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Abstract

Lattice non-invertible symmetries have rich fusion structures and play important roles
in understanding various exotic topological phases. In this paper, we explore methods
to generate new lattice non-invertible transformations/symmetries from a given non-
invertible seed transformation/symmetry. The new lattice non-invertible symmetry is
constructed by composing the seed transformations on different sites or sandwiching a
unitary transformation between the transformations on the same sites. In addition to
known non-invertible symmetries with fusion algebras of Tambara-Yamagami ZN × ZN
type, we obtain a new non-invertible symmetry in models with ZN dipole symmetries.
We name the latter the dipole Kramers-Wannier symmetry because it arises from gauging
the dipole symmetry. We further study the dipole Kramers-Wannier symmetry in depth,
including its topological defect, its anomaly and its associated generalized Kennedy-
Tasaki transformation.
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1 Introduction

Lattice non-invertible symmetry: Recently, the study of non-invertible symmetries in lattice
models with tensor product Hilbert spaces has attracted much attention [1–6]. These works
study the generalized symmetries in field theory initiated by the seminal paper [7]. While
an ordinary symmetry is defined by topological operators with group-like fusion rules, there
exist many examples of topological operators with more general fusion rules wherein an op-
erator does not necessarily have an inverse. The so-called non-invertible symmetry has been
extensively studied in field theories [8–12] and lattice models [1, 2, 13–18] in (1+ 1)d, and
later in higher dimensions [19–25] with potential applications in the particle phenomenol-
ogy [26–28].1

One of the common methods to generate a non-invertible symmetry is to gauge a discrete
Abelian group symmetry G [8,29]. In (1+1)d, gauging a 0-form discrete symmetry G leads to a
gauged theory with a new 0-form symmetry Ĝ := Rep(G), where Rep(G) is the representation
category of the original group G. For a discrete Abelian group G, Rep(G) is again a discrete
Abelian group and is isomorphic to G. A well-known example is the gauging of a 0-form ZN
symmetry. Suppose the ZN symmetry is generated by an operator ηwith ηN = 1. Let us denote
the Kramers-Wannier (KW) duality transformation from the gauging of this ZN symmetry as
D. The invertible and non-invertible operators follow the fusion algebras of the Tambara-
Yamagami type TY(ZN ) [30]:2

η×D =D×η=D , D×D =
N
∑

k=1

ηk . (1)

For N = 2, this gives the fusion rules of the Ising CFT [31,32]. If the theory is further invari-
ant under the gauging of the discrete Abelian group symmetry G, the non-invertible duality
transformation will become a non-invertible symmetry.

1We apologize in advance for missing references and welcome suggestions for additional relevant references.
2In this paper, we will only focus on the fusion algebra and leave the discussion of other fusion data in future

exploration. Therefore we omit the specification of the bicharacter and Frobenius-Schur indicator in the description
of fusion category throughout this paper.
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For a lattice model with a discrete Abelian group symmetry G, we can also find a non-
invertible symmetry by searching for models invariant under gauging the G symmetry. How-
ever, non-invertible symmetries in lattice models have a richer structure than those in field
theories. Even the lattice KW symmetry D from gauging a Z2 symmetry exhibits a fusion rule
mixed with the one-site lattice translation operator T:

U ×D=D× U =D , D×D= (1+ U)T−1 , U2 = 1 , (2)

where U generates the Z2 symmetry. This lattice KW symmetry (2) is therefore beyond the
fusion category description [5]. This observation has been generalized to the subsystem non-
invertible symmetry from gauging subsystem Z2 [33] and ZN symmetry [34] in (2+ 1)d. It
is desirable to have more examples of lattice non-invertible symmetries and further explore
the rich structures in lattice non-invertible fusion algebras. Moreover, lattice non-invertible
symmetries play an important role in understanding various exotic topological phases through
generalized ’t Hooft anomalies [13,35,36] and a generalized Landau paradigm [16,37–40].

In this paper, we study lattice non-invertible symmetries by composing a given non-
invertible symmetry, which we call the seed transformation, with another invertible or non-
invertible symmetry. This method has been very powerful in field theories. For example, in
the c = 1 compact boson, there exist non-invertible symmetries composed of a ZN -symmetry
gauging and the T-duality transformation. Another example is the non-invertible symmetry
from the Adler-Bell-Jackiw (ABJ) anomaly [26, 27], where the non-invertible rational-angle
chiral rotation symmetry is constructed by stacking a (2+1)d fractional quantum Hall state to
a non-conserved gauge-invariant current. This method has also been studied in lattice mod-
els. The non-invertible symmetry of the cluster state is constructed by composing two KW
duality operators that act separately on even and odd sites [6,41]. Furthermore, a subsystem
non-invertible symmetry is constructed by the product of KW transformations on every line,
a global Hadamard gate and the product of KW transformations on every column in [34]. In
this paper, we continue to explore this construction in models with dipole symmetries.

Dipole symmetry: Besides non-invertible symmetry, lattice models are playgrounds for other
exotic symmetries like subsystem symmetry [42–56],3 fractal symmetry [63] and multipole
symmetry [64–74]. Models with these exotic symmetries attract much interest because they
admit quasi-particles called fractons with restricted mobilities [75–85] and have UV-IR mix-
ing in the continuum limit [49, 86–91]. In recent years, dipole symmetry has been studied
in new topological insulators [92–94], exotic quantum liquids [95–98], systems with non-
ergodicity [99–102], hydrodynamics with dipole conservation [103–106] and systems with
anomalous diffusion [107–109].

In field theories with dipole symmetries, the charge Q and the dipole Di in the x i direction
are conserved quantities:

Q :=

∫

space

J0 , Di :=

∫

space

x iJ0 , (3)

where J0 is the time component of the conserved current. The dipole conservation constrains
the mobility of a single charge. If we further impose translational invariance generated by
conserved momentum Pi , the dipole symmetry mixes with the translation symmetry

[Pj , Dk] = −iδ j,kQ . (4)

3Subsystem symmetry is also known as gauge-like symmetry in previous literature [57–62] which is related to
topological memories at finite temperature.
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One can consider the simplest example with U(1) dipole shift symmetry in (1+ 1)d [67]

S =

∮

dτd x
�

µ0

2
(∂τφ)

2 +
1

2µ
(∂ 2

x φ)
2
�

, φ ∼ φ + 2π , (5)

which is invariant under the constant and dipole shifts:

φ(τ, x)→ φ(τ, x) + c + cx x , c, cx ∈ U(1) . (6)

To gauge the symmetry, we need to couple the system with tensor gauge fields (Aτ, Ax x) with
the exotic gauge transformation

Aτ→ Aτ + ∂τα(τ, x) , Ax x → Ax x + ∂
2
x α(τ, x) , (7)

to cancel the contribution from shifting φ(τ, x) by an arbitrary function α(τ, x) ∈ U(1). In the
literature, the corresponding gauge theory is called the U(1) dipole gauge symmetry although
both charge and dipole symmetry have been gauged.

The above analysis works in parallel for a lattice model with a ZN dipole symmetry. Here,
the charge and the dipole operators are

ηQ :=
L
∏

i=1

X i , ηD :=
L
∏

i=1

(X i)
i , ηN

Q = η
N
D = 1 , TηD = ηQηDT , (8)

where X i , Zi are ZN Pauli operators acting on site i. The discussion of boundary conditions is
subtle for a dipole symmetry, and we will for simplicity assume a periodic boundary condition
with lattice size L ≡ 0 mod N throughout this paper. The dipole symmetry acts as

ηD : Zi →ωi Zi , ω := exp(2πi/N) , (9)

and the simplest symmetric interaction is Zi−1(Z
†
i )

2Zi+1.
In this paper, we illustrate the procedure of simultaneously gauging the charge and dipole

symmetries on the lattice. We find that this gauging implements a non-invertible duality trans-
formation, which we call the dipole KW transformation. Similar to the case of field theory, we
will interchangeably use gauging the dipole symmetry and gauging the ZQ

N ×Z
D
N symmetry.

Non-invertible dipole KW symmetry: Although there are extensive studies of non-invertible
symmetry and exotic symmetry, the two types of symmetries are often treated separately, and
non-invertible symmetries in models with exotic symmetry are still rarely explored. There are a
few examples in lattice models with subsystem symmetry [33,34] and field theories with exotic
symmetry [110]. Studying non-invertible symmetries in models with exotic symmetry will
deepen our understanding of non-invertible symmetries and their fusion structures through
more non-trivial and exotic examples. For instance, the fusion of subsystem non-invertible
symmetry forms a grid operator which is a sum of non-topological invertible operators. In
this paper, we further construct and study the lattice non-invertible symmetry in (1+1)d spin
models with dipole symmetry.

By conjugating the global Hadamard gate with the ordinary KW transformation, we ob-
tain a new non-invertible transformation, the dipole KW transformation, that exchanges the
transverse field and dipole interaction. Surprisingly, the fusion algebra of the dipole KW trans-
formation mixes with the charge conjugation symmetry instead of the lattice translation,4

further extending our understanding of the lattice non-invertible structure. In Table. 1, we list
different fusion structures that are studied in this paper.

4In the appendix of [34], the charge conjugation also appears in the fusion rule of the subsystem non-invertible
symmetry from gauging ZN subsystem symmetry. In contrast with our discussion, the fusion rule in that reference
also mixes with the lattice translation. The fusion algebra mixed with charge conjugation also resembles the algebra
of non-invertible duality symmetries found in (3+ 1)d continuum field theories [24].
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Table 1: Different Fusion structures in (1+ 1)d models in this paper.

Duality transformation self-fusion Pattern

gauging ZN : D (
∑N

k=1η
k)T−1 Mixed with lattice translation T

gauging ZN ×ZN : D†
oDe (

∑N
k=1η

k
o)(
∑N

k=1η
k
e ) No mixing

gauging ZQ
N ×Z

D
N : D†UHD (

∑N
k=1η

k
Q)(
∑N

k=1η
k
D)C Mixed with charge conjugation C

The dipole KW transformation can be obtained from gauging the dipole symmetry. We then
study the topological defects by a half-gauging on the spin chain and investigate the anomaly
of the dipole KW symmetry. In particular, the dipole Ising model with N = 3 at two self-dual
points admits an anomalous non-invertible symmetry. By gauging the ordinary Z3 symmetry,
the model is mapped to the Z3 anisotropic XZ model (or quantum torus chain [111]). The
anomaly prohibits the gapped phase with a unique ground state, which is consistent with the
gapless phase and the first order phase transition from numerical calculation [111,112]. Based
on the non-invertible symmetry, we define the Kennedy-Tasaki (KT) transformations [113–
121] associated with dipole symmetries, as a duality relating a dipole spontaneously symmetry
breaking (SSB) phase and a dipole symmetry protected topological (SPT) phase. Following the
construction in [3], KT transformation is a composition of the KW duality transformation and
the invertible transformation that stacks an SPT to the system. Recently, KT transformations
have been applied to studying and classifying non-trivial gapped and gapless phases [6, 34,
122–127].

The structure of this paper: In Sec. 2 we first review the construction of a non-invertible
transformation with TY(ZN×ZN ) type fusion algebra and define the dipole KW transformation
from the ordinary KW transformation as the seed transformation. In Sec. 3, we study the
dipole KW symmetry operator and defect by gauging the dipole symmetry. We also study the
mapping of symmetry-twist sectors of the charge and dipole symmetry during the dipole KW
transformation. We study the anomaly condition for the dipole KW symmetry in Sec. 4 and
the generalized Kennedy-Tasaki transformation in Sec. 5. Finally, we conclude and point out
future directions in Sec. 6.

Note added: After the completion of this manuscript, we became aware of an independent
related work [128] on gauging finite modulated symmetries on spin chains, which will appear
on arXiv soon.

2 Generating lattice non-invertible symmetries

In this section, we show how to generate more lattice non-invertible symmetries in (1+ 1)d
lattice models from a given seed lattice non-invertible transformation. We study examples
where the seed transformation is the KW transformation from gauging a ZN symmetry. By
composing the seed transformation acting on different sites or with other invertible transfor-
mations, we either generate a known symmetry with fusion algebras of Tambara-Yamagami
type TY(ZN × ZN ), or a totally new non-invertible symmetry which appears in models with
dipole symmetries.

We work on a spin chain of L sites with the periodic boundary condition. On each site
there is a qudit |si〉i ∈ Hi , si ∈ ZN . The total Hilbert space H is a tensor product of the local

5
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Hilbert space Hi on each site i. We use |{si}〉 := ⊗L
i=1|si〉i ∈H for a state with qudit si at site

i. The Pauli operators acting on each site are defined as

Zi :=
N
∑

si=1

ωsi |si〉i 〈si| , X i :=
N
∑

si=1

|si + 1〉i 〈si| , ω := exp(2πi/N) . (10)

The Pauli operators are examples of local unitary operators and satisfy the following algebra

ZN
i = X N

i = 1 , ZiX i =ωX i Zi , [Zi , X j] = 0 , for i ̸= j . (11)

2.1 The seed transformation

In this paper, we use the KW transformation D of gauging the ZN symmetry as a seed trans-
formation to generate more lattice non-invertible symmetries. The ZN symmetry is generated
by

η :=
L
∏

i=1

X i , ηN = 1 . (12)

A Hamiltonian with ZN symmetry can be constructed from ZN -singlet operators {Z†
i Zi+1, X i}.

A typical example is the ZN clock model with a transverse field

Hclock = −g−1
L
∑

i=1

Z†
i Zi+1 − g

L
∑

i=1

X i + (h.c.) , (13)

where h.c. means the Hermitian conjugate. This model contains the transverse Ising model
(N = 2) and three states Potts model (N = 3) as special cases. In this paper, we only focus on
Hermitian models which automatically have the charge conjugation symmetry ZC

N generated
by5

C=
∑

{s j}

|{−s j}〉 〈{s j}| : Zi → Z†
i , X i → X †

i , i = 1, ..., L , (15)

where we sum over all possible spin configurations of {si}.
The KW transformation D acts on the operators as

D : X i → Z†
i−1Zi , Z†

i−1Zi → X i−1 , (16)

which preserves the locality of a ZN invariant Hamiltonian. The KW transformation maps the
clock model (13) from a symmetric gapped phase with a unique ground state (g >> 1) to
a symmetry breaking phase with N degenerate vacua (0 ≤ g << 1) and vice versa. At the
critical point (g = 1), the KW transformation becomes a non-invertible symmetry.

The KW transformation has several realizations in the literature [5]. In Appendix A we
illustrate how to get the KW transformation D from gauging the ZN symmetry and study the
topological defect of the KW duality symmetry. Such the KW transformation can be rewritten
in the bilinear phase map (BPM) representation [129]

D=
∑

{si},{s′i}

ω
∑L

i=1(si−1−si)s′i−1 |{s′i}〉 〈{si}| , (17)

5Throughout this paper, for a general (unitary or non-unitary) operator O, its action on other operators Oa is

OOa = O′aO : Oa → O′a . (14)
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where we sum over all possible spin configurations of {si} and {s′i}. In the BPM representation,
it is convenient to compute various operator relations. The action on the Pauli operators is

D
�

Z†
j−1Z j

�

= X j−1D , DX j =
�

Z†
j−1Z j

�

D . (18)

The KW operator D commutes with the translation operator T which acts on states by a shift
of the value of qudit to one site right

T |{si}〉 :=
L
⊗

i=1

|si−1〉i , (19)

and their fusion gives the Hermitian conjugate D†

D† =DT= TD . (20)

The fusion algebra of the invertible operator η,C, the non-invertible operator D and the trans-
lation operator T is

CD=DC , ηD=Dη=D , D×D=

� N
∑

k=1

ηk

�

T−1 , D† ×D=
N
∑

k=1

ηk ,

ηC= Cη† , Tη= ηT , TC= CT , C2 = 1 , TL = 1 .

(21)

The detailed computation of (18), (20) and non-invertible fusion rules in (21) can be found in
Appendix C. Other fusion rules follow simply from the definition. Because the invertible oper-
ators are defined in a translational invariant way, they commute with the translation operator
T. D absorbs η because of (18). The charge conjugation C commutes with the non-invertible
KW operator D because

CD=
∑

{si},{s′i}

ω
∑L

i=1(si−1−si)(−s′i−1) |{s′i}〉 〈{si}|=
∑

{si},{s′i}

ω
∑L

i=1(−(si−1−si))s′i−1 |{s′i}〉 〈{si}|=DC . (22)

Because of the appearance of lattice translation transformation, the lattice symmetry algebra
involving η,D differs from the fusion algebra TY(ZN ) (1).

2.2 TY(ZN ×ZN) type fusion algebra

In this subsection, we show how to generate lattice non-invertible transformations by compos-
ing the seed transformations acting on different sites (or different degrees of freedom in a unit
cell). We work out the example of composing the KW transformations on even and odd sites.

In this particular example, we assume that the number of sites is even (L ≡ 0 mod 2) and
the model has a Zo

N × Z
e
N symmetry where Zo

N acting on the odd sites and Ze
N acting on the

even sites. This symmetry is generated by

ηo =
L/2
∏

i=1

X2i−1 , ηe =
L/2
∏

i=1

X2i . (23)

The model with Zo
N × Z

e
N symmetry is constructed from the symmetry-singlet operators

{Z†
i−1Zi+1, X i} with examples of Ising type model

HIsing-type = −g−1
L
∑

i=1

Z†
i−1Zi+1 − g

L
∑

i=1

X i + (h.c.) , (24)
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and the ZN cluster model

Hcluster = −
L
∑

i=1

Z†
i−1X i Zi+1 + (h.c.) . (25)

The seed transformations are the KW transformations acting on even and odd sites

Do : X2i+1→ Z†
2i−1Z2i+1 , Z†

2i−1Z2i+1→ X2i−1 ,

De : X2i → Z†
2i−2Z2i , Z†

2i−2Z2i → X2i−2 .
(26)

Since they acts on different sites, Do,De commute. We can find two more non-invertible trans-
formations, by composing Do,De and the lattice translation T

D̃= TDoDe : X i → Z†
i−1Zi+1 , Z†

i−1Zi+1→ X i ,

D̃′ =DoDe : X i → Z†
i−2Zi , Z†

i−2Zi → X i−2 ,
(27)

with fusion algebras

D̃× D̃=

� N
∑

k=1

ηk
o

�� N
∑

k=1

ηk
e

�

,

D̃′ × D̃′ =

� N
∑

k=1

ηk
o

�� N
∑

k=1

ηk
e

�

T−2 .

(28)

Here are some comments about the new non-invertible transformations

1. For N = 2 both D̃ and D̃′ are non-invertible symmetries for the Z2 cluster state [6].
The D̃ symmetry belongs to the Rep(D8) fusion category symmetry. The D̃′ symmetry
becomes the Rep(H8) fusion category symmetry in the continuum limit.6

2. Because the fusion of D̃ does not mix with lattice translation, the subalgebra of ηo,ηe, D̃
forms the fusion algebra of TY(ZN ×ZN ) in the lattice level.

3. For general N , there might not exist an SPT phase that is invariant under D̃ or D̃′ symme-
try. This fact can be used as a diagnosis of the anomaly of the non-invertible symmetries.

4. It is straightforward to generalize this method and find new non-invertible transforma-
tions and symmetries in lattice models with Abelian group G1 × G2 symmetry. The seed
transformations are gauging the G1 symmetry and gauging the G2 symmetry.

2.3 Dipole Kramers-Wannier transformation

In this subsection, we explore yet another method to generate the lattice non-invertible trans-
formation through sandwiching unitary operators by seed transformations acting on the same
sites. This idea comes from an observation [130] that gauging the ZN symmetry η=

∏L
i=1 X i

of the XZ model

HXZ = −g−1
L
∑

i=1

X †
i X i+1 − g

L
∑

i=1

Z†
i Zi+1 + (h.c.) , (29)

6Rep(D8) and Rep(H8) have the same fusion algebra but different bicharacters. The difference in lattice trans-
formations is a reflection of the difference of the bicharacter between the two. In this paper we only focus on the
fusion algebra and leave the study of other fusion data (such as bicharacter) in future work.
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Dipole Ising model with coupling g

Dipole Ising model with coupling g−1

XZ model with coupling g

XZ model with coupling g−1

D (or D†)

D† (or D)

D̂ UH

Figure 1: Duality web of the dipole Ising model and the XZ model.

gives the dipole Ising model with ZD
N dipole symmetry

Hdipole-Ising = −g−1
L
∑

i=1

Zi−1(Z
†
i )

2Zi+1 − g
L
∑

i=1

X i + (h.c.) . (30)

Actually the model has a larger symmetry
�

ZQ
N ×Z

D
N

�

⋊ ZC
2 symmetry where the superscripts

Q, D, C means charge, dipole and charge conjugation. The generators of the charge and dipole
symmetry are

ηQ :=
L
∏

i=1

X i , ηD :=
L
∏

i=1

(X i)
i . (31)

For simplicity, we assume L ≡ 0 mod N to have a full ZD
N symmetry.

Starting with the seed transformation D by gauging the charge symmetry ZQ
N , we define

the dipole KW transformation
D̂ := TDUHD=D†UHD , (32)

where

UH :=
L
∏

i=1

UH
i , UH

i =
1
p

N

N
∑

α,β=1

ω−αβ |β〉 〈α| : X i → Z†
i , Zi → X i , (33)

is the product of ZN Hadamard gate UH
i on every site and can be viewed as the “half-charge

conjugation” because C= (UH)2. From the decomposition (32), the dipole KW transformation
first maps the dipole Ising model to the XZ model, then exchanges X †

i X i+1 and Z†
i Zi+1, and

finally maps the model back to the dipole Ising model. The net action is

D̂ : X i → Zi−1(Z
†
i )

2Zi+1 , Zi−1(Z
†
i )

2Zi+1→ X †
i , (34)

which interchanges the dipole-interaction terms and the transverse-field terms. The above
transformations are summarized in the duality web in Fig. 1.

In the next section, we will interpret the dipole KW transformation as gauging of both the
charge and dipole symmetry and study the transformation in detail. The fusion algebra of
ηQ,ηD, D̂ can already be computed from the decomposition of D̂ (32) and the property of the
seed transformation D. For example, the non-invertible fusion rule is

D̂× D̂= (D†UHD)(D†UHD) =D†UH

� N
∑

k=1

ηk
Q

�

UHD

=D†

 

N
∑

k=1

� L
∏

i=1

Zi

�k

C

!

D=D†D

� N
∑

k=1

ηk
D

�

C=

� N
∑

k=1

ηk
Q

�� N
∑

k=1

ηk
D

�

C ,

(35)
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where we used
L
∏

i=1

Zi =
L
∏

i=1

�

Zi−1Z†
i

�i
, (36)

with the assumption L ≡ 0 mod N . The full fusion algebra of the invertible operatorsηQ,ηD,C,
the non-invertible operator D̂ and the translation operator T is

ηQD̂= ηDD̂= D̂ηQ = D̂ηD = D̂ , D̂× D̂=

� N
∑

k=1

ηk
Q

�� N
∑

k=1

ηk
D

�

C , D̂† = CD̂= D̂C ,

CηQ = η
†
QC , CηD = η

†
DC , TηQ = ηQT , TηD = η

†
QηDT , C2 = 1 , TL = 1 .

(37)

Here are a few comments about the dipole KW transformation:

1. In contrast with the ordinary KW transformation, implementing the dipole KW transfor-
mation D̂ twice does not involve a lattice translation T but a charge conjugation operation
C. The fusion subalgebra of ηQ,ηQ, D̂,C is new and is different from the fusion algebra
of TY(ZN×ZN ). The Z2 charge conjugation appears in the non-invertible fusion rule and
acts non-trivially on the invertible operators ηQ,ηD. For N = 2, the charge conjugation
becomes the identity operator and the fusion subalgebra of ηQ,ηQ, D̂ becomes the fusion
algebra of Rep(D8).

2. For dipole Ising model at self dual point (g = 1), neither the ordinary KW transformation
D nor the global Hadamard gate UH is a symmetry, while the dipole KW transformation
(32) is a symmetry.

3. The original XZ model has another ZN symmetry generated by
∏L

i=1 Zi . In the dipole
Ising model, this symmetry becomes the ZN dipole symmetry after the ordinary KW
transformation [130]

� L
∏

i=1

Zi

�

D=

� L
∏

i=1

�

Zi−1Z†
i

�i
�

D=D ηD . (38)

4. SPT phases protected by dipole symmetries in (1+1)d have been classified in [131]. We
will study the anomaly of the dipole KW symmetry by checking the invariance of dipole
SPT phase under the dipole KW transformation for general N in Section 4.

5. By repeating the sandwiching procedure (32), we can in general find non-invertible
transformations in models with multipole symmetries. For example, the quadruple KW
transformation is

DUHD†UHD : X i → Z†
i−2Z3

i−1(Z
†
i )

3Z†
i+1 , Z†

i−2Z3
i−1(Z

†
i )

3Z†
i+1→ X i−1 , (39)

where the quadruple interaction is invariant under the quadruple symmetry operator

ηQu :=
∏

i

X i2

i . (40)

3 Dipole Kramers-Wannier symmetry

In this section, we study the dipole KW symmetry in detail. We first show that the dipole KW
transformation D̂,

D̂ : X i → Zi−1(Z
†
i )

2Zi+1 , Zi−1(Z
†
i )

2Zi+1→ X †
i , (41)
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comes from gauging both the charge and dipole symmetry. We then study the topological in-
terface and defect of the dipole KW transformation by a half-gauging on the spin chain. Finally,
using the BPM representation, we study how the symmetry and twist sectors of both the charge
and the dipole symmetries map into each other under this non-invertible transformation.

3.1 Duality transformation: Gauging on the whole spin chain

We gauge both the charge and dipole symmetry in the following steps. First we enlarge the
Hilbert space by introducing gauge variables on the site. Then we impose the Gauss law
constraints to project to the gauge invariant sectors. Finally we rename the variables to match
with the original theory.

We illustrate the above steps in the transverse dipole Ising model

Hdipole-Ising = −g−1
L
∑

i=1

Zi−1(Z
†
i )

2Zi+1 − g
L
∑

i=1

X i + (h.c.) . (42)

This Hamiltonian is invariant under the global charge and dipole transformation

Zi →ωα+β i Zi , α,β = 0, ..., N − 1 , (43)

where α,β are constants. If we promote the global transformation to a gauge transformation

Zi →ω fi Zi , (44)

where fi is a ZN -valued function of the position, the interaction term is not invariant

Zi−1(Z
†
i )

2Zi+1→ω fi−1+ fi+1−2 fi Zi−1(Z
†
i )

2Zi+1 . (45)

Introducing another set of Pauli operators X̃ i , Z̃i on each site as gauge variables leads to
the gauged Hamiltonian

Hgauged = −g−1
L
∑

i=1

X̃ †
i Zi−1(Z

†
i )

2Zi+1 − g
L
∑

i=1

X i + (h.c.) , (46)

which in invariant under the gauge transformation

Zi →ω fi Zi , X̃ i →ω−( fi−1+ fi+1−2 fi)X̃ i . (47)

The gauge variables X̃ i , Z̃i commutes with the original Pauli operators X i , Zi . The gauged
theory is equivalent to coupling two isolated chains on top of each other, with an enlarged
Hilbert space H̃ with dimension N2L . Besides the original global symmetry (43), the gauged
theory also has a set of additional gauge symmetries (47) generated by

Gi = X †
i Z̃i−1(Z̃

†
i )

2 Z̃i+1 , [Gi , Hgauged] = 0 , ∀i . (48)

We require that the physical state |ψ〉 is gauge invariant

Gi |ψ〉= |ψ〉 , (49)

and we impose Gauss law constraints

Gi = X †
i Z̃i−1(Z̃

†
i )

2 Z̃i+1 = 1 , → X i = Z̃i−1(Z̃
†
i )

2 Z̃i+1 , ∀i . (50)
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0 1 2 3

D̂

D̂

(1)

0 1 2 3

D̂

D̂

(2)

0 1 2 3

D̂ D̂

�

∑N
k=1η

k
Q

��

∑N
k=1η

k
D

�

C

(3)

Figure 2: (1) Half-gauging creates a topological interface/defect D̂ lo-
cated at link (1, 2); (2) movement operator U2

D̂
= C Z2,3(C Z†

2,l)
2(UH

2 )
†S2,l

moves the interface/defect from (1,2) to (2,3); (3) Fusion operator
λ
(1,2,3)
D̂⊗D̂

= C Z†
3,l2

C Z†
2,l1
(C Z2,l2)

2S2,l2 fuses the defects at (1,2) and (2,3).

After imposing the Gauss law constraints, the enlarged Hilbert space H̃ is projected down to
a new Hilbert space with dimension 2L , which is isomorphic to the original Hilbert space H.
Changing to a new set of variables

Ẑi := Z̃i , X̂ i := X̃ i(Zi−1(Z
†
i )

2Zi+1)
† , (51)

the gauged Hamiltonian becomes

−g−1
L
∑

i=1

X̂ i − g
L
∑

i=1

(Ẑi−1(Ẑ
†
i )

2 Ẑi+1)
† + (h.c.) . (52)

Finally, by renaming the variables

Ẑi → Zi , X̂ i → X i , (53)

we recover the original Hamiltonian with the change of coupling g → g−1. The whole process
gives the dipole KW transformation D̂

D̂ : X i → Zi−1(Z
†
i )

2Zi+1 , Zi−1(Z
†
i )

2Zi+1→ X †
i . (54)

When the theory is self-dual with g = 1, D̂ becomes a non-invertible symmetry.

3.2 Duality defect: Half-space gauging on the spin chain

In this subsection, we construct the duality defect corresponding to the dipole KW transforma-
tion by a half-space gauging on the spin chain. The half-space gauging creates a topological
interface which further becomes a topological defect when the model is invariant under the
gauging. We also show the local unitary gates that move and fuse the duality defect. The
defect, its movement and fusion are shown in Fig. 2.

Half-space gauging

Consider the transverse dipole Ising model on an infinite chain and gauge the dipole symmetry
for sites i ≥ 1. The half-gauged Hamiltonian is

Hhalf-gauged = −g−1
∑

i≤0

Zi−1(Z
†
i )

2Zi+1 − g−1
∑

i≥1

X̃ †
i Zi−1(Z

†
i )

2Zi+1 − g
∑

i

X i + (h.c.) . (55)
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Imposing the Gauss law constraints that commute with the half-gauged Hamiltonian

Gi = X †
i Z̃i−1(Z̃

†
i )

2 Z̃i+1 = 1 , i ≥ 2 , (56)

then (55) becomes

Hhalf-gauged =− g−1
∑

i≤0

Zi−1(Z
†
i )

2Zi+1 − g
∑

i≤0

X i

− g−1X̃ †
1Z0(Z

†
1)

2Z2 − gX1 − g−1X̃ †
2Z1(Z

†
2)

2Z3 − g Z̃1(Z̃
†
2)

2 Z̃3

− g−1
∑

i≥3

X̃ †
i Zi−1(Z

†
i )

2Zi+1 − g
∑

i≥3

Z̃i−1(Z̃
†
i )

2 Z̃i+1 + (h.c.) .

(57)

We can further introduce a new set of Pauli variables

Zl := Z̃1 , X l := X̃1Z†
2 ,

Ẑ2 := Z̃2 , X̂2 := X̃2((Z
†
2)

2Z3)
† ,

Ẑi := Z̃i , X̂ i := X̃ i(Zi−1(Z
†
i )

2Zi+1)
† , i ≥ 3 .

(58)

After renaming X̂ i → X i , Ẑi → Zi , i ≥ 2, the half-gauged Hamiltonian becomes

Hhalf-gauged =− g−1
∑

i≤0

Zi−1(Z
†
i )

2Zi+1 − g
∑

i≤0

X i

− g−1Z0(Z
†
1)

2X l − gX1 − g−1Z1X2 − gZl(Z
†
2)

2Z3

− g−1
∑

i≥3

X i − g
∑

i≥3

Zi−1(Z
†
i )

2Zi+1 + (h.c.) .

(59)

There is an interface located at the link (1,2) separating two theories which are exchanged by
inverting the coupling g → g−1. By inserting the duality interface, we couple the system with
one ancillary qudit |sl〉 with Pauli operators X l , Zl acting on this qudit.

Under the following local unitary transformation

C Z2,3(C Z†
2,l)

2(UH
2 )

†S2,l :











X l → Z2 , Zl → X †
2Z2

l Z†
3 ,

X2→ X l(Z
†
2)

2 , Z2→ Zl ,

X3→ X3Z2 ,

(60)

the half-gauged Hamiltonian becomes

Hhalf-gauged→− g−1
∑

i≤1

Zi−1(Z
†
i )

2Zi+1 − g
∑

i≤0

X i

− g−1Z1(Z
†
2)

2X l − gX2 − g−1Z2X3 − gZl(Z
†
3)

2Z4

− g−1
∑

i≥4

X i − g
∑

i≥3

Zi−1(Z
†
i )

2Zi+1 + (h.c.) ,

(61)

where the interface is moved to the link (2,3) as shown in Fig. 2. This duality interface is
therefore topological. In (60), C Zi, j is the control-Z gate, UH

j is the Hadamard gate and Si, j is
the swap gate. Their definition and transformation on local operators can be found in Table. 2.

Dipole KW duality defect

When the coupling g = 1, the duality interface becomes a duality defect. The defect Hamilto-
nian with the dipole KW duality defect D̂ at link (i0, i0 + 1) is

H(i0,i0+1)

D̂
=−

∑

i ̸=i0,i0+1

(Zi−1(Z
†
i )

2Zi+1 + X i)

− (Zi0−1(Z
†
i0
)2X l + X i0 + Zl(Z

†
i0+1)

2Zi0+2 + Zi0 X i0+1) + (h.c.) .
(62)
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This defect is topological and can be moved to link (i0 + 1, i0 + 2) by a movement operator

U i0+1

D̂
:= C Zi0+1,i0+2(C Z†

i0+1,l)
2(UH

i0+1)
†Si0+1,l . (63)

Since the defect is topological, we can insert two defects far away from each other, move them
together and fuse them. Without loss of generality, we can move the two dipole KW defects to
links (1,2) and (2,3)

H(1,2),(2,3)
D̂;D̂

=−
∑

i ̸=1,2,3

(Zi−1(Z
†
i )

2Zi+1 + X i)

− (Z0(Z
†
1)

2X l1 + X1 + Zl1(Z
†
2)

2X l2 + Z1X2 + Zl2(Z
†
3)

2Z4 + Z2X3) + (h.c.) ,
(64)

where X l1 , Zl1 , X l2 , Zl2 act on the ancillary qudit |sl1〉 , |sl2〉 associated with the two defects. We
need to apply the fusion operator

λ
(1,2,3)
D̂⊗D̂

= C Z†
3,l2

C Z†
2,l1
(C Z2,l2)

2S2,l2 :























X l1 → X l1 Z†
2 ,

X l2 → X2Z2
l2

Z†
l1

, Zl2 → Z2 ,

X2→ X l2 Z2
2 Z†

3 , Z2→ Zl2 ,

X3→ X3Z†
l2

,

(65)

and the defect Hamiltonian after fusion is

H(1,2),(2,3)
D̂;D̂

→ H(1,2)
D̂⊗D̂

=−
∑

i ̸=1,2

(Zi−1(Z
†
i )

2Zi+1 + X i)

− (Z0(Z
†
1)

2Z†
2 X l1 + X1 + Z†

1(Z
†
2)

2Z3X †
l2
+ X2) + (h.c.) .

(66)

This Hamiltonian has two decoupled degrees of freedom on ancillary sites l1 and l2; X l1 , X l2
become symmetry operators of the new Hamiltonian whose Hilbert space is decomposed into
a direct sum of the eigenspaces of X1 and X2. Compared with the defect Hamiltonian with in-
sertion of invertible topological defects of C,ηQ,ηD in Appendix B, one finds that after picking
the eigenvalue of X1 and X2, the fused defect Hamiltonian corresponds to different channels
of the fusion rule

D̂× D̂=

� N
∑

k=1

ηk
Q

�� N
∑

k=1

ηk
D

�

C . (67)

3.3 Bilinear phase map representation and symmetry-twist sectors

The dipole KW transformation has the following BMP representation under periodic boundary
conditions

D̂=
∑

{s j},{s′j}

ω−
∑L

i=1(s
′
i+1+s′i−1−2s′i)si |{s′j}〉 〈{s j}|

=
∑

{s j},{s′j}

ω−
∑L

i=1(si+1+si−1−2si)s′i |{s′j}〉 〈{s j}| ,
(68)

where the exponent respects the dipole interaction and the minimal gauge coupling. While
the fusion algebras have been studied from decomposition into the seed transformation in
Sec. 2, here we instead use the BPM representation to study the mapping of symmetry-twist
sectors before and after the dipole KW transformation. This will be useful in the analysis of
the anomaly of the dipole KW symmetry in the next section.
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Mapping between symmetry-twist sectors

Since there are charge and dipole symmetries, the states can be organized into eigenstates of
ηQ and ηD with symmetry eigenvalue ωuQ and ωuD where uQ, uD ∈ ZN . Moreover, one can
also use the ZQ

N and ZD
N symmetries to twist the boundary condition of the spins as

si+L := si + tQ + tD i , |si+L〉i+L := |si + tQ + tD i〉i , (69)

with tQ, tD ∈ ZN . The Pauli Z operators also have a boundary condition:

Zi+L =ω
tQ+tD i Zi . (70)

One can organize the Hilbert space into N4 symmetry-twist sectors, labeled by (uQ, tQ, uD, tD).
Similarly, one can also label the symmetry-twist sectors of spins after the dipole KW transfor-
mation by (buQ,btQ,buD,btD). We would like to find out the relation between the sectors before
and after the dipole KW transformation.

The BMP representation is modified with general boundary conditions

D̂=
∑

{s j},{s′j}

ω
∑L

i=1−(s
′
i+1+s′i−1−2s′i)si−(tQ+tD)s′L+tQs′1 |{s′j}〉 〈{s j}|

=
∑

{s j},{s′j}

ω
∑L

i=1−(si+1+si−1−2si)s′i−(btQ+btD)sL+btQs1 |{s′j}〉 〈{s j}| .
(71)

Let us first consider D̂×ηQ acting on an arbitrary state |ψ〉=
∑

{si}ψ{si} |{si}〉.

D̂×ηQ |ψ〉= D̂
∑

{si}

ψ{si} |{si + 1}〉

=
∑

{s′i},{si}

ψ{si}ω
−
∑L

i=1(si+1+si−1−2si)s′i−(btQ+btD)(sL+1)+btQ(s1+1) |{s′i}〉

=ω−btD

∑

{s′i},{si}

ψ{si}ω
∑L

i=1−(si+1+si−1−2si)s′i−(btQ+btD)sL+btQs1 |{s′i}〉

=ω−btDD̂ |ψ〉 .

(72)

The result implies that for any eigenstate |Ψ〉 with

ηQ |Ψ〉=ωuQ |Ψ〉 , (73)

we have

ω−btDD̂ |Ψ〉= D̂×ηQ |Ψ〉=ωuQD̂ |Ψ〉 , (74)

namely

btD = −uQ . (75)

On the other hand, one can also consider bηQ × D̂ acting on a arbitrary state |ψ〉,

bηQ × D̂ |ψ〉= bηQ

∑

{s′i},{si}

ψ{si}ω
∑L

i=1−(s
′
i+1+s′i−1−2s′i)si−(tQ+tD)s′L+tQs′1 |{s′i}〉

=
∑

{s′i},{si}

ψ{si}ω
∑L

i=1−(s
′
i+1+s′i−1−2s′i)si−(tQ+tD)s′L+tQs′1 |{s′i + 1}〉

=ωtDD̂ |ψ〉 .

(76)
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This shows that the dual ZQ
N -symmetry charge sector after dipole KW transformation is identi-

fied with the twisted sector before this transformation,

buQ = tD . (77)

By similar calculations, one can determine the correspondence between the remaining sectors:

btQ = uD , buD = −tQ . (78)

In summary, we have the following map of the symmetry-twist sectors:

(buQ,btQ,buD,btD) = (tD, uD,−tQ,−uQ) . (79)

4 Anomaly of dipole Kramers-Wannier symmetry

In this section, we discuss the ’t Hooft anomaly of the dipole KW symmetry by checking whether
there is a dipole SPT phase invariant under such symmetry. A theory with an anomaly-free
symmetry in the low energy should be uniquely gapped. Therefore, we will find an anomaly if
we cannot find a gapped phase with a unique ground state that is invariant under the dipole
KW transformation with a certain N . The anomaly imposes a nonperturbative constraint on
the self-dual theories that they must have continuous or first-order phase transitions. This can
help us understand, for example, the phase diagrams of systems with Z3 dipole symmetry.

4.1 Anomaly free condition for general N

Suppose we have a theory with both invertible ZQ
N × Z

D
N symmetry and the non-invertible

dipole KW symmetry. We will prove the anomaly of the dipole KW symmetry by contradiction.
Because the charge and dipole symmetryZQ

N×Z
D
N is anomaly free, the symmetric theory is com-

patible with a gapped phase with one ground state, i.e. dipole SPT phase. We exclude the triv-
ial phase because it is mapped to a dipole SSB phase under the dipole KW transformation and
therefore does not have a dipole KW symmetry. The dipole SPT phase has been studied [132]
and classified [131], which is given by an element of H2(ZN×ZN , U(1))/H2(ZN , U(1))2 = ZN .
A simple example is the stabilizer Hamiltonian:

HSPT-k = −
L
∑

i=1

N
∑

m=1

[(Zi−1Z†
i )

kX i(Z
†
i Zi+1)

k]m , (80)

where level k ∈ ZN corresponds to different classes. The SPT Hamiltonian is constructed from
the trivial-phase Hamiltonian

Htriv = −
L
∑

i=1

N
∑

m=1

(X i)
m , (81)

by decorated domain wall construction

HSPT-k = T k
DHtrivT−k

D , TD =
L
∏

i=1

C Zi−1,iC Z†
i,i , (82)

where the transformation of control-Z gate on Pauli operators can be found in Table 2.
Since all the terms in the SPT Hamiltonian (80) commute with each other, the ground state

satisfies
(Zi−1Z†

i )
kX i(Z

†
i Zi+1)

k |G.S.〉= |G.S.〉 . (83)
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The SPT phases with different k are characterized by the charges of ground state |G.S.〉tQ ,tD

with twisted boundary conditions labelled by (tQ, tD) [122,133–135]. It is straightforward to
calculate the charges of symmetry operator ηQ,ηD on ground state |G.S.〉tQ ,tD

(
L
∏

i=1

X i) |G.S.〉tQ ,tD
=

L
∏

i=1

(Z†
i−1Z2

i Z†
i+1)

k |G.S.〉tQ ,tD
= (Z†

0 Z1ZL Z†
L+1)

k |G.S.〉tQ ,tD
=ω−ktD |G.S.〉tQ ,tD

,

(
L
∏

i=1

X i
i ) |G.S.〉tQ ,tD

=
L
∏

i=1

(Z†
i−1Z2

i Z†
i+1)

ki |G.S.〉tQ ,tD
= (Z†

0 ZL)
k |G.S.〉tQ ,tD

=ωktQ |G.S.〉tQ ,tD
,

(84)

where we used the twist boundary condition of Pauli operators in the last equality in each
equation. Therefore the ground state |G.S.〉tQ ,tD

is in the symmetry-twist sector labelled by

(uQ = −ktD, tQ, uD = ktQ, tD) . (85)

If the ground states after the dipole KW transformation do not stay in the same sector, the SPT
phase is not invariant under this transformation. If for given N every k we cannot find an SPT
that is invariant under the dipole KW transformation, then the symmetry is anomalous.

Now let us check whether there is an SPT phase invariant under dipole KW transformation.
The dual Hamiltonian is

H ′k = −
L
∑

i=1

N
∑

m=1

[Z†
i−1ZiX

k
i Zi Z

†
i+1]

m . (86)

The dual Hamiltonian is not necessarily an SPT but still a stabilizer model. We will classify
the dual Hamiltonian with different k, N into different gapped phases in Sec. 5.2. The corre-
sponding ground state(s) |G.S.′〉 of H ′k satisfies

Z†
i−1ZiX

k
i Zi Z

†
i+1 |G.S.′〉= |G.S.′〉 . (87)

In the dual systems, we label twist boundary conditions of dual systems using btQ,btD. Then the
charges of ground state |G.S.′〉

btQ ,btD
with twisted boundary conditions are

(
L
∏

i=1

X i)
k |G.S.′〉

btQ ,btD
=

L
∏

i=1

(Z†
i−1Z2

i Z†
i+1)

−1 |G.S.′〉
btQ ,btD

= (Z†
0 Z1ZL Z†

L+1)
−1 |G.S.′〉

btQ ,btD
=ωbtD |G.S.′〉

btQ ,btD
,

(
L
∏

i=1

X i
i )

k |G.S.′〉
btQ ,btD

=
L
∏

i=1

(Z†
i−1Z2

i Z†
i+1)

−i |G.S.′〉
btQ ,btD

= (Z†
0 ZL)

−1 |G.S.′〉
btQ ,btD

=ω−btQ |G.S.′〉
btQ ,btD

,

(88)

which shows that the ground state |G.S.′〉
btQ ,btD

is in the symmetry-twist sector labelled by

(buQ,btQ = −kbuD,buD,btD = kbuQ) . (89)

Therefore, if there is an SPT phase invariant under dipole KW transformation, the ground state
charges of (86) and (80) under the same twisted boundary condition should be consistent with
each other, that is

buQ
(85)
= −kbtD

(89)
= −k2

buQ , buD
(85)
= kbtQ

(89)
= −k2

buD , (90)

where all equations are valued modulo N . Thus k should satisfy k2 = −1 mod N , i.e., −1 is
a quadratic residue modulo N , which is the necessary anomaly-free condition for dipole KW
symmetry.7

7Similar constraints also appear in the anomaly of non-invertible duality defects in (3+ 1)d [21].
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Indeed, this condition is also a sufficient anomaly-free condition. This is because the dual
Hamiltonian (86) is the same as the Hamiltonian (80) in this case. When k2 = −1 mod N ,
N is coprime with k. Hence, for each m ∈ ZN , there exist a unique jm ∈ ZN satisfying
k jm = m mod N . As a result, we have the

H ′k = −
L
∑

i=1

N
∑

m=1

[Z†
i−1ZiX

k
i Zi Z

†
i+1]

jm

= −
L
∑

i=1

N
∑

m=1

(Z†
i−1Zi)

jm X m
i (Zi Z

†
i+1)

jm = HSPT-k ,

(91)

where in the last equation, we use the fact that jm = −k2 jm = −km mod N .
In summary, when −1 is a quadratic residue modulo N , the dipole KW symmetry is

anomaly-free and there exists a dipole SPT also protected by this non-invertible symmetry;
otherwise it is an anomalous symmetry.

4.2 Anomaly and phase diagram for N = 3

When N = 3, the dipole KW symmetry is anomalous because −1 is not a quadratic residue
modulo 3. Indeed, this anomaly can help us understand the phase transition in the phase
diagram of the dipole Ising model:

Hdipole-Ising = −g−1
L
∑

i=1

Zi−1(Z
†
i )

2Zi+1 − g
L
∑

i=1

X i + (h.c.)

=
Æ

g2 + g−2
L
∑

i=1

(cosθ Zi−1(Z
†
i )

2Zi+1 + sinθX i) + (h.c.) ,

(92)

where we defined an angle θ by cosθ = −g−1/
p

g2 + g−2, sinθ = −g/
p

g2 + g−2. The dipole
Ising model can be mapped to the XZ chain

HXZ =
Æ

g2 + g−2
L
∑

i=1

(cosθX †
i−1X i + sinθ Z†

i−1Zi) + (h.c.) , (93)

by gauging the ordinary ZQ
3 symmetry. The ZD

3 dipole symmetry becomes a ZZ
3 symmetry

generated by
∏L

i=1 Zi and we have a new quantum ZX
N symmetry generated by

∏L
i=1 X i .

The phase diagram of Hamiltonian (93) has been determined by numerical calculation
in [111,112], under the name “quantum torus chain”. We show the phase diagram in the left
part of Fig. 3, which can be summarized as follows:

1. The phase diagram exhibits a symmetric pattern across the line of θ = 0.25π,
θ = 1.25π, at which points the model is invariant under the global Hadamard gate
UH : X i → Z†

i , Zi → X i ,∀i.

2. Around θ = 0.25π, this model hosts a large gapless phase region,

θ ∈ (−0.1π, 0)∪ (0,0.5π)∪ (0.5π, 0.6π) ,

with center charge c = 2. At two particular points θ = 0,0.5π there are first-order phase
transitions with exponentially large ground state degeneracy.

3. There is a first order phase transition at θ = 1.25π, which separates the ZZ
3 SSB phase

with nonzero 〈X i〉 when θ ∈ (0.6π, 1.25π) and the ZX
3 SSB phase with nonzero 〈Zi〉

when θ ∈ (1.25π, 1.9π). The first-order phase transitions at θ = 0.6π, 1.9π separate
gapped SSB phases and gapless phases.
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−0.1π

0.6π

0

0.5π

1.25π

ZQ
3 SSB

ZZ
3 SSB

Two component
Luttinger liquid

−0.1π

0.6π

0

0.5π

1.25π

0.25π

Trivially gapped

Dipole SSB

Gapless region
with c = 2

Figure 3: The phase diagram of XZ model (93) (left) and the dipole Ising model
(right) where dashed lines are first order phases transition and solid lines are con-
tinuous phase transitions. The red dots θ = 0.25π, 1.25π (right) are critical points
where the dipole Ising model has the anomalous non-invertible symmetry.

As the KW transformation preserves the structure of the phase diagram and the center
charge of gapless region, we can obtain the phase diagram of dipole Ising model. We show
the phase diagram in the right part of Fig. 3 and summarize it here

1. The phase diagram exhibits a symmetric pattern across the line of θ = 0.25π, θ = 1.25π
at which points the model is invariant under the dipole KW transformation D̂.

2. Around θ = 0.25π, the system is in the gapless phases with c = 2 when

θ ∈ (−0.1π, 0)∪ (0,0.5π)∪ (0.5π, 0.6π) .

These phases are separated by first-order phase transitions at θ = 0, 0.5π, where the
Hamiltonian is dominated by the term Zi−1(Z

†
i )

2Zi+1+(h.c.) and X i+(h.c.) respectively.
therefore, there is also an exponentially large ground state degeneracy NGS ∼ 2L .

3. The θ = 1.25π is a first order phase transition separating a trivial gapped phase and a
dipole SSB phase. When θ ∈ (1.25π, 1.9π), the Hamiltonian is dominated by−X i+(h.c.)
and the system is in the trivially gapped phase. When θ ∈ (0.6π, 1.25π), the Hamilto-
nian is dominated by−Zi−1(Z

†
i )

2Zi+1+(h.c.). There are nine ground states when L→∞
(with the sequence of L ≡ 0 mod 3) with nonzero 〈Z†

i−1Zi〉 and 〈Zi〉 and the system is
in the ZQ

3 ×Z
D
3 SSB phase. There are also first-order phase transitions at θ = 0.6π, 1.9π

between different gapped phases and gapless phases.

4. We highlight that the gapless feature of self-dual points at θ = 0.25π (g = −1) and
first-order phase transition at self-dual points 1.25π (g = 1) are consistent with the
anomalous dipole KW symmetry because the anomaly forbids the system to be uniquely
gapped.
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SSB Trivial SPTk
D̂ T k

D

T−k
D

T k
D

KTk

Figure 4: Transformations between the trivial phase, the SSB phase and the SPT
phase with level k. KT transformation T k

DD̂T−k
D is a duality map between the SSB

phase and SPT phase with level k.

5 Generalized Kennedy-Tasaki transformation associated with
Z

Q
N ×Z

D
N symmetry

In this section, we will discuss generalized Kennedy-Tasaki (KT) transformations associated
with ZQ

N ×Z
D
N symmetry [121], which relate dipole SSB phases and dipole SPT phases.

5.1 Construction of KT transformations

In Sec 4.1, we defined a TD transformation for systems with dipole symmetries

TD :=
L
∏

i=1

C Zi−1,iC Z†
i,i , (94)

which generates the dipole SPT phases from the trivial phase:

T k
D : Htriv→ HSPT-k . (95)

A single TD transformation will increase the SPT level by one8

TD : HSPT-k→ HSPT-(k+1) . (96)

TD is an invertible transformation and T−k
D maps a dipole SPT with level k to a trivial phase

(with level 0). Because we can map a trivial phase to the dipole SSB phase

HSSB = −
L
∑

i=1

N
∑

m=1

(Z†
i−1Z2

i Z†
i+1)

m , (97)

via the dipole KW transformation D̂, and further the SSB phase is invariant under the TD
transformation, we can define a duality transformation, the generalized KT transformation,
between the SSB phase and the SPT phase with each k

KTk := T k
DD̂T−k

D : HSPT-k→ HSSB , HSSB→ HSPT-k . (98)

The duality web is shown in Fig. 4.

8Here we use the notation that the trivial phase is the SPT phase with level 0.
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SSB

SPTp+n1

SPTp+k1

SPTp+k2
G1 SSB⊗ G2 SPTp+n2

KTp+n1

KT
p+k1

KTp+k2

KTp

KTp

Figure 5: Duality web between various gapped phases. Unless specified, the SSB
phase breaks all G = ZQ

N × Z
D
N symmetry and the SPT phase is protected G sym-

metry. k1, n1 are coprime with N and n1k1 = −1 mod N . k2 is not coprime
with N and k2n2 = −gcd(k2, N) mod N . G1 = Z

Q
N/gcd(k2,N) × Z

D
N/gcd(k2,N) and

G2 = Z
Q
gcd(k2,N) ×Z

D
gcd(k2,N).

This KT transformation is non-invertible with the fusion rule

KTk ×KTk =

� N
∑

m=1

ηm
Q

�� N
∑

m=1

ηm
D

�

C . (99)

Thus when acting KTk twice, the Hamiltonian with ZQ
N ×Z

D
N and charge conjugation symmetry

is invariant, which implies KTk is indeed a duality transformation for such Hamiltonian, e.g.
the SPT Hamiltonian (80).9

5.2 Mapping of gapped phases under KT transformation

In the previous subsection, we define the KT duality transformation KTk for each dipole SPT
with level k. Now, we would like to study the general transformation of KTp on SPT with a
different level p + k with k ̸= 0. We can calculate the transformation in sequence because of
the definition KTp = T p

DD̂T−p
D . In the first step, T−p

D will map the SPT with level p + k to the
SPT with level k.

The second step is to determine which gapped phase the SPT will become after the dipole
KW transformation, which depends on whether k and N are coprime. Then in the third step,
T−p

D will further stack some SPTs to the model. Suppose after the KT transformation KTp on
HSPT-(p+k) we get a dual Hamiltonian. We summarize the results here and leave the derivation
later. The duality web is shown in Fig. 5.

1. When gcd(k, N) > 1, the dual Hamiltonian is a partial SSB phase with unbroken
ZQ

N/gcd(k,N)×Z
D
N/gcd(k,N) symmetry and stacked with a SPT phase of unbroken symmetry

with level n+ p× gcd(k, N), where nk = −gcd(k, N) mod N .

2. When gcd(k, N) = 1, the dual Hamiltonian is a SPT phase with level n′ + p, where
n′k = −1 mod N .

9Indeed, if we apply charge conjugation to the SPT phase and SSB phase, one can show the features of these
phases, e.g., ground state charge under twisted boundaries and ground state degeneracy, are kept invariant.
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Mapping of SPT phases under dipole KW transformation

This part provides the technique details about the duality web of KT transformation on SPT
with at a general level.

Start from the second step and suppose after the dipole KW transformation on HSPT-k we
get the dual Hamiltonian H ′k. It is sufficient to study the ground-state degeneracy of the
dual Hamiltonian with the periodic boundary condition. Recall the analysis in Sec. 4.1 and
(89), where the ground states of the dual Hamiltonian are in symmetry-twist sector labeled
by (buQ,btQ = −kbuD,buD,btD = kbuQ). In the periodic boundary condition, we have

btQ = −kbuD = 0 , btD = kbuQ = 0 mod N . (100)

Therefore, buD and buQ must be multiples of N/gcd(k, N) and the ground state degeneracy is
gcd(k, N)2.

When gcd(k, N) > 1: The dual Hamiltonian has degenerate ground states and the remaining
unbroken subgroupZQ

N/gcd(k,N)×Z
D
N/gcd(k,N) is generated byηgcd(k,N)

Q andηgcd(k,N)
D , as its ground

state charge under PBC is trivial. The dual Hamiltonian is therefore in an SSB phase stacked
with a ZQ

N/gcd(k,N) × Z
D
N/gcd(k,N) SPT phase. Then we need to determine the level of the SPT

phase.
Because of the broken symmetry, the twist sector label btQ,btD takes value in

gcd(k, N)ZN/gcd(k,N). It is convenient to use the reduced twist variables

(btQ,buD) = (btQ/gcd(k, N),btD/gcd(k, N)) ∈ Z2
N/gcd(k,N) , (101)

for twist sectors of the unbroken symmetry. Moreover, we can also define the symmetry sector
of unbroken symmetry (buQ,buD) = (buQ,buD) mod N/gcd(k, N) where (buQ,buD) ∈ Z2

N/gcd(k,N).

This is because any state |ψ〉 with ZQ
N ×Z

D
N charge (buQ,buD) satisfies

η
gcd(k,N)
Q |ψ〉=ωgcd(k,N)buQ |ψ〉= (ω′)buQ |ψ〉= (ω′)buQ |ψ〉 ,

η
gcd(k,N)
D |ψ〉=ωgcd(k,N)buD |ψ〉= (ω′)buD |ψ〉= (ω′)buD |ψ〉 ,

(102)

where ηgcd(k,N)
Q(D) is the generator of the unbroken symmetry and ω′ = ωgcd(k,N). To further

determine which class the stacked SPT belongs to, we need to check the symmetry-twist sector
of the ground states in terms of the unbroken symmetry ZQ

N/gcd(k,N)×Z
D
N/gcd(k,N) to follow (85),

i.e.
(buQ = −nbtD,btQ,buD = nbtQ) mod (N/gcd(k, N)) , (103)

if the level is n. On the other hand, the symmetry-twist sector after the dipole KW transforma-
tion should satisfy (89) and we have

btQ = −kbuD , btD = kbuQ mod N , (104)

and
btQ = −(k/gcd(k, N))buD , btD = (k/gcd(k, N))buQ mod (N/gcd(k, N)) , (105)

in terms of the reduced variables. Since N/gcd(k, N) is coprime with k/gcd(k, N), we can find
a unique integer n ∈ ZN/gcd(k,N) satisfying n(k/gcd(k, N)) = −1 mod (N/gcd(k, N)). Then we
have

nbtQ = −n(k/gcd(k, N))buD = buD , nbtD = n(k/gcd(k, N))buQ = −buQ mod (N/gcd(k, N)) . (106)
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Compared with (103), the stacked ZQ
N/gcd(k,N) ×Z

D
N/gcd(k,N) SPT has level n, where

n(k/gcd(k, N)) = −1 mod (N/gcd(k, N)) → nk = −gcd(k, N) mod N . (107)

In the third step, T p
D transformation stacks a ZQ

N ×Z
D
N SPT phase with level p. To detect which

ZQ
N/gcd(k,N) ×Z

D
N/gcd(k,N) class such an SPT belongs to, we consider a symmetry-twist sector of

unbroken ZQ
N/gcd(k,N)×Z

D
N/gcd(k,N) symmetry labeled by (uQ, tQ,uD, tD) ∈ Z4

N/gcd(k,N), which has

the relation with symmetry-twist sectors of ZQ
N ×Z

D
N symmetry:

(uQ,uD) = (uQ, uD) mod N/gcd(k, N) , (tQ, tD) = (gcd(k, N)tQ, gcd(k, N)tD) . (108)

Recall the ground state of ZQ
N ×Z

D
N SPT with level p is in the symmetry-twist sector labelled by

(uQ = −p tD, tQ, uD = p tQ, tD) . (109)

The ground state then also satisfies

(uQ = −p gcd(k, N)tD,uD = p gcd(k, N)tQ) mod N/gcd(k, N) , (110)

which implies such SPT belongs to ZQ
N/gcd(k,N)×Z

D
N/gcd(k,N) SPT phase with level p×gcd(k, N).

Thus we can conclude that the KT-dual system is in a partial SSB phase with unbroken
ZQ

N/gcd(k,N)×Z
D
N/gcd(k,N) symmetry and stacked with an SPT phase of unbroken symmetry with

level n+ p× gcd(k, N).

When gcd(k, N) = 1: Because k is coprime with N , the dual Hamiltonian is in an SPT phase.
The symmetry-twist sector after the dipole KW transformation should satisfy (89)

btQ = −kbuD , btD = kbuQ mod N . (111)

Because k is coprime with N , we can find an unique integer n ∈ ZN such that nk = −1 mod N .
therefore,

nbtQ = −nkbuD = buD , nbtD = nkbuQ = −buQ mod N . (112)

Compared with (85), the dual system is in the ZQ
N × Z

D
N SPT phase with level n. Then in the

third step, T p
D maps the SPT with level n to an SPT with level n+ p.

6 Conclusion and discussion

In this paper, we constructed the dipole KW transformation by composing the seed transforma-
tion and by gauging the charge and dipole symmetry. Then we study this new non-invertible
symmetry through fusion algebras (37), topological defects (in Fig. 2) and the anomaly (and
its constraints in the phase diagram in Fig. 3). As an application, we constructed generalized
KT transformations (in Fig. 4) that connect various gapped phases with dipole symmetry in a
duality web (in Fig. 5).

We studied the fusion algebra (37) of the dipole KW symmetry and other invertible sym-
metry operators. The fusion rule of non-invertible dipole KW symmetry mixes with the charge
conjugation symmetry and therefore the whole fusion algebra is different from the TY(ZN×ZN )
fusion algebra. It is interesting to further determine the fusion category data, in particular the
F-symbols which are related to the associativity of the fusion algebra and the anomaly of the
fusion category symmetry.

We have shown that due to the anomaly of the non-invertible symmetry, the two self-dual
points in the phase diagram of dipole Ising model with N = 3 cannot be uniquely gapped. This
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is consistent with numerical calculations in the anisotropic XZ model (which is the ordinary
KW dual of the dipole Ising model), where one self-dual point is a first order phase transition
and the other one is in a large gapless region with center charge c = 2. It will be interesting
to investigate numerically whether the gapless phase will become unstable with symmetric
perturbations when we choose N such that the non-invertible symmetry is not anomalous.

It is also interesting to extend the composing construction. Consider a theory A with a
global symmetry generated by an operator G and a non-invertible duality transformation K
between theories A and B. There is a non-invertible operator K†GK that commutes with the
Hamiltonian of the theory B. Although whether or not K†GK is an interesting non-invertible
symmetry depends on specific models, this might give a systematic construction and perhaps
classification of certain types of lattice non-invertible symmetries. Here are examples in the
literature with similar constructions. In (2+ 1)d, the subsystem non-invertible symmetry has
been constructed [34] by composing the KW transformation acting on lines and columns. Re-
cently in [136], the authors constructed a non-invertible symmetry in (2 + 1)d with cosine
function fusion rule using the sandwich construction.

In the end, we sketch another application inspired by [127]. In this paper, the authors
studied the non-invertible symmetry in (2+ 1)d lattice model with Z(0)2 × Z

(1)
2 symmetry. An

example is the lattice Z2 gauge theory with the Ising matter

H = −
∑

v

∏

l∋v

σx
l −

∑

f

∏

l∈ f

σz
l −

∑

l

σz
l −

∑

v

X v −
∑

〈v,v′〉

Zv Zv′ , (113)

where σx(z)
l denotes a gauge spin on the link, X v , Zv a matter spin on the site, and 〈v, v′〉

denote the link of nearest sites v, v′. The non-invertible symmetry is

D=
1
2
SC : X v ←→

∏

l∋v

σx
l , Zv Zv′ ←→ σz

〈v,v′〉 , (114)

where S is the non-invertible swap operator and C is the condensation operator whose precise
definition can be found in [127]. We will take (114) as the seed transformation and construct
a new non-invertible symmetry

DUHD : X v ←→
∏

l=〈v,v′〉∋v

Zv Zv′ =
∏

l=〈v,v′〉∋v

Zv′ , (115)

where UH =
∏

l UH
l is the product of Hadamard gate on every link. This non-invertible sym-

metry can be found in lattice models with subsystem Z2 symmetry acting on the diagonal lines.
Especially, the (2+ 1)d cluster model

H2d cluster = −
∑

v

X v

∏

l=〈v,v′〉∋v

Zv′ , (116)

is protected by this non-invertible symmetry. We leave the detailed investigation of this non-
invertible symmetry (115) for future work.
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A Kramers-Wannier duality symmetry in lattice models

In this Appendix, we review KW transformation obtained by gauging a ZN symmetry on a 1d
spin chain. The main idea has been discussed e.g. in [5]. For reference, the definitions of ZN
unitary gates are

C Zi, j =
1
N

N
∑

α,β=1

ω−αβ Zαi Zβj ,

UH
i =

1
p

N

N
∑

α,β=1

ω−αβ |β〉 〈α| ,

Si, j =
1
N

N
∑

α,β=1

ωαβ(Xαi Zβi )(X
−α
j Z−βj ) ,

(A.1)

and their actions are summarized in table 2.

A.1 Gauging ZN symmetry on the whole spin chain

For simplicity, consider ZN clock model at critical point on a chain with L sites

H = −
L
∑

i=1

(Z†
i−1Zi + X i) + (h.c.) . (A.2)

Since the ZN symmetry η =
∏L

i=1 X i is onsite, and thus non-anomalous, we can gauge this
symmetry by coupling the gauge variables X̃ i+1/2, Z̃i+1/2 on the link. The gauged Hamiltonian
is

Hgauged = −
L
∑

i=1

(Z†
i−1X̃ i−1/2Zi + X i) + (h.c.) , (A.3)

which has a enlarged Hilbert space with dimension N2L and gauge symmetries generated by

Gi = Z̃i−1/2X i Z̃
†
i+1/2 , [Gi , Hgauged] = 0 , ∀i . (A.4)

Table 2: Nontrivial actions of the ZN quantum gates.

Quantum Gate Nontrivial transformation

C Zi, j X i → X i Z j , X j → X j Zi

UH
i X i → Z†

i , Zi → X i

Si, j X i → X j , X j → X i , Zi → Z j , Z j → Zi
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We need to project to gauge-invariant sector by imposing Gauss law constraints

Gi = Z̃i−1/2X i Z̃
†
i+1/2 = 1 , → X i = Z̃†

i−1/2 Z̃i+1/2 , ∀i . (A.5)

The gauged Hamiltonian has a new 0-form ZN symmetry which is easily seen by introducing
a new set of Pauli operators

Ẑi−1/2 = Z̃i−1/2 , X̂ i−1/2 = Z†
i−1X̃ i−1/2Zi . (A.6)

The gauged Hamiltonian becomes

Hgauged = −
L
∑

i=1

(X̂ i−1/2 + Ẑ†
i−1/2 Ẑi+1/2) + (h.c.) . (A.7)

We recover the original Hamiltonian by renaming the variables

Ẑi−1/2→ Zi−1 , X̂ i−1/2→ X i−1 . (A.8)

The whole process gives the famous KW transformation on the ZN -symmetric operator

Z†
i−1Zi → X i−1 , X i → Z†

i−1Zi . (A.9)

The renaming is an isomorphism between two Hilbert spaces, both of which we denote by H.
Notice that the identification (A.9) involves a “half-translation” on the lattice, i.e., the fusion
rule of KW duality operator will involve the one-site translation operator T.

A.2 Gauging ZN symmetry on a half of the spin chain

Suppose we only gauge the ZN symmetry on the half of the closed chain. Without loss of
generality, we couple the gauge variables X̃ i , Z̃i on J links from (L, 1) to (J − 1, J) with J < L.
The half-gauged Hamiltonian is

Hhalf-gauged = −
J
∑

i=1

(Z†
i−1X̃ i−1/2Zi + X i)−

L−1
∑

i=J+1

(Z†
i−1Zi + X i) + (h.c.) . (A.10)

The dimension of the enlarged Hilbert space is N L+J . However, there are only J−1 generators
of gauge symmetry

Gi := Z̃†
i−1/2X †

i Z̃i+1/2 , i = 1, ..., J − 1 , (A.11)

that commute with the half-gauged Hamiltonian Hhalf-gauged. After imposing the J − 1 Gauss
law constraints Gi = 1, i = 1, ..., J−1 and projecting to the gauge invariant sector, the resulting
Hilbert space has dimension N J+1, with an extra degree of freedom compared with the original
Hilbert space. We can then introduce a new set of Pauli variables X̂ i , Ẑi for the gauged half
line

Ẑ1/2 := Z̃1/2 , X̂1/2 := X̃1/2Z1 ,

Ẑi−1/2 := Z̃i−1/2 , X̂ i−1/2 := Z†
i−1X̃ i−1/2Zi−1 , i = 2, ..., J − 2 ,

ẐJ−1/2 := Z̃J−1/2 , X̂J−1/2 := Z†
J−1X̃1/2 .

(A.12)

The boundary terms are defined so that they have standard commutation relation with the
operators at site J and L. The gauged Hamiltonian then becomes

Hhalf-gauged =− (Z
†
L X̂1/2 + Ẑ†

1/2 Ẑ3/2)−
J−1
∑

i=2

(X̂ i−1/2 + Ẑi−1/2 Ẑi+1/2)

− (X̂J−1/2ZJ + XJ )−
L−1
∑

i=J+1

(Z†
i−1Zi + X i) + (h.c.) . (A.13)
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After renaming X̂ i−1/2 → X i , Ẑi−1/2 → Zi for i = 1, ..., J − 2 , and X̂J−1/2 → X(J−1,J),
ẐJ−1/2 → Z(J−1,J) , which is the extra degree of freedom after imposing the Gauss law, the
gauged Hamiltonian becomes

Hhalf-gauged =− (Z
†
LX1 + Z†

1 Z2)−
J−2
∑

i=2

(X i + Z†
i Zi+1)

− (XJ−1 + Z†
J−1Z(J−1,J) + X(J−1,J)ZJ + XJ )

−
L−1
∑

i=J+1

(Z†
i−1Zi + X i) + (h.c.) . (A.14)

By conjugating the Hamiltonian with the unitary operator C Z†
(J−1,J),J , and reshuffling the

terms, we get a simpler form

Hhalf-gauged =− (Z
†
LX1)−

J−2
∑

i=2

(Z†
i−1Zi + X i)

− (Z†
J−1Z(J−1,J) + X(J−1,J) + Z†

(J−1,J)XJ )

−
L−1
∑

i=J+1

(Z†
i−1Zi + X i) + (h.c.) . (A.15)

From the above expression, the gauged Hamiltonian is also given by the original Hamiltonian
by inserting the KW defect D at the link (L, 1) and the Hermitian conjugate D† at the link
(J − 1, J).

Now we can study the movement and fusion of the non-invertible topological defects. The
defect Hamiltonian with insertion of a single KW defect D on the link (J − 1, J) is

H(J−1,J)
D

= −
J−1
∑

i=1

(Z†
i−1Zi + X i)− Z†

J−1XJ −
L−1
∑

i=J+1

(Z†
i−1Zi + X i) + (h.c.) , (A.16)

and we can use the unitary operator U J
D = C Z†

(J ,J+1)H
†
J , implementing the transformation

XJ → ZJ , ZJ → X †
J ZJ+1 ,

XJ+1→ Z†
J XJ+1 , ZJ+1→ ZJ+1 ,

(A.17)

to move this defect to the link (J , J + 1).
To fuse the defects considering the insertion of two KW defects on the adjacent links

(J − 1, J) and (J , J + 1)

H(J−1,J),(J ,J+1)
D;D = −

J−1
∑

i=1

(Z†
i−1Zi+X i)− (Z

†
J−1XJ + Z†

J XJ+1)−
L−1
∑

i=J+1

(Z†
i−1Zi+X i)+ (h.c.) . (A.18)

The fusion operator λJ
D⊗D = (U

J
D)

† will map this Hamiltonian to

H(J−1,J+1)
D⊗D = λJ

D⊗DH(J−1,J),(J ,J+1)
D;D (λJ

D⊗D)
†

= −
J−1
∑

i=1

(Z†
i−1Zi + X i)− (Z

†
J Z†

J−1ZJ+1 + XJ+1)−
L−1
∑

i=J+1

(Z†
i−1Zi + X i) + (h.c.) .

(A.19)

In the fused defect Hamiltonian, the degrees of freedom on site J is decoupled and is equivalent
to an insertion of the T−1 defect [5], while ZJ becomes a symmetry of the new Hamiltonian.
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The Hilbert space is a direct sum of the eigenspaces of ZJ . When ZJ takes an eigenvalueωk, the
new Hamiltonian is equivalent to the original Hamiltonian with a defect ηk inserted between
J − 1, J + 1. Therefore the topological defect D follows the same fusion rule as its operator
counterpart:

D×D=

� N
∑

k=1

ηk

�

T−1 . (A.20)

B Topological defects of invertible symmetries in dipole Ising
model

In this section, we review the topological defects of invertible symmetries ηQ,ηD,C in the
dipole Ising model

H = −g−1
∑

i

Zi−1(Z
†
i )

2Zi+1 − g
∑

i

X i + (h.c.) . (B.1)

Much of the discussion can be generalized to other models with dipole symmetry. We study the
defects through the defect Hamiltonian which is obtained by conjugating the original Hamil-
tonian with a twist operator, the symmetry transformation on a half of the infinite chain.

ηQ defect

The charge symmetry ZQ
N is generated by

ηQ :=
∏

i

X i , ηN
Q = 1 , (B.2)

while the ZN twist operator acting on i ≤ 0 is

ηQ,0 =
∏

i≤0

X i . (B.3)

The defect Hamiltonian with a ηQ defect at the link (0,1) is

H(0,1)
Q = ηQ,0Hη†

Q,0

=− g−1
∑

i ̸=0,1

Zi−1(Z
†
i )

2Zi+1 − g
∑

i

X i

− g−1ωZ−1(Z
†
0)

2Z1 − g−1ω−1Z0(Z
†
1)

2Z2 + (h.c.) ,

(B.4)

where we label the defect Hamiltonian with the type and location of defect. We also show the
movement operators, which are local unitary operators and move the defect by one site. For
example, the movement operator for the ηQ defect is

U1
Q := X1 : H(0,1)

Q → H(1,2)
Q = U1

ηH(0,1)
Q (U1

Q)
† . (B.5)

Since the movement operators are local unitary operators, the movement does not cost energy
and the defect is topological. One can also put several defects and fuse them. The fusion of
topological defects shares the same rule of the fusion of corresponding operators.
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ηD defect

The dipole symmetry ZD
N is generated by

ηD =
∏

i

X i
i , ηN

D = 1 . (B.6)

The twist operator acting on sites i < i0 is

ηD,i0−1 =
∏

i<i0

(X i)
i , (B.7)

with the movement operator (X i0)
i0 . The defect Hamiltonian with a ηD defect inserted at the

link (i0 − 1, i0) is

H(i0−1,i0)
D =− g−1

∑

i ̸=i0−1,i0

Zi−1(Z
†
i )

2Zi+1 − g
∑

i

X i

− g−1ω−i0 Zi0−2(Z
†
i0−1)

2Zi0 − g−1ωi0−1Zi0−1(Z
†
i0
)2Zi0+1 + (h.c.) . (B.8)

Charge conjugation defect

The charge conjugation symmetry ZC
2 is generated by

C=
∏

i

Ci , Ci : Zi → Z†
i , X i → X †

i . (B.9)

The twist operator is the truncation of C on half of the chain and the movement operator is
Ci . The defect Hamiltonian with a charge conjugation defect inserted at link (0, 1) is

H(0,1)
C

=− g−1
∑

i ̸=0,1

Zi−1(Z
†
i )

2Zi+1 − g
∑

i

X i

− g−1Z−1(Z
†
0)

2Z†
1 − g−1Z†

0(Z
†
1)

2Z2 + (h.c.) . (B.10)

C Computation in bilinear phase map representation

In this appendix, we compute all the operator relations and fusions rigorously in the BMP
representation. For reference, we list the action of Pauli operators on bra and ket states

Zi |si〉=
N
∑

α=1

ωα |α〉 〈α|si〉=ωsi |si〉 , 〈si| Zi =
N
∑

α=1

ωα 〈si|α〉 〈α|=ωsi 〈si| ,

X i |si〉=
N
∑

α=1

|α+ 1〉 〈α|si〉= |si + 1〉 , 〈si|X i =
N
∑

α=1

〈si|α+ 1〉 〈α|= 〈si − 1| .

(C.1)

The bra and ket states are eigenstates of the Zi , while X i shifts the ket state by +1 and the
bra state by −1. Starting from a state |{si}〉 = ⊗L

i=1 |si〉i , we define the state after a lattice
translation as |{si−1}〉 := T |{si}〉 := ⊗L

i=1 |si−1〉i , where all values of qudit on each site has
been move to one site right. The lattice translation operator is therefore defined as

T=
∑

{si}

|{si−1}〉 〈{si}| , (C.2)

and its action on Pauli operators is

TZiT
−1 = Zi+1 , TX iT

−1 = X i+1 . (C.3)

29

https://scipost.org
https://scipost.org/SciPostPhys.17.4.104


SciPost Phys. 17, 104 (2024)

KW transformation

The KW transformation is given by

D=
∑

{si},{s′i}

ω
∑L

i=1(si−1−si)s′i−1 |{s′i}〉 〈{si}|=
∑

{si},{s′i}

ω
∑L

i=1(s
′
i−s′i−1)si |{s′i}〉 〈{si}| . (C.4)

The transformation of Pauli operators is

D
�

Z†
j−1Z j

�

=
∑

{si},{s′i}

ω
∑L

i=1(si−1−si)s′i−1 |{s′i}〉 〈{si}|
�

Z†
j−1Z j

�

=
∑

{si},{s′i}

ω
∑L

i=1(si−1−si)s′i−1 |{s′i}〉 〈{si}|ω−(s j−1−s j)

=
∑

{si},{s′i}

ω
∑

i ̸= j−1(si−1−si)s′i−1+(s j−1−s j)(s′j−1−1) |{s′i}〉 〈{si}|

=
∑

{si},{s′i}

ω
∑

i(si−1−si)s′i−1 |{s′i ̸= j−1; s′j−1 + 1}〉 〈{si}|

= X j−1D ,

(C.5)

where we rename s′j−1−1 by ŝ′j−1 after the third equality and drop the hat in the fourth equality.
The notation |{s′i ̸= j−1; s′j−1 + 1}〉 differs from |{s′i}〉 only by the shift of qudit on the j − 1 site.
Similarly,

DX j =
∑

{si},{s′i}

ω
∑L

i=1(s
′
i−s′i−1)si |{s′i}〉 〈{si}|X j

=
∑

{si},{s′i}

ω
∑L

i=1(s
′
i−s′i−1)si |{s′i}〉 〈{si ̸= j; s j − 1}|

=
∑

{si},{s′i}

ω
∑

i ̸= j(s
′
i−s′i−1)si+(s j−s j−1)(s′j+1) |{s′i}〉 〈{si}|

= Z†
j−1Z jD .

(C.6)

The fusion of translation operator with the KW operator is

TD=
∑

{si},{s′i}

ω
∑L

i=1(s
′
i−s′i−1)si T |{s′i}〉 〈{si}|

=
∑

{si},{s′i}

ω
∑L

i=1(s
′
i−s′i−1)si |{s′i−1}〉 〈{si}|

=
∑

{si},{ŝi}

ω
∑L

i=1(ŝi+1−ŝi)si |{ŝi}〉 〈{si}|

=
∑

{si},{ŝi}

ω
∑L

i=1−(ŝi−ŝi+1)si |{ŝi}〉 〈{si}| ,

(C.7)

and the conjugate of D is

D† =
∑

{si},{s′i}

ω
∑L

i=1−(si−1−si)s′i−1 |{si}〉 〈{s′i}| . (C.8)
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Therefore, by renaming the dummy variables we show that TD=D†. Similarly,

DT=
∑

{si},{s′i}

ω
∑L

i=1(s
′
i−s′i−1)si |{s′i}〉 〈{si}| T

=
∑

{si},{s′i}

ω
∑L

i=1(s
′
i−s′i−1)si |{s′i}〉 〈{si+1}|

=
∑

{s′i},{ŝi}

ω
∑L

i=1(s
′
i−s′i−1)ŝi−1 |{s′i}〉 〈{ŝi}|

=
∑

{si},{ŝi}

ω
∑L

i=1−(s
′
i−1−s′i)ŝi−1 |{s′i}〉 〈{ŝi}|=D† .

(C.9)

Therefore we confirmed that the translation operator commutes with the KW operator and
their fusion is the Hermitian conjugate of the KW operator:

D† = TD=DT . (C.10)

The non-invertible fusion rule is given by

D×D=
∑

{si},{s′i},{mi},{m′i}

ω
∑L

i=1(s
′
i−s′i−1)siω

∑L
i=1(mi−1−mi)m′i−1 |{s′i}〉 〈{si}|{m′i}〉 〈{mi}|

=
∑

{si},{s′i},{mi}

ω
∑L

i=1(s
′
i−s′i−1+mi−mi+1)si |{s′i}〉 〈{mi}|

=
∑

{s′i},{mi}

L
∏

i=1

δs′i−s′i−1+mi−mi+1,0 |{s′i}〉 〈{mi}| .

(C.11)

The solution for the constraints s′i − s′i−1 +mi −mi+1 = 0, i = 1, .., L is

s′i = mi+1 + k , k = 1, ..., N , i = 1, ..., L . (C.12)

Therefore, the fusion rule is

D×D=
∑

{mi}

N
∑

k=1

|{mi+1 + k}〉 〈{mi}|

=

� N
∑

k=1

ηk

�

∑

{mi}

|{mi+1}〉 〈{mi}|

=

� N
∑

k=1

ηk

�

T−1 .

(C.13)
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