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Abstract

The spectral form factor of quantum chaotic systems has the familiar ‘ramp + plateau’
form. Techniques to determine its form in the semiclassical [1] or the thermodynamic [2]
limit have been devised, in both cases based on the average over an energy range or an
ensemble of systems. For a single instance, fluctuations are large, do not go away in
the limit, and depend on the element of the ensemble itself, thus seeming to question
the whole procedure. Considered as the modulus of a partition function in complex
inverse temperature βR + iβI (βI ≡ τ the time), the spectral form factor has regions
of Fisher zeroes, the analogue of Yang-Lee zeroes for the complex temperature plane.
The large spikes in the spectral form factor are in fact a consequence of near-misses
of the line parametrized by βI to these zeroes. The largest spikes are indeed extensive
and extremely sensitive to details, but we show that they are both exponentially rare
and exponentially thin. Motivated by this, and inspired by the work of Derrida on the
Random Energy Model, we study here a modified model of random energy levels in which
we introduce level repulsion. We also check that the mechanism giving rise to spikes is
the same in the SYK model.
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1 Introduction

The spectral form factor (SFF) of a quantum system is the energy level density two-point corre-
lation. It has been widely studied in Random Matrix Theory, and in generic quantum chaotic
systems [3–12]. More recently [13–16] (see also [17]) it has been revisited in the context
of the Sachdev-Ye-Kitaev (SYK) model [18, 19], which is thought to provide a ‘toy’ version of
holography and gravity. The SYK model has random interactions, like a spin glass. Just as with
spin glasses, some quantities are self-averaging in the large size limit, their sample-to-sample
fluctuations vanishing with some inverse power of the size N . It may seem then surprising
that, when one plots the spectral form factor of a single realization over an exponentially long
range of times, one finds that it contains fluctuations (spikes) that do not vanish upon increas-
ing the system’s size. The spikes are extremely sensitive to a perturbation in the couplings,
and thus an averaged result seems to be blind to them. Moreover, rather surprisingly, these
fluctuations do not seem to contribute to the sample-averaged result, in spite of them being
large.

In this paper we show that (at least some of) such fluctuations are the manifestation of
the Fisher zeroes of the partition function in complex temperature, each spike is an extremely
rare near-miss of the βR + iβI line to one of these zeroes. This mechanism explains why, even
if spikes seem large, their averaged contribution to the spectral form factor is in fact expo-
nentially small in N . The average density of Fisher zeroes is readily available in an averaged,
large N computation, and gives us direct access to the density of spikes. Note also that al-
though sometimes these spikes are attributed to the discreteness of the spectrum, regions with
finite densities of zeros are found in classical statistical models with continuous degrees of
freedom [20].

Some thirty years ago, Derrida [21] computed the partition function in complex tempera-
ture and the distribution of Fisher zeroes for the simplest spin glass, the Random Energy Model
(REM) [22], a system of Poisson-distributed, independent energy levels. The spectral factor
turns out to have a ‘slope’, and a ‘plateau’, but no ramp. The ‘plateau’ occurs in a region of the
complex temperature plane where there is a surface density of zeroes. In that phase, random
fluctuations destroy the delicate coherence needed for analytic continuation to work. This is
the interesting phase for our purposes here.

Our main task will be to make the analog of the REM but with level-repulsion, just by trans-
ing the spectrum obtained from a random matrix to any desired level density, or equivalently,
of entropy s(e). Such a model plays the role of a ‘null model’, having just the bare minimum
level structure compatible with it being chaotic.

The structure of the manuscript is as follows: in Section 2 we discuss the general properties
of Fisher zeros and their effect on the SFF. In Section 3 we review the phase diagram of the
REM in complex temperature. In Section 4 we modify the REM to include level repulsion and
we compute the SFF of this model.

2 Fisher zeroes and near-missed zeros

The spectral factor of a Hamiltonian at β = βR + iβI (here βI ≡ τ, the time), is defined as
|Z(β)|2, where and Z(β) is the partition function at complex temperature β:

Z(β) =
∑

i

e−βEi , (1)

Ei = Nei , we use lower case for intensive quantities. For finite number N of degrees of freedom,
Z is an analytic function of β , with isolated zeroes. The set of zeroes in complex temperature,
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Figure 1: Upper panel: logarithmic plot of |Z(βR+ iβI)|2 vs βI in the plateau regime
for a model of random energy levels with level repulsion and Gaussian density of
states. Lower panel: zooming near a spike, and identifying it as a near-miss to a zero
by changing the value of βR slightly.

analogous to the Yang-Lee zeroes in complex magnetic field, are referred to as Fisher zeroes
[23, 24, 24, 25]. As we go to the thermodynamic limit, these zeroes may assemble into lines
with a finite linear density, or areas of constant surface density, or even fractal distributions
[20,21,26–28]. The density of zeroes is obtained directly from ln |Z | as:

Ω(βR,βI) =
1

2π

�

∂ 2

∂ β2
R

+
∂ 2

∂ β2
I

�

1
N

ln |Z | . (2)

In Eq. (2) we can interpret 1
N ln |Z | as the electrostatic potential in two dimensions generated

by the distribution of charges Ω(βR,βI).
It may seem paradoxical that 1

N ln |Z | can have a smooth thermodynamic limit, and at the
same time have a density of infinitely deep spikes in the zeroes of Z . The situation is in fact
best understood by analogy with a charged surface. We know that there is meaningful smooth
electric potential on the surface and outside, and yet we also know that near each charge the
potential has a spike. Somehow the coarse-grained limit recovers the smoothness, and makes
the spikes go away. This is possible because the regions in the surface around charges where
the discontinuity is appreciable is small compared to the total surface.

In the models we shall discuss below, something similar happens for the complex temper-
ature plane. We shall show that one has regions with an O(N) number of zeroes per element
dβRdβI , and an averaged, smooth extensive value for ln |Z(β)|. There are, however, small
regions around each zero where ln |Z | has a spike. As an example, in Figure 1 we choose a
large spike, and locate explicitly the nearby pole responsible for it.

Consider one such region and compute ln |Z(βR+ iβI)| along a trajectory of fixed βR and a
large range of βI traversing it. The probability that the trajectory actually hits a zero is either
zero or becomes zero upon small perturbations of the Hamiltonian.1 A near-miss along the

1An exception to this is when there is a symmetry (for example along the imaginary axis), then one may expect
a density of zeroes lying exactly on the invariant lines. See [29].)
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Figure 2: The large-deviation function of spike depths, d, along a line with constant
βR = 0.1 and varying βI inside the plateau, in a simulation of the model with level
repulsion and N = 16. The dashed trend line is exponential, exp(−d).

line βR = const of a zero just beside it, at (βR + e−aN ,τ0) gives

|Z(β)|=
Æ

e−2Na + (βI −τ0)2 eNG∞(β) , 2 (3)

where G∞ is analytical in a domain around (βR,τ0). Then, log |Z(β)|/N has a spike of negative
dip = −a. The largest spike in the factor along a trajectory that is exponentially long in τ= βI
is estimated from the closest near miss. Let us say we look at time-intervals of order∆βI = ebN

for spikes of magnitude 1
N ln |Z | ∼ a.

If the average surface density of zeroes along such a line is ρ̄ (which may be even 1/N),
then the number of such spikes is: N (a) ∼ ρ̄e(b−a)N and the large deviation function of spike
sizes is:

1
N

logN (a)∼ b− a+
1
N

log ρ̄ . (4)

The largest spike found in ∆βI is thus of order a ∼ b. Figure 2 confirms this asymptotic law
for a model with level repulsion we shall discuss below.

Are the positions of spikes truly independent? This depends on the correlations of the
zeroes involved. We know that generically the zeroes of a random polynomial repel one an-
other [29], but they could be, for non-random situations, some other correlations. On the other
hand, asking for the closest misses of a trajectory could force these to be far away, much in the
same way that the Grad limit of Boltzmann’s equation makes collisions independent [30].

If these spikes associated to near misses of zeroes are the only ones that survive in the
thermodynamic limit, then the fact that they are exponentially rare in time τ≡ βI means that
their averaged contribution to the logarithm of the spectral form factor will be negligible to
all orders in 1/N .

In Fig. 3 we show that the same mechanism is at play in the SYK model. The model is
defined by the Hamiltonian:

H =
N
∑

1≤i≤ j≤k≤l

Ji jklχiχ jχkχl , (5)

with χi N Majorana fermions and Ji jkl random i.i.d. gaussian numbers [18,31]. In Fig. 3 we
show a zoom of the SFF for the SYK which aims at highlighting the presence of a near missed
zero upon varying βR.

2To see this properly one should study the Weierstrass product development of Z(β) in the vicinity of one zero.
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Figure 3: Same as Fig. 1 for a fluctuation of SYK model. Here too, the presence of a
nearby Fisher zero is seen as the cause of the big spike.

I

IIIII

βR

βI

Figure 4: Complex temperature phase diagram of the (Poissonian) Random Energy
Model as in [21]. Phase II, the spin glass phase, does not exist for models like SYK,
and is mostly irrelevant here.

3 The random energy model

The structure of the zeroes is very well understood in the case of the Random Energy Model
(REM) studied by Derrida [21] years ago. The REM is characterized by 2N independent energy
levels drawn from a Gaussian distribution with mean zero and variance 〈E2〉= N

2 . The average
density of energy levels is given by:

〈ρ(E)〉 ∝ eN
�

log2−( E
N )

2�

= eNs(e) (6)

(the normalization is such that
∫

de 〈ρ(Ne)〉 ≃ 2N ) , and this should be used to compute the
partition function

Z(β)≃
∫

deρ(Ne)e−Nβe , (7)

in the regime |e|= | EN | ≥
p

log2= −ec . Beyond this value there are no levels and the density
in (7) should be taken as zero.
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Figure 5: A plot along a vertical line through the gray region (phase III) of Fig. 4 of
the Poissonian REM model. There is the ‘slope’ regime and the ‘plateau’ regime, but
no ‘ramp’. The fluctuations in the plateau are large. Here N = 14 and βR = 0.1.

In the complex temperature plane one can recognize three different phases:
Analytic (liquid) phase I. The average of Z itself is well-defined for large N :

〈Z(β)〉 ≃
∫

de 〈ρ(Ne)〉e−Nβe =

∫ ec

−ec

de eN[ln 2−e2−βe] . (8)

This may be evaluated for |β |= O(1) by saddle point (the liquid phase), 2Esp = −Nβ and we
get:

〈Z(β)〉 ∼ 2N eN β
2

4 ,
1
N

log |Zt yp(β)| ∼ log2+
β2

R − β
2
I

4
, (9)

and Zt yp describes the typical value of a random set of energy levels.
Analytic (glass) phase II. Here too the limit limN→∞

1
N ln Z is well defined. However, at

sufficiently low (real) temperatures, there is no saddle point in a region with positive density
of levels, so we conclude that the system gets frozen around the lowest energy density:

1
N

log Zt yp(β) = βec , (10)

at the critical temperature at which

βc =
ds
de

�

�

�

�

ec

. (11)

Note that in a model with lime→0 s′(e) =∞, the transition happens at zero temperature, as in
SYK.

Although this reasoning is for real β , there is a region in the complex plane (to be deter-
mined) where the solution may be continued.

Non-analytic phase III. Here a new phenomenon appears. As one analytically continues
solutions to larger and larger βI the integrand becomes more oscillating and its value becomes
exponentially smaller due to precise cancellations of semi-cycles of e−iβI E . These cancellations
are however imperfect, because the density of levels is in fact a random function. For large
enough βI the fluctuations of the integrand destroy the coherence of integral, and fluctuations
themselves dominate. To estimate this, one has to compute [21] the fluctuating part of the
partition function. This can be inferred from correlation between energy levels:

〈δρ(E)δρ(E′)〉= 〈ρ(E)ρ(E′)〉 − 〈ρ(E)〉〈ρ(E′)〉= 〈ρ(E)〉δ(E − E′) , (12)

6

https://scipost.org
https://scipost.org/SciPostPhys.17.4.114


SciPost Phys. 17, 114 (2024)

as befits a Poissonian distribution. Putting Ne+ =
1
2(E + E′) and Ne− = E − E′ one has

〈|Z(β)|2〉=
∫

dede′〈δρ(Ne′)δρ(Ne)〉e−βRN(e+e′)−iβi N(e−e′)

=

∫ ec

−ec

de+ρ(Ne+)e
−N2βRe+

∫

de−δ(Ne−)e
−iNβi e− . (13)

The saddle point evaluation gives esp = −βR and

〈|Z(β)|2〉 ∼ eN ln 2+Nβ2
R = 〈|Z(2βR)|〉 , (14)

1
N

log |Z(β)|t yp ∼
log 2

2
+

1
2
β2

R . (15)

One is thus left with the task of comparing three |Zt yp|, the transition lines are obtained equat-
ing Eqs. (9), (10) and (14):

1
N

log |ZI |= log2+
β2

R − β
2
I

4
,

1
N

log |ZI I |= βRec ,

1
N

log |ZI I I |=
log2

2
+

1
2
β2

R . (16)

The phase diagram obtained in Ref [21] is shown in Figure 4.
The density of zeroes, normalized with N is zero in phases I and II, as is to be expected,

since the partition function is analytic there. In phase III on the contrary we get:

Ω(βR,βI) =
1

2π
, (17)

i.e. there is a constant surface density of zeroes. There are also linear densities in the bound-
aries I-II and I-III. In Figure 5 we show a plot of ln |Z | along a line of constant βR: there is a
‘slope’ region, corresponding to phase I, and a ‘plateau’ region (phase III) with negative spikes
associated with near-misses of zeroes.

Comments on annealed and quenched averages

In the three cases above, the task is to compute the large N limit of

(a) 1
N 〈log Z(β)〉 , if the large N limit exists,

(b) 1
N 〈log |Z(β)|〉= limn→0

1
2

d
dn〈|Z(β)|

2n〉 .

These are quenched averages. Sometimes, it happens that quenched and annealed av-
erages to leading order coincide 〈Zn〉 = 〈Z〉n in the large N limit. This means that replicas
1, ..., n are uncoupled, but in this case it also means that one may neglect the fluctuations of
level densities: only average densities matter. It may be also true that, again, to leading order
〈Z Z∗〉= 〈Z〉 〈Z∗〉: this is the situation in phase I.

In phase II the situation is the same, provided one is content with the evaluation of log Z
or the energy density. The latter is frozen at the lowest value −ec . If we wish instead to get
into the details of the actual distribution of overlaps, we need to understand how the measure
is split between the infinity of levels having energy density −ec+O(1/N), in particular the two

7
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Figure 6: Random energy model zeroes without (left) and with (right) level-
repulsion. Dark areas show the locations of zeros in a numerical calculation with
N = 14. The position of zeros was obtained by partitioning the complex (βR,βI)
plane into small rectangles, of a size small compared to the typical distance between
zeros at the simulated N . A zero inside a rectangle was identified by the residue the-
orem, by integrating over 1/Z (equivalently, checking if the complex angle of log(Z)
changed when traversing the boundary).

lowest. This information, which we shall not discuss here, needs [22] that one considers the
quenched average, break replica symmetry, and for this use the correlation between levels.

In phase III the situation is hybrid: the limit 1
N 〈log Z(β)〉 simply does not exist. On the other

hand, 1
N 〈log |Z(β)|〉 does, and furthermore 1

N 〈|Z(β)|
2n〉 = 1

N 〈|Z(β)|
2〉n. Here the replicas

corresponding to Z and Z∗ are coupled, but different pairs may or may not be, in this case
they are not. At any rate, the correlation of level densities enters into the solution.

4 Model with level repulsion

In Figure 6 we show the empirical density of zeroes obtained in simulations with the REM
(left), and those of the same density but with level repulsion added (right). Let us discuss this
case in detail. In Figure 7 we show the SFF for the same model.

We start with a set set of 2N levels ui , with level repulsion, distributed uniformly over
(−1,1). This is done by first generating a sample from a spectrum of a GOE random matrix
(sampled efficiently as described in [32]). A function λ→ g(λ) is applied to the eigenvalues,
chosen to obtain a uniform density. We then transform again, to obtain any desired energy
density:

Ei = Φ
−1(ui) , ui = Φ(Ei) . (18)

Two features concerning the density of levels 〈ρ(Ne)〉= eNs(e) of the new model are important:

• Zero-temperature entropy finite or zero: limT→0 limN→∞ s(e) = so .

• Freezing transition temperature: 1
Tc
= βc = lime→ec

limN→∞
∂ s
∂ e finite or infinite.

If we wish to mimic the SYK model we need βc =∞ and so > 0, while a ‘quantum REM’ (and
other spin-glasses) would have βc finite and so = 0. For the latter case, Φ is the error function,

8
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Figure 7: Spectral form factor of the model with a Gaussian distribution of levels like
the REM, but with level repulsion.

so we have a REM level density with level repulsion.

〈ρ̃(E)〉dE = uniform×
du
dE

dE =N e−
E2
N , (19)

dΦ
dE
= 〈ρ̃(E)〉 . (20)

We define ρ(E) = 2N ρ̃(E) normalized as before,
∫

d〈ρ(E)〉 = 2N . The effect of the level
repulsion in manifest in the connected correlation between energy levels:

〈δρ(u)δρ(u′)〉= 〈ρ(u)ρ(u′)〉 − 〈ρ(u)〉〈ρ(u′)〉

= 22N
�

R
�

2N (u− u′)
�

− 1
	

, (21)

with

R(s)− 1= δ(s)−
sin2(πs)
(πs)2

. (22)

Here and in what follows for the purposes of analytic computations we will use the GUE statis-
tics, which is slightly simpler and does not change significantly the discussion. We shall need
the Fourier version:

∫

ds eius [R(s)− 1] = g(u) , (23)

and

g(u) =











|u| , for |u|< 2π ,

1 , for |u|> 2π .

(24)

We now make the non-linear transformation (18). The density of levels transform in the
following way:

ρ(u) =
∑

i

δ(u− ui) = 2N 〈ρ(E)〉−1ρ(E) , (25)

and the expression for the correlations becomes:

〈δρ(E)δρ(E′)〉= 〈ρ(E)ρ(E′)〉 − 〈ρ(E)〉〈ρ(E′)〉

= 〈ρ(E)〉〈ρ(E′)〉
�

R(2N (Φ(E)−Φ(E′)))− 1
�

. (26)
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We can evaluate the contribution to the SFF which comes from connected correlations. The
computation is very close to the one in [2]:

〈|Z(β)|2〉=
∫

dwdede′g(w) 〈ρ(Ne)〉eiw2NΦ(Ne)−βNe〈ρ(Ne′)〉 e−iw2NΦ(Ne′)−β∗Ne′

=

∫

dwdede′g(w) 〈ρ(Ne)〉〈ρ(Ne′)〉eiw2N (Φ(Ne)−Φ(Ne′))−βRN(e+e′)−iβI N(e−e′) . (27)

We define e+ =
1
2(e+ e′) and e− = (e− e′) and we make the following expansion:

2N (Φ(E)−Φ(E′)) =
N
2

2N∂EΦ(E)|E=E+=Ne+(e− e′) . (28)

Considering first the exponentially large terms, we have
∫

de− eiN( 1
2 w2N∂EΦ(E)|E=E+=Ne+−βI)e− → δ

�w
2
〈ρ(Ne+)〉 − βI

�

, (29)

where we used that 2N∂EΦ(E)|E=E+=Ne+ = 〈ρ(Ne+)〉. Plugging this in Eq. (27) we have:

〈|Z(β)|2〉=
∫

dwde+g(w)δ
�w

2
〈ρ(Ne+)〉 − βI

�

〈ρ(Ne+)〉2e−2βRNe+ (30)

=

∫

de+g
�

2βI

〈ρ(Ne+)〉

�

〈ρ(Ne+)〉e−2βRNe+ . (31)

This integral represents an effective problem with density of states g
�

2βI
〈ρ(Ne+)〉

�

〈ρ(Ne+)〉 at
inverse temperature 2βR. The situation is represented in Figures 8 and 9. Below we discuss
the result of the integral for different values of β = βR + iβI .

Glassy phase

This phase corresponds to phase II of the Poissonian REM, and does not exist in a model like
SYK which has a transition only at infinite βR. Above βR >

p

log2 (and for sufficiently large
βI) for the modified REM the solution of the plateau reads:

1
N

log |Z(β)|= βRec . (32)

This is the same free energy as in the glassy phase.

Liquid phase (‘the slope’)

There is a liquid phase which is the same as phase I of the Poissonian REM, since this depends
only on the level density and not the correlations. It corresponds to the ‘slope’ part of the SFF
and its free energy reads:

fI(βR,βI) = lim
N→∞

1
N

log |Z |= log 2+
1
4
(β2

R − β
2
I ) . (33)

The regions with zeroes

Just as in the case of the REM, we need to compare the analytic continuations to the ‘incoher-
ent’ part, by calculating 〈|Z(β)|2〉. There are several possibilities:

10
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(i) Plateau regime

If βI > π〈ρ(E = 0)〉, above the bell shape in Figs 8 and 9, then the entire integral is with w in
the plateau value, we have in fact g(w) = 1 for all energies and the integral becomes

〈|Z(β)|2〉=
∫

de+ 〈ρ(e+)〉 e−2βRNe+ = Z(2βR) . (34)

The value of e+ that dominates is e(2βR). This is the same result as in the REM, and (for
sufficiently low βR) we have a finite density of zeros. It is easy to convince oneself that in a
plateau regime all models should have Fisher zeros, unless the dependence on βR is linear.

(ii) Ramp I regime

Here βI is such that the cycle of eiβI E is longer than the level spacing at the edge of the spectrum
- the largest of all level spacings - βI < π〈ρ(ec)〉.3 In this regime we have g(w) = w for all
energies and the integral becomes

〈|Z |2〉= βI

∫ ec

−ec

de+ e−2βRNe+ = βI
1

NβR
sinh(2NβRec) ,

1
N

ln |Z(βR,βI)|=
1

2N
lnβI +

1
2N

ln | sinh(2NβRec)| −
1

2N
ln |βR| −

1
2N

ln N . (35)

(iii) Ramp II regime

The transition between the ramp and the plateau occurs in the intermediate regime where
π〈ρ(Ec)〉< βI < π〈ρ(E = 0)〉 (see Figs 8 and 9).

We must integrate two regimes of w: i) βI < π〈ρ(E)〉 then |w|< 2π and ii) βI > π〈ρ(E)〉
and then |w|> 2π.

∫ −e∗

−ec

de+〈ρ(e+)〉 e−2βRNe+ +

∫ e∗

−e∗
de+w〈ρ(e+)〉 e−2βRNe+ +

∫ ec

e∗
de+〈ρ(e+)〉 e−2βRNe+ , (36)

where π〈ρ(±e∗)〉= βI are the w= 2π intercepts. This gives:

∫ −e∗

−ec

de〈ρ(e)〉e−2βRNe+ +

∫ ec

e∗
de 〈ρ(e)〉 e−2βRNe+ + βI

∫ e∗

−e∗
de e−2βRNe+ . (37)

Eq (37) may be understood better by rewriting it as:
∫ ec

−ec

de eNs(e) e−2βRNe , (38)

where

s(e) =

¨

1
N lnρ(e) , πρ(e)< βI ,
1
N lnβI , πρ(e)> βI .

(39)

3This condition is quite different if there is non-zero entropy at zero temperature or not. The largest level
spacing in the REM is of order one in energy, while for SYK it is much smaller.

11

https://scipost.org
https://scipost.org/SciPostPhys.17.4.114


SciPost Phys. 17, 114 (2024)

For every value of βI the saddle point evaluation may be viewed in Figs 8 and 9.

• for 2βR > β
max
R the integral is dominated by the lowest energy e+ = −ec .

• for βmax
R > 2βR > β

min
R the integral is dominated by the saddle e+ = e(2βR), that is the

same as it would be if there would not be a truncation, i.e. for large βI . This regime
corresponds to the plateau.

• For 2βR < β
min
R the integral is frozen around the intersection with the curve w= 2π. Its

value describes the ramp and it is given by the following contributions:

〈|Z(β)|2〉 ≃ I1 + I2 ≃ βI

∫

de
�

θ (−e∗ − e)eNβmin(e+e∗) + θ (e+ e∗)
�

e−N2βRe

︸ ︷︷ ︸

eµ(e)

, (40)

where θ (x) is the step function, so that:

I1 =

∫ −e∗

−ec

de+〈ρ(Ne+)〉e−2βRNe+ (41)

≃ eNs(−e∗)+2βRNe∗
∫ −e∗

−ec

de eN(βmin
R (e+e∗)−2βR(e+e∗)) ≃ βI e

2βRNe∗ 1
N

1

βmin
R − 2βR

, (42)

where we used that eNs(−e∗) = βI and

I2 = βI

∫ e∗

−e∗
de+e−2βRNe+ = βI

1
2βRN

sinh(2βRNe∗)≃ βI
1
N

1
4βR

e2βRNe∗ . (43)

Note that βmin
R is a function of βI .Altogether this regime describes the transition between

the ramp and the plateau because increasing βI the singularity of the effective entropy
s(e) moves at higher energies (and thus lower βmin

R ) and one crosses over from the
situation where the saddle point is frozen at the singularity (ramp) to the one in which
it occurs at the energy e(2βR) (plateau), see Fig. 9. The regime in which Eq. (41)
holds is for 2βR < β

min
R . The point where 2βR = βmin

R where there is an apparent
divergence should be treated separately and represents the trasition point between ramp
and plateau.

Transition

The transition between these regimes is obtained by comparing the magnitude of free energies.
Since e∗ ∼ ec in this regime, we may estimate:

lim
N→∞

1
N

log |Z |= βRec , (44)

namely the same free energy as in the glassy phase. This should be therefore compared with fI :

βI =
r

β2
R − 4βR

Æ

log2+ 4 log2= 2
Æ

log 2− βR , (45)

where we used ec =
p

log 2. This is the line we see in Figure 6 (left) that crosses the real axes
at βc = 2
p

log2, the critical temperature of the REM.
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βmax

βmin

E

S

Figure 8: Equation (37) may be seen as the partition function associated to an en-
tropy with this shape: a truncated density level, with truncation of height lnβI .
• If lnβI < S(e→ 0) the saddle point equation determines two temperatures: βmax

R
where the saddle freezes in the lower energy (and finite entropy, if there is one), and
βmin

R (a function of βI) where the saddle freezes on the intersection of the bell shape
with the flat part. In the latter, the value of the integral is proportional to βI . The
value βc may be infinite, as is in SYK.

Density of zeroes

In the plateau regime, 2 ln |Z(β)| is the same as one would obtain for real temperature 2βR.
The density of zeroes is then:

Ω(βR,βI) =
1

4πN
∂ 2 ln Z(2βR)
∂ β2

R

N
π

�

〈e2〉2βR
− 〈e〉22βR

�

= O(1)> 0 , (46)

where averages are over a real Gibbs measure.
In the Ramp I regime the density of zeros is:

Ω∝∇2 1
N

log |Z |=
1

2N

�

1

β2
R

−
1

β2
I

�

−
2e2

c N

sinh2(2NβRec)

= 2ec × Nec

�

�

1
(2NecβR)2

�

−
1

sinh2(2NβRec)

�

︸ ︷︷ ︸

−
1

2Nβ2
I

, (47)

the underlined term has integral O(1) and ‘fat’ tails∝ 1
Nβ2

R
. In the Ramp II regimewe need to

expand around the intersection point of the S(−e∗) = lnβI . This leads to:

Ω(βR,βI) =
1

2πN

�

∂ 2 ln |Z |
∂ β2

R

+
∂ 2 ln |Z |
∂ β2

I

�

(48)

=
1

2π

�

4N(〈e2〉µ − 〈e〉2µ) +
�

∂ 2µ

∂ β2
I

+
�

∂ µ

∂ βI

�2�

µ

−


∂ µ

∂ βI

·2

µ

−
1
N

1

β2
I

�

(49)

∼
2N
π
(〈e2〉µ − 〈e〉2µ)∼ O

�

1
N

�

, (50)

where 〈•〉µ =
∫

de • eµ(e)
∫

de eµ(e)
, and we have neglected the derivatives with respect to βI because this

regime concerns exponentially large βI .
Note that the ramp has a smaller density of zeroes than the plateau (cf also Fig 6). This

however affects only logarithmically the large deviation function for the largest spike.
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2βR

E

ln βI

ramp

plateau

Figure 9: The transition from ramp to plateau upon increasing the level of lnβI ,
indicated with a dashed line. Given a value of βR, we have the saddle point where
the gradient is 2βR. (a) If lnβI is above this value, then the saddle dominates and
the result is independent of βI : this is the plateau. (b) If it is below this value, the
integral is dominated by the dashed line level: this is the ramp. (c) For lower values
of lnβI , the lowest energy density states dominate.

5 Conclusions

The problem of the spectral form factor is one of computing a free energy in the complex tem-
perature plane, with the very important caveat that, unlike the situation in thermodynamics,
one goes to complex inverse temperatures |β | which do not remain constant in the thermo-
dynamic limit. The computation of fluctuations of the free energy sampled over ranges of |β |
that are exponential in the size N is thus a problem of Large Deviation theory. Note that the
fact that the larger spikes are exponentially rare and exponentially thin (in N) implies that the
effect of these fluctuations will be ignored by higher moments of the trace, i.e. by a replica
treatment of the problem.

The form factor may be expressed as a sum of the time-correlations
∑

n〈An(t)An(0)〉 of an
exponential set of operators [33]. It would be interesting to see if the zeroes move chaotically
with the addition of each new term, even for a single sample.

We have given an estimate of the size of the largest deviations (spikes) assuming that the
system may be considered for these purposes to be featureless, i.e. to have level correlations
given only by the standard level repulsion. That this assumption is valid for all large fluctua-
tions of SYK is plausible, but not given.

The ‘gravity’ side of SYK would give us the probability density of large spikes of a single
sample at a given time through the density of Fisher zeroes obtained through the Laplacian
in temperature, but the actual position would require exponential precision in N . Here we
have only discussed the largest spikes. It seems possible that a more detailed distribution of
fluctuations may be obtained directly from the theory of random polynomials.
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