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Abstract

In this work, we revisit and elaborate on twisted holography for AdS3 × S3 × X with
X = T4, K3, with a particular focus on K3. We describe the twist of supergravity, identify
the corresponding (generalization of) BCOV theory, and enumerate twisted supergravity
states. We use this knowledge, and the technique of Koszul duality, to obtain the N →∞,
or planar, limit of the chiral algebra of the dual CFT. The resulting symmetries are strong
enough to fix planar 2 and 3-point functions in the twisted theory or, equivalently, in
a 1/4-BPS subsector of the original duality. This technique can in principle be used to
compute corrections to the chiral algebra perturbatively in 1/N.
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1 Introduction & summary

Twisted holography [1–3] is a proposal to access protected quantities on both sides of a holo-
graphic duality. While twists of field theory have been studied for a long time, and correspond
to restricting to the cohomology of a chosen supercharge, twisting a supergravity or (space-
time) string theory involves turning on a background vev for the bosonic ghost associated to
the corresponding supertranslation [1]. More precisely, given a noncompact Calabi-Yau five-
fold with asymptotic boundaries, we can specify a vacuum by prescribing asymptotic values
of the fields (mathematically, choose an augmentation of the factorization algebra). The cor-
responding vev of, in particular, the superghost provides a solution to its equations of motion,
which in the BV formalism is a solution to the Maurer-Cartan equation. The equation of motion
for the superghost tells us that it must be a covariantly constant spinor of square zero. We think
of the twist as deforming the field equations by the resulting Maurer-Cartan element, which
means (in perturbation theory) studying fluctuations around the resulting field configuration.
In the context of AdS/CFT, a choice of twist in the boundary CFT does not uniquely determine a
twist in the gravitational theory, but rather gives a boundary value problem to solve for possible
covariantly constant spinors in the bulk theory. Working perturbatively around any of these so-
lutions gives different “twists” of the supergravity theory, and in this work we choose one such
saddle, corresponding to the twist of empty AdS3, and work in perturbation theory around it.
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In the physical theory, of course, what happens in the interior is determined dynamically after
specifying the asymptotic boundary conditions; it is a fascinating open question to understand
how one can move beyond working around a given saddle in twisted SUGRA, and, for instance,
understand the localized path integral as a suitable sum over twisted gravitational saddles.1

Many choices of twists are possible, corresponding to the family of nilpotent supercharges
available in the supersymmetry or superconformal algebra. One interesting, and relatively ac-
cessible, class of twists are those which endow the surviving local operators with the structure
of a chiral algebra. In four real dimensions, such a twist has been an area of active recent
inquiry [4] and was applied to the twisted holography of 4d N = 4 super Yang-Mills in [2]. In
two real dimensions, such a twist is simply the half-twist [5,6], and does not change the effec-
tive dimensionality of the twisted field theory or its bulk dual. We will explore this relatively
simple twist in the context of (top-down models of) AdS3/CFT2, in particular AdS3×S3×K3.
Many similar results for the case when K3 is replaced by T4 have already appeared in the
companion paper [3]. It is important to note, however, that the half-twisted theory (equiv-
alently, the minimal, holomorphic twist in two dimensions) is sensitive to nonperturbative
corrections, such as worldsheet instantons, which makes studying a global description of the
twist of the SCFT on K3 from first principles somewhat challenging. The mathematical version
of this statement is that the chiral de Rham complex of a nontrivial compact manifold is given
locally as a sheaf of free vertex algebras, but gluing these local descriptions together is not
easy. Although we will derive such a local description of the twist on the field theory side, we
emphasize a way to circumvent the global challenge: given the description of a twisted super-
gravity theory, one may apply the operation of Koszul duality to obtain the chiral algebra of
the dual field theory. In particular, the global subalgebra of the chiral algebra, which can also
be deduced by considering vacuum-preserving diffeomorphisms of the bulk geometry, appears
in this construction. That the mathematical operation of Koszul duality may govern part of the
holographic dictionary in twisted holography was first suggested in [7] and successfully ap-
plied to AdS/CFT in [3]. For a review of Koszul duality and further citations, see [8]. The plan
of this paper is as follows. In §2 we will give our description of the holomorphic twist of IIB
supergravity in six dimensions (upon compactification on K3).2 We describe how our twisted
action can be obtained by integrating out the vev of a bosonic superghost. We then derive the
backreacted geometry in the presence of the twisted D1-D5 system. In §3, we enumerate the
states in twisted supergravity and reproduce the elliptic genus computation of [10,11] in this
language. In §4, we review the computation of the N →∞ elliptic genus from the orbifold
SCFT SymN (K3) and its matching with the supergravity computation, and twist a local model
of the B-brane D1-D5 brane system. This twist recovers the expected description of the chiral
de Rham complex of SymN (C2) (i.e. the half-twist of the symmetric orbifold SCFT) in the
infrared. The Loday-Quillen-Tsygan theorem, which is a natural tool in the large-N limit of
twisted holography (e.g. [12], [13]), gives equivalent results in the N →∞ limit to this local
model of the twist, but has not yet been developed mathematically for the global K3 geometry.
Consequently, in §5 and §6 we turn our attention to the determination of the planar chiral
algebra of the dual field theory from Koszul duality, first studying the chiral algebra Koszul

1In a similar vein, if one is only interested in perturbative analyses, the twists of [1] can be studied on compact
CY5s, such as T 10. In this case, we have no choice of asymptotic vacuum and there is typically a unique solution to
the BPS equations, so one can formally twist by studying the fluctuations around this solution. In the language of
factorization algebras, the cohomology of global sections of the factorization algebra to the ground field is typically
one-dimensional on a compact background.

2It would also be interesting to study twisted holography for AdS3×S3×S3×S1; see [9] for precise conjectures
about the form of the duality and additional references. In a twisted background, the relevant geometry is a
deformation of (C3˘C) × Y where Y is a Hopf surface that is diffeomorphic to S3 × S1. Since Hopf surfaces are
not Kähler, to carefully study this twisted background would require more care than our analysis here. Given
a satisfactory formulation of BCOV on Hopf surfaces, it would be of interest to characterize the universal chiral
algebra for D-branes in this twisted compactification.
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dual of twisted IIB supergravity on C2× K3 and then incorporating the effects of the D-brane
backreaction using a perturbative Feynman diagrammatic approach; while incorporating the
effects of backreaction perturbatively from flat space would normally involve the summation
of an infinite number of diagrams, the problem simplifies dramatically in twisted holography.
There are a finite number of nonzero diagrams at each order in N [3], and only 3 in the planar
limit. We also comment on the global subalgebras of the chiral algebras dual to the symmetries
of the flat space and backreacted (i.e. holographic) geometries, respectively.

2 Twisted supergravity in six dimensions

The compactification of type IIB supergravity on a Calabi–Yau surface results in a supergrav-
ity theory which enjoys N = (2, 0) supersymmetry. We concern ourselves with a simplifica-
tion obtained by twisting the original type IIB supergravity with respect to a particular ten-
dimensional supercharge. This supercharge is such that the resulting compactified theory is
holomorphic in the sense that it only depends on the complex structure of the six-dimensional
spacetime.

As found in [3], in the case that the complex surface is T4, this holomorphic theory is an
extended version of the famous Kodaira–Spencer theory introduced in [14] to describe the
closed string field theory of the B-model on a Calabi–Yau threefold. In this paper we mostly
consider the case where the surface we compactify along is a K3 surface, referring to [3]
for details in the case where the surface is T4. This section outlines the description of this
extension of Kodaira–Spencer theory. More generally, we comment on a similar extension of
Kodaira–Spencer theory which depends on the data of a commutative super ring equipped with
a trace (in the physically meaningful cases, this ring corresponds to the graded cohomology
ring of either K3 or T4 and trace is integration).

We recall some generalities on twisting supergravity following the foundational work
in [1]. In any supergravity theory there are ghosts for both local diffeomorphisms and local
supersymmetry. Ghosts for local supersymmetries are bosonic ghosts and are typically realized
as sections of a spinor bundle over spacetime. Twisted supergravity is simply supergravity in
a background where a particular bosonic ghost for local supersymmetry acquires a nonzero
expectation value Q. In addition to being part of a consistent background for supergravity, Q
must satisfy the Maurer–Cartan equation [Q,Q] = 0, where [−,−] is supercommutator in the
local supersymmetry algebra. In this sense, for deformations of flat space, the classification of
twisting supercharges for supergravity is closely related to twists of ordinary field theories.

The ten-dimensional IIB supersymmetry algebra admits a range of such twisting super-
charges. We concern ourselves with a so called ‘minimal’ (or holomorphic) twisting super-
charge Q which has the property that it is stabilized by SU(5) in the Lorentz group Spin(10).
Such twists exist whenever the ten-dimensional spacetime is a Calabi–Yau manifold of dimen-
sion five. In [1] a conjecture for this twist is given as a certain limit of the string field theory
obtained from the topological B-model on the Calabi–Yau fivefold. The free limit of this con-
jecture has been proven in [15].

We remark on a caveat involving this conjecture. First, the topological B-model has crit-
ical complex dimension three, meaning that genus g amplitudes are nonzero only when the
dimension of the Calabi–Yau target manifold is three. On the other hand, there is no U(1)
factor of the R-symmetry in the ten-dimensional IIB super Poincaré group which is compatible
with the choice of a holomorphic supercharge Q. These issues are related. On one hand, while
there are no nonzero amplitudes for insertions of operators of total ghost number zero, there
are nonzero amplitudes involving operators of nonzero ghost number (here we mean ghost
number computed from the worldsheet perspective). On the other, the fact that there is no
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U(1) within the R-symmetry that is compatible with Q means that the fields in the resulting
twisted theory do not have a consistent spacetime ghost number, but only a ghost number
modulo 2. These two observations are consistent with the fact that Kodaira–Spencer theory
defined on a Calabi–Yau manifold of dimension different from three is a theory with ghost
number grading by the group Z/2, rather than the typical integral grading. One can think of
this Z/2 as fermion parity, so there is no longer an invariant distinction between ghosts and
ordinary fermions in this theory. We will observe, nevertheless, that upon compactification of
this ten-dimensional Kodaira–Spencer theory to six-dimensions that we are able to lift this Z/2
grading to a fairly natural integral one (but of course this choice is not unique).

2.1 Kodaira–Spencer theory and IIB supergravity

We turn to a recollection of the conjectural holomorphic twist of type IIB supergravity in ten
dimensions as originally described in [1]. Our discussion largely follows [3]. We refer to these
references for more details.

The holomorphic supercharge used to minimally twist supergravity is invariant under
SU(5) ⊂ Spin(10), and so can be defined on any Calabi–Yau fivefold X . In [1], as we just
recalled, it was conjectured that the holomorphic twist of IIB supergravity is equivalent to a
certain truncation of the topological B-model on X .3 We will assume this conjecture through-
out the paper, and we will provide further justification in section 2.2.

The fields of Kodaira–Spencer theory on the Calabi–Yau fivefold X are given in terms of
the Dolbeault complex of polyvector fields on X ; that is, sections of exterior powers of the
holomorphic tangent bundle with values in (0,•) Dolbeault forms:

PVi, j(X ) = Ω0, j(X ,∧i T X ) . (1)

In local holomorphic coordinates z1, . . . , z5 such a polyvector field can be expressed as

µ= µī1···ī5
j1··· j5

dz ī1 · · ·dz ī5∂z j1
· · ·∂z j5

.4 (2)

It is convenient to express polyvector fields in terms of a single superfield. To do this, we
rename dz ī as θ ī and ∂z j

as θ j . Bear in mind that θ transforms as a holomorphic vector while

θ transforms as an anti-holomorphic covector. With this notation, a general polyvector field

µ ∈ PV(X ) = ⊕i, jPVi, j(X ) , (3)

can be thought of as a smooth function

µ= µ(zi , z ī ,θ
i ,θ ī) , (4)

on the superspace C5|5+5 where the odd cordinates are θ i ,θ ī for i, ī = 1, . . . , 5.
The space of fields of Kodaira–Spencer theory is not all polyvector fields: rather, the fields

are polyvector fields which satisfy the constraint that they are divergence-free with respect to
the holomorphic volume form Ω. Geometrically, this means that LµΩ = 0 where Lµ is the Lie
derivative;5 equivalently this is the condition ∂ µ = 0 where ∂ is the divergence operator. In
coordinates this reads

∂ =
∑

i

∂θ i∂zi
. (5)

3This truncation was referred to as ‘minimal’ Kodaira–Spencer theory in loc. cit.. It effectively throws out the
non-propagating fields.

4We will always omit the wedge product symbol ∧.
5We recall that the Lie bracket on polyvector fields is the Schouten bracket, which reduces to the usual Lie

bracket on ordinary vector fields.
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In addition to ∂ µ= 0 we also require that

∂θ1 · · ·∂θ5µ= 0 , (6)

which effectively throws away the top power of TX . We will justify this additional condition
shortly.

To define the action functional we utilize an integration map
∫ Ω

X
: PV5,5(X )≃ C∞(X )θ1 · · ·θ5θ1 · · ·θ5→ C , (7)

which is
∫

(µ∨Ω)∧Ω, withΩ the Calabi–Yau form. This operation simply projects out the PV5,5

component of the Kodaira–Spencer field, to get (0,5) form, then integrates this against the
holomorphic volume form. In terms of the superspace description this is the usual integration
along X together with the Berezinian integral along the odd directions.

A typical feature of Kodaira–Spencer theory, formulated naively, is that the kinetic part
of the Lagrangian contains a non-local expression involving the distributional inverse of the
divergence operator ∂ . While this is not globally well-defined, the condition that µ be in the
kernel of ∂ ensures that there exists locally such a polyvector field.

In summary, the fields of Kodaira–Spencer theory are

PV(X )∩ ker∂ . (8)

The Lagrangian is
1
2

∫ Ω

X
µ∂ ∂ −1µ+

1
6

∫ Ω

X
µ3 . (9)

The conjecture originally put forth in [1] is that this Lagrangian captures the supersymmetric
sector of IIB supergravity as described above. The superfield µ captures all the original fields,
anti-fields, ghosts, etc. of type IIB supergravity after integrating out those fields which become
massive in the holomorphic twist. Since the field µ includes anti-fields and anti-ghosts, we can
describe the BV anti-bracket in this notation. The BV anti-bracket of two super-fields is

{µ(z, z,θ ,θ ),µ(w, w,η,η)}= ∂zi
∂θ iδ(z −w)δ(z −w)(θ −η)(θ −η)Id . (10)

The appearance of the holomorphic derivative ∂zi
in the expression above is one way to un-

derstand the appearance of the non-local kinetic term in the Lagrangian.
From this BV anti-bracket it is clear that the component of the super-field µ proportional

to the top polyvector ∂θ1 · · ·∂θ5 does not propagate. It is therefore convenient to impose the
additional constraint

∂θ1 · · ·∂θ5µ= 0 , (11)

on the fields of Kodaira–Spencer theory, as mentioned earlier.
We can avoid part of the non-locality appearing in the action by introducing a field
bµi1···i4 ∈ PV4,• which satisfies

(∂ bµ)•i1 i2 i3
= µ•i1 i2 i3

, (12)

where the bullet denotes arbitrary anti-holomorphic form type. We can do this because we
have the constraint ∂ µ= 0. Then, the kinetic term in the Lagrangian above can be written as

∫

εi1···i5ε j1··· j5
µi1∂ bµi2···i5 +

1
2

∫

εi1···i5µi1 i2(∂ ∂
−1µ)i3 i4 i5 . (13)

This Lagrangian is still non-local, but the only non-locality involves the field PV2,•(X ). We will
see the significance of this field from the perspective of supergravity in the next subsection.

6

https://scipost.org
https://scipost.org/SciPostPhys.17.4.109


SciPost Phys. 17, 109 (2024)

2.2 Matching supergravity with Kodaira–Spencer theory

At the level of free fields, the match between the holomorphic twist of type IIB supergravity
on R10 = C5 and Kodaira–Spencer theory has been performed in [15]. Here, we spell out a
precise relationship between the fields of Kodaira–Spencer theory and those of supergravity,
to illustrate how Kodaira-Spencer theory encodes (the twist of) the physical field content. For

clarity of presentation we will work on flat space near the flat Kähler metric g i j̄
0 = δ

i j̄ .
The most important bosonic field in supergravity is, of course, the metric tensor. As repre-

sentations of SU(5), the metric tensor breaks into three components: g i j , g i j̄ , g ī j̄ . To leading
order, the components g i j , g i j̄ are rendered massive in the twist and can hence be removed.

The remaining component of the metric corresponds to the field µ j̄
k in Kodaira–Spencer theory

via the Kähler form
g ī j̄ 7→ δkīµ

j̄
k . (14)

The fermionic fields of type IIB supergravity include a gravitino. In the untwisted theory
the gravitino has a spinor index and a vector index. As an SU(5) representation, the 16-
dimensional spinor representation S+ of SO(10) decomposes as a sum of three irreducible
representations: the trivial representation, the exterior square of the anti-fundamental repre-
sentation, and the fourth exterior power of the anti-fundamental representation:

S+ ≃SU(5) C⊕∧2C
5
⊕∧4C

5
. (15)

The component which survives the twist is the holomorphic vector valued in the exterior square
in the above equation, and we denote this field by

λ
j̄1 j̄2
i , (16)

which we can view as an element PV1,2(C5).
The antifield to the component of the gravitino λ j̄1 j̄2

i is a tensor of the form λ∗k
l1 l2

, where

the ∗ just indicates that this is an anti-field in the physical theory. Since the gravitino is an odd
field, its anti-field has overall even parity. It turns out that it is the derivative of this anti-field
that corresponds to a field of Kodaira–Spencer theory

∂zk1
λ
∗k2

l1 l2
7→ εk1k2 i1 i2 i3εl1 l2 j1 j2 j3

µ
j1 j2 j3
i1 i2 i3

. (17)

That is, we view the derivative of the anti-field as an element of PV3,3. Following the discussion

above, we can use the equation ∂ µ= 0 to replace the field µ j1 j2 j3
i1 i2 i3

by a field bµ satisfying

µ
j1 j2 j3
i1 i2 i3

= ∂z j
bµ

j1 j2 j3
ji1 i2 i3

. (18)

Note that bµ j1 j2 j3
ji1 i2 i3

is a field of type PV4,3. Using this modified field in Kodaira–Spencer theory,
we can more easily match with the anti-gravitino via

λ∗k
l1 l2
7→ εki1 i2 i3 i4εl1 l2 j1 j2 j3

µ
j1 j2 j3
ki1 i2 i4

. (19)

Next, let us explicitly match the holomorphic twist of type IIB supergravity with Kodaira–
Spencer theory at the level of the kinetic term in the Lagrangian. In (13) we have expressed
the kinetic term in the Kodaira–Spencer action as a sum of two terms. We first show how there
is a similar kinetic term involving the metric g and the anti-field to the gravitino λ∗ when we
twist type IIB supergravity.

7
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Recall that the holomorphic twist amounts to assigning a certain component of the su-
perghost a nontrivial VEV. As an SU(5) representation the superghost Q can be written as a
sum of three tensors Q(0),Q j1 j2 ,Q j1··· j4 , which are the components of the even exterior pow-
ers of the anti-fundamental representation of SU(5). Here Q(0) denotes the SU(5) invariant
component of the superghost in the N = (1, 0) subalgebra; this is the component in which
the holomorphic supercharge lives. A term in the BV action involving λ∗ and Q arises from a
supersymmetric variation of the gravitino λ.

Reverting back to SO(10) notation, where a, b = 1, . . . , 10 are vector indices and
α,β , . . . = 1, . . . , 32 are spinor indices, the supersymmetric variation of the gravitino is of
the form

δλαa = δab(∂xb
εα + Aαb

β (g)ε
β) . (20)

Here A is the spin Levi-Civita tensor in the spin representation of Spin(10).6 Taking a pertur-
bative expansion of the flat metric of the form δab + gab and working to low order in gab, we
can write the ordinary Levi-Civita connection as

Abc
a =

1
2
δad(∂xc

g bd + ∂b g cd − ∂d g bc) +O(g2) . (21)

In terms of this ordinary Levi-Civita connection, the spin Levi-Civita connection can be written,
employing the usual Γ -matrices, as

Aαb
β = Γ

αγ
c Γ

a
βγA

bc
a . (22)

We are interested in the covariant derivative of the constant spinor ε(0).
As before, a spinor decomposes, as an SU(5) representation, into a sum of even exterior

powers of the anti-fundamental representation. The index (0) represents the SU(5) invariant
part of the spinor. A simple computation with Γ -matrices shows that the components of the
spin Levi-Civita connection whose lower index is (0) and upper index is (i j) are

A(i j)k
(0) = Aik

j δ
j j ,

A(i j)k
(0) = Aik

j δ
j j ,

where the ordinary Christoffel symbols appear on the right hand side (with SU(5) indices).
Plugging in (22) we see that the desired variation of the gravitino is

δλ
i j
k = δkkA(i j)k

(0) ε
(0)

= δkkδ
j jAik

j ε
(0)

=
1
2
δkkδ

j jδ jl

�

δzk
g l i + ∂z i

g lk − ∂z l
g ik
�

ε(0)

=
1
2
δkk

�

δzk
g ji + ∂z i

g jk − ∂z j
g ik
�

ε(0)

= εi jδkk∂z i
g jkε(0) .

In the last line we have used the fact that i, j appear anti-symmetrically on the left hand side.
It follows that once we assign a nonzero VEV to the superghost Q(0) in the BV action there is
a term of the form

(∂zk
g i jδl i)λ

∗l
k j

. (23)

6We use A instead of Γ for the Levi-Civita connection to avoid confusion with Γ -matrices.
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This matches precisely with the first term in the Kodaira–Spencer kinetic action.
The final fields we describe in terms of the holomorphic twist are the Ramond–Ramond

fields in supergravity. These fields are sourced by D(2k − 1)-branes and are forms of degree
8−2k. In the original presentation of Kodaira–Spencer theory, certain components of the field
strengths of such forms are present as polyvector fields. The field strength is a form of degree
9− 2k; in the holomorphic twist the component of this form which survives is of Hodge type
(5− k, 4− k) and corresponds to polyvector field of type (k, 4− k) using the isomorphism

PVk,4−k(C5)≃Ω Ω5−k,4−k(C5) ⊂ Ω9−2k(R10)⊗C , (24)

determined by the Calabi–Yau form.
A special Ramond–Ramond form is the four-form C ∈ Ω4(R10) sourced by a D3-brane.

Such a field is required to be ‘chiral’ in the sense that its field strength F = dC is self-dual. The
component of the field strength

F ī1 ī2 j1 j2 j3 ∈ Ω3,2(C5) , (25)

survives the holomorphic twist. Using the holomorphic volume form, these components are
identified with the fields

F ī1 ī2 j1 j2 j3 7→ ε j1 j2 j3 j4 j5µ
ī1 ī2
j4 j5

, (26)

which is a polyvector field of type (2, 2). Self-duality becomes the constraint ∂ jµ
ī1 ī2
jk = 0 that

this polyvector field be divergence-free. This constraint gives rise to the non-local kinetic term
present in equation (13). For more on the relationship between constraints and non-local
kinetic terms we refer to [16].

This concludes our general discussion of the twist of ten-dimensional type IIB supergravity
in terms of Kodaira–Spencer theory. We now turn to compactifications as understood in the
twist.

2.3 Compactification of Kodaira–Spencer theory

We will focus on the setting where we compactify Kodaira-Spencer theory on a complex sur-
face. This section largely follows [3], which analyzed the compactification of Kodaira-Spencer
theory on T4 (but actually can be extended to any compact holomorphic symplectic surface
with no difficulty), and the subsequent backreaction computation in the twisted D1-D5 system.
Many of the computations easily generalize when the T4 is replaced by K3.

Let Y be a complex surface (which we will soon take to be compact) with a fixed holomor-
phic symplectic structure. A general field of Kodaira–Spencer theory on C3× Y is a Dolbeault-
valued polyvector field which is annihilated by the divergence operator with respect to the
holomorphic volume form. We will use coordinates z, w1, w2 on C3 and we fix the standard
Calabi–Yau form Ω= dzdw1dw2.

A Dolbeault-valued polyvector field αk,• on C3× Y of type (k,•) can be written as a tensor
product of one on C3 with one on Y

αk,• =
∑

i+ j=k

β i,• ⊗ γ j,• , (27)

where β i,•,γ j,• are polyvector fields of type (i,•), ( j,•) on C3, Y respectively. Polyvector fields
on Y are the same as differential forms, because the holomorphic symplectic form on Y identi-
fies the tangent and cotangent bundles. In particular, the harmonic polyvector fields are given
simply by the de Rham cohomology of Y . Furthermore, polyvector fields on Y which are har-
monic are automatically in the kernel of the divergence operator ∂ , by standard Hodge theory
arguments. To summarize, there is an equivalence of graded algebras

PV(C3)⊗
�

ker∂ |PV(Y )

�

≃ PV(C3)⊗H•(Y ) .
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We will use this equivalence to describe the fields of the theory on C3 upon compactification
along Y .

Let
R= H•(Y ) , (28)

denote the cohomology ring of Y . We are interested in the case that Y is a K3 surface, in
which case this algebra is generated by even elements η,η,ηa for a = 1, . . . 20 subject to the
relations

η2 = η̄2 = 0 ,

ηaηb = habηη̄ ,
(29)

where hab is a non-degenerate symmetric pairing on C20. Let I denote the ideal generated by
these equations so that R= C[η, η̄,ηa]/I .

As before, we write the polyvector fields on C3 in terms of a superspace by introducing
odd variables θ i , θ j . Here, θ i represents the coordinate vector field ∂zi

and θ i represents
the coordinate Dolbeault form dz i . Then we can write the field content as a collection of
superfields

µ(z, z,θ i ,θ i ,η) ∈ ⊕i, jPVi, j(C3)⊗ R . (30)

Here, we are using the shorthand η to inform that there is a dependence on η,η, and ηa,
a = 1, . . . , 20. As such, such a superfield decomposes in its dependencies on the generators of
the cohomology of Y as

µ(z, z,θ i ,θ i) +µη(z, z,θ i ,θ i)η+µη(z, z,θ i ,θ i)η+µ
a(z, z,θ i ,θ i)ηa +µηη̄(z, z,θ i ,θ i)ηη̄ . (31)

We emphasize that the η-variables represent harmonic polyvector fields on Y and so are not
acted on by any differential operators along C3.

The superfield satisfies the equation ∂ µ= 07 where, in the superspace formulation,

∂ = θ j∂z j
, (32)

∂ = ∂θ i∂zi
. (33)

We denote by
∫ Ω

C3

(−)|ηη : PV3,3 ⊗ R→ ηηPV3,3→ C , (34)

the projection onto the summand Cηη ⊂ R followed by integration as in (7). We emphasize
that the notation (−)|ηη means we pick up only the ηη component.

The Lagrangian is
1
2

∫ Ω

C3

µ∂ ∂ −1µ|ηη +
1
6

∫

C3µ3|ηη . (35)

We can simplify the field content somewhat, following [2] which the authors in [1] refer to as
minimal Kodaira–Spencer theory. We note that the coefficient of θ1θ2θ3 does not appear in
the kinetic term in the action. This field does not propagate, so we can (and will) impose the
additional constraint

∂θ1∂θ2∂θ3µ(z, z,θ ,θ ,η) = 0 . (36)

This constraint only removes a single topological degree of freedom and hence will not signif-
icantly modify quantities like OPEs later on.

7For notational simplicity, we will no longer make manifest the dependence of the divergence operator on Ω.
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Next, let us expand the superfield µ only in the θ i variables:

µ= µ(z, z,θ ,η) +µi(z, z,θ ,η)θ i + . . . (37)

We note that the constraint ∂ µi j = 0 implies that there is some super-field

bµi jk(z, z,θ ,η) = α(z, z,θ ,η)εi jk , (38)

so that ∂zi
bµi jk = µ jk. This is parallel to the maneuver that we made for Kodaira–Spencer

theory on C5 as in (12) above.
It is convenient to rephrase the theory in terms of the field α(z, z,θ ,η), which has no

holomorphic index. We will also change notation and let γ(z, z,θ ,η) be the term with no θ i

dependence in the superfield µ(z, z,θ ,θ ,η).
In summary, we have the following fundamental superfields in the compactified theory

on C3:

• µi(z, z,θ ,η)θ i which we identify with an element in the graded space

µ ∈ PV1,•(C3)⊗ R[1] . (39)

• α(z, z,θ ,η) which we identify with an element of the graded space

α ∈ Ω0,•(C3)⊗ R . (40)

• γ(z, z,θ ,η) which we also identify with an element of the graded space

γ ∈ Ω0,•(C3)⊗ R[2] . (41)

We explain the cohomological shifts in the next paragraph. In terms of these fields, the La-
grangian is

1
2

∫

C3

εi jk∂ µi(∂
−1µ) jk d3z|ηη +

∫

C3

α∂ γd3z|ηη +
1
6

∫

C3

εi jkµiµ jµk d3z|ηη +
∫

C3

αµi∂zi
γd3z|ηη .

(42)
In this expression we project onto the component ηη as before.

Just as when we twist a field theory, when we twist a supergravity theory the ghost number
of the twisted theory is a mixture of the ghost number and a U(1)R-charge of the original
physical theory. To define a consistent ghost number, one can choose any U(1)R in the physical
theory under which the supercharge has weight 1. In general, there are many ways to do this.
It is convenient for us to make the following assignments of ghost number.

1. The fermionic variables ηa have ghost number 0.

2. The anti-commuting variables θ i have ghost number 1.

3. The field α has ghost number zero.

4. The field µ has ghost number −1 (so that the θ i component has ghost number zero.

5. The field γ has ghost number −2 (so that the θ iθ j component of γ has ghost number
zero).

With these choices one can check that the action (42) is ghost number zero. Note that in
the case R = C the choice of ghost numbers we take here is in agreement of the presentation
of Kodaira–Spencer theory on C3 as in [2], who used this formulation to explore the chiral
algebra subsector of 4d N = 4 SYM and its twisted gravity dual.8

8See also [17] for the first exploration of the gravitational dual of the chiral algebra subsector of 4d N = 4
SYM.
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2.4 Compactification and twisted multiplets

In this section we comment on the content of twisted six-dimensional N = (2,0) supergravity
in terms of standard six-dimensional N = (2, 0) multiplets.

In six-dimensional N = (2, 0) supersymmetry there are two multiplets which appear in
compactifications from ten dimensions: (i) the graviton multiplet and (ii) the tensor (or chiral
two-form [18]) multiplet (the latter being the same multiplet describing the twist of a single
M5 brane in eleven-dimensional supergravity on R11). The holomorphic twists of these multi-
plets have been characterized in [15,16]. By virtue of their holomorphicity, each theory shares
a linear gauge symmetry by the ∂ operator, schematically of the form δΦ = ∂Φ and so in the
free field descriptions below we will use Dolbeault complexes to label twists of the multiplets.

We recall the field content of each of the twisted six-dimensional multiplets, whose origin
we will review in more detail below.

(i) The holomorphic twist of the the graviton multiplet has fundamental fields

(µ,ρ, eα) ∈
�

ΠPV1,•(C3)[1]∩ ker∂
�⊕3

, (43)

as well as fields

(eγi , eβ j) ∈ Ω0,•(C3)⊕2 ⊕Ω0,•(C3)⊕2 ⊕Ω0,•(C3)⊕2 , (44)

where i, j = 1, 2,3. In N = (1,0) language this is the holomorphic twist of a N = (1, 0)
graviton multiplet, three hypermultiplets, and a single N = (1, 0) tensor multiplet.

(ii) The holomorphic twist of the N = (2,0) tensor multiplet has fields

α ∈
�

ΠΩ2,•(C3)[1]
�

∩ ker∂ , (45)

together with
(γ,β) ∈ Ω0,•(C3)⊕2 . (46)

In N = (1, 0) language this is the holomorphic twist of a single hypermultiplet and a
single N = (1,0) tensor multiplet.

We will see how these multiplets arise from compactification of our ansatz for the twist of
type IIB supergravity on a K3 surface. Following the above presentation of Kodaira–Spencer
theory we express the field content of the twist of type IIB supergravity on a Calabi–Yau fivefold
X as:

(γI IB,βI IB) ∈ PV0,•(X )⊕ PV4,•(X )∩ ker∂ ,

(µI IB,ρI IB) ∈ ΠPV1,•(X )∩ ker∂ ⊕ΠPV3,•(X )∩ ker∂ ,

αI IB ∈ PV2,•(X )∩ ker∂ ,

where Π denotes parity shift.
On a fivefold of the form X = C3 × Y where Y is a K3 surface, γI IB decomposes as

γI IB = (eγ,γ0,2) ∈ Ω0,•(C3)⊕Ω0,•(C3)⊗H0,2(Y ) . (47)

Up to topological degrees of freedom, βI IB decomposes also as

(eβ ,β2,0) ∈ Ω0,•(C3)⊕Ω0,•(C3)⊗H2,0(Y ) . (48)

The field µI IB decomposes as

µI IB = (µ,α0,2; Γ ) ∈
�

PV1,•(C3)[1]⊕ PV1,•(C3)[1]⊗H0,2(Y )
�

∩ ker∂ ⊕Ω0,•(C3)⊗H1,1(Y ) , (49)
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where the divergence is with respect to the CY form on C3. We decompose Γ further
as (γa′

1,1,eγω1,1) where eγω1,1 ∈ Ω
0,•(C3) is associated to the Kähler form ω ∈ H1,1(Y ) and

a′ = 1, . . . , 19 labels the remaining cohomology classes in H1,1(Y ).
Similarly, if we neglect topological degrees of freedom, the field ρI IB decomposes as

(ρ,α2,0, B) ∈
�

PV1,•(C3)[1]⊗H2,2(Y )⊕ PV1,•(C3)[1]⊗H2,0(Y )
�

∩ ker∂ ⊕Ω0,•(C3)⊗H1,1(Y ) , (50)

where we decompose B as (βa′
1,1, eβω1,1) where eβω1,1 ∈ Ω

0,•(C3) is associated to the Kähler form
and a′ = 1, . . . , 19.

Finally, the field αI IB decomposes, up to topological degrees of freedom, as

(eγ′, eβ ′,γ2,0,β0,2;A) ∈ Ω0,•(C3)⊕4 ⊕
�

PV1,•(C3)∩ ker∂
�

⊗H1,1(C3) , (51)

where we further decompose A as (eαω,αa′
1,1) as we did above.

Now we can assemble these fields into twisted multiplets as follows.

• The fields
(µ,ρ, eαω;eγ,eγ′,eγω1,1, eβ , eβ ′, eβω1,1) , (52)

comprise the twist of the N = (2, 0) graviton multiplet.

• The fields
(α0,2,α2,0,αa′

1,1;γ0,2,γ2,0,γa′
1,1,β0,2,β2,0,βa′

1,1) , (53)

comprise the twist of 1+ 1+ 19= 21 tensor multiplets with N = (2,0) supersymmetry.

To conclude, we see that in terms of multiplets the compactification of the twist of type IIB
supergravity on a K3 surface decomposes as

type IIB supergravity⇝ (i) + 21 (ii) . (54)

This combination of multiplets is known to be anomaly free and is compatible with the de-
scription of the K3 compactification of the physical type IIB supergravity (see, e.g., [19]) at
the level of the holomorphic twist. It would be interesting to work out the anomaly cancella-
tion mechanism in a purely holomorphic language, following similar work as in [20].

2.5 Backreaction as a deformation

From now on we fix the holomorphic coordinates (z, w1, w2) on C3. We start with type IIB
supergravity on C3 × Y , with Y a K3 surface, and consider a system of D1–D5 branes where
some number of D1 branes wrap the complex line {wi = 0} in C3 and a point in K3:

{wi = 0} × {x} ⊂ C3 × Y , (55)

and some number of D5 branes wrap the same complex line {wi = 0} in C3 together with the
entire K3 surface:

{wi = 0} × K3 ⊂ C3 × Y . (56)

The effective open string theory associated to this system of branes will be supported on the
intersection of this system which is simply the complex line {wi = 0} in C3.

Using classic results [21], we can apply a duality to turn this into a D3 brane system which
wraps

C× 0×Σ ⊂ C3 × Y , (57)

for a (special) Lagrangian two-cycleΣ ⊂ Y . This follows from the fact that any general D-brane
(bound) state on Y may be described by a Mukai vector v, which is a primitive vector such that
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F ∈ Γ 4,20, F2 > 0. Any two such vectors of equal length can be related to one another by T -
duality transformations in O(Γ 4,20). Of course, matching the moduli between the two duality
frames can be an involved task. For our purposes, we will only need a few basic features in
this frame.9 As in our setup, B-branes (which, again, are BPS with respect to some chosen
N = (2, 2) subalgebra of the N = (4,4) superconformal algebra) on K3 surfaces can wrap not
only 2-cycles, but also curves of dimension 0 and 4 (i.e. points or the entire K3 surface).

In the last section, we argued that the compactification along a K3 surface becomes an
extended version of Kodaira–Spencer theory where the extra fields are labeled by the coho-
mology of the surface. Upon compactification, the D3 system becomes a system of B-type
branes in this extended version of Kodaira–Spencer theory.

The charge of these branes is labeled by a cohomology class

F ∈ H2(Y ) ⊂ R . (58)

In particular, we take F to be a primitive Mukai vector, as above. We denote

N
def
= 〈F, F〉 , (59)

using the inner product on H2(Y ). Explicitly, if F = f η + f η + f aηa for f , f , fa complex
numbers, then N = 2 f f + f a f bhab where hab is the fixed non-degenerate symmetric pairing.
Then the D-brane charge is related to the number of D1-D5 branes in the original duality frame
N ∼ N1N5.10 (To satisfy the primitivity condition, we assume N1, N5 are coprime. Since the
supergravity theory is only sensitive to the product N , rather than the constituents N1, N5, it
is often convenient to take N1 = N , N5 = 1).

Notice that the length of the D-brane charge vector F2 is of order N . We will always work in
the supergravity limit in which any formal series in the inverse of these parameters is treated as
an asymptotic series. More generally, let us explicate the parameters available to us in twisted
supergravity. Exactly as in [3], the Kodaira-Spencer Lagrangian on flat space comes with an
overall power of 1

g2
s

with gs the string coupling constant, which can be completely absorbed

by rescaling of the fermionic variables ηa→ gs
−1/2ηa. However, in the backreacted geometry,

rescaling the fermionic variables rescales the D-brane charge vector F by 1
gs

and N by 1
g2

s
so

that gs ∼
1p
N

as usual. We will always perform this rescaling. Notice that it is convenient for us
to start with flat space and treat the backreaction perturbatively, i.e. as a small-N expansion;
as in [3], we find that the backreaction truncates to a finite series due to the presence of the
fermionic coordinates, so one can work equally well in small-N (which is convenient for the
Koszul duality computations in the sequel), or in large-N (as usual for holography).11

9A simpler application of these ideas, in which the dimensionality of the wrapped cycle does not change, is the
following. The positive-definite 4-plane which specifies the hyperkähler structure on K3 can be decomposed into
two orthogonal 2-planes which amounts to making a choice of complex structure and complexified (by the B-field)
Kähler form. A quaternionic rotation of the 4-plane then exchanges the complex and Kähler structures, which
is equivalent to a mirror symmetry transformation on the K3 surface. This will exchange the notion of B-branes
and A-branes on K3, where B-branes wrap holomorphic curves (with respect to a chosen complex structure) and
A-branes wrapping special Lagrangian 2-cycles. This point of view can also be reformulated as an application of
the Strominger-Yau-Zaslow [22] picture of mirror symmetry as a composition of T -dualities acting on an elliptic
fiber.

10We will always work in the supergravity approximation, and neglect the difference between the D-brane
charges and numbers of D-branes in this work.

11By contrast, [2] works in the exact deformed geometry, rather than perturbatively around flat space, so that
N is fixed immediately as the period of the holomorphic volume form. It is a phenomenological observation in
twisted holographic computations that observables (at the very least, observables involving operators with con-
formal weights that do not scale with N) either truncate to finite series in N or can be resummed to quantities
analytic in N , allowing us to match small-N (Koszul duality) expansions with the large-N holographic expansions;
it would be desirable to have a more fundamental proof of these observations.
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Generally, the backreaction deforms the geometry away from the locus of the brane. Before
backreacting, we should say what geometry is actually being deformed. In the case of ordinary
Kodaira–Spencer theory on C3, it was shown in [2] that the backreaction of B-branes along
C ⊂ C3 deformed the complex structure on C3 \ C to the deformed conifold, isomorphic to
SL2(C). In the case of the compactification of the IIB string on T4, the resulting backreacting
geometry is a super enhancement of the conifold [3].

Our case is similar in that the branes are supported along the same locus as in [2,3]. The
difference is that, compared to [2], we are working with a bigger space of fields, roughly ex-
tended by the cohomology of the K3 surface. Recall that R= H•(Y ) denoted the cohomology
ring of the K3 surface. Notice that this algebra is canonically augmented by the map which
sends all non-unit generators to zero (see [8] for a physical interpretation of the augmenta-
tion and its relationship to Koszul duality). A useful perspective on the extended version of
Kodaira–Spencer theory we obtain by compactification along K3 is as a family of theories over
the scheme Spec R. This family has the property that over the augmentation ideal mR we ob-
tain ordinary Kodaira–Spencer theory. We will see that in the case of type IIB compactified
on a K3 surface that the backreaction determines an infinitesimal deformation of the complex
manifold C3 \C over Spec R.

If R is any local ring, an infinitesimal deformation of a complex manifold M0 over Spec R
is an element

µde f ∈ PV1,1(M0)⊗mR , (60)

satisfying the Maurer–Cartan equation. In our case, M0 = C3 \C and µde f is a field sourced by
the branes. The Maurer–Cartan equation is the equation of motion for µde f . The cohomology
ring R of a K3 surface is a local ring. Following [2,3], the backreaction of this system of branes
introduces a twisted supergravity field

µBR ∈ PV1,1(C3 \C)⊗ R , (61)

which we can identify with an element of Ω2,1(C3 \ C)⊗ R using the Calabi–Yau form on C3.
This field satisfies the following defining equations

∂ µBR = F δC⊂C3 ,

∂ µBR = 0 .
(62)

For quantization we will also impose the standard gauge fixing condition that ∂
∗
µBR = 0 in

terms of the usual codifferential ∂
∗
. There is a unique solution to the above equations given

by

µBR =
εi jwidw j

4π2|w|4
∂z ⊗ F . (63)

Note that this field is of the form µBR,0⊗F where µBR,0 ∈ PV1,1 is the Beltrami differential which
gives rise to the deformed conifold [2]—all of the dependence on the parameters η,η,ηa is in
the cohomology class F . Also we notice that F ∈ mR.

Equations (62) imply that µBR determines an infinitesimal deformation of C3 \ C over
Spec R. The Kodaira–Spencer map associated to this infinitesimal deformation is of the form

KS : TSpec R→ H1(C3 \C, T ) ,

where T denotes the tangent sheaf of the corresponding space, and simply maps a derivation
δ of A to the class

δ(F)

�

εi jwidw j

|w|4
∂z

�

∈ H1(C3 \C, T ) .
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We point out a more explicit characterization of this infinitesimal deformation of C3 \ C as
a subvariety of C4 × Spec R following similar manipulations as in [2, 3]. Choose coordinates
(η,η,ηa) so that Spec R is thought of as an algebraic subvariety of C22 (recall the dimension
of the second cohomology of K3 is b2(K3) = 22) cut out by the equations (29). From this
point of view, the flux F can be thought of as (the restriction of) a linear function on Spec R.
An arbitrary function

Φ= Φ(z, z, wi , wi ,η,η,ηa) , (64)

is holomorphic in the deformed complex structure determined by µBR if and only if

dwi
∂Φ

∂ wi
+ F
εi jwidw j

4π2|w|4
∂Φ

∂ z
= 0 . (65)

The following functions are holomorphic for this deformed complex structure

u1
def
= w1z − F

w2

4π2|w|2
,

u2
def
= w2z + F

w1

4π2|w|2
.

(66)

In addition to the relations satisfied by the variables η,η,ηa, these functions satisfy

u2w1 − u1w2 = F . (67)

We denote this geometry by X , which the above formulas have expressed as a quadratic cone
inside C4×Spec(R), where ui , w j are coordinates on the C4. The backreacted geometry is given
by the locus where we further remove the locus where the coordinates ui , w j are both zero;
this is an open subset that we denote by X 0 ⊂ X .

We point out that there is a canonical projection

X 0→ Spec R , (68)

thus exhibiting X 0 as an R-deformation of the conifold. In analogy with the backreaction in
the ordinary B-model, we will refer to X 0 as the K3 conifold.

The holomorphic volume formΩ= dzdw1dw2 is unchanged upon making this deformation
since µBR is divergence-free. We can write this volume form in the deformed coordinates above
as

Ω= w−1
1 du1dw1dw2 (69)

(or a similar expression involving w−1
2 ) and note that this volume form is only well-defined on

the fibers of the projection X 0→ Spec(A).

2.6 A generalized Kodaira–Spencer theory

Before moving on, we point out that the above constructions make sense in the following
generality. Fix a graded commutative ring R equipped with a trace tr: R→ C. In the entirety
of this section R= H•(Y ) and tr(a) =

∫

Y a, where Y is a K3 surface (or T4 as in [3]).
More generally we can consider a complex three-dimensional theory whose fields, in the

BV formalism, are given by
µ ∈ PV1,•(C3)⊗ R[1] , (70)

and
α ∈ Ω0,•(C3)⊗ R , γ ∈ Ω0,•(C3)⊗ R[2] . (71)
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The action functional is

1
2

∫

C3

εi jk tr∂ µi(∂
−1µ) jk d3Z +

∫

C3

trα∂ γd3Z + 1
6

∫

C3

εi jk trµiµ jµk d3Z +

∫

C3

trαµi∂zi
γd3Z .

(72)
We refer to this as R-Kodaira–Spencer theory. For a general ring R, we lose the interpretation
of type IIB supergravity compactified on some holomorphic symplectic surface. On the other
hand, judicious choices of R may allow one to consider ‘compactifications’ of supergravity on
possibly singular surfaces.

3 Enumerating twisted supergravity states

We have derived our twisted supergravity theory in the backreacted geometry; we will re-
fer to the latter henceforth as the K3 conifold, adapting the terminology of [3]. Our theory
conjecturally captures a protected subsector of IIB supergravity on AdS3 × S3 × K3 (which
we will refer to as the untwisted theory), and we would like to perform some sanity checks
of this conjecture. In particular, in this section we demonstrate that the partition function
of twisted supergravity states reproduces the seminal count of 1

4 -BPS Kaluza–Klein modes in
the untwisted theory [10]. The methods in this section are only slight modification of those
in [2,3], so we refer to these original references for more details.

3.1 Inclusion of boundary divisors

In order to enumerate twisted supergravity states, we must understand the boundary divisors
of the K3 conifold, which are the geometric support for the asymptotic scattering states that
participate in (the holomorphic analogue of) Witten diagram computations.12

The idea is to compactify the K3 conifold X 0 to a super-projective variety X 0 inside
CP4 × Spec(R).13 We give the CP4 homogeneous coordinates Ui , Wi , Z , so that we can com-
plete the K3 conifold defined by equation 67 to

εi jUiWj = F Z2 . (73)

The boundary is then at Z = 0, given by εi jUiWj = 0, which is the variety
CP1×CP1×Spec(R) ⊂ CP3×Spec(R). As in [2], the two CP1’s may be understood, respectively,
as the 2-sphere boundary of AdS3, and the S2 base of the S3 factor, viewed as a Hopf fibration.
Each CP1 is naturally acted on by a copy of SL2.

To determine the complex structure in the neighborhood of the boundary, we must find
coordinates which are holomorphic in the deformed geometry, as described in the previous
section. To start, we can endow the two CP1’s with holomorphic coordinates w, z and anti-
holomorphic coordinates w̄, z̄ (in addition to the coordinates η on Spec(R)), and take the CP1

with coordinates z, z̄ to be the boundary of AdS3 on which the dual twisted SCFT will live. In
addition, we can specify a coordinate normal to the two boundary spheres by n, which has a
simple pole at z =∞ and at w =∞. We need to specify the behavior of Kodaira-Spencer
fields at n = 0, where the complement of n = 0 is the uncompactified K3 conifold. In these

12While we will not study bulk scattering directly in this work, it would be interesting to explore methods to make
such bulk computations more efficient, perhaps by generalizing the technology of [23,24] to curved backgrounds.

13Note that other compactifications are possible, depending on one’s application. In [25], the deformed conifold
SL(2,C) was not compactified to a quadric, as here, but instead was compactified inside the blow up of a flag
variety. That compactification was the one compatible with the symmetries inherent from viewing the deformed
conifold as the twistor space of 4d Burns space, which has isometry group SU(2)×U(1). It would be interesting to
extend the analysis of [25] to the conifolds of [3] and the present article, and view them as twistor spaces in turn.
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coordinates, the holomorphic volume form is

Ω= −
dndwdz

n3
+

F
n

dndwdw̄
(1+ |w|2)2

. (74)

With these coordinates, one can straightforwardly define twisted supergravity states via the
usual AdS/CFT extrapolate dictionary.

However, this naive coordinate system is not holomorphic. Rather, the complex structure
is deformed by the Beltrami differential

Fn2dw̄
1

(1+ |w|2)2
∂z . (75)

Holomorphic functions in the neighborhood of the boundary are given by

w1
def
=

1
n

, (76)

w2
def
=

w
n

, (77)

u1
def
=

z
n
− Fn

w̄
(1+ |w|2)2

, (78)

u2
def
=

wz
n
+ Fn

1
(1+ |w|2)2

. (79)

Notice that these coordinates have poles at n = 0 and satisfy u2w1 − u1w2 = F . Moreover, in
these coordinates the holomorphic volume form again takes the canonical form

Ω=
du1dw1dw2

w1
. (80)

3.2 Enumerating states in Kodaira–Spencer theory

To describe boundary conditions on the fields in our theory, we can use the partial compactifica-
tion of the K3 conifold described in §3.1. All that remains is, following the usual AdS/CFT pre-
scription, to specify vacuum boundary conditions for our Kodaira-Spencer supergravity fields.
Then, our twisted supergravity states are solutions to the equation of motion that satisfy these
vacuum boundary conditions except at a point on the conformal boundary of the AdS3 factor,
say z∗. In other words, twisted supergravity states are, as usual, local modifications of the
boundary conditions, which are equivalent to boundary operators placed along CP1

w × {z∗}.
Recall that there are three fundamental fields for Kodaira–Spencer theory. Two fundamen-

tal fields α,γ are Dolbeault forms of type (0,•). The last fundamental field µ is a (0,•) form
valued in in the holomorphic tangent bundle. We can use the Calabi–Yau form to view µ as a
Dolbeault form of type (2,•).

• The vacuum boundary condition for the fields α,γ is that each are divisible by the coor-
dinate n. That is, we require these fields to vanish on the boundary divisor.

• The vacuum boundary condition for the field µ is that, when viewing it as a Dolbeault
form of type (2,•), it can be expressed as a sum of terms which are each wedge products
of d log n, dw, dz, dn, dw, dz with coefficients that are regular at n = 0. (Notice that we
allow this field to have logarithmic poles on the boundary divisor, although one may also
choose to impose the more restrictive condition that µ is a regular Dolbeault form).
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We can now enumerate the supergravity states that satisfy these boundary conditions
except for at a point-localized disturbance or source. Here, we consider ordinary Kodaira–
Spencer theory on C3 with B-branes wrapping C ⊂ C3. The result is a recapitulation of [2], to
which we refer the reader for more details.

Denote by
�m

2

�

S the short representation of psu(1,1|2) whose highest weight vector has
(J3

0 , L0) eigenvalues (m
2 , m

2 ). Denote by y the fugacity for the U(1) symmetry 2J3
0 and q the

fugacity for the U(1) symmetry L0. Let

D = (1− q)(1− q1/2 y)(1− q1/2 y−1) . (81)

This is the denominator that will appear in the single particle index computed below. The
factor (1−q)−1 arises from the tower of ∂z-derivatives. The factors (1−q1/2 y±1)−1 arise from
the towers of ∂w1

,∂w2
respectively.

• State µ ∼ n−kd log ndw1δz=0. For k ≥ 1 these even states and their descendants con-
tribute

yq1/2

D
, (82)

to the single particle index.

• Lowest lying state µ∼ n−kd log ndw2δz=0. For k ≥ 1 these even states and their descen-
dants contribute

y−1q1/2

D
, (83)

to the single particle index.

• Lowest lying state µ ∼ n−kd log ndzδz=0. For k ≥ 2 these even states and their descen-
dants contribute

q2

D
−

q
D

, (84)

to the single particle index. The term −q/D appears due to the constraint satisfied by
the field µ, ∂Ωµ= 0.

• State α∼ n1−kδz=0. For k ≥ 1 these odd states and their descendants contribute

−
q
D

, (85)

to the single particle index.

• State γ∼ n1−kδz=0. For k ≥ 1 these odd states and their descendants contribute

−
q
D

, (86)

to the single particle index.

In total we find that the single-particle gravitational index is

q2 − 3q+ q1/2(y + y−1)
(1− q)(1− q1/2 y)(1− q−1/2 y−1)

=
yq1/2

1− yq1/2
+

y−1q1/2

1− y−1q1/2
−

q
1− q

. (87)

Alternatively, one can use an explicit expression for the character χm(q, y) of the psu(1,1|2)-
representation
�m

2

�

S , see equation 4.1.16-17 of [3], and evaluate the single particle index

χ
�

⊕m≥1

�m
2

�

S

�

=
∑

m≥0

χm(q, y) . (88)

The result is the same.
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3.3 The twisted supergravity elliptic genus

The supergravity states were enumerated in [3] in the case that one compactifies type IIB
supergravity along either T4 or K3. We briefly recall the results here, with an emphasis on the
case of a K3 surface.

The twisted supergravity states organize into a representation for the super Lie algebra
psu(1, 1|2). The bosonic factor of this super Lie algebra is su(2)L × su(2)R. The first copy is
the global conformal transformations in the z-plane and the second copy is the R-symmetry
algebra which rotates the w-coordinate. We take the Cartan of this Lie algebra to be generated
by (L0, J3

0 ).
Denote by (m

2 )S the short representation of psu(1,1|2) whose highest weight vector has
(L0, J3

0 ) eigenvalue (m/2, m/2) [11]. As an example, the short representation (1)S consists of
a boson with weight (L0 = 1, J3

0 = 1), which in our notation corresponds to

µ∼ n−2d log ndzδz=0 . (89)

There are also two fermions in (1)S with weights (3/2,1/2) corresponding to the states

α∼ n−1δz=0 + · · · , γ∼ n−1δz=0 + · · · , (90)

and another boson of weight (2,0) corresponding to

µ∼ n−2d log ndwδz=0 + · · · . (91)

Here, the ellipses denote additional terms required to express the fields in the holomorphic
coordinates of the deformed geometry (see [3] for the complete expressions in the T4 case).
In particular, only a finite number of terms are required to correct the holomorphicity of these
expressions, due to the fact that the relations imposed on the coordinates of Spec(R) cause the
expansions in the η’s to truncate.

We consider twisted type IIB supergravity on a Calabi–Yau surface X , where X could be T4

or a K3 surface.
The supergravity states for the D1-D5 brane system in twisted type IIB supergravity on a

compact Calabi–Yau surface X decompose as

⊕

m≥1

�m
2

�

S
⊗H•(X ) =
⊕

m≥1

⊕

i, j

�m
2

�

S
⊗H i, j(X ) . (92)

In particular, according to the previous section, when X is a K3 surface the single particle
twisted supergravity index is

fKS(q, y) = 24
q2 − 3q+ q1/2(y + y−1)

D
. (93)

This result should be compared to [11], where the space of supergravity states upon super-
symmetric localization (that is, the chiral half of the supergravity states) is found to be

⊕

m≥0

⊕

i, j

(
m+ i

2
)S ⊗H i, j(X ) . (94)

The answers agree in the range where the highest weight of the short representation is at least
two. The low weight discrepancies break up into two types:

• In [11] there is an extra factor of (0)S ⊗ H0,i(X ). So, in the case that X is a K3 surface
there are two extra bosonic operators in the analysis of [11]. In [3] it was pointed out
that these are topological operators, annihilated by L−1, and have nonsingular OPE with
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all remaining operators. Notice that these states are removed by hand from the infinite-
N SymN (K3) elliptic genus in [11] (as we will review below), because their degeneracy
scales with N . Though they naturally appear on the SCFT side, and in particular are well-
defined for any finite N , the minimal Kodaira-Spencer theory does not contain them.

• In our analysis there is an extra factor of (1
2)S⊗H2, j(X ). In the case that X is a K3 surface

these two bosonic states can be removed by hand from the spectrum while preserving
the SO(21) symmetry. We will comment more on these modes in §5 when we examine
their OPEs. Roughly speaking, they are the twist of the center of mass degrees of free-
dom, which are often removed in the near-horizon limit in holography. This limit is a bit
subtle in twisted supergravity, and we see that these degrees of freedom most naturally
remain in the Kodaira-Spencer theory. However, the states that we are interested in form
a consistent subalgebra to which we restrict our attention (formally, the algebra gener-
ated by this additional twisted multiplet is a semidirect product with our subalgebra of
interest. Note that it cannot be a trivial direct product and its algebra elements are, in
particular, acted upon by the 2d N = 4 superconformal algebra).

Denote the single particle index of the supergravity states, described in equation (94),
by fsugra(q, y). One of the main results of [11] is that the corresponding multiparticle index
agrees with the large N elliptic genus of the orbifold CFT of a K3 surface

χNS(Sym∞ X ; q, y) = PExp
�

fsugra(q, y)
�

, (95)

where PExp is the plethystic exponential defined by PExp [ f (x)] = exp
�

∑∞
k=1

f (xk)
k

�

, which

effects a “multi-particling” operation. For X a K3 surface, the states (1
2)S ⊗H2,•(X ) contribute

the single particle index

2 f1(q, y) =
2

1− q

�

−2q+ q1/2(y + y−1)
�

. (96)

If we subtract this from the supergravity index we find an exact match with the supergravity
index computed by [11]:

fsugra(q, y) = fKS(q, y)− 2 f1(q, y) . (97)

3.4 Global symmetry algebra

In this section we characterize the global symmetry algebra of the dual CFT at infinite N from
the point of view of the gravitational, or Kodaira–Spencer, theory following [2,3]. The global
symmetry algebra is, by definition, a subalgebra of the modes of the operators14 of the CFT
which preserve the vacuum at both 0 and∞. Explicitly, if O is an operator of spin ∆, then
the modes

∮

zmO(z)dz , (98)

for 0≤ m≤ 2∆− 2 close as an algebra and preserve the vacua at 0,∞. Generally, the global
symmetry algebra is a subalgebra of the mode algebra of the vertex algebra. For us, it can be
expressed as the universal enveloping algebra of a particular Lie superalgebra.

14Again, we work with operators that survive in the planar limit; in the gauge theory context, these would be
the single trace operators.
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From the Kodaira-Spencer theory perspective, these are infinitesimal gauge symmetries
which preserve the vacuum solutions to the equations of motion on the K3 conifold. Following
a similar argument as in [3], one finds that the global symmetry algebra is the enveloping
algebra of a Lie superalgebra of the form

Vect0

�

X 0/Spec R
�

⊕O(X 0)⊗ΠC2 , (99)

where:

• X 0 is the R-conifold defined as a family over Spec R where we have removed the singular
locus; see section 2.5.

• O(X 0) denotes the algebra of holomorphic functions on X 0. By Hartog’s theorem this
is the algebra generated by the bosonic linear functions ui , w j ,η,η,ηa where i, j = 1,2,
a = 1, . . . , 20 subject to the relations

η2 = η2 = ηaηb − habηη= 0 , εi juiw j = F .

• Vect0

�

X 0/Spec(R)
�

is the Lie algebra of divergence-free holomorphic vector fields which
point in the direction of the fibers of X 0 → Spec(R) (those holomorphic vector fields
preserving the holomorphic volume form on the fibers).

• Π(−) denotes parity shift, so that this is a Lie superalgebra.

• The nontrivial Lie brackets (and anti-brackets) are:

[V, V ′] = commutator of vector fields,

[V, f ] = V ( f ) ,

[ fi , g j] = εi jΩ
−1
�

∂ fi ∧ ∂ g j

�

,

(100)

where V ∈
�

X 0/Spec(R)
�

, fi , g j ∈O(X 0)⊗ΠC2.

A characterization of the global symmetry algebra will follow from the computation of
OPEs of the boundary CFT (more precisely, its chiral algebra of holomorphic symmetries). As
in the examples of [2,3], this global symmetry algebra is large enough to fix the planar 2 and
3-point functions.15

4 The twisted symmetric orbifold CFT

Supergravity on AdS3 × S3 × Y , where Y is either T4 or a K3 surface, is expected to be holo-
graphically dual to a particular two-dimensional superconformal field theory (SCFT). Though
our primary interest in this note is K3, with the T4 case studied in [3], we can be agnostic
about Y for many aspects of the analysis.

We will briefly review this system of interest, following [26] and references therein, with
a focus towards applying the holomorphic twist to this system and isolating the 1

4 -BPS states.
Of course, this SCFT is the IR limit of the field theory that arises from the zero modes of the
open strings on the D1− D5 branes. The lowest-lying modes of open strings, which provide
an effective field theory description of the D1 and D5-branes, naturally furnish a gauge theory
whose IR limit we are primarily interested in. In principle, one could perform the twist, which
is in principle insensitive to RG flow, of either the UV D1-D5 gauge theory or the symmetric
orbifold CFT.

15In [3] it was shown that, for N →∞, all two-point functions of states with SU(2)R spin ≥ 1 vanish. The same
argument holds in this case, though of course at finite N there will be nonvanishing 2-pt functions.
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We recall that the D5 − D5 strings give rise to a six-dimensional supersymmetric U(N5)
gauge theory and the D1−D1 strings likewise produce a U(N1) gauge theory; D1−D5 strings
will produce matter multiplets in the bifundamental of these gauge groups. When all the D-
branes are coincident the gauge theory is in the Higgs phase and when some of the adjoint
scalars in the field theory acquire a vev, corresponding to transverse separation of the branes,
the theory is in the Coulomb phase. We will focus on the Higgs phase of the gauge theory
throughout.16

On the Higgs branch, one must solve the vanishing of the bosonic potential (i.e. D-flatness
equations) modulo the gauge symmetries U(N1)× U(N5) to obtain the moduli space. If one
imagined that both sets of D-branes were supported on a noncompact six-dimensional space,
these D-flatness equations can be rewritten to reproduce the ADHM equations for N1 instan-
tons of a six-dimensional U(N5) gauge theory a la [28]. So far, we have a description of the
dual field theory in terms of an instanton moduli space, namely the moduli space of N1 instan-
tons of a U(N5) gauge theory on Y , for which a useful model is the Hilbert scheme of N1N5
points on Y .17 The (conformally invariant limit of the) gauge theory description is expected
to only capture the regime of vanishing size instantons (i.e. when the hypermultiplets have
small vevs). One can understand that the gauge theory description is approximate by notic-
ing that the Yang-Mills couplings are given in terms of the Y volume V and string coupling
as g2

1 = gs(2πα′), g2
5 = gsV/(α′(2π)3) so for energies much smaller than the inverse string

length the gauge theories are strongly coupled [26]. To get the SCFT we take an IR limit,
which would be dual to a near-horizon limit from the closed string point of view. In this limit,
the gauge theory moduli space becomes the target space of the low-energy sigma-model. It
has been argued that the correct instanton moduli space is a smooth deformation of the sym-
metric product theory S ymN1N5(X̃ )/SN1N5

.18 Indeed, there is a point in the SCFT moduli space
(far from the supergravity point itself) where the theory takes precisely the symmetric orbifold
form. The orbifold point is the analogue of free Yang-Mills theory in the perhaps more-familiar
AdS5 × S5/ 4d N = 4 SYM duality, and is dual to a stringy point in moduli space which has
been explored extensively in recent years (see, e.g., [30–32]).

As usual, one can focus on moduli-independent quantities to provide preliminary matches
between the supergravity and orbifold points, such as the signed count of 1

4 -BPS states at
large-N , via the elliptic genus. The elliptic genus matches the corresponding count of BPS (or
equivalently, twisted) supergravity states [11], which we reproduced in the previous section.
We review the N →∞ elliptic genus computation and its matching to the twisted supergravity
index below. This matching follows from the formal equivalence of the elliptic genus to the
vacuum character of the chiral algebra in the holomorphic twist; this quantity is also sometimes
referred to as the partition function of the half-twisted theory.

It would be preferable to “categorify” the standard elliptic genus computation, and repro-
duce it directly from the twisted CFT perspective using the holomorphic twist of the symmetric
orbifold CFT.19 As we mentioned, in two dimensions this is also known as the half-twist [5,6].
It is well-known that the half-twist of a sigma-model can be mathematically formulated as the
chiral de Rham complex [6, 34, 35], and indeed this is precisely what our holomorphic twist
captures.

16See [27] for a recent analysis of twisted holography in the Coulomb phase.
17For the purposes of this discussion, we will ignore the center of mass factor of the moduli space that produces

a X̃ factor, for some X̃ not necessarily the same as the compactification Y . The relationship between the two
manifolds in the T 4 case is clarified in [29].

18Here we are taking both N1, N5 large.
19Of course, whenever one wants to match more refined observables than the elliptic genus from the symmet-

ric orbifold theory to the supergravity point (rather than the stringy dual of [32]), one must deal with moduli-
dependence, e.g. [33].
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Unfortunately, obtaining a global description of the half-twist on a curved, compact man-
ifold is a nonperturbative computation subject to worldsheet instanton corrections, and so
prohibitively difficult with current technology. We will instead review some aspects of the
holomorphic twist from the perspective of the UV brane worldvolume gauge theory, and then
discuss the connection to the half-twist/chiral de Rham complex of the symmetric orbifold
SCFT, explaining their formal equivalence. When discussing the chiral de Rham complex, we
must approximate K3 as C2.

4.1 Branes in twisted supergravity

We have already recollected the proposal of [1] that the twist of type IIB supergravity is equiv-
alent to the topological B-model on a Calabi–Yau fivefold. At the level of branes, this proposal
further asserts that D(2k− 1)-branes in type IIB corresponds to topological B-branes. We use
that perspective here to deduce the worldvolume CFT of the twist of the D1/D5 system in type
IIB supergravity.

We consider the system of D1/D5 branes in the twist of type IIB on a Calabi–Yau fivefold Z .
For simplicity, we assume that we have a collection of N1 = N D1 branes supported along a
closed Riemann surface

Σ ⊂ Z ,

together with a single D5 brane which is parallel to the D1 branes.
In topological string theory, one views branes as objects in some category. Morphisms

between objects represent open strings stretching between two branes. In particular, a general
feature of topological string theory is that the open string fields which start and end on the
same brane can be described in terms of the algebra of derived endomorphisms of the object
representing the brane. Indeed, following [36], one constructs a Chern–Simons theory based
off of this derived algebra of endomorphisms where the gauge fields are degree one elements
in the algebra of derived endomorphisms. In the B-model, the category is the category of
coherent sheaves on the Calabi–Yau manifold. Fields of the corresponding open-string field
theory (which start and on on the same brane) are given as holomorphic sections of the sheaf
of derived endomorphisms. Following [1], we will use a Dolbeault model which resolves a
sheaf of holomorphic sections to describe the space of fields as the cohomological shift by one
of the Dolbeault resolutions of derived endomorphisms.

We consider D1 branes that are a sum of simple branes labeled by the structure sheaf OΣ.
In particular, N such D1 branes are represented by the object O⊕N

Σ in the category of quasi-
coherent sheaves on the Calabi–Yau fivefold Z . A model for the sheaf of derived endomor-
phisms of OΣ is the holomorphic sections of the exterior algebra of the normal bundle NΣ
of Σ in Z . A model for the sheaf of derived endomorphisms of a stack of N such branes is
therefore

ExtOZ

�

O⊕N
Σ

�

≃ gl(N)⊗∧•NΣ . (101)

Thus, the Dolbeault model for the open string fields which stretch between two such D1 branes
is given by

Ω0,• (Σ,gl(N)⊗∧•NΣ) [1] . (102)

If we take X to the be the total space of the bundle NΣ then the Calabi–Yau condition requires
∧4NΣ = KΣ. In the case Σ= C and Z = C5 we can write the open string fields (102) as

Ω0,• �C,gl(N)[ϵ1, . . . ,ϵ4]
�

[1] . (103)

Here the ϵi are odd variables that carry spin 1/4, meaning they transform as constant sec-
tions of the bundle K1/4

C . This is precisely the field content of the holomorphic twist of two-
dimensional N = (8, 8) pure gauge theory which is the worldvolume theory living on a stack
of D1 branes in twisted supergravity on flat space.
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Next, we consider D1− D5 strings. The open string fields are given by

Ω0,•
�

Σ, ExtOX

�

OZ ,O⊕N
Σ

�

�

. (104)

Again, on flat space with Σ= C this can be written in a more explicit way as

Ω0,•
�

C, K1/2
C [ϵ3,ϵ4]
�

⊗Hom(C,CN ) = Ω0,•
�

C, K1/2
C [ϵ3,ϵ4]
�

⊗CN . (105)

Together with the D5− D1 strings we get

Ω0,•
�

C, K1/2
C [ϵ3,ϵ4]
�

⊗ T ∗CN . (106)

In total, we see that the open-strings of the D1/D5 system along Σ = C are given by the
Dolbeault complex valued in the following holomorphic vector bundle

�

gl(N)[ϵ1,ϵ2][1]⊕ K1/2
C ⊗ T ∗CN
�

⊗C[ϵ3,ϵ4] . (107)

If we choose twisting data so that the odd variables carry degree degϵ1 = degϵ2 = +1 then
the bundle in parentheses can be written as

gl(N)[1]⊕ K1/2
Σ ⊗ T ∗
�

gl(N)⊕CN
�

⊕ gl(N)[−1] . (108)

The first summand represents the ghosts of the holomorphic CFT and the last summand the
anti-ghosts. The gauge symmetry in the middle term is induced from the standard action
of gl(N) on T ∗

�

gl(N)⊕CN
�

by Hamiltonian vector fields (this is induced from the adjoint
+ fundamental action on the base of the cotangent bundle). Thus, we see that this model
describes (K1/2

Σ -twisted) holomorphic maps from Σ into the well-known GIT description of
the symmetric orbifold SymN C2. That is, the worldvolume theory living on a stack of twisted
D1 branes is the holomorphic σ-model of maps into the target SymN C2.

This analysis happened entirely in flat space. The D1 branes wrapped

C× 0× 0× 0× 0 ⊂ C5 , (109)

while the D5 brane wrapped C×C2 × 0× 0 ⊂ C5. At this stage, it is natural to replace this C2

by a general holomorphic symplectic surface Y to arrive at the well-established expectation
that the worldvolume theory, after twisting, is a holomorphic σ-model with target SymN Y .
A careful derivation of this would require one to work in the derived category of sheaves on
C3 × Y , which we have not done here.

4.2 The symmetric orbifold elliptic genus at large N

For completeness, we briefly recall the elliptic genus computation using the orbifold point in
the string moduli space, which reproduces signed counts of 1/4-BPS states in the SCFT. This
is formally equal to the partition function of the chiral de Rham complex, or holomorphically
twisted theory on the same underlying space.

We will take the effective 2d brane system to be supported on R×S1 after compactification
on Y , so that the CFT is defined on the cylinder. On the cylinder, the NS sector corresponds to
anti-periodic boundary conditions on the fermions. The sigma model is then the N = (4,4)
theory whose bosonic fields are valued in maps from S1→ S ymN (Y ).

The physical SCFT has R-symmetries SO(4) ≃ SU(2)L × SU(2)R dual to rotations of the
S3 and symmetries under a global SO(4)I ≃ SU(2)a × SU(2)b of transverse rotations; this
symmetry is broken by compactification on Y . Although broken by the background, SO(4)I is
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still often used to organize the field content of the compactified theory, and acts as an outer
automorphism on the N = (4,4) superconformal algebra. As is well known, the isometries
of AdS3 × S3 are SL(2,R)× SL(2,R)× SO(4) which form the bosonic part of the supergroup
SU(1,1|2)× SU(1, 1|2). These symmetries form the global subalgebra of the N = (4,4) su-
perconformal algebra.

Part of the underlying chiral algebra of the N = (4, 4) SCFT OPEs is the usual holomorphic
(small) N = 4 superconformal algebra with c = 6N (which can be explicitly constructed
as a diagonal sum over the N copies of the seed c = 6 sigma models). Part of the N = 4
superconformal algebra involves SU(2) spin 1 currents {J a(z)}; the central charge determines
the level of this current algebra as

J a(z)J b(w)∼
c

12
δab

(z −w)2
+ iεab

c
J c(w)
z −w

. (110)

Additionally there are odd Virasoro primaries GαA(z) of spin 3/2 transforming in the funda-
mental of the SU(2) current algebra which have self-OPE’s:

GαA(z)GβB(w)∼ −εABεαβ
T (w)
z −w

−
c
3
εABεαβ

(z −w)3
+ εABεβγ(σa)αγ

�

2J a(w)
(z −w)2

+
∂ J a(w)
z −w

�

. (111)

Above, we have written SU(2)a×SU(2)b doublet indices as A, Ḃ and SU(2)L×SU(2)R doublet
indices as α, β̇ .20

As mentioned earlier, it is difficult to perform explicit computations in the holomorphic
twist beyond a local (flat space) model, even for a single copy of Y . Rather than try to work
with the full chiral de Rham complex directly, we will outline the matching of (counts of) states
between twisted supergravity and twisted CFT (via the elliptic genus). Then we will turn to
the determination of the OPEs in the holomorphically twisted theory in the N →∞ limit by
applying Koszul duality to our twisted supergravity theory; as a sanity check, we will easily
recover the N = 4 superconformal algebra and its psu(1, 1|2) global subalgebra21

Consider the chiral half of the N = (4, 4) σ-model on the symmetric orbifold SymN Y
where Y is T4 or a K3 surface. After performing the half-twist, this is all that remains of
the supersymmetric σ-model. According to [37] we can regard the direct sum of the vacuum
modules of the chiral algebras of SymN Y , for each N , as being itself a Fock space. The gen-
erators of this Fock space are given by the single string states. These single string states are
the analog of single trace operators in a gauge theory, and can be matched with single-particle
states in the holographic dual. Let c(n, m) be the super-dimension of the space of operators
in supersymmetric σ-model into Y , which are of weight n under L0 and of weight m under
the action of the Cartan of SU(2)R. Let q, y be fugacities for L0 and the Cartan of SU(2)R,
respectively—the elliptic genus χ(Y ; q, y) is a series in these variables. Of course, for Y = T4

the elliptic genus vanishes,22 so we will now fix Y = K3.
Introducing another parameter p, which keeps track of the symmetric power, we can con-

sider the generating series
∑

n≥0

pnχ(Symn Y ; q, y) . (112)

The main result of [11,37] is an expression for this generating series
∑

n

pnχ(Symn Y ; q, y) =
∏

l,m≥0,n>0

1
(1− pnqm y l)c(nm,l)

, (113)

20There is, of course, also a right-moving copy in the full SCFT, though only the chiral half above will be accessible
in the holomorphic twist.

21More precisely, we will find psl(1,1|2); for example, the SU(2) Kac-Moody algebra using Koszul duality will
naturally appear in the Cartan-Weyl basis.

22One could instead consider the modified elliptic genus for T 4, which is enriched with additional insertions of
the fermion number operator to absorb the fermionic zero modes.
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where c(m, l) is a function of the quantity 4m− l2. In other words, we can interpret the direct
sum of the vacuum modules of the Symn Y σ-models as being the Fock space generated by a
trigraded super-vector space

V = ⊕n≥0,m,l Vn,m,l , (114)

where the super-dimension of Vn,m,l is c(nm, l).
The generating function of elliptic genera of SymN Y decomposes as
∑

N≥0

pNχ(SymN Y ; q, y) =
∏

n>0

∑

N≥0

pnNχ(SymN HZn
(n); q, y) , (115)

with
∑

N≥0 pnNχ(SymN HZn
(n); q, y) =
∏

l,m≥0
1

(1−pqm y l )c(mn,l) . Here, H(n) is the Hilbert space of
a single long string on Y of length n with winding number 1/n.

We can extract the N →∞ limit of this expression, following the logic employed in [11,
38, 39], particularly [39]. First, in preparation for comparison to supergravity, we perform
spectral flow23 to the NS sector:
∑

N≥0

pNχNS(SymN Y ; q, y) =
∑

N≥0

pNχ(SymN Y ; q, y
p

q)yN qN/2

=
∏

n≥0
m≥0,m∈Z

l∈Z

1
(1− pnqm+l/2+n/2 y l+n)c(nm,l)

=
∏

n≥0
m′≥|l ′|/2, 2m′∈Z≥0
l ′∈Z, m′−l ′/2∈Z≥0

1
(1− pnqm′ y l ′)c(nm′−nl ′/2,n−l ′)

.

At any power of q, there will be contributions from terms of the form 1
(1−p y l′ )c(−l′/2,l′−1) . The only

nonvanishing such term in our case when m′ = 0 is 1
(1−p)2 . We wish to isolate the coefficients

of all terms of the form qa y bpN for a≪ N . Taylor expanding 1
(1−p)2 and extracting the desired

coefficient gives Nh(a, b) +O(N0) where h(a, b) is the coefficient of qa y b in

∏

m′≥|l ′|/2, 2m′∈Z≥0
l ′∈Z, m′−l ′/2∈Z≥0

1
(1− qm′ y l ′) f (m′,l ′)

,

with f (m′, l ′) :=
∑

n>0 c(n(m′− l ′/2), l ′−n). The coefficients c(M , L) vanish for 4M− L2 < −1

so for m′ ≥ 1 the sum truncates to f (m′, l ′) =
∑4m′

n=1 c(n(m′ − l ′/2), l ′ − n).
Hence, we can get a finite contribution upon dividing by N .
We can also write out the non-vanishing f (m′, l ′) more explicitly, recalling that

the coefficients are constrained to lie in the following range of the Jacobi variable:
−2m′ ≤ l ′ ≤ 2m′, l ′ ≡ 2m′ mod 2. Reproducing the elementary manipulations in Appendix A
of [39] (in particular, using the fact that c(N , L) depends only on 4N− L2 and L mod 2) allows
us to rewrite the sum as

f (m′, l ′) =

�

∑

ñ∈Z
c(m′2 − l ′2/4, ñ)

�

− c(0, l ′) , (116)

where n′ := n−2m in the first term. The first term is non-vanishing only when l ′ = ±2m′ and
then it reduces to the Witten index of K3, i.e. f (m′,±2m′) = 24 for general m′. Otherwise,

23We shift the overall power of q by qc/24 so that the vacuum occurs at q0.

27

https://scipost.org
https://scipost.org/SciPostPhys.17.4.109


SciPost Phys. 17, 109 (2024)

we have f (m′, l ′) = −c(0, l ′). When m′ ∈ Z the nonvanishing such term is −c(0,0) = −20,
and when m′ ∈ Z+ 1′/2 we have −c(0,1) = −2 and −c(0,−1) = −2.

In sum, we obtain

limN→∞
χNS(SymN Y ; q, y)

N
=
∏

k≥1

(1− qk)20(1− qk−1/2 y−1)2(1− qk−1/2 y)2

(1− qk/2 yk)24(1− qk/2 y−k)24
(117)

= 1+
�

22
y
+ 22y
�

q1/2 +
�

277
y2
+ 464+ 277y2
�

q+O(q3/2) . (118)

We will denote this large N limit by χNS(Sym∞ Y ; q, y). In particular, for there are two bosonic
towers corresponding to (anti)chiral primary states and three fermionic towers corresponding
to (derivatives of) the states capturing the cohomology of a single copy of K3.

We observe that this expression for the large N limit of the elliptic genus agrees exactly
with the plethystic exponential of the single particle twisted supergravity index we computed
in (97). One can easily see this by using the definition of the plethystic exponential

PE[ f ](q, y) = exp

�∞
∑

k=1

f (qk, yk)
k

�

, (119)

and rewriting the infinite-N elliptic genus as PE[ fC F T ](q, y) in terms of the function

fC F T (q, y) =
∞
∑

m=1

24(q1/2 y)m + 24(q1/2 y−1)m − 20qm − 2qm−1/2 y − 2qm−1/2 y−1 , (120)

which can be immediately matched with PE[ fsugra](q, y), as expected.
For a finite number of branes we have given a microscopic description of the twisted D1/D5

system in flat space as an explicit BRST theory and matched with the description in [26]. In
the large N limit, the states of a general BRST model can be described in terms of the Loday–
Quillen–Tsygan theorem; see the recent work [2, 24, 40, 41]. It would be interesting to apply
this theorem to understand the states of this model in the large N limit and to reproduce the
elliptic genus. It is easier to perform LQT for the T4 case and enumerate the non-vanishing
states, and it would be interesting to match this explicitly to the results of [3]. In the case of a
K3 surface it is not yet clear how to apply this theorem to understand the large N limit of the
CFT.

5 Tree-level OPEs

In this section we initiate our computation of planar OPEs of the chiral algebra, using the same
Koszul duality techniques as in [3] (to which we refer for a more complete discussion), by first
considering contributions from tree diagrams. Tree diagrams, as we will see, correspond to the
twisted open-closed string theory in flat space (i.e. before considering the backreaction of the
D-branes). We will first recall the Koszul duality approach to twisted holography pioneered
in [3,7] (see [8] for a physical review of Koszul duality).24

Koszul duality enables us to derive the planar chiral algebra from our knowledge of the
twisted supergravity dual. In this way, Koszul duality provides a way to extract twisted CFT
data, encoded in the technically challenging chiral de Rham complex, using more tractable

24See also [42–44] for more on Koszul duality in twisted holography, and [45–48] for additional, closely related
twisted holographic explorations.
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supergravity computations.25 The method is to write down the most general possible bulk-
brane coupling and compute the BRST variation of all possible bulk-boundary (or Witten-
like) diagrams order by order in perturbation theory. In this work, we will focus only on
the diagrams that contribute in the N → ∞ limit. Demanding that the sum of the BRST
variations of all contributing diagrams at a given order vanish results in constraints on the
operator product of the local operators on the brane worldvolume; these operators generate
the chiral algebra of the twisted SCFT, and so Koszul duality directly extracts their OPEs.

We begin on flat space. In the next section, we will incorporate planar diagrams encoding
the backreaction of the D1-D5 system. These are the diagrams responsible for deforming the
initial flat space geometry to the K3 conifold. It was explained in [3] that, strikingly, only a
finite number of such backreaction diagrams contribute at each order in the 1p

N
expansion.

Typically, one would have to re-sum an infinite number of such diagrams to obtain the de-
formed geometry. This simplification allows us to derive the chiral algebra as a deformation
around flat space, using the perturbative, Feynman diagrammatic approach of Koszul duality.
In particular, the complete, backreacted planar chiral algebra we will compute in the next two
sections has the global subalgebra we derived from a different point of view in §3.4.

On flat space, we use holomorphic coordinates Z = (z, w1, w2) on C3 where the system of
branes wraps the locus {wi = 0}. We will call the brane locus the support of the “defect chiral
algebra”, following the perspective of the Koszul dual chiral algebra as the universal defect
algebra to which Kodaira-Spencer theory can couple in a gauge-anomaly-free manner [8]. (In
other words, any other defect chiral algebra one might wish to couple to Kodaira-Spencer
theory, such as an appropriate number of free chiral fermions, must furnish a representation
for the Koszul dual/universal defect algebra.).

The Beltrami field µ has three holomorphic vector components that we denote by

µ= µz∂z +µ1∂w1
+µ2∂w2

, (121)

where µz ,µi ∈ Ω0,•(C3) are Dolbeault forms (recall that the ghost number zero fields arise
from forms of degree (0, 1)—so, actual Beltrami differentials). With this notation, the full
classical interaction of our compactified Kodaira–Spencer theory is

∫

C3

µ1µ2µz|ηη d3Z +

∫

C3

αµi∂wi
γ|ηη d3Z +

∫

C3

αµz∂zγ|ηη d3Z . (122)

Recall that for the kinetic part of the action for Kodaira–Spencer theory to be well-defined we
must impose the following constraint on the field µ:

∂zµz + ∂wi
µi = 0 . (123)

Before moving into computations, we describe the operators present in the defect chiral alge-
bra. In what follows we use the notation Dr,s to denote the holomorphic differential operator

Dr,s =
1
r!

1
s!
∂ r

w1
∂ s

w2
,

where the holomorphic derivatives point transversely to the brane. To simplify formulas we
will use the notations

∫

z,η

ω=

∫

z∈Cz

ω|ηη dz , (124)

25A complementary approach, compatible with a topological (as opposed to holomorphic) twist, is to study the
rings of chiral primaries in symmetric orbifold theories [49–51] Chiral primaries are 1/2-BPS states, comprised of
short multiplets with respect to both the holomorphic and anti-holomorphic N = 4 algebras, and have nonsingular
OPEs with one another. Koszul duality is sensitive to 1/4-BPS states but only captures the (purely holomorphic)
singular terms of the chiral algebra OPEs. It would be interesting to reproduce (the holomorphic halves of) the
chiral ring structure coefficients from our Kodaira-Spencer theory.

29

https://scipost.org
https://scipost.org/SciPostPhys.17.4.109


SciPost Phys. 17, 109 (2024)

for integrals along the defect, and
∫

Z ,η

ω=

∫

Z∈C3

ω|ηη d3Z , (125)

for integrals in the bulk.
As with the fields of our extended version of Kodaira–Spencer theory, the defect operators

of the chiral algebra will all be polynomials in the variables η parameterizing the cohomology
of the K3 surface. The variables η do not carry spin, parity, or ghost degree (this is one
difference with the case of the complex torus T4). For simplicity of notation we will not
explicitly include this η-dependence until it is convenient.

Defect operators sourced by bulk fields before imposing the constraint (123) can be de-
scribed as follows:

1. Bosonic Virasoro primaries eT[r, s] of holomorphic conformal weight (i.e. “spin”)
2+ r/2+ s/2 which couple to the field µz by

∫

z,η

eT[r, s]Dr,sµz|w=0 . (126)

2. Bosonic Virasoro primaries eJ i[r, s], i = 1, 2 of weight 1/2+ r/2+ s/2 which couple to
the fields µi by

∫

z,η

eJ i[r, s]Dr,sµi|w=0 . (127)

3. Fermionic Virasoro primaries Gα[r, s], Gγ[r, s] of weight 1+ r/2+ s/2 which couple to
the fields α,γ by

∫

z,η

Gα[r, s]Dr,sα|w=0 ,

∫

z,η

Gγ[r, s]Dr,sγ|w=0 . (128)

The fermionic operators Gα, Gγ couple to unconstrained fields of the theory on C3. On the
other hand, eT , eJ i couple to the fields µz ,µi satisfying the divergence-free constraint (123).
Only some combination of these operators will couple to the on-shell fields of the theory on
C3. Explicitly, the constrained fields source the following defect operators

T[r, s]
def
= eT[r, s]−

1
2(r + 1)

∂zeJ
1[r + 1, s]−

1
2(s+ 1)

∂zeJ
2[r, s+ 1] , r + s ≥ 0 ,

J[k, l]
def
= keJ2[k− 1, l]− seJ1[k, l − 1] , k+ l ≥ 1 .

(129)

We see that T[r, s] has weight 2 + (r + s)/2 and J[k, l] has weight (k + l)/2 and live in the
SU(2)R spin representation (k+ l)/2.

As stated above, all operators are valued in the ring R which in the case of compactification
of a K3 surface is R = H•(K3). It is convenient to expand operators in the fermionic-Fourier-
dual variables bη. If O = O(η) is any of the operators defined above, then the Fourier-dual
expansion is defined formally as

O(bη) = eηbηO(η)|ηη , (130)

with a similar formula valid in the case of an arbitrary ring R with trace. We will expand the
OPEs that follow in this Fourier dual coordinate. Explicitly, if

O(η) =O+Oηη+O
bη bη+Oηa

ηa +Oηηηη , (131)

then
O(bη) =Oηη + bηOη + bηOη + habOηa

bηb +Obηbη . (132)
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5.1 eJ eJ OPE

We first compute the OPE of the off-shell operators eJ i[r, s] and then impose constraints to
determine the OPE of the on-shell operators J[r, s].

5.1.1

The coefficient of eJ1[k, l] in the OPE will be determined by the terms in the BRST variation of
µ1 which involve c1 and µ1, c1 and µ2, or c2 and µ1.

Consider the gauge variation of
∫

z,η

eJ1[r, s](z)Dr,sµ1 . (133)

The gauge variation of µ1 is

Qµ1 = ∂ c1 +µi∂wi
c1 +µz∂zc1 − ci∂wi

µ1 − cz∂zµ1

+ ∂w2
cγ∂zα− ∂zcγ∂w2

α+ ∂w2
cα∂zγ− ∂zcα∂w2

γ .

For now, we can disregard the terms involving cγ and α or cα and γ. These will play a role
later on when we constrain the OPEs involving the operators Gα, Gγ.

Inserting this gauge variation into the coupling to eJ i[r, s], we see that the first term, ∂ c1,
vanishes by integration by parts. Cancellation of the remaining terms will give us constraints
on the OPE coefficients. The remaining terms are
∫

z

eJ1[r, s](z)Dr,s

�

µi∂wi
c1 +µz∂zc1 − ci∂wi

µ1 − cz∂zµ1

�

(z, wi = 0,ηa) .

Let us focus on the term in this expression which involves the fields µ1 and c1. This is
∫

z,η

eJ1[r, s](z)Dr,s

�

µ1∂w1
c1 − c1∂w1

µ1

�

.

Because this expression involves both c1 and µ1, which are fields (and a corresponding ghost)
that couple to eJ1, we find that it can only be cancelled by a gauge variation of an integral
involving two copies of the operators eJ1, at separate points z, z′:

1
2

∫

z,z′,η,η′
eJ1[k, l](z,η)Dk,lµ1(z, w= 0,η)eJ1[r, s](z′,η′)Dr,sµ1(z

′, w′ = 0,η′) .

Applying the gauge variation of µ1 to this expression, and retaining only the terms involving
∂ c1, gives us
∫

z,z′,η,η′
eJ1[k, l](z,η)Dk,lµ1(z, w= 0,η)eJ1[r, s](z′,η′)Dr,s∂ c1(z

′, w′ = 0,η′) .

Here the ∂ operator only involves the z-component because restricting to wi = 0 sets any
dwi to zero. We can integrate by parts to move the location of the ∂ operator. Every field µi
contains a dz, as otherwise it would restrict to zero at w= 0, so that ∂zµi = 0.

This analysis shows that in order for the anomaly to cancel we must require
∫

z,z′,η,η′
∂ z

�

eJ1[k, l](z,η)eJ1[r, s](z′,η′)
�

Dm,nµ1(z, w= 0,η)Dr,sc1(z
′, w′ = 0,η′)

=

∫

z′′,η′′
eJ1[m, n](z′′,η′′)Dm,n

�

µ1∂w1
c1 − c1∂w1

µ1

�

(z′′, w= 0,η′′) . (134)
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eJ1

eJ1

µ1

µ1

eJ1

µ

µ

Figure 1: Cancellation of the gauge anomaly of these two diagrams leads to the
equation for the self OPE of the currents eJ1[k, l].

In these expressions, we sum over the indices r, s, k, l, m, n. This equation must hold for all
values of the field µ1, c1. To constrain the OPEs, we substitute the test fields

µ1 = G(z, z,η)dzwk
1wl

2 ,

c1 = H(z, z,η)wr
1ws

2 ,

for G, H arbitrary smooth functions of the variables z, z,ηa.
Inserting these values for the fields into the anomaly-cancellation condition gives

∫

z,z′,η,η′
∂ z

�

eJ1[k, l](z,η)eJ1[r, s](z′,η′)
�

G(z, z,η)H(z′, z′,η′)

=

∫

z′′,η′′
(r − k)eJ1[k+ r − 1, l + s](z′′,η′′)G(z′′, z′′,η′′)H(z′′, z′′,η′′) . (135)

Since this must hold for all values of the functions G, H we get an identity of the integrands:

∂ z

�

eJ1[k, l](z,η)eJ1[r, s](z′,η′)
�

= δz=z′δη=η′(r −m)eJ1[k+ r − 1, l + s] .

The formal δ-function δη=η′ , in the case R= H•(K3), has the simple expression

δη=η′ = 1⊗η′η′ +η⊗η′ +η⊗η′ + habηa ⊗η′b + (η↔ η′) +ηη⊗ 1′ . (136)

Anomaly cancellation leads to the OPE:

eJ1[k, l](0,η)eJ1[r, s](z,η′)≃
1
z
(r − k)eJ1[k+ r − 1, l + s](0,η)δη=η′ . (137)

We apply the formal Fourier transform to write this expression in terms of the operators
eJ1[k, l](0, bη). We find

eJ1[k, l](0, bη)eJ1[r, s](z, bη′)≃
1
z
(r − k)eJ1[k+ r − 1, l + s](0, bη+ bη′) . (138)

To simplify notation we will write this OPE in a way that does not explicitly refer to the η-
variables as in:

eJ1[k, l](0)eJ1[r, s](z)≃
1
z
(r − k)eJ1[k+ r − 1, l + s] . (139)

Diagrammatically, the OPE we have just deduced follows from the cancellation of the gauge
anomaly in Figure 1.
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5.1.2

Similar computations lead to the following tree-level OPEs. We have the eJ2
eJ2 OPE:

eJ2[r, s](0)eJ2[k, l](z)≃
1
z
(l − s)eJ2[r + k, s+ l − 1](0) .

The eJ1
eJ2 OPE:

eJ1[r, s](0)eJ2[k, l](z)≃ −
1
z

seJ1[r + k, l + s− 1](0) +
1
z

keJ2[k+ r − 1, l + s](0) .

And finally, the eJ2
eJ1 OPE:

eJ2[r, s](0)eJ1[k, l](z)≃ −
1
z

reJ2[r + k− 1, l + s](0) +
1
z

leJ1[k+ r, l + s− 1](0) .

5.1.3

The calculations so far have involved the OPEs of the “off-shell” operators eJ i[r, s]. To obtain
the on-shell OPEs we apply the constraints in (129), which for the J -type operators takes the
form

J[r, s] = reJ2[r − 1, s]− seJ1[r, s− 1] . (140)

We find

J[r, s](0)J[k, l](z) =
1
z
(l − s)kreJ2[k+ r − 2, l + s− 1] +

1
z

ls(k− r)eJ1[k+ r − 1, l + s− 2]

+
1
z

r(r − 1)leJ2[r + k− 2, l + s− 1]−
1
z

l(l − 1)reJ1[k+ r − 1, l + s− 2]

+
1
z

ks(s− 1)eJ1[r + k− 1, l + s− 2]−
1
z

ks(k− 1)eJ2[k+ r − 2, l + s− 1] .

(141)

Collecting the terms, we find the right hand side is

1
z
((l − s)kr + r(r − 1)l − ks(k− 1)) eJ2[k+ r − 2, l + s− 1]

+
1
z
(ls(k− r)− l(l − 1)r + ks(s− 1)) eJ1[k+ r − 1, l + s− 2] .

Finally, using (140) we find that the OPE involving the on-shell operators J[r, s] takes the form

J[r, s](0)J[k, l](z) =
1
z
(r l − ks)J[r + k− 1, l + s− 1](0) .

As above, on the right hand side all operators are evaluated at z = 0 and with the fermionic
variables bη + bη′. Note that the operators J[r, s] with r + s = 2 which are independent of bη
satisfy the OPE of the su(2) Kac-Moody algebra at level zero. We will get a nontrivial level
once we include the contribution from the backreaction, which we do in §6.

The OPEs described above lead to a mode algebra that is easy to describe and interpret.
Let the nth mode of J[r, s] be

J[r, s]n
def
=

∮

dz z−n−1+(r+s)/2J[r, s](z) . (142)

The OPEs above lead to the relation

[J[r, s]n, J[r ′, s′]n′] = (sr ′ − rs′)J[r + r ′ − 1, s+ s′ − 1]n+n′ , (143)

which we can interpret geometrically as follows.
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In the case that the hyperKähler surface on which we compactify type IIB supergravity is
T4 it is shown in [3] that the mode algebra corresponding to this full collection of OPEs of the
J -operators can be expressed as the super loop space of the Lie algebra w∞ of Hamiltonian
vector fields on C2.26 This is the Lie algebra L1|4w∞ whose elements have the form

zn f (w1, w2;ηa) , (144)

for n ∈ Z, where f (w1, w2;ηa) ∈ C[w1, w2]/C⊗ C[ηa]. (Here, the ηa, a = 1, 2,3,4 variables
generate the cohomology of T4, and are therefore fermionic.) The super bracket is

[zn f , zm g] = zn+mεi j∂wi
f ∂w j

g . (145)

More generally if H•(T4) is replaced by an arbitrary super ring R, the mode algebra of the
J[r, s]-operators gives rise to a similar infinite-dimensional Lie superalgebra that we denote
LRw∞. Elements in this Lie algebra have the form

zn f (w1, w2;η) , (146)

where n ∈ Z and f ∈ C[w1, w2]/C ⊗ R. The bracket (before taking into account the backre-
action) is identical to (145) and simply utilizes the commutative product on R. In the case of
compactifying twisted IIB supergravity along a K3 surface we simply take R= H•(K3).

If R = C, then LCw∞ = Lw∞ is the Lie algebra of symmetries of C2 × C× viewed as a
bundle over C× with fibers the holomorphic symplectic manifold C2. More generally, LRw∞
is the Lie algebra of symmetries of C2 ×C× × Spec R thought of as a bundle over C× × Spec R.

In the next section we will see how the backreaction introduces additional terms (such as
a central extension) in the bracket (145).

5.2 T J OPE

We turn to the tree-level OPE between the on-shell operators T and J . First, we compute the
tree-level OPE between the off-shell operators eJ and eT .

The coefficient of eJ1, for instance, in this OPE will be determined by the terms in the BRST
variation of µ1 which involve c1 and µz or cz and µ1. We collect such terms in the gauge
variation of (133) and

∫

(z,ηa)∈C1|4

eT[m, n](z,ηa)Dm,nµz(z, wi = 0,ηa) . (147)

Recall that the gauge variation of µz is

Qµz = ∂ cz +µi∂wi
cz +µz∂ cz − ci∂wi

µz − cz∂zµz − εi j∂icγ∂ jα− εi j∂icα∂ jγ .

For now, we can disregard the terms involving α and cγ or cα and γ.
The terms in the variations of (133) and (147) involving c1 and µz or cz and µ1 is
∫

z,η

eJ1[m, n](z,ηa)Dm,n(µz∂zc1 − cz∂zµ1)(z, wi = 0,ηa)

+

∫

z,η

eT[m, n](z,ηa)Dm,n(µ1∂w1
cz − c1∂w1

µz)(z, wi = 0,ηa) .

26This is the quotient of the Lie algebra of functions on C2, which equipped with the standard Poisson bracket,
by its center consisting of the constant functions.
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The coefficient of cz can only be cancelled by a gauge variation of
∫

z,z′,ηa ,η′a

eJ1[r, s](z,ηa)Dr,sµ1(z, wi = 0,ηa)eT[k, l](z′,η′a)Dk,lµz(z
′, w′i = 0,η′a) .

By similar manipulation as above, we find that the gauge variation of this expression is
∫

z,z′,ηa ,η′a

∂ z

�

eJ1[r, s](z,ηa)eT[k, l](z′,η′a)
�

Dr,sc1(z, wi = 0,ηa)Dk,lµz(z
′, w′i = 0,η′a)

+

∫

z,z′,ηa ,η′a

∂ z′
�

eJ1[r, s](z,ηa)eT[k, l](z′,η′a)
�

Dr,sµ1(z, wi = 0,ηa)Dk,lcz(z
′, w′i = 0,η′a) .

To constrain the OPEs, we use the test functions µz = 0, c1 = 0, µ1 = G(z, z,ηa)dzwk
1wl

2,
cz = H(z, z,ηa)wr

1ws
2 for G, H arbitrary smooth functions of the variables z, z,ηa. This yields

the anomaly cancellation condition
∫

z,z′,ηa ,η′a

∂ z′
�

eJ1[r, s](z,ηa)eT[k, l](z′,η′a)
�

G(z, z,ηa)H(z
′, z′,η′a)

=−
∫

z′′,η′′a

eJ1[r + k, s+ l](z′′,η′′a )H(z
′′, z′′,η′′a )∂z′′G(z

′′, z′′,η′′a )

+ r

∫

z′′,η′′a

eT[r + k− 1, s+ l](z′′,η′′a )G(z
′′, z′′,η′′a )H(z

′′, z′′,η′′a ) . (148)

Integrating the right hand side by parts gives us
∫

z′′,η′′a

∂z′′ eJ
1[r + k, s+ l](z′′,η′′a )H(z

′′, z′′,η′′a )G(z
′′, z′′,η′′a )

+

∫

z′′,η′′a

eJ1[r + k, s+ l](z′′,η′′a )∂z′′H(z
′′, z′′,η′′a )G(z

′′, z′′,η′′a )

+ r

∫

z′′,η′′a

eT[r + k− 1, s+ l](z′′,η′′a )G(z
′′, z′′,η′′a )H(z

′′, z′′,η′′a ) . (149)

Because G, H are arbitrary functions, we arrive at the OPE

eT[r, s](0,ηa)eJ
1[k, l](z,η′a)≃ δηa=η′a

1
z
∂zeJ

1[r + k, s+ l](0,ηa)

+δηa=η′a

1
z2
eJ1[r + k, s+ l](0,ηa)

+ rδηa=η′a
eT[r + k− 1, s+ l](0,ηa) . (150)

Switching the ηa variables to bηa variables by applying the odd Fourier transform we can write
this OPE as

eT[r, s](0, bηa)eJ1[k, l](z, bη′a)≃
1
z
∂zeJ

1[r + k, s+ l](0, bηa + bη′a) +
1
z2
eJ1[r + k, s+ l](0, bηa + bη′a)

+ r eT[r + k− 1, s+ l](0, bηa + bη′a) . (151)

5.1.1

In a completely similar way one can deduce the eT eJ2 OPE

eT[r, s](0, bηa)eJ2[k, l](z, bη′a)≃
1
z
∂zeJ

2[r + k, s+ l](0, bηa + bη′a) +
1
z2
eJ2[r + k, s+ l](0,cηa +cηa

′)

+ seT[r + k, s+ l − 1](0, bηa + bη′a) . (152)
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5.1.2

Using the eT eJ i and eJ i
eJ2 OPEs that we have computed, we deduce the OPEs between the on-

shell operators T and J i using (129). After some algebraic manipulation, we find

J[m, n](0)T[r, s](z)≃ (nr −ms)
1
z

T[m+ r − 1, n+ s− 1](0)

+
1
z2

�

m
2(r + 1)

+
n

2(s+ 1)

�

J[m+ r, n+ s](0)

+
1
2z

� m
m+ r

+
n

n+ s

�

∂zJ[m+ r, n+ s](0) . (153)

On the right hand side, all operators are evaluated at the variables bη+ bη′. We have dropped
this dependence for clarity.

5.3 T T OPE

Following the same logic we constrain the eT eT OPE. These OPEs are determined by terms in
the BRST variation of µz which involve cz and µz .

Proceeding as above we set

µz = G(z, z,ηa)dzwk
1wl

2 ,

c1 = H(z, z,ηa)w
r
1ws

2 ,

to arrive at the anomaly constraint
∫

z,z′,ηa ,η′a

∂ z′
�

eT[r, s](z,ηa)eT[k, l](z′,η′a)
�

G(z, z,ηa)H(z
′, z′,η′a) (154)

=
∫

z′′,η′′a

eT[r + k, s+ l](z′′,η′′a )
�

G(z′′, z′′,η′′a )∂z′′H(z
′′, z′′,η′′a )−H(z′′, z′′,η′′a )∂z′′G(z

′′, z′′,η′′a )
�

.

Integrating by parts and switching to the Fourier dual odd coordinates, we find the OPE

eT[r, s](0, bηa)eT[k, l](z, bη′a)≃
1
z
∂z eT[r + k, s+ l](0, bηa + bη′a) + 2

1
z2
eT[r + k, s+ l](0, bηa + bη′a) . (155)

Using the eT eT and eJ i
eJ j OPEs that we have computed, we deduce the OPEs between the on-shell

operator T and itself using (129). After some algebraic manipulation, we find

T[m, n](0)T[r, s](z)∼
1
z

�

1+
r

2(m+ 1)
+

s
2(n+ 1)

∂z

�

T[m+ r, n+ s](0)

+
1
z2

�

2+
r

2(m+ 1)
+

s
2(n+ 1)

+
m

2(r + 1)
+

n
2(s+ 1)

�

T[m+ r, n+ s](0)

+
1
4z

�

1
(m+ 1)(n+ s+ 1)

−
1

(n+ 1)(m+ r + 1)

�

∂ 2
z J[m+ r + 1, n+ s+ 1](0)

+
1

4z2

�

1
(m+ 1)(s+ 1)

−
1

(n+ 1)(r + s)

�

∂zJ[m+ r + 1, n+ s+ 1](0)

+
1

4z2

�

1
n+ s+ 1

(
2+m+ r

(1+m)(1+ r)
)−

1
m+ r + 1

(
2+ n+ s

(1+ n)(1+ s)
)
�

× ∂zJ[m+ r + 1, n+ s+ 1](0)

+
1

2z3

�

1
(m+ 1)(s+ 1)

−
1

(n+ 1)(r + s)

�

J[m+ r + 1, n+ s+ 1](0) .

On the right hand side, all operators are evaluated at the variables bη+ bη′. We have dropped
this dependence for clarity.
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5.4 GG OPE

To constrain the Gα, Gγ OPE we consider terms in the gauge variations of the classical couplings
involving α and cγ or γ and cα (we have disregarded those terms in the analysis above as they
played no role in the previous OPE calculations).

The term in the gauge variation of µi involving the fields α and cγ is εi j∂ jcγ∂zα−εi j∂zcγ∂ jα.
Therefore, the gauge variation of

∫

eJ i[m, n]Dm,nµi involving such terms is
∫

eJ i[m, n]Dm,n

�

εi j∂w j
cγ∂zα− εi j∂zcγ∂w j

α
�

.

The term in the gauge variation of µz involving α and cγ is−εi j∂wi
cγ∂w j

α. Therefore, the gauge

variation of
∫

eT[m, n]Dm,nµz involving such terms is

∫

eT[m, n]Dm,n(−εi j∂wi
cγ∂w j

α) .

The sum of these anomalies can only be cancelled by a gauge variation of a term of the form
∫

z,z′,ηa ,η′a

Gα[r, s](z,ηa)Dr,sα(z, wi = 0,ηa)Gγ[k, l](z′,η′a)Dk,lγ(z
′, w′i = 0,η′a) .

The gauge variation of this expression involving the terms cγ and α is

∫

z,z′,ηa ,η′a

∂ z′
�

Gα[r, s](z,ηa)Gγ[k, l](z′,η′a)
�

Dr,sα(z, wi = 0,ηa)Dk,lcγ(z
′, w′i = 0,ηa) .

Let us plug in test fields α = dzwr
1ws

2G(z, z,ηa) and cγ = wk
1wl

2H(z, z,ηa) where G, H are
arbitrary functions. Cancellation of these gauge anomalies requires

∫

z,z′,ηa ,η′a

∂ z′
�

Gα[r, s](z,ηa)Gγ[k, l](z′,η′a)
�

G(z, z,ηa)H(z
′, z′,η′a)

= l

∫

z′′,η′′a

eJ1[r + k, s+ l − 1](z′′,η′′a )H(z
′′, z′′,η′′a )∂z′′G(z

′′, z′′,η′′a )

− k

∫

z′′,η′′a

eJ2[r + k− 1, s+ l](z′′,η′′a )H(z
′′, z′′,η′′a )∂z′′G(z

′′, z′′,η′′a )

− s

∫

z′′,η′′a

eJ1[r + k, s+ l − 1](z′′,η′′a )∂z′′H(z
′′, z′′,η′′a )G(z

′′, z′′,η′′a )

+ r

∫

z′′,η′′a

eJ2[r + k− 1, s+ l](z′′,η′′a )∂z′′H(z
′′, z′′,η′′a )G(z

′′, z′′,η′′a )

−
∫

z′′,η′′a

eT[r + k− 1, s+ l − 1](z′′,η′′a )H(z
′′, z′′,η′′a )G(z

′′, z′′,η′′a ) . (156)
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We integrate by parts to rewrite the right hand side as
∫

z′′,η′′a

�

− l∂z′′ eJ
1[r + k, s+ l − 1] + k∂z′′J[r + k− 1, s+ l]

− eT[r + k− 1, s+ l − 1]
�

(z′′,η′′a )H(z
′′, z′′,η′′a )G(z

′′, z′′,η′′a )

− (s+ l)

∫

z′′,η′′a

eJ1[r + k, s+ l − 1](z′′,η′′a )∂z′′H(z
′′, z′′,η′′a )G(z

′′, z′′,η′′a )

+ (r + k)

∫

z′′,η′′a

eJ2[r + k− 1, s+ l](z′′,η′′a )∂z′′H(z
′′, z′′,η′′a )G(z

′′, z′′,η′′a ) . (157)

From these expressions we can read off the OPEs just as above. We obtain

Gα[r, s](0, bηa)Gγ[k, l](z, bη′a)≃ −(s+ l)
1
z2
eJ1[r + k, s+ k− 1] + (r + k)

1
z2
eJ2[r + k− 1, s+ l]

− l
1
z
∂zeJ

1[r + k, s+ l − 1] + k
1
z
∂zeJ

2[r + k− 1, s+ l]

+ (r l − sk)
1
z
eT[r + k− 1, s+ l − 1] . (158)

Using (129) we obtain the on-shell Gα − Gγ OPEs

Gα[m, n](0)Gγ[r, s](z)∼
(nr −ms)

z
T[m+ r − 1, n+ s− 1](0) +

1
z2

J[m+ r, n+ s](0)

+
1
z

�

m
2(m+ r)

+
n

2(n+ s)

�

∂zJ[m+ r, n+ s](0) .

On the right hand side, all operators are evaluated at the variables bη+ bη′.

5.5 TG OPE

The T G OPE can be computed similarly. For brevity, we will simply record the result in the
next section.

5.6 Tree-level on-shell OPEs

The OPEs we have just computed completely characterize the tree-level defect chiral algebra.
In the final part of this section we summarize all tree-level OPEs that we have deduced above.
In the next section we will characterize planar backreaction effects effects (which are certain
planar diagrams of loop topology) which deform and centrally extend this tree-level chiral
algebra.

If nr −ms > 0 the OPEs are

J[m, n](0)J[r, s](z)∼
(nr −ms)

z
J[m+ r − 1, n+ s− 1](0) , (159)

J[m, n](0)T[r, s](z)∼
(nr −ms)

z
T[m+ r − 1, n+ s− 1](0)

+
1
z2

�

m
2(r + 1)

+
n

2(s+ 1)

�

J[m+ r, n+ s](0)

+
1
2z

� m
m+ r

+
n

n+ s

�

∂zJ[m+ r, n+ s](0) , (160)

G[m, n](0)J[r, s](z)∼
(ms− rn)

z
G[m+ r − 1, n+ s− 1](z) , (161)
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G[m, n](0)T[r, s](z)∼
�

1
z
∂z +

1
z2

�

G[m+ r, n+ s](0)

+
�

m
2(r + 1)

+
n

2(s+ 1)

�

1
z2

G[m+ r, n+ s](0) , (162)

T[m, n](0)T[r, s](z)∼ 1
z

�

1+
r

2(m+ 1)
+

s
2(n+ 1)

∂z

�

T[m+ r, n+ s](0)

+ 1
z2

�

2+
r

2(m+ 1)
+

s
2(n+ 1)

+
m

2(r + 1)
+

n
2(s+ 1)

�

T[m+ r, n+ s](0)

+ 1
4z

�

1
(m+ 1)(n+ s+ 1)

−
1

(n+ 1)(m+ r + 1)

�

∂ 2
z J[m+ r + 1, n+ s+ 1](0)

+ 1
4z2

�

1
(m+ 1)(s+ 1)

−
1

(n+ 1)(r + s)

�

∂zJ[m+ r + 1, n+ s+ 1](0)

+ 1
4z2

�

1
n+ s+ 1

2+m+ r
(1+m)(1+ r)

−
1

m+ r + 1
2+ n+ s

(1+ n)(1+ s)

�

× ∂zJ[m+ r + 1, n+ s+ 1](0)

+ 1
2z3

�

1
(m+ 1)(s+ 1)

−
1

(n+ 1)(r + s)

�

J[m+ r + 1, n+ s+ 1](0) , (163)

Gα[m, n](0)Gγ[r, s](z)∼
(nr −ms)

z
T[m+ r − 1, n+ s− 1](0) +

1
z2

J[m+ r, n+ s](0)

+
1
z

�

m
2(m+ r)

+
n

2(n+ s)

�

∂zJ[m+ r, n+ s](0) .

The coefficients in the OPEs between J − T and G − G have to be treated with slightly more
care for special choices of n, r, m, s, though the basic structure of the OPEs is the same. For the
J − T OPE, the above expression also holds when nr−ms = 0 and nr = ms > 0. For the G−G
OPE, if nr −ms = 0 and nr = ms > 0 we have

Gα[m, n](0)Gγ[r, s](z)∼
1
z2

J[m+ r, n+ s](0) +
1
z
∂zJ[m+ r, n+ s](0) . (164)

The remaining cases are as follows. If nr − ms = 0 and nr = ms = 0 the TJ and GG OPE
coefficients are instead as follows.
If r = m= 0, s ̸= 0:

J[0, n](0)T[0, s](z)∼
1
z2

�

n
2(s+ 1)

�

J[0, n+ s](0) +
1
2z

� n
n+ s

�

∂zJ[0, n+ s](0) , (165)

Gα[0, n](0)Gγ[0, s](z)∼
1
z2

J[0, n+ s](0) +
1
z

�

n
(n+ s)

�

∂zJ[0, n+ s](0) .

If n= s = 0, r ̸= 0:

J[m, 0](0)T[r, 0](z)∼
1
z2

�

m
2(r + 1)

�

J[m+ r, 0](0) +
1
2z

� m
m+ r

�

∂zJ[m+ r, 0](0) , (166)

Gα[m, 0](0)Gγ[r, 0](z)∼
1
z2

J[m+ r, 0](0) +
1
z

� m
m+ r

�

∂zJ[m+ r, 0](0) . (167)

If r = s = 0 (note that there are no G operators for these values):

J[m, n](0)T[0, 0](z)∼
1

2z2
(m+ n) J[m, n](0) +

1
z
∂zJ[m, n](0) . (168)

We have so far discussed OPEs that come from cancelling the BRST variation of bulk/defect
Feynman diagrams that have the topology of tree diagrams. However, they do not yet consti-
tute the complete planar, i.e. N →∞, chiral algebra. In particular, we have not accounted for

39

https://scipost.org
https://scipost.org/SciPostPhys.17.4.109


SciPost Phys. 17, 109 (2024)

the effects of backreaction, which will serve to deform and centrally extend the planar algebra.
For example, observe that tree-level OPEs of the lowest η-component of the operators

J[r, s], T[0,0] , Gα[k,ℓ] , Gγ[k,ℓ] , (169)

with r + s = 2 and k + ℓ = 1, comprise the (small) N = 4 superconformal vertex algebra of
central charge zero.

If we perform the rescaling of the Kodaira-Spencer Lagrangian in the backreacted geometry,
as discussed in section 2.5, then the diagrammatics have the following dependence on N :

1. The Kodaira–Spencer Lagrangian scales like ∼ N .

2. The term in the Lagrangian implementing the backreaction, i.e. the cubic vertex coupling
Kodaira–Spencer theory to the defect, scales like ∼ N .

3. The propagator (either in the form of bulk-bulk or bulk-defect propagators) scales like
∼ N−1.

Putting this together, we find that the same class of diagrams as in [3] survive in the planar
limit. We reproduce these below in Figure 2. As expected, this leads to central terms scaling
like the CFT central charge c ∼ N , as well as a new class of diagrams arising from the back-
reaction that do not scale with N and deform the algebra. In the next section, we turn now
to computing these diagrams and completing our characterization of the planar chiral algebra
from Koszul duality.

To compute non-planar corrections, one would need to repeat this procedure for a larger
class of bulk diagrams including: 1) diagrams with loops in the bulk, and 2) diagrams with≤ 2
backreaction legs attached to the defect plus an arbitrary number of bulk-defect propagators.
The integrals quickly get difficult when working beyond the box topology, but we remark that
an impressive class of non-planar contributions to the OPE of two open-string bulk operators
(that is, considering additional space-filling D-branes coupled to Kodaira–Spencer theory),
has been computed in [52] by incorporating a refined model for Kaluza–Klein reduction via
homotopy transfer. These corrections, valid for a chiral algebra dual to Kodaira-Spencer type
theories plus space-filling D-branes, can be appended immediately to our chiral algebra, but
does not yet include any dependence on the fermionic variables of the internal compactification
manifold. One can view the non-planar contributions of [52] as incorporating diagrams of
the second type (i.e. those without bulk loops). It would be very interesting to understand
if other techniques from homological algebra can be leveraged to more directly obtain other
non-planar contributions. We leave the incorporation of non-planar corrections to future work.

5.7 Matching states in the global symmetry algebra

In §3.4 we have given a geometric characterization of the global symmetry algebra. In this
short section we match explicitly with operators in the defect CFT.

Recall that this global symmetry algebra is of the form

Vect0

�

X 0/Spec R
�

⊕O(X 0)⊗ΠC2 . (170)

As SU(2)R × SL(2,C) representations we have the decompositions

O(X 0) = R⊗⊕m≥0

�m
2

,
m
2

�

,

Vect0

�

X 0/Spec R
�

= R⊗ (1, 0)⊕ R⊗
�

3
2

,
1
2

�

⊕ R⊗⊕m≥2

�

m− 2
2

,
m
2

�

⊕
�

m+ 2
2

,
m
2

�

.

At the level of vector spaces, it is immediate to see the match between the global symmetry
algebra and certain modes of the gravitational chiral algebra that we have computed. We
describe the modes which make up the global symmetry algebra.
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J

(a) (b)

J

(c) (d)

Figure 2: All diagrams that contribute in the planar limit. The solid vertical line rep-
resents the stack of N branes. Wiggly lines represent Kodaira-Spencer propagators;
dashed lines represent backreaction legs; circles anchored on the brane represent
local operators in the chiral algebra. Diagrams (a) and (c) scale like ∼ O(1) in the
large-N limit, and comprise 3-pt functions. We have computed the chiral algebra
OPEs arising from Diagrams (a) in this section. Diagrams (b) and (d) scale like
∼O(N) in the large-N limit and contribute to the 2-pt function or central extension
of the algebra (terms in the OPE proportional to the identity operator).

• The bosonic part of the global symmetry algebra is generated by two classes of modes.
The first class is

{T[r, s]n} , (171)

where 0 ≤ n ≤ r + s + 2. The modes with r = s = 0 comprise the representation
R⊗ (1,0) = R⊗ sl(2). The modes with r + s = 1 comprise the representation R⊗

�3
2 , 1

2

�

.
The modes with r + s = m≥ 2 comprise the representation R⊗

�m+2
2 , m

2

�

.

• The remaining bosonic part of the global symmetry algebra is generated by the modes

{J[r, s]n} , (172)

where 0≤ n≤ r+s−2. Such modes satisfying r+s = m≥ 2 comprise the representation
�m−2

2 , m
2

�

. Notice that the modes of the low lying operators J[1, 0] and J[0, 1] do not

appear in the global symmetry algebra. (In particular, the central term inÙLRw∞ does
not appear in the global symmetry algebra).

• The fermionic part of the global symmetry algebra is generated by the modes

{Gα[r, s]n, Gγ[r, s]ℓ} , (173)

where 0≤ n,ℓ≤ r+ s. Such modes satisfying r+ s = m≥ 0 comprise the representation
R⊗
�m

2 , m
2

�

⊗ΠC2.

The modes Ln−1 = T[0,0]n, n = 0,1, 2, J1
0 = J[2, 0]0, J2

0 = J[0, 2]0, J3
0 = J[1,1]0

comprise the bosonic part of the global superconformal mode algebra. The modes
Gα[1, 0]n, Gα[0,1]n, Gγ[1, 0]n, Gγ[0, 1]n with n= 0,1 comprise the fermionic part of the global
superconformal mode algebra. We can perform the usual mode integrals to convert the tree-
level OPEs we have just described to obtain the familiar commutators of the psl(1,1|2) global
subalgebra.

6 OPEs from backreaction

The correspondence between the theory on a stack of branes and the gravitational theory de-
fined on the locus away from the brane is not an exact one, even at the twisted level: to obtain a
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match one must include effects from the backreaction. Geometrically, the backreaction defines
the sort of geometry which is dual to the theory on a large stack of branes. This perspective
persists for twisted holography. Algebraically, and importantly for us, the backreaction has the
effect of deforming the dual gravitational chiral algebra defined on the boundary of (twisted)
AdS space.

In this section, we proceed to compute planar corrections to the OPE which involve the
backreaction. This will complete the determination of the planar limit of the holographically
dual chiral algebra.

Since the integrals arising from diagrams this section are slightly more involved, we set
up the following notations. The holomorphic coordinate on C3 will be Z = (z, w) where
w = (w1, w2) is a holomorphic coordinate on C2. The defect will be located along w = 0.
In the formulas below, our convention is that Z0 = z and Z i = wi for i = 1,2.

Before getting into the main computation of the section, we turn our attention to a simpler
example.

6.1 Warmup: Holomorphic Chern–Simons theory

In this section, we warm up by computing the effect of backreaction on the open string sector
only of a “bulk” theory. That is, we study how holomorphic Chern-Simons theory, which may
be interpreted as the open string field theory for some space-filling branes in the bulk, deforms
in the presence of a certain Kodaira-Spencer field (or Beltrami differential). More precisely,
we consider holomorphic Chern–Simons in the presence of a Kodaira–Spencer field which is
sourced by N D1 branes wrapping C ⊂ C3. The backreaction field is

µBR =
εi jw

idw j

2π∥w∥4
∂z ∈ PV1,1(C3 \C) .

This field satisfies the equation

∂ µBR ∧Ωwi=0 = Nδwi=0∂z , (174)

where δwi=0 is the δ-function supported at wi = 0. This couples to the holomorphic Chern–
Simons field by

SBR =
1
2

∫

C3

µBR ∨ tr(A∂ A) =
1
2

N

∫

C3

Aa
εi jw

idw j

2π∥w∥4
∂zAa .

We will denote ω=
εi j w

idw j

2π∥w∥4 so that the coupling can be written SBR =
N
2

∫

C3 Aω∂zA.
The backreaction coupling has a gauge anomaly even at tree-level. Indeed, the tree-level

gauge variation of SBR is
∫

C3

Aa(∂ µBR)c
a =

∫

Cz

Aa
z∂zc

a .

In order to cancel this gauge anomaly one must introduce an N -dependent term in the OPE
of the currents Ja[k, l]. In fact, at tree level only the OPE between currents with k = l = 0
is affected by the tree-level backreaction. In the presence of the backreaction the currents
Ja[0,0] form a Kac–Moody algebra of level N

Ja[0, 0](0)Jb[0, 0](z)≃ f c
ab

1
z

Jc[0,0] +δabN
1
z2

Id .

The second term in the OPE is present due the the existence of a tree-level anomaly which
involves the back reaction. The diagram which represents this anomaly is presented in figure 3.
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Figure 3: Tree-level diagram involving the backreaction which contributes an
anomaly.

What about higher loop anomalies involving the backreaction? For scaling dimension rea-
sons, there are no further corrections to the J[0, 0]− J[0, 0] OPE. Let’s consider the possibility
of quantum corrections to the OPE between the fields Ja[1,0] and Jb[0,1]. Before accounting
for the back reaction, the tree and one-loop level OPE is

Ja[1,0](z)Jb[0,1]≃
1
z

f c
abJ[1, 1] +ħh

1
z

K f e f c
ae f d

b f Jc[0, 0]Jd[0, 0] (175)

(see e.g. section 6 of [3]). By conformal invariance, the possible N -dependent terms in the
OPE Ja[1, 0](0)Jb[0, 1](z) must be of the form

α f c
aeK be
�

1
z2

Jc[0,0] +
1
z
∂zJc[0,0]
�

+ βKab 1
z3

Id ,

for some (possibly zero) constants α,β which depend on N (notice that the form of the central
term in the last term is consistent with the fact that J[1,0], J[0,1] are of spin 3/2). The
diagrams which give rise to the anomalies necessitating these terms in the OPE are presented
in figure 4. In these diagrams, the dotted lines represent coupling to the backreaction and the
wiggle lines represent bulk propagators. The straight lines label bulk field inputs, as before.

To evaluate the integrals associated to these diagrams we use point splitting on the defect
so that operators are placed at z1,z2 ∈ C with |z1−z2| ≥ ε. The edges of the diagram correspond
to the propagator for the free part of holomorphic Chern–Simons theory, which is determined
by the parametrix for the ∂ -operator on C3:

(∂ P)∧ d3Z = δZ=0 . (176)

(a) (b)

Figure 4: One-loop diagrams involving the backreaction which contribute an
anomaly.
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Explicitly, this is the (0,2)-form

P(Z) =
1

4π2r6
ϵi jkZ

i
dZ

j
dZ

k
. (177)

We first focus on diagram 4 (b). The weight is represented by the integral
∫

(X ,Y )
A1(X )ω(x)∂z∂wP(X , Y )ω(y)A2(Y ) , (178)

where we use coordinates X = (x1, x2, z), Y = (y1, y2, w) and impose a cutoff |z − w| ≥ ε. In
appendix A.1 we evaluate this integral to obtain

N2

2
Kabϵi j

∫

|z−w|≥ε

1
(z −w)3

∂wi
Aa

1∂w j
Ab

2|wi=0 , (179)

where A1, A2 are the input gauge fields. The linear BRST variation A 7→ A+ ∂ c of this diagram
thus gives rise to the anomaly

N2

2
Kabϵi j

∫

|z−w|≥ε

1
(z −w)3

∂wi
Aa∂w j

∂ cb|wi=0 . (180)

Integrating by parts and taking ε→ 0 this becomes

N2

2
Kabϵi j∂

3δz1=z2
∂wi

Aa∂w j
∂ cb|wi=0 . (181)

In this form it is clear that this anomaly is canceled by introducing the term in the OPE in
(175) with

β =
N2

2
. (182)

6.2 Tree-level backreaction in Kodaira–Spencer theory

We now turn to the effects of backreaction in our version of Kodaira–Spencer theory obtained
by compactifying the twist of type IIB supergravity on a K3 surface.

The first nontrivial contribution from the backreaction actually occurs at tree-level, and
is represented by Diagram b) in figure 2. We will determine this diagram first. Part of this
contribution was computed in [3]. The backreaction field µBR = µBR(η) takes a similar form
as in the previous section. It is a distributional section

µBR ∈ PV1,1(C3)⊗ R , (183)

which satisfies the defining distributional equation

∂ µBR = δwi=0F∂z , (184)

where F ∈ H2(K3) ⊂ A is the flux labeling the brane configuration.
The field µBR couples to the fields µi via

∫

Z ,η

µBRµ1µ2 . (185)

It couples to the fields α,γ through
∫

Z ,η

µBRα∂zγ . (186)
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Notice that by type reasons the backreaction field does not couple to the Beltrami field µz in
the direction parallel to the brane.

We first consider the gauge anomaly involving the coupling (185). The tree-level gauge
variation of the backreaction coupling (185) is

∫

Z ,η

µBR∂ c1µ2 +

∫

Z ,η

µBRµ1∂ c2 =

∫

z,η

(c1µ2 +µ1c2) |w=0 . (187)

Similarly, the tree-level gauge variation of the coupling (186) is
∫

Z ,η

µBR∂ cα∂zγ+

∫

Z ,η

µBRα∂ ∂zcγ =

∫

z,η

�

cα∂zγ+α∂zcγ
�

|w=0 . (188)

Notice that neither of these expression involve wi-derivatives. Since eJ i[0, 0] couples to µi , the
anomaly in (187) can be cancelled by the gauge variation of

∫

z,η,z′,η′
eJ1[0,0](z)µ1(z)eJ

2[0, 0](z′)µ2(z
′) , (189)

provided that the eJ i[0, 0] operators satisfy an appropriate OPE. Similarly, the anomaly in (188)
can be cancelled by the gauge variation of a coupling of the form

∫

z,η,z′,η′
Gα[0,0](z)α(z)Gγ[0,0](z′)γ(z′) . (190)

Proceeding as above by working in the Fourier dual odd coordinates and then transforming to
the basis of on-shell fields, we see that to cancel the first of these anomalies there must be a
term in the off-shell eJ eJ OPE of the form

eJ i[0, 0](0, bη)eJ j[0,0](z, bη′)≃ ϵi j 1
z
bF(bη+ bη′) . (191)

Using the constraints (129) we can write this OPE in terms of on-shell fields as

J[1, 0](0, bη)J[0,1](z, bη′)≃
1
z
bF(bη+ bη′) . (192)

To cancel the second anomaly (188) there must be a term in the GG OPE of the form

Gα[0,0](0, bη)Gγ[0, 0](z, bη′)≃
1
z2
bF(bη+ bη′) . (193)

Recall that in section 3.3 we pointed out a discrepancy in our supergravity elliptic genus and the
one computed in [11], which in the notation of that section arose from the two representations
(1

2)S ⊗H2,0(K3) and (1
2)S ⊗H2,2(K3). We observe that these representations form a sub-chiral

algebra. Indeed, if we expand J[1,0] in the Fourier dual coefficients as

J[1, 0](bη) = J0[1,0] + bηJ
bη[1, 0] + · · · , (194)

and similarly for J[0, 1], then these representations correspond to the fields

J0[1, 0], J
bη[1,0], J0[0,1], J

bη[0, 1] . (195)

The only OPEs between these fields involves the flux F . They are given by

J0[1, 0](0)J
bη[0, 1](z)≃

f
z

,

J0[0,1](0)J
bη[1,0](z)≃ −

f
z

,

where f is the component of η in the original flux F ∈ H2(K3).
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Consider next the operators

J[1, 0](bη), J[0,1](bη), Gα[0,0](bη), Gγ[0,0](bη) .

These operators form a subalgebra of the full gravitational chiral algebra, even after taking into
account the effect of the backreaction. We can relate this to a familiar system of free fields by
a simple modification. Recall that the spin of the operator Gα[0, 0] is one. If we choose a spin
zero operator eGα[0, 0] such that ∂ eGα[0, 0] then we can obtain the same OPE as above if we
declare that

eGα[0,0](0, bη)Gγ[0, 0](z, bη′)≃
1
z
bF(bηa + bη′a) . (196)

The operators J[1,0](bη), J[0, 1](bη), eGα[0, 0](bη), Gγ[0,0](bη) form a familiar chiral algebra of
free fields. The zero mode of eG is topological and can be ignored; the fact that we take the
derivative arises in Kodaira-Spencer theory from the fact that we chose a potential for the
corresponding polyvector field in §2.

Explicitly, this is the βγbc system defined over the ring R. This is the chiral algebra whose
fields (of spins 0,1,1/2,1/2 respectively)

c = eGα[0,0] , b = Gγ[0, 0] , β = J[1, 0] , γ= J[0, 1] , (197)

are each valued in R.
From the point of view of the UV gauge theory, this comes from the twist of the fields in

the U(1) supermultiplet that corresponds to the collective motion of the D1 − D5 system in
the transverse directions. We emphasize that while these center of mass operators do have
nontrivial OPEs with the remaining part of the chiral algebra, the operators which do not
include the center of mass operators form a subalgebra of our holographically dual chiral
algebra; recall that the contribution of these center of mass operators was subtracted by hand
in §3 to match the elliptic genus of §4.

6.3 The propagator for Kodaira–Spencer theory

In a moment we will proceed with the characterization of how higher loop effects involving
the backreaction in the K3 version of Kodaira–Spencer theory deforms the boundary chiral
algebra. To set up the computations we recall the form of the propagator in Kodaira–Spencer
theory. In this section we follow [40] which introduced this propagator.

The propagator for Kodaira–Spencer theory on C3 is the kernel for the operator ∂ ∂
∗
△−1.

We obtain this by applying the divergence operator to the kernel for the operator ∂
∗
△−1 (the

analytic part of this kernel is the same as the analytic part of the propagator used in holomor-
phic Chern–Simons theory).

As usual, we use Z = (Z1 = w1, Z2 = w2, Z3 = z) for the holomorphic coordinate on C3.
Using the Calabi–Yau form one can express the integral kernel for the operator ∂

∗
△−1 in terms

of the distributional Kodaira–Spencer field

P(Z) =
1

4π2r6
ϵi jkZ

i
dZ

j
dZ

k
∂ 3 , (198)

where ∂ 3 = ∂Z1
∂Z2
∂Z3

. The kernel is obtained by pulling back this section along the difference
map

C3 ×C3→ C3 , (Z , Z ′) 7→ Z − Z ′ .

We denote the pulled back section by

P(Z , Z ′) ∈ PV
3,2
(C3 ×C3) .
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Here PV
3,2

stands for distributional Dolbeault valued polyvector fields of type (3, 2). Notice
that this section is smooth away from the diagonal in C3 ×C3.

We are interested in the Kodaira–Spencer propagator which we will denote by P; this is
the kernel of the operator ∂ ∂

∗
△−1. To obtain this, we first apply the divergence operator to P

P= ∂ P ∈ PV
2,2
(C3) .

Explicitly this is

P(Z) =
3

4π2r8
ϵi jkϵlmnZ

i
Z

l
dZ

j
dZ

k
∂Zm
∂Zn

. (199)

We can expand this in terms of the coordinates Z = (z, w1, w2) where z is the holomorphic
coordinate along the defect. Then,

P(z, wi) =
3dw1dw2

4π2r8

�

z2∂w1
∂w2
− zw1∂z∂w2

+ zw2∂z∂w1

�

+
3dw2dz
4π2r8

�

zw1∂w1
∂w2
−w2

1∂z∂w2
+w1w2∂z∂w1

�

+
3dzdw1

4π2r8

�

zw2∂w1
∂w2
−w1w2∂z∂w2

+w2
2∂z∂w1

�

.

Pulling back along the difference map C3 × C3 → C3 we obtain the Kodaira–Spencer theory
propagator

P(Z , Z ′) ∈ PV
2,2
(C3 ×C3) .

This distribution is the integral kernel for the operator ∂ ∂
∗
△−1 acting on polyvector fields. As

in the case of the propagator for holomorphic Chern–Simons theory, it is smooth away from
the diagonal. We interpret this propagator as a symmetric element of the (completed) tensor
square of the fields of Kodaira–Spencer theory on C3.

The propagator for Kodaira–Spencer theory on K3 × C3 (after compactification) is the
kernel for the operator ∂ ∂

∗
△−1 acting on the full space of fields which acts on the odd η-

coordinates by the identity:

P(Z ,η; Z ,η′) = P(Z , Z ′)δη=η′ . (200)

6.4 The central term

We have classified the planar bulk-boundary Feynman diagrams which involve the backre-
action; there were three types. The first type occurs at tree-level, involving only a single
backreaction vertex, and we have characterized the effect on the boundary chiral algebra in
section 6.2. There are two planar one-loop diagrams involving the backreaction: one involves
a single backreaction vertex, see figure 6, and the other involves two backreaction vertices as
in figure 5. In this section we focus on the latter one-loop diagram, involving two backreaction
vertices, which has the special feature (like the tree-level backreaction effect) that it only cou-
ples to the identity operator in the chiral algebra along the brane. This means that the gauge
anomaly resulting from this diagram introduces a central term in the OPE.

We proceed with the description of the anomaly associated to the diagram in figure 5 which
involves two backreaction vertices and a single propagator. We first consider the terms in the
weight of the diagram involving the bulk fields µ1 − µ2 (there are also terms involving input
fields µ−µ and α−γ). The weight of this diagram involving these fields is represented by the
integral

∫

X ,ηX ,Y,ηY

µ1(X )µBR(x)P(X , Y )µBR(y)µ2(Y ) , (201)
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Figure 5: The diagram which encodes the one-loop central term in the OPE.

where we use coordinates X = (x1, x2, z), Y = (y1, y2, w) for C3 × C3 and impose a point
splitting cutoff |z −w| ≥ ε.

We first observe the η-dependence of the integral above. The backreaction µBR is propor-
tional to F and the η-dependence on the propagator is through δηX=ηY

. Thus, in total, the
η-dependence on the integrand is

µBR(ηX )µBR(ηY )F(ηX )F(ηY )δηX=ηY
. (202)

From this we see that the anomaly associated to this diagram will only involve the unit compo-
nent of the fieldµBR(η) = µBR,0+O(η) and the resulting OPE will be proportional to N = F2|ηη.

In appendix A.2 we evaluate this integral to obtain

−
N
4
ϵi j

∫

|z−w|≥ε

1
(z −w)2

∂wi
µ1∂w j

µ2|wi=0,η=0 . (203)

From this expression, we see that there is a gauge anomaly which can be canceled upon intro-
ducing the following term OPE

eJ i
0[1,0](0)eJ j

0[0,1](z, bη′)≃ · · · −ϵi j 1
4z2

N . (204)

The · · · indicates terms in the OPE which do not depend on the backreaction that we char-
acterized in the previous section (and possibly terms that arise from anomalies associated to
other diagrams involving the backreaction, but in this case there are none).

One can use this expression to solve for the OPE involving the on-shell fields. This central
term in the OPE will involve the operators J[r, s] with r + s = 2, which implies that the lowest
η-components of such operators comprise an sl(2)-current algebra of level N/2. For example

J0[1,1](0)J0[1, 1](z)≃
1
z2

N
2

, (205)

where J0[1, 1] is the lowest η-component of the operator J[1,1].
There is also a central term in the OPE involving the operators Gα[1, 0], Gα[0,1], Gγ[1, 0],

Gγ[0,1] resulting from the BRST variation of the weight represented by figure 5 where the
input fields are α,γ respectively. This weight is represented by the following integral

∫

X ,ηX ,Y,ηY

α(X )µBR(x)∂z∂wP(X , Y )µBR(y)γ(Y ) , (206)
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where X = (z, x1, x2), Y = (w, y1, y2), and P(X , Y ) is the propagator for ∂ . This is identical to
the integral which is computed in appendix A.1; the result is

Gα,0[1, 0]Gγ,0[0, 1]≃ · · · − 2N
1

(z −w)3
+ · · · ,

Gα,0[0, 1]Gγ,0[1, 0]≃ · · ·+ 2N
1

(z −w)3
+ · · · ,

where the · · · denote non-central terms.
In the previous section, we observed that the tree-level OPE’s between the bosonic opera-

tors
T0[0, 0], J0[2,0], J0[1,1], J0[0, 2] , (207)

together with the fermionic operators

Gα,0[1,0], Gα,0[0,1], Gγ,0[1,0], Gγ,0[0, 1] , (208)

comprise the (small)N = 4 superconformal vertex algebra at central charge zero. We have just
seen that the backreaction introduces a level k = N

2 of the sl(2) current algebra generated by
the fields J0[2,0], J0[1, 1], J0[0,2]. This level completely determines the central charge of the
superconformal algebra generated by these operators, c = 12k = 6N . One can alternatively
directly compute the corresponding integrals corresponding to the T T (after putting them
on-shell) and GG OPEs and find precisely the remaining central extension terms.

More generally, the diagram analyzed above gives central terms in OPE’s of the form
J[k, l]J[r, s] ∼ 1

z2 where the total spin of the generators is 2. We have presented the cal-
culation when k + l = 2, r + s = 2. This is the only combination of spins that impacts the
superconformal algebra. At the level of unconstrained fields we only considered operators
eJ i[k, l] with k+ l = 1. Therefore, the only other possibility we have not yet considered is the
OPE between the unconstrained fields eJ i[0,0] and eJ j[1,1]. By a completely similar computa-
tion, one finds (in the equations below we suppress O(1) constants, although they can easily
be reinstated)

eJ i
0[0, 0](0)eJ j

0[1,1](z)≃ · · ·+ εi j 1
z2

N . (209)

At the level of the constrained (on-shell) operators, this becomes (up to dropped constants)

J0[1,0](0)J0[1,2](z)∼ · · ·+
N
z2

, (210)

J0[0,1](0)J0[2,1](z)∼ · · · −
N
z2

. (211)

6.5 Non-central effects from backreaction

We move onto the anomaly arising from the one-loop diagram involving a single backreaction
vertex as depicted in figure 6. In addition to the backreaction, this diagram involves two prop-
agators and a single bulk vertex. We will mostly focus on the corrections of the OPEs involving
the generators that have no dependence on the cohomology ring of K3 or T4, although one
can generalize our computations to include this case. Thus, the results in this section give
corrections to the gravitational OPE for B-branes in the topological string on C3.

The description of the weight of this diagram is more complicated than the central back-
reaction terms we have considered so far. One reason is that this diagram will affect the OPE
between an infinite tower of operators in the holographically dual chiral algebra (even in the
planar limit). Secondly, there are more choices of possible labelings of the external edges of
this diagram by fields in Kodaira–Spencer theory.
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Figure 6: This diagram describes the non-central effect of the backreaction.

Consider the case where the input fields are µ j , j = 1,2 so that the weight of the diagram
is represented by the integral

−
∫

w,ηw

eJ k[a1, a2](w)

∫

X ,ηX ,Y,ηY

µBR(x)µi(z, x)P(X , Y )µ j(Y )Da1,a2
P(Y, W ) . (212)

Here w,ηw are coordinates at the defect vertex and X ,ηX , Y,ηY are coordinates at the bulk ver-
tices which we integrate over. For notational symmetry, we have used the notation W = (w, 0)
for viewing the defect coordinate as a bulk coordinate.

There are similar contributions correcting the other OPEs, but we will focus on the JJ
OPE because (1) it is the most technically difficult to compute; all the other integrals can be
performed with simpler versions of the computations we present in appendix B and (2) the
J -fields include the highest weight states in each superconformal multiplet, so that the other
OPEs can be alternatively obtained by leveraging the superconformal symmetry.

To get some intuition first, let us note that the gauge variation of this anomaly is of the
schematic form

c(i, j, k, l)

∫

w,ηw

(D1ci)∂
l
w

�

D2µ j

�

eJ k[a1, a2]|wt=0 ∧ F(ηw) , (213)

where Di are constant coefficient differential operators, in the w1, w2-coordinates whose orders
sum to 2l + a1 + a2 + 1, and the c(i, j, k, l) are some coefficients. The order of the differential
operators is determined from form of the diagram, which involves a single backreaction. This
anomaly will introduce additional linear terms in the OPE between the (off-shell) operators
eJ i[k1, k2] and eJ j[m1, m2] of the following heuristic form

eJ i[k1, k2](z,η)eJ j[m1, m2](0,η′)≃ · · ·+ c′(i, j, k, l)
1

z l+1
eJ k[a1, a2](0)bF(bη+ bη

′) + · · · , (214)

where k1 + k2 +m1 +m2 = 2l + a1 + a2 + 1. The first · · · refer to tree-level terms which we
computed in the previous section. The second · · · refer to terms with more derivatives acting
on J k[a1, a2]. In appendix B, we will find by explicit computation that l = 1 (and moreover,
a1, a2 are fixed in terms of k1, k2, m1, m2 using the fact that the integrals we are evaluating are
U(1)-equivariant with respect to x i , Y ) so that the leading pole goes like 1

z2 . The subleading
single pole 1

z ∂ J is fixed by symmetry as usual to have half the coefficient of the double pole
(but can also be obtained from direct integration, although we will not present that here).

Let us now explicitly see how the JJ OPE will get deformed for some particular low-lying
modes. (In particular, there should be no non-vanishing diagrams deforming the N = 4 su-
perconformal algebra, and indeed that is the case).
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Figure 7: The diagrams contributing to the non-central deformation of the planar
OPE. We will need to consider all possible defects J̃ k[r, s], k = 1, 2 to obtain the full
on-shell OPE.

All the contributing diagrams of the given topology, including labelings of external lines,
are displayed in figure 7. Let us evaluate these diagrams for a few illustrative examples. We
first consider the OPE J[2, 1]J[0,2]. In terms of off-shell OPEs, we have a rather simple ex-
pression (see also equation (B.18))

J[2, 1]J[0, 2] = 2J̃1[2,0]J̃1[0, 1]− 4J̃1[0, 1]J̃2[1,1] . (215)

This OPE receives contributions from the diagrams in figure 7. We will show how to explicitly
calculate the contribution from the first diagram, and only state the results for the other three.

A more general treatment of these calculations for all J̃ i[m, n]J̃ j[k, l] OPEs (with arbitrary
m, n, k, l) is presented in appendix B.

The weight of the first diagram is

W11(0) = −
∫

z,w

J̃ k[0](w)

∫

C2×C3

µBR(x)µ1(z, x)P(X , Y )µ1(Y )P(Y, W ) . (216)

We specialize the external legs to be

µ1(z, x) = z(x1)2dz∂x1 , µ1(Y ) = (y
2)d y0∂y1 . (217)

Then, k = 1 and the only non-trivial contributions come from the ∂(z−y0)∂(x2−y2) component
of P(X , Y ), and the ∂y1∂y2 component of P(Y, W ).

W11(0) = −
�

1
2π

�5

3242

∫

z,w

zJ̃1[0](w)

∫

C2×C3

[x , y](z − y0)(y0 −w)(x1 − y1)(x1)2(y2)
(||x ||2)2(||X − Y ||2)4(||Y −W ||2)4

. (218)

We first integrate over d3Y . For cleanliness, we will write only the part of the diagram that
participates nontrivially in the d3Y integral as τy (and similarly for d4 x shortly), and combine
all contributions at the end. Using Feynman’s trick,

τy =

∫

Y

[x , y](z − y0)(y0 −w)(x1 − y1)(y2)
(||X − Y ||2)4(||Y −W ||2)4

(219)

=
�

Γ (8)
Γ (4)2

�

∫ 1

0

d t t3(1− t)3
∫

Y

[x , y](z − y0)(y0 −w)(x1 − y1)(y2)
(t||X − Y ||2 + (1− t)||Y −W ||2)8

. (220)

We shift the integration variable Y → Y + tX + (1− t)W and impose U(1)Y equivariance

τy =
�

Γ (8)
Γ (4)2

�

(z −w)2(x1)2
∫ 1

0

d t t4(1− t)5
∫

Y

(|y2|2)
(||Y ||2 + t(1− t)||X −W ||2)8

. (221)
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We introduce radial coordinates r i = |y i |2
t(1−t)||X−W ||2 and perform the angular integration,

τy =
�

Γ (8)
Γ (4)2

�

(z −w)2(−2πi)3
(x1)2

(||X −W ||2)4

∫ 1

0

d t(1− t)

∫ ∞

0

r2

(r0 + r1 + r2 + 1)8
. (222)

Integrating over the radial coordinates and t, we find that the Y integral gives us the expression

τy =
�

(−2πi)3

2Γ (4)

�

(z −w)2
(x1)2

(||X −W ||2)4
. (223)

We can now integrate over d4 x .

τx =

∫

x

(|x1|)2

(||x ||2)2(||X −W ||2)4
(224)

=
�

Γ (6)
Γ (4)

�

∫ 1

0

dss(1− s)3
∫

x

(|x1|)2

(||x ||2 + (1− s)|z −w|)6
. (225)

We introduce radial coordinates r i = |x i |2
(1−s)|z−w|2 and perform the angular integration,

τx =
�

Γ (6)
Γ (4)

�

(2πi)2
�

1
|z −w|2

�2
∫ 1

0

dss(1− s)

∫ ∞

0

(r1)2

(r1 + r2 + 1)6
. (226)

Integrating over the radial coordinates and t,

τx =
�

(−2πi)2

3Γ (4)

��

1
|z −w|2

�2

. (227)

Putting it all together, we find

W11(0) =
2i
3

∫

z,w

zJ̃1[0](w)
�

1
z −w

�2

. (228)

Performing similar calculations for the other three diagrams, we find the following off-shell
OPEs

J̃1[2, 0](z,η)J̃1[0,1](w,η′)≃
�

−2i
9(z −w)2

�

J̃1[0, 0](w)bF(bη+ bη′) ,

J̃1[0,1](z)J̃2[1,1](w)≃
�

7i
9(z −w)2

�

J̃1[0, 0](w)bF(bη+ bη′) . (229)

Inserting this into eq.(215), we find that the on-shell OPE is

J[2,1](z,η)J[0,2](w,η′)≃
�

32i
9(z −w)2

�

J[0,1](w)bF(bη+ bη′) . (230)

One can verify that this is consistent with the more general integrals computed in appendix B.
Let us take another example. Consider the OPE J[3, 0]J[0,3]. Using equation (B.18) we

have

J[3,0](z,η)J[0, 3](w,η′)∼=
�

36i
z2

��

γ
(0,1)
1 (0, 2;2, 0)− β (0,1)

1 (0, 2; 2,0) + β (0,1)
1 (2, 0;0, 2)
�

J̃2[0, 1](w)bF(bη+ bη′)

+
�

36i
z2

��

γ
(1,0)
2 (2, 0; 0,2)− β (1,0)

2 (2, 0;0, 2) + β (1,0)
2 (0,2; 2,0)
�

J̃1[1,0](w)bF(bη+ bη′) .

(231)
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Plugging into our expressions for γ and β (see equations B.6, B.7), we find:

γ
(0,1)
1 (0, 2;2, 0) =

1
18
= −γ(1,0)

2 (2, 0;0, 2) , (232)

−β (0,1)
1 (0,2; 2,0) =

5
9
= β (1,0)

2 (2, 0;0, 2) , (233)

β
(0,1)
1 (2,0; 0,2) =

1
3
= −β (1,0)

2 (0,2; 2,0) . (234)

We thus find that the on-shell OPE is

J[3,0](z,η)J[0,3](w,η′)≃
�

34i
z2

�

J[1,1](w)bF(bη+ bη′) . (235)

Finally, we remark that the planar chiral algebra should contain the information of the c = 6N
small N = 4 superconformal algebra (which we have reproduced in the OPE of the low-lying
generators) as well as OPEs among the superconformal descendants. It would therefore be en-
lightening to match the Koszul duality approach with more standard bootstrap analyses. This
may be slightly tedious, since Koszul duality expresses the chiral algebra in a rather different
basis than the one which is natural from the perspective of these symmetries. For example, we
can use the results of the N = 4 long-multiplet bootstrap of [53], take the h→ (m+n)/2 limit
in which the multiplets become short, and remove the null states, to characterize the nonvan-
ishing 2-pt functions. This is simple to check using the Mathematica code provided in [53] for
the lowest-lying modes, but those come from nothing but the center of mass multiplet and the
N = 4 superconformal algebra itself, which we knew from other methods already. It could be
fruitful to apply these checks, and carefully match the results, for the higher modes.
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A Loop computations involving backreaction

A.1 Backreaction in holomorphic Chern–Simons

Let X = (z, x) = (z, x1, x2), Y = (w, y) = (w, y1, y2). We compute the integral
∫

(X ,Y )∈C3
1×C3

2

A1(X )ω(x)∂z∂wP(X , Y )ω(y)A2(Y ) , (A.1)
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where Ai are (0, 1)-forms on C3, and P(X , Y ) = P(X − Y ) is as in equation (177). Plugging in
A= x1dz and B = y2dw this integral becomes

∫

z,w dz dw∂z∂w I(z, w) where

I(z, w)
def
= (z −w)

∫

C2×C2

d4 xd4 y
[x y]x1 y2

∥x∥4(|z −w|2 + ∥x − y∥2)3∥y∥4
. (A.2)

We compute I(z, w) as a function of the difference z−w. Note that there is an additional factor
over 1

(2π)4 arising from the propagator and ω which we have suppressed, and will restore at
the end.

First, we perform the integration along y ∈ C2. Using Feynman’s trick we have
∫

C2

d4 y
[x y]y2

(|z −w|2 + ∥x − y∥2)3∥y∥4

=
4!
2!

∫ 1

0

dt t2(1− t)

∫

C2

d4 y
[x y]y2

(t|z −w|2 + t∥x − y∥2 + (1− t)∥y∥2)5
. (A.3)

Introduce the new variable ey = y − t x . The the right hand side becomes

12

∫ 1

0

dt t2(1− t)

∫

C2

d4
ey

[x(ey + t x)](y2 + t x2)

(∥ey∥2 + t(1− t)∥x∥2 + t|z −w|2)5
. (A.4)

Changing to polar coordinates and first computing the residue we see that only terms invariant
under U(1)×U(1) rotations of C2 will contribute to this integral. The U(1)×U(1) invariant part
of the numerator is x1|ey2|2. After computing the residue along both the ey1 and ey2 directions
the integral then becomes

12(−2πi)2 x1

∫ 1

0

dt t2(1− t)

∫

(0,∞)×(0,∞)
d2ρ

ρ2

(ρ1 +ρ2 + t(1− t)∥x∥2 + t|z −w|2)5
. (A.5)

Performing the integration over (0,∞)× (0,∞) we obtain

(−2πi)2

2
x1

∫ 1

0

1− t
(|z −w|2 + (1− t)∥x∥2)2

. (A.6)

Returning to the original integral we must now compute
∫ 1

0

dt (1− t)

∫

C2

d4 x
|x1|2

∥x∥4(|z −w|2 + (1− t)∥x∥2)2
. (A.7)

We compute the integral over x .
Using the Feynman trick again we have
∫

C2

d4 x
|x1|2

∥x∥4(|z −w|2 + (1− t)∥x∥2)2
=

∫ 1

0

ds s(1− s)

∫

C2

d4 x
|x1|2

(s|z −w|2 + (1− ts)∥x∥2)4
.

(A.8)
After computing the angular integrations this becomes

(−2πi)2
∫

(0,∞)×(0,∞)
d2ρ

ρ1

(s|z −w|2 + (1− ts)(ρ1 +ρ2))4
=

1
s(1− ts)3|z −w|2

. (A.9)

Finally, plugging back into the original expression we have

I(z, w) =
(−2πi)2

z −w

∫ 1

0

dt

∫ 1

0

ds
(1− t)(1− s)
(1− ts)3

. (A.10)
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The integral over t, s gives 1
2 . Combining all the resulting factors from the preceding compu-

tations, and reinstating the propagator normalization, we therefore have

I(z, w) =
(−2πi)4

2
1

(2π)4
1

2(z −w)
=

1
4(z −w)

. (A.11)

A.2 The central term in Kodaira–Spencer theory

Let the notation for the coordinates X , Y be as in the last section. We will compute the integral
∫

X ,Y
µ1(X )µBR(x)P(X , Y )µBR(y)µ2(Y ) . (A.12)

Without loss of generality, we plug in the test functions

µ1(X ) = x1∂x1
dz , µ2(Y ) = y2∂y2

dw . (A.13)

The vector field type is determined by the symmetry of the graph while the powers of the
holomorphic coordinates x , y which appear are determined by the scaling properties of the
propagator and backreaction.

Notice thatµBR(x) is proportional to the differential form ϵi j x idx j and similarly forµBR(y).
Thus, for these test functions only the ∂x1−y1

∂x2−y2
part of the BCOV propagator P(X , Y ) will

contribute to this integral. Furthermore, the terms in the BCOV propagator proportional to
dz − dw will not contribute by type reasons. Simplifying, we see that for this choice of test
functions this integral becomes

∫

z,w dz dw I(z, w) where

I(z, w)
def
= (z −w)2
∫

C2
x×C2

y

d4 xd4 y
[x y]x1 y2

∥x∥4(|z −w|2 + ∥x − y∥2)4∥y∥4
, (A.14)

where we have again suppressed the constant factors from the propagator andω, to be restored
at the end. We remark that the factor (z−w)2 comes from the BCOV propagator. We compute
I(z, w) as a function of the difference z −w.

First, we perform the integration along y ∈ C2. Using Feynman’s trick we have

∫

C2

d4 y
[x y]y2

(|z −w|2 + ∥x − y∥2)4∥y∥4

=
5!
3!

∫ 1

0

dt t3(1− t)

∫

C2

d4 y
[x y]y2

(t|z −w|2 + t∥x − y∥2 + (1− t)∥y∥2)6
. (A.15)

Introduce the new variable ey = y − t x . The the right hand side becomes

20

∫ 1

0

dt t3(1− t)

∫

C2

d4
ey

[x(ey + t x)](y2 + t x2)

(∥ey∥2 + t(1− t)∥x∥2 + t|z −w|2)6
. (A.16)

The U(1)×U(1) invariant part of the numerator is x1|ey2|2. After computing the residue along
both the ey1 and ey2 directions the integral becomes

20(−2πi)2 x1

∫ 1

0

dt t3(1− t)

∫

(0,∞)×(0,∞)
d2ρ

ρ2

(ρ1 +ρ2 + t(1− t)∥x∥2 + t|z −w|2)6
. (A.17)

Performing the integration over (0,∞)× (0,∞) we obtain

(−2πi)2
5!
3!

2!
5!

x1

∫ 1

0

1− t
(|z −w|2 + (1− t)∥x∥2)3

. (A.18)
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Returning to the original integral we must now compute (suppressing the overall constant
factors for the moment)

∫ 1

0

dt (1− t)

∫

C2

d4 x
|x1|2

∥x∥4(|z −w|2 + (1− t)∥x∥2)3
. (A.19)

We compute the integral over x as above to obtain

(−2πi)4
4
4!

1
|z −w|4

∫ 1

0

dt

∫ 1

0

ds
(1− t)(1− s)
(1− ts)3

, (A.20)

and hence, putting all the pieces together,

I(z, w) =
3

(2π)4
(−2πi)4

6
1

2(z −w)2
=

1
4(z −w)2

. (A.21)

Upon changing to the basis of on-shell generators (i.e. currents sourcing the properly con-
strained Kodaira-Spencer fields), we will recover precisely the canonical Kac-Moody algebra
at the expected level N

2 .

A.3 Evaluating a general holomorphic integral over d4xd4y

In the previous two appendices, we computed some holomorphic integrals which can deform
a Koszul dual chiral algebra on a case-by-case basis. However, these integrals admit more
general closed forms, and it is convenient to calculate them once and for all. In this appendix
we will evaluate a general form of a holomorphic integral which is common to many 1-loop
Koszul duality computations in holomorphic theories. Throughout this appendix, we employ
the same notation as in §6.

We would like to obtain an expression of the form
∫

dzdwI(z, w), where I(z, w) is itself an
integral over the four transverse directions d4 xd4 y . For notational expedience, let us strip off
some overall factors which do not partake in the d4 xd4 y integral, in particular: any functions
of z̄, w̄ which come from expanding the propagators, and any overall multiplicative constants
which come from the normalizations of the propagators and the backreaction fields. We call
this stripped-down integral I1(z, w), and turn to its evaluation. (Of course, one must rein-
state these factors at the end, and then perform the final integral over dzdw to complete the
determination of the OPE).

We begin with an integral of the form:

I1( j⃗; k⃗, l⃗; m⃗, n⃗) =

∫

C2

(x1)k1(x2)k2(x1)l1(x2)l2

(||x ||2) j1
Iy( j⃗; m⃗, n⃗)d4 x , (A.22)

where k⃗, l⃗, m⃗, n⃗ ∈ (Z≥0)2, j⃗ ∈ (Z>0)3, X = (z, x α̇), Y = (w, y α̇) and:

Iy( j⃗; m⃗, n⃗) =

∫

C2

[x , y](y1)m1(y2)m2(y1)n1(y2)n2

(||X − Y ||2) j2(||y||2) j3
d4 y . (A.23)

We have also made the following definition:

[x , y] = x1 y2 − x2 y1 . (A.24)

We first integrate over d4 y . Using Feynman’s trick,

Iy( j⃗; m⃗, n⃗) =
�

Γ ( j2 + j3)
Γ ( j2)Γ ( j3)

�

∫ 1

0

d t t j2−1(1− t) j3−1

∫

C2

[x , y](y1)m1(y2)m2(y1)n1(y2)n2

(t||X − Y ||2 + (1− t)||y||2) j2+ j3
d4 y .
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Next, we shift the integration variable y , y → y + tX , and use the binomial theorem:

Iy( j⃗; m⃗, n⃗) =
�

Γ ( j2 + j3)
Γ ( j2)Γ ( j3)

�

∫ 1

0

d t t j2−1(1− t) j3−1
2
∑

i=1

mi
∑

ai=0

ni
∑

bi=0

�

mi

ai

��

ni

bi

�

(A.25)

× (t x1)m1−a1(t x2)m2−a2(t x1)n1−b1(t x2)n2−b2

∫

C3

[x , y](y1)a1(y2)a2(y1)b1(y2)b2

(t|z −w|+ ||y||2 + t(1− t)||x ||2) j2+ j3
d4 y .

The integral over y only receives contributions from those terms that are invariant under phase
rotations of y α̇. Let us make the following convenient definition for the summations:

(m⃗,n⃗)
∑

(a1,a2)

≡
�Min[m1,n1]
∑

a1=0

Min[m2,n2+1]
∑

a2=1

�

n1

a1

��

n2

a2 − 1

�

−
Min[m1,n1+1]
∑

a1=1

Min[m2,n2]
∑

a2=0

�

n1

a1 − 1

��

n2

a2

���

m1

a1

��

m2

a2

�

,

using which, eq.(A.25) reduces to

Iy( j⃗; m⃗, n⃗) =
�

Γ ( j2 + j3)
Γ ( j2)Γ ( j3)

� (m⃗,n⃗)
∑

(a1,a2)

∫ 1

0

d t t j2+m1+m2+n1+n2−2a1−2a2−1(1− t) j3−1 (A.26)

× (x1)m1−a1(x2)m2−a2(x1)n1+1−a1(x2)n2+1−a2

× (−2πi)2(t|z −w|2 + t(1− t)||x ||2)2+a1+a2− j2− j3

∫ ∞

0

(r1)a1(r2)a2

(r1 + r2 + 1) j2+ j3
dr1dr2 ,

where we introduced radial coordinates r i = |y i|2/(t|z − w|2 + t(1 − t)||X −W ||2), and we
integrated over dθ i .

Integrating over dr i and grouping terms, this simplifies to:

Iy( j⃗; m⃗, n⃗) =
�

(−2πi)2

Γ ( j2)Γ ( j3)

� (m⃗,n⃗)
∑

(a1,a2)

Γ (a1 + 1)Γ (a2 + 1)Γ ( j2 + j3 − 2− a1 − a2)

× (x1)m1−a1(x2)m2−a2(x1)n1+1−a1(x2)n2+1−a2

×
∫ 1

0

d t
t2+m1+m2+n1+n2−a1−a2− j3(1− t) j3−1

(t|z −w|2 + t(1− t)||x ||2) j2+ j3−2−a1−a2
.

We now at last have the following integral, which we must integrate over d4 x:

Ix( j⃗; k⃗, l⃗; m⃗, n⃗) =

∫

C2

(x1)k1+m1−a1(x2)k2+m2−a2(x1)l1+n1+1−a1(x2)l2+n2+1−a2

(||x ||2) j1(|z −w|2 + (1− t)||x ||2) j2+ j3−2−a1−a2
d4 x . (A.27)

The steps we need to follow to perform this integral are identical to those of the d4 y integral:
Feynman’s trick, shifting the integration variable, and only retaining those terms which are
invariant under phase rotations of x α̇. We present the final result:

I1( j⃗; k⃗, l⃗; m⃗, n⃗) =
�

(2π)4

Γ ( j1)Γ ( j2)Γ ( j3)

�

Γ ( j1 + j2 + j3 − 4− k1 − k2 −m1 −m2)
(|z −w|2) j1+ j2+ j3−4−k1−k2−m1−m2

δ
li+ni+1
ki+mi

×
(m⃗,n⃗)
∑

(a1,a2)

Γ (a1 + 1)Γ (a2 + 1)Γ (k1 +m1 + 1− a1)Γ (k2 +m2 + 1− a2)

×
∫ 1

0

∫ 1

0

dsd t
t p1(1− t) j3−1sp2(1− s) j1−1

(1− st)p3
, (A.28)
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where we have made the following definitions:

p1 = 2+m1 +m2 + n1 + n2 − a1 − a2 − j3 , (A.29)

p2 = 1+ k1 + k2 +m1 +m2 − a1 − a2 − j1 , (A.30)

p3 = 2+ k1 + k2 +m1 +m2 − a1 − a2 . (A.31)

To connect to what we have previously determined in Appendices A.1, A.2, let us take several
specializations of this general form.

1. Consider j⃗ = (2,3, 2), k⃗ = (1,0), l⃗ = n⃗= 0, m⃗= (0,1). The integral becomes

I1(z, w) =

∫

(C2)2

[ x̄ , ȳ]x1 y2

(||x ||2)2(||X − Y ||2)3(||y||2)2
d4 xd4 y . (A.32)

With these parameters, the general form of our integral becomes

I1(z, w) =
(−2πi)4

4
1

|z −w|2
. (A.33)

This integral is precisely that in equation A.2, except with the anti-holomorphic (z̄ − w̄)
factor from the holomorphic Chern-Simons propagator stripped off. We also must rein-
state an overall constant 1

2π4 coming from the normalization of the propagator and the
backreaction field. To get our final answer, we simply reinstate them to recover

I(z, w) =
1

4(z −w)
. (A.34)

2. Next consider j⃗ = (2,4, 2), k⃗ = (1,0), l⃗ = n⃗= 0, m⃗= (0,1):

I(z, w) =

∫

(C2)2

[ x̄ , ȳ]x1 y2

(||x ||2)2(||X − Y ||2)4(||y||2)2
d4 xd4 y . (A.35)

With these parameters, the general form of our integral becomes

I1(z, w) =
(−2πi)4

12

�

1
|z −w|2

�2

. (A.36)

This is (up to our stripped off factors) the integral we needed to compute the central
term in our Kodaira-Spencer theory, equation A.14. We now simply reinstate the factors
that depend on z̄, w̄ from the propagator, i.e. (z̄ − w̄)2. To get the correct normalization
for the OPE, we must also reinstate the constant factors which constitute the overall
normalizations of P,ω ( 3

4π2 , 1
(2π)2 , respectively), which we have so far suppressed.

The result may now be plugged into an integral over dzdw, with a point-splitting regu-
lator, to complete the determination of the central term in the OPE, as in §6.

B Non-central terms in Kodaira–Spencer theory

We choose our notation similarly to Appendix A.2. We fix coordinates Z = (z, 0), W = (w, 0)
along the brane. For the diagram in Figure 8, our notation for the bulk coordinates will be
X = (z, x), Y = (y0, y). Similarly, for the diagram in Figure 9, we use X = (x0, x), Y = (w, y).
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Figure 8

This final diagram type correcting the planar OPE is more involved, and the integrals are
more subtle, so we will break down the analysis into simpler steps and summarize the outcome
in §6.

First, we shall demand that the integral be well-defined and nonzero, by saturating the
correct (antiholomorphic) differential form and polyvector degree.27 This will enable us to
isolate the terms in the weight of the diagram that contribute nontrivially to the integral.

For simplicity, in this section we work in ordinary Kodaira–Spencer theory, meaning the
closed-string topological B-model on C3 rather than the K3 compactified theory on C3. To
algebraically translate the computations in this section to the K3 case one should include the
dependence of the backreaction on the Mukai vector F ∈ H2(Y ); but the analysis is identical.

B.1 The weight of the diagram

Let a = (a1, a2) denote a pair of non-negative integers. The weight of the diagram in Figure 8
is:

Wi j(a) = −
∫

z,w

J̃ k[a](w)

∫

C2×C3

µBR(x)µi(z, x)P(X , Y )µ j(Y )Da1,a2
P(Y, W ) , (B.1)

where

µBR(x) =
�

1
2π||x ||4

�

εi j x
id x j∂x0 , P(X , Y ) =

�

3
4π2||Z ||8

�

εi jkεlmnZ
i
Z

l
dZ

j
dZ

k
∂Zm∂Zn ,

where Z = X − Y .
Without loss of generality, we can specialize the external legs to be of the form:

µi(z, x) = f (z, x)dz∂x i , µ j(Y ) = g(y)d y0∂y j .

To integrate, we need to keep only the terms in the weight that are expressions of the form:

Wi = h(z, x; Y, w)∂w∂z∂
2
x ∂

3
Y dzdwd2 xd3Y . (B.2)

Note that we use the CY form to turn this into a Dolbeault form of type (7, 7) on Cw×C3
z,x×C3

Y .
Let us first saturate the polyvector field degree, by expanding the numerators of the prop-

agator and backreaction contributions and then isolating the parts of the weight diagram pro-
portional to precisely ∂w∂z∂

2
x ∂

3
Y .

27This is equivalent to demanding the correct holomorphic form degree, since polyvector fields can be traded
for differential forms using the Calabi-Yau holomorphic volume form, as described in the main text. It turns out
to be simpler to instead perform the count directly with the polyvector fields in terms of which we express the
propagator.
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Note that J̃ k(w)dw is part of the integrand of any bulk-defect coupling, although we have
often left the holomorphic volume form implicit in the main text. For the purposes of holomor-
phic polyvector counting (i.e. instead of using holomorphic differential forms), the insertion
of the current should be thought of as contributing a factor of ∂w. In addition, the coupling
of J̃ k(w) to the propagator P(Y, W ) will force us to keep only the ∂(Y−W )k component of the
propagator. This is because in components we have the contraction J̃ kPk j , with k summed
over; to keep the notation from being too laden, we have not decomposed the propagator into
components in the weight, but will keep this in mind in what follows.

The schematic form of the diagram in Figure 8 allows for various choices of the Kodaira-
Spencer fields µi on the external legs. There are four distinct cases to consider, depending on
the values of i and j.
Case 1: i = j = 1

1⃝= ∂z∂x1

�

ε j1 j2 j3(X − Y ) j1∂(X−Y ) j2∂(X−Y ) j3

�

∂y1

�

εk1k2k(Y −W )k1∂(Y−W )k2

�

= ∂z∂x1

�

2ε j1 j22(X − Y ) j1∂(X−Y ) j2∂x2

�

∂y1

�

εk1k2k(Y −W )k1∂(Y−W )k2

�

= −4δk,1(y
0 −w)(x1 − y1)∂z∂

2
x ∂

3
Y .

Case 2: i = j = 2

2⃝= ∂z∂x2

�

ε j1 j2 j3(X − Y ) j1∂(X−Y ) j2∂(X−Y ) j3

�

∂y2

�

εk1k2k(Y −W )k1∂(Y−W )k2

�

= ∂z∂x2

�

2ε j1 j21(X − Y ) j1∂(X−Y ) j2∂x1

�

∂y2

�

εk1k2k(Y −W )k1∂(Y−W )k2

�

= −4δk,2(y
0 −w)(x2 − y2)∂z∂

2
x ∂

3
Y .

Case 3: i = 1, j = 2

3⃝= ∂z∂x1

�

ε j1 j2 j3(X − Y ) j1∂(X−Y ) j2∂(X−Y ) j3

�

∂y2

�

εk1k2k(Y −W )k1∂(Y−W )k2

�

= ∂z∂x1

�

2ε j1 j22(X − Y ) j1∂(X−Y ) j2∂x2

�

∂y2

�

εk1k2k(Y −W )k1∂(Y−W )k2

�

= 4∂z∂x1

�

− (x1 − y1)∂y0 + (z − y0)∂y1

�

∂x2∂y2

�

δk,2(y
0 −w)∂y1 − εk1k yk1

∂y0

�

= 4
�

−δk,2(y
0 −w)(x1 − y1) + εlk(z − y0)y l

�

∂z∂
2
x ∂

3
Y .

Case 4: i = 2, j = 1

4⃝= ∂z∂x2

�

ε j1 j2 j3(X − Y ) j1∂(X−Y ) j2∂(X−Y ) j3

�

∂y1

�

εk1k2k(Y −W )k1∂(Y−W )k2

�

= ∂z∂x2

�

2ε j1 j21(X − Y ) j1∂(X−Y ) j2∂x1

�

∂y1

�

εk1k2k(Y −W )k1∂(Y−W )k2

�

= 4∂z∂x2

�

(x2 − y2)∂y0 − (z − y0)∂y2

�

∂x1∂y1

�

−δk,1(y
0 −w)∂y2 − εk1k yk1

∂y0

�

= 4
�

−δk,1(y
0 −w)(x2 − y2)− εlk(z − y0)y l

�

∂z∂
2
x ∂

3
Y .

We will presently evaluate the integrals for all of these combinations.
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Next, we must saturate the antiholomorphic form degree. Happily, that is much simpler,
and does not depend on the values of i, j.

5⃝=
�

εi1 i2 x i1 d x i2
�

dz
�

ε j1 j2 j3(X − Y ) j1 d(X − Y ) j2, j3

�

d y0
�

εk1k2k3
(Y −W )k1 d(Y −W )k2,k3

�

=
�

εi1 i2 x i1 d x i2
�

dz
�

2(z − y0)d(x1 − y1)d(x2 − y2)
�

d y0
�

2εk1k2
yk1 d yk2 dw
�

= −4[x , y](z − y0)dzdwd2 xd3Y .

Putting it all together, we find that eq.(B.1) reduces to:

Wi j(a) = −
∫

z,w

J̃ k[a](w)
�

1
2π

�5 3242(3+ a1 + a2)!
3!a1!a2!

�

δi, jδk,iΛi + |εi j|δk, jΛi − εi jεlkΦl

�

, (B.3)

where Λi and Φl are defined as follows:

Λi =

∫

C2×C3

[x , y](z − y0)(y0 −w)(x i − y i) f (z, x)g(y)(y1)a1(y2)a2

(||x ||2)2(||X − Y ||2)4(||Y −W ||2)4+a1+a2
d4 xd6Y , (B.4)

Φl =

∫

C2×C3

[x , y](z − y0)2 y l f (z, x)g(y)(y1)a1(y2)a2

(||x ||2)2(||X − Y ||2)4(||Y −W ||2)4+a1+a2
d4 xd6Y . (B.5)

We will next specialize to the test functions f (z, x)=zk0(x1)k1(x2)k2 and g(y)=(y1)m1(y2)m2 .
One can also have additional (y0) dependence, so that test functions which include (z)q(y0)p

with q+ p = n allows us to access n+ 1 order poles, but all poles beyond second order vanish
for scaling reasons; the single pole coming from q = p = 0 is the usual 1

z ∂ J term, with half
of the coefficient of the double pole, which is easily fixed by symmetry (and at tree-level was
already computed explicitly in §5). Therefore, we will focus on these test functions which give
us the leading pole.

We will now perform the integrals.

B.2 Performing the integrals

Both terms in equation B.3 can be computed in the same way, so we will only present the
explicit integration of Λi and then state the result for Φl .

Suppose that we are interested in the OPE J̃ i[k]J̃ j[m].

Λi = (z)
k0

∫

x

(x1)k1(x2)k2

(||x ||2)2

∫

Y

[x , y](z − y0)(y0 −w)(x i − y i)(y1)m1(y2)m2(y1)a1(y2)a2

(||X − Y ||2)4(||Y −W ||2)4+a1+a2
.

For cleanliness, we will introduce the notation τy ,τx to denote the portions of Λi participating
in the Y, x integrals, respectively. We first use Feynman’s trick,

τy =
�

Γ (8+ a1 + a2)
Γ (4)Γ (4+ a1 + a2)

�

∫ 1

0

d t t3(1− t)3+a1+a2

×
∫

Y

[x , y](z − y0)(y0 −w)(x i − y i)(y1)m1(y2)m2(y1)a1(y2)a2

(t||X − Y ||2 + (1− t)||Y −W ||2)8+a1+a2
.
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We then shift the integration variable Y → Y + tX +(1− t)W and impose U(1)y0 equivariance,

τy =
�

Γ (8+ a1 + a2)
Γ (4)Γ (4+ a1 + a2)

�

(z −w)2
∫ 1

0

d t t4(1− t)4+a1+a2

×
∫

Y

[x , y]((1− t)x i − y i)(t x1 + y1)m1(t x2 + y2)m2(t x1 + y1)a1(t x2 + y2)a2

(||Y ||2 + t(1− t)||X −W ||2)8+a1+a2
.

We use the binomial theorem and then impose U(1)y i equivariance,

τy =
�

Γ (8+ a1 + a2)
Γ (4)Γ (4+ a1 + a2)

�

(z −w)2
an
∑

pn

�

an

pn

� mn
∑

qn

�

mn

qn

�

(x1)m1−q1(x2)m2−q2(x1)a1−p1(x2)a2−p2

×
�

x1 x iδp1,q1
δp2+1,q2

− x i x2δp1+1,q1
δp2,q2

+ (−1)i x iδp1+1,q1
δp2+1,q2

+ εii1 x i1δp1+u1(i),q1
δp2+u2(i),q2

�

×
∫ 1

0

d t t4+a1+a2+m1+m2−p1−p2−q1−q2(1− t)6+a1+a2−(q1−p1)−(q2−p2)

×
∫

Y

(|y1|2)q1(|y2|2)q2

(||Y ||2 + t(1− t)||X −W ||2)8+a1+a2
,

where u(i) = 2(δi,1,δi,2).

We introduce radial coordinates r i = |y i |2
t(1−t)||X−W ||2 and perform the angular integration,

τy =
�

Γ (8+ a1 + a2)
Γ (4)Γ (4+ a1 + a2)

�

(z −w)2
an
∑

pn

�

an

pn

� mn
∑

qn

�

mn

qn

�

(x1)m1−q1(x2)m2−q2(x1)a1−p1(x2)a2−p2

×

�

x1 x iδp1,q1
δp2+1,q2

− x i x2δp1+1,q1
δp2,q2

+ (−1)i x iδp1+1,q1
δp2+1,q2

+ εii1 x i1δp1+u1(i),q1
δp2+u2(i),q2

�

(||X −W ||2)5+a1+a2−q1−q2

× (−2πi)3
∫ 1

0

d t tm1+m2−p1−p2−1(1− t)1+p1+p2

∫ ∞

0

(r1)q1(r2)q2

(r0 + r1 + r2 + 1)8+a1+a2
dr0dr1dr2 .

We integrate over the radial coordinates and over t to obtain

τy =
�

(−2πi)3)
Γ (4)Γ (4+ a1 + a2)

�

(z −w)2
an
∑

pn

�

an

pn

� mn
∑

qn

�

mn

qn

�

(x1)m1−q1(x2)m2−q2(x1)a1−p1(x2)a2−p2

×

�

x1 x iδp1,q1
δp2+1,q2

− x i x2δp1+1,q1
δp2,q2

+ (−1)i x iδp1+1,q1
δp2+1,q2

+ εii1 x i1δp1+u1(i),q1
δp2+u2(i),q2

�

(||X −W ||2)5+a1+a2−q1−q2

×
�

Γ (m1 +m2 − p1 − p2)Γ (2+ p1 + p2)Γ (1+ q1)Γ (1+ q2)Γ (5+ a1 + a2 − q1 − q2)
Γ (2+m1 +m2)

�

.

We now integrate over d4 x ,

τx =

∫

x

(x1)k1(x2)k2

(||x ||2)2(||X −W ||2)5+a1+a2−q1−q2

×
�

x1 x iδp1,q1
δp2+1,q2

− x i x2δp1+1,q1
δp2,q2

+ (−1)i x iδp1+1,q1
δp2+1,q2

+ εii1 x i1δp1+u1(i),q1
δp2+u2(i),q2

�

.
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Using Feynman’s trick and imposing U(1)x equivariance,

τx = δ2
kt+mt ,1+at+vt (i)

�

δp1,q1
δp2+1,q2

−δp1+1,q1
δp2,q2

+ (−1)iδp1+1,q1
δp2+1,q2

− (−1)iδp1+u1(i),q1
δp2+u2(i),q2

�

×
�

Γ (7+ a1 + a2 − q1 − q2)
Γ (5+ a1 + a2 − q1 − q2)

�

∫ 1

0

dss(1− s)4+a1+a2−q1−q2

∫

x

(|x1|2)k1+m1−q1(|x2|2)k2+m2−q2

(|x |2 + (1− s)|z −w|2)7+a1+a2−q1−q2
,

where v(t) = (δi,1,δi,2).

We introduce radial coordinates r i = |x i |2
(1−s)|z−w|2 and perform the angular integration,

τx =
�

(−2πi)
|z −w|

�2

δ2
kt+mt ,1+at+vt

�

δp1,q1
δp2+1,q2

−δp1+1,q1
δp2,q2

+ (−1)iδp1+1,q1
δp2+1,q2

− (−1)iδpr+ur (i),qr

�

×
�

Γ (7+ a1 + a2 − q1 − q2)
Γ (5+ a1 + a2 − q1 − q2)

�

∫ 1

0

dss(1− s)2+a1+a2−q1−q2

∫ ∞

0

(r1)k1+m1−q1(r2)k2+m2−q2

(r1 + r2 + 1)7+a1+a2−q1−q2
.

We integrate over the radial coordinates and over t to obtain

τx =
�

(−2πi)
|z −w|

�2

δ2
kt+mt ,1+at+vt (i)

�

δp1,q1
δp2+1,q2

−δp1+1,q1
δp2,q2

+ (−1)iδp1+1,q1
δp2+1,q2

− (−1)iδpr+ur (i),qr

�

×
�

Γ (3+ a1 + a2 − q1 − q2)Γ (1+ k1 +m1 − q1)Γ (1+ k2 +m2 − q2)
Γ (5+ a1 + a2 − q1 − q2)2

�

.

Putting it all together, we find the following expression for Λi

Λi =
�

(−2πi)5

Γ (4)Γ (4+ a1 + a2)

��

1
(z −w)2

�

δ2
kt+mt ,1+at+vt (i)

zk0

an
∑

pn

�

an

pn

� mn
∑

qn

�

mn

qn

�

q1!q2! (B.6)

×
�

δp1,q1
δp2+1,q2

−δp1+1,q1
δp2,q2

+ (−1)iδp1+1,q1
δp2+1,q2

− (−1)iδpr+ur (i),qr

�

×
�

(m1 +m2 − 1− p1 − p2)!(1+ p1 + p2)!(2+ a1 + a2 − q1 − q2)!(k1 +m1 − q1)!(k2 +m2 − q2)!
(1+m1 +m2)!(4+ a1 + a2 − q1 − q2)!

�

≡
�

(−2πi)5

Γ (4)Γ (4+ a1 + a2)

��

1
(z −w)2

�

δ2
kt+mt ,1+at+vt (i)

zk0γa
i (k, m) ,

where we have defined γa
i (k, m) for notational convenience.

By completely identical methods, we also obtain the following expression for Φl

Φl =
�

(−2πi)5

Γ (4)Γ (4+ a1 + a2)

��

1
(z −w)2

�

δ2
kt+mt ,1+at+vt (i)

zk0

an
∑

pn

�

an

pn

� mn
∑

qn

�

mn

qn

�

q1!q2! (B.7)

×
�

δp1,q1
δp2+1,q2

−δp1+1,q1
δp2,q2

− (−1)lδp1+1,q1
δp2+1,q2

+ (−1)lδpr+ur (i),qr

�

×
�

(m1 +m2 − p1 − p2)!(q1 + q2)!(2+ a1 + a2 − q1 − q2)!(k1 +m1 − q1)!(k2 +m2 − q2)!
(1+m1 +m2)!(4+ a1 + a2 − q1 − q2)!

�

≡
�

(−2πi)5

Γ (4)Γ (4+ a1 + a2)

��

1
(z −w)2

�

δ2
kt+mt ,1+at+vt (i)

zk0βa
l (k, m) ,

where again we have defined βa
i (k, m) for notational convenience.

We thus find that Wi j(a) is equal to

Wi j(a) = 4i

∫

z,w

J̃ k[a](w)
�

zk0

(z −w)2

��

1
a1!a2!

��

(δi, jδk,i + |εi j|δk, j)δ
2
at ,kt+mt−1−vt (i)

γa
i (k, m)

− εi jεlkδ
2
at ,kt+mt−1−vt (l)

βa
l (k, m)
�

. (B.8)
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Figure 9

Recall that the important part of the BRST variation of this diagram (to cancel the total BRST
variation for Koszul duality) is just the replacement µi → ∂̄ ci (where the antiholomorphic
derivative is along the brane), so that after integration by parts we must perform a contour
integral in the defect plane centered at |z−w|= 0 to extract the OPE from Koszul duality. Since
the weight of this diagram produced a double-order pole, we can now fix k0 = 1 to obtain the
OPE from the remaining contour integral, which we will see shortly.

B.3 The second diagram

The OPEs we are interested in also receive contributions from the diagram in Figure 9, of the
same topology as Figure 8 but with the other ordering of bulk-defect legs.

The weight of this diagram is

W ′i j(a) =

∫

z,w

J̃ k[a](z)

∫

C3×C2

Da1,a2
P(Z , X )µi(X )P(X , Y )µ j(w, y)µBR(y) . (B.9)

As before, we should take the J̃ k(z) to be implicitly accompanied by ∂z , and we must keep
only the ∂(Z−X )k component of the propagator P(Z , X ).

Moving the terms around, this becomes:

W ′i j(a) =

∫

z,w

J̃ k[a](z)

∫

C3×C2

µBR(y)µ j(w, y)P(Y, X )µi(X )Da1,a2
P(X , Z) . (B.10)

Relabeling X↔ Y , and z↔ w, we find the following equality

W ′i j(a) = −W ji(a) . (B.11)

Supposed that we are interested in the OPE J̃ i[k]J̃ j[m]. We specialize the external legs to be
of the form:

µ j(z, x) = z(x1)m1(x2)m2 dz∂x j , µi(Y ) = (y
1)k1(y2)k2 d y0∂y i .

Using eq.(B.2), we find that the weight of this diagram is given by

W ′i j(a) = −4i

∫

z,w

J̃ k[a](w)
�

z
(z −w)2

��

1
a1!a2!

��

(δi, jδk, j + |εi j|δk,i)δ
2
at ,kt+mt−1−vt (i)

γa
j (m, k)

+ εi jεlkδ
2
at ,kt+mt−1−vt (l)

βa
l (m, k)
�

, (B.12)

using the same definitions as the previous subsection.
We may now complete the Koszul duality computation of the OPEs from these contributing

diagrams by combining all of these contributions to the off-shell OPEs and performing the
brane integrals over z, w.
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B.4 Off-shell OPE corrections

We can combine the contribution from both diagrams by noting that z∼(z−w) and w∼−(z−w)
within the following expressions:
�

1
2πi

�

∮

|z−w|=0

�

zh(z)h′(w)
(z −w)2

�

d(z −w) = Res
(z−w)→0

�

(z −w)h(z)h′(w)
�

, (B.13)

�

1
2πi

�

∮

|z−w|=0

�

wh(z)h′(w)
(z −w)2

�

d(z −w) = − Res
(z−w)→0

�

(z −w)h(z)h′(w)
�

. (B.14)

Using this, we find that the following equality must hold

Res
(z−w)→0

�

(z −w)J̃ i[k](z)J̃ j[m](w)
�

∼= −
�

1
2πi

�

∮

|z−w|=0

�

Wi j(a)−W ′i j(a)
�

d(z −w) . (B.15)

We thus find that the off-shell OPEs are corrected as follows:

J̃ i[k](z)J̃ j[m](w)∼ −
�

4i
(z −w)2

��

1
a1!a2!

��

(δi, jδk,i + |εi j|δk, j)δ
2
at ,kt+mt−1−vt (i)

γa
i (k, m)

− εi jεlkδ
2
at ,kt+mt−1−vt (l)

βa
l (k, m)

+ (δi, jδk, j + |εi j|δk,i)δ
2
at ,kt+mt−1−vt (i)

γa
j (m, k)

+ εi jεlkδ
2
at ,kt+mt−1−vt (l)

βa
l (m, k)
�

J̃ k[a](w) . (B.16)

Plugging in the four possible i, j combinations, we find that the corrected off-shell OPEs are:

J̃1[k]J̃1[m]∼ −
�

4i
z2

��

1
(k1 +m1 − 2)!(k2 +m2 − 1)!

�

×
�

γ
(k1+m1−2,k2+m2−1)
1 (k, m) ++γ(k1+m1−2,k2+m2−1)

1 (m, k)
�

× J̃1[k1 +m1 − 2, k2 +m2 − 1] ,

J̃2[k]J̃2[m]∼ −
�

4i
z2

��

1
(k1 +m1 − 1)!(k2 +m2 − 2)!

�

×
�

γ
(k1+m1−1,k2+m2−2)
2 (k, m) ++γ(k1+m1−1,k2+m2−2)

2 (m, k)
�

× J̃2[k1 +m1 − 1, k2 +m2 − 2] ,

J̃1[k]J̃2[m]∼ −
�

4i
z2

��

1
(k1 +m1 − 2)!(k2 +m2 − 1)!

�

×
�

γ
(k1+m1−2,k2+m2−1)
1 (k, m)− β (k1+m1−2,k2+m2−1)

1 (k, m) + β (k1+m1−2,k2+m2−1)
1 (m, k)

�

× J̃2[k1 +m1 − 2, k2 +m2 − 1]

−
�

4i
z2

��

1
(k1 +m1 − 1)!(k2 +m2 − 2)!

�

×
�

γ
(k1+m1−1,k2+m2−2)
2 (m, k)− β (k1+m1−1,k2+m2−2)

2 (m, k) + β (k1+m1−1,k2+m2−2)
2 (k, m)

�

× J̃1[k1 +m1 − 1, k2 +m2 − 2] .

B.5 On-shell OPE corrections

We can finally use our results from equations (B.17) to obtain the on-shell OPE corrections.
For simplicity, we will only pass to on-shell configurations on the left-hand side of the OPE.

65

https://scipost.org
https://scipost.org/SciPostPhys.17.4.109


SciPost Phys. 17, 109 (2024)

It is a straightforward algebraic exercises to express the right hand sides in terms of on-shell
generators as well, and in §6 we will do this in some particularly nice examples to see closure
of the on-shell algebra explicitly. To proceed, we use the following equality:

J[k]J[m] = k1m1 J̃2[k1 − 1, k2]J̃
2[m1 − 1, m2] + k2m2 J̃1[k1, k2 − 1]J̃1[m1, m2 − 1]

− k1m2 J̃2[k1 − 1, k2]J̃
1[m1, m2 − 1]− k2m1 J̃1[k1, k2 − 1]J̃2[m1 − 1, m2] . (B.17)

Inserting our findings, we finally obtain the desired OPEs

J[k]J[m]∼ −
�

4i
z2

�� δa1,k1+m1−3δa2,k2+m2−2

(k1 +m1 − 3)!(k2 +m2 − 2)!

�§

k1m1

�

γ
(a)
2 (k1 − 1, k2; m1 − 1, m2)

+ γ(a)2 (m1 − 1, m2; k1 − 1, k2)
�

− k1m2

�

γ
(a)
1 (m1, m2 − 1; , k1 − 1, k2)

− β (a)1 (m1, m2 − 1; , k1 − 1, k2) + β
(a)
1 (k1 − 1, k2; m1, m2 − 1)

�

− k2m1

�

γ
(a)
1 (k1, k2 − 1; , m1 − 1, m2)− β

(a)
1 (k1, k2 − 1; , m1 − 1, m2)

+ β (a)1 (m1 − 1, m2; k1, k2 − 1)
�ª

J̃2[k1 +m1 − 3, k2 +m2 − 2]

−
�

4i
z2

�� δa1,k1+m1−2δa2,k2+m2−3

(k1 +m1 − 2)!(k2 +m2 − 3)!

�§

k2m2

�

γ
(a)
1 (k1, k2 − 1; m1, m2 − 1)

+ γ(a)1 (m1, m2 − 1; k1, k2 − 1)
�

− k1m2

�

γ
(a)
2 (k1 − 1, k2; m1, m2 − 1)

− β (a)2 (k1 − 1, k2; m1, m2 − 1) + β (a)2 (m1, m2 − 1; k1 − 1, k2)
�

− k2m1

�

γ
(a)
2 (m1 − 1, m2; k1, k2 − 1)− β (a)2 (m1 − 1, m2; k1, k2 − 1)

+ β (a)2 (k1, k2 − 1; m1 − 1, m2)
�ª

J̃1[k1 +m1 − 2, k2 +m2 − 3] . (B.18)
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