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Abstract

The superconformal index of
1
2 -BPS states of N = 4 U(N) super Yang-Mills theory has a

known infinite q -series expression with successive terms suppressed by q N . We derive a
holographic bulk interpretation of this series by evaluating the corresponding functional
integral in the dual AdS5 × S5. The integral localizes to a product of small fluctuations
of the vacuum and of the collective modes of an arbitrary number of giant-gravitons
wrapping an S3 of maximal size inside the S5. The quantum mechanics of the small fluc-
tuations of one maximal giant is described by a supersymmetric version of the Landau
problem. The quadratic fluctuation determinant reduces to a sum over the supersym-
metric ground states, and precisely reproduces the first non-trivial term in the infinite
series. Further, we show that the terms corresponding to multiple giants are obtained
precisely by the matrix versions of the above super-quantum-mechanics.
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1 Introduction and summary

Aim of the paper

We consider four-dimensional N = 4 U(N) super Yang-Mills (SYM) theory on S3, and study
the supersymmetric index that enumerates 1

2 -BPS states (or, equivalently by the state-operator
correspondence, local operators) in this theory. The index is defined as the trace

IN (q) = TrHN
1
2 -BPS
(−1)F qR , (1)

where HN
1
2 -BPS

is the 1
2 -BPS Hilbert space consisting of states that are annihilated by a certain

16 of the 32 supercharges of the theory, (−1)F is the fermion number operator, and R is a
Cartan generator of the su(4) R-symmetry algebra of the theory. The 1

2 -BPS operators in the
free theory are arbitrary holomorphic functions of one of the matrix-valued complex scalars
of the SYM theory with R = 1. The ring of such functions is generated freely by the first N
powers of the matrix, and the index is therefore given by

IN (q) =
1
(q)N

, (2)

in terms of the q-Pochhammer symbol (q)n :=
∏n

j=1(1 − q j). A well-known mathematical
result (see Appendix A for a derivation) is that this index can be rewritten as follows

IN (q) = I∞(q)
∞
∑

m=0

(−1)m
qm(m+1)/2

(q)m
qmN . (3)

The aim of this paper is to provide a bulk interpretation of the right-hand side of this formula
in terms of wrapped D-branes in the dual Type IIB theory on AdS5×S5, i.e. giant gravitons [1].

It should be noted that the interpretation of giant gravitons in the AdS/CFT correspon-
dence has been discussed from different points of view in the past [2–17] and, in particular,
canonical quantization of the moduli space of bulk D-branes [18], using a certain symplectic
form, directly leads to the product formula on the right-hand side of (2) [19,20]. The present
work, instead, identifies each term of the right-hand side of (3) from the bulk point of view,
in the spirit of the recently-discussed “giant graviton expansion” [21–23].

Broader context

More generally, one can consider the superconformal index in a d-dimensional superconformal
field theory (SCFTd) on a compact spatial manifold, which is defined as a generalized Witten
index, as in (1), of BPS states that are annihilated by some number of supercharges of the
theory. In its simplest form it depends on one parameter q which is the fugacity for a charge R
that commutes with the preserved supercharges, and can be written as a q-expansion,

TrHBPS
(−1)F qR =

∑

r

d(r)qr . (4)
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The coefficients d(r) have the interpretation of the (indexed) number of states with charge
R= r. One can also have refinements of (4) with other fugacities coupling to other commuting
charges.

The index (4) is invariant under small changes of couplings of the theory [24]. Modulo
issues of wall-crossing (which will not appear in this paper) the value of the index at zero
coupling equals that at strong coupling, where it should have a gravitational interpretation in
the dual AdS space according to the AdS/CFT correspondence. At zero coupling, the index of
states preserving various fractions of supercharges can be calculated using either an explicit
enumeration of operators, or by localizing the corresponding path integral to a U(N) matrix
model [25,26], and these serve as exact predictions for gravitational calculations.

Taking the N = 4 U(N) super Yang-Mills (SYM) theory for concreteness, the scale of
gravitational phenomena in the dual AdS5 space is set by the gravitational coupling con-
stant G = 1/N2. It has been known since the early days of the AdS/CFT correspondence that
for very small charges r ≪ N , the numbers d(r) can be interpreted as the indexed number of
supergravitons or perturbative closed strings i.e. single-trace operators in the gauge theory.1

In recent years it has been shown that for very large charges r = O(N2), log |d(r)| calculates
the entropy of supersymmetric black holes in the dual AdS5 [27–32]. In the present context
we are concerned with charges of intermediate scales r = O(N), which is the characteristic
scale of wrapped D-branes in AdS5 space.

The giant graviton expansion

A detailed interpretation of formulas of the type (3) in terms of wrapped branes, for different
indices in string and M-theory, was advocated in a series of works by Imamura and collabo-
rators [21, 33–35], with numerical evidence for small numbers of branes.2 The idea is that
the mth term in the formula (3) is associated with m wrapped D-branes in the bulk of AdS
space. The term qmN is supposed to be the ground state energy of these D-branes which is
consistent with the fact that the tension of D-branes scales as 1/N for large N , and that the
bulk interpretation of wrapped D-branes are determinant operators in the gauge theory [36].
The rest of the mth term is interpreted as arising from fluctuations of m branes. This idea
was taken forward in the papers [22, 37] which presented further numerical evidence, and
discussed the determinantal nature of gauge-theory operators which contribute to such an ex-
pansion, and gave the current name to the expansion. This approach was further studied by
residue methods in [38]. In all these results, one typically needs at least two fugacities, one
of which dominates the expansion and the second is a perturbative parameter.

In [23] it was shown that an expansion of the giant graviton form arises for any unitary ma-
trix model that arises in counting invariants of unitary groups (which includes superconformal
indices in gauge theory with one or many fugacities). More precisely, one has, for the U(N)
integral ZN (q) depending even on a single fugacity,

ZN (q)
Z∞(q)

=
∞
∑

m=0

G(m)N (q) , G(m)N (q) ∈ qαmN+β Z[[q]] , (5)

with α a constant and β a polynomial in m. This formula is derived by introducing an auxiliary
problem which admits a free-fermion representation [39], and then writing the matrix integral
as average over the couplings of the free fermion theory. The free fermionic nature of the
problem gives a natural determinantal expansion which explains the form of the expansion and

1In fact this interpretation is true for all indices all the way until r = αN , where α is a fixed O(1) non-zero
number depending on the details of the index [23].

2For the 1
8 -BPS Schur index, a formula of the form of (3) was derived in [16, 17] and it was suggested there

that it could be interpreted in terms of giant gravitons in the bulk.
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gives a formula for each term G(m)N (q). The first and second terms were explicitly calculated
in [23] and [40], respectively. An interpretation of this free fermion expansion in terms of an
instanton expansion was discussed in [41].

It is important to note that an expansion of the type (5) is not unique, since say the first
and second giant terms can overlap after the first αN terms. In fact the concrete formulas
in [21], [22], and [23] all differ at this level.3 This should be interpreted as the ambiguity
in a choice of basis of operators in the gauge theory (“operator mixing issue”). It is therefore
important to have a good bulk interpretation of these formulas so as to have a starting point
for the basis of operators. For this we return to the simplest case of the 1

2 -BPS index.

Approach and results of this paper

Our approach to obtain the bulk interpretation of (3) is to directly quantize the space of 1
2 -BPS

giants in the bulk as a Euclidean functional integral over the configuration space of giants in
a “first-quantized” treatment. In other words, we want to integrate over the moduli space of
an arbitrary number of 1

2 -BPS giants and include the fluctuations of the giants at every point
in moduli space. The time direction runs in a circle in the Euclidean formalism and fermions
have periodic boundary conditions in accord with the supersymmetric index. The set-up is
similar to a gas of instantons [43, 44], except that there is no sense in which the giants are
dilute.4 (In fact, as we see below, the main contributions come from groups of giants sitting
on top of one another at a single point.) What allows us to perform this calculation is the
use of supersymmetric localization, which localizes the integral to the fixed points of a certain
complex supercharge Q.

There are two types of 1
2 -BPS wrapped branes in AdS5 × S5. The first type are D3-branes

that sit at the center of AdS5, wrap an S3 inside the S5 and rotate around a circle of S5 at
the speed of light. The semi-classical moduli space of these configurations is parameterized
by the size of the giants. This size takes values from zero, when the giants are point-like and
identified with ordinary gravitons, to a maximum value, when the giants wrap a maximal S3

inside the S5. The second type, called “dual giants” wrap an S3 inside AdS5, and rotate along
an equatorial circle of S5 [2,4]. There is no classical bound on the size of the dual giants, but
since each brane carries one unit of charge, it is expected that one cannot place more than N
dual giants [12,46].

In order to localize the functional integral, we choose a supercharge which obeys the al-
gebra {Q,Q} = H − R, where H is the time-translations generator and R is the generator of
translations in the angular coordinateφ parameterizing the circle on S5 along which the giants
move. As it turns out, the fixed points of Q in the Euclidean theory are precisely the maximal
giants, whose number m = 0,1, 2, . . . can be arbitrary. Summing over this number explains
the sum over m in the formula (3).

Around each fixed point, we then perform the supersymmetric functional integral of
quadratic fluctuations of the maximal giants. The fluctuations around any number of giants
are of two types, as in an instanton gas: the fluctuations of the background field theory—
in our case supergravity on AdS5 × S5, and the fluctuations of the collective modes of the
instantons—in our case m giants. The supersymmetric integral over quadratic fluctuations
factorizes into the index of these pieces. The index over the supergravity modes is precisely
equal to I∞ as can be shown from multiple points of view [23,26,47], so we are left to explain
the ratio IN/I∞ in (3) from the fluctuations of the giant gravitons in AdS5 × S5.

3A prescription to relate the different series term-by-term has been discussed in [42].
4A similar approach to calculations on M-branes has been taken recently in [45].
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The quadratic fluctuations around a single giant at a generic point in moduli space were
analyzed in [3] and leads to a gapped spectrum of excitations. However, that analysis breaks
down precisely for the maximal giants in which case, as we see below, one has massless ex-
citations. As it turns out, these excitations are governed by a supersymmetric version of a
particle moving in two dimensions in a constant magnetic field, i.e. the Landau problem. In
addition one has a delta-function valued flux line at the origin coming from the background
giant, which can also be treated formally as a gauge transformation of the Landau problem,
or as the Aharonov-Bohm effect.

The one-loop fluctuation determinant around the m = 1 fixed-point therefore reduces to
the evaluation of an index of the type (1) on the Hilbert space of states of the supersymmetric
particle in a magnetic field. In particular, we do not need the (unknown) non-linear supersym-
metric Lagrangian of multiple branes, but only that of quadratic fluctuations. Upon summing
over the infinite set of supersymmetric ground states, and taking into account the fermionic
zero modes, one obtains precisely the infinite sum −

∑∞
j=1 q j , which is precisely the expected

result for one giant from (3). The analogous calculation for m giants is given by a matrix
version of the same problem as in [8,48], and gives precisely the result expected from the mth

term in (3).

Comments

1. It is important for our derivation that we are calculating a supersymmetric index. Firstly,
this is the reason it is protected and can be interpreted in exact terms in the bulk. Sec-
ondly, it allows us to use the technique of supersymmetric localization to calculate the
functional integral. Thirdly, although the coefficients d(r) for the 1

2 -BPS index (2) are
all positive, the giant-graviton formula (3) has negative signs which are explained by
the fermionic nature of the supersymmetric states contributing to the fluctuation deter-
minant.

2. The boundary calculation as well as our giant-graviton calculation of the index involves
fluctuations of D-branes in flat space and in AdS space, respectively. Relatedly, as was
explained in [23], the giant graviton expansion should be considered as the second open
string theory in the open-closed-open duality as in [49, 50]. It is, however, important
to note that our derivation of the giant graviton expansion from the bulk is a Euclidean
functional integral calculation. The mth term is interpreted as the contribution of the
saddle with m giants, which are Euclidean instantons rather than sectors of Hilbert space
of SYM.5 The fluctuation determinant around the saddle allows for a factorization and
for fermionic contributions. In contrast, in the Hilbert space interpretation of 1

2 -BPS
states in CFT4/AdS5, the D-branes are interpreted as droplets of the Fermi liquid (derived
from the single matrix model in the boundary [8] and the LLM geometries [51] in the
bulk) and always have a positive degeneracy.6

3. The 1
2 -BPS index is clearly the simplest of many supersymmetric indices arising in dif-

ferent manifestations of the AdS/CFT duality. The ideas of this paper should apply to
these more general indices.7 For a given observable, one can localize the corresponding
functional integral using different choices of the supercharge or the localizing term. It
is possible that different such choices lead to different formulas for the giant-graviton
expansion that exist in the literature, as mentioned above.

5There is an auxiliary construction of the Hilbert space of the fluctuations around a saddle in our calculation,
but this is not a priori related to the Hilbert space of SYM theory.

6We thank J. Maldacena for emphasizing this point to us.
7They could also be used to study related problems as in [52–54].
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4. If we express the expansion in terms of q−1 rather than q, the first giant term in the
expansion (3) is 1/(1−q−1), which looks like the bosonic partition sum of one oscillator
with R= −1 (a similar statement is true for m giants). Of course no such mode exists in
the physical Hilbert space. Instead, this fact was interpreted in [21,22,35] as the analytic
continuation from |q−1| < 1 to |q| < 1 of a formal calculation involving D-branes. Here
we explain the result directly in terms of the physics of D-branes and their fluctuations.

Note added: While this paper was being prepared, we received [55] on the arXiv, which has
some overlap with the current paper. The precise relation between our path integral approach
and the Hilbert space interpretation of [55] in terms of open strings and ghosts is unclear to
us.

Plan of paper: In Section 2 we review the semiclassical description of the giant gravitons as
D3-branes wrapping cycles. Further, we set up the theory of small fluctuations of the maximal
giant in terms of a particle in a magnetic field. In Section 3 we set up and solve the localization
problem for one giant, including the critical points and the one-loop determinants. In Section 4
we discuss multiple giants and the diagonalization of the holomorphic sector, and reach the
expected giant graviton expansion from the bulk. In three appendices we review, respectively,
the mathematical derivation of the 1

2 -BPS giant graviton expansion, the relation between the
small fluctuations of the brane and the Landau problem, and the superalgebra on the brane.

2 The description of the bulk D-branes

In this section we collect some of the properties of the giant gravitons in AdS5 × S5 that are
1
2 -BPS, i.e. preserve 16 of the 32 supercharges [2]. We focus on the physical properties of the
bosonic coordinates in this section. In the following section we discuss aspects of supersym-
metry that are important to our problem.

2.1 The background AdS5 × S5

We follow the notation of [2]. The background spacetime is a direct product of AdS5 and S5

ds2 = ds2
AdS5
+ ds2

S5 , (6)

with the respective line elements given by

ds2
AdS5

= −
�

1+
r2

L2

�

d t2 +

�

1+
r2

L2

�−1

dr2 + r2 dΩ2
3 , (7)

and
ds2

S5 = L2
�

dθ2 + cos2 θ dφ2 + sin2 θ dΩ2
3

�

. (8)

Here L is the radius of the AdS5 as well as the S5. The parameterization of S5 is such that the
slice for a fixed value of θ is of the form S1×S3. At θ = 0 the S3 reduces to a point and the S1

reaches its maximum radius L. At θ = π/2, the S3 reaches its maximum radius L and the S1

reduces to a point. The value θ = π/2 is thus a fixed point of the vector field ∂φ .
The five-form field strength is self-dual and is proportional to the volume form in AdS5 as

well as in S5. We use the following angular coordinates for the S3 inside S5,

dΩ2
3 = dχ2

1 + sin2χ1

�

dχ2
2 + sin2χ2 dχ2

3

�

. (9)
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The 4-form potential on the S5 can be taken to be

Aφχ1χ2χ3
= L4 sin4 θ sin2χ1 sinχ2 = L4 sin4 θ

p

gS3 , (10)

so that it yields a field strength proportional to the volume form dAS5 = FS5 = 4
L Vol(S5).

Now consider a D3-brane in S5 with worldvolume coordinates σi , i = 0,1, 2,3. Its bosonic
action is given by

S3 = −T3

∫

d4σ
p

−g + T3

∫

P
�

A(4)
�

. (11)

Here T3 is the tension of the D3-brane, g is the pullback of the spacetime metric G and P
�

A(4)
�

is the pullback of the 4-form (10). Writing the embedding as X M (σi) and the above back-
ground metric as ds2 = GMN dX M dX N , we have the expression

gi j = ∂iX
M∂ jX

N GMN , (12)

and
∫

P
�

A(4)
�

=

∫

d4σ
1
4!
ϵi0 i1 i2 i3 ∂i0 X M0 . . .∂i3 X M3AM0M1M2M3

, (13)

with ϵ0123 = 1.

2.2 Semiclassical giant gravitons

Now we discuss the D3-branes that wrap an S3 ⊂ S5. They have a spherical symmetry corre-
sponding to rotations of the worldvolume S3, and another spherical symmetry corresponding
to rotations of the S3 ⊂ S5. We can describe them by choosing a static-like gauge for the
D3-brane embedding,

σ0 = t , σi = χi , i = 1,2, 3 , (14)

and make the following Ansatz,

φ = φ(t) , θ = θ (t) , r = r(t) , (15)

with the rest of the coordinates being constant. This gives, with˙= d
d t

gt t = −
�

1+
r2

L2

�

+ L2

�

cos2 θ φ̇2 + θ̇2 +
ṙ2

L2

�

1+
r2

L2

�−1�

, (16)

gi j = L2 sin2 θ gS3 i j , (17)

where gS3 i j is the S3 metric (9) in σi coordinates.
Upon evaluating the action of the brane (11) for this configuration, and then integrating

over the angular part, one obtains the following one-dimensional Lagrangian

Lgiant =
N
L

�

− sin3 θ

√

√

√

1+
r2

L2
− L2

�

cos2 θ φ̇2 + θ̇2 +
ṙ2

L2

�

1+
r2

L2

�−1�

+ L sin4 θ φ̇

�

, (18)

where we have used the relation A3 T3 = N/L4 between the flux and the tension of the brane
with A3 = 2π2 the area of a unit 3-sphere.

Giant gravitons are solutions to the equations of motion of the above Lagrangian which
move at the speed of light around a circle in the S5. They are described by

r = 0 , φ̇ =
1
L

, θ = θ0 , θ0 ∈ [0,π/2] . (19)

The constant value θ0 parameterizes the moduli space of giants. The value θ0 = π/2 corre-
sponds to the brane with largest size (equal to L) and largest angular momentum (equal to N).
This solution, called the maximal giant, does not have kinetic rotation and its angular momen-
tum appears from the Chern-Simons coupling of the brane to the background RR-field [2].
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2.3 Small fluctuations and the Landau problem

Now we consider the small fluctuations around the maximal giant, i.e. θ0 = π/2. The analysis
of small fluctuations of the Lagrangian (18) for a generic value of θ0 was performed in [56],
which we follow.

The results are as follows. Firstly, the fluctuations in all the coordinates except the fluctu-
ations of θ ,φ are gapped. For example, the r-fluctuation is described by the oscillator

N
L

�

1
2

ṙ2 −
1
2

r2

L2

�

. (20)

Similarly, the angular fluctuations in the S3 ⊂ AdS5 are described by massive spherical har-
monics, and the internal gauge-field fluctuations of the brane world-volume in the S3 ⊂ S5

are also massive spherical vector harmonics. The scale of both these sets of fluctuations is set
by the curvature of the AdS5 × S5. In the supersymmetric theory that we consider below, the
fermionic partners of these bosonic fluctuations are also gapped. This part of the quantum-
mechanical problem has a unique ground state.

Therefore we focus on the fluctuations of the center of mass on the S2 with coordinates
(θ ,φ). We expand around the solution (19) as

φ(t) = 1
L t + εδφ(t) , θ (t) = θ0 + εδθ (t) . (21)

The Lagrangian (18) to quadratic order in ε takes the form

L
N
Lgiant = εL sin2(θ0) δ̇φ(t)

+ ε2 L2
�

1
2

sin2(θ0) δ̇θ (t)
2 +

2
L

cos(θ0)δθ (t) sin(θ0)δ̇φ(t) +
1
2

cos2 (θ0) δ̇φ(t)
2
�

+ . . . (22)

We see that for a generic θ0 the fluctuations are also massive, as explained in [56]. Note,
however, that when the giant graviton has maximal size, θ0 = π/2, the previous expansion of
the Lagrangian becomes

ε L δ̇φ(t) +
1
2
ε2 L2 δ̇θ (t)2 + . . . , (23)

and, in particular, there is no quadratic term in δ̇φ(t).8 This is because one reaches the pole
of the sphere at that point, and φ effectively becomes an angular direction, while fluctuations
of θ around π/2 is a radial direction. Therefore we need to treat it as such and keep higher
order terms that couple the two variables.

It is useful to define the coordinates

ρ =
π

2
− θ , ϕ̇ =

1
L
− φ̇ , (24)

which take the values ρ = 0, ϕ̇ = 0 for the maximal giant. As mentioned above, we need
to keep terms of the type ρ2 ϕ̇2 in these polar coordinates, since they are part of the kinetic
energy. The Lagrangian of small fluctuations in the (ρ,ϕ) directions is

L(2)max =
N
L

�

1
2

L2ρ2ϕ̇2 +
1
2

L2ρ̇2 + Lρ2ϕ̇ − L ϕ̇
�

.9 (25)

8Indeed, the equations of motion presented in [56] become singular when expanded around θ0 = π/2.
9The same procedure can be performed in a unified way for giant gravitons in AdS4 × S7 and AdS7 × S4, which

are M5 and M2 branes wrapping the spheres S5 ⊂ S7 and S2 ⊂ S4, respectively, and rotating around a transverse
circle. These configurations were studied in e.g. [1,2,4,56], and the analysis is very similar to the AdS5×S5 case.
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This Lagrangian (25) describes a particle moving in a two-dimensional plane in a constant
transverse magnetic field with an infinitely thin solenoid centered at the origin. In order to
see this, it is useful to consider the change from polar to Cartesian coordinates,

L2ρ2 = x2 + y2 , ϕ = arctan y/x . (27)

The Lagrangian (25) for the quadratic fluctuations on the S2 in these coordinates is

L(2)max =
N
L

�

1
2

�

ẋ2 + ẏ2
�

+
1
L
(x ẏ − y ẋ)

�

1−
L2

x2 + y2

��

. (28)

Note that the term −N(x ẏ − y ẋ)/(x2+ y2) comes from the linear term −N ϕ̇ in (25). We can
write this Lagrangian as

L(2)max =
1
2

N
L

�

ẋ2 + ẏ2
�

+ ˙⃗x · A⃗ , (29)

with
A⃗ = A⃗1 + A⃗2 , A⃗1 =

N
L2

�

x by − ybx
�

, A⃗2 = −
N

x2 + y2

�

x by − ybx
�

. (30)

Embedding the x-y plane in three-dimensional flat space with coordinates x , y, z, the magnetic
field is as follows. The first term in (30) yields

B⃗1 =
N
L2
∇⃗× (x by − ybx) = 2

N
L2
bz . (31)

The second term has a singularity at the origin. We can use Stokes’s theorem on a disc centred
at the origin to obtain

B⃗2 = −2πNδ(x2 + y2)bz . (32)

We first consider the situation where we only have the magnetic field B⃗1 and later reinstate
the contribution from B⃗2. Accordingly, we drop the A⃗2 term from the Lagrangian and consider

LLan ≡ L(2)max − ˙⃗x · A⃗2 =
1
2

N
L

�

ẋ2 + ẏ2
�

+
N
L2
(x ẏ − y ẋ) . (33)

The conjugate momenta are

px =
N
L

�

ẋ −
1
L

y
�

, py =
N
L

�

ẏ +
1
L

x
�

, (34)

and the corresponding Hamiltonian is

HLan =
L

2N

�

p2
x + p2

y

�

+
N
2L

1
L2

�

x2 + y2
�

−
1
L

�

x py − ypx

�

. (35)

Indeed, this is precisely the Hamiltonian for the Landau problem in the symmetric gauge of
a particle of mass µ and (say positive) charge q in a two-dimensional plane with a constant
transverse magnetic field B, with the identifications

µ =
N
L

, qB =
2N
L2

. (36)

Writing the three spaces as AdSm × Sn with (m, n) = (4,7), (5, 5), (7,4), with N units of n form flux on the sphere
Sn of radius L and expanding the brane action around the same point of the two-dimensional transverse geometry
in Sn, (24), the Lagrangian takes the following form

L= N
L

�

1
2
ρ̇2 − Lϕ̇ +

n− 3
2

Lρ2ϕ̇ +
1
2
ρ2ϕ̇2

�

. (26)

Thus, the only thing that changes depending on the dimension of the (n − 2)-brane is the prefactor of the ρ2ϕ̇

term. We discuss the possible extension of our results for these two cases in a closing comment at the end of the
article.
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The solution to this quantum mechanical problem is well known, so we just outline its most
relevant features and we refer the reader to [57–59] where it is introduced as a first step in
the studies of the quantum Hall effect. Introducing the kinetic momentum operators

πx = µ ẋ = px +
1
2

qB y , πy = µ ẏ = py −
1
2

qBx , (37)

the Landau Hamiltonian (35) takes the form

HLan =
1

2µ
(π2

x +π
2
y) . (38)

From the canonical commutation relations of the operators x , y, px , py one finds

[πx ,πy] = iqB , (39)

and therefore the Hamiltonian (38) is algebraically the same as for the one-dimensional quan-
tum harmonic oscillator. More explicitly, one can define the creation and annihilation opera-
tors

a =
1

p

2qB
(πx + iπy) , a† =

1
p

2qB
(πx − iπy) , [a, a†] = 1 , (40)

so that the Hamiltonian and the energy eigenvalues take the form

HLan =
qB
µ

�

a†a+
1
2

�

, En =
qB
µ

�

n+ 1
2

�

. (41)

This effective dimensional reduction entails that the energy levels are degenerate. Each energy
level, which contains infinitely many states, is called a Landau level. The groundstate level is
called the lowest Landau level (LLL).

The degeneracy can be broken by exploiting the remaining symmetries of the system. That
is, by labelling the states in each Landau level by their eigenvalue for some other quantum
operator in the system which commutes with the Hamiltonian. The following operators

X = x +
1

qB
πy , Y = y −

1
qB
πx , (42)

which are the quantum version of the position of the classical center of the orbit, satisfy the
following commutation relation

[X , Y ] = −
i

qB
, (43)

and they commute with the Hamiltonian. We can define the following operator which mea-
sures the distance from the center of the classical orbit to the origin,

R2 = X 2 + Y 2 =
2

qB

�

b† b+
1
2

�

, (44)

where we have written it in terms of the following ladder operators,

b =

√

√qB
2
(X − iY ) , b† =

√

√qB
2
(X + iY ) , [b, b†] = 1 . (45)

The R2 operator can be used to label the different states in each Landau level. Defining |0, 0〉
as the state which is annihilated by a and b, the states are labelled by two quantum numbers,
n,ℓ ∈ N0, |n,ℓ〉, where ℓ is the eigenvalue for the b† b operator. Later it will be used that the
angular momentum operator,

bL = x py − ypx , (46)
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which is not gauge invariant, in the symmetric gauge takes the following form in terms of
gauge invariant operators,

bL = −
1

2qB
(π2

x +π
2
y) +

1
2

qB(X 2 + Y 2) = −a†a+ b† b . (47)

Therefore in the symmetric gauge we can label the states by their eigenvalues for the
Hamiltonian and the angular momentum operator

HLan |n,ℓ〉 =
qB
µ

�

n+
1
2

�

|n,ℓ〉 , bL |n,ℓ〉 = (−n+ ℓ) |n,ℓ〉 . (48)

It is clear that the ground states are given by |0,ℓ〉. The wavefunctions in the coordinate rep-
resentation corresponding to the states in the lowest Landau level |0,ℓ〉 are concisely written
in complex coordinates,

ψ0,ℓ(z, z) = Cℓ zℓ e−|z|
2/4 , (49)

where Cℓ is a normalization constant and

z =
p

qB
�

x + i y
�

, z =
p

qB
�

x − i y
�

. (50)

So far we discussed the first part A1 of the gauge field A1 + A2 in (30). The second part
gives rise to the delta-functional magnetic field (32). In fact, this term can be absorbed into the
above analysis by including a shift of the angular momentum (this is essentially the Aharonov-
Bohm effect). We discuss this in Appendix B. The final result is that the spectrum of our
problem is the same as that of the Landau problem with a shift of N of the angular momentum.

3 Localization of the fluctuating giants

Our goal is to calculate the 1
2 -BPS index as a sum over all possible paths of 1

2 -BPS configurations
of gravitons and D3-branes in AdS5 × S5. As explained in the introduction we think of the
branes as a gas of instantons in the Euclidean theory with periodic time and with all fields
having periodic boundary conditions around the time circle. In the bulk theory we can write
the index as the following functional integral,

Ibulk
N (q) =

∞
∑

m=0

∫

M(m)
dµm

∫

dφm exp
�

Sbrane+sugra(φm; m,µm)
�

qR . (51)

Here m labels the number of branes and µm labels the moduli space M(m) of m branes. Recall
that the moduli space of one supersymmetric brane is the union of the space of giant gravitons
(labelled by θ0 in (19) for one giant) and the space of dual giants. The fields φm denote the
1
2 -BPS fluctuations of the supergravity fields and of the collective coordinates of the branes in
the ambient space. Sbrane+sugra is the combined action of the branes and the supergravity as
a function of the moduli and of φm. The charge R is the R-charge used in the index (1), and
acts on the space of 1

2 -BPS brane configurations and their fluctuations in string theory. The
parameter q is an external parameter with |q| < 1, which can be regarded as a background
value for the gauge field in AdS5 × S5 that couples to R.

The fluctuations of supergravity fields above can be thought of as a gas of gravitons sur-
rounding and interacting with the branes. The fluctuations of the collective coordinates of
the brane include a gauge field and scalars corresponding to motion in the transverse direc-
tions. The bosonic action for these fluctuations is given by the DBI+CS action (18). The brane
preserves 16 and breaks 16 of the 32 supercharges of the background. Correspondingly, it
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contains 16 fermions in its low energy fluctuation spectrum. The supersymmetric version of
the action is constructed (for one brane) using a combination of superfield and κ-symmetry
methods [60,61].

As explained in the introduction, our strategy to calculate the path integral (51) is to
localize it to Q-fixed points where Q is one of the supercharges.10 Equivalently, we construct
a Q-exact action QV and add it to the action with a parameter that we take to infinity. The
sum over configurations in (51) thus reduces to a sum over the critical points of QV of the
classical brane action times the one-loop determinant of quadratic fluctuations. As we see
below, the critical points are given by the maximal giants. The quadratic fluctuations factor
into the quadratic fluctuations of the supergravity fields and those of the brane coordinates.
The contribution of the former is simply that of a free gas of supergravitons. As we see below,
the latter reduces to a supersymmetric version of the Landau problem.11

In Section 3.1 we briefly review the superalgebra in the presence of the branes. In Sec-
tion 3.2 we describe the theory of small fluctuations of the branes including fermions, and set
up the localizing action. In Sections 3.3 and 3.4, we calculate the critical points and one-loop
determinants of this action.

3.1 Symmetry algebra

The superalgebra of the background AdS5×S5 is psu(2,2|4). The bosonic sector of this algebra
is so(2, 4)⊕ su(4) and there are 16 Q-supercharges and 16 S-supercharges.

Recall that the semiclassical 1
2 -BPS giant graviton wraps the S3 ⊂ S5, stays at the ori-

gin of AdS5 and moves on a circle in S5 parameterized by the angle φ. Therefore it pre-
serves so(4) ⊕ so(4) ⊕ R in the bosonic sector, where the two so(4) algebras correspond to
the spatial rotation of AdS5 and the rotation of the S3 ⊂ S5, respectively. The generator of R
is H−R, which act as H = −i∂t , R= −i 1

L∂φ in the embedding coordinates. The corresponding
generator in the Euclidean theory is ∂tE

− i 1
L∂φ and generates u(1).

The algebra of the preserved symmetries is as follows. The so(4) rotations of S3 ⊂ AdS5

is su(2)⊕ su(2) with respective generators J βα and eJ β̇α̇. Similarly, the so(4) rotations of S3 ⊂ S5

is su(2)⊕ su(2) with respective generators rA
B and er Ḃ

Ȧ
. Here, as usual, the indices α, α̇, A, Ȧ,

β , β̇ , B, Ḃ label the doublet representation of su(2). The supercharges (QA
α , S βB ), (eQȦα̇ , eS Ḃβ̇)

fall into the representation (1
2 , 0, 1

2 , 0)⊕ (0, 1
2 , 0, 1

2) of the four su(2) algebras. The embedding
of the symmetries of the brane in the symmetries of AdS5 × S5 is given in Appendix C. The
non-zero anticommutators of the supercharges are

¦

QA
α , S βB

©

= δA
B J βα − δ

β
α rA

B +
1
2
δ βα δ

A
B (H − R) ,

¦

eQȦα̇ , eS Ḃβ̇
©

= δḂ
Ȧ
eJ β̇α̇ + δ

β̇
α̇
er Ḃ

Ȧ
+

1
2
δ
β̇
α̇δ

Ḃ
Ȧ
(H − R) .

(52)

Compared to the notation in Appendix C, we have dropped the ′ from the supercharges and
set Rz = R. Note that each line of (52) is almost equivalent to su(2|2) algebra with 6 bosonic
and 8 fermionic generators. For a choice of its real form, this is observed to be the 2d chi-
ral N = 4 supersymmetry algebra (here J generates the sl(2) and r generates the su(2)),
which may potentially be useful. However, it is misleading to try to identify the brane theory

10A priori, the non-perturbative definition and convergence of the functional integral (51) is not completely
clear. We thank the referee for emphasizing this point. As we see below, we can calculate the integral at weak
gravitational coupling using localization with well-defined rules. The agreement of the answer with the boundary
result, as expected from AdS/CFT, indicates that we are doing the correct thing.

11In general, the fluctuation analysis is non-trivial, as the supergravity fields are coupled to the fluctuations of the
branes. We thank the referee for questioning this point. Localization allows us to analyze this in a weakly-coupled
limit in which the gravitons and the open-string modes can be separately diagonalized and calculated.

12

https://scipost.org
https://scipost.org/SciPostPhys.17.4.098


SciPost Phys. 17, 098 (2024)

as having a 2d (4, 4) algebra, especially because of the existence of the central extension H−R,
which is the same in both lines.

In fact, this last term on the right-hand side of (52) is crucial. The theory of 1
2 -BPS states

corresponds to the singlet excitations of the brane in the two S3s, as can be seen from the
algebra (52). Upon truncating to this sector we put the charges J βα and rA

B (and also eJ α̇
β̇

and er Ȧ
Ḃ
) to zero. Now we choose the supercharge Q1

− ≡
p

2Q and its conjugate S−1 ≡
p

2Q,
which, in the singlet sector, obey

{Q,Q} = H − R = −i
�

∂t −
1
L∂φ

�

= ∂tE
+ i 1

L∂φ . (53)

The idea we use below (which has been used before in other localization calculations) is that
the fixed points of this subalgebra, in the Euclidean theory with appropriate reality conditions,
are fixed points of ∂tE

and i∂φ separately. We achieve this by constructing an appropriate Q-
exact action that we add to the action of the brane and then localize to the critical points of
the deformation.

3.2 The theory of small fluctuations including fermions

In Section 2.3 we saw that the Lagrangian of quadratic fluctuations of the maximal giant is the
sum of two Lagrangians: the first part governs the fluctuations of the brane in the x1, x2 (or,
equivalently, the ρ,ϕ directions), and the second part governs the fluctuations of the other
bosonic directions (r, S3 ⊂ AdS5), and the gauge field on the brane. The latter part is gapped,
while the former part is equivalent to a two-dimensional particle in a transverse magnetic field.

The low-energy theory on the brane contains 16 fermions corresponding to the broken
supersymmetry generators. From the discussion in Section 3.1, we deduce that they transform
in (0, 1

2 , 0, 1
2) ⊕ (

1
2 , 0, 1

2 , 0) of so(4) ⊕ so(4). Now consider one of the supercharges Q which
obeys the algebra (53). This induces a pairing of the bosons x1, x2 and two of the fermions,
which we call λ1, λ2, and between the other six bosonic fields and the remaining 6 fermions
of one of the copies. Since the remaining 6 bosons are gapped, we expect the same for the
corresponding 6 fermions due to Q-supersymmetry, and we expect a unique ground state of
this gapped system. The ground states of the full system are a tensor product of this ground
state of the gapped system with the (x1, x2,λ1,λ2) system. In the doubled theory, again, 6 of
the fermions will be gapped because of pairing by one of the eQ supercharges.

The interesting subsystem is therefore described by (x1, x2,λ1,λ2, eλ1, eλ2), which we now
proceed to analyze. Here λ1,2(t), eλ1,2(t) are two real 1-dimensional Majorana fermions,
i.e. Grassmann-valued fields. One should be able to derive the full supersymmetric Lagrangian
from a direct analysis of the brane dynamics including fermions and analyzing its κ-symmetry,
but we postpone such an analysis to the future. Instead we simply supersymmetrize the bosonic
Lagrangian that we derived from the brane dynamics. This theory should be unique up to the
quadratic order that we need.

First we focus on the (x1, x2,λ1,λ2) system without doubling. The supersymmetrization
of (33) is given by the following simple Lagrangian,12 see e.g. [63–66]:

L
N

Lsusy(2)
max =

2
∑

i=1

�

1
2

ẋ2
i −

1
2

iλ̇i λi + ẋ i Ai

�

− i Bλ1λ2 , (54)

with

A1 = −
1
L

x2 , A2 =
1
L

x1 , B =
∂ A2

∂ x1
−
∂ A1

∂ x2
=

2
L

. (55)

12One can think of this Lagrangian as a dimensional reduction of a supersymmetric Chern-Simons theory in three
dimensions [62]. The bilinear coupling of the fermions to B is also familiar from this description.
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This Lagrangian is invariant under N = 1 supersymmetry transformations [63]. In fact it is
easy to check that the Lagrangian (54) is invariant under the following N = 2 supersymmetry
transformations

δ1 x1 = λ1 , δ1λ1 = −i ẋ1 , δ1 x2 = λ2 , δ1λ2 = −i ẋ2 ,

δ2 x1 = λ2 , δ2λ2 = −i ẋ1 , δ2 x2 = −λ1 , δ2λ1 = i ẋ2 .
(56)

The above variations obey the algebra (calling the new time coordinate T for now)

(δ1)
2 = −2 i ∂T , (δ2)

2 = −2 i ∂T , {δ1,δ2} = 0 . (57)

Now that we have constructed the supersymmetric theory of maximal brane fluctuations,
we need to map the charges of the original theory onto this new theory. From the change of
coordinates (24), we see that there is a corresponding shift of the time-translations as

(t,φ) = (T,
T
L
−ϕ) =⇒ ∂ϕ = −∂φ , −i∂T = −i

�

∂t −
1
L
∂ϕ

�

. (58)

Now comparing the right-hand side of (δ1)2 in (57) with the relation {Q,Q} = H − R in the
original SYM theory, we see that we should identify R = − i

L∂ϕ on the space of fluctuations of
the maximal giant. Note that the reality conditions on the field fluctuations of this space is the
one relevant for the fluctuations of the saddle in the Euclidean theory, and is different from
the physical brane fluctuations.

In fact, the Lagrangian (54) can be written as a Q-exact term. Choosing Q = δ1 given in
(56) we have

V1 =
1
2
(λ1Qλ1 +λ2Qλ2) = −i

1
2
( ẋ1λ1 + ẋ2λ2) ,

V2 = −i
1
L
(x2Qx1 − x1Qx2) = −i

1
L
(x2λ1 − x1λ2) .

(59)

It is easy to check that

QV1 =
1
2

�

ẋ2
1 + ẋ2

2 − iλ̇1λ1 − iλ̇2λ2

�

,

QV2 = −
1
L

�

ẋ2 x1 − x2 ẋ1 − 2iλ1λ2

�

,
(60)

so that, with V = V1 + V2,

QV =
L
N

Lsusy(2)
max . (61)

Thus, in order to obtain the fixed points of Q, we can study the critical points of the bosonic
part of this Lagrangian, which is precisely the Landau Lagrangian (33).

Before doing so, we include the doubling of fermions in the fluctuations of the maximal
giant. Now we have the fermionic fields λ j , eλ j , j = 1,2, and the action is given by

L
N

Lsusy-2
max =

2
∑

j=1

�

1
2

ẋ2
j + ẋ j A j

�

−
i
2

2
∑

j=1

λ̇ j λ j − i Bλ1λ2 −
i
2

2
∑

j=1

ėλ j
eλ j − i B eλ1

eλ2 , (62)

with A1, A2, B given, as before, in (55). We already saw that the fields (x j ,λ j) are paired
so that the first line of (62) is supersymmetric under the action of the supercharge Q. The
fermions eλ j , on the other hand, are inert under the action of Q. The total system, therefore, is
supersymmetric, but in a sense that is slightly unusual in that one set of fermions do not have
bosonic superpartners.13

13The full theory of the brane discussed in Section 3.1 has a symmetry that exchanges the Q and eQ supercharges
and, simultaneously, the λ and eλ fermions. Accordingly, (62) is also invariant under a choice of eQ, in which case
the fields (x j , eλ j) are paired and λ j are singlets.
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3.3 Critical points

Now we study the critical points of the supersymmetric Lagrangian QV discussed in the above
subsection. Upon setting the fermions to zero, we obtain the bosonic Lagrangian (33). We
then perform the Euclidean continuation t = −i tE and impose that the field configurations
respect periodicity in tE with period β . The functional integral in the Euclidean theory is
weighted by exp

�∫

d tE LE(2)
max

�

,14 with (here˙= d
d tE

)

−
L
N

LE(2)
max =

1
2
ρ̇2 +

1
2
ρ2ϕ̇2 + 1

2(iB)ρ
2ϕ̇ . (63)

Since the Lagrangian is independent of ϕ, the angular momentum is a conserved quantity,
i.e.,

L
N

JE =
L
N

∂LE(2)
max

∂ ϕ̇
= −ρ2ϕ̇ − 1

2 iBρ2 ,
d

d tE
JE = 0 . (64)

We now use the conserved quantity JE in order to eliminate ϕ̇ and reduce the problem to a
one-dimensional problem for ρ(tE). The resulting equation is

ρ3ρ̈ =
ρ4

L2
+

L2

N2
J2

E . (65)

Since ρ is a radial variable in the physical problem, we continue to demand that ρ(tE) is a
non-negative real field in the Euclidean problem. The equation of motion (65) then implies
that JE is real and that ρ̈ ≥ 0. The periodicity of ρ(tE) implies that the only consistent option
is ρ̈ = 0, and therefore ρ = 0 and JE = 0.

We see from the discussion in Appendix B that the theory of the brane fluctuations is
equivalent to a 2d particle in a constant transverse magnetic field with angular momentum
shifted by N units. Thus we see that the above critical point corresponds to the proper angular
momentum being equal to N , which is the maximal giant graviton solution. In other words,
the functional integral localizes to maximal giant gravitons. We note that the set of critical
points does not include the dual giants.15

3.4 One-loop fluctuation determinant

In this subsection we calculate the determinant of quadratic fluctuations of the maximal giant.
As in any instanton calculation, the fluctuation determinant is calculated over the fluctuations
of background fields (supergravitons) and of the collective coordinates or open string fluc-
tuations of the branes. The localization analysis allows us to go to the weakly-gravitational
coupled limit, in which the supergravitons and the collective coordinates can be separately
diagonalized. The first problem of integrating over the fields of supergravity is equivalent
to calculating the index (1) on the Hilbert space of the gas of supergravitons, and is given
by Isugra(q) = I∞(q).

Our formula for the bulk index thus reduces to the following localized form,

Ibulk
N (q) = Isugra(q)

∞
∑

m=0

∫

dφm exp
�

S(2)brane(φm; m)
�

qR , (66)

whereφm denotes all the fluctuations of the maximal giants with periodic boundary conditions
on the Euclidean time circle, with quadratic action S(2)brane. The functional integral (66) is
equivalent to the original index (1) evaluated on the Hilbert space of small fluctuations of the

14We take the convention that the functional integral in the Lorentzian theory is weighted by exp(iS).
15This is in contrast with the duality between giants and dual giants in the Lorentzian theory [2,46,67].
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branes. In the following discussion we analyze one brane (m= 1), and in the next section we
move to multiple branes.

The small fluctuations split into massive and massless modes. The massless modes
for m= 1 are governed by the Lagrangian (62). All the other fluctuations of the brane are mas-
sive and R commutes with the Hamiltonian governing them. Therefore, by the usual pairing
argument, they do not contribute to the index. Thus we are left with calculating the index (1)
in the theory of (x1, x2,λ1,λ2, eλ1, eλ2) governed by the Lagrangian (62). This is a well-defined
quantum system without gravity. Therefore, we can calculate the quadratic fluctuation deter-
minant as a functional integral or, equivalently, as a Hamiltonian index on the Hilbert space
of fluctuations. Here we use the Hamiltonian formalism as it is easier, and also physically in-
structive. It would also be interesting to calculate this determinant in the functional integral
formalism. Our approach is to canonically quantize this system and calculate the index by
explicitly listing the ground states of this system.

As in Section 3.2, we start by considering the theory of (x1, x2,λ1,λ2) with the following
Lagrangian,

L
N

Lsusy(2)
max =

1
2

ẋ2
1 +

1
2

ẋ2
2 +

1
2

B(− ẋ1 x2 + ẋ2 x1)−
1
2

iλ̇1λ1 −
1
2

iλ̇2λ2 − iBλ1λ2 . (67)

The corresponding Hamiltonian is

HSLan =
1
2

�

p1 +
1
2

Bx2

�2

+
1
2

�

p2 −
1
2

Bx1

�2

+
i
2

B [λ1,λ2] . (68)

The canonical commutation relations are

[x i , p j] = iδi j , {λi ,λ j} = δi j . (69)

The algebra of the bosonic sector is unchanged, so the bosonic sector can be solved exactly
as for the original Landau problem. In the fermionic sector we see that the anticommutation
relations for λi (69) define a two-dimensional Clifford algebra. We use the following repre-
sentation,

λ1 =
1
p

2
σ1 , λ2 =

1
p

2
σ2 , [λ1,λ2] = iσ3 , (70)

where σi , i = 1,2, 3 are the Pauli matrices. The Hamiltonian in this representation reads

HSLan =
1
2

�

p1 +
1
2

Bx2

�2

+
1
2

�

p2 −
1
2

Bx1

�2

−
1
2

Bσ3 , (71)

which is a bosonic and a fermionic oscillator, both of frequency B.
The Hamiltonian now takes the following form

HSLan = B
�

a†a+
1
2
−

1
2
σ3

�

. (72)

Labelling the two eigenstates of σ3 as

1
2
σ3 |s〉 = s |s〉 , s = ±

1
2

, (73)

the energy spectrum of the Hamiltonian is given by

En,s = B
�

n+
1
2
− s
�

. (74)

The ground states have n= 0, s = 1
2 and have zero energy.
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The angular momentum operator, including the fermionic spin, is given by

bL = x1p2 − x2p1 −
1
2

i[λ1,λ2] . (75)

Using the Pauli matrices representation of the so(2) Clifford algebra we have

bL = x1p2 − x2p1 +
1
2
σ3 . (76)

The bosonic part of the angular momentum operator for the Landau problem was discussed
in Section 2.3. The states can be completely described by three quantum numbers |n,ℓ, s〉
and have the following eigenvalues of the Hamiltonian and angular momentum operators,
with n,ℓ= 0,1, 2, . . . and s = ±1

2 ,

H |n,ℓ, s〉 = B
�

n+
1
2
− s
�

|n,ℓ, s〉 ,

bL |n,ℓ, s〉 =
�

−n+ ℓ+ s
�

|n,ℓ, s〉 .
(77)

Now we consider the following Lagrangian with all four fermions,

L
N

Lsusy-2
max =

1
2

ẋ2
1 +

1
2

ẋ2
2 +

1
2

B(− ẋ1 x2 + ẋ2 x1)−
1
2

iλ̇1λ1 −
1
2

iλ̇2λ2 − iBλ1λ2

−
1
2

i ėλ1
eλ1 −

1
2

i ėλ2
eλ2 − iBeλ1

eλ2 . (78)

The Hamiltonian takes the form

HSLan-2 =
1
2

�

p1 +
1
2

Bx2

�2

+
1
2

�

p2 −
1
2

Bx1

�2

+
i
2

B[λ1,λ2] +
i
2

B[eλ1, eλ2] . (79)

Then, the non-zero canonical commutation relations for the position, momenta, and fermionic
operators are

[x i , p j] = iδi j , {λi ,λ j} = δi j , {eλi , eλ j} = δi j . (80)

The algebra of the bosonic sector is unchanged, so the bosonic sector can be solved exactly as
for the original Landau problem. For the fermionic sector, as before, we use the representation
in terms of two sets of Pauli matrices:

λi =
1
p

2
σi , {σi ,σ j} = 2δi j , eλi =

1
p

2
eσi , {eσi , eσ j} = 2δi j , (81)

so that we now have a product of two two-dimensional Clifford algebras. The Hamiltonian is

HSLan-2 = B
�

a†a+
1
2
−

1
2
(σ3 + eσ3)

�

, (82)

where
iσ3 = [λ1,λ2] , ieσ3 = [eλ1, eλ2] . (83)

The angular momentum operator is

bL = x1p2 − x2p1 +
1
2
(σ3 + eσ3) , (84)

and the spectrum takes the form

H |n,ℓ, s,es〉 = B
�

n+
1
2
− (s+es)

�

|n,ℓ, s,es〉 ,

bL |n,ℓ, s,es〉 =
�

−n+ ℓ+ s+es
�

|n,ℓ, s,es〉 ,
(85)
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where s,es = ±1
2 are the eigenvalue of the operator 1

2σ3, 1
2 eσ3, i.e.,

1
2
σ3 |s,es〉= s |s,es〉 ,

1
2
eσ3 |s,es〉= es |s,es〉 . (86)

Again, notice that the states
�

�n,ℓ,−1
2 ,es
�

and
�

�n+ 1,ℓ, 1
2 ,es
�

have the same eigenvalues for H
and bL, and the same is true for

�

�n,ℓ, s,−1
2

�

and
�

�n+ 1,ℓ, s, 1
2

�

. Since as we later show, the
states in each pair have opposite fermion number, they cancel and do not contribute to the
index, and the only states that contribute are the ones in the LLL with both s,es eigenvalues
positive.

The LLL are the least energy states,

H

�

�

�

�

0,ℓ,
1
2

,
1
2

·

= −
B
2

�

�

�

�

0,ℓ,
1
2

,
1
2

·

, (87)

which have the following eigenvalues for the angular momentum operator

bL

�

�

�

�

0,ℓ,
1
2

,
1
2

·

=
�

ℓ+ 1
�

�

�

�

�

0,ℓ,
1
2

,
1
2

·

, (88)

with ℓ≥ 0.
Now we can assemble our results. We had identified the R charge operator as R= −i∂ /∂ ϕ

on the space of fluctuations, where it takes the form

R = −i
1
L
∂ϕ = bL . (89)

On the ground states of the LLL, this takes the values R= 1, 2, . . . , each with degeneracy 1. In
other words,

TrLLL qR =
∞
∑

n=1

qn =
q

1− q
, for |q|< 1 . (90)

The sign of the index

Since we are computing a Witten index, we should track the eigenvalues of the states under
the fermion number operator (−1)F . According to the AdS/CFT duality, this operator is simply
the fermion number in the bulk. In the theory of quadratic fluctuations that is relevant to us
here, the fermion number is a tensor product of the fermion number operator acting on the
supergravity fields and on the brane fluctuations. We have already analyzed the former in
calculating the index of supergravity fields. The brane fermion number at the quadratic level
naturally descends from the current

F =
1
2

∑

fermionsψ

∫

d4σ [ψ(σ),ψ(σ)] , (91)

which is built up of the free fermionic fluctuations in its worldvolume theory. For our quantum
mechanical system this is given by

F = −
i
2
([λ1,λ2] + [eλ1, eλ2]) =

1
2
(σ3 + eσ3) . (92)

The fermionic sector is spanned by the states |s,es〉 with s,es = ±1
2 , with (−1)F = (−1)s+es.
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As stated earlier, the states
�

�n,ℓ,−1
2 ,es
�

and
�

�n+ 1,ℓ, 1
2 ,es
�

have the same eigenvalues for H
and bL, and moreover they have opposite (−1)F eigenvalue, and therefore their contribution to
the index cancels. The same applies for the states of the form

�

�n,ℓ, s,−1
2

�

and
�

�n+ 1,ℓ, s, 1
2

�

.
The only case where there is no cancellation is for the LLL, with all states fermionic.16 This
concludes the computation of the Witten index for the quadratic fluctuations of one maximal
giant, the complete answer being

TrH(2)max. giant
(−1)F qR = −

q
1− q

. (93)

We note that we have used a simple, natural version of fermion number in the quadratic sector
of the brane system,17 which should be universal, in order to define the bulk Witten index.
This gives the answer expected from AdS/CFT.

4 Multiple giants

In this section we address the problem of multiple giants. We first rewrite the bosonic Landau
Hamiltonian

HLan =
1
2

�

p2
x + p2

y

�

+
1
2

L2
�

x2 + y2
�

−
1
L

�

x py − ypx

�

, (94)

in complex coordinates

z =
1
p

2
(x + i y) , z =

1
p

2
(x − i y) , (95)

to obtain

HLan = pz pz +
1
L2

zz −
i
L

�

zpz − zpz

�

, (96)

where pz and pz are the conjugate momenta to z and z. The associated Lagrangian is

LLan = żż −
i
L

�

żz − żz
�

, (97)

and the canonical momenta

pz = ż −
i
L

z , pz = ż +
i
L

z . (98)

The generalization to m coincident giants consists in promoting the scalar fields describing
the transverse fluctuations of the branes to m × m matrix-valued fields transforming in the
adjoint of U(m). The fluctuations of one giant with two bosonic degrees of freedom is described
now by two matrix-valued scalar fields. Two different hermitian matrices, in general, cannot be
simultaneously diagonalized. However, the Landau problem is special since the Hamiltonian
for two bosonic degrees of freedom can be reduced to the Hamiltonian of a one-dimensional
harmonic oscillator. Moreover, in complex variables the annihilation operators take the form
such that the functions which are annihilated by them are any holomorphic function times a
Gaussian. This holomorphicity is what makes the groundstate spectrum for the matrix problem
solvable. (See e.g. [48], [14] for more details and related discussion.)

16The same conclusion can be reached by noting that there is an additional eQ susy in the system, cf Footnote 13
and repeating the arguments for the theory of two fermions.

17However, as noted earlier, the rigorous derivation of the full fermionic sector remains to be done. We thank
the referee for emphasizing this point.
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Essentially, the problem reduces to m decoupled eigenvalues, with energies 1, 2, . . . m, each
of the type that we discussed in the previous subsection. Therefore the answer is given by the
product of (93) with q 7→ q j , j = 1, 2, . . . m. In the rest of the section we write out some of the
details of the reduction to the holomorphic sector.

Consider the non-abelian generalization of (97) which describes the bosonic part of m
coincident maximal giants,

Lm = Tr
�

Ż Ż† −
i
L

�

Ż Z† − Ż†Z
�

�

. (99)

where Z and its adjoint Z† are m×m complex matrices. Writing out the indices we get

Lm = Tr

 

m
∑

j=1

�

Żi j(Ż
†) jk −

i
L

�

Żi j(Z
†) jk − (Ż†)i j Z jk

�

�

!

=
m
∑

i, j=1

�

Żi j(Ż
†) ji −

i
L

�

Żi j(Z
†) ji − (Ż†)i j Z ji

�

�

=
m
∑

i, j=1

�

Żi j Ż i j −
i
L

�

Żi j Z i j − Ż ji Z ji

�

�

=
m
∑

i, j=1

�

Żi j Ż i j −
i
L

�

Żi j Z i j − Ż i j Zi j

�

�

.

(100)

That is, it consists of m2 copies of the Lagrangian of the Landau problem with 2m2 degrees of
freedom. The canonical momenta take the form

Pi j =
∂Lm

∂ Żi j
= Ż i j −

i
L

Z i j , P i j =
∂Lm

∂ Ż i j

= Żi j +
i
L

Zi j , (101)

and the Hamiltonian reads

Hm =
m
∑

i, j=1

�

Pi j P i j +
1
L2

Zi j Z i j −
i
L

�

Zi j Pi j − Z i j P i j

�

�

. (102)

From the canonical commutation relations

[Zi j , Pi j] = i , [Z i j , P i j] = i , since Pi j = −i
∂

∂ Zi j
, P i j = −i

∂

∂ Z i j

, (103)

we can write the Hamiltonian in the following form

Hm =
m
∑

i, j=1

�

Ż i j Żi j +
1
L

�

= Tr Ż† Ż +
m2

L
, (104)

with the operators appearing in the Hamiltonian satisfying the following commutation rela-
tions

[Żi j , Ż i j] =
2
L

. (105)

Therefore, the Hamiltonian (104) describes m2 one-dimensional harmonic oscillators, or the
matrix harmonic oscillator described by an m×m Hermitian matrix, which we can write as

Hm =
2
L

�

−
1
2
∆+ Tr(W 2)

�

, (106)
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for W an m×m hermitian matrix and ∆ the kinetic operator for the matrix problem

∆ =
m
∑

i=1

∂ 2

∂W 2
ii

+
1
2

∑

1≤i< j≤m

∂ 2

∂ ReW 2
i j

+
∂ 2

∂ ImW 2
i j

. (107)

We can now use the classical results of [68], where it was shown that enforcing the U(m)
invariance of the system, it gets reduced to the dynamics of its m eigenvalues which behave
as fermionic fields. More concretely, the wavefunction becomes a function of the eigenvalues
wi of W only, being an eigenfunction of the sum of m harmonic oscillators

2
L

�

−
1
2

m
∑

i=1

∂ 2

∂ w2
i

+w2
i

�

, (108)

with an added prefactor
∏

1≤i< j≤m

(wi −w j) , (109)

which makes it antisymmetric under the exchange of any two eigenvalues. To write the so-
lution in terms of our original variables Z , Z†, we write the following representation for the
annihilation operators

Żi j = P i j −
i
L

Zi j = −i

�

∂

∂ Z i j

+
1
L

Zi j

�

= −ie−
Zi j Z i j

L
∂

∂ Z i j

e
Zi j Z i j

L . (110)

The groundstate wavefunctions annihilated by these operators therefore take the form

eΨLLL(Z , Z†) = C F(Z) e−
Tr(Z Z†)

L , (111)

where C is a normalization constant and F(Z) is a holomorphic function of Z . The angular
momentum operator in the symmetric gauge in the Z , Z coordinates is

J =
i
L

m
∑

i, j=1

�

Zi j Pi j − Z i j P i j

�

=
1
L

m
∑

i, j=1

�

Zi j
∂

∂ Zi j
− Z i j

∂

∂ Z i j

�

. (112)

The Gaussian function e−
Tr(Z Z†)

L is annihilated by it and therefore the angular momentum
operator on the LLL wavefunctions gets reduced to its holomorphic part

J |LLL =
1
L

m
∑

i, j=1

Zi j
∂

∂ Zi j
. (113)

Once we have restricted ourselves to the holomorphic part of the problem we can diagonalize
the angular momentum operator to

J |LLL =
1
L

m
∑

i=1

zi
∂

∂ zi
, (114)

where zi are the eigenvalues of Z , and the wavefunction for the groundstate of the Hamiltonian
(104) takes the form

ΨLLL(zi , Z†) = c f (z)
∏

1≤i< j≤m

(zi − z j) e
−

Tr(Z Z†)
L , (115)
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where c is a normalization constant,
∏

1≤i< j≤m(zi − z j) is the Vandermonde determinant ap-
pearing from the diagonalization and f (z) is a symmetric function of the eigenvalues zi .

Having found the general form for the groundstate wavefunction, the only thing left is to
compute the spectrum of groundstates labelled by their J -eigenvalue. As explained in Section
2.3, for the case of a single particle in the LLL the states can be labelled by their angular
momentum eigenvalue in the symmetric gauge, with the spectrum being the same as for the
harmonic oscillator. For m coincident giants, the problem is similar to the one of studying m
fermionic particles in the LLL, and one can see that the wavefunction (115) is similar to the
Laughlin wavefunction. In the latter case, the groundstate consists of m fermionic oscillators,
and therefore the J -charge spectrum should look like the one of m fermionic oscillators with
frequencies being 1, . . . , m multiples of the single-giant frequency.

This is indeed the case. First, the following derivative of the Vandermonde determinant
just gives the number of terms in the product

� m
∑

i=1

zi∂i

�

∏

1≤i< j≤m

(zi − z j) =
m(m− 1)

2

∏

1≤i< j≤m

(zi − z j) . (116)

Second, the set of wavefunctions of the form (115) which are eigenvectors of (114) is
spanned by the symmetric function f (z) being a monomial symmetric polynomial of the m
eigenvalues zi . The number of monomial symmetric polynomials in m variables of total degree
ℓ is given by the number of partitions of ℓ into at most m parts. If we include the shift by 1
induced by supersymmetrization of the Hamiltonian so that the angular momentum of each
particle starts at 1, it will be given by all partitions of ℓ into exactly m parts, pm(ℓ), which has
generating function

∞
∑

ℓ=1

pm(ℓ)q
ℓ = qm

m
∏

n=1

1
1− qn

. (117)

Then the number of states contributing to the index from the m×m matrix sector is

qm(m−1)/2 qm
m
∏

n=1

1
1− qn

. (118)

The contribution has to be graded by the number (−1)F . The groundstates for the single giant
case are all fermionic, having all (−1)F = −1. Since (−1)F is multiplicative, for the case of
m coincident giants the operator (−1)F is given by m times the single giant one, (−1)m, and
therefore the graded contribution to the index of quadratic fluctuations is

(−1)m
qm(m+1)/2

(q)m
. (119)

Finally, we still have to add the R-charge of the m maximal giants, with each one shifting the
value by N units so that the final contribution for m coincident maximal giants to the index is

(−1)m
qm(m+1)/2

(q)m
qmN . (120)

A comment on the M2 and M5-brane theories

As described in Footnote 9, the bosonic Lagrangian for the quadratic fluctuations of a single
maximal giant graviton in AdS4×S7, which is an M5-brane wrapping S5 ⊂ S7, and of a single
maximal giant graviton in AdS7×S4, which is an M2-brane wrapping S2 ⊂ S4, are both essen-
tially the same as the fluctuations of the maximal D3-giant graviton in AdS5 × S5. Therefore,
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it appears that for a single maximal giant graviton one can extend the analysis of Section 3
to these two cases to produce the same result.18 This is actually consistent with the 1

2 -BPS
indices of the corresponding boundary theories of N M2-branes or M5-branes. Indeed, the 1

2 -
BPS indices for k = 1 ABJM theory with gauge group U(N)×U(N) and for the AN−1 6d (2, 0)
theory coincide with the 1

2 -BPS index for N = 4 SYM with U(N) gauge group given in (2), as
shown in e.g. [69] and [70], respectively. This predicts that the full giant-graviton expansion
agrees for all these cases.

The analysis of this section for multiple branes will also go through if the matrix problem
reduces to decoupled eigenvalues with charges 1,2, 3, . . . . The non-abelian theories for M2- as
well as M5-branes involve a matrix-valued holomorphic scalar field as in the D3-brane theory.
For the M2 case, the matrix-valued scalar field is in a bifundamental representation of the
gauge group, and these transformations can be used to diagonalize the matrix. The complete
non-abelian structure of the M5-branes is not known, but in any string theory limit, as in [70],
the adjoint action of the gauge group can be used to diagonalize the matrix. It would be
interesting to work out the details of the non-abelian structure and verify the prediction of the
giant-graviton expansion for these theories.
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A Derivation of the
1
2-BPS expansion

It is useful to introduce the q-Pochhammer symbols

(x; q)n =
n
∏

j=1

(1− x q j−1) , (q)n = (q; q)n , (A.1)

in terms of which we can write IN (q) = 1/(q)N . We have

IN (q)
I∞(q)

=
(q; q)∞
(q; q)N

= (qN+1; q)∞ . (A.2)

The identity (3) follows by substituting x = qN+1 in the identity

(x; q)∞ =
∞
∑

m=0

am xm , am = (−1)m
q(

m
2)

(q)m
. (A.3)

18We would like to thank the referee for raising this point.
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The formula for the coefficients am can be easily proved by induction in m [71], by noting
that a0 = 1 and by using the functional equation

(x; q)∞ = (1− x) (qx; q)∞ , (A.4)

both of which follow from the definition (A.1) of the q-Pochhammer symbol.

B Flux tube and spectral flow

In this section we study the effect of reintroducing the gauge potential term A⃗2, which we
dropped in Section 2.3, on the spectrum obtained for the Landau problem. We explain how
the term A⃗2, which describes an infinitely thin solenoid at the center of the plane carrying N
units of flux, leaves the spectrum of the Hamiltonian invariant, but produces a change in the
spectrum of the J operator at each Landau level. We do so in two ways, by looking at how the
Hamiltonian operators for the two systems are related, and by seeing the change as an extra
Aharonov-Bohm phase in the wavefunctions due to the added flux.

As we saw in Section 2.3, the gauge potential

A⃗ =
N
L2
(x ŷ − y x̂)

�

1−
L2

x2 + y2

�

, (B.1)

naturally splits into two parts as

A⃗ = A⃗1 + A⃗2 , A⃗1 =
N
L2
(x ŷ − y x̂) , A⃗2 = −N

x ŷ − y x̂
x2 + y2

. (B.2)

Upon discarding A⃗2, the Landau Hamiltonian (35) becomes, in polar coordinates,

H0 =
1

2N/L

�

−
1
ρ

∂

∂ ρ

�

ρ
∂

∂ ρ

�

+
�

−
i
ρ

∂

∂ ϕ
−

N
L2
ρ

�2
�

. (B.3)

As we discussed around Equation (32), the gauge potential A⃗2 is flat everywhere outside the
origin, and corresponds to an infinitely thin solenoid, i.e. a magnetic field of strength 2πN
along a vertical line through the origin pointing downwards. Reinstating this term, we obtain
the full Hamiltonian to be

H =
1

2N/L

�

−
1
ρ

∂

∂ ρ

�

ρ
∂

∂ ρ

�

+
�

−
i
ρ

∂

∂ ϕ
−

N
L2
ρ +

N
ρ

�2
�

. (B.4)

Thus we see that the ground states of the full Hamiltonian are given by the ground states
of the Landau problem, but with the angular momentum shifted by N units. This is simply the
angular momentum of the ground state of the giant.

The change in eigenvalue for the J operator when we reintroduce the A⃗2 term can be seen
as a consequence of the Aharonov-Bohm effect. Consider the Landau Lagrangian (33). As a
particle goes around a loop in the presence of a gauge field A⃗, its wavefunction will acquire
the following Aharonov-Bohm phase

φAB =

∮

A⃗ · ds⃗ = 2πΦ , (B.5)

where Φ is the total magnetic flux enclosed by the loop.
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Consider the state in the lowest Landau level |0,ℓ〉, with wavefunction (49) given in the
units and variables of Section 2.3,

ψ0,ℓ = Cℓ zℓe−|z|
2/4 = Cℓρ

ℓeiℓϕe−ρ
2/4 . (B.6)

Now imagine turning on a small flux ∆Φ through an infinitely thin solenoid placed at the
origin. By performing a (singular) gauge transformation we can eliminate the flux so that the
wavefunction changes as ψ 7→ e−i∆Φϕψ. Therefore ψ is single-valued only when ∆Φ is an
integer. Upon changing the flux ∆Φ from 0 to −N adiabatically and then performing a gauge
transformation to eliminate it, the eigenstate in the lowest Landau level with eigenvalue ℓ
for the angular momentum operator J transforms to an eigenstate with eigenvalue ℓ− N . In
other words, the change in angular momentum is seen to be a consequence of the −N units
of flux through an infinitely thin solenoid. This phenomenon is similar to Laughlin’s pumping
argument in the studies of the quantum Hall effect (see, e.g. [58,59]). In our case it just comes
out of the quadratic fluctuations of a maximal giant. It can be put on firmer mathematical
grounds by defining an index which computes the difference between the projection to the
LLL operators before and after applying the singular gauge transformation [72].

C Superalgebra of a giant graviton in AdS5 × S5

In this appendix we review the superalgebra that is preserved by the 1
2 -BPS giant graviton.

This symmetry algebra is also studied in [21].
The algebra of the background AdS5×S5 is psu(2,2|4). The bosonic sector of this algebra

is so(2, 4)⊕ su(4) and there are 16 Q-supercharges and 16 S-supercharges. The generators of
the algebra are

• J βα , with α,β = +,− and eJ α̇
β̇

, with α̇, β̇ = +,−, which are the generators of Lorentz

transformations,

• Pαα̇ , with α= +,− and α̇= +̇, −̇, which is the generator of translations,

• H, the generator of dilations,

• K α̇α, with α = +,− and α̇ = +̇, −̇, which is the generator of special conformal transfor-
mations,

• RI
J , with I , J = 1, . . . , 4, which is the generator of R-symmetry, noting that it has 15

independent components since it is traceless,

• QI
α , S αI , with I = 1, . . . , 4 and α = +,−, and eQ Iα̇ , eS Iα̇, with I = 1, . . . , 4 and α̇ = +̇, −̇,

which are the supercharges.

The Cartan charges (E, j,ej, R1 , R2 , R3) are given by

E = H , j = J ++ = −J −− , ej = eJ +̇+̇ = −eJ
−̇
−̇ ,

R1 = R1
1 − R2

2 , R2 = R2
2 − R3

3 , R3 = R3
3 − R4

4 .
(C.1)

The Cartan charges of su(4)R (R1 , R2 , R3) and so(6)R (Rx , R y , Rz), which are isomorphic, are
related by

R1 = R y + Rz ,

R2 = Rx − R y ,

R3 = R y − Rz .

(C.2)
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Therefore we also have the following relations

Rx = R1
1 + R2

2 , R y = R1
1 + R3

3 , Rz = R1
1 + R4

4 . (C.3)

The semiclassical 1
2 -BPS giant graviton wraps the S3 ⊂ S5, stays at the origin of AdS5 and

moves on a circle in S5. Introducing the brane breaks translation and special conformal sym-
metry, so the theory with the brane preserves so(4)⊕so(4)⊕R in the bosonic sector, where the
two so(4) algebras correspond to the spatial rotation of AdS5 and the rotation of the S3 ⊂ S5,
respectively. The wrapped D3-brane breaks half and preserves half of the supersymmetries.
The preserved supercharges are 8 Q-supercharges and 8 S-supercharges satisfying H = Rz .
These are Q1

± ,Q4
± , eQ2±̇ , eQ3±̇ and their conjugates S ±1 , S ±4 , eS2±̇ , eS3±̇ .

It is useful to give a notation consistent with the su(2)⊕ su(2) algebra:

Q′1± = Q1
± , Q′2± = Q4

± , eQ′1̇±̇ = eQ2±̇ , eQ′2̇±̇ = eQ3±̇ ,

S′ ±1 = S ±1 , S′ ±2 = S ±4 , eS′
1̇±̇
= eS2±̇ , eS′

2̇±̇
= eS3±̇ ,

(C.4)

r1
1 =

1
2
(R1

1 − R4
4) , r1

2 = R1
4 , r2

1 = R4
1 , r2

2 = −
1
2
(R1

1 − R4
4) ,

er 1̇
1̇
=

1
2
(R2

2 − R3
3) , er 1̇

2̇
= R2

3 , er 2̇
1̇
= R3

2 , er 2̇
2̇
= −

1
2
(R2

2 − R3
3) .

(C.5)

The full preserved algebra is obtained by starting with the algebra of the background theory
and setting to zero the generators of the broken symmetries, i.e. P, K , and the broken 8 Q-
supercharges and the 8 S-supercharges. In the following (anti)commutation relations, the
Greek letters take values+,− and the Latin letters take values 1, 2. The preserved supercharges
satisfy the following anticommutation relations

¦

Q′ Iα , S′ βJ
©

= δI
J J βα −δ

β
α r I

J +
1
2
δ βα δ

I
J (H − Rz) ,

§

eQ′ İα̇ , eS′
J̇ β̇
ª

= δJ̇
İ
eJ β̇α̇ +δ

β̇
α̇
er J̇

İ
+

1
2
δ
β̇
α̇δ

J̇
İ
(H − Rz) .

(C.6)

The so(4) ∼= su(2)⊕ su(2) subalgebra corresponding to the spatial rotations of AdS5 is given
by

[J βα , J δγ ] = δ
β
γ J δα −δ

δ
α J βγ , [eJ α̇

β̇
, eJ γ̇
δ̇
] = δα̇

δ̇
eJ γ̇
β̇
−δγ̇

β̇
eJ α̇
δ̇

. (C.7)

The supercharges transform as a doublet under this subalgebra, i.e.,

�

J βα ,Q′ Iγ
�

= δ βγ Q′ Iα −
1
2
δ βα Q′ Iγ ,

h

eJ α̇
β̇

, eQ′ İ γ̇
i

= δα̇γ̇ eQ′ İ β̇ −
1
2
δα̇
β̇
eQ′ İ γ̇ ,

�

J βα , S′ γI
�

= −δ γα S′ βI +
1
2
δ βα S′ γI ,

h

eJ α̇
β̇

, eS′
İ γ̇
i

= −δγ̇
β̇
eS′

İα̇
+

1
2
δα̇
β̇
eS′

İ γ̇
.

(C.8)

The so(4)∼= su(2)⊕ su(2) subalgebra corresponding to the rotation of the S3 ⊂ S5 is given by
�

r I
J , rK

L

�

= δK
J r I

L −δ
I
L rK

J ,
�

er İ
J̇

,er K̇
L̇

�

= δK̇
J̇
er İ

L̇
−δ İ

L̇
er K̇

J̇
, (C.9)

where r I
J and er İ

J̇
are traceless. The supercharges transform as a doublet under this subalgebra,

with the following commutation relations

�

r I
J ,Q′Kα

�

= δK
J Q′ Iα −

1
2
δI

J Q′Kα ,
�

er İ
J̇

, eQ′K̇α̇
�

= −δ İ
K̇
eQ′ J̇ α̇ +

1
2
δ İ

J̇
eQ′K̇α̇ ,

�

r I
J , S′ αK

�

= −δI
K S′ αJ +

1
2
δI

J S′ αK ,
h

er İ
J̇

, eS′
K̇α̇
i

= δK̇
J̇
eS′

İα̇
−

1
2
δ İ

J̇
eS′

K̇α̇
.

(C.10)
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The Cartan charges (ℓ, j,ej, r1 ,er1̇) are given by

ℓ = H − Rz = E − Rz , j = J ++ = −J −− , ej = eJ +̇+̇ = −eJ
−̇
−̇ ,

r1 = r1
1 − r2

2 = Rx + R y , er1̇ = er 1̇
1̇
−er 2̇

2̇
= Rx − R y .

(C.11)

We observe that the algebra splits into two identical parts, with one being generated by
(J ,Q′, S′, r, H −Rz) and the other being generated by (eJ , eQ′, eS′,er, H −Rz). So the bosonic part
of the algebra is two copies of su(2)⊕ su(2)⊕R with 4 Q-supercharges and 4 S-supercharges
each.

References

[1] J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from anti-de Sit-
ter space, J. High Energy Phys. 06, 008 (2000), doi:10.1088/1126-6708/2000/06/008.

[2] M. T. Grisaru, R. C. Myers and Ø. Tafjord, SUSY and Goliath, J. High Energy Phys. 08,
040 (2000), doi:10.1088/1126-6708/2000/08/040.

[3] S. R. Das, A. Jevicki and S. D. Mathur, Giant gravitons, Bogomol’nyi-Prasad-
Sommerfield bounds, and noncommutativity, Phys. Rev. D 63, 044001 (2001),
doi:10.1103/PhysRevD.63.044001.

[4] A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual,
J. High Energy Phys. 08, 051 (2000), doi:10.1088/1126-6708/2000/08/051.

[5] F. Leblond, R. C. Myers and D. C. Page, Superstars and giant gravitons in M-theory, J. High
Energy Phys. 01, 026 (2002), doi:10.1088/1126-6708/2002/01/026.

[6] S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravi-
tons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5, 809 (2001),
doi:10.4310/ATMP.2001.v5.n4.a6.

[7] V. Balasubramanian, M. Berkooz, A. Naqvi and M. J. Strassler, Giant gravitons in
conformal field theory, J. High Energy Phys. 04, 034 (2002), doi:10.1088/1126-
6708/2002/04/034.

[8] D. Berenstein, A toy model for the AdS/CFT correspondence, J. High Energy Phys. 07, 018
(2004), doi:10.1088/1126-6708/2004/07/018.

[9] M. M. Caldarelli and P. J. Silva, Giant gravitons in AdS/CFT (I): Matrix model and back
reaction, J. High Energy Phys. 08, 029 (2004), doi:10.1088/1126-6708/2004/08/029.

[10] I. Bena and D. J. Smith, Towards the solution to the giant graviton puzzle, Phys. Rev. D 71,
025005 (2005), doi:10.1103/PhysRevD.71.025005.

[11] R. de Mello Koch and R. Gwyn, Giant graviton correlators from dual SU(N) su-
per Yang-Mills theory, J. High Energy Phys. 11, 081 (2004), doi:10.1088/1126-
6708/2004/11/081.

[12] N. V. Suryanarayana, Half-BPS giants, free fermions and microstates of superstars, J. High
Energy Phys. 01, 082 (2006), doi:10.1088/1126-6708/2006/01/082.

[13] G. Mandal, Fermions from half-BPS supergravity, J. High Energy Phys. 08, 052 (2005),
doi:10.1088/1126-6708/2005/08/052.

27

https://scipost.org
https://scipost.org/SciPostPhys.17.4.098
https://doi.org/10.1088/1126-6708/2000/06/008
https://doi.org/10.1088/1126-6708/2000/08/040
https://doi.org/10.1103/PhysRevD.63.044001
https://doi.org/10.1088/1126-6708/2000/08/051
https://doi.org/10.1088/1126-6708/2002/01/026
https://doi.org/10.4310/ATMP.2001.v5.n4.a6
https://doi.org/10.1088/1126-6708/2002/04/034
https://doi.org/10.1088/1126-6708/2002/04/034
https://doi.org/10.1088/1126-6708/2004/07/018
https://doi.org/10.1088/1126-6708/2004/08/029
https://doi.org/10.1103/PhysRevD.71.025005
https://doi.org/10.1088/1126-6708/2004/11/081
https://doi.org/10.1088/1126-6708/2004/11/081
https://doi.org/10.1088/1126-6708/2006/01/082
https://doi.org/10.1088/1126-6708/2005/08/052


SciPost Phys. 17, 098 (2024)

[14] A. Ghodsi, A. E. Mosaffa, O. Saremi and M. M. Sheikh-Jabbari, LLL vs. LLM: Half
BPS sector of N = 4 SYM ≡ quantum Hall system, Nucl. Phys. B 729, 467 (2005),
doi:10.1016/j.nuclphysb.2005.08.042.

[15] A. E. Mosaffa and M. M. Sheikh-Jabbari, On classification of the bubbling geometries, J.
High Energy Phys. 04, 045 (2006), doi:10.1088/1126-6708/2006/04/045.

[16] J. Bourdier, N. Drukker and J. Felix, The exact Schur index of N = 4 SYM, J. High Energy
Phys. 11, 210 (2015), doi:10.1007/JHEP11(2015)210.

[17] J. Bourdier, N. Drukker and J. Felix, The N = 2 Schur index from free fermions, J. High
Energy Phys. 01, 167 (2016), doi:10.1007/JHEP01(2016)167.

[18] A. Mikhailov, Giant gravitons from holomorphic surfaces, J. High Energy Phys. 11, 027
(2000), doi:10.1088/1126-6708/2000/11/027.

[19] C. E. Beasley, BPS branes from baryons, J. High Energy Phys. 11, 015 (2002),
doi:10.1088/1126-6708/2002/11/015.

[20] I. Biswas, D. Gaiotto, S. Lahiri and S. Minwalla, Supersymmetric states of N = 4 Yang-
Mills from giant gravitons, J. High Energy Phys. 12, 006 (2007), doi:10.1088/1126-
6708/2007/12/006.

[21] Y. Imamura, Finite-N superconformal index via the AdS/CFT correspondence, Prog. Theor.
Exp. Phys., 123B05 (2021), doi:10.1093/ptep/ptab141.

[22] D. Gaiotto and J. H. Lee, The giant graviton expansion, J. High Energy Phys. 08, 025
(2024), doi:10.1007/JHEP08(2024)025.

[23] S. Murthy, Unitary matrix models, free fermions, and the giant graviton expansion, Pure
Appl. Math. Q. 19, 299 (2023), doi:10.4310/PAMQ.2023.v19.n1.a12.

[24] E. Witten, Constraints on supersymmetry breaking, Nucl. Phys. B 202, 253 (1982),
doi:10.1016/0550-3213(82)90071-2.

[25] C. Römelsberger, Counting chiral primaries in N = 1, d= 4 superconformal field theories,
Nucl. Phys. B 747, 329 (2006), doi:10.1016/j.nuclphysb.2006.03.037.

[26] J. Kinney, J. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super confor-
mal theories, Commun. Math. Phys. 275, 209 (2007), doi:10.1007/s00220-007-0258-7.

[27] A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, Microscopic origin of the Bekenstein-
Hawking entropy of supersymmetric AdS5 black holes, J. High Energy Phys. 10, 062
(2019), doi:10.1007/JHEP10(2019)062.

[28] S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, (arXiv
preprint) doi:10.48550/arXiv.1810.12067.

[29] F. Benini and P. Milan, Black Holes in 4D N = 4 super-Yang-Mills field theory, Phys. Rev. X
10, 021037 (2020), doi:10.1103/PhysRevX.10.021037.

[30] J. Kim, S. Kim and J. Song, A 4d N = 1 Cardy formula, J. High Energy Phys. 01, 025
(2021), doi:10.1007/JHEP01(2021)025.

[31] A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, The asymptotic growth of
states of the 4d N = 1 superconformal index, J. High Energy Phys. 08, 120 (2019),
doi:10.1007/JHEP08(2019)120.

28

https://scipost.org
https://scipost.org/SciPostPhys.17.4.098
https://doi.org/10.1016/j.nuclphysb.2005.08.042
https://doi.org/10.1088/1126-6708/2006/04/045
https://doi.org/10.1007/JHEP11(2015)210
https://doi.org/10.1007/JHEP01(2016)167
https://doi.org/10.1088/1126-6708/2000/11/027
https://doi.org/10.1088/1126-6708/2002/11/015
https://doi.org/10.1088/1126-6708/2007/12/006
https://doi.org/10.1088/1126-6708/2007/12/006
https://doi.org/10.1093/ptep/ptab141
https://doi.org/10.1007/JHEP08(2024)025
https://doi.org/10.4310/PAMQ.2023.v19.n1.a12
https://doi.org/10.1016/0550-3213(82)90071-2
https://doi.org/10.1016/j.nuclphysb.2006.03.037
https://doi.org/10.1007/s00220-007-0258-7
https://doi.org/10.1007/JHEP10(2019)062
https://doi.org/10.48550/arXiv.1810.12067
https://doi.org/10.1103/PhysRevX.10.021037
https://doi.org/10.1007/JHEP01(2021)025
https://doi.org/10.1007/JHEP08(2019)120


SciPost Phys. 17, 098 (2024)

[32] A. Cabo-Bizet and S. Murthy, Supersymmetric phases of 4d N = 4 SYM at large N, J. High
Energy Phys. 09, 184 (2020), doi:10.1007/JHEP09(2020)184.

[33] R. Arai, S. Fujiwara, Y. Imamura, T. Mori and D. Yokoyama, Finite-N corrections to the
M-brane indices, J. High Energy Phys. 11, 093 (2020), doi:10.1007/JHEP11(2020)093.

[34] R. Arai, S. Fujiwara, Y. Imamura and T. Mori, Schur index of the N = 4 U(N) supersymmet-
ric Yang-Mills theory via the AdS/CFT correspondence, Phys. Rev. D 101, 086017 (2020),
doi:10.1103/PhysRevD.101.086017.

[35] Y. Imamura, Analytic continuation for giant gravitons, Prog. Theor. Exp. Phys., 103B02
(2022), doi:10.1093/ptep/ptac127.

[36] E. Witten, Baryons and branes in anti de Sitter space, J. High Energy Phys. 07, 006 (1998),
doi:10.1088/1126-6708/1998/07/006.

[37] J. H. Lee, Exact stringy microstates from gauge theories, J. High Energy Phys. 11, 137
(2022), doi:10.1007/JHEP11(2022)137.

[38] M. Beccaria and A. Cabo-Bizet, On the brane expansion of the Schur index, J. High Energy
Phys. 08, 073 (2023), doi:10.1007/JHEP08(2023)073.

[39] A. Borodin and A. Okounkov, A Fredholm determinant formula for Toeplitz determinants,
Integral equ. oper. theory 37, 389 (2000), doi:10.1007/BF01192827.

[40] J. T. Liu and N. J. Rajappa, Finite N indices and the giant graviton expansion, J. High
Energy Phys. 04, 078 (2023), doi:10.1007/JHEP04(2023)078.

[41] D. S. Eniceicu, R. Mahajan and C. Murdia, Complex eigenvalue instantons and the Fred-
holm determinant expansion in the Gross-Witten-Wadia model, J. High Energy Phys. 01,
129 (2024), doi:10.1007/JHEP01(2024)129.

[42] D. S. Eniceicu, Comments on the Giant-graviton expansion of the superconformal index,
(arXiv preprint) doi:10.48550/arXiv.2302.04887.

[43] R. Rajaraman, Solitons and instantons: An introduction to solitons and instantons in quan-
tum field theory, Elsevier, Amsterdam, Netherlands, ISBN 9780444870476 (1987).

[44] S. Coleman, Aspects of symmetry: Selected Erice lectures, Cambridge University Press,
Cambridge, UK, ISBN 9780511565045 (1985), doi:10.1017/CBO9780511565045.

[45] M. Beccaria and A. A. Tseytlin, Large N expansion of superconformal index of k= 1 ABJM
theory and semiclassical M5 brane partition function, Nucl. Phys. B 1001, 116507 (2024),
doi:10.1016/j.nuclphysb.2024.116507.

[46] G. Mandal and N. V. Suryanarayana, Counting 1/8-BPS dual-giants, J. High Energy Phys.
03, 031 (2007), doi:10.1088/1126-6708/2007/03/031.

[47] C.-M. Chang and X. Yin, 1
16 BPS states in N = 4 super-Yang-Mills theory, Phys. Rev. D 88,

106005 (2013), doi:10.1103/PhysRevD.88.106005.

[48] Y. Takayama and A. Tsuchiya, Complex matrix model and fermion phase space for
bubbling AdS geometries, J. High Energy Phys. 10, 004 (2005), doi:10.1088/1126-
6708/2005/10/004.

[49] R. Gopakumar and E. A. Mazenc, Deriving the simplest gauge-string duality – I: Open-
closed-open triality, (arXiv preprint) doi:10.48550/arXiv.2212.05999.

29

https://scipost.org
https://scipost.org/SciPostPhys.17.4.098
https://doi.org/10.1007/JHEP09(2020)184
https://doi.org/10.1007/JHEP11(2020)093
https://doi.org/10.1103/PhysRevD.101.086017
https://doi.org/10.1093/ptep/ptac127
https://doi.org/10.1088/1126-6708/1998/07/006
https://doi.org/10.1007/JHEP11(2022)137
https://doi.org/10.1007/JHEP08(2023)073
https://doi.org/10.1007/BF01192827
https://doi.org/10.1007/JHEP04(2023)078
https://doi.org/10.1007/JHEP01(2024)129
https://doi.org/10.48550/arXiv.2302.04887
https://doi.org/10.1017/CBO9780511565045
https://doi.org/10.1016/j.nuclphysb.2024.116507
https://doi.org/10.1088/1126-6708/2007/03/031
https://doi.org/10.1103/PhysRevD.88.106005
https://doi.org/10.1088/1126-6708/2005/10/004
https://doi.org/10.1088/1126-6708/2005/10/004
https://doi.org/10.48550/arXiv.2212.05999


SciPost Phys. 17, 098 (2024)

[50] Y. Jiang, S. Komatsu and E. Vescovi, Structure constants in N = 4 SYM at fi-
nite coupling as worldsheet g-function, J. High Energy Phys. 07, 037 (2020),
doi:10.1007/JHEP07(2020)037.

[51] H. Lin, O. Lunin and J. Maldacena, Bubbling AdS space and 1/2 BPS geometries, J. High
Energy Phys. 10, 025 (2004), doi:10.1088/1126-6708/2004/10/025.

[52] D. Berenstein, J. Maldacena and H. Nastase, Strings in flat space and pp waves from
N = 4 Super Yang Mills, J. High Energy Phys. 04, 013 (2002), doi:10.1088/1126-
6708/2002/04/013.

[53] M. M. Sheikh-Jabbari, Tiny graviton matrix theory: DLCQ of IIB plane-wave string theory, a
conjecture, J. High Energy Phys. 09, 017 (2004), doi:10.1088/1126-6708/2004/09/017.

[54] M. M. Sheikh-Jabbari and M. Torabian, Classification of all 1/2 BPS solutions of the
tiny graviton matrix theory, J. High Energy Phys. 04, 001 (2005), doi:10.1088/1126-
6708/2005/04/001.

[55] J. H. Lee, Trace relations and open string vacua, J. High Energy Phys. 02, 224 (2024),
doi:10.1007/JHEP02(2024)224.

[56] S. R. Das, A. Jevicki and S. D. Mathur, Vibration modes of giant gravitons, Phys. Rev. D
63, 024013 (2000), doi:10.1103/PhysRevD.63.024013.

[57] L. Landau and E. Lifshitz, Quantum mechanics: Non-relativistic theory, Butterworth-
Heinemann, Oxford, UK, ISBN 9780750635394 (1991).

[58] D. Yoshioka, The quantum Hall effect, Springer, Berlin, Heidelberg, Germany, ISBN
9783540431152 (2002), doi:10.1007/978-3-662-05016-3.

[59] D. Tong, Lectures on the quantum Hall effect, (arXiv preprint)
doi:10.48550/arXiv.1606.06687.

[60] E. Bergshoeff and P. K. Townsend, Super D-branes, Nucl. Phys. B 490, 145 (1997),
doi:10.1016/S0550-3213(97)00072-2.

[61] E. Bergshoeff, R. Kallosh, T. Ortín and G. Papadopoulos, κ-symmetry, supersymmetry and
intersecting branes, Nucl. Phys. B 502, 149 (1997), doi:10.1016/S0550-3213(97)00470-
7.

[62] D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-matter theories, J. High
Energy Phys. 08, 056 (2007), doi:10.1088/1126-6708/2007/08/056.

[63] J. Ben Geloun, J. Govaerts and F. G. Scholtz, The N = 1 supersymmetric Landau prob-
lem and its supersymmetric Landau level projections: The N = 1 supersymmetric Moyal-
Voros superplane, J. Phys. A: Math. Theor. 42, 495203 (2009), doi:10.1088/1751-
8113/42/49/495203.

[64] F. Correa, H. Falomir, V. Jakubský and M. S. Plyushchay, Supersymmetries of the spin-
1/2 particle in the field of magnetic vortex, and anyons, Ann. Phys. 325, 2653 (2010),
doi:10.1016/j.aop.2010.06.005.

[65] E. A. Ivanov, Supersymmetrizing Landau models, Theor. Math. Phys. 154, 349 (2008),
doi:10.1007/s11232-008-0032-9.

30

https://scipost.org
https://scipost.org/SciPostPhys.17.4.098
https://doi.org/10.1007/JHEP07(2020)037
https://doi.org/10.1088/1126-6708/2004/10/025
https://doi.org/10.1088/1126-6708/2002/04/013
https://doi.org/10.1088/1126-6708/2002/04/013
https://doi.org/10.1088/1126-6708/2004/09/017
https://doi.org/10.1088/1126-6708/2005/04/001
https://doi.org/10.1088/1126-6708/2005/04/001
https://doi.org/10.1007/JHEP02(2024)224
https://doi.org/10.1103/PhysRevD.63.024013
https://doi.org/10.1007/978-3-662-05016-3
https://doi.org/10.48550/arXiv.1606.06687
https://doi.org/10.1016/S0550-3213(97)00072-2
https://doi.org/10.1016/S0550-3213(97)00470-7
https://doi.org/10.1016/S0550-3213(97)00470-7
https://doi.org/10.1088/1126-6708/2007/08/056
https://doi.org/10.1088/1751-8113/42/49/495203
https://doi.org/10.1088/1751-8113/42/49/495203
https://doi.org/10.1016/j.aop.2010.06.005
https://doi.org/10.1007/s11232-008-0032-9


SciPost Phys. 17, 098 (2024)

[66] S. Kim and C. Lee, Supersymmetry-based approach to quantum particle dynamics
on a curved surface with non-zero magnetic field, Ann. Phys. 296, 390 (2002),
doi:10.1006/aphy.2002.6224.

[67] N. Itzhaki and J. McGreevy, The large N harmonic oscillator as a string theory, Phys. Rev.
D 71, 025003 (2005), doi:10.1103/PhysRevD.71.025003.

[68] E. Brézin, C. Itzykson, G. Parisi and J. B. Zuber, Planar diagrams, Commun. Math. Phys.
59, 35 (1978), doi:10.1007/BF01614153.

[69] M. M. Sheikh-Jabbari and J. Simón, On half-BPS states of the ABJM theory, J. High Energy
Phys. 08, 073 (2009), doi:10.1088/1126-6708/2009/08/073.

[70] H.-C. Kim and K. Lee, Supersymmetric M5 brane theories on R× CP2, J. High Energy Phys.
07, 072 (2013), doi:10.1007/JHEP07(2013)072.

[71] D. Zagier, The dilogarithm function, in Frontiers in number theory, physics, and geometry II,
Springer, Berlin, Heidelberg, Germany, ISBN 9783540303084 (2007), doi:10.1007/978-
3-540-30308-4_1.

[72] J. E. Avron, R. Seiler and B. Simon, Charge deficiency, charge transport and comparison of
dimensions, Commun. Math. Phys. 159, 399 (1994), doi:10.1007/BF02102644.

31

https://scipost.org
https://scipost.org/SciPostPhys.17.4.098
https://doi.org/10.1006/aphy.2002.6224
https://doi.org/10.1103/PhysRevD.71.025003
https://doi.org/10.1007/BF01614153
https://doi.org/10.1088/1126-6708/2009/08/073
https://doi.org/10.1007/JHEP07(2013)072
https://doi.org/10.1007/978-3-540-30308-4_1
https://doi.org/10.1007/978-3-540-30308-4_1
https://doi.org/10.1007/BF02102644

	Introduction and summary
	The description of the bulk D-branes 
	The background AdS5S5
	Semiclassical giant gravitons
	Small fluctuations and the Landau problem 

	Localization of the fluctuating giants 
	Symmetry algebra 
	The theory of small fluctuations including fermions 
	Critical points 
	One-loop fluctuation determinant 

	Multiple giants 
	Derivation of the 12-BPS expansion 
	Flux tube and spectral flow 
	Superalgebra of a giant graviton in AdS5S5 
	References

