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Abstract

N-body non efimovian bound or quasi-bound states for particles with short range inter-
actions are considered in arbitrary dimensions. The different resonance regimes near
the threshold are depicted by using a generalization of the effective range approxima-
tion. This two-parameter description can be used in various contexts from ultracold to
hadronic physics. The universal character of these states makes it possible a formulation
in terms of a contact model. The singularity at the contact imposes the introduction of
a modified scalar product to solve the normalization catastrophe and to restore the self-
adjoint character of the model. An equivalence with the standard scalar product used
for realistic finite range models is derived.
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1 Introduction

1.1 General context

Near threshold N-body bound and quasi-bound states, denoted in short N-body resonances
play an important role in scattering properties. They are observed and/or predicted for sys-
tems with short range interparticle potentials in hadronic and nuclear physics, condensed mat-
ter and in ultracold atomic physics [1-9]. In the context of the many-body problem, they
induce correlations at large scales in many-body systems [10, 11]. Despite the considerable
differences in energy scales and the peculiar short distance physics specific to these various
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systems, they share universal properties. Interestingly, ultracold atoms experiments provide
marvelous opportunities to explore in depth these highly correlated states with the possible
tuning of the interactions via magnetic and optical Feshbach resonances [12]. For instance
depending on the statistics, the number and the mass of the particles, Efimov states can be
observed or predicted near the unitary limit of the s-wave two-body interaction [13-18].

At the heart of this universality is the scale invariance in a wide interval of lengths, a
property that implies the separability in the hyperangle (2) and hyperradius (p) coordinates
for several orders of magnitude. In the separability region, the hyperradial problem can be
mapped to a radial two dimensional (2D) Schrodinger equation with an inverse square poten-
tial proportional to s2/p2. The strength of this generalized kinetic barrier is obtained from the
hyperangular eigenvalue problem by using the behavior of the wave function near the contact
of two interacting particles. The Efimov effect, characterized by a discrete scale invariance
of the spectrum at vanishing energy emerges when the hyperradial potential is attractive, i.e.
when the index s is imaginary. The beauty of this effect is that the long range attractive inverse
square potential emerges from the short distance behavior of the wave function itself. Besides
the Efimov effect which has attracted a lot of interest since its first observation in 2006 [15],
isolated N-body resonances occur when the tail of this potential is repulsive in the separability
region. Such resonances exist for sufficiently attractive interactions in the short hyperradius
region where the wave function is no longer separable. Instead of using realistic finite range
reference Hamiltonians, a way to obtain universal laws in such regime is to use a contact
model where by construction, the short distance physics which is not universal, is absent from
the formalism. First studies of this regime using a contact model were done in Refs. [19-21].
However, due to the normalization catastrophe, i.e. the fact that localized contact states are
not square integrable when s > 1, the model was not believed to be tractable for arbitrary res-
onances and the universality of these states was questionable. Nevertheless, for a large class
of resonances, one expects also near threshold universal laws as predicted in Ref. [22-25].

1.2 First advances obtained in Ref. [26]

Part of the answers to these pending issues has been given recently in Ref. [26] in the context
of the unitary limit. In this last reference a contact model for isolated N-body resonances has
been proposed for all real values of the index s (in what follows s will be always considered
as positive) when part of the particles interact resonantly in the s-wave. The present paper
permits one to replace the results of Ref. [26] in a more general context. In this introduction,
it is thus necessary to recall the main results obtained in Ref. [26] as follows.

In a close analogy with the two-body scattering in high partial wave, it was shown that two
parameters are in general needed to describe low energy states. The normalization catastro-
phe was solved by introducing a modified scalar product which restores also the self-adjoint
character of the contact Hamiltonian. Considering the wronskian of two reference states (i.e.
eigenstates of the finite range Hamiltonian associated with the contact model), this scalar
product was shown to take into account the small hyperradius contribution of the reference
states. A two parameter law for the binding energies was given for all values of s. Moreover,
long lived quasi-bound states were predicted when s > 1, for vanishing detuning from the
threshold. All the results obtained in Ref. [26] were qualitatively interpreted by what can be
called the 3D mapping, meaning the formal equivalence of the hyperradial N-body problem
for half-integer values of the index s = £ + 1/2, with the radial problem of a two-body system
in 3D with a resonant £ wave interaction.
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1.3 The need of a more general contact model

The scope of application of the contact model of Ref. [26], concerns systems in the vicinity
of the unitary regime where part of the pair of particles interact resonantly in the s-wave in
a three-dimensional (3D) space. It appears that extension of the contact model to situations
where there is no unitary limit or in a one-dimensional (1D) or a 2D space is possible. Another
issue is how one can conciliate the two-parameter model of a N-body resonance in Ref. [26]
with the single parameter models of Refs. [5,19,20] when s < 1 ? Always in the region s < 1,
when s = 1/2, the 3D mapping for the contact model of Ref. [26] leads to the description
of a broad s-wave resonance. There is no way to model the narrow resonant limit with this
contact model: a generalization is thus expected. To end up this series of issues to solve,
perhaps the most important one is to understand the link between the two parameters of the
contact model and the reference model. More precisely, one can wonder how to conciliate
an energy independent parameterization of the log-derivative of the wave function near the
N-body contact (see Eq.(6) in Ref. [26]), with the effective range approximation where the
energy dependence is explicit, as was done in this last reference.

1.4 Main results and outline of the paper

In Ref. [26] all the low energy properties were parameterized starting directly from a two-
parameter contact model. The two parameters, i.e. the detuning from the resonance and
the effective radius, were not directly linked to the behavior of the reference states. Here
one adopts a more physical point of view in Sec. 2 by considering as a starting point, the
properties of the reference states near the threshold. The reference model is introduced in
this section together with the notion of separability region and by taking into account the
possible occurrence of two-body resonances. The separability region is defined by an interval
of the hyperradius Ry < p < Ry, and also hyperangles such that the particles do not feel the
short range interactions. In the separability region the reference state is approximated by the
product of a function depending on the hyperradius and of a function of the hyperangles of
the N-body problem.

All the threshold properties are deduced in the subsequent sections from the log-derivative
of the hyperradial function at the radius Ry which defines the lower bound of the separability
region. It is shown that the occupation of the small hyperradius region is related to the energy
dependence of this log-derivative.

The hyperradial problem is characterized by an inverse square potential tail. The scattering
problem in such a potential is revisited in Sec. 3 in the effective range approximation. The
low energy properties are parameterized in terms of the generalized scattering length and of
the range parameter. The different non efimovian regimes of resonance are then analyzed in
Sec. 4.

Using the results of the preceding sections, the contact model is introduced in Sec. 5. It
models N-body resonances in the vicinity of the threshold and when few-body interactions are
of short range. For s > 1, one recovers the contact model of Ref. [26] but for s < 1, the model
of Ref. [26] appears as a particular case where the range parameter is not large. In Sec.5.7, the
modified scalar product introduced in Ref. [26] is generalized to encompass all the possible
resonant regimes. A proof of its equivalence with the usual scalar product associated with the
reference model is derived.

To have a qualitative picture of the spectrum when the upper bound of the separability
region Ry, is finite in absence of shallow dimer, a box model is introduced in Sec. 6. One
obtains a branch similar to that of an Efimov spectrum.

In Sec. 7 a simple finite range 1D model is used to compare the standard normalization
with that obtained by using the modified scalar product in the contact model.
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2 Reference model

2.1 Separability region
2.1.1 Generic case

One considers N point-like particles that evolve in a space of dimension D. The mass of the
particle i is m; and its spatial coordinates are r;. The interparticles interactions are charac-
terized by the radius R,q,. The Hamiltonian describing the system, denoted as the reference
model, is supposed to have only one open channel. More precisely, deeply bound composite
particles in the reference model are considered as stable and structureless. In other words,
there is no possible break-up and rearrangement of these composite particles in few body col-
lisions. In the generic case of a N-body resonance one considers a situation where there is no
M-body resonance (M < N) in the system and if a N-body state exists it can be considered as
brunnian (a generalization of the notion of Borromean states for the N-body problem, i.e. no
subsystem is a bound state).

In this paper, the systems are considered in the center of mass frame. For convenience,
one introduces the dimension of the configuration space of the particles which is given by

d=(N-1)D. 1)

The positions of the particles are described by the d-dimensional hyperradius vector p equals
to the set of Jacobi coordinates m; (j = 1...N — 1), which are the relative coordinates between
the center of mass C; of the set of particles 1...j of total mass M; and the particle j + 1:

H;
=\ (41 -C;) 2)
In Eq. (2), m, is an arbitrary reference mass and u; is the reduced mass of the relative particle:
py = (3)
j+1

Other sets of Jacobi coordinates can be defined by permutations of the labels of the particles.
In what follows, one will use the separability with respect to the hyperradius p = ||p|| and
the hyperangles Q which parameterize the unit hypervector p/p. The hyperradius can be
expressed as a function of the positions {r;} and the center of mass of the particles Cy with

N

N-1 m

2 _ 2 _ i 2

P —Zm—ZE(ri—CN) - @
i=1 i=1 T

In this coordinates system, the kinetic operator in the center of mass frame can be expressed

in terms of the hyperradial kinetic operator

2 d—1
T,=— >+ ——2 ) , 5
o om, ( o 5 o (5)
and of the Laplacian A acting on the hypersphere of radius unity:
—? A
Hy=—2A7,=T,— ——2. (6
2m, 2m, p2

A standard approach in few-body physics is to expand the reference state in terms of the
hyperspherical harmonics ®*1(Q) [27]:

(I e) = > p' 2 FH (o, E)2lM(@). %)
[A]
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In Eq. (7) the notation [A] gathers all the quantum numbers that define the system. The
hyperspherical harmonics are eigenstates of the Laplacian on the unit hypersphere Agq:

—Ag2M(0) = reM(). (8)

Near the threshold of a resonance, for a large class of systems, one component in the sum of
Eq. (7) dominates for a sufficiently large hyperradius and one can use a separable approxima-
tion for p > R, where the separability radius Ry, is of the order of the potential radius Ry [1]:

(P Wyer) = p 12 F(p, E)®(S2). ©)

Without loss of generality, the hyperspherical function will be always normalized on the hyper-
sphere: (®|®) = 1. In the separable approximation Eq. (9), one excludes all the configurations
where the hyperradius p); of M < N particles is of the order of Ry, or smaller.

The radial pre-factor in the right-hand side of Eq. (9) has been chosen to have an effective
2D radial equation in the separability region

hz
2m,

2, % _ ¢
(Ep +———2)F(p,E)=EF(p,E). (10)
P P

In Eq. (10), the index s is defined by
s2=A+(d/2—-1)?, (11)

where A is the eigenvalue of the dominant component in Eq. (7) obtained from Eq. (8) and s
is chosen positive when it is real. In the generic case, the eigenvalues of Eq. (8) are positive
and given by

A=KK+d—2), (12)
where the integer K > 0 is the hypermoment. Equations (11) and (12) can be combined to
give

=K+=-—-1 13
s > (13)

=

Negative values of A can be obtained in presence of two-body s-wave resonant interactions in
a 3D space.

Equation (10) coincides with the radial equation (outside the potential radius) of a single-
particle in a 2D space with an effective angular momentum #is. This formal equivalence, Eq. (9)
can be qualified as a 2D mapping of the initial N-body problem. Equivalently, the 3D mapping
is obtained with the change of function

F(p,E)=vpf(p,E), (14)

leading formally to the radial equation (outside the potential radius) of a 3D two-body problem
with the angular momentum fi(s — %).

The continuity of the log-derivative of the hyperradial reference function at p = R, permits
one to replace the effect of the short range interactions by a condition at the border of the

separable region. Quite generally, for a state of energy E = h;Tkz, it can be written as
PI,F(p,E)
————|  =-v(k’Ry), (15)
F(p,E) |,=g,
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where the function U(sz%) depends on the details of the reference model at short distance. It
will be assumed in all the subsequent study that the energy of the system E is small in absolute
value with respect to the high energy scale of the reference model:

hZ

Ey = . (16)
0 2m,R3

Consequently, the right-hand side of Eq. (15) can be approximated in the limit |kR,| < 1 by
v(k?R3) ~ vg + Vpk?RZ + . .. 17)

2.1.2 Occurrence of resonant two-body interactions

The presence of a two-body resonant interaction changes radically the structure of the sepa-
rability region and the eigenvalue problem on the hypersphere in Eq. (8). When D = 3, for a
s-wave resonant interaction between two particles (ij) of reduced mass u, with a scattering
length asp, there is a boundary condition near the contact of the particles which is given by
the Bethe-Peierls condition:

Wop(ry...Ty) XA X (i—i) . (18)
rij  dsp
In Eq. (18) |agp| > Ry, the relative radius ry; is small with respect to all the lengths in the
system except the potential radius: r;; > Ry, and A depends on the other coordinates. For a
simplified analysis, the two-body behavior in Eq. (18) is extended formally to arbitrarily small
values of rij. In absence of M-body resonance in the system (N > M > 3) one recovers the
separability at the unitary limit |a;p| = 00, but the eigenvalue problem on the hypersphere
changes due to the singularity at the vicinity of the contact of two interacting particles. The
eigenvalues A in Eq. (8) are obtained in the zero-range approximation of the two-body interac-
tion by imposing the contact condition ®(2) o< % when r;; — 0 for each pair (ij) interacting
resonantly in the s-wave. Except for N = 3, there is no general solution such as Eq. (12) of
this eigenvalue problem [20]. For a large but finite value of |asp|, the reference wave function
behaves as in the unitary limit for intermediate values of the hyperradius R, < p < |agp|.
In this interval of the hyperradius and again in absence M-body resonance (N > M > 3), for
an energy E in the interval i1/ (2,ua§D) < |E| K E, the reference wave function is separable
with the same index s as in the unitary limit. Moreover, when the reference state is brunnian

2
(domain asp < 0) with an energy sufficiently near the threshold |E| < ZM%’ one recovers the
3D

separability for p > |a;p| with the index s obtained this time from Eq. (12).

In a 2D space, a two-body scattering resonance in the s-wave for a pair of particles (ij)
leads to a logarithmic behavior in the limit of small interparticle radius r;; and Eq. (18) is
replaced by

rii
\I'ref(rl...rN)zAxln( d ) (19)
a2p

Near the resonance, the 2D scattering length a,p, is large, but contrary to the 3D case, there is
no scale invariance. Moreover there is always a shallow dimer in the resonant limit and thus
no brunnian state is possible [28]. Consequently, in the resonant limit, there is no separable
region. The separability can be recovered only in the non resonant case for an hyperradius

P > a,p and for states of energy |E| < h

2
2m.a

> a situation which corresponds to a value of a,p
2D
of the order of Rp,.

In a 1D space, the two-body scattering resonance in the even sector occurs for a vanishing
1D scattering length a;, ~ 0 and the behavior of the reference state in the limit of a small r;;
is given by

\I/ref(r]_ ...rN) ~AX (rij—alD) . (20)

7
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In the vicinity of the two-body resonance there is no shallow dimer. One recovers at the
resonance, the scale invariance and the separability with again a modification of the eigenvalue
problem on the hypersphere. An example of state without N-body resonance which exhibits
this scale invariance is given by the N-boson problem in the Tonks regime [29].

Two-body resonant interactions in a higher partial wave £ > 1 are characterized by a typ-
ical length L linked to the range term which is of the order of, or larger than the potential
radius [30]. Then, for a brunnian state of energy much smaller than i12/(m,L?), the situation
does not basically differs from the case of Sec. 2.1.1.

In all these situations one can identify two lengths R, and Ry, such that there is an hyper-
angle/hyperradius separability of the reference wave function as in Eq. (9) in a wide range of
scales of the hyperradius

Ry < p <Rgyp, (21)

and when also r;; > R, for all interacting pairs ij.

2.2 Resonance condition

In analogy with the two-body s-wave resonant scattering in a 3D space, one adopts here the
definition of a N-body resonance by the threshold at which a N-body bound state has a van-
ishing energy, i.e. |kRo| — 0 in Eq. (15). Assuming that the ratio Ry,,/R, is sufficiently large,
one can consider the limit Ry, = 00. The bound state solution of Eq. (10) for p > Ry is then
well approximated by the Macdonald function in the separability region:

F(p,E) = AK(qp). (22)

In Eq. (22), A is a normalization constant and the binding wavenumber g is given by
q = v/—2m,E/h. Using the fact that

X 9Ky (x)

KS(X) —o =, (23)

one deduces from Eq. (15) that for Ry, = 0o, the zero energy N-body resonance i.e. the
threshold of the resonance occurs when

Vg =S. (24
In what follows the detuning from the resonance will be denoted by

60 =s—vq. (25)

2.3 Occupation of the small hyperradius region

Using the fact that the reference Hamiltonian is self-adjoint, one can deduce the contribution
to the normalization of the small hyperradius region in terms of the wronskian:

RS [ QW [(p19,e(E))", (p|,er(ED), p = Ry ]

2 1.
J dp [{p [ Prer(ENI™ = lim —— = F . (26)
P<Rq r

To obtain this last equation, one has used the fact that for realistic potentials, the refer-
ence wave function and its hyperradial derivative vanish at the origin p =0. In Eq. (26),
du=p?tdpd) where dQ is the measure on the hypersphere and the notation
WIf,g,p =Rol=f03,8—80,f is the wronskian of the functions f and g with respect to
the variable p, considered here at p =R,.
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Using the separability approximation of the reference state in Eq. (9) at p =R, and
Eq. (15), one obtains from Eq. (26) the contribution to the norm, of the small hyperradius
region in the low energy limit (|E| < Eg):

f du (o [ ¥rei(ED)I* 2 vg [RoF (Ro, E)I* . 27)
P<Rg
From Eq. (27) one obtains the inequality:

vy >0. (28)

Consider now a bound state of energy E when Ry, = 00. The probability to find the particles
in the region p <R is
fp<R0 d.u' |(P |quef(E)> |2

Pg,(E) = : (29)
- [ (e () e (B))
and at the threshold of the resonance, using Eq. (A.7), one finds:
" 1 if s>1,
éii% P, (E) = A1) (30)

0, otherwise.

Hence, there is no abrupt change in the occupation of the small hyperradius region at the
critical value s = 1. Instead, for a fixed value of v, and for increasing values of the index s,
one has a continuous increase of the occupation in this region.

3 Scattering process in an inverse square potential

3.1 Partial wave amplitude

The wave function in Eq. (9) can be interpreted as the eigenstate of a single particle in a
symmetric central potential in a d-dimensional space. In this point of view, one can consider
the scattering problem of the particle on a central potential with a tail having an inverse square
law. )y

At negative energy E = —’;Tq < 0 and in the separability region, the hyperradial function
is a linear combination of the two modified Bessel functions

F(p,E) = A(E)K(gp) + B(E)I(qp)- (31)

When Ry, = 00, a bound state of binding energy Ejp is such that lim,_,, F(p,Eg) =0 and

thus B(Eg) =0. The hyperradial scattering function at energy E = h;Tkrz > 0 of this single-
particle system is obtained by performing the analytical continuation of Eq. (31) with g = —ik
for p > Ry. The ratio .A/B can then be redefined in terms of a partial wave amplitude (the
other part of the scattering amplitude is a function of the hyperangles) at energy E with:

B nA(E)ei"skz_d
fs(E) = T 8E) (32)
Then for E > 0:
F(p,E)=i"B(E) [J(kp) + ik 2 f(E)HD (kp)] , (33)

the factor k%2 has been inserted for convenience by considering the expansion of the d-
dimensional plane wave on the hyperspherical harmonics [27, 31] with a first term corre-
sponding to the lowest hypermoment K = 0, proportional to (kp)'~4/2J d _,(kp), and also the

9
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expression of the d-dimensional Green’s function of the free Schrédinger equation at energy
E for a source term —6(p), i.e.

d
N —inmr E 271 (1)
Gute. )= s (5) B . (349

Coming back to the N-body problem, one has to be aware that Eq. (33) does not take into
account the possible M-body scattering process (M < N) but corresponds somehow to a pure
N-body scattering.

3.2 Scattering phase shift

The link between the partial wave amplitude and the scattering phase shift is obtained by
considering another possible expression of the hyperradial function for p > R in Eq.(33) by
using Eq. (A.2):

[[1+2if,(E)x2|HD (kp) + HP(kp)] . (35)

F(p,E)= i(E)

In absence of interaction, the partial wave amplitude is zero, so that at low energy (kRy, < 1)
and large distance (kp > 1), the hyperradial function is

._SBE . T TS . T TS
Freelp, B) = =28 (eltk=3=%) 4 gmitke=3-5)) (36)

v 21kp

where one has used Eq. (A.5) and Eq. (A.4). The interaction introduces the scattering phase-
shift 6,(E) such that in the low energy and large distance limit:

[ S iﬁs(E)B E . 7S . TS
F(p.E)~ ¢ BE) (citko—F=F 45,8 4 gmilko—F-F+5,6) 37)

Vv 2rkp

The comparison of Eq. (37) with Eq. (35) permits one to define the scattering phase shift &,(E)
in terms of the partial wave amplitude

e0E) = 1 4 2if,(E)k?2, (38)
so that
2—d 4
fs(E) = m = —ikz_delés(E) sin 55(E) . (39)

The form of the function cot §(E) in the low energy limit is deduced from the log-derivative of
the reference hyperradial function at p = R, given in Eq. (15). Using Eq. (A.3) and Eq. (A.4),
one finds

cot §,(E) = cot s — k™ Zuy(k?), (40)

where the function

k= v () +xJ (x)

x
sin 7ts v(x2)J(x) + xJ!(x) x=kR,

uy(k*) = , (41)

characterizes the effect of the interactions and is regular at k = 0 for non integer values of s.
From Eq. (41), and the relations in Egs. (A.3,A.1), one deduces as expected that the poles
of the partial wave amplitude in Eq. (39) correspond to the binding energies which satisfy also

x9,K;(x)

v (—n2R2
K (x) =—v(—q°Rp). (42)

x=qRy

10
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3.3 Scattering parameters in the low energy limit

In the low energy limit, the function u,(k?) can be expanded in a series of k2. Limiting the low
energy expansion of u at the order of k2, the partial wave amplitude permits one to define
the scattering parameters at low energy:

1, (k2) = gl +ak? + Cs, k). (43)

S
In this last equation, the term C(s, k2) = O(k*) is the remainder of the expansion of the function
u(k?) and the two first terms in the right-hand-side, define the effective range approximation.

In what follows, the parameter &, will be denoted as the generalized scattering length and a,
as the range parameter. From Eq. (41), one has

nR® Vo + S

&= 02( ° ) (44)
s4T(s)? \vg—s

2+vp—s

L (O s (s - vo) [4% =

a
s T 0 5+'U0 S—1g

—(s— —S)] . (45)

The generalized scattering length gives the coefficient of the Wigner’s threshold law for the
partial wave amplitude:
f(E) = —k**lg, (46)

As expected, using Eq. (24), one finds that the generalized scattering length is arbitrarily large
at resonance |§,| = oo whereas the range parameter is

4s—1R2—Zs F(S)z
as=—9 "7 (142(s—1)v)). 47
s 7'C(S _ 1) ( ( ) 0) ( )
In the relevant limit of a small detuning |6| < 1, the two scattering parameters in Eq. (44,45)
can be written:

&=  S45T(s)2

7'CR25 2% — 5 ares
0 ( d ) (48)

a;~————,
5 * 52
(1-%)
For s > 1, the range parameter is always positive and from Eq. (28) one obtains the general-
ization of the width radius inequality already obtained for high partial wave scattering [30]:

I'(s)?

resp2(s—1)
a; R, > —4(1—5)(3— D .

(49)

This bound and also Eq. (30) generalize the results found in Ref. [32] for the two-body problem
in an arbitrary dimension, but here with a continuous value of 5.
3.4 Mapping to the two-body problem

Let us consider a two-body scattering process in the center of mass frame in a 2D space. For
an incident plane of wave vector K, the scattering state |¥,,) can be written asymptotically for
kr>1[33]:

Uyp () = 7 4 #sz(k; 0)elkr (50)

See Eq. (12) and Eq. (14) of Ref. [32] with the equivalences: s=d/2+1—1,& =a; 4 and a, = —r; 4/2.
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where r denote the relative coordinates, 6 = Z(k,r) and the partial wave amplitudes fz[g](E)
for the angular momentum n# can be defined by

fap(k,0) = \lf Z fzn](E)eme (51)

Using this last definition, the scattering state can be expressed for r larger than the 2D potential
radius, as:

oo

Top(r)= D i [, (kr) +if 5 (B)HD(Kr)] . (52)

n=—oo

For an isotropic interaction, the 2D partial wave amplitudes satisfy fz[]; n](E )= fz[g](E ) and can
be related to the partial wave amplitude in Eq. (39) with

FINE) = £ (B)KT2, (53)

which is a consequence of the 2D mapping.
In the 3D two-body problem with an isotropic interaction potential, the partial wave am-
plitude is defined from the scattering phase shift by

fip (B) = . (54)

kcot6(E)—ik
The partial wave amplitude is thus also proportional to the 3D two-body partial wave ampli-
tude in the [-wave when s = { + % is an half-integer values with:

i ()= frp1 (BT, (55)

4 Different regimes of resonances

The study of the shallow bound state near the resonance threshold permits one to identify
different types of resonant regimes. Using the effective range approximation for v(—quS) in
Eq. (43) gives an accurate approximation for the determination of the bound or quasi-bound
state energies near threshold with the equation:

E S
Ry E 5
+aREDE +c( ):u (56)
55 Ey E, sin 1ts

Complex solutions of Eq. (56) with a small negative imaginary part and a positive real part
correspond to quasi-bound states. Equation (56) can be also written in terms of the binding

wavenumber as 2
S

——asq +R; 2sC(s — 2RZ)—
& sin s

(57)

Let us make some comments about the singular behavior of the right-hand side of Egs. (56,57)
near integer values of s. In the limit s = 0, the singularity is compensated by the one of left-
hand side where &; ~ ms. In the limit s = 1, the singularity is this time compensated by the
range term in the left-hand side where a, ~ 1/(7(s —1)). For higher integer values of s, the
singularity is compensated by the remainder C(s,—g?) which plays the role of a counter term.

12
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For a small detuning, the remainder can be always neglected for s <1+ n where n >0
and is arbitrarily small in the zero energy limit. However, as one considers finite values of
the detuning, it is chosen at an intermediary value between 0 and 1 typically n ~ 0.2. The
exact expression of C(s,2z) depends on the i —th derivatives Ug) i =0...n which have been
neglected for i > 2 in the effective range approximation. Then in this respect, it can be chosen
arbitrarily with the sole aim of curing the singularity. For example a possible counterterm is
C(s,z)=0fors<1+mnandfors>1+mn:

n n=/[s], if s>|s|+n,
C(s,2) = Z—, where [s1 -L I+m (58)
n(s—n) n=1\s], otherwise.
When s = n > 2 is an integer, Eq. (56) becomes
R E 1(EY" E
0 taRN2— == (—) In (——) : (59)
&s Ey m\Eg Eqy

For a given value of the index s and of the separability radius R, the spectrum is defined from
the values of vy, and of the detuning &.

4.1 Regimes of vanishing detuning

If the detuning & is sufficiently small, the generalized scattering length & is large. Due to
the vicinity with the threshold, this corresponds to the situation where one finds a low energy
bound (when &, > 0) or possibly quasi-bound (when &, < 0) state. In this small detuning
limit, using Eq. (48), the range parameter can be approximated by its value at resonance only
when |6] < s: a condition which is not satisfied in the vicinity of the Efimov threshold where
s —0.

4.1.1 One-parameter resonant regime

When s < 1 the range term can be negligible in Egs. (56,57) in the small energy limit gR, < 1.
This happens in two situations: i) for a vanishing value of the detuning when the index is not
too close to unity [qRy < (qRy)’ in Egs. (56,57)], and/or ii) when

vh = !
07 2(1—s)"

(60)

In this regime, for a positive generalized scattering length (i.e. 6 < 0), there is one bound
state with a one-parameter law for the binding wave number

1
sin(7ts)\ >
. z( ( )) . (61)
Es
The binding energy E;,, is then
. 1/s
ssin(ms)(s)?8
E,,=—4E)| ————— 62
1 4 0( (6 — 2s) 62)

This regime has been first defined and studied in Refs. [5, 19, 20]. Importantly, there is no
quasi-bound state in this regime when 6 > 0.
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4.1.2 Two-parameter resonant regime

The range parameter plays a increasing role for increasing values of the index s. For s > 1
it can never be neglected for vanishing values of the detuning and in the low energy limit
[qRy > (qRy)* in Eq. (56)]. Starting from the one-parameter law, valid for small values of
the index s, the spectrum reaches a two-parameter law as s increases. In the limit of a large
index s, the binding wavenumber is given by:

2 . 1
‘Es s

Equation (63) is a very good approximation even when s is larger but of the order of the unity.
The binding energy is thus

q (63)

Eys
E=F ~———r0!. (64)

/
Vot 365-D

Still for s > 1, aside the shallow bound state solution which exists for a small and negative
detuning 6, i.e. for a large and positive generalized scattering length, when 6 is small and
positive, there is a long-lived quasi-bound state associated with the complex root of Eq. (56):

T
E=E —i-. 65
L (65)

The resonance energy E, > 0 can be approximated by Eq. (64) and the width I" by

T 2n(s—1)4 (E)H
E.  (1+2(s—1DvyIr(s)2 \Eg ' (66)

This form of asymptotic behavior in E,*~! was already found in Ref. [25] for half integer values
of the index and more recently in Ref. [22] by using the Effective Field Theory formalism. In
this last reference, the index s is evaluated through the minimal energy icwA of the system
when considered in an isotropic harmonic trap of frequency w. The equivalence A =s+ %
applies both in the generic case [34]? and in the unitary limit (see for instance Eq. (34) in
Ref. [19]). In Ref. [22], an estimates was given for the life-time of near theshold *He droplets
of positive energy (i.e. N < 29). In this case, the scattering length is rather small and negative
(—13a, in atomic units [35]), so that the brunnian resonance occurs in the generic case. The
present derivation gives an overall suppression factor 4~ /T'(s)? in the ratio I'/E, not present
in Ref. [22], where the reasoning was partly based on scaling properties. This enhances even
more the life-time of the quasi-bound state when s is large. Interestingly, the present derivation
point out the crucial condition E < E, set by the separability radius Ry. If this condition is not
met, even if the formula for I'/E, in Eq. (66) gives a very small value due to the prefactor, this
law is no longer valid. In Ref. [22], E, is estimated at the value 40 K which is much larger than
the energy of the resonance E, = 0.0194 x N = 0.56 K at N = 29 in Ref. [36]. One can also
use the mean radius of the droplet in Ref. [37] for an estimate of the order of magnitude of R,
with Ry ~ 7.8 A and find E, ~ E/2. This shows that for a precise evaluation of E, one needs
more informations about the many-body wave function than what is published in Refs. [36,37]
and a more refined study is required to known wether or not the universal law is relevant in
this case.

20ne has the following correspondance with the notations of Ref. [34]: N =A (with N =A—1 in [34]),
s=v=L+1/2 (see Eq. (2.16) in [34]) where £L =L+ (3N —3)/2 (see Eq. (2.14) in [34]) and A =L +3A/2
(see Eq. (3.20) in [34]).
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Figure 1: Ratio of the binding energy to the asymptotic binding energy E;, of
Eq. (62), obtained for small values of s and/or small detuning when the range term
can be neglected. The detuning has been set to s —v, = —1072. Each line corre-
sponds to a value of v6 (black: 1073, red: 10, green: 100, blue: 1000).

0.8

0.6

E/E

0.2

T

Figure 2: Ratio of the binding energy to the asymptotic energy E, in Eq. (68). The
detuning has been set to s— v, =—10"2. Each line corresponds to a value of vy
(black: 1072, red: 10, green: 100, blue: 1000).

4.2 Regime of large range parameter

The limit of large range parameter values is especially interesting to study. For a fixed value
of the index s, it is obtained in the limit vy > 1. In this regime, depending on the value of
the detuning, the range term can be dominant with respect to the right-hand side of Eq. (57)
even in the region s < 1. This regime encompasses the narrow resonance limit in the s-wave
scattering for the 3D two-body problem, which occurs when the effective range is large and
negative.

When vy > 1, the range parameter in Eq. (45) can be approximated by

" ASRE By T(s + 1)
ST 2n(s—68/2)2

(67)

Using this last expression and neglecting the right-hand side of Eq. (56), one finds for a nega-
tive detuning 6 < 0 a bound state with the binding energy

(2s—06)06

(68)
251)6

E,
E,

15


https://scipost.org
https://scipost.org/SciPostPhys.17.4.108

e SciPost Phys. 17, 108 (2024)

The range term is much larger than the right-hand side of Eq. (56) only for intermediate values
of the detuning and a sufficiently large value of the index with the conditions:

1
(U6)1_25<<|5|2_25’ |6l < 1 = 5<s. (69)

Importantly, for a positive detuning 6 > 0, in the same limit there is a quasi-bound state

T
E:Er—la, (70)

where the real part E, is given by Eq. (68) and the ratio between the width and the resonance

energy is
&Y 1—s §\s+1
E,  T(s)261-svps

This ratio always vanishes near the threshold for § — 07 when s > 1, where one recovers
Eq. (66). More interestingly, it can be small even when s < 1, for a small but finite value of the
detuning and in the limit v( 3> 1. Hence, long-lived quasi-bound states can be described by us-
ing the effective range approximation for s < 1. Nevertheless from Eq. (69), whens < 1/2 it s
not possible to neglect the right-hand side of Egs. (56,57) and Egs. (68,71) are no longer valid.
Moreover, the value of the detuning must be also sufficiently small. For instance, Eq. (68) leads
to a spurious vanishing binding energy for 6 = 2s™, a result which is not compatible with the
decrease of a Macdonald function in Eq. (15). To conclude, Egs. (68,71) are no longer valid
in the vicinity of the Efimov threshold s = O where the range term is always negligible leading
to the one-parameter law in Eq. (62). This excludes the possible occurrence of a quasi-bound
state for small values of s. For s < 1/2 the range term is not dominant with respect to the
right-hand side of Eq. (56). However, the disappearance of quasi-bound states is not abrupt at
s =1/2. One can notice that a thorough analysis of quasi-bound states in the effective range
approximation for a 3D two-body s-wave resonance corresponding to the particular case where
s = 1/2 has been done in Ref. [38].

The results of this section are illustrated in Figs. (1,2) where the spectrum is plotted as
function of the index s for different values of the slope vy and a fixed value of the detuning.
For increasing values of v, the deviation of the spectrum from the one-parameter law of
Eq. (62) occurs for a decreasing values of s as shown in Fig. (1). A contrario, in the limit of
large values of vy, the spectrum reaches the two-parameter law of Eq. (68) for decreasing
values of s with a crossover that occurs asymptotically for an index s of the order of 1/2, as
expected.

4.3 Noticeable values of the index s
4.3.1 s =0: Areminder of the 2D s-wave interaction
From Eq. (62) for s = 0, one obtains the binding energy E = E© with:
E® =_4E;exp(2/6 —2y), (72)

where y is the Euler’s constant. One recovers the energy of a 2D dimer for a s-wave resonant
interaction which can be deduced from Eq. (19) giving the binding wavenumber

2e77

d2p = (73)

asp
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Comparing this last equation with Eq. (72), one has the formal mapping a,p, = Ry exp(—1/9).
One can notice that this 2D physics can be achieved for two atoms of reduced mass u in
an harmonic atomic wave guide and interacting resonantly in the s-wave with the scatter-
ing length asp. The wave guide is characterized by a frequency w | and a transverse length
a, = y/h/uw, . In this external potential, the 2D scattering length is given by [39-41]

C—y +may
Qyp =~ ay exp| ———
3D

), C=1.3605... (74)

Concerning the range correction in the limit of vanishing values of the index s such that
s < |6] < 1, the parameter a, cannot be approximated by Eq. (47). Instead, from Eq. (45)
one finds:

2vy—1
Ao — =3 (75)
and the range correction for the binding energy is small:
(2v}, — 1)(E@)?
E:E(O)(1+ e : (76)
EsS

4.3.2 s =1/2: Back to the s-wave resonance

The case s = 1/2 is equivalent to the s-wave two-body resonant problem. Near the threshold
the range parameter,

1
2

is related to the usual effective range r, with r, = —% whereas the 3D scattering length a is

equal to &,. The binding wavenumber is thus the solution of the usual equation of the effective

range approximation
2

1
M _g+==o. (78)
2 a

The limit where v, > 1 corresponds to a large and negative effective range which defines a
narrow two-body s-wave resonance.

4.3.3 Critical value of the index s =1

As already shown in Ref. [26] the index s =1 corresponds to a critical value. In this limit,
the range term is singular and annihilates the singularity in the right-hand side of Eq. (57),
whereas the remainder C(s,z) can be neglected. The eigenvalue equation Eq. (57) can be

written (vl
Roelr—v%
¢*R2In (%) =5. (79)

For a large and positive generalized scattering length, i.e. a small and negative detuning 6 < 0,
the binding energy is:
—2Ey6

20—v) s\
e 0’6

(80)
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where W_; is the Lambert function. For a positive and vanishing detuning 6 > 0, one obtains
a long-lived quasi-bound state with the resonance position given by®

—2E,5

Er =~ 62(771)6)5 5 (81)
W_| ——=
and the ratio between the width and the resonance energy
r —27
— ~ (82)
ET'

2r—v)) s\
e 0’5

As expected, in the limit of a large range parameter with vy 3> —In(|5[) /2, one recovers the
asymptotic results of Egs. (68,71).

The form of Eq. (79) has been found first in the context of hadronic physics in Ref. [24] by
using Alt-Grassberger-Sandhas equations. In this last reference, the system is made of three
particles with a single s-wave resonant pair and an example of quasi-bound state is given
by the three particles DD7. This situation corresponds indeed to the index s =1 (see for
instance section 6.1.3 in Ref. [18]). The same form as Eq. (79) was also given in Ref. [22].
The interest of the present derivation is to be more precise with respect to the number of free
parameters in the universal laws of Eqs (80-82). Here, one finds two-parameter laws, with
the two relevant independent parameters & and vy. Equation (80) can be also relevant for
the two neutrons halos studied in Refs. [8,9]. The two neutrons are loosely bound and the
halos are characterized by a two-neutron separation energy S,, (i.e. the energy needed to
extract the two neutrons from the halo) much smaller than the binding energy of the core. In
the case where the neutron-core scattering length (denoted by a.) is also small with respect to
the neutron-neutron scattering length a,, = —18.7 fm [42], one recovers again a three-body
system with a single s-wave resonant pair and the index s = 1 in the hyperradial function for
lap,| = p 2 la.|. 22C is a good candidate of such two-neutron halo if one considers the upper
bound |a.| < 2.8 fm for the neutron-core scattering length (see section 2.4 of Ref. [4]). ®He
(Son = 975 kev) is another example where the core is here the a-particle and a. ~ 2.47 fm, as
measured in Ref. [43]. In this case, the p-wave resonant character of the interaction between
the a-particle and a neutron plays a crucial role in the binding of ®He (see Ref. [44] together
with sections 3.7-3.10 in Ref. [4]). To conclude this paragraph, one has to notice that the law
in Eq. (79) does not take into account the finite value of the neutron-neutron scattering length.
The study of these particular halos and the link between the three-body parameters and the
nuclear interaction is beyond the purpose of this work.

4.3.4 Case s = 2: A relevant limit for the three-body problem

The case s = 2 occurs frequently in few-body physics. It corresponds for instance to a resonant
state made of three distinguishable particles without any resonant pairwise interaction [the
value s = 2 is obtained for A=0,N =3,D =3 in Eq. (11)]. In this case, as for larger integer
values, only the imaginary part of the logarithmic term in Eq. (59) plays a role at the order
of the effective range approximation. Then, one finds again Eq. (64) and Eq. (66) for the
quasi-bound state. Similar laws were also derived in Ref. [25].

3In the limit x — 0~, the Lambert function can be approximated by W_;(x) ~ In(—x) — In(—In(—x)) +...
Notice that there is an error in the expansion of the Lambert function used in Eq. (15) of Ref. [26] with an extra
factor e in the logarithm.
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5 Contact model

5.1 Construction of the contact model

In the contact model, the separability is extended in the region of small hyperradius i.e. for
0 < p <Ry, where the hyperradial functions satisfy Eq. (10).

A contact model defines a set of eigenstates {|¥)} (contact eigenstates) associated with
the set of the eigenstates of the reference model {|¥,s)} (reference eigenstates). The contact
eigenstates are solutions of the free Schrodinger equation everywhere except at the contact
of two or more interacting particles and (almost) coincide with their corresponding reference
states for p > R,. This last property is obtained by imposing appropriate asymptotic condi-
tion(s) on the contact states at vanishing inter-particle distances.

In the contact model, the stationary Schrodinger equation for a state |¥) of energy E is:

n? Aq
T,————E ) =0. 83
This equation is satisfied by the contact state everywhere except at p = 0 where the N-body
wave function is singular and also at the contact of two particles interacting resonantly in the
s-wave in the 3D (resp. 1D) space where Eq. (18) [resp. Eq. (20)] holds.

5.2 Log-derivative condition

In the low energy limit, one expects an equivalence between the contact model and the refer-
ence model valid at the order of the effective range approximation. The contact hyperradial
function satisfies thus a log-derivative condition of the following form:

p3,F(p,E)

=e¢—s— OR%k?. (84)
F(pJE) p:R

The parameter € plays the role of a detuning parameter for the contact model and the length
R is denoted in what follows as the effective radius.

The log-derivative condition in Eq. (84) is a simple way to impose the asymptotic behavior
of the contact states in the vicinity of the singularity at p = 0. This condition generalizes the
energy independent condition used in Ref. [26]. It is an alternative way to define a contact
model which is more usually defined by using a contact condition. The contact condition
equivalent to Eq.(84) will be given in Sec. 5.6.

5.3 Determination of the parameters of the contact model

The three parameters €, R and 6 in Eq. (84), are such that in the low energy limit, the spectrum
of the contact model coincides with the one of the reference model. A straightforward choice
is given by

R=Ry,, €=6, 0O=uvj. (85)
More generally, the equivalence of the two models is obtained by identifying the generalized
scattering length and respectively the range parameter of the two models. Thus, the parame-
ters €, R and 0 satisfy the equations

_ m(e—2s)R*

S5 = €s45T(s)2
_ #T(s+1)°R*>

%= (s —1)(2s —€)?

> (86)

(1+2(s—1)0), (87)
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where &, and a, are given in Egs. (44,45) and |e| < 1. Consequently, an infinite number of
choices are possible for the three parameters of the contact model.

It is worth pointing out that Egs. (86,87) can be also derived by identifying at the first
order in qZR%, the equations satisfied by the energy of the shallow bound state in Eq. (22)
obtained in the two models. This is a consequence of the universality of the short distance
behavior of the hyperradial function in the separability region.

5.4 Contact model in different resonant regimes
5.4.1 One-parameter resonant regime

In this regime defined in Sec. 4.1.1, the range parameter is neglected and the contact model
is a one-parameter theory defined for instance by the generalized scattering length &, with
the natural choice R =R, e = 9,0 = 0. Using Eq. (86), other choices are possible where the
parameters (€, R) satisfy

R 2¢ REZS 5

e—2s 6—2s
As depicted in Sec. 4.1.1, this one-parameter regime occurs only when s < 1 for vanishingly
small values of the detuning 6 or if Eq. (60) is satisfied.

(88)

5.4.2 Two-parameter resonant regime

When the range term is not negligible, the parameters (e,R) are solutions of the system of
coupled equations given by Eq. (88) and by:
R2—25 %—25
1+42(s—1)0)—— =(1+26—Dvy) —— . 89
(1426 =10 g5 55 = (1426~ D) 5 (89)
For s > 1, the factor (1+ 2(s— l)vg) in the right-hand side of Eq. (89) is always positive,
whereas when s < 1, it can be either positive or negative. This has a consequence on the
possible choices of the parameter 6. From Eq. (89), one has the following inequalities:

—1
s>1$9>2(s_1), case (a)
0 < _1 vh < _1 case (b) (90)
<1 2(1—s)’ 0 " 2(1-s)’
1 1
0> —, if v,>——.
213’ it v, 51— case (c)

The one-parameter regime is at the frontier between the case (b) and the case (c) of Eq. (90).

Standard resonant regime — The standard regime corresponds to the cases a) and b) of
Eqg. (90), i.e. when
1+2(s—1)vy > 0. (91)

In the 3D mapping, this regime encompasses two-body high partial wave resonances and also
broad s-wave resonances. From this point of view, it can be qualified as a ’standard resonant
regime’. An example of reference model where Eq. (91) is satisfied, is also given by the square
well model of Sec. (7). In this regime, whatever the value of the index s, it is always possible
to set 8 = 0. With this choice of the parameter 6, one recovers the log-derivative condition
for the contact model introduced in Ref. [26], i.e.:

PO F(p,E)

—e—s. 92
F(0,E) |per ©2)
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From Egs. (88,89) one finds when |6| < s (i.e. when s is not too close to the Efimov threshold):
€~ |1+2(s —1v)| =8, (93)

1
R~ |1+2(s—1)v6|”5 R,. (94)

The use of the absolute values in the right-hand side of Egs. (93,94) will permit one to use
these identities in the paragraph 5.4.2.
From Eq. (94) with the choice 68 = 0, one finds that

R<R,. (95)

This last inequality was obtained by using the modified scalar product in Ref. [26] and is
reminiscent of the Wigner bound obtained for high partial waves in two-body scattering.

Anomalous regime — This regime corresponds to the case c) in Eq. (90) and thus occurs
when s < 1 and
1+2(s—1)vy <O0. (96)

This means that there is a large energy dependence in the log-derivative condition of Eq. (15).
The 3D mapping of Eq. (14) for s = 1/2, shows that this resonant regime is analogous to a
two-body narrow s-wave resonance where the effective range is negative.

In this case, it is not possible to map the reference model to a contact model with an energy-
independent log-derivative condition. However, one can make the choice 6 = 6" where

1
1—s

0" =

, (97)

so that the parameters R and € are given by the same equations than in the standard regime
where 6 =0 in Eq. (89), but with the change

(1+2(s—1Dvy) = [1+2(s—1vy. (98)

Then for |6| < s < 1, one recovers again Egs. (93,94). Nevertheless, the inequality in Eq. (95)
is not satisfied for 6 = 6”.

5.4.3 Large range parameter limit

The regime where vy, is large can occur in the anomalous resonant regime when (s < 1) or
in the standard resonant regime when (s > 1). For s < 1, in the limit of a large value of Ug
as shown in Sec. 4.2, the transition from the one-parameter to the two-parameter resonant
regime occurs for a value of the index s of the order of 1/2. In this situation, even for a
small but finite value of the detuning, the effective range correction and thus the deviation
from the one-parameter regime may be important. In this regime it is essential to go beyond
the approximation of Egs. (93,94) and for simplicity one can use directly the parameters in
Eq. (85).

5.5 Bound and quasi-bound states

By construction the bound (or quasi-bound) states of the reference and contact models coin-
cide. The analysis done previously is however more general than what was done in Ref. [26].
This last study is available only in the standard resonant regime where the effective radius R
and the detuning e can be defined with the choice 8 = 0.
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Despite this equivalence, the parameters of the reference and of the contact models in
the standard resonant regime are generally not the same. One has thus to be aware that
keeping fixed one parameter or another in a asymptotic law may change the interpretation of
the results. For instance with the choice 8 = 0 in the standard resonant regime for s > 1, one
has a quasi-bound state of energy and a width I' given by:*

I 2n(s—1)4"" (E )8—1
E,. ~2(s—1)eEg, -~ | — , 99
r ( ) R Er F(S)z ER ( )
where Ej is the characteristic energy associated with the effective radius R:
h2
Ep= . 100
R™ 2mR2 (100)

Equation (99) was obtained in Ref. [26] and coincides with the scaling law of Ref. [22] (see
Eq. (1) in this last reference). In the same limit one obtains from Egs. (64,66):

E. ~

r

E~S 1—s E s—1
0 r 4 ( I‘) (101)

vy E,  v(I(s)? \E,
Even if Egs. (99) and (101) are equivalent, depending on which parameter is considered as
fixed in this large index limit may lead to a wrong interpretation. In the limit where s is large
and for a fixed value of vy, the energy Ey tends to E, € tends to zero and (s —1)e tends to
5/(2vy). One then finds the same position of resonance E,. However, this behavior is not
explicit in Eq. (99) and for increasing values of s, one can think about fixed values of the
parameters € and Ep in this last equation. The situation is even worth for the width T, in
which case despite the equivalence of the two expressions, one cannot replace abruptly Eg by
E, in Eq. (99). To conclude this discussion, the physical meaning of Eq. (101) is clearly more
transparent than the results of the contact model obtained with the choice 6 = 0, because ’U6
is directly related to the behavior of the reference states at small hyperradius. Moreover, in
Egs. (99,100) there is no information about the physical high energy scale E, which fixes the
limit of validity of the modeling itself.

5.6 Contact condition
5.6.1 Construction of the condition

The contact condition for the hyperradial function is a way to impose a specific behavior for a
vanishing hyperradius such that one recovers the behavior of the hyperradial reference wave
function at small but finite hyper radius of the order of Ry,. Due to the universality of the
behavior of the contact states in the limit of small hyperradius, one can make a reasoning at
negative energy with F(p, E) = K;(qp) when Ry, = 00. The contact condition at the order of
the effective range approximation, is then obtained by finding the linear operator that performs
the mapping of the small hyperradius limit of the contact hyperradial function F(p, E) to the

expression

q25

: . (102)
sin 7ts

1

T a,q* +Ry>C(s,—q°R3) —
S

Then, the contact states which all satisfy Eq. (57), belong to the kernel of this operator. For

this purpose, one uses the behavior of the Macdonald function K;(x) when x — 0:

K=" (X" [1 - (;_2 S Fﬁ;}f (-f)" s Fr((_S) (5) ... ]. (103)

A factor 2 is missing in the expression of I'/E, of Eq.(16) in Ref. [26].
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The mapping is done for each term of Eq. (57) as follows

()1
) e
— s 2s

and if s > 1 + 1), as discussed previously, it is necessary to introduce a counter-term with

(=1 —kK) (2 )2"—5 _, GO R (107)

I'(s)k! 2 n(s—k)

where k={s] if s> |s]+n and k = |s] otherwise. For convenience one uses the operator
already introduced in Ref. [26]

; B
335]" JF(p)[, (108)

which gives the coefficient of the term p” in the expansion of F(p) as p — 0. In this way, one
obtains the following contact condition for s < 1+ n:

o* 25, s(4p)T(s)?

lim] +4(s—1Da,p —,F(p)[zo, (109)
p—0] & T

and fors >1+4n:

e 2s  S(APYT(s)* 4 T(s)kIRH [
1 +4(s—1 + + ,F =0, 110
,}E})] z (s—1Dasp - A6 —k+D) P (p) (110)

where k =[s]if s > [s|+n and k = |s] otherwise.

By construction, the contact condition in Eq. (109) (or Eq. (110)) is equivalent to the log-
derivative condition (84) when the calculations are performed at the order of the effective
range approximation.

Interestingly, the contact condition in Eq. (109) allows for a continuous description of the
spectrum at the effective range order, as a function of the index s € [0,1 + n[. This permits
one to take into account the large range parameter limit for all these values of the index.
In this manner the transition from the one-parameter regime to the regime of large range
parameter of Sec. 4.2 can be studied accurately beginning from an index in the vicinity of the
Efimov threshold s = 0. In contrast, in Ref. [26], the effective range approximation was not
used systematically and the range was neglected for s < 7 to avoid a spurious divergence near
s=0.

5.6.2 One-parameter resonant regime

In the one-parameter resonant regime defined only for s < 1, the range term can be neglected
in the contact condition of Eq. (109) which can be rewritten

lim :|(2S—€)(Rp)s—G(Rp)_s,F(p)[=0. (111)
p—0

In Eq. (111) there is a freedom in the choice of the pair of parameters (e¢,R). At the order
of the effective range approximation, any choice of the parameters satisfying Eq. (86) gives
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the same results than if one takes e = & and R =R,,. The contact condition in Eq. (111) is
equivalent to imposing the following behavior on the contact hyperradial function as p — 0

F(p)=A><[(%)Se+(25—6)(%)_5]+..., (112)

where the scalar A depends on the state that one considers. The contact condition in Eq. (112)
was first defined in Ref. [19,20]. More recently, this contact model has been generalized to
describe losses in the two-component Fermi gas [45].

One recovers two well-known behaviors. First, when s = 1/2, using the 3D mapping in
Eq. (14) with the usual scattering length a = & 1, One recovers the Bethe-Peierls contact con-
dition:

f(p)cx(l—%) asp — 0. (113)

a

Second, in the limit s — 0, one recovers the contact condition for a two-body s-wave resonance
in a 2D space with:

F(p)ocln(i) asp — 0, (114
aszp

where a,;, = Re™/€. One can notice that Eq. (88) gives in the limit s — 0:
Re™ Y€ =Rye /%, (115)

showing the freedom in the choice of the parameters (¢, §) in the expression of a,p.
An alternative way to impose this contact condition is to use the pseudo-potential for a
two-dimensional resonant s-wave interaction [46].

5.6.3 Integer values of the index s

For integer values of s = n, the contact model of a N-body isolated resonance is formally equiv-
alent to a contact model for the 2D two-body problem with a resonant interaction in the n-th
partial wave. In this case, the series of F(p) contains terms of the form p" In(pqc,).> The case
s = 0 has been already studied. For s = 1, it is not possible to neglect the range term. For this
value of the index s, the behavior of the hyperradial function in the vicinity of p = 0 is:

2
F(p)=A[I;+q2pln(qpcl)]+---, (116)
with ¢; = Ler=1/2 From Eq. (79), the contact condition for s = 1 can be written
2

€
lim [—=—pR,F =0, 117
plg})]sz P (p)[ 117)
where the action of the operator in Eq. (108) applied on the logarithmic singularity is:

lin})]p,pln(ap)[ =In(aR)— 6 +%. (118)
p—

>For a interger value of the index s = n > 0, one has in the limit z — 0

ko=(5) S (F) -G

withc, =1/2 x exp(y —(1+...1/n)/2).
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This last operator and the contact condition in Eq. (117) are invariant in a change of (R, )
satisfying Eqs. (88,89), which give in the limit s — 1:

€ 5 -6 —vy

—_ =—, Re ™7 =Rye Yo (119)

R R2 °
If one wants to take into account the real part of the logarithmic singularity consistently for
higher integer values of the index s =n, it is necessary to include higher derivatives (i.e.
v™(0), v 1(0) ...) in the log-derivative of Eq. (15). At the order of the effective range
approximation, one can neglect these contributions. Nevertheless, as shown previously in
Sec. 4.1.2, the imaginary part of the logarithm is essential for the description of quasi-bound
states. It is thus necessary in the zero-range approach to extract the imaginary part of the
logarithm correctly. Finally from Eq. (59), one can deduce the contact condition

- 4"p"n!(n—1)!

lim ]p +4(n—1)asp2_”+—,F(p)[ =0, (120)
p—0] & T

with the following prescription for the operator in Eq (108):°

lirr(l)]p”,pnln(ap)[ =In(aR), n=2. (121)
p—

5.7 Modified scalar product
5.7.1 General expression and properties

Two contact states defined by the domain in Eq. (84) are not mutually orthogonal. Moreover
the singularity in p™° of any contact state when p — 0, leads to an arbitrarily large occupa-
tion of the small hyperradius region when s > 1. This normalization catastrophe and the non
orthogonality problem was solved in the standard resonant regime by introducing a modified
scalar product in Ref. [26], in the same spirit of what was done in the two-body contact model
for a high partial wave resonance in Refs. [30,47]. This method can be extended to the present
formalism. The 0 invariance of the results will be fruitfully used to show the equivalence with
the usual scalar product when one considers the reference model.

One begins with the wronskian equality for two contact eigenstates with two distinct ener-
gies E; # E, when Ry, = 00. For this purpose, one uses the 2D radial Schrodinger equation
for F(p, E;) in Eq. (10) multiplied by pF(p,E5)" and subtracted by the complex conjugate
of its analog obtained by the substitution E; <= E,. Integration of this last equation between
p =R and p = oo gives:

H°R

2m(Ey—Ey) WIF(p,E1),F(p,E))*,p=R].  (122)

oo
R
Then, using the log-derivative condition in Eq. (84), one finds
o
f PF(p,E|)F(p,Ey)*dp +R*0F(R,E;)F(R,E,)* = 0. (123)
R

The modified scalar product which ensures the orthogonality of two eigenstates of the contact
model and solves the normalization catastrophe is deduced directly from Eq. (123). For two

5A term zl—n was added in the right-hand side of the analog of Eq (121) in Ref. [26], but this term can be neglected
at the order of the effective range approximation.
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contact states (|¥;), |¥,)) with the respective hyperradial functions (F;(p), F5(p)) it is defined
by:

(U1]%5)0 = J du(¥|p)(p|W,) +R*6F;(R) Fy(R). (124)
P>R

This scalar product is independent of the energy of the eigenstates and can then be used for
all states in the domain defined by Eq. (84).

In the standard resonant regime of Sec. 5.4.2, one can choose the parameters (R, €) such
that & = 0 and the modified scalar product has the very intuitive form obtained in Ref. [26]
where the parameter R plays the role of a cut-off introduced in the usual scalar product:

(W11%5)0 :f du(¥;]p){p|¥y). (125)
P>R

It is also of interest to consider the one-parameter regime. It is shown in Ref. [20] (pages
65-66) from a contact condition equivalent to Eq. (111), that the contact model is self-adjoint
with respect to the usual scalar product in this regime. Thus in this regime, in principle there
is no need to use a modified scalar product. Nevertheless, there is no contradiction with the
preceding results in this particular case. Indeed, there are two possible conditions for having
the one-parameter regime when s < 1. The first one, corresponds to the limit of vanishing
value of the detuning & =~ 0. One finds in this limit a negligible contribution [= O((qRy)* )]
in the norm, of the small hyperradius region. Then at the lowest order in energy the modified
scalar product coincides with the usual one. The second possible condition is given by Eq. (60).
In this case, the small hyperradius region contribution is even smaller than in the previous case

[= 0((gRo)*)]-

5.7.2 Invariance with respect to a change of the parameters

The invariance of the modified scalar product in a change of the parameters (¢, R, 6) satisfying
Egs. (86,87) is exact only at the resonance threshold. For a finite detuning and finite energy
there is a negligible variation as shown in the following lines.

Using Egs. (86,87), the generalized scattering length and the range parameter remain
unchanged by a variation of the parameters (de,dR,d8), when

Rd6 €
—Z=0+26-100)(1+ ). (126)

From the definition in Eq. (124) and the log-derivative condition in Eq. (84) one then finds

d (¥|¥),

= [FR,E)P (1%5 + 292q2R2) . (127)

At Ry, = 00, the bound state wave function is given by Eq. (22) for all positive values of the
hyperradius and the norm of the bound state (¥|¥), is obtained from Eq. (A.7). Then in the
limit qR < 1, one has when s < 1:

d(@|¥), dR

W), — & H2-s)0aR)?) x O((gR)*), (128)
and when s > 1,
% = de (e +2(1 _5)(9qR)2) x0(1). (129)
0

As expected one obtains from Eq. (128) and Eq. (129), the invariance of the modified scalar
product in the limit of a small detuning and vanishing energy (|e|,qR) < 1.
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5.7.3 Self-adjoint extensions

As one of the basis of quantum mechanics, the self-adjoint character of an Hamiltonian is a key
property for any realistic system and the notion of self-adjoint extension is essential in many
situations [48,49]. In the presence of an inverse square potential, the singular character of the
contact solutions at vanishing hyperradius makes this property not trivial [50] and one has to
refer to the theory of self-adjoint extensions of operators. For this purpose one considers the
solutions of the hyperradial equation

1 2
(a§+l—)3p—%iw)pi(p)=o, (130)

where T > 0. The solutions are of the form
Fi(p)= ALK (exi%pﬁ)+8ils (ejFi%pﬁ) . (131)

The acceptable solutions are localized and thus must tends to zero for arbitrarily large hyper-
radius. This implies that B, = 0 in Eq. (131). The number of linearly independent solutions
for the eigenvalue +i7 gives the deficiency index n, =1 and for —i~, the deficiency index
n_=1. Thus one has n, =n_ =1, and following the Weyl-von Neumann theorem [48], there
is a one-parameter family of self-adjoint extensions for the contact Hamiltonian. This asser-
tion may appear puzzling as the contact theory of N-body resonances is defined through the
log-derivative condition in Eq. (84) with the three parameters €,R and 6. The answer to this
apparent paradox relies on the fact that the modified scalar product is also parameterized by
the effective radius R and the parameter 6. Hence, the way to understand this issue is that
for a given metrics, defined by the parameters R and 0, there exists a family of log-derivative
conditions in Eq. (84) parameterized by only one parameter: the detuning €.

Considering the eigenstate |¥(E)), the self-adjoint character of the Hamiltonian is proven
by showing that the difference,

A = (V(E;)|Ho¥(E,))o — (HoW(E1)|¥(E)) » (132)

is zero for arbitrary values of the energies E;, E,. One finds

2

R
W[F(PnEl)*:F(PaEZ):P :R] + 9R2(E2_El)F(P:El)*F(P:Ez), (133)

T

h
A=
2
and A = 0 thanks to Eq. (84).

5.7.4 Equivalence with the usual scalar product in the reference model

Let us consider the contact state |¥) associated with the reference state [¥'*f). The equivalence
between the two scalar products is obtained by making the choice of the parameters in Eq. (85)
which gives the norm

(¥|¥), =f pIF(p)IPdp + vj|RoF(Ro)I?. (134)
Ro

One then recognizes in the right-hand side of this last equation the contribution of Eq. (27) so
that one obtains
(U|0), = (wref el (135)
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As shown in the subsection 5.7.2, this last identity stays valid in the low energy limit at the
order of the effective range approximation where the parameters (R, 6) satisfy Egs. (86,87).
Moreover, two contact eigenstates of different energies being by construction orthogonal with
respect to the modified scalar product, one has the equivalence

(W [5) = (Wief|grefy | (136)

where (|\If{ef), |\I'£ef)) are the reference states associated with the contact states (|¥,), |¥,)). In
this equivalence, one has neglected the contributions where the wave function is not separable
when p =R, as in Eq. (27).

The norm of the contact state in Eq. (134) has been derived for Ry, = 00. When Ry,
is finite, contributions in the modified scalar product for p > Ry, coincide with those in the
usual scalar product so that, the equivalence between the two scalar products is still valid
when R, < 00.

6 Box model

To model in a simple way the effect of a finite value of R, in absence of two-body shallow
bound states (typically there is a 3D s-wave resonance for part of the interacting pair of parti-
cles and R, = |asp| with a finite but large and negative two-body scattering length asp), one
can consider the picture of one particle in a d-dimensional box of hyperradius R, with the
condition F(p = Ry, E) = 0. This condition models the fact that for increasing values of p,
starting from an hyperradius of the order Ry,,, the N-body state is no longer separable and
its component on the hyperspherical harmonic involved in the separability region is gradually
depopulated.
The hyperradial function is then

Ks(quup)
Is(quup)
Using the log-derivative condition in Eq. (15) and taking into account that the second term

in I,(gp) in the right-hand side of Eq. (137) is small with respect to the term in K;(qp) when
P =R, one finds:

F(p,E)= A[Ks(qp)— Is(qp)] . (137)

29,K;(2)

=—s+6+vhq?R2 —sX, (138)
K,(2) 0% 0

2=qRg

with the small parameter

X = —K; (quup)
qRoK(qRo)K!(qRo)I(qRsyp)

A typical solution is given in Fig. (3) with s = 1, § = —0.01 and vy = 0.5. One obtains a result
qualitatively similar to the behavior of one branch of an Efimov spectrum as a function of
—1/asp > 0 with an endpoint at the three body continuum for a finite and negative value of
the 3D scattering length asp,.

(139)

7 Square well model
The contact model gives the external part of the shallow resonant states and not the interior

part in the region behind the kinetic barrier where the actual interactions are sufficiently at-
tractive to induce a bound or a quasi-bound state. This explains the universality of the results.
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Figure 3: Example of spectrum obtained in the box model of Sec. 6, as a function of
the inverse of the hyperradius Ry, above which the bound state wave function is no
longer separable.

It has been shown that the modified scalar product leads to the same normalization than the
one obtained with actual finite range interactions (i.e. the reference model) in the limit of
vanishing energy. This is why one obtains the generalization of the bounds found in Ref. [32]
which have a general character. To have a simple illustration of these features, one considers
in this section a simplified reference model of N-body resonance which is separable for all
values of the hyperradius.

This model is defined by a square well potential at short distance without the effective
centrifugal barrier in the range of the well:

22
_2m0’ for p <Ry,
Vip)= hzszr (140)
s otherwise,
2m,p?

and the hyperradial function for an eigenstate of energy E is solution of

i 1
[—Zmr (apz+Eap)+V(p)—E:|F(p,E)=0. (141)

2 2
The bound state solution E = —ZTq of Eq. (141) is

Ado(kp),  for p <Ry,

142
AouKs(qp), otherwise, (142)

F(p,E)={

where k = 4/ K% —q2. The continuity of the log-derivative at p = R,y gives with the notation of
Eq. (15):
2 8zJ 0 (Z )
Jo(2)
res

At the N-body resonance the value of x; = k™ is obtained from Eq. (143) forq =0 and vy =s
giving the equation

= —u(—q?R2). (143)

z2=KRg

20J1(20) = —sJo(20), (144)
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with z5 = KBGSRO and from Eq. (144), one obtains

SZ

7
220

v, =

0 +

(145)

N[+~

Using the fact that the solutions of Eq. (144) are such that x*R, > 2.4048.. ., one can verify
that Eq. (91) is always satisfied and the resonance is in the standard regime for all possible
values of s. By making the choice 6 = 0, the effective radius at resonance is given by:

82 33 ﬁ
R= S——2+—2 RO' (146)
%y %o

In Fig. (4), the solid black line is an example of a normalized hyperradial bound state solution
of Eq. (141) computed at the detuning € =—0.01 and for the index s =1.3. The contact
solution is displayed in red in the region p > R and in green for the small hyperradius part
p <R. The contact state which is not square integrable has been normalized by using the
modified scalar product. The two functions almost coincide for p > Ry,. A similar analysis can
be done if one includes the effective centrifugal barrier for p < R, with the potential

2 2
i 22 for p <R
zmr p2 o> 0>

h2s2

2m,p2’

V(p) = (147)

otherwise.

Then, F(p, E) = Ay, J(kp) for p <R,. One finds vy = % andR= (s)ﬁ Ry, and the system is
again in the standard resonant regime for all values of s.

0 05 15

1
P/ R,

Figure 4: Example of hyperradial function for a shallow bound state in the vicinity
of a resonance in the standard regime with ¢ = —0.01 and s = 1.3. Black solid line:
normalized reference function, solution of Eq. (141); red solid line: contact function
for p > R normalized by using the modified scalar product (it coincides with the
black line for p > Ry); green solid line: contact function for p <R (truncated at
small hyperradius).
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8 Conclusions

Various regimes of non efimovian N-body resonances near threshold have been explored, when
a scale invariance can be identified. All the results are deduced from the properties of a po-
tential with a repulsive tail identical to a kinetic barrier with an arbitrary strength. A contact
model is then constructed to encompass all the possible situations. Three regimes emerge
in the contact model: the single parameter regime which has been already introduced in
Ref. [19, 20] when s < 1, the standard resonant regime which has been studied by means
of different methods in Refs. [22-26], and the anomalous resonant regime. This last regime
occurs for a large range parameter when s < 1 and can thus occur only in presence of two body
s-wave scattering resonances. The identification of possible long-lived quasi-bound states in
this last regime for small but finite detuning, when % < s < 1, is perhaps the most important
physical result of this paper. A possible example for obtaining such values of the index s is
given by the problem of two fermions of mass M interacting resonantly in the s-wave with an
impurity of mass m and a mass ratio in the interval 8.618--- < % < 12.313...[51]. Similarly
to two-body narrow (respectively broad) s-wave resonances [52], it is possible to show that a
three-body resonance with a large (respectively small) range parameter will result from a Fes-
hbach resonance mechanism in the small (respectively large) coupling limit between the three
particles and a three-body molecular state in a closed-channel. This scenario which requires
the tuning of both a two- and a three-body Feshbach resonance, paves the way of achieving
the different regimes of resonances in the interval 0 <s < 2.

The analysis of the three resonant regimes brings out the minimal number of N-body pa-
rameters needed to model N-body resonances. If a quasi-bound state exists at unitarity for a
small and positive detuning then two three-body parameters are needed because two quan-
tities must be parameterized: the energy and the width of the resonance. Likewise a two
parameter law for the binding energy at negative detuning is deduced from the resonance
energy by analytical continuation. A contrario, when a quasi-bound state cannot occur at pos-
itive detuning, then only one N-body parameter is needed in the small energy limit and one
recovers the spectrum of Refs. [19, 20].

The threshold laws for bound and quasi-bound states have been obtained in this manuscript
when the hyperangle-hyperradius separability and thus when the scale invariance is valid for
arbitrary large scale. A box model has been introduced to have a qualitative approach when in
a 3D space, a two-body scattering length a,p, is large and negative (implying that the separa-
bility breaks down at an hyperradius of the order of, or larger than |asp|). In the examples of
resonances considered in this manuscript (single resonant pair in nuclear halo states, DD res-
onance and >He droplets), the scattering length cannot be varied so that experimental results
cannot be decisive to validate the universality issue (for instance considering a quasi-bound
state, the two parameters laws can be always adjusted by using two data: resonance energy
and width). In this respect, the possibility of varying the scattering length at fixed values of
the three-body parameters using ultracold atoms is promising for studying the universality is-
sue. The precise determination of the universal spectrum for given values of the three-body
parameters as a function of the two-body scattering length is therefore essential. A possible
candidate for experimental studies follows from the prediction of three-body resonances in
presence of a two-body p-wave resonance [7] and by using the (”!Yb-171Yb-Cs) system as
suggested in Ref. [26].

At the heart of the present paper, the scattering problem of potentials with a tail in an
inverse square law appears in various contexts [53]. In the repulsive case, the first thing that
comes to mind is the centrifugal barrier in the two-body problem, which explains the Wigner’s
law at threshold in a scattering process and which has been generalized in Ref. [25] for the
generic regime case defined in Sec. 2.1.1. It is also at the source of beautiful models initiated
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by Ref. [54]. The fascinating attractive case leads also to predictions in very different area of
physics: the Efimov effect [14] or the bound states of an electron with a polar molecule [55].
This paper deals with the repulsive case where bound or quasi-bound states exist for sufficiently
attractive potentials at short distance. In the zero-range model picture, the scale invariance
linked to the potential with a pure inverse square law is broken due to the contact condition,
giving thus another example of quantum anomaly [50, 56,57].

The contact model is a self-adjoint extension of the N-body Laplacian in association with
a modified scalar product that solves the problem of non orthogonality and the normalization
catastrophe. Beyond its application in the context of N-body resonances, this contact model
is also interesting in itself as a new example of a way to handle a contact interaction leading
to non square integrable localized states and thus this enriches the variety of contact models
usually considered [58].
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A Useful relations used in this paper

This appendix gathers for convenience almost all the known properties of Bessel’s and Gamma
functions that are needed to derive the results in the main text.

To make the link between bound states and quasi-bound states in Sec. 3, one uses the
analytical continuation

L) = 0,(i9),, K,(e) = SO (i), A1)

together with the following relations between the Bessel’s functions

gD H2)
J(z)=— (z); . (Z), (A.2)
H(U(z) _ ie_sz.(z)—iJ_s(z) ’ (A3)

$ sin(7ts)
@) ==, HYE=H(). (A4)

To define the scattering phase shift in the inverse square potential, one uses the asymptotic
behavior of the Hankel’s function Hs(l)(z) for z —» oo

A 2 (pem_=
Hs(l)(z)2 Eel(z—T—z, (A.5)

The expressions of the generalized scattering length and of the range parameter in Egs.(44,45)
are deduced from
—2\k
4
()

2\ —
1@=(3) L ireairn: (A.6)

The small hyperradius behavior of the Macdonald function K,(z) which is used in the expres-
sion of the contact condition in Sec. 5.6 can be also obtained from this last series. One can
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verifies also the identity

J uKs(u)zdu=EW[zasz(z),Ks(z),z]: [2K41(2)* — 2K, (2)> — 25K 1 (2)K,(2)], (A7)

N | R

which is used to obtain Eq. (30).
The two following properties of the Gamma function have been also used in the main text

I'(z+1)=2I(z), (A.8)
r(1—2)l(z) = ——— . (A9)
sin(7tz)
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