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Abstract

We present an analytical and computational study characterizing the structural and dy-
namical properties of an active filament confined in cylindrical channels. We first outline
the effects of the interplay between confinement and polar self-propulsion on the con-
formation of the chains. We observe that the scaling of the polymer size in the channel,
quantified by the end-to-end distance, shows different anomalous behaviours under dif-
ferent confinement and activity conditions. In particular, we report scaling exponents
that are markedly different from their passive counterparts. Interestingly, we show that
the universal relation, describing the ratio between the end-to-end distance of passive
polymer chains in cylindrical channels and in bulk is broken by activity. Finally, we show
that the long-time diffusion coefficient under confinement can be rationalised by an an-
alytical model, that takes into account the presence of the channel and the elongated
nature of the polymer.
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1 Introduction

Active systems are characterized by the presence of mechanism that breaks equilibrium at the
microscopic scale, generating directed (self-propelled) motion [1]. As a consequence, they
display dynamical and collective properties that are vastly different from those displayed by
their passive counterparts [2]. Of particular interest, for biological as well as for synthetic sys-
tems, is the behaviour of active matter in complex or confined environments [3]. For example,
since the seminal work of Rotschild [4] we know that sperm cells accumulates at boundaries,
a behavior that is common to bacteria [5, 6] and algae [7]. Such behavior has also been re-
ported for theoretical models that capture the far-field velocity profile of microswimmers under
confinement [8, 9], and for both theoretical and experimental results dealing with phoretic
colloids [10]. Recently, the characterization of active filaments has become a cutting edge
research in active matter [11], for two main reasons. Firstly, systems composed by active
polymer-like units are ubiquitous in Nature at different lenght scales, from the sub-cellular
level [12–15], to bacteria or other micro-organisms [16–19] all the way to worms and other
multi-cellular organisms [20–25]. Secondly, thanks to technological progress, the synthesis
of artificial active chains [26–29] and soft robots [30, 31] is now possible. Such synthetic
analogues have various possible applications [32,33].

From the modeling perspective, active polymers are macromolecules composed by out-of-
equilibrium beads, whose activity can arise from a temperature mismatch [34–36] or from a
self-propulsion force, completely random [37] or oriented along the polymer backbone [38–
47]. We focus on the latter case, sometimes also referred to as polar active polymers, as
they are believed to mimic the action of molecular motors [48]. Despite the growing interest
in the field, few works have investigated the properties of active filaments under confine-
ment. Notably, the effects of spherical confinement have been considered for different mod-
els [13,49–52]: spherical confinement is indeed relevant for biophysical systems such as chro-
matin. Further, the dynamics in complex confinement, such as porous media, has received
some attention [53–57]. Other settings, such as translocation [58], slab [59] or cylindrical
confinement [60–62] have been rather overlooked. This is surprising, given that understand-
ing the effects of cylindrical and slab confinement has paved the way for understanding more
complex scenarios, for passive polymers and active matter alike [3,63–65].

In this paper we investigate the conformation and dynamics of tangentially active poly-
mers under cylindrical confinement (as shown in Fig. 1). We will show that, as compared to
their passive counterparts, the configurational properties of polar active polymers display a
rich scenario, that stems from the interplay between confinement and activity. Importantly,
these polymers do not follow the same universal curve, reported in the passive case [66]. This
suggests that the blob picture, that holds for polymers in equilibrium, is no longer valid and,
similarly to Ref. [60], the polymer self-similarity is broken at some non-trivial length scale. We
also show that, at variance with active colloids, confinement does not always lead to accumu-
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Figure 1: Schematic sketch of the active polymer in a cylindrical channel. Polymer is
constructed as beads connected by linear springs. For each bead i the active force is
applied in the direction of the vector (ri+i − ri−i)/|ri+i − ri−i|. Note that the channel
confinement is implemented as a collection of beads. As such, the channel is rough
and not perfectly smooth. For visualize propose in the figure the beads of the polymer
are bigger than the particles forming the channel.

lation to the channel walls. Rather, such accumulation appears only under weak confinement
conditions. Finally, we find that the long-time diffusion coefficient along the channel axis is
enhanced for long polymers with respect to the bulk value, even in the weak activity limit. By
means of an analytical approximation, we show that this enhancement can be rationalized by
a “rod-like” effect, that synergizes with the polar self-propulsion force and effectively increases
the polymer diffusion.

2 Models and methods

2.1 Numerical model and simulation details

We model active polymer chains in a coarse-grained fashion; a sketch is reported in Fig. 1. We
employ the well known bead-spring Kremer-Grest model [67], where each polymer consists
of N monomers, that interact with each others via a repulsive WCA potential

UW CA =

¨

4ε
�

(σ/r)12 − (σ/r)6 + 1
4

�

, r < 21/6σ ,

0 , else,
(1)

where σ is the monomer diameter and ε= 10kB T , kB being the Boltzmann factor and T the
absolute temperature. Neighbouring monomers along the backbone are held together by a
FENE potential

U F EN E =

¨

−0.5KR2
0 ln
�

1− (r/R0)
2� , r ≤ R0 ,

∞, else,
(2)

where we set K =30ε/σ2=300kB T/σ2 and R0 = 1.5σ. This choice of parameters allows to
avoid strand crossings that could be relevant in the measured properties even in the passive
case [67]. We introduce the polymer’s activity in the form of a tangential self-propulsion
force. All monomers, except the first and the last ones, are self-propelled by an active force
with constant magnitude Fa: for monomer i, the force Fa

i reads

Fa
i = Fa

ri+i − ri−i

|ri+i − ri−i|
, (3)
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and it is parallel to the – normalized – backbone tangent [39,41]. Activity is quantified via the
adimensional Péclet number, which measures the strength of the self-propulsion in relation to
the thermal noise, defined as

Pe= Faσ/kB T . (4)

Finally, the active polymers are confined in straight, cylindrical channels. Confinement is pro-
vided by as a collection of immobile beads of diameter σ placed around the channel axis at a
fixed distance R+σ from it; the distance R is, thus, the radius of the channel. The interaction
between the beads and the monomers is given by the WCA potential, Eq. (1). Following the
same protocol as in [68], the beads are arranged regularly and, at least, they are at contact
distance with their nearest neighbours, as to prevent any possible escape of the polymer.

Throughout the work, we consider the monomers as having unitary mass m; we further
set σ and the thermal energy kB T as the units of length and energy, respectively, so that the
characteristic simulation time τ is unitary. We perform Langevin Dynamics simulations, in
the overdamped regime, disregarding hydrodynamics. We employ the open source package
LAMMPS [69], with in-house modifications to implement the tangential activity. We integrate
the equations of motion using the Velocity Verlet algorithm and choose time step∆t = 10−3τ.
In order to ensure the overdamped regime within the range of values of Pe considered, follow-
ing [42], we set the friction coefficient γ0 to γ0 = 1kB Tτ/σ2, if Pe< 1 and γ0 = 10kB Tτ/σ2

if Pe≥ 1.
We simulate polymers consisting of N monomers, with 40 < N < 750, at different con-

finement conditions 6 ≤ R/σ ≤ 18. We further vary the activity between 0.03 ≤Pe≤ 10 and
average over M = 50− 100 independent realisations. The simulation box is orthogonal, with
two short sides L y = Lz = 2(R+σ)+σ and a long side Lx = Nσ, parallel to the channel axis,
chosen to ensure a fully stretched polymer is contained in a single box. The simulation box is
periodic along the channel (x) axis.

Initial configurations are prepared from equilibrium simulations in good solvent condi-
tions, performed using the same Kremer-Grest model. When activity is turned on, we first
perform simulation runs to reach the steady state, followed by production runs of (on aver-
age) 1 · 106τ, corresponding to 1 · 109 time steps (snapshots of the systems are taken every
τs = 104τ or 107 time steps).

2.2 Structural and dynamical properties

We compute the average square end-to-end distance, defined as the square euclidean distance
between the two ends of the polymer chain

〈Re
2〉= 〈(rN − r1)

2〉 , (5)

where the average is performed, in steady state, on time and on different realisations. In the
rest of the manuscript we will consider the (average) end-to-end distance Re =

Æ

〈Re
2〉.

We will also report the probability of finding the centre of mass of the polymer
rcm =

1
N

∑N
i=1 ri inside the channel at a distance r from the centre of the channel, as well

as the orientation of the polymer, i.e. computing the angle between the axis of the channel
(the x axis in our simulations) and the instantaneous end-to-end vector, which reads

θ = arccos
�

Re · x
|Re|

�

. (6)

We remark that the probability distribution of the centers of mass is a radial distribution and,
as such, we divide the measured probability by the area of the circular corona between r and
r +∆r, ∆r being the chosen bin width.
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Concerning the dynamics of the chain, we compute the characteristic time scale of the dynam-
ics, τe, as the correlation time of the end-to-end vector: we extract τe from the end-to-end
time autocorrelation function

CRe
(t) =
­

Re(t0 + t) ·Re(t0)
|Re(t0)|2

·

, (7)

by fitting the data at short times with an exponential function CRe
(t) = exp (−t/τe). The

average (in steady state) in Eq. (7) is performed both on the initial time t0 and on the ensemble
of the different realisations. Finally, we compute the mean square displacement (MSD) of the
centre of mass along the direction of the channel axis, i.e. along the x axis

〈∆x2(t)〉=



[xcm(t0 + t)− xcm(t0)]
2� , (8)

where xcm is the position of the centre of mass of the polymer along the channel axis. The
average is performed as previously detailed. For times much longer than τa, the MSD grows
linearly in time. As common in active matter systems, we identify this regime as the long-time
active diffusive regime and compute the (long time) active diffusion coefficient Da as

Da = lim
t→∞

〈∆x2(t)〉
2d t

, (9)

following the Einstein relation, where d = 1 is the effective dimensionality of the system.

2.3 Theoretical modeling

2.3.1 Mapping an active polymer to an active Brownian particle

The mapping between a tangentially-driven active polymer in bulk and an Active Brownian
particle (ABP) has been introduced in Refs. [39,42,44]. We extend this mapping to describe the
dynamics of an active polymer under confinement. Specifically, we map the dynamics of the
centre of mass of the polymer, projected along the axis of the channel, to an ABP in 1D. Briefly,
the ABP model is characterised by an active force, fABP

a , whose magnitude f ABP
a is constant and

a self-propulsion direction n̂ evolving in time as a stochastic process with a characteristic time,
τABP

r , usually called reorientational time. In what follows, we will consider an ABP model
whose active force evolve by rotational diffusion. In addition, the ABP is subject to thermal
noise, with thermal energy kB T and friction coefficient γABP .

In the overdamped limit, the long time diffusion coefficient of an ABP can be expressed
as [70]

DABP
a = DABP +

τABP
r

�

vABP
a

�2

2d
= DABP +

τABP
r

�

f ABP
a /γABP
�2

2d
, (10)

where vABP
a = f ABP

a /γABP is the self-propulsion velocity and DABP = kB T/γABP the translational
diffusion coefficient. Since we consider an ABP in 1D, we set d = 1.

In order to map the polymer to an ABP, we have to provide effective values for the friction
coefficient, the reorientation time and the active force. For a polymer of length N , the effective
friction coefficient on the centre of mass is related to the monomer friction coefficient γ0,
disregarding hydrodynamics, as

γP = N γ0 . (11)

For the polymer model considered in this study, we approximate the total active force
Fa =
∑

i Fa
i to be almost parallel to the end-to-end vector of the polymer, Re

Fa ≈ Fa
Re

σ
, (12)
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where σ and Fa are defined in Sec. 2.1. As in Eq. (10), we define the propulsion speed for the
effective ABP particle as the ratio between the magnitude of the total active force FP

a and the
total friction coefficient γP

va =
|Fa|
γP
≈

Fa

Nγ0

Re

σ
=

1
Nγ0

Pe kB T
σ

Re

σ
, (13)

where we take Re =
Æ

〈R2
e〉. The thermal contribution to the diffusion coefficient follows from

the Rouse model,

DN =
kB T
γP
=

kB T
Nγ0

=
D0

N
, (14)

D0 = kB T/γ0 being the diffusion coefficient of single passive monomer. Finally, from Eq. (12)
follows that the reorientational time of the active force is equal to the correlation time of the
end-to-end vector of the polymer

τr = τe , (15)

where the auto-correlation time of the end-to-end vector τe was introduced in Sec. 2.2.
Combining Eqs. (10), (12), (13) and (15), we can write

Da − DN

DN
=
τP

r D0

σ2

R2
e

2Nσ2
Pe2 . (16)

This expression is equivalent to that reported in Refs. [39,42], but projected in 1D.

2.3.2 Predicting the diffusion coefficient: Bulk estimate and angular correction under
confinement

In the bulk, one can take advantage of the scaling relations, reported in Ref. [39]: the end-to-
end distance follows

RB
e = σ

aRe
+ hRe

ln
�Ç

δ2
Re
+ Pe2
�

(Pe+ 1)cRe
Nν

B
a (Pe) , (17)

where aRe
, hRe

, δRe
, cRe

and νB
a (Pe) are fitting parameters. In the Supplemental Material, we

report measurements for RB
e in the bulk for the model discussed in Sec. 2.1; we verify that

the functional form of Eq. (17) remains valid, within the range of parameter considered, with
aRe
= 1.5, hRe

= 0.058, δRe
= 0.0005, cRe

= 0.201 and νB
a (Pe) = 0.54 Pe−0.022. Further, an

expression for the correlation time of the end-to-end vector is available in the bulk:

τB
e D0

σ2
= τB

0
N
Pe

, (18)

withτB
0 = 0.5. Thus, if we disregard the effect of confinement, we get the following expression:

DB
a − DN

DN
=
τB

0

2
Pe

(Pe+ 1)2cRe
·
�

aRe
+ hRe

ln
�Ç

δ2
Re
+ Pe2
��2

N2νB
a (Pe) . (19)

Finally, we include the contribution of confinement by adapting the correction developed in
Ref. [71] for rod-shaped particles. We indeed approximate the polymer under confinement as
a rod whose main axis is given by the end-to-end vector RC

e ; the maximum angle between RC
e

and the channel axis indicates the degree of confinement and is used to correct the estimation
of the diffusion coefficient. The expression for the diffusion coefficient now reads:

DC
a − DN

DN
≈ (1+ 2 cos(θmax)) π

τC
e D0

σ2

�

RC
e

�2

3 N σ2
Pe2 , (20)
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where RC
e is the end-to-end distance under confinement and sin(θmax) = h0/R

C
e = 2R/RC

e . We
highlight the addition, with respect to Eq. (16), of a factor 2π to include the contribution
caused by the axial symmetry. We remark that RC

e and τC
e are estimated from simulation data

(see Sec. 2.2). We report a detailed derivation of Eq. (20) in the Supplementary Material.

3 Results

We first report the scaling properties of the end-to-end vector and discuss a deviation of the
numerical results with respect to the passive universal scaling under confinement. We further
investigate the position of the polymer inside the channel and its orientation with respect to the
channel axis. Then we report on the dynamics of the active filaments, discussing the scaling
of the correlation times. Finally, we apply the theoretical mapping, introduced in Sec. 2.3
and compare the predictions against the numerical data. For most observables, we report
additional data in the Supplemental Material. In what follows, we will indicate quantities
with a superscript C and B for confinement and bulk, respectively; quantities that refer to the
passive limit will be also tagged with a p and we will omit the equivalent tag “a” in the active
case, for the sake of simplicity.

3.1 Scaling properties of the end-to-end distance

First, we report on the scaling properties of the end-to-end distance RC
e for active polymers un-

der confinement. RC
e provides a measure of the polymer extension, taken to be representative

of the polymer size under cylindrical confinement. Indeed, passive polymer filaments under
uniaxial confinement become more aspherical, as the channel restricts the available space in
the plane transverse to its axis. We thus focus on characterising its scaling properties, i.e. how
RC

e grows upon increasing the number of monomers N . For confinement lengths smaller than
(or comparable to) the extension of the polymer [65], the scaling of RC

e for passive, flexible
polymers under confinement is characterised by the de Gennes regime. For tangentially ac-
tive polymers, the scaling in the bulk of RB

e does not follow the same power-law as in passive
systems: a coil-to-globule-like transition appears upon increasing the activity [39,41,44,46].
This implies a decrease of the value of νB(Pe), as compared to the passive value. We should
thus expect an interplay between the two opposite trends imposed by activity and confine-
ment. We first discuss, in Fig. 2, the dependence of RC

e on N for tangentially active linear
chains under confinement in two limiting cases of weak (Pe≪ 1) and strong (Pe≫ 1) activ-
ity: specifically, we consider Pe =0.03 and Pe =10 under strong (R = 6σ, Fig. 2a) and weak
(R = 18σ, Fig. 2b) confinement conditions. We also report the measured exponents for all
the values of R and Pe simulated in the Supplemental Material. We remark that the “strong”
or “weak” confinement is not only a feature of the channel, but it is rather given by the ratio
between R and the polymer size in the bulk (e.g. RB

e ). We fix R here and vary N , as it is
instructive to understand how activity modifies the onset of the strong confinement regime.
Further, R = 6σ represents a strong confinement for most of the polymer lengths considered
in this work, while R= 18σ is so only for the largest values of N considered; as such they help
focusing on the two different scenarios. Alongside the numerical data, we report the passive
end-to-end distance under confinement, RC ,p

e , computed using the formula reported in [68], as
a full line. We further highlight the relevant power law trends in the figure with black dotted
lines.

We first discuss the strongest confinement R= 6σ (Fig. 2a). For weakly active (Pe=0.03)
and short chains, RC

e is not affected by activity and follows RC ,p
e . Upon increasing N , the two

curves display different power law behaviours: RC ,p
e ∝ N , following the De Gennes blob scal-
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Figure 2: End-to-end distance under confinement RC
e /σ as a function of N at fixed (a)

R= 6σ, (b) R= 18σ. In both panels we consider the low activity Pe=0.03 (circles)
and high activity Pe = 10 (squares) cases. The full lines is the passive end-to-end
distance under confinement RC ,p

e , computed via the master curve reported in [68];
dashed lines highlight the power law trends in the data.

ing, while RC
e grows with a smaller exponent, νC ≈ 0.68; however, notice that νC is larger

than the exponent for active polymers in the bulk νB(Pe = 0.03) ≈ 0.56. We mostly disre-
gard, in this case, the first power law regime due to its limited range; however, notice that
RC

e deviates from its passive counterpart approximately when the strong confinement regime
begins (N ≃ 75). This is interesting as, for such low values of Pe, tangentially active chains
in bulk maintain a coil-like conformation up to N ∼ 150 − 200 monomers [39], while the
confinement considered here affects the conformation already for N ≈ 50 monomers. This is
a first example of the interplay between activity and confinement, that deeply influences both
the conformation and the dynamics of the active polymers. At high activity values Pe= 10,
we observe that the effect of the activity dominates: RC

e becomes significantly smaller than
RC ,p

e , even for short chains. Upon closer inspection, one finds the emergence of two power
law regimes, with exponents νC

1 and νC
2 that have quite distinct values (see Table 1 in the

Supplemental Material). At high activity, the tangential forces induce compaction: so, con-
finement becomes less severe, for the same degree of polymerisation N . In other words, the
same channel is effectively larger for polymers at higher activity. Surprisingly, we find that the
first exponent νC

1 is smaller than the bulk exponent νB(Pe= 10) ≃ 0.51. Confinement thus
seems to enhance compaction for short, highly active polymers. We may speculate that, under
tight confinement conditions, short active chains fold and collapse even more than in bulk due
to the presence of hard walls with a rather pronounced curvature. On the other hand, the
exponent νC

2 is found to be compatible with νB.
Upon increasing the value of the channel radius R (Fig. 2b), we look again first at the

low activity case. We observe that, for Pe= 0.03, the numerical data follow again the passive
curve. Notice that, in this case, RC

e deviates from its passive counterpart a bit earlier (i.e.
around N ≈ 100−150) with respect to the onset of the strong confinement regime (N ≈ 300).
The polymer conformation, for such large values of N at Pe= 0.03, is already affected by
the activity. At high enough values of N , the two curves display different trends: for passive
chains we observe again the onset of the strong confinement RC ,p

e ∝ N while confined active
chains display a power law with a exponent νC

2 , whose value is, as in the R = 6σ case, close
to the one measured for νC

1 . We recover νC
1 = ν

B(Pe) at large values of Pe. Interestingly, the
measured value of νC

2 is consistently smaller than νB(Pe) (see Supplemental Material Table 1),
that suggests again that the confinement induces even further compaction. So, in all cases,
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Figure 3: R⊥e /R as a function of N for active polymer chains for R=6σ (red circles),
13σ (blue squares) and 18σ (green triangles), and (a) Pe= 0.03, (b) Pe= 10. Dis-
continuous lines represents the maximum value for R⊥e given by R−σ.

we can ascribe the behaviour reported to the interplay between activity and confinement:
the effects of confinement become dominant over the effects of activity for Pe≪ 1, vice-versa
for Pe≫ 1, at least within a non-negligible window of polymer sizes. Notably, for Pe≫ 1,
confinement seems to enhance the globule-like character of the tangential propulsion. We
get more insight by studying R⊥e , i.e. the component of RC

e perpendicular to the channel axis,
reported in Fig. 3 as a function of N for various values of R. We observe that, at low activity, R⊥e
reaches a saturation value at different values of N ; for example, under very strong confinement
where R⊥e is practically constant for all values of N considered. Instead, for R= 18σ, saturation
is reached around Ñ ≈200. Further, at fixed R and high activity, said value is generally reached
at larger values of N : for example, for R = 6σ, we observe a saturation at Ñ ≈200, curiously
the same value found before. Instead we do not yet observe a plateau for R = 18σ. We can
thus bring forward an alternative interpretation of the transitions to different regimes in Fig. 2:
as the transversal size of the polymers becomes comparable with the channel radius, the active
chains can only increase in size in the direction parallel to the channel axis. In practice, if the
transverse size is, within the range of values of N considered, always at saturation, than only
one regime will be observed. Extending the correspondence to Pe≫ 1 and large values of R,
the fact that R⊥e is not reaching saturation suggests that we are observing a transient regime,
enhanced by the presence of the activity. The true strong confinement regime will occur at
even higher values of N than the ones considered in this work.

It is also interesting to recast the same data in a different fashion. Indeed, passive flexible
polymers display a universal scaling of RC ,p

e under confinement [66, 72]: in particular, the
ratio of the magnitude of the end-to-end vector under confinement over its bulk counterpart
RC ,p

e /R
B,p
e is a universal function of R/RB,p

e . It is thus compelling to assess if such scaling holds
for active polymers, where RB

e = RB
e (N ,Pe) is given again by Eq. (17). We report the result

in Fig. 4, where we plot RC
e /R

B
e as a function of R/RB

e for Pe= 0.03, 10 and different values
of R. We observe that, in some regimes of confinement and activity, sufficiently small active
polymers behave as their passive counterpart (black line). In contrast, at low confinement or
at very high activity, the rescaled data do not follow the passive master curve. Further, long
enough polymers deviate from the scaling for any value of Pe or R. More importantly, given
this rescaling, the reported data do not collapse on a single universal curve.
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Figure 4: End-to-end distance RC
e of tangentially active polymers under confinement,

scaled over the bulk value RB
e at the same Pe as a function of R/RB

e at fixed values of
Pe =0.03 (panel a) and Pe =10 (panel b), for different confinement conditions, R=6
(red circles), 13 (blue squares) and 18 (green triangles). The black line refers to the
master curve, valid for passive polymers (see SI of Ref. [68] for its functional form).

The universal behaviour of passive flexible polymers under confinement follows the de
Gennes blob picture. The characteristic length scale of the blob is either the thermal one or it is
set by the confinement; the interplay between the two determines the master curve [65,66,72].
As reported for another active polymer model under confinement [60], a straightforward con-
clusion is the failure of a blob description, i.e. it is not possible to uniquely define a correlation
blob, as other relevant length scales arise. This further hints at the fact that the polymer self-
similarity is broken at some non-trivial scale; while the model is different, the effect reported
here is similar to what was observed for Active Brownian Polymers [60].

3.2 Radial and angular distributions

We further characterize the polymer conformations by looking at the position and orientations
of the chains inside the channel. Specifically, we look at the distribution of the centre of mass
within the channel and at the distribution of the angle between the end-to-end vector and the
channel axis (see Sec. 2.2).

Concerning the former observable, we focus on four specific cases. In Fig. 5 we report the
distribution of the centre of mass positions as a function of the distance from the channel axis,
measured in steady state, upon varying N , Pe, and R. In all plots, the channel walls are at
r = R. We observe that, under strong confinement conditions and weak activity (panel a), the
centre of mass of the polymers does not accumulate at the boundary. Large polymers occupy
the whole channel, as already pointed out, and the centre of mass is located near the centre
of the channel. However, no excess probability at the boundary is found for small polymers.

Looking at the probability distribution of the individual monomers, that we report in the
Supplemental Material, one still does not find strong evidence for wall accumulation. Upon
increasing R or Pe (panels b-d) the wall accumulation partially reappears. In general, the
fact that, upon increasing N , polymers grow in the transverse direction (see Fig. 3), until
their transversal size reaches the channel width, forces the centre of mass to be located in the
middle of the channel even for Pe≫ 1 and in mild confinement. This effect makes flexible
active filaments stand out in comparison with active colloids.
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Figure 5: Distribution of the position of the centre of mass of the polymers as a
function of the radial distance from the channel centre for different values of N and
(a): R = 6σ, Pe=0.03 (b): R = 18σ, Pe= 0.03 (c): R = 6σ, Pe= 10 and (d):
R= 18σ, Pe= 10.

Indeed, active polymers do not accumulate at the channel boundary as long as the size
of the channel R is not much larger than the polymer size, in which case the filament can be
reasonably approximated by an effective soft colloid.

Further, as anticipated in Sec. 2.3, in order to rationalise the transport properties of tan-
gentially propelled polymers under confinement, we will approximate the polymer as a rigid
rod and assume that its orientations is limited. We double check that such approximation
is meaningful, assessing how the polymers are oriented with respect to the channel axis (see
Sec. 2.2). In Fig. 6, we report the distribution of the angles between the end-to-end vector and
the axis of the channel, measured in steady state; the panels (a)-(d) refer to the same cases
discussed above. Since the distributions are symmetrics, we report them only between θ = 0
and θ = π/2. We remark that, if θ = 0, the end-to-end vector lies parallel to the channel
axis; conversely, if θ = π/2, the end-to-end vector is perpendicular to it. We observe that,
in all four cases, if the polymer size is small with respect to R, the distribution is rather flat;
this is expected, as the polymer is not constrained, in this instance, to assume any particular
orientation by the confinement. On the contrary, large polymers do preferentially align with
the channel axis (θ = 0); the effect is relevant under strong confinement or weak activity con-
ditions. We can thus conclude that the orientations of the polymer are limited only for large
values of N and strong confinement conditions, i.e when RB

e (N) ≃ R. The condition is indeed
captured by the definition of θmax given in Sec. 2.3.

3.3 Scaling of the correlation time

We further report the correlation time of the chains; this is, as in Refs. [39,42,44], the charac-
teristic time of the self-propulsion force and the characteristic time of the active contribution
to the diffusion coefficient (see Sec. 2.3).

Interestingly, Fig. 7 shows that the adimensional correlation time τC
e D0/σ

2 can be col-
lapsed onto a master curve when plotted as a function of N/Pe. However, with respect to
the bulk scaling (dashed line), data under confinement have the same scaling but a different
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Figure 6: Distribution of the angles between the instantaneous end-to-end vector and
the channel axis for different values of N and (a): R = 6σ, Pe= 0.03 (b): R = 6σ,
Pe= 10 (c): R= 18σ, Pe= 0.03 (d) R= 18σ, Pe= 10.

Figure 7: End-to-end vector correlation time under confinement τC
e D0/σ

2 as a func-
tion of N/Pe for different values of Pe = 0.03 (circle), 0.05 (diamond), 0.1 (trian-
gle), 10 (inverted triangle) and confinement R= 6σ (red), 13σ (blue), 18σ (green).
Dashed line represents the Bulk (τB

0 = 0.5) and the continuous line represents the
linear fit to data at high values of N/Pe (τC

0 = 0.25).

prefactor. Indeed, given

τC
e D0/σ

2 = τ0
N
Pe

, (21)

we obtain τC
0 ≃ 0.25 under confinement, smaller than the bulk value τB

0 ≃ 0.5. We can recast
Eq. (21) in terms of the self-propulsion velocity of the polymer, va = Fa/γ and of the contour
length L = Nσ, as

τe = τ0
L
va

. (22)

This relation shows that, even under confinement, the polymer is still driven by a “railway mo-
tion”, as named in the literature [38,44]. The influence of the confinement on the correlation
time amounts, thus, to a decrease of the decorrelation time.
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Figure 8: Long time diffusion coefficient as a function of N for different values of
Pe= 0.03 (blue triangles), 0.05 (green circles), 10 (red squares) and (a) R= 6σ (b)
R= 18σ. The symbols refer to simulation data, lines are the theoretical predictions,
dashed lines referring to Eq. (19), full lines to Eq. (20).

3.4 Diffusion coefficient predictions via the ABP mapping

In this section, we present results on the transport properties, namely the diffusion coefficient
along the channel axis, of active polymers under cylindrical confinement. We will compare
the results of the numerical simulations with the predictions of the two models proposed in
Sec. 2.3 Eq. (19) and Eq. (20).

We report the comparison in Fig. 8. Again, we focus on two extreme cases of strong confine-
ment R= 6σ (panel a) and weak confinement (panel b). The comparison with the theoretical
approximations Eq. (19) shows that, under strong confinement, the diffusion coefficient can be
enhanced by roughly a factor of 10. We can start rationalizing the result by putting together
what we discovered so far. Under confinement, the polymer may experience an elongation
with respect to the bulk active case (see Sec. 3.1): in those cases, we should expect an in-
crease of the diffusion coefficient, given by an increase of the force on the centre of mass (see
Eq. (12)). Further, for sufficiently large values of N , the polymer also preferentially align with
the channel axis, as shown in Fig. 6 and the most notable discrepancies with respect to the bulk
data appear when the distribution of the angle θ is not uniform. The geometrical correction,
introduced in Sec. 2.3, recapitulates this feature; using it, the predicted diffusion coefficient
Eq. (20) nicely agrees with the simulation data. On the other hand, when the confinement is
weak, the bulk prediction remains in good agreement with the numerical data at least within
the values of N considered, see Fig. 8b. Notice that, for small values of N and Pe≪ 1, there
is a discrepancy between the simulation data and the bulk prediction. This happens because,
in these conditions, RC

e becomes smaller than RB
e . This happens also in passive polymers and

the discrepancy can be appreciated in Fig. 4. Since for small chains there is no alignment

13

https://scipost.org
https://scipost.org/SciPostPhys.17.4.107


SciPost Phys. 17, 107 (2024)

effect and no difference in the correlation time with respect to the bulk, the difference stems
precisely from this discrepancy. Notice also that the discrepancy with the bulk prediction also
hints at the fact that the diffusion now increases as a function of N . Further, we may also
observe that some of the characteristic features of these active polymers are maintained in
confinement as well. Indeed, we report the data in the same fashion as in Ref. [39] in the
Supplemental Material. One can appreciate that DC

a /D0 (D0 being the diffusion coefficient of
a single monomer) increases upon increasing Pe and, for large values of Pe and weak confine-
ment conditions, the diffusion coefficient is roughly independent on N . However, as already
mentioned, the diffusion coefficient increases with N under strong confinement.

4 Conclusions

We report on the conformation and dynamics of tangentially active polymers under cylindrical
confinement. Concerning the former, the data highlight the interplay between confinement
and self-propulsion: the first induces elongated conformations, the second tends to drive the
polymer collapse, as observed in bulk. It is important to stress that the same channel can
stand as a mild or strong confinement, depending on the polymer’s degree of polymerisation
or, in general, on its size. The complex interplay makes non trivial power law regimes emerge
at different values of the activity and at different confinement conditions. Further, we show
that the universal rescaling, valid for passive polymers under cylindrical confinement, breaks
for the active polymers considered here. Following the same argument brought forward by
recent literature on active polymers [60], we conclude that the blob picture is broken also for
tangentially active polymers: the channel radius cannot be taken as the fundamental length
scale of the system.

We further show that the tendency of active polymers to accumulate at the boundary of
the channel is qualitatively different from the colloidal case. In part, if sufficiently long, the
polymers tend to expand in the transverse direction and “fill up” the channel (see Fig. 3);
however, notably, even for short polymers at high Pe the probability to find the centre of mass
at the boundary is only slightly larger than in the bulk of the channel. This may be a feature
that makes soft, deformable active filaments stand apart from active colloids. It is intriguing
to notice that the accumulation has been observed for many elongated swimmers, such as
sperms. As such it would be interesting, from a biophysical perspective, to assess more in detail
what are the minimal requirements for wall aggregation, in terms of aspect ratio and filament
flexibility, having focused here to relatively large aspect ratios (N >40). Wall aggregation is
indeed argued to be important for early stage biofilm formation [73].

Finally, from the perspective of the dynamics, we show that there is a significant deviation
from the bulk, for what concerns the correlation times and the diffusion coefficient, at large
values of Pe and strong confinement conditions. For the latter, we propose a correction, based
on a geometrical argument. The correction is, in principle, valid for rigid rods, which is not
the case for the polymers under investigation. However, as the total active force is almost
parallel to Re, approximating the polymer as its end-to-end vector captures the physics of the
system well. Indeed, such a correction yields a good comparison against the simulation results,
without any fitting parameter.

The study of active polymers under confinement may be relevant to better understand and,
eventually, mimic, the behaviour of filamentous living organisms. Indeed, many of them live
under strong confinement conditions; understanding how they behave may be important to
create bio-mimetic soft robots able to burrow and perform tasks, as worms do [74].
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