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Abstract

This work presents an algorithm for calculating high temperature series expansions
(HTSE) of Heisenberg spin models with spin S = 1/2 in the thermodynamic limit. This
algorithm accounts for the presence of a magnetic field. The paper begins with a compre-
hensive introduction to HTSE and then focuses on identifying the bottlenecks that limit
the computation of higher order coefficients. HTSE calculations involve two key steps:
graph enumeration on the lattice and trace calculations for each graph. The introduction
of a non-zero magnetic field adds complexity to the expansion because previously irrele-
vant graphs must now be considered: bridged graphs. We present an efficient method to
deduce the contribution of these graphs from the contribution of sub-graphs, that drasti-
cally reduces the time of calculation for the last order coefficient (in practice increasing
by one the order of the series at almost no cost). Previous articles of the authors have
utilized HTSE calculations based on this algorithm, but without providing detailed ex-
planations. The complete algorithm is publicly available, as well as the series on many
lattice and for various interactions.

Copyright L. Pierre et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

04-04-2024
10-09-2024
07-10-2024

Check for
updates

doi:10.21468/SciPostPhys.17.4.105

Contents

1 Introduction 2

2 High temperature series expansions (HTSE) for Heisenberg S =
1
2 models 5

2.1 Definitions 6
2.2 From a finite graph to the infinite lattice 8
2.3 Integerness during calculation and storage of results 9
2.4 Enumeration of simple connected graphs on a periodic lattice 10

2.4.1 Avoid the canonical labelling of graphs with leaves 11
2.4.2 Expansion in the magnetic field B: Non-contributing graphs 12

2.5 Complexity and bottleneck of HTSE 12

1

https://scipost.org
https://scipost.org/SciPostPhys.17.4.105
mailto:bernard.bernu@sorbonne-universite.fr
mailto: laura.messio@sorbonne-universite.fr
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.17.4.105&amp;domain=pdf&amp;date_stamp=2024-10-07
https://doi.org/10.21468/SciPostPhys.17.4.105


SciPost Phys. 17, 105 (2024)

3 O(n2) complexity for n links bridged graphs and order n expansion 13

4 Trees with n links 14

5 Discussion and conclusion 16

A Vocabulary on graphs 16

B Averages, moments and cumulants 17
B.1 Moments expressed as polynomials of cumulants 18
B.2 Cumulants expressed as polynomials of moments 18
B.3 Moment and cumulants of a single operator 19
B.4 Expression of cumulants versus moments and lesser order cumulants 19
B.5 Nullity of cumulant of a not connected graph 19
B.6 Multilinearity of moments and cumulants 20
B.7 Product of cumulants of independent sets of operators 20

C Proof of the non contribution of some graphs in the fixed-B expansion 20
C.1 Graphs with #G + Nb f > n do not contribute for B = 0 21
C.2 Graphs with #G + NL > n do not contribute to the fixed-B expansion 21
C.3 More restrictive criterion for the fixed-B expansion 21
C.4 Criteria for F(G) = o(Jn) + o(θν) 22

D Proof of some complexities 23
D.1 Moments 23
D.2 Logarithm expansion 24
D.3 Calculation of F(G) 25
D.4 Available HTSE 26
D.5 Computation times 26

References 27

1 Introduction

Frustrated quantum spin models exhibit unconventional phases possessing properties as frac-
tional excitations or gapless spin liquid character [1] and are now realized in more and more
materials. However, even for spin interactions as simple as Heisenberg, the nature of the
ground state is still debated on some non bipartite antiferromagnetic lattices. In these cases,
frustration prevents the use of exact methods (exact means here with only statistical errors)
such as path integral quantum Monte Carlo or stochastic series expansions [2].

Studying these models requires the use of specific tools that are in permanent evolution:
variational methods [3], mean-field methods [4], tensor-product numerical methods [5, 6],
renormalization group methods [7]... A last tool is series expansions, declined in many ver-
sions depending on the variable used: the inverse spin length 1/S for spin wave theory [8],
an interaction strength λ for perturbation theory [9, 10], the temperature T for low-T ex-
pansions [11] (requiring discrete excitations and the knowledge of the ground state). High
temperature series expansions (HTSE) in the inverse temperature β = 1/T offer distinct ad-
vantages. They are insensitive to frustration, directly address the thermodynamic limit without
requiring finite-size scaling and do not require any knowledge on the system (the zeroth order
is the infinite temperature limit).
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Figure 1: Linear magnetic susceptibility χl at order n in β , n = 19 for square and
kagome and n = 17 for triangular lattices with antiferromagnetic first neighbor in-
teractions J = 1. Top: the raw series at orders 2 to n for B = 0 (black dotted lines),
the n+ 1 Padé approximants (PA) of the B = 0−series at order n (red dotted lines).
These curves are cut when they stray too far from each other. CP curves stand for co-
inciding PAs, i.e. when at least 8 of them agree (differences less than 0.05). Bottom:
comparison of the CP for these three lattices.

The raw HTSE can be used either without any extrapolation method or with Padé approx-
imants [12] to fit the HT measurements of the specific heat cV and of the linear magnetic
susceptibility χl = m/B, (m is the magnetization per site and B the magnetic field), or to
compare with other theoretical methods. The Curie law [13, 14] is the most simple example
of HTSE, where the order 3 allows to fit χ−1

l (T ) at high T with a line crossing the T -axis at
a so-called Curie temperature, indicative ot the energy scale (actually a linear combination of
all the exchanges) of the compound.

Determination of high-order series find their roots in the 60’s [12, 15, 16]. The explosion
of computational power and the development of improved algorithms have allowed to get
further orders. HTSE to high orders for S = 1

2 Heisenberg interactions have been obtained
for example on the diamond lattice to order n = 14 [10], triangular [17], pyrochlore [18],
square, simple cubic and bcc [19] to n= 13, fcc [19] to n= 12, hyperkagome to n= 16 [20],
Shastry-Sutherland to n= 10 [21], etc. Higher spins, other lattices and interactions have also
been considered [10,11,22–26]).

But the magnetic field B was rarely included, except at first order (giving χl at B = 0).
However, B is an experimentally adjustable parameter known to induce various unexpected
phenomena such as magnetization plateaus and phase transitions [27, 28]. Recent advances
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have allowed the generation of extreme magnetic fields reaching up to 140T [29], thus ex-
panding the possibilities for material investigation. It is why we are going to pay a special
attention to B in the following.

HTSE offers valuable insights into the high temperature regime, where temperatures ex-
ceed the typical interaction strength. Their finite convergence radius, which is tied to this
energy scale, defines a finite temperature Tr below which adding more terms to the series
does not improve the results quality when we just sum the first terms of the series. This
phenomenon is illustrated on Fig. 1 for the square, kagome and triangular lattices with an-
tiferromagnetic first neighbor Heisenberg interactions J , where whatever the lattice, Tr ≃ J
(dotted black lines) for B = 0. The series of χl has here been calculated for any value of B up
to order n = 19 for the square and kagome lattice , and to n = 17 for the triangular lattice
(publicly available on [30]). Turning on B still reduces the interval of temperature where the
series converges (Fig. 1).

Extrapolation techniques have been developed to extend the analysis to lower tempera-
tures. We detail them below to illustrate how the series are used, although we will only treat
the calculation of the coefficients. The simplest extrapolation method is the use of Padé ap-
proximants: a function f is approximated by a ratio of two polynomials R[p,q] = Pp/Qq with
degrees p and q, such that the Taylor expansion of R[p,q] matches the one of f up to order
n = p + q. Padé approximants coincide (up to an arbitrary definition) down to temperatures
typically lower than Tr . An illustration of CP (coinciding Padé approximants) is given on Fig. 1,
where they allow to go down to T ≃ 0.3J for B = 0.

In systems exhibiting a finite temperature phase transition, any extrapolation method is
confronted to the free energy singularity at the inverse critical temperature βc = 1/Tc , staying
on the real axis [31]. However, information on critical exponents and on Tc can be extracted
from the coefficients using the Dlog-Padé or ratio method [19,32–34] and be used in extrap-
olation techniques [35,36].

When no singularity is expected on the real β axis (when the system orders at T = 0 or does
not order at all), the entropy method [24,37–39] incorporates hypotheses on the low energy
physics to propose extrapolations down to zero temperature. These hypotheses are the nature
of the low energy excitations and the ground state energy e0. When e0 is unknown, it can be
determined in a self-consistent manner [24]. In a few words, the entropy method consists in
changing the thermodynamic variable β → e and working with the series of the entropy s(e)
in the variable energy e (the coefficients of the new series is obtained directly from the HTSE
coefficients). An (expected to be) analytic function G(e) is constructed, that depends on s(e),
carefully treating the singularity of s(e) at e = e0. G(e) can be safely extrapolated by Pade
approximants. Following the reverse path, one goes back to s(e) and gets functions of β = ∂ s

∂ e .
The entropy method has been applied to extrapolate cV and χl and compare with experi-

mental results on several compounds: vanadium oxyfluoride (NH4)2[C7H14N][V7O6F18] [40],
herbertsmithite ZnCu3(OH)6Cl2 [41, 42] and its polymorph kapellasite [43], Ba8CoNb6O24
[25]. In all these examples, a model Hamiltonian was proposed, whose parameters were fitted
to the measurements. This complements ab initio methods such as DFT [44]. When fitting the
model parameters, a common practice is to only vary the temperature T , but the constraints
could be significantly enhanced by considering the (T, B) plane instead. This highlights the
importance of computing HTSE for any B.

Whatever the value of B, any extrapolation methods requires the largest possible number
of series coefficients. We insist on the fact that knowing a series up to some order n means
that correlations in any size-n cluster are exactly taken into account. Calculating just one more
coefficient is hard, but it brings a strong constraint on extrapolations.
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This article introduces an algorithm designed to calculate the series efficiently for a Heisen-
berg model with S = 1

2 spins, in the presence of a magnetic field B. Sec. 2 is devoted to an
extensive presentation of the HTSE method, and of the difficulty to get expansion with B ̸= 0
due to the contribution of clusters with bridges. Sec. 3 presents an algorithm to calculate the
contribution of these clusters, which is used in Sec. 4 to calculate contribution of trees. Sec. 5
is the discussion and conclusion. Along this article, some proofs have been kept for Appendices
C and D, together with a recall of some vocabulary on graphs in A and of cumulant properties
in B.

2 High temperature series expansions (HTSE) for Heisenberg
S =

1
2 models

We consider a periodic spin lattice (1 dimension: chains, ladders, 2 dimensions: square, tri-
angular, honeycomb, kagome, 3 dimensions: cubic, face centered cubic, pyrochlore...), with
short-range interactions (first, second, third... neighbors). HTSE can include spin anisotropies,
Dzyaloshinskii-Moriya... , even if only Heisenberg interactions are considered in the following.
Multispin interactions (also called ring or cyclic exchange) are possible [45], increasing the
complexity of the graph enumeration. In this case, at order n in β , graphs would not only be
constituted of n elementary blocks of site or link type, but also of plaquette type (of typically
4 of 6 links). Any spin length can be chosen for HTSE (classical, or any half-integer quantum
value [46]). Here, we focus on S = 1

2 .
For any quantity A(β) =

∑∞
k=0 akβ

k, only truncated HTSE are generally accessible, with
a finite number of known coefficients ak≤n (except when the model is analytically solvable,
as for example two-dimensional Ising models without magnetic field). Part of the job is to
exploit these coefficients to get the largest amount of information, as detailed in the introduc-
tion (extrapolation down to the lowest temperature, determination of the exponents of phase
transitions if applicable). Here, we concentrate on the initial step, consisting in getting the
largest possible number of coefficients, which itself splits in two sub-steps (detailed below):
(i) enumerating simple connected graphs G on the lattice, (ii) calculating their contribution
F(G) through trace operators (averages at infinite temperatures).

The computation time depends on the model: lattice geometry, spin length and interaction
type. The coordination number of each site (related to the lattice geometry and the type
of links: first, second... neighbors) determines the evolution of the graph number with the
order, whereas the spin type (quantum, classical) and interactions (Dzyaloshinskii-Moriya,
anisotropic, cyclic... ) are related to the complexity to calculate averages (traces) for a given
graph.

The system is submitted to a magnetic field B = Bez along an arbitrary direction z. We
define h = gµBB where g is the g-factor and µB the Bohr magneton. For a Hamiltonian
that preserves the total spin, the number of (connected) graphs contributing to the HTSE
considerably increases when B is switched on, thus reducing the reachable expansion order.
Concretely, graphs with bridges or leaves (see Fig. 2 and next section for definitions) are the
majority. At order equal to their number of links, they do not contribute when h = 0. For
h ̸= 0, they do. In this article, we present an algorithm that reduces the complexity of trace
calculations on these graphs in the case of a quantum S = 1

2 Heisenberg model: in practice,
it allows the calculation of one supplementary order as compared with the naive algorithm
(note that each additional order needs an order of magnitude more computational time).
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Figure 2: Illustration of graph properties (see App. A for the detailed definitions).
The degree d◦s of a site s is the number of links emanating from it.

In the first subsection (Sec. 2.1), we define the model and explain how to get series ex-
pansion on a finite cluster. In the next one (Sec. 2.2), we switch to the thermodynamic limit,
using contributions of finite graphs. Sec. 2.3 shows how to calculate the HTSE coefficients
with integers. Finally, in Sec. 2.4 and 2.5, we discuss the complexity of the two main steps
of the expansion (graph enumeration and trace calculation) and explain why bridged graphs,
and among them, trees, have the largest contribution to the trace computation time.

2.1 Definitions

As a first step, we consider a simple connected sub-graph G of the infinite lattice, with Ns sites
and Nl = #G links (#G is the cardinal of G, since for us a graph is a set of links). Fig. 2
illustrates the notion of connected and simple graphs, as well as other graph properties used
in the following. The Hamiltonian H of the Heisenberg model on graph G splits into a sum HJ
on links l = l1↔ l2, and a sum HB on sites:

H = −
∑

l∈G

2 Jl Sl1 · Sl2

︸ ︷︷ ︸

HJ

−h
∑

i, site of G

Sz
i

︸ ︷︷ ︸

HB

. (1)

Jl gives the strength of the Heisenberg interaction of link l. Note the conventional choice of a
positive Jl for ferromagnetic interactions. From now on, we only consider quantum S = 1/2
spins, and the scalar product of the spin operator vectors can thus be expressed in terms of
permutation operators:

Sl1 · Sl2 =
Pl

2
−

1
4

, (2)

where Pl exchanges the spin states on the two sites of link l. Up to an unimportant additive
constant Jl/2 for each link term of HJ , the exchange Hamiltonian on G now reads:

HJ = −
∑

l∈G

Jl Pl . (3)
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We are interested in the infinite lattice properties, but as an intermediate step, we calculate
the logarithm of the partition function Z on G, that we expand in β (this is called the fixed-B
expansion):

ln Z(β) = ln
�

Tr e−βH
�

= ln

�

Tr e−βH

Tr I
2Ns

�

= ln(2Ns) + ln

�

1+
∞
∑

n=1

〈(−βH)n〉
n!

�

(4)

= Ns ln 2+
∞
∑

n=1

[(−βH)(n)]
n!

. (5)

The trace, Tr , is taken over states of an orthonormal basis B = {|φi〉 , i = 1 . . . 2Ns} of the
spin configurations. I is the identity operator. The averages 〈.〉 of Eq. (4) are defined as

〈A〉 = Tr A
Tr I = 1

2Ns

∑2Ns

i=1 〈φi|A|φi〉. The cumulant of order n of −βH is denoted
[(−βH)(n)] or [−βH,−βH, . . . ,−βH] to be distinguished from [(−βH)n]which is a first order
cumulant equal to 〈(−βH)n〉, the moment of order n of −βH. App. B recalls definitions and
some relations between averages, moments and cumulants. Expanding (−βH)n using Eq. (3)
gives a sum of terms, each of them corresponding to a list of nl undirected links and ns sites
of G, with nl + ns = n.

The aforementioned expansion combines both links and sites. But we now use an expan-
sion solely involving clusters of links and exactly evaluate the contribution of HB at each order
in HJ . From a thermodynamic standpoint, this corresponds to a transformation of the ensem-
ble (β , h) to (β ,βh), where βh is a new thermodynamic variable fixed in the β-expansion [47].

From now on, we write J instead of βJ and h instead of βh to lighten notations. β can be
reinjected in the formulae using the inverse transformation when needed.

We denote Sz =
∑

i Sz
i the total magnetization along the z direction. Additionally, we

define several variables associated to h for future use:

Y = e
h
2 + e−

h
2 = 2cosh

h
2

, θ = θ+ − θ− = tanh
h
2

, (6)

θ+ =
1+ θ

2
=

eh/2

Y
, θ− =

1− θ
2
=

e−h/2

Y
. (7)

Averages and cumulants are now taken with respect to a different measure (proportional to
ehSz for each element of a basis of Sz-eigenvectors). This alternative expansion of ln Z(β) in
powers of β will be referred to as the fixed-θ expansion:

ln Z(β) = ln
�

Tr e−βH
�

= ln

�

Tr
�

e−βHJ ehSz�

Tr (ehSz )
Y Ns

�

= ln
�

Y Ns
�

+ ln

�

1+
∞
∑

n=1

〈〈(−βHJ )n〉〉
n!

�

(8)

= Ns ln Y +
∞
∑

n=1

⟦(−βHJ )(n)⟧
n!

, (9)

where Tr (ehSz
) = Y Ns . The obtained formulae are similar to those of the uniform mea-

sure (4) and (5). With this non-uniform measure, the average of an operator A is denoted:

〈〈A〉〉 = Tr (AehSz
)

Tr (ehSz ) . The moment and cumulant of a multiset (or list) L of operators commuting
with Sz are denoted 〈〈L〉〉 and ⟦L⟧. Only lists of n links now appear in the term of order n of
the β-expansion (such expansions were previously derived in [48] and discussed but not used
in [16]).
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We define g and g, and their expansions in powers of HJ or in powers of J as

g(G) =
Tr
�

e−βHJ ehSz�

Y Ns
=
∞
∑

n=0

〈〈(−βHJ )n〉〉
n!

=
∑

U∈NG

JU

U!
〈〈U〉〉 , (10)

g(G) = ln g(G) =
∞
∑

n=1

⟦(−βHJ )(n)⟧
n!

=
∑

U∈NG

JU

U!
⟦U⟧ . (11)

U ∈ NG is a mapping of G into N. Hence U is also a multigraph whose support is a part of
G (or a multiset of elements of G) in which a link l has a multiplicity U(l). Numerator JU is
∏

l∈G JU(l)
l (we recall that its order in β is #U =

∑

l U(l)). Denominator U! is
∏

l∈G U(l)!. In
〈〈U〉〉 and ⟦U⟧ a link l ∈ U is identified to Pl . Note that 〈〈;〉〉=1 and ⟦;⟧=0, and for a single
link l:

〈〈l〉〉= ⟦l⟧=
Tr (Pl e

hSz )
Y 2

= θ2
+ + θ

2
− =

1+ θ2

2
. (12)

More generally, for any multigraph U , the moment 〈〈U〉〉 and cumulant ⟦U⟧ are even polyno-
mials in θ the degrees of which verify d◦

θ
〈〈U〉〉 ≤ Ns(U) and d◦

θ
⟦U⟧≤ 2#U (proof in App. D.1).

The average of the product of independent variables is the product of their averages. Hence
for a not connected multigraph U with connected components labelled U1, U2..., we have
〈〈U〉〉=

∏

i〈〈Ui〉〉 and ⟦U⟧= 0 (proof in App. B.5).
〈〈U〉〉 and ⟦U⟧ are in fact independent of the graph G for any multi-graph U of the infinite

lattice: they are the same for two different simple graphs G1 and G2 including the support
of U . Thus they are well defined in the thermodynamic limit, and can be evaluated on the
smallest possible graph G: the support of U .

2.2 From a finite graph to the infinite lattice

We now discuss the thermodynamic limit, by first taking a finite periodic lattice L of Nuc unit
cells, each containing one or several sites. The series expansions described in the previous
subsection are valid on L, and each term of order n of Eq. (9) is a sum over connected multi-
graphs U of L with n links. A multi-graph U without topologically non trivial loops is by
definition equivalent to Nuc graphs up to a translation on L. If nm is the minimal number
of links of a topologically non trivial loop on L, we can group multi-graphs into equivalence
classes of Nuc elements up to order nm−1. The HTSE of ln Z(β)/Nuc truncated at some order
n thus does no more depend on the lattice size when L is large enough: it results in a well
defined HTSE in the thermodynamic limit.

To determine this expansion, we list translation-equivalent-classes of connected simple
graphs G on the infinite lattice. For a representative of each class, we then determine F(G),
the sum of the contributions of all multi-graphs U whose support is exactly G:

F(G) =
∑

U∈NG
>0

JU
⟦U⟧
U!

, (13)

where N>0 is the set of positive integers. The classes of translation-equivalent graphs can
still be regrouped in larger classes of topologically equivalent (isomorphic) graphs G, care-
fully keeping track of the weak embedding constant of each class w(G) (in other words, the
occurrence number per unit cell).
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For models with several types of links, graph isomorphisms must preserve Jl (type of link)
in order to ensure that JU and F(G) are well defined in Eq. (13). In other words, when two
simple graphs G and G′ only differ by their Jl , F(G) and F(G′) are not simply related. But

F(G) = JG
⟦G⟧
G! + o(βNl ), hence F(G′) = JG′

JG
F(G) + o(βNl ) may be used when n= Nl .

To simplify the notations in this article, only one type of J is used in the following. Anyway
we need w(G) and F(G) for each class G, that we inject in the so-called linked-cluster expansion
of g(L) in the thermodynamic limit:

g∞ =
∑

G

w(G)F(G) . (14)

F(G) can be deduced from the inclusion-exclusion formula, valid in any linked cluster expansion
(deduced from Eqs. (11) and (13)):

F(G) = g(G)−
∑

G′⊊G F(G′) . (15)

Such linked cluster expansions are used in various contexts, for example, in the numerical
linked cluster expansions [49–51], where the F(G) are calculated exactly for all G-classes up
to some cluster size and the free energy is calculated via a truncation in the cluster size, or more
recently in a projective cluster-additive transformation [52], where the low energy sectors of
a perturbed Hamiltonian are explored. In HTSE, the F(G) expansion is truncated at order n
in β .

Note that F(G) only contributes at orders n ≥ #G. Thus, to get the HTSE up to some
order n, we need to enumerate all simple connected graphs G with #G ≤ n (Sec. 2.4), and for
each of them, calculate F(G) up to order n (Sec. 2.5), trying in each step to identify the most
time consuming step and to optimize it.

2.3 Integerness during calculation and storage of results

g, g and F(G) are polynomials in the variables Jl , where the coefficients are themselves poly-
nomials in θ2, where the coefficients are rational numbers. Here, we first justify the use of
the common denominator 2kk! for these rational numbers, with k their order in J . We give
examples of how it allows to only store integer numerators with implicit denominator during
computations. We finally give the definition of the series coefficients that we have used in our
code [53].

Proof. Let G be the graph of links of (partial) Hamiltonian HJ . When expanded, Hk
J is a

weighted sum of permutations of the Ns sites of G (see Eq. 3). Such a permutation σ writes as
a product of disjoint cycles of lengths r1, r2, . . .. Let r =

∑

i(ri−1). Then r ≤ k. Furthermoreσ
has after division by Y Ns a trace 〈〈σ〉〉=

∏

i(θ
ri
+ +θ

ri
− ) (as only configurations with all spins up

or down on each cycle are unchanged by σ). But θ ri
+ = (

1+θ
2 )

ri ∈ Zri
[θ]/2ri , where Zri

[θ] de-
notes the set of integer polynomials of degree at most ri in variable θ . Furthermore as θ ri

+ +θ
ri
−

is twice the even part of θ ri
+ in θ , it is in Z⌊ri/2⌋[θ

2]/2ri−1 (the floor function ⌊x⌋ or x is the
greatest integer less than or equal to x). But ⌊ri/2⌋ ≤ ri − 1, hence 〈〈σ〉〉 ∈ Zr[θ2]/2r . There-
fore 〈〈Hk

J 〉〉 ∈ (Zk[θ2])[J]/2k, as well as ⟦H(k)J ⟧, since cumulants are homogeneous integer
polynomials of moments according to Eq. (B.9). We can use denominator 2kk! in terms of or-
der k in J within ḡ(G) =

∑

k〈〈H
k
J 〉〉/k!, g(G) =

∑

k⟦H(k)J ⟧/k! and F(G) = g(G)−
∑

G′⊊G F(G′),
and even within (1− ḡ(G))i/i despite division by i, because it is the sum of all products of i
moments in Eq. (B.9). This last term is part of the expansion of ln g(G) = g(G) which we use
to calculate g(G).
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Figure 3: Enumeration of graphs on a lattice: example of the square lattice. We
depart from the first generation: each link in the unit cell, the root (empty graph) is
not represented. In the red-circled graphs, the newly added link (in cyan) has not
the smallest possible label. Such a graph has no children and only its double with the
smallest label, child of another parent, is allowed to breed. The green circle highlights
a graph, which is kept, although the label of its new link is 2 instead of 1. But the link
of label 1 is a bridge, which cannot have been added to a parent (an orphan link).
On the right are recapitulated the topological graphs and their occurrence numbers.

Remark 1: During the calculation of the product a J i

i!2i × b J j

j!2 j = ab
�i+ j

i

� J i+ j

(i+ j)!2i+ j of two terms

of orders i and j, we replace the multiplication of the two rational numbers a/i!2i and b/ j!2 j

by a multiplication of the three integers a, b and
�i+ j

i

�

.

Definition of the series coefficients using implicit denominators: To store the series in a
uniform way, we define the coefficients of a HTSE by:

ln Z(β ,θ )
Ns

= ln Y +
1

nuc

n
∑

k=1

1
2kk!

k
∑

r=0

Dk,rθ
2r +O(βn+1) , (16)

with nuc the number of sites in a unit cell and Dk,r are homogeneous polynomials of degree
k with integer coefficients in the Hamiltonian parameters J1, J2... appearing in Eq. 1 and im-
plicitely multiplied by β . In practice, the files generated by our code [53] store the coefficients
Dk,r . They are publicly available [30].

2.4 Enumeration of simple connected graphs on a periodic lattice

This part of the calculation consists in finding all relevant simple connected graphs G (those
appearing on the considered lattice) and calculating their weight w(G). This is not the main
subject of this article, but for completeness, in this section, we present an algorithm that does
the job and has the advantage of being parallelizable, as well as two ways of sparing time in
some specific situations. It is mathematically described in [54]. A directed tree is constructed,
whose vertices are graphs on the lattice (in fact, classes of translation-equivalent graphs).
Graphs of the n’th generation have n links, and each branch of the tree can be explored in-
dependently, as we are able to decide if we keep a vertex or not without exploring the tree
(see Fig. 3). The root of the tree is the empty graph. The first generation vertices are all the
one-link graphs contained in a unit cell (translationally inequivalent). The next generations
are constructed as follows:
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• For a graph G with n−1 links embedded on the lattice, we consider all the simple graphs
with n links obtained by adding an adjacent link to G.

• We want to keep only one among all identical (up to a translation) graphs obtained from
all G’s. For this, the n links of each child G′ are labelled in a way that only depends on
G′ and not of its parent (ordering the coordinates of its sites for example). Thus, for
each copy, the label of the new link is different. Note that bridges of G′ are orphan links,
meaning that they and they alone cannot be new links. We keep G′ only if the new link
has the smallest label among the non-orphan links.

• For each graph G (each vertex of the tree), a canonical label G is calculated, that is the
same for isomorphic graphs (i.e. identical up to a vertex renumbering). Canonical labels
can be calculated using McKay’s algorithm [55, 56]. All graph isomorphism classes are
collected and their occurrence number w(G) (also called the lattice constant, or weak
embedding constant) is counted.

Note that different methods, said more efficient but not implemented in our code, are
described in the literature [11, 57]. They consist roughly in a first step generating all topo-
logical classes of graphs (this step itself can be realized in different ways), and in a second
step counting their embedding number on the lattice. It avoids the costly step of the canonical
label calculation, that is however reduced in our algorithm using the two following tricks.

2.4.1 Avoid the canonical labelling of graphs with leaves

The calculation of canonical labels in the last step of the graph enumeration is expensive.
When all sites of the lattice have the same number of neighbors z, we can spare time by
avoiding to calculate it for graphs with leaves (see App. A for the definition of a leaf), as
the multiplicity of their topological graph can be deduced as follows. Let G be a topological
connected simple graph containing a leaf l = u↔ v with d◦u > d◦v = 1. Let na(G) be the
number of automorphisms of G, i.e. the number of permutations of sites of G, which map links
on links. This number is a by-product of McKay’s algorithm. Let ne(G) = na(G)w(G). This
is the number of embeddings (injective mappings of sites and links) of G into the lattice (per
unit cell). In other words w(G) counts subgraphs of lattice isomorphic to G, whereas ne(G)
counts isomorphisms between G and subgraphs of the lattice. w(G) is deduced from:

ne(G) = (z − d◦u+ 1)ne(G \ l)−
∑

s site of G
s ̸=u, u↔s /∈G

ne(G ∪ {u↔ s} \ l) , (17)

requiring only the calculation of na for the graphs appearing in the formula. The needed w
are known if we calculate w(G) in ascending order of Ns(G).

Example: We apply formula (17) to calculate w( • • • • ) on a triangular lattice with z = 6.
The automorphism numbers na of • • • • , • • • and •

• • are pictorially represented on
Fig. 4, together with the embedding numbers w of • • • and •

• • . Labelling s, t, u and v the
four sites of • • • • , l = u↔ v is a leaf with d◦u= 2> d◦v = 1. We get:

ne( • • • • ) = (z − d◦u+ 1)ne( • • • )− ne(
•

• • ) (18)

= (6− 2+ 1)na( • • • )w( • • • )− na(
•

• • )w(
•

• • )

= 5× 2× 15− 6× 2= 138 .

From ne( • • • • ) = na( • • • • )w( • • • • ), we deduce w( • • • • ) = 69.
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Figure 4: Quantities used in the calculation of w( • • • • ) on the triangular lattice,
Eq. (18).

Remark: The time saved this way is important, as graphs with leaves are the majority when
the number of links and the lattice dimensionality increases. In the case of a d−dimensional
hypercubic lattice [58], w(G) = O((2d − 1)Nl ) for a tree of Nl bonds in the limit of large d,
whereas a topological graph with a loop of 2s sites has w(G) = O((2d − 1)Nl−s).

When adding a link to a connected graph, no more than two leaves may disappear. Hence
we can prune a graph G with more than 2(n−#G) leaves.

2.4.2 Expansion in the magnetic field B: Non-contributing graphs

We have seen in Sec. 2.1 an elegant way to get HTSEs which include all orders in the magnetic
field B, through expansion coefficients that are even polynomials in θ (fixed-θ expansion).
However, most physical studies are performed at fixed B, requiring either to expand the fixed-θ
expansion coefficients of Eq. (9) in powers of β , or to directly work with the fixed-B expansion
of Eq. (5). The final coefficients are of course the same in both cases, and the coefficients in
β l are even polynomials in B of maximal order l.

To get the fixed-B expansion of F(G) for a graph G up to order βn from the fixed-θ ex-
pansion, the polynomial coefficient Pl(θ ) of the β l term of the latter can be truncated at order
k = n− l in θ , but it generally does not bring a lot, except in some cases where Pl(θ ) is divisible
by θ k+1. Then, the graph G can simply be discarded. Here are some simple situations where
it occurs:

1. For B = 0, a graph G with Nb f links that are either bridges or leaves can be discarded if
#G + Nb f > n.

2. A graph G with NL big leaves (see App. A) does not contribute to the fixed-B expansion
at order n if #G + NL > n.

The proofs are in App. C (they use some formulae derived in the following sections), together
with other, better criterion.

2.5 Complexity and bottleneck of HTSE

We now evaluate the complexity of calculating F(G) up to order n. In the following Jl ’s may all
have the same value, or several values (for example first and second neighbor interactions). For
instance a polynomial of degree n in θ , J1, J2, . . . , Jk has O(n1+k) coefficients. Multiplication
of two such polynomials takes time O(n2+2k). But for simplicity, time complexity estimates
here assume that the Jl ’s are all equal and this time is O(n4). The calculation of F(G) divides
in three successive steps, whose complexities are now given (proofs in App. D):

• Get the averages 〈〈Hk
J 〉〉 for k ≤ n, in a time O(4Ns nNl/

p

Ns). According to Eq. (10) we
have g(G) at order n.
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• Calculate g(G) as ln g(G) at order n in a time O(n4Ns).

• From g(G) and F(G′) for G′ ⊊ G, calculate F(G) using Eq. (15) in a time O(2Nl n2), or
better in a time O(N2

l n2) as explained in App. D.1.

Finally, the bottleneck to get F(G) at order n among the three steps listed above is the
calculation of averages in O(4Ns nNl/

p

Ns). Then, at fixed n, the most greedy graphs are
those with the largest Ns. As the considered graphs are connected, we have the condition
Ns ≤ 1+ Nl ≤ n+ 1. For n fixed, the way to maximize Ns is to choose Nl = n and to forbid
loops (Ns = 1 + Nl), which results in graphs that are trees with n links and a complexity in
O(4nn3/2).

The next section describes a way to calculate F(G) in a considerably faster time O(n2), for
bridged graphs with Nl = n links (which include all trees except the star graph Tn of Fig. 5,
left), assuming that we know F(G′) for any simple graph G′ ⊊ G.

3 O(n2) complexity for n links bridged graphs and order n
expansion

Let G be a simple connected graph with Nl = #G links. According to Eq. (13),
F(G) = JG

⟦G⟧+ o(JG) and cumulant ⟦G⟧ is derived from moments of subgraphs of G by

⟦G⟧=
∑

q∈Q(G)
g0(#q)

∏

G′∈q

〈〈G′〉〉 , (19)

g0(i) = (−1)i−1(i − 1)!= (−1)(−2) · · · (1− i) , (20)

where Q(G) is the set of partitions of G and #q is the cardinal of the partition q. This equation
is proved in appendix (B) as Eq. (B.13).

In this section, we demonstrate that if G is a bridged graph (an undirected graph that can
be split in two connected components by removing a single link), F(G) can be calculated at
order n= #G in J , in time O(n2), if we know F(G′) for any connected subgraph G′ ⊊ G.

We choose a bridge of G that we denote u ↔ v. Let U and V be the two connected
components of G \ {u↔ v}. We assume that u is a site of U and v is a site of V .

The first main result of this article is:

⟦G⟧= ⟦U , u↔ v, V⟧=
2
θ2
⟦U , u↔ v⟧⟦u↔ v, V⟧ . (21)

This equation can be pictorially represented on an example as:
°
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•
•
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•

•
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•
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Proof. Operator Pu↔v exchanges spins of sites u and v of link u↔ v. So

Pu↔v = p++u p++v + p+−u p−+v + p−+u p+−v + p−−u p−−v , (22)

where operator pεε
′

s transforms state ε of spin operator Sz
s into state ε′. We define

⟦U⟧+u = ⟦U , p++u ⟧ , ⟦U⟧−u = ⟦U , p−−u ⟧ . (23)
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The trace of an operator which decreases total spin Sz on the sites of U , is zero. Hence
〈〈G′, p+−u p−+v 〉〉 = 0 for any subgraph G′ ⊂ U ∪ V . Hence ⟦U , p+−u p−+v , V⟧ = 0. When com-
puting moment or cumulant of a graph G with a leaf (U or V being empty) or bridge u↔ v
we can replace Pu↔v by p++u p++v + p−−u p−−v . Sum of both projections on the possible states
of a spin is identity, which is independent of any operator. Hence if U is a non-empty graph:
⟦U⟧+u + ⟦U⟧−u = ⟦U , p++u ⟧+ ⟦U , p−−u ⟧ = ⟦U , p++u + p−−u ⟧ = ⟦U , I⟧ = 0. For an empty graph:
⟦;⟧+u = ⟦p++u ⟧= 〈〈p++u 〉〉= θ+ i.e. the probability for an isolated spin to be in the + state.

U ̸= ; ⇒ ⟦U⟧−u = −⟦U⟧+u , ⟦;⟧+u = θ+ , ⟦;⟧−u = θ− . (24)

Links in U and pεεu operate on spins of sites of U . These operators commute with those of V .
Using the properties of cumulants of independent sets of operators (see Eq. (B.19)) and the
linearity of cumulants, we have:

⟦U , u↔ v, V⟧= ⟦U ,
∑

ε∈{+,−}

pεεu pεεv , V⟧

=
∑

ε∈{+,−}

⟦U , pεεu ⟧⟦pεεv , V⟧

= ⟦U⟧+u ⟦V⟧+v + ⟦U⟧−u ⟦V⟧−v . (25)

With an empty V (or U), this equation becomes:

⟦U , u↔ v⟧= ⟦U⟧+u θ+ + ⟦U⟧−u θ− = ⟦U⟧+u (θ+ − θ−) = ⟦U⟧+u θ , (26)

⟦u↔ v, V⟧= ⟦V⟧+v θ . (27)

Otherwise:

⟦U , u↔ v, V⟧= ⟦U⟧+u ⟦V⟧+v + (−⟦U⟧+u )(−⟦V⟧+v ) = 2⟦U⟧+u ⟦V⟧+v . (28)

Combining Eqs. (26), (27) and (28) gives Eq. (21).

Complexity: Search for bridge u↔ v and subgraphs U and V in graph G takes time O(n).
Retrieval of ⟦U , u↔ v⟧ as coefficient of JU Ju↔v in F(U ∪ {u↔ v}) takes time O(n), since
⟦U , u↔ v⟧ ∈ Q1+Nl (U)[θ

2]. Multiplication of polynomials ⟦U , u↔ v⟧ and ⟦u↔ v, V⟧/θ2

takes time O(n2). So the overall time to compute ⟦G⟧ is O(n2).

4 Trees with n links

We show in this section the second main result of this article: for a tree T with Nl ≥ 2:

⟦T⟧=
1
2

∏

s∈ sites of T

2Cd◦s , (29)

where d◦s is the number of links departing from site s, and Ck is recursively defined by:

C1 =
θ

2
, Ck+1 =

dCk

dh
=

1− θ2

2
dCk

dθ
. (30)

Proof. Value of C1 is given by equations (21) and (29): When joining trees U and V to build
tree G, one tree and two leaves disappear. Hence 1

2(2C1)2 =
⟦U⟧⟦V⟧
⟦G⟧ = θ2

2 . We get values of Ck
for k > 1 by applying Eq. (29) to a star graph Tk = {0↔ 1,0↔ 2, . . . , 0↔ k} (Fig. 5, left).

⟦Tk⟧= Ckθ
k. (31)
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Figure 5: Left: the k links of a star graph Tk all are leaves with a common site s = 0.
Right: graph A used in Sec.4, where the Ai subgraphs are any non-empty graph that
do not include the link ai↔ 0. The Ai ’s and the central star graph Tk form a partition
of the links of A.

It remains to prove Eq. (30). For this we consider a graph A that possesses k links originating
from a site 0, namely 0↔ a1, 0↔ a2, . . . , 0↔ ak. These links may be either bridges or leaves.
We denote A1, A2, . . . Ak the k components of A containing sites a1, a2,. . . ak, obtained by
removing these links (see Fig. 5, right). Replacing in ⟦A⟧ every P0↔ai

by p++0 p++ai
+ p−−0 p−−ai

,
we obtain (as we did to get Eq. (25)):

⟦A⟧=
∑

ϵ∈{+,−}k
⟦pϵ1ϵ10 , . . . , pϵkϵk

0 ⟧

k
∏

i=1

⟦Ai⟧
ϵi
ai

. (32)

There we replace every p−−0 = I− p++0 by −p++0 and get:

⟦A⟧= ⟦p++0
(k)
⟧

k
∏

i=1

(⟦Ai⟧
+
ai
− ⟦Ai⟧

−
ai
) . (33)

If all Ai ’s are empty we get ⟦Tk⟧ = ⟦(p++0 )
(k)
⟧θ k. Hence Ck>1 = ⟦(p++0 )

(k)
⟧. This cumulant is

the kth derivative of the logarithm of the following moment (see Eq. (B.4)):

〈〈eλp++0 〉〉= 〈〈eλp++0 + p−−0 〉〉=
eλ+h/2 + e−h/2

Y
.

Since k > 1, we get:

Ck = ⟦p++0
(k)
⟧=

∂ k

∂ λk
ln〈〈eλp++0 〉〉

�

�

�

λ=0
=
∂ k

∂ λk
ln

eλ+
h
2 + e−

h
2

Y

�

�

�

λ=0
(34)

=
∂ k

∂ λk
ln cosh

λ+ h
2

�

�

�

λ=0
=

dk

dhk
ln cosh

h
2

(35)

=
1
2

dk−1

dhk−1
tanh

h
2
=

dk−1

dhk−1

θ

2
. (36)

For k = 1, Eq. (34) gives the wrong value θ+, while Eq. (36) is equivalent to Eq. (30) for all
k ≥ 1.

Formulae (29) and (30) allow for a calculation in O(n2) of F(T ) for any tree T with n
links, to be compared with the O(4nn3/2) of the method used for any graph in Sec. 2.5.
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5 Discussion and conclusion

We have detailed the two steps involved in the exact calculation of the HTSE coefficients for
Heisenberg S = 1/2 spin lattices, in the presence of a magnetic field: (i) the graph enumera-
tion and (ii) the trace calculation. The trace calculations on bridged graphs (and particularly
on trees) with n links are the most time consuming steps, with a complexity in O(n3/22n) for
a naive calculation. Formulae that drastically decrease it to O(n2) have been derived.

An optimized and parallelized code using this optimization is available [53], together with
the coefficients of many series [30] (the orders obtained on some lattices with first neighbor
interactions are given in Tab. 1 of App. D.4). The time required by this code for the two
main steps (graph enumeration and trace calculations) is summarized in App. D.5 for various
numbers of CPUs and for some simple models. The current code allows to also calculate HTSE
for models with anisotropic interactions and Dzyaloshinskii-Moriya interactions.

This code was used on many models without magnetic field [25, 35, 36]. However, its
interest stays in the possibility to explore high-B. This was done on the kagome antiferromag-
net [24, 42]. High-B were used experimentally in [42] to shift away Schottky anomalies and
isolate the low-temperature intrinsic kagome contribution to the specific heat, fitted by the
entropy method at temperatures well below the convergence radius of the series.

This highlights the importance of extrapolation methods, just as Fig. 1 does: temperatures
accessible by naive extrapolation techniques (Padé approximants) decrease with B. In case of
magnetization plateaus, Padé approximants do not allow to reach temperatures where peaks
(that are precursors of T = 0 plateaus) appear in χl(h). An extrapolation method designed
to work in the (T,B) plane would be a logical continuation of this work. To exploit the field
dependent HTSE coefficients, thermodynamic ensembles other than the usual (T, B) one could
be considered, as evoked in Sec. 2.1.

Further studies could also extend this work to optimize HTSE calculation on a larger class
of models (different spin values, classical models) in the presence of a magnetic field.

Acknowledgments

Funding information This work was supported by the French Agence Nationale de la
Recherche under Grant No. ANR-18-CE30-0022-04 LINK and the projet Emergence, of the
Paris city.

A Vocabulary on graphs

All the definitions below are illustrated on Fig. 2.

• Graphs where each link appears only once are called simple graphs, and graphs where
multiple links are allowed are called multi-graphs.

• A graph is connected when a path exists between any two of its sites (it has only one
connected component).

• The degree d◦s of a site s is the number of links emanating from it.

• A leaf is a link with a site of degree one.

• A bridge is a link that is not a leaf and belongs to no simple loop. So it connects two
otherwise not connected components. A graph with a bridge is said bridged.

• A big leaf is a generalization of a leaf. If not a leaf it is a bridge in company of one of
the two components it separates, provided this component is free of leaves or bridges.
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So no big leaf can include another one. That is why all big leaves are disjoint, except
when there is only one bridge and no leaf. Then there are two big leaves sharing the
only bridge and we must pretend there is only one big leaf. This way big leaves are
always disjoint as needed. Let Nb f be the total number of bridges and leaves. Let NL be
the (pretended) number of big leaves. Then min(Nb f , 2)≤ NL ≤ Nb f .

• An islet of a graph G is a connected component of the graph obtained after cutting every
bridge of G and replacing it by two leaves.

B Averages, moments and cumulants

The moment and cumulant of a multiset or list of operators x1, . . . , xk are:

〈x1, . . . , xk〉=
∂

∂ λ1
· · ·

∂

∂ λk

D

e
∑k

i=1 λi x i

E
�

�

�

λ=0
(B.1)

=
1
k!

∑

σ∈Sk

® k
∏

i=1

xσ(i)

¸

, (B.2)

[x1, . . . , xk] =
∂

∂ λ1
· · ·

∂

∂ λk
ln
D

e
∑k

i=1 λi x i

E
�

�

�

λ=0
. (B.3)

For a single operator x1, moment 〈x1〉, cumulant [x1] and average 〈x1〉 are equal. So we can
use the notation 〈.〉 for both average and moment. Furthermore 〈x (k)〉= 〈xk〉= [xk] ̸= [x (k)]
for k > 1 if x (k) denotes k occurrences x , . . . , x of a same operator.

If x i = x j in definitions B.1 and B.3 we can state µ= λi+λ j . Then ∂ µ/∂ λi = ∂ µ/∂ λ j = 1.
Hence we can replace λi x i + λ j x j by µx i and both ∂ λi and ∂ λ j by ∂ µ. More simply we can
remove the term λ j x j in the sum and replace ∂ λ j by ∂ λi . In this way we have for instance:

[x (3)1 , x2, x (4)3 ] =
∂ 3

∂ λ3
1

∂

∂ λ2

∂ 4

∂ λ4
3

ln〈e
∑3

i=1 λi x i 〉
�

�

�

λ=0
. (B.4)

We now consider that x is an operator corresponding to a link x of a graph. Note that we
use from now on the vocabulary of graphs using this operator-link correspondance, but what
follows is valid for any set or multiset of operators. Hence if G is a simple graph, i.e. a set of
distinct links, we have the Maclaurin expansion:

ln〈exp
∑

x∈G

λx x〉=
∑

U∈NG

[x (U(x)), x ∈ G]
∏

x∈G U(x)!

∏

x∈G

λU(x)
x . (B.5)

Here U ∈ NG is a mapping from G to N. For each link x ∈ G, the integer U(x) is its multiplicity
in the multiset {{x (U(x)), x ∈ G}}. So U is any multigraph whose support is a part of G. We will
simplify notations in this last equation and rewrite it:

ln〈expλG〉=
∑

U∈NG

[U]
U!
λU =

∞
∑

k=1

∑

V∈Gk

[V ]
k!
λV . (B.6)

Instead of summing over multisets of links, we may sum over tuples of links. But a multiset
U ∈ NG of k = #U =

∑

x∈G U(x) links appears k!/U! times among tuples V ∈ Gk of k links.
Similarly we have also

〈expλG〉=
∑

U∈NG

〈U〉
U!
λU = 1+

∞
∑

k=1

∑

V∈Gk

〈V 〉
k!
λV . (B.7)
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The constant coefficients of these series in powers of λ are 〈;〉 = 〈e0〉 = 1 and [;] = ln 1 = 0.
So the coefficients of either of these two formal series can be computed from the coefficients
of the other one by

∑

U∈NG

〈U〉
U!
λU = 1+

∞
∑

n=1

1
n!

�

∑

U∈NG

[U]
U!
λU

�n

, (B.8)

∑

U∈NG

[U]
U!
λU = −

∞
∑

n=1

1
n

�

1−
∑

U∈NG

〈U〉
U!
λU

�n

. (B.9)

B.1 Moments expressed as polynomials of cumulants

For a simple graph U = {x1, . . . , xk}, the coefficient of λU in Eq. (B.8) is

〈U〉=
∑

p∈Q(U)

∏

G∈p

[G] , (B.10)

where Q(U) is the set of partitions of U . The divisions by U! = 1 and G! = 1 disappear, since
graph U and its part G are simple. Furthermore the division by n! disappears also because
the product of the cumulants of the n parts of a partition p appears n! times with reordered
factors within

�

· · ·
�n

.
To generalize this formula to multigraphs, we no more use partitions of sets of links, but

partitions of set {1, . . . , n} so that links x i no longer need to be different:

〈x1, . . . , xn〉=
∑

p∈Q(n)

∏

q∈p

[xr , r ∈ q] . (B.11)

Q(n) is the set of partitions of set {1, . . . , n}. Example:

〈x1, x2, x3〉= [x1, x2, x3] + [x1, x2][x3] + [x1, x3][x2] + [x1][x2, x3] + [x1][x2][x3] .

B.2 Cumulants expressed as polynomials of moments

For a simple graph U = {x1, . . . , xk} the coefficient of λU in Eq (B.9) is

[U] =
∑

p∈Q(U)
g0(#p)

∏

G∈p

〈G〉 . (B.12)

When going from Eq. (B.8) to Eq. (B.10), the coefficient 1/n! disappears when multiplied by
n!. Here (−1)n−1/n multiplied by n! becomes g0(n) = (−1)n−1(n− 1)!. For multigraphs, we
have:

[x1, . . . , xn] =
∑

p∈Q(n)
g0(#p)

∏

q∈p

〈xr , r ∈ q〉 . (B.13)

Examples:

[x1, x2] = 〈x1, x2〉 − 〈x1〉〈x2〉= 〈x1 x2〉 − 〈x1〉〈x2〉 ,
[x1, x2, x3] = 〈x1, x2, x3〉 − 〈x1, x2〉〈x3〉 − 〈x1, x3〉〈x2〉 − 〈x1〉〈x2, x3〉+ 2〈x1〉〈x2〉〈x3〉

=
〈x1 x2 x3〉+ 〈x1 x3 x2〉

2
− 〈x1 x2〉〈x3〉 − 〈x1 x3〉〈x2〉 − 〈x1〉〈x2 x3〉+ 2〈x1〉〈x2〉〈x3〉 .
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B.3 Moment and cumulants of a single operator

When x1 = x2 = · · ·= xn = H, the equations (B.11) and (B.13) become

〈Hn〉=
∑

n1,...,nn∈N,
∑

i ini=n

n!
∏

i

[H(i)]ni

(i!)ni ni!
, (B.14)

[H(n)] =
∑

n1,...,nn∈N,
∑

i ini=n

g0

�

∑

i

ni

�

n!
∏

i

〈H i〉ni

(i!)ni ni!
. (B.15)

Examples:

[H] = 〈H〉 ,

[H(2)] = 〈H2〉 − 〈H〉2 ,

[H(3)] = 〈H3〉 − 3〈H2〉〈H〉+ 2〈H〉3 ,

[H(4)] = 〈H4〉 − 3〈H2〉2 − 4〈H3〉〈H〉+ 12〈H2〉〈H〉2 − 6〈H〉4 ,

[H(5)] = 〈H5〉 − 5〈H〉〈H4〉 − 10〈H2〉〈H3〉+ 20〈H3〉〈H〉2 + 30〈H〉〈H2〉2 − 60〈H2〉〈H〉3

+ 24〈H〉5 ,

〈H〉= [H] ,

〈H2〉= [H(2)] + [H]2 ,

〈H3〉= [H(3)] + 3[H(2)][H] + [H]3 ,

〈H4〉= [H(4)] + 3[H(2)]2 + 4[H(3)][H] + 6[H(2)][H]2 + [H]4 ,

〈H5〉= [H(5)] + 15[H][H(2)]2 + 10[H(2)][H]3 + [H]5 + 5[H][H(4)] + 10[H(2)][H(3)]

+ 10[H(3)][H]2 .

B.4 Expression of cumulants versus moments and lesser order cumulants

From Eq. (B.10) we can easily derive, if x1 ∈ X :

〈X 〉=
∑

X ′⊂X\x1

[X \ X ′]〈X ′〉 . (B.16)

Hence
[x1, . . . , xn] = 〈x1, . . . , xn〉 −

∑

p∈P ′′2 (n)

[xr , r ∈ p1]〈xr , r ∈ p2〉 , (B.17)

where P ′′2 (n) is the set of partitions of n elements in 2 non-empty sets, with the conditions that
1 is in the first set.
Example:

[x1, x2, x3] = 〈x1, x2, x3〉 − [x1, x2]〈x3〉 − [x1, x3]〈x2〉 − [x1]〈x2, x3〉 .

B.5 Nullity of cumulant of a not connected graph

Let C be a not connected graph, without any isolated site. Let A be one of its connected
component. Let B = C \ A. Then A and B are two non-empty graphs sharing no sites and
operators λA=

∑

x∈Aλx x and λB are independent. So their exponentials are independent too:
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the average of their product is the product of their averages. But as λC = λA+ λB, we have
ln〈expλC〉= ln〈expλA〉+ ln〈expλB〉. So

∑

U∈NC

[U]
U!
λU =

∑

U∈NB

[U]
U!
λU +

∑

U∈NA

[U]
U!
λU . (B.18)

If U is a multigraph of support C , the term [U]λU/U! appears only once in Eq. (B.18) in its left
hand side. No other term has the same λU . Hence [U] = 0, which proves that the cumulant
of a not connected multigraph is zero.

B.6 Multilinearity of moments and cumulants

With Eq. (B.2) we see that the moment is a linear function of any of its arguments. Then with
Eq. (B.13) we see that the cumulant is also such a function.

B.7 Product of cumulants of independent sets of operators

Let X and Y be two sets of operators. Let x1 ∈ X and y1 ∈ Y .

(∀X ′ ⊂ X , ∀Y ′ ⊂ Y, 〈X ′, Y ′〉= 〈X ′〉〈Y ′〉) ⇒ [X ][Y ] = [x1 y1, X \ x1, Y \ y1] . (B.19)

Proof. We prove this by induction on #X +#Y . We denote X1 = X \ x1 and Y1 = Y \ y1. We
have 〈X 〉〈Y 〉= 〈X , Y 〉= 〈x1 y1, X1, Y1〉. Hence using three times Eq. (B.16):

 

∑

X ′⊂X1

[X \ X ′]〈X ′〉

! 

∑

Y ′⊂Y1

[Y \ Y ′]〈Y ′〉

!

=
∑

W ′⊂X1∪Y1

[x1 y1, X1 ∪ Y1 \W ′]〈W ′〉 ,

∑

X ′⊂X1
Y ′⊂Y1

[X \ X ′][Y \ Y ′]〈X ′〉〈Y ′〉=
∑

X ′⊂X1
Y ′⊂Y1

[x1 y1, X1 \ X ′, Y1 \ Y ′]〈X ′〉〈Y ′〉 .

According to the induction hypotheses, all terms for X ′ ̸= ; or Y ′ ̸= ; cancel. The remaining
terms are those of Eq. (B.19).

C Proof of the non contribution of some graphs in the fixed-B
expansion

If U is a connected multigraph with NL big leaves then

θNL divides ⟦U⟧ . (C.1)

Proof. We assume that a multiple link cannot be a leaf or a bridge. Let k = NL . Let A1, . . . , Ak
be the parts of U which are disconnected when removing the leaves or bridges of the big leaves.
Let B = U \ A1 \ A2 \ · · · \ Ak. A big leaf is Ai ∪ {ai↔ bi} with ai in Ai and bi in B. Then, the
very same proof as for Eq. (33) gives:

⟦U⟧= ⟦B, p++b1
, . . . , p++bk

⟧

k
∏

i=1

(⟦Ai⟧
+
ai
− ⟦Ai⟧

−
ai
) . (C.2)

Replacing θ by −θ in ⟦Ai⟧
+
ai

gives ⟦Ai⟧
−
ai

. Hence ⟦Ai⟧
+
ai
− ⟦Ai⟧

−
ai

is an odd polynomial in θ
and it is divisible by θ .
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C.1 Graphs with #G + Nb f > n do not contribute for B = 0

Here, we prove the first item of Sec. 2.4.2: for B = 0, a simple connected graph G with
Nb f links that are either bridges or leaves can be discarded if #G + Nb f > n. We recall that
Nb f ≥ NL , with NL the number of big leaves, see App. A.

Proof. The reason is that in this case, F(G) = o(βn). Let U be a multi-graph U of support G.
If #U ≥ #G + Nb f , then #U > n and JU = o(βn). Otherwise #U < #G + Nb f . Doubling
#U −#G links disables at most as many bridges or leaves. But at least one remains. Hence U
has a big leaf, and ⟦U⟧ is divisible by θ , meaning since θ = 0 that ⟦U⟧= 0.

C.2 Graphs with #G + NL > n do not contribute to the fixed-B expansion

Now we count only leaves and bridges inside big leaves to prove the second item of Sec. 2.4.2:
A graph G with NL big leaves does not contribute to the fixed-B expansion at order n if
#G + NL > n. Let U be a multi-graph of support G. Then θNL(U) divides ⟦U⟧. Hence

orderβ
JU
⟦U⟧
U!

≥ #U + NL(U) ≥ #G + NL(G) > n . (C.3)

C.3 More restrictive criterion for the fixed-B expansion

We now explain a criterion (C.4) that allows to discard more graphs than (C.3), and we give
an algorithm to compute it.

To write this criterion, we define odd islets. In a connected multigraph U with Nb bridges,
we can replace every bridge l = l1↔ l2 by two leaves l1↔ l4 and l3↔ l2 where l3 and l4
are new sites. We get Nb+1 connected components, that we call islets (see App. A) and denote
U0, U1 . . . UNb

. An islet with an odd number of leaves (including broken bridges) is said to be
odd. We denote N f and No the numbers of leaves and odd islets and we define N f o = N f +No.
Note that Nl is the number of links, but we often replace it by # as #G = Nl(G).

The new criterion to discard a simple connected graph G for a fixed-B expansion writes:

n< min
U∈{1,2}G

�

#U + N f o(U)
�

, (C.4)

where U are multigraphs of support G where links have multiplicities 1 or 2.

Proof. Eq. (C.1) tells us that θN f (G) divides ⟦G⟧ and θN f (Ui) divides ⟦Ui⟧. This is coherent with
N f (G) =

∑Nb
i=0 N f (Ui)− 2Nb and ⟦G⟧= (2/θ2)Nb

∏

i⟦Ui⟧. But ⟦Ui⟧ is an even polynomial of
θ . So when Ui is an odd islet, θN f (Ui)+1 divides ⟦Ui⟧. This proves that

θN f o(G) def
= θN f (G)+No(G) divides ⟦G⟧ . (C.5)

This improves criterion (C.1), since big leaves are leaves and islets with one leaf and N f o ≥ NL .
In Eq. (C.5) we can replace simple graph G by a multigragh of support G. However when

doubling a bridge between two odd islets, they are disabled and replaced by a single even islet.
And doubling a leaf of an odd islet disables the leaf and the odd islet. So N f o may decrease
by two when doubling a link. This is why we have only F(G) = O(βNl+(N f o)/2) and we can
discard a graph G when n< Nl +

N f o
2 , or better when combined with Sec. C.2:

n< Nl +max
�

NL ,
N f o

2

�

. (C.6)

This is the best possible criterion, if we use only Nl , NL , N f and No. But the real criterion to
discard a simple connected graph G is to make sure that n < #U + N f o(U) for every multi-
graph U of support G. Since #U increases and N f o(U) does not change when we increase the
multiplicity of an already multiple link, we can limit multiplicities to 2. This is Eq. (C.4).
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At first glance the time to evaluate this formula is O(2Nl Nl). It reduces to O(2Nb f Nl) if we
notice that only leaves and bridges are worth doubling. We may also notice that #U +N f o(U)
increases by 0 or 2 when we double two bridges leading to a same islet. Hence we forbid this.
This leads to:

Algorithm for Eq. (C.4): Minimal U can be found in time O(Nl). Since Eq. (C.4) uses total
number of leaves and odd islets, we will make no difference between a leaf and a big leaf.
Hence a leaf will be called a bridge and the site at the end of this leaf will be called an (odd)
islet. We start from U = G. Then as long as U has a bridge between two odd islets and
one of these islets has no other bridge to a third odd islet, we double this bridge. Note that
after doubling, this bridge is no longer a bridge and the two odd islets become a single even
islet. Hence #U + N f o(U) decreases by 1. This walk through {1, 2}G ends when there is no
more bridge to double. Then U is a local minimum. But we chose an outermost bridge (no
third odd islet) to insure that disabled bridges are all in the same side of the doubled bridge.
Hence the chosen bridge excludes at most one other bridge of any optimal solution. Then
it will replace it in this solution, yielding another optimal solution which is reachable. All
of this means that at the end of its walk, U is indeed a global minimum. In other words,
condition "no third odd islet" avoids being stuck in a local minimum. For instance, starting
from G = a↔ b

↕
u

↔ c
↕
v
↔ d, where all the bridges are drawn and letters stand for islets, we

cannot be stuck in a↔ b
↕
u

⇔ c
↕
v
↔ d whereas mimimum is a⇔ b

↕
u

↔ c
↕
v
⇔ d.

Searching for a bridge to double and doubling it, takes time O(Nl). No more than Nl/2
links are doubled. Hence the total time is O(N2

l ). But algorithm can be performed in time
O(Nl). For this we first shrink each islet in a single site. This turns G into a tree. Then we
compute the oddness of every islet. After that, a depth first search on the tree finds which
links to double: When backtracking through a link, if both its ends are (still) odd, this link is
doubled and its ends become even.

C.4 Criteria for F(G) = o(Jn) + o(θ ν)

We may want to compute g∞+ o(Jn)+ o(θν) instead of g∞+ o(βn). Then criteria (C.6) and
(C.4) to discard G become

n< Nl ∨ n+ ν < Nl +max
�

NL ,
N f o

2

�

, (C.7)

n< Nl ∨ ν < min
U∈{1,2}G

#U≤n

N f o(U) . (C.8)

Then minimal U is harder to find. We first transform the graph G into a rooted tree, by keeping
only bridges and leaves and replacing every islet by a single site and choosing a root. From
now on, an islet means either an islet or the end of a leaf.

We define the potential of a rooted tree T with k links, as

pot(T ) = (u, v) = ((u0, u1, . . . , uk), (v0, v1, . . . , vk)) ,

where ui (resp. vi) denotes the minimum of N f o(U) for U ∈ {1,2}T with #U = k + i and the
root of T being in an even (resp. odd) islet (or site) of U . For instance uk = 0, vk =∞ (as all
islets are even for #U = 2k) and {u0, v0} = {N f o(T ),∞}, where∞ stands for the minimum
of an empty set.

So if the only common site of trees T and T ′ is their root and pot(T ) = (u, v) and
pot(T ′) = (u′, v′) then pot(T ∪ T ′) = (min(u ⊕ u′, v ⊕ v′ − 2), min(u ⊕ v′, v ⊕ u′)), where
(a⊕ b)i =mini=i′+i′′ai′ + bi′′ .
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Furthermore if T ′ = T ∪ a↔ a′ and a, resp a′, is the root of T , resp. T ′,
and pot(T ) = (u, v) then pot(T ′) = (∞⌢u,min(∞⌢v, 1 + u⌢∞, 1 + v⌢∞)) where
∞⌢(u0, u1, u2) = (∞, u0, u1, u2). Using these two operations and starting from
pot(;) = ((0), (∞)) or pot(a↔ b) = ((∞, 0), (1,∞)), we can build any rooted tree and its
potential in time O(N3

l ). If pot(T ) = (u, v) then Eq. (C.8) reads n< Nl ∨ ν <min(un−Nl
, vn−Nl

).

D Proof of some complexities

In the three following subsections, the complexities of the three successive steps listed in
Sec. 2.5 are detailed.

D.1 Moments

A simple (not so naive) way to calculate the moments 〈〈Hk
J 〉〉 for all k ≤ n on a graph G is to

work in the basis of up and down spin in the z direction, of size 2Ns . It sub-divides into sectors
of fixed magnetization m = Sz , from −Ns/2 to Ns/2 by integer steps (see Algorithm 1). The
basis vectors are denoted |vi,m〉 or simply |vi〉 when m depends on i. The traces are calculated
separately in each subsector: Tr mHk

J =
∑

i 〈vi,m|Hk
J |vi,m〉. We get 〈〈Hn

J 〉〉 by summing them
with the appropriate weight:

〈〈Hk
J 〉〉=

Ns/2
∑

m=−Ns/2

ehm

Y Ns
Tr mHk

J =
Ns
∑

m′=0

θm′
+ θ

Ns−m′

− Tr m′− Ns
2

Hk
J . (D.1)

The partial traces Tr mHk
J for any k ≤ n are obtained by first calculating |v(1)i,m〉= HJ |vi,m〉, then

|v(2)i,m〉 = HJ |v
(1)
i,m〉 and so on up to |v(n)i,m〉. Then, we get Tr mHk

J =
∑

i 〈v
(k)
i,m|vi,m〉 for k ≤ n. We

may also compute Tr mHk
J =

∑

i 〈v
(⌈k/2⌉)
i,m |v(⌊k/2⌋)i,m 〉 for k ≤ n, where ⌈.⌉ and ⌊.⌋ are the ceiling

and floor functions. So we need |v(k)i,m〉 only up to k = ⌈n/2⌉ and computation is twice as fast
and involves smaller intermediate numbers. The complexity of the naive calculation of all
〈〈Hk

J 〉〉, k ≤ n is O(4Ns nNl), as we have to calculate the 2Ns coefficients of the image of 2Ns basis
vectors, n/2 times (for each power of HJ), with an extra factor Nl , because HJ is a sum of Nl
simple operators. The result is an even polynomial in θ = tanh h

2 of maximal order Ns: we
group terms with opposite magnetization m and −m, to get a weight proportional to cosh mh

Y Ns ,
which is an even polynomial in θ of degree Ns (when all J ’s are identical and HJ is divided by
J , the coefficients of this polynomial are simple numbers, and not polynomials in Jl ’s, which
would increase the complexity). The degree in θ of 〈〈Hk

J 〉〉 is in fact min(Ns, 2k), as a term of
Hk

J corresponds to a set of k links. Whatever the set, a maximum number of 2k sites appear.
The other sites are free and do not influence the average for this term.

In algorithm 1 we may skip iterations of loop for i . . . when m < 0 and supply missing
values in array t by t[k, m′] = t[k, Ns −m′] for m′ < Ns/2. This saves half the computation
time.

If we store 〈v j|v〉 for all j ∈ {+,−}Ns in an array of 2Ns integers, it is easy to perform
|w〉+=Pl |v〉 in time O(2Ns). But most of these integers are zeros. Handling only the rel-
evant components, those for which j has same magnetization as i, is tricky but reduces
time to O(

�Ns
m′
�

). So in the overall estimated time of algorithm 1, factor 4Ns is replaced by
∑Ns

m′=0

�Ns
m′
�2
=
�2Ns

Ns

�

∼ 4Nsp
Nsπ

. The time is divided by
p

Nsπ and becomes O(4Ns nNl/
p

Ns). In

C language a simple trick could be to replace the loop
for(j=0 ; j<1<<Ns ; j++)

by
for(j=(1<<__builtin_popcount(i))-1 ; j<1<<Ns ;
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Algorithm 1: Calculation of g(G) and g(G)

1

for k from 1 to n, m′ from 0 to Ns(G) do
t[k, m′] = 0

end for
for i in {+,−}Ns(G) do

m′ = number of + in i
|v〉= |vi〉 // of magnetization m= m′ − Ns

2
for k from 1 to n do
|w〉 = 0
for l in G do
|w〉 += Pl |v〉 // O(2Ns(G)) or O(

�Ns
m′
�

)
end for
|v〉 = |w〉
t[k, m′] += 〈vi|v〉 // O(1)

end for
end for
g = 1+

∑

m′ θ
m′
+ θ

Ns−m′

−

n
∑

k=1

J k

k! t[k, m′] // O(nN2
s )

g = −
∑n

i=1
(1−g)i

i // O(n4Ns)

j+=a=j&-j,j+=((j&-j)>>__builtin_ctz(a+a))-1)
where j jumps efficiently to the next integer value with a same number of ones in binary as i.

But there is a simpler way which divides the time by only
p

Nsπ/2. Instead of com-
puting |v(k)i,m〉 = Hk

J |vi,m〉, we compute |V (k)i 〉 = Hk
J |Vi〉 with |Vi〉 =

∑

m |vi,m〉. Of course
|vi,m〉 = 0 if i is too big. Then components of various magnetizations do not mix, and we

get 〈v(k)i,m|vi,m〉= 〈V
(k)
i |vi,m〉. This way, instead of computing |v(k)i 〉 for 2Ns values of i, we com-

pute |V (k)i 〉 for
� Ns
⌊Ns/2⌋

�

values of i.
We can still save half the computational time thanks to spin reversal. Assuming that

reversing spins in |vi,m〉 gives |vAm−i,−m〉, we have 〈v(k)i,m|vi,m〉 = 〈V
(k)

Am−i|vAm−i,−m〉, where

Am =
� Ns

m+Ns/2

�

+ 1. So we need |V (k)i 〉 for only half as many values of i.
Furthermore we can save about half computation time in Algorithm 1 if we replace |w〉=0

by |w〉=Nl |v〉 and |w〉+=Pl |v〉 by |w〉+=(Pl − I) |v〉, since

Pl − I= (|Sz
l+−〉 − |S

z
l−+〉) (〈S

z
l−+| − 〈S

z
l+−|) , (D.2)

Pl = |Sz
l++〉 〈S

z
l++|+ |S

z
l−−〉 〈S

z
l−−|+ |S

z
l+−〉 〈S

z
l−+|+ |S

z
l−+〉 〈S

z
l+−| ,

where 〈Sz
lεε′ |= 〈S

z
l1
= ε, Sz

l2
= ε′|.

D.2 Logarithm expansion

Going from the series of moments g(G) of Eq. (10) to the series of cumulants g(G) of
Eq. (11) requires the expansion of the logarithm up to order n in J . In the calculation
g = −

∑n
i=1(1 − g)i/i, all the powers of 1 − g and the result g are polynomials of degree

n in J where the coefficient of J k is an even polynomial of maximal degree 2k in θ . They have
∼ n2/2 integer coefficients (of J kθ2i/(k!2k) for i ≤ k ≤ n) see 2.3. The complexity of this
step with n multiplications of such polynomials is O(n(n2)2) = O(n5), or better O(n4Ns) since
the first multiplicand is always 1− g with only O(nNs) non zero coefficients, since d◦

θ
g ≤ Ns.

Moreover d◦
θ
(1− g)i ≤ 2i⌊Ns/2⌋ and the coefficient of J k in (1− g)i is a polynomial in θ2 of

degree min(k, i⌊Ns/2⌋).
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Before this calculation we must transform g which is implicitly contained in the matrix of
integers t (defined in Algorithm 1) into an explicit polynomial in J and θ . The computation
of its coefficients costs a time in O(nN2

s ).

D.3 Calculation of F(G)

For the last step, we suppose that we know all the F(G′) for G′ smaller than G. In a naive
evaluation of eq.(15), the connectivity of each G′ among the 2Nl subsets of G is checked in
time O(Nl) and if needed we add polynomial F(G′) of degree n in J and θ2 in time O(n2). The
complexity of this step is O(n22Nl ), that we reduce to O(n2N2

l ) as explained now. To avoid
the graph enumeration, we are tempted to replace the sum of Eq. (15) by a sum over graphs
G′ obtained from G by removing a single link. We face the problem that graphs included in
G \ {l, l ′} are at least in both G \ {l} and G \ {l ′}, and must not be counted several times. We
group the F(G′) having graphs with the same number of links i into F̆i(G):

F̆i(G) =
∑

G′⊂G,
Nl (G′)=i

F(G′) . (D.3)

Now F̆i(G) and F̆i(G \ {l}) are related through:

(Nl − i)F̆i(G) =
∑

l∈G

F̆i(G \ {l}) , (D.4)

which gives F̆i(G) for i < Nl . Then F(G) is given by:

F(G) = F̆Nl
(G) = g(G)−

Nl−1
∑

i=1

F̆i(G) . (D.5)

If we know F̆i(G′) for all connected sub-graph G′ ⊊ G, we get F(G) (and all the F̆i(G)’s) in a
time O(n2N2

l ): Eq. (D.4) needs calculating Nl sums of Nl polynomials with∼ n2/2 coefficients
(of J kθ2 j for j ≤ k ≤ n). However, we have to consider that F̆i(G \ {l}) is not directly known
when G \ {l} is not connected. Then, it contains 2 connected components G1 and G2, and
we get from Eq. (D.3) that F̆i(G) = F̆i(G1) + F̆i(G2), which does not change the previously
calculated complexity (see Alg. 2).

Algorithm 2: Calculation of F(G)

1

for i from 0 to #G do
F̆i(G) = 0

end for
for l ∈ G do

for G′ connected component of G \ {l} do
for i from 1 to #G′ do

F̆i(G) += F̆i(G′) // O(n2)
end for

end for
end for
for i from 1 to #G − 1 do

F̆i(G) /= #G − i
end for
F(G) = F̆#G(G) = g(G)−

∑#G−1
i=1 F̆i(G)
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Table 1: Current available HTSE for S : 1
2 Heisenberg model with first neighbor

interactions. nl is the number of links per unit cell. ns is the number of sites per unit
cell. n and nZ are respectively the orders in β and in Z = θ2 = tanh βh

2 . ssc means
semi-simple cubic (see [59] for a description). The series are given in [30].

model nl ns n (nZ = 0) n (nZ = 1) n (nZ = n)
1D

chain 2 1 28 18
sawtooth 3 2 15

2D
checkerboard 6 2 18 16

honeycomb 3 2 22 20 18
kagome 6 3 20 18 16
square 2 1 20 18 16

triangular 3 1 18 16
3D

bcc 4 1 15 12
fcc 6 1 13

Hyperkagome 24 12 18
Pyrochlore 12 4 17

sc 3 1 17 14
ssc 6 4 20

D.4 Available HTSE

Series obtained with our algorithm are publicly available [30]. Their orders in β and in Z are
recapitulated for several lattices in Tab. 1 for Heisenberg first neighbor interactions.

D.5 Computation times

Benchmarks have been realized on AMD CPU’s, whose times are recapitulated in Tab. 2. The
order of the series in β: n, in Z: nZ are varied for several lattices, the number of cores used
is indicated, and the computation time of the graph enumeration and of the trace calculation
are given in seconds. The number #{G} of graph classes with n links and requiring a trace
calculation is indicated. Note the variation depending on the graph coordination number z:
this number of graph classes is similar at order 16 on the kagome and square lattice with z = 4,
but much larger on the triangular one (z = 6).
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Table 2: Comparison of computation time for some HTSE calculations, depending on
the number of cores. Durations t are in seconds. n and nZ are respectively the orders
in β and in Z = θ2 = tanh βh

2 . The last columns indicates the number of contributing
graph classes at last order, whose trace has to be calculated. Computations have been
done on AMD-workstations (AMD EPYC 7702P 64-Core Processor).

Lattice n nZ ncores t (graphs) t (traces) #{G}
Square 16 0 1 58 464 184

16 0 2 45 233 184
16 0 4 32 117 184
16 0 8 22 59 184
16 0 16 15 35 184
16 0 32 13 26 184
16 0 64 12 27 184
16 1 16 14 1521 7067
16 1 32 13 758 7067
16 1 64 12 650 7067
16 16 16 14 28750 (8h) 168119
16 16 32 13 15246 (4h) 168119
16 16 64 12 18994 (5h) 168119

Triangle 14 0 16 305 8 3390
14 0 32 261 4 3390
14 0 64 271 3.4 3390
14 1 16 291 146 50849
14 1 32 261 79 50849
14 1 64 270 62 50849
14 14 16 294 977 242352
14 14 32 262 527 242352
14 14 64 271 403 242352

Kagome 16 0 16 29 43 240
16 0 32 26 25 240
16 0 64 24 28 240
16 1 16 29 2012 10278
16 1 32 26 1002 10278
16 1 64 23 863 10278
16 16 16 29 27645 (7.7h) 198609
16 16 32 26 14435 (4h) 198609
16 16 64 23 17215 (5h) 198609
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