnS2n+152n+2 :

In the Ug frame, the Hamiltonian is

/ — 'y 'y 4 Iz 4 x _'Yelx I
H3n+1,3n+2 - (F183n+153n+2 + F253n+153n+2) + Q(83n53n+153n+2 S3n53n+183n+2 >

/ — _ /x /x 'y 'y 'y /x Iz _glx /7 'y
H3n+2,3n+3 - (F153n+253n+3 + 1—‘2'5311+253r1-¢—3) + Q(53n+1SBn+253rL+3 SBn+1SBn+2SSn+3 >

/ —— 74 /2 Ix /x Ix 2 y a2 'y /x
H3n+3,3n+4 - (F153n+353n+4 + 1—‘253n+353n+4) + Q(SBn+2‘S'3n+3$3n+4 53n+253n+353n+4 .

A.1.3 Tj group: Asymmetric gamma model

In the original frame, the Hamiltonian is
y
52n+2 ’

b'e
52n+2 :

_ Yy z z
H2n+1,2n+2 - F152n+152n+2 + F252n+1

_ X 4 z
H2n+2,2n+3 - F1Szn+152n+2 + F252n+1
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In the Ug frame, the Hamiltonian is

% —_ /y %
H3n+1,3n+2 - (Fl 3n+153n+2 + 1—‘253n+153n+2 )

/ 'y
H3n+2,3n+3 —(I1S 3n+253n+3 + F253n+253n+3

/ x
H3n+3,3n+4 (Fl 3n+383n+4 + l—‘2513r1+‘,’153r1+4 :

A.1.4 O group: Gamma-omega model

In the original frame, the Hamiltonian is

4 x oY X Y ox Y
H2n+1 2n+2 — F(52n+1 2n+2 + 52n+1 2n+2) + Q(S Szn+152n+2 S Szn+152n+2

X x oY X }’ X Yy
H2n+2 2n+3 — F(52n+2 2n+3 + 52n+2 n+3) + Q(S 52n+152n+2 S 52n+152n+2

In the Ug frame, the Hamiltonian is

/ — 'y y 1z 1z 'y /x 'Y olx 1z
H3n+1 3n+2 F(53n+153n+2 + 53n+1 3n+2) + Q(S SBn+1'SBn+2 S SSn+1SBn+2 >
’y 1y ly /x V4 _q/x /z
H3n+2 3n+3 l—‘(531‘1+2 3n+3 + SBn+253n+3) + Q(S3n+153n+2$3n+3 S3n+1 3n+2 3n+3) ’
Ix S y  _ qlz 'y /x
H3n+3 3n+4 1—‘(5311+3 3n+4 + SSn+3 3n+4) + Q(53n+2 3n+353n+4 53n+253n+353n+4

A.1.5 T4 group: Gamma-Q, model

In the original frame, the Hamiltonian is

Z x oY X Y ox Y
H2n+1 2n+2 — F(82n+1s2n+2 + Szn+1 2n+2) + QZ(S Szn+152n+2 + S Szn+152n+2

X x oY X }’ X Yy
H2n+2 2n+3 — F(S2n+2 2n+3 + 52n+2 n+3) QZ(S Szn+152n+2 + S 52n+152n+2

In the Ug frame, the Hamiltonian is

/ — 'y 'y 7 1z 'Y /x 'Y o/x 1z
H3n+1,3n+2 - F(53n+153n+2 + SBn+1 3n+2) + Q2(S S3n+153n+2 + S 53n+153n+2 >

/ 'y 'y 'y /x 1z x gz
H3n+2 3n+3 l—‘(S3n+2 3n+3 + SBn+253n+3) + Qz (S3n+183n+253n+3 + S3n+1 3n+2 3n+3) )

/ Ix 74 14 'y Ix
H3n+3 3n+4 1—‘(Sfin+3 3n+4 + 53n+3 3n+4) + Qz (53n+2 3n+353n+4 + SBn+253n+353n+4

A.2 Six-site unit cell
A.2.1 Oy group: Gamma-DM model

In the original frame, the Hamiltonian is

Z 4 Yy
H2n+1,2n+2 Szn+152n+2 + F252n+152n+2 >

Z X X Z
Hopy2on+3 = I1185,1555013 T 1255,4955,43 -

In the Ug frame, the Hamiltonian is

H én+1,6n+2 = _Flsﬁensg%n F251+6n52z+6n ;
Hén+2,6n+3 =- S;J-/i-6n53+6n Séﬁ—6nséﬁ-6n >
Hén+3,6n+4 —I SS+6nS4+6n l—‘283+6ns43f|-6n ’
Hén+4,6n+5 —I S4+6n85+6n Fzs:g%ns;}—/%n ’
H (/sn+5,6n+6 F185+6nS6+6n F255+6nsg4/-6n ’
Hén+6,6n+7 1—‘156+6nS7+6n 1—‘2‘5'6+6n‘5'7z-i-6n :
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A.2.2 O group: Gamma-DM-octupole model

In the original frame, the Hamiltonian can be obtained by adding the Q term in Eq. (A.7) to
Eq. (A.11). In the Uy frame, the Hamiltonian can be obtained by adding the Q2 term in Eq.
(A.8) to Eq. (A.12).

A.2.3 T4 group: Gamma-DM-staggered-octupole model

In the original frame, the Hamiltonian can be obtained by adding the Q, term in Eq. (A.9) to
Eq. (A.11). In the Ug frame, the Hamiltonian can be obtained by adding the 2, term in Eq.
(A.10) to Eq. (A.12).

B Transformation properties of the SU(2); WZW field

The transformation laws of g and J; ,J; under time reversal T, spatial translation T, inversion
I and spin rotation R € SU(2) are summarized as

T: e(x) —e(x), N(x)— —N(x),

()= =Jx(x),  Jx(x) = =T, (x), (B.1)
T,: e(x) - —e(x), N(x) - —N(x),

Ty ()= Ty (x), Tr(x) = Jp(x), (B.2)
I: e(x) - —e(—x), N(x) = N(—x),

J1(x) = Jr(—x), Jp(x) = Ji(—x), (B.3)
R: e(x) —e(x), N%(x) —>R°;3N/5(x),

JHx)= RLIP(x),  JE(x) > R%JE(x), (B.4)

in which x is the spatial coordinate; Ro;j (a, B = x,y,2) is the matrix element of the 3 x 3
rotation matrix R; e(x) = trg(x) is the dimer order parameter; and N(x) = itr(g(x)&) is the
Néel order parameter [40].

C Spin correlation functions for the case of nonsymmorphic cubic
T symmetry

The expressions of all the Fourier components in Eq. (42) are

11
six(r)=—= - [p$ (D% +p{" + M) + D® (D™ + (Y + D{V) |,

r2 3
In2(r/r 1
Sy(r)= M : §C2(C1 +Cy+ Cs3),
r
lnl/z(r/ro) 1
Sy () = — ﬁcz(Q —Cs),
lnl/z(r/ro) 1
5;73’(2)(7') = f . §C2(_C1 + 2C2 - CB):
11 r w0 A ®) B _ AR
Sgg/S,(l)(r)z_ﬁ'ﬁ[DZ (Ds —D )+D2 (Ds —D; )]>
1 Ir w(_p0 @) _ @) ® (&) ® _ A®
sg;;/&(z)(r)z—ﬁ-g[ ¢ (-p{” +20f" — pM) + D (—p® + 20 — )|, (c.1)
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11
YV (Y — ((ATENAIEN( NN ® (p® , p® , H®
sg" () === 5[ D§” (D7 + 0+ D) + 0P (D + D + DY) |
InY2(r/ry) 1
SY(r)= % : 5cg(c1 +Cy+Cy),
In'2(r/ry) 1
Yy _ 0
Sﬂ-/g’(l)(r) - f . EC:%(CZ - C1)3
In'?(r/ry) 1
5%73’(2)(7”) = % : §C3(—C1 —Cy+2G3),
1 1
¥y __ 1 1 row(p_pi ® (H® _ p®)
Sarsa (1) = 2 ﬁ[Ds (Dl D, )+D3 (D1 D, )]’
11
¥y _ @) (_pn@) _ @ 03 ® (_n® _ H® (®)
Lszﬁ/g’(z)(r)_—ﬁ-g[p3 (-p{” —p{" +20{") + DI (—p® — D + 2DV} ],  (Cc.2)
L I @ (p@ . @, po ® (H® , p® , H®
sy === -5 [p{”(p{" +Df" +D{") +-b{" (D + DY + DV |,
lnl/z(r/r) 1
SE(r)= % : §C1(C1 +Cy+Cs),
lnl/z(r/ro) 1
S7smy(r) = — ﬁcl(CS —Cy),
InY2(r/ry) 1
ST s, 2)(r) = % : §C1(2C1 —Cy—GC3),
L 1 r,m(p@ . p@ ® (H® , H®
S;i/gy(l)(r)———z-—[Dl (p +p{")—p® (D + V)],
r2 /3
L 1 @ (on@_ n@) _ @ ® (on® _ n® _ n®
S5 == 501" (2017 = DY =Y + D (20" D" ~D{¥) ] €3)
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