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Abstract

Fine resolution of the discrete eigenvalues at the spectral edge of an N × N random
matrix is required in many applications. Starting from a finite-size scaling ansatz for
the Stieltjes transform of the maximum likelihood spectrum, we demonstrate that the
scaling function satisfies a first-order ODE of the Riccati type. Further transformation
yields a linear second-order ODE for the characteristic function, whose nodes determine
leading eigenvalues. Using this technique, we examine in detail the spectral crossover
of the annealed Sherrington-Kirkpatrick (SK) spin glass model, where a gap develops
below a critical temperature. Our analysis provides analytic predictions for the finite-
size scaling of the spin condensation phenomenon in the annealed SK model, validated
by Monte Carlo simulations. Deviation of scaling amplitudes from their predicted values
is observed in the critical region due to eigenvalue fluctuations. More generally, rescaling
the spectral axis, adjusted to the distance of neighboring eigenvalues, offers a powerful
approach to handling singularities in the infinite size limit.
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1 Introduction

A recent paper by Foini and Kurchan [1] rekindled interest in the annealed spin-glass and
related models where interactions between the spins, for example, are allowed to evolve ac-
cording to the rules of equilibrium thermodynamics. At sufficiently low temperatures, spins
and interactions conspire to yield self-planted states whose spin fluctuations in each instance
resemble those of the Mattis model, a ferromagnet in disguise [2–4]. However, the trans-
lational or permutation symmetry of the annealed model implies an exponential number of
such states, with no discernible order from spin configurations alone. As the interactions drift
over time, each self-planted spin state with “hidden Mattis order” evolves accordingly, with
memory of its previous configurations determined by the rate of change of the coupling ma-
trix. As such, these annealed models may be considered as prototypes of certain glass forming
systems that lack identifiable structural regularity yet behave dynamically as a solid or an ex-
tremely viscous fluid. In biological systems, interactions among proteins and other cellular
components can be reset via chemical modifications such as phosphorylation and acetylation,
etc [5, 6]. These could then change the way proteins bind each other to form condensates or
other spatial structures through quasi-equilibrium processes.

The mean-field Sherrington-Kirkpatrick (SK) model offers a concrete example where the
above-mentioned phenomenon can be examined quantitatively in the random matrix formula-
tion. Here, onset of the Mattis-type order is identified with gap opening at the leading edge of
the coupling matrix spectrum. The associated principal eigenvector then specifies the instanta-
neous hidden order in the spin configurations. By integrating out the spin degrees of freedom,
spectral properties of the coupling matrix can be analyzed in a one-dimensional Coulomb gas
formulation. Interestingly, the annealed or probabilistic Coulomb gas formulation can also
be used to learn about various statistical properties of a class of matrix models, where the
distribution of the elements are correlated with each other in some way [1]. By linking the
annealed problem to the theory of random matrices, many powerful tools developed in the
latter community can be employed to generate precise mathematical results.

The aim of this paper is to extend the pedagogical discussions by Foini and Kurchan to
systems of finite size, particularly near the critical point for gap opening. To achieve this, it is
essential to resolve the spacing between successive eigenvalues of the coupling matrix at the
spectral edge, which, surprisingly, has not been systematically addressed despite many closely
related work and results (see, e.g., [7–10]). Focusing on the maximum likelihood spectrum,
we develop a novel procedure based on its Stieltjes transform. By applying a scaling ansatz,
we obtain a first order Riccati-type ODE, which can be transformed into a second-order linear
ODE. For the original random matrix, the solution is given by the Airy function, with its nodes
indicating positions of successive eigenvalues near the spectral edge. More generally, the edge
spectrum of the matrix can be determined through a numerically exact procedure based on our
formulation. These results provide a complete description of the onset of the hidden Mattis
order in the annealed SK model in a large but finite system.
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Beyond the annealed SK model, our approach may offer insights into finite-size effects
in a broader range of matrix models. Random Matrix Theory (RMT) has established itself
as a fundamental framework for understanding the statistical properties of complex systems.
Originally developed to model the energy levels of heavy nuclei [11], RMT has since been
widely applied across various fields, including quantum physics [12, 13], biology [14, 15],
and finance [16, 17]. A common aspect among these applications is the use of finite-sized
matrices, where size effects are critical and can substantially influence theoretical predictions
and practical interpretations.

The paper is organized as follows. In Section 2, we introduce three variants of the SK
model and present a heuristic discussion of their thermodynamic relations using a generic
phase diagram for spin glasses. We briefly review the mapping to the spectral representation
of the quenched and annealed models, along with their respective Coulomb gas energy func-
tions. Section 3 explores the maximum likelihood solution of the coupling matrix spectrum for
finite-sized systems, with particular emphasis on the largest eigenvalues at the spectral edge.
Their precise location is resolved through a perturbative procedure in 1/N . In Section 4, we
present finite-size scaling predictions for the principal and sub-dominant spin fluctuation am-
plitudes for both quenched annealed models across the transition temperature. These scaling
relations are verified through Monte Carlo simulations of the annealed SK model. Noticeable
discrepancy in scaling amplitudes against the maximum likelihood estimations is observed in
the critical region.

2 The SK model and its spectral representation

2.1 Quenched, annealed, Mattis models and the Nishimori line

The Sherrington-Kirkpatrick spin-glass model [18] is originally introduced for N Ising spins
Si = ±1 with pair-wise interactions given by the Hamiltonian,

H({Si}, {Ji j}) = −
∑

i< j

Ji jSiS j , (1)

where the coupling constants Ji j = J ji = ±1/
p

N with equal probability. The free energy of
the quenched model at temperature T = 1/β is given by Fq = −T ln Zq where

Zq({Ji j}) =
∑

{Si}

exp[−βH({Si}, {Ji j}] , (2)

is the partition function for a given configuration of the Ji j ’s. As is well known, the model has
a phase transition at Tq = 1, below which the spin-glass order develops.

Compared to the quenched model, the “annealed partition function”

Za =
∑

{Si}




exp[−βH({Si}, {Ji j}]
�

{Ji j}
= 2N [cosh(βN−1/2)]N(N−1)/2 , (3)

is much easier to calculate. The corresponding free energy free energy Fa = −T ln Za, on the
other hand, is a non-monotonic function of T and gives rise to a negative entropy Sa=−∂Fa/∂T
at sufficiently low temperatures. On the other hand, if we consider the Ji j ’s as another set of
Nb = N(N − 1)/2 state variables, the “entropy crisis” disappears, with the proper partition
function given by Z̃a = 2N(N−1)/2Za. In fact, the ground state is now 2N fold degenerate with
a zero temperature entropy S̃a(T = 0) = N ln 2.
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In 1976, Mattis [2] considered the case Ji j =
1
Nσiσ j , i.e., the coupling constants are not

chosen independently, but instead constructed from a “hidden” spin configuration {σi}. A
simple gauge transformation Si → Siσi then brings Eq. (1) to the Hamiltonian of the ferro-
magnetic Ising model, which again has a transition at TM = 1. (Note the difference in how
the strength of the coupling scales with N .) The ground states of both the annealed and the
Mattis models are unfrustrated, but the annealed case has extensive degeneracy. In fact, any
spin configuration can be made a ground state through a suitable choice of the Ji j ’s.

The quenched SK model can be extended to an uneven distribution of ferromagnetic and
antiferromagnetic bonds. Let p be the percentage of bonds with Ji j = J > 0, and 1 − p the
percentage of bonds with Ji j = −J . Nishimori discovered a special line on the p-T plane where
configuration-dependent quantities, such as the internal energy, acquire the same value when
averaged over the equilibrium distributions in the quenched ensemble, or obtained from the
annealed model at the same temperature [19,20]. In the present case, the line is given by

e2J/T =
p

1− p
. (4)

When p is significantly larger than 1/2, we expect the ground state of the quenched model to
be ferromagnetic. An estimate for the stability boundary of this phase can be obtained from
the following scaling argument. The mean energy for a single spin is given by ef ≃ (2p−1)NJ ,
and its standard deviation δef ≃ [4p(1− p)]1/2N1/2J . Setting ef = δef yields a critical value
pc at the onset of the fluctuation-dominated spin-glass phase. In terms of the scaled variable
r = (2p − 1)N1/2, we have rc ≃ 1. The temperature scale for thermal-induced transition is
set by ef = rcN

1/2J . Under our convention J = N−1/2, the critical temperature Tc for the
spin-glass transition is of order 1.

Combining with Eq. (4), we show in Fig. 1 the generic phase diagram for the extended SK
model, where the spin glass transition expands to a line from P to N [20,21]. As temperature
decreases, the annealed SK model transits from the paramagnetic phase to the “ferromagnetic”
or Mattis phase along the Nishimori line, passing through the multicritical point N. The nature
of this transition is our main focus here.

Figure 1: Schematic phase diagram of the extended SK model. The spin glass phase
has a finite width in the scaled variable r. The Nishimori point N is a multicritical
point signifying the onset of Mattis order in the annealed model.
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2.2 Random matrix formulation and spectral representation

Given the quadratic form of Eq. (1), it is tempting to rewrite the Hamiltonian in normal
coordinates sk = S⃗ · V⃗k,

H = −
1
2

S⃗JS⃗T = −
1
2

N
∑

k

λks2
k . (5)

Here S⃗ = (S1, S2, ...,SN ) represents the spin state, and V⃗k, k = 1, . . . , N , are the normalized
eigenvectors of the N × N dimensional matrix J = {Ji j}, with corresponding eigenvalues
λ1 < λ2 < . . . < λN arranged in ascending order. For the sake of convenience, we refer to
V⃗N , the eigenvector associated with the largest eigenvalue λN , as the principal eigenvector,
and sN the principal eigenmode.

Under the spectral decomposition (5), summation over the spins in Eqs. (2) and (3) can
be readily carried out, leaving behind an effective energy function governing the statistics of
the eigenvalues.1 Computation of the phase diagram shown in Fig. 1 is then reduced to the
analysis of the eigenvalue spectrum that enables various universal features and exact results to
be derived thanks to the extensive literature on the random matrix theory. For completeness,
we sketch the main steps of this approach below and refer the reader to Refs. [1, 22] for
additional technical details.

The real symmetric matrix J= {Ji j} of independently distributed coupling constants forms
the well-known Gaussian-orthogonal ensemble (GOE). Their eigenvalues are distributed ac-
cording to

Pq(λ⃗)∼ exp[−N fq(λ⃗)] , (6)

where λ⃗= (λ1,λ2, . . . ,λN ) and

fq(λ⃗) =
1
2

N
∑

k=1

V0(λk)−
1
N

∑

1≤ j<k≤N

ln |λk −λ j| . (7)

Here the potential V0(λ) is related to the bare distribution of the Ji j ’s, e.g., whether it is con-
tinuous or taking only discrete values. However, when the central limit theorem applies, we
may write V0(λ) = λ2/(2Nσ2) [23], where σ is the standard deviation of the Ji j ’s which is
equal to 1/

p
N in our case.

In the annealed SK model, collective spin fluctuations modify the distribution of the eigen-
values. Previous studies [1] and our own numerical simulations discussed in Sec.4 show that
the discreteness of Ising spins does not play an important role in determining Pa(λ⃗) when N
is sufficiently large. Moving to the spherical model of continuous spins under the constraint
∑N

k=1 s2
k = N , we may write,

Pa(λ⃗) = A

∫

[ds⃗]Pq(λ⃗)e
β
2

∑

k λks2
kδ
�∑

k

s2
k − N
�

, (8)

where A is a normalization constant. Integration over the spin components can be readily
carried out with the help of the identity

δ(x) =
1

2πi

∫ z0+i∞

z0−i∞
ezx dz , (9)

1Strictly speaking, this procedure applies only when there is no replica symmetry breaking. In the quenched
SK model, for example, discrete Ising spins give rise to a complex energy landscape in the low temperature phase
that needs to be treated differently. See, e.g., Ref. [22].
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Figure 2: One-dimensional Coulomb gas of N identical charges in a confining poten-
tial V (λ) and an extra half-charge of opposite sign at the right end.

where z0 is an arbitrary real number. We further make the substitution z→ βz/2 and obtain,

Pa(λ⃗) = const×
∫

dz exp[−N fa(λ⃗, z)] , (10)

where

fa(λ⃗, z) = fq(λ⃗) +
1

2N

N
∑

k=1

ln(z −λk)−
β

2
z . (11)

The parameter z in Eq. (11) needs to be greater than the largest eigenvalue λN .
A physical interpretation of the expression (11) was given, i.e. the energy of a linear array

of N negative charges located at the λk ’s and a positive charge at z, interacting with a logarith-
mic potential. Furthermore, the negative charges experience a harmonic confining potential
while the positive charge, confined to the right of all the negative charges, experiences a linear
potential whose strength increases with β .

2.3 Condensate formation at low temperatures

For a given coupling matrix J and a set of eigenvalues {λk}, equipartition theorem under the
Hamiltonian (5) yields the thermal average

〈s2
k〉=

T
z −λk

, (12)

where z (the saddle point solution) is chosen to satisfy the spherical constraint

N
∑

k=1

〈s2
k〉=

N
∑

k=1

T
z −λk

= N . (13)

As the temperature decreases, z moves closer to the spectral edge λN . Below a critical tem-
perature Tc , 〈s2

N 〉 grows to a magnitude of order N , i.e., condensation of spin configurations
onto the principal eigenvector takes place.

Previous work has established that Tc = 1 for both quenched spherical [21] and annealed
[1,3,4] SK models. In the low-temperature phase, the amplitude of spin fluctuations onto the
principal eigenvector is predicted to be,

〈s2
N 〉=

¨

N(1− T ) , quenched,

N(1− T2) , annealed
(low-temperature phase). (14)

Thus z−λN needs to be of order N−1 so as to be consistent with Eq. (12). This is much smaller
than the typical size of the gap λN −λN−1 which is of order N−2/3 [12] or greater. To resolve
the condensation process in the critical region, one needs to examine carefully granularity of
the spectrum at the spectral edge.
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3 The maximum likelihood spectrum

3.1 Stieltjes transform and solution at infinite size

In the limit of large N , the probability distributions Eqs. (6) and (10) are sharply peaked at
their respective maximum likelihood eigenvalues that satisfy

∂ fq,a(λ⃗)

∂ λk
=

1
2

V ′(λk)−
1
N

∑

j ̸=k

1
λk −λ j

= 0 (k = 1, . . . , N) . (15)

Here V (λ) = V0(λ) in the quenched case and V (λ) = V0(λ) + N−1 ln(z − λ) in the annealed
case.

To explore analytic properties of the maximum likelihood spectrum, it is customary to
introduce Stieltjes transform

gN (x) =
1
N

N
∑

k=1

1
x −λk

, (16)

where the λk ’s are simple poles of gN (x) on the complex plane. Under Eq. (15), gN (x) obeys
the nonlinear first order ordinary differential equation [23],

V ′(x)gN (x)−ΠN (x) = g2
N (x) +

1
N

g ′N (x) , (17)

with

ΠN (x)≡
1
N

N
∑

j=1

V ′(x)− V ′(λ j)

x −λ j
. (18)

For V0(λ) = λ2/2, simple algebra gives

ΠN (x) =

¨

1 , quenched,

1+ N−1 gN (z)/(x − z) , annealed.
(19)

The parameter z satisfies Eq. (13) which now takes the form

gN (z) = β . (20)

In the limit N →∞, Eq. (17) reduces to a quadratic equation for g∞(x) whose solution is
given by

g∞(x) =
x −
p

x2 − 4
2

. (21)

As required by Eq. (16), g∞(x) decreases monotonically with x on the x > 2 side, starting
from g∞(2) = 1. The corresponding spectral density of eigenvalues satisfies the well-known
semi-circle law [23],

ρ(λ) =
p

4−λ2

2π
. (22)

As discussed in detail in Ref. [1], Eqs. (20) and (21) are compatible with each other only when
β < 1 or T > 1. In this regime, the two equations combine to give

z(β) = β + β−1 . (23)

For β > 1, the principal eigenvalue λN merges with z such that its contribution to gN (z)
becomes of order 1 and needs to be isolated. Excluding the term k = N from the sum in (16),
we rewrite Eq. (20) as,

gN−1(z) +
1
N

1
z −λN

= β . (24)
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In the quenched case, replacing gN−1(z) with g∞(z) yields

zq(β) = λN +
1

N(β − 1)
(β > 1) . (25)

In the annealed case, z and λN are obtained by solving Eq. (24) together with Eq. (15) at
k = N . The latter is given by,

λN

2
−

1
2N

1
za −λN

− gN−1(λN ) = 0 . (26)

In the large N limit, we have λN ≃ za(β) = β + β−1 with

za(β)−λN = β/[N(β
2 − 1)] (β > 1) . (27)

Equations (25) and (27) give the results in Eq. (14).

3.2 Solution at large but finite size

3.2.1 Scaling analysis at the spectral edge

To gain a better understanding of the spectral evolution across the transition at Tc = 1, we
examine Eq. (17) more systematically, treating ε ≡ 1/N as a small parameter. This problem
was considered previously in Ref. [9] under an approximate scheme.

Specializing on V0(λ) = λ2/2, we write Eq. (17) explicitly in the form,

g2
N (x)− x gN (x) + 1= −εg ′N (x) + ε

gN (x)− gN (z)
x − z

(annealed model). (28)

The quenched case is recovered by dropping the last term on the right-hand-side of Eq. (28).
Starting from the zeroth order solution (21) and focusing on the edge of the spectrum at

x ≃ 2, we introduce the scaling ansatz

gN (x) =
x
2
− ε1/3ϕ
�

(x − 2)ε−2/3
�

. (29)

The expanded spectral axis on the scale of the gap between leading eigenvalues allows one
to resolve individual poles of gN (x). Substituting (29) into Eq. (28) and keeping terms up to
order ε2/3, we obtain,

ϕ′(u) = ϕ2(u)− u+
ϕ(u)−ϕ(c)

u− c
(annealed model). (30)

Here u = (x − 2)N2/3 and c = (z − 2)N2/3 are the scaled variables. To be consistent with
Eq. (21), we demand

ϕ(u)≃ u1/2 , (31)

at large and positive u.
At a given temperature T = 1/β , we introduce a scaled variable

∆≡
1
2

N1/3
� 1
β
− β
�

, (32)

to measure deviations from the critical point at ∆ = 0. Note that (β−1 − β)/2 ≃ T − Tc .
Equation (20) with (23) yields, to the leading order in ε,

ϕ(c) =∆ . (33)
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Apart from the nonlocal term on the right-hand-side, Eq. (30) is known as a first order ordinary
differential equation of the Riccati type. The substitution

ϕ(u) = −
Q′(u)
Q(u)

, (34)

brings it to a linear second order equation,

Q′′(u) = uQ(u) +
Q′(u) +∆Q(u)

u− c
, (35)

with the condition Q′(c) = −∆Q(c). The asymptotic form (31) sets the boundary condition

lim
u→∞

Q(u) = 0 . (36)

The transformation (34) converts poles of ϕ(u) at u1 > u2 > . . . (starting from the largest one
on the right) into nodes of Q(u), where Q(uk) = 0. The eigenvalues at the leading edge are
then obtained, to the leading order in ε,

λN−k+1 = 2+ ukN−2/3 (k = 1,2, . . .) . (37)

3.2.2 Largest eigenvalues in the quenched model

For the quenched model, spectrum of the coupling matrix is not affected by spin fluctuations.
The equation governing Q(u) can be obtained from (35) by taking the limit c→∞, i.e.,

Q′′(u) = uQ(u) (quenched). (38)

Solutions to Eq. (38) can be expressed as a linear superposition of the Airy functions Ai(u)
and Bi(u), whose asymptotic behavior at u≫ 1 are given by exp(−2u3/2/3) and exp(2u3/2/3),
respectively. The requirement (36) selects Q(u) = Ai(u).

On the u < 0 side, Eq. (38) resembles that of a harmonic oscillator but with a spring
constant that grows with |u|. This observation suggests approximate solutions of the form

Q(u)≃ Asin(|u|3/2) + B cos(|u|3/2) . (39)

Therefore the nodes are approximately located at

uk ≃ u0 − (kπ)2/3 (k = 1,2, . . .) , (40)

where u0 is an offset. The density of nodes thus increases as |uk|1/2, in agreement with the
square-root singularity of Eq. (22) at the spectral edge. We note in passing that the close
connection between the Coulomb gas problem and nodes of the Airy function has also appeared
in previous work in somewhat different contexts [7,24].

3.2.3 Spectral crossover in the annealed model

We now consider the more general case of Eq. (35), where the point c needs to be determined
self-consistently at a given ∆. Far away from the origin, the last term on the right-hand-side
of the equation is smaller than the other two terms. Consequently, the asymptotic behavior of
the solution is the same as that of Ai(u).

The spurious singular behavior of Eq. (35) at u = c can be dealt with by considering a
series solution in v = u− c,

Q(c + v) =
∞
∑

n=0

anvn . (41)
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Table 1: First five nodes u0
k and uc

k of Ai(u) and Q(u) at the critical point ∆ = 0,
respectively, computed to eight significant digits using the series expansion.

k 1 2 3 4 5

u0
k −2.3381074 −4.0879494 −5.5205598 −6.7867080 −7.9441336

uc
k −1.0187930 −3.2481977 −4.8200993 −6.1633075 −7.3721773

Substituting into Eq. (35), we obtain

a1 = −∆a0 , (42)

an =
1

n(n− 2)
(∆an−1 +∆

2an−2 + an−3) (n≥ 3) . (43)

At n= 2, terms containing a2 cancel and one is left with

c =∆2 (annealed model). (44)

The coefficient c2 needs to be chosen to match the asymptotic behavior Q(u)∼ exp(−2u3/2/3)
at large positive u.

We have computed the function Q(u) from the series solution. Nodes {uk} can also be
computed using a simple algorithm such as the bisection method. Figure 3 shows our results
for three different values of ∆. Also shown is the Airy function Ai(u) for the quenched model
(shaded curve). In general, the kth node uk(∆) increases monotonically as ∆ decreases, with
uk(∞) = u0

k and uk(−∞) = u0
k−1 > u0

k. Here {u0
k} are nodes of Ai(u), with values of the first

five nodes given in Table 1. As a convention, we set u0
0 = +∞.

Figure 4 shows the first (black) and second (red) gap at the edge of the spectrum as well
as z − λN = [∆2 − u1(∆)]N−2/3 (blue) against ∆ across the critical region. On the high-
temperature side (∆ > 0), the two gaps approach their respective asymptotic values that can
be computed from Table 1). On the low-temperature side, u1(∆) ≃ c = ∆2 and u2(∆)→ u0

1,
so that the first gap follows the diverging curve ∆2 − u0

1 indicated by the dashed line. The
latter also gives the asymptotic behavior of (z − λN )N2/3 on the high-temperature side, in

-10 -5 0 5
u

-2

-1

0

1

2

Q
(u

)

Airy

∆ = 1

∆ = 0

∆ = −1

u
1

u
2

u
3

u
4

u
5

Figure 3: Edge of the maximum likelihood spectrum with the largest eigenvalues
λN−k+1 ≃ 2+ukN−2/3. As the parameter∆ decreases across the critical point∆= 0,
the nodes uk of Q(u)move to the right within each of the intervals defined by succes-
sive nodes of the Airy function Ai(u) (vertical dashed lines). The first node u1 moves
to infinity as ∆ decreases further into the low-temperature phase.
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Figure 4: Gap scaling in the critical region showing crossovers in a system of large
but finite size. On the low-temperature side, the principal eigenvalue λN separates
from the rest of the spectrum. Also shown are the numerical solutions of Eqs. (15)
together with Eq. (23) for N = 32 (crosses) and N = 256 (circles).

agreement with the data shown by the blue curve. The low-temperature side of the blue curve
approaches the function −(2∆)−1 predicted by Eq. (27) (dash-dotted line). Together they
provide a detailed description of the spectral crossover in the transition region for a large but
finite system.

As a check of the analysis based on Stieltjes transform, we also performed numerical so-
lution of Eqs. (15) together with Eq. (23) for systems sizes up to N = 512. Our results for
the scaled gaps at two selected sizes are included in Fig. (4) for comparison. It is clear that
corrections to the leading order results are already quite small at N = 32 and decrease further
as N increases.

4 Finite-size scaling of collective spin components

4.1 Maximum likelihood amplitudes

With the maximum likelihood spectrum obtained in Sec. 3.2, we are ready to establish finite-
size scaling expressions for the spin components 〈s2

k〉 across the transition under Eq. (12).

4.1.1 Spin condensation in the quenched model

In the quenched model, the eigenvalue spectrum does not change with temperature. To predict
〈s2

k〉 in the critical region, we need to determine z from Eq. (13). In terms of the scaled
variables ∆= N1/3(T − T−1)/2 and c = (z − 2)N2/3, Eq. (33) now takes the form,

∆= −
Ai′(c)
Ai(c)

(quenched model). (45)

Figure 5 shows c against ∆ (blue line) obtained from numerical evaluation of the right-hand-
side of Eq. (45). Also shown is Eq. (44) for the annealed case (red line). The two curves
approach each other on the high-temperature side. On the low-temperature side, cq(∆) for
the quenched model approaches the first node of Ai(u) at u0

1. Noting that this corresponds to
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Figure 5: Relation between c and∆ for quenched (blue) and annealed (red) models.
The dashed line gives the minimal value for c. A larger c suppresses amplitudes of
spin fluctuations apart from the principal component.

a first order node of the Airy function, we have

cq(∆)≃ u0
1 −∆

−1 (∆≪−1) . (46)

With cq(∆) given above, we obtain spin components in the critical region in scaling form,

〈s2
N−k+1〉=

T N2/3

cq(∆)− u0
k

≡ T N2/3ψ
q
k

�

N1/3 T2 − 1
2T

�

(k = 1,2, . . .) . (47)

Here ψq
k(u) = [cq(u)− u0

k]
−1 are scaling functions associated with the leading modes.

In the low-temperature phase, substituting Eq. (46) into Eq. (47), we obtain

〈s2
N 〉=

T
z −λN

= N(1− T ) ,

〈s2
N−k+1〉=

T N2/3

u0
1 − u0

k

(k = 2, 3, . . .)
(T < Tc) . (48)

Equation (14) for the quenched spherical model is reproduced.
Far away from the critical region on the high-temperature side, cq(∆) ≃ ∆2 ≫ u0

k. Equa-
tion (47) then reduces to

〈s2
N−k+1〉 ≃

T
z(β)− 2

=
T2

(T − 1)2
(T > Tc) , (49)

for the leading modes, where Eq. (23) is used.

4.1.2 Spin condensation in the annealed model

The scaling behavior of 〈s2
k〉 in the annealed model can be established in a similar way as in

the quenched case. Quite generally, c = ∆2 and hence the maximum likelihood estimation
(MLE) of the spectrum yields

〈s2
N−k+1〉MLE =

T N2/3

∆2 − uk(∆)
≡ T N2/3ψa

k

�

N1/3 T2 − 1
2T

�

(k = 1,2, . . .) . (50)
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The scaling functions ψa
k(u) differ from ψq

k(u) in two ways. One is the relation between c and
∆ as illustrated in Fig. 5. The second is that uk(∆) approaches u0

k only when∆ becomes large
and positive (see Fig. 3). Therefore spin fluctuations become nearly identical in the two cases
only in the high-temperature phase.

Outside the critical region and into the low-temperature phase, Eqs. (23) and (27) together
give,

〈s2
N 〉=

T
z −λN

= N(1− T2) ,

〈s2
N−k+1〉=

T
z −λN−k+1

≃
T2

(1− T )2
(k = 2,3, . . .)

(T < Tc) . (51)

Again we recover the annealed result in Eq. (14). Note that fluctuation amplitudes in the
annealed model are much weaker when compared to the quenched spherical model, except
for the principal component.

4.2 Monte Carlo simulations of the annealed SK model

To gain a quantitative understanding of fluctuation effects not accounted for by the maximum
likelihood spectrum, we carried out Monte Carlo (MC) simulations of the annealed SK model.
In our implementation of the Metropolis algorithm for both spin and Ji j updates, a MC sweep
of all N spins is performed following an attempted update of a randomly chosen bond. We
refer to this as one MC step in our simulation. The energy involved in a single bond flip is
∆EJ = ±2/

p
N , hence the acceptance rate is quite high except at very low temperatures. The

energy change ∆ES for a spin flip, on the other hand, is of order 1.
In a typical simulation at a given temperature T , we equilibrate an initially random config-

uration of spins and bonds for 5N2 MC steps, followed by 20N2 MC steps for data collection.
This is found to be sufficient for the computation of equilibrium properties of systems up to
N = 512.

We performed 200 independent simulations for each system size and temperature. Data
collected included spin configurations and the coupling matrices, sampled every N bond flip
attempts to determine equilibrium properties. Additionally, we tested varying the number
of spin flips between successive bond flip attempts, from N/16 to 4N , and found consistent
results across different setups.

0 1 2 3 4
T

10
-1

10
0

10
1

10
2

10
3

<
s

k

2
>

k = N
k = N − 1
k = N − 2
k = N − 3

N (1 − T
 2

)

T
 2

/(1 − T )
 2

Figure 6: Mean-square amplitudes of the first four spin components against temper-
ature T from simulations of the N = 512 annealed SK model. Onset of condensation
is seen from the rise of the principal component below T = 1.
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Figure 7: Finite-size scaling of the mean-square amplitude of the first (k = N) and
second (k = N − 1) component of spin fluctuations across the transition. The differ-
ence between the maximum likelihood estimation (MLE) and the full annealed SK
model becomes more pronounced at the transition point ∆= 0.

Figure 6 presents mean-square fluctuations of the first four components of spin configura-
tions obtained from our simulations. To compute the spin components, we projected the spins
onto the eigenvectors of the instantaneous coupling matrix. Away from the critical region, the
data agree well with the predicted behavior given by Eqs. (49) and (51) (dashed and solid
lines).

To check the finite-size scaling predictions, we plot in Fig. 7 the scaled mean-square ampli-
tudes of the principal and second component against ∆ for three different sizes. Indeed, data
at different system sizes collapse well in the whole temperature range. The dashed line in the
figure is obtained by replacing the average over the eigenvalue spectrum with the maximum
likelihood values obtained in Sec. 3. Their difference is more evident near the transition point
∆= 0.

Figure 8 shows the ratio between the mean-square amplitudes and their MLE values for the
first four components of spin fluctuations at the critical point. In agreement with Fig. 7, fluc-
tuations of the principal component is weaker than predicted based on the MLE. On the other
hand, the second, third and fourth component have stronger fluctuations in the full model as
compared to the MLE predictions. Further work is needed to understand these observations
in terms of collective fluctuations of the eigenvalue spectrum.

5 Summary and conclusions

This paper build on recent observations made by Foini and Kurchan [1] on the fascinating
properties of annealed models. We introduce a perturbative scheme to solve the exact equation
satisfied by the Stieltjes transform of the maximum likelihood spectrum of the coupling matrix
at finite N . The discrete set of eigenvalues at the leading edge of the spectrum can then be
resolved exactly to order N−2/3 in the high-temperature phase and across the transition region.
Although the scaling of the edge spectral gaps against N , including aspects of their fluctuation
behavior, has been extensively reported in the literature (see., e.g., [8,25,26]), the method we
propose here uses only elementary algebra and goes beyond equilibrium solution of the usual
Coulomb gas problem where the nodal points of the Airy function appear [7,24].
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Figure 8: Ratio of spin fluctuation amplitudes at T = Tc (or equivalently, ∆ = 0)
against values predicted by the maximum likelihood estimation (MLE). Spectral fluc-
tuations appear to reduce the amplitude of the principal component while enhance
all others.

With this technique, we analyzed the spectral crossover of the annealed SK spin glass
model, which exhibits various singular behaviors at the transition temperature Tc . Finite-size
scaling forms of principal spin fluctuations were obtained in the critical region, connecting
smoothly to the known results in the low and high-temperature phases. These predictions,
based on the maximum likelihood spectrum, were then compared with Monte Carlo simulation
results. While the scaling exponents are borne out by the simulation data, discrepancies in
the scaling amplitudes were observed in the critical region. These are presumably due to
fluctuations in the eigenvalue spectrum in the annealed model, which deserve further study.

The finite-size scaling results of the edge spectrum apply equally well to the spherical model
with continuous spins and a matrix of quenched coupling constants. For the SK model with
Ising spins, the principal component analysis fails to capture replica symmetry breaking in the
low temperature spin glass phase. Nevertheless, we expect finite-size scaling properties of the
SK model at criticality to be similar to those of the spherical model, making them amenable to
the analysis presented in this paper.
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