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Abstract

We construct an explicit realization of the action of the Lw1+∞ loop algebra on fields
at null infinity. This action is directly derived by Penrose transform of the geometrical
action of Lw1+∞ symmetries in twistor space, ensuring that it forms a representation
of the algebra. Finally, we show that this action coincides with the canonical action of
Lw1+∞ Noether charges on the asymptotic phase space.
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1 Introduction

The existence of an infinite hierarchy of conservation laws associated to every complexified
self-dual Einstein manifold with zero cosmological constant can be traced back to the work of
Plebanski and Boyer [1, 2]. These conservation laws are related to the action of singular dif-
feomorphisms in twistor space, which act as symmetries and whose infinitesimal action is the
Lw1+∞ algebra. The singular nature of these diffeomorphisms means that they can change
the complex structure which, by Penrose’s nonlinear graviton construction [3, 4], amounts to
deforming a self-dual spacetime into another. In this sense the Lw1+∞ algebra acts as sym-
metry on the space of self-dual Einstein spacetimes. In fact, several constructions in twistor
theory have been making use of singular transformations as methods for generating new so-
lutions [5–13].

The Lw1+∞ algebra has recently made a dramatic comeback in the context of the ce-
lestial holography program, whose goal is to encode quantum gravity in asymptotically flat
spacetimes in terms of a theory living on the celestial sphere. Celestial amplitudes, namely
scattering amplitudes recast in a conformal primary basis on the celestial sphere (see [14–17]
for reviews), exhibit an infinite tower of ‘conformally soft’ graviton theorems, which appear
when the conformal dimension of the external graviton takes certain integer values [18–21].
It was shown that, in the positive helicity sector, the infinite collection of soft graviton currents
can be organized into the loop algebra of the wedge algebra of w1+∞ [22] (see also [23–38]
for related works). In other words, Lw1+∞ provides a symmetry organizing principle for the
soft sector of celestial CFTs.

The explicit relation between soft theorems and the Lw1+∞ symmetries of twistor space
was realized by T. Adamo, L. Mason and A. Sharma in [27]. The main new ingredient was the
use of a new twistor sigma model developed in the last years [39–42]. This new model is based
on the theory of asymptotic twistor spaces [43,44], which are closely related to Newman’s H-
spaces [45,46]: These are particular realisations of the nonlinear graviton construction where
the deformation of twistor space is parameterized by the gravitational data (i.e. the shear)
at null infinity. This point of view, together with their sigma model which permits to probe
gravitational amplitudes beyond the self-dual sector, allowed these authors to establish a close
connection between scattering amplitudes and the action of theLw1+∞ algebra. In particular,
their work made it very clear that in principle the algebra acts on gravitational data. However,
as often in twistor theory, the construction is somewhat implicit and the exact realisation of
this action was left aside. The main result of our article is that, in this particular instance, one
can be particularly explicit about the action of the symmetry and find a closed expression for
the action suggested by the work [27]. The second result is that the action can be extended
to act on the asymptotic data of any spin.

On another front, while the w1+∞ structure was explicitly related to the celestial operator
product expansions of soft gravitons, it was not clear how it could be seen to emerge from a
gravitational phase space point of view. To remedy this situation, the works [47,48] proposed
a construction of charges associated with a higher-spin tower of symmetries. One of the key
properties of these higher-spin charges is that they satisfy a set of recursion relations which,
once truncated to quadratic order in the fields, is equivalent to the tower of conformally soft
symmetries. This allowed the authors of [48] to provide a canonical realization of theLw1+∞
algebra on the gravitational phase space from the bracket of (a renormalized version of) these
higher-spin charges. In [33,49] it was further shown that these canonical charges form a rep-
resentation of a shifted Schouten-Nijenhuis algebra, which reduces to Lw1+∞ under certain
holomorphicity conditions of the transformation parameters. We will in fact be able to show
that this canonical realization precisely coincides with the twistor action.

2

https://scipost.org
https://scipost.org/SciPostPhys.17.4.118


SciPost Phys. 17, 118 (2024)

Figure 1: Schematic view of the different steps. One starts at the upper left corner
with the shear σ̄ at I (of coordinates u,λ) and constructs its uplift in twistor space,
h ∈ PT. The action of the loop algebra Lw1+∞ of generators g is linear on twistor
space and renders δh. A Penrose transform allows to obtain the transformed bulk
field δΦ, from where a stationary phase space approximation leads to the explicit
action of w1+∞ symmetries on the asymptotic shear, δσ̄.

The goal of this work is therefore to provide a direct derivation of the representation1

of Lw1+∞ symmetries on fields living at null infinity (I ) from its twistor action. We will
refer to objects intrinsically living at I as ‘Carrollian fields’, following a recent nomenclature
(see [50–52] and references therein for a Carrollian perspective and see [38, 40] for recent
works connecting the Carrollian and twistor perspective). Our derivation will consist of a direct
computation where we ‘bring down to I ’ the action of Lw1+∞ symmetries in twistor space.
More precisely, we will follow the sequence of steps which are outlined in Fig. 1. This intricate
journey will eventually render a remarkably simple expression for the action of Lw1+∞ on
the shear which the reader can find in Proposition 1. What is more, it will automatically
ensure that the action forms a representation of the algebra, see Proposition 2. We will also
show that our result matches with the canonical action of higher-spin charges found in [48],
thereby unifying the aforementioned results on the appearance of w1+∞ symmetries from
twistor space, celestial CFT, Carrollian and gravitational phase space points of view.

This paper is organized as follows. We start in section 2 with a presentation of conven-
tions and the key relationships that allow us to go from twistor representatives to Carrollian
fields at null infinity and back. In section 3, we present our main results, namely the explicit
realization of the action of Lw1+∞ symmetries on the gravitational shear, and that the latter
forms a representation of the algebra. We then show in section 4 that our expressions derived
from twistor space coincide with the canonical action that was previously obtained from a
gravitational phase space perspective. Section 5 contains the detailed steps of the proof of
Proposition 1.

1In other terms, the linear action of Lw1+∞ on linearized fields at I .
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Figure 2: Schematic representation of the circular journey (here depicted for the case
of positive helicity) with the identification of σ̄, h and Φ and their relationships.

2 From null infinity to twistor space and back

In this section, we set up our notations and detail the journey of a Carrollian field of helicity±2
at I to its uplift to twistor space, and back; see Fig. 2. The first step consists in mapping the
shears σ̄ (resp. σ) to their twistor representatives h (resp. eh). Applying the corresponding
Penrose transform renders a field in the bulk Φ(x), from which one can recover the initial
field at I from an asymptotic (large r) expansion. The consistency of this trivial journey
will ensure that our conventions are consistent and prepare the ground for the action of the
Lw1+∞ algebra.

2.1 Bondi coordinates and spinors

Our conventions for the contractions of spinors with the Levi-Civita symbol εαβ , with ε01 = 1,
are 〈ab〉 = εαβaβ bα = aαbα, [ã b̃] = εα̇β̇ ãβ̇ b̃α̇ = ãα̇ b̃α̇ and, in particular, we will make impor-
tant use of the following

λα :=

�

z
−1

�

, nα :=

�

1
0

�

, 〈nλ〉= 1 , dλα = dz nα , Dλ := 〈λdλ〉= −dz .

Bondi coordinates are chosen as (u, r,λα, λ̄α̇) together with a null vector nαα̇ = nαn̄α̇

λα = (1, z) , nαα̇ =

�

1 0
0 0

�

, (1)

such that Minkowski spaceM is parametrized by

xαα̇ = u nαα̇ + r λα λ̄α̇ ∈M , (2)

with flat metric
d xαα̇d xαα̇ = 2dudr − 2r2dzdz̄ . (3)

We denote by C∞
k,k̄
(I ) the space of Carrollian fields at I of weight (k, k̄). They are represented

interchangeably : (i) either by functionsφ(u, z, z̄) onR×S2 with the prescribed transformation
law (see e.g. [51,52])

δξφ(u, z, z̄) =

�

T + u
2

�

∂Y + ∂̄ Ȳ
�

�

∂uφ(u, z, z̄) +

�

Y∂ + Ȳ ∂̄ + k∂Y + k̄∂̄ Ȳ
�

φ(u, z, z̄) , (4)
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under an element2 ξ=
�

T + u
2

�

∂Y + ∂̄ Ȳ
��

∂u+Y∂ +Ȳ ∂̄ of the (extended) BMS algebra [53],
or by (ii) functions φ(u,λα, λ̄α̇) on3 R×C2 with the following homogeneity, [44]

φ
�

|b|2u, bλα, b̄λ̄α̇
�

= b−2k b̄−2k̄φ
�

u,λα, λ̄α̇
�

, (5)

under multiplication by a non zero complex number b ∈ C. These are two different realisations
of the same Carrollian field. The identification is explicitly given by the fact that they define
the same tensorial field Φ ∈ (Ω(1,0))k ⊗ (Ω(0,1))k̄ on I ,

Φ= φ(u, z, z̄)(−dz)k(−dz̄)k̄ = φ(u,λα, λ̄α̇)(Dλ)
k(D̄λ̄)k̄ . (6)

The null momenta pαα̇ for a particle heading towards the point ζα = (1,ζ), ζ̄α̇ = (1, ζ̄) on
the celestial sphere will be written as

pαα̇ =ωqαα̇(ζ, ζ̄) =ωζαζ̄α̇ , (7)

and we define the polarization tensor as

ε
(+)
αα̇ =

ιαζ̄α̇
〈ιζ〉

, ε
(−)
αα̇ =

ζαῑα̇

[ζ̄ῑ]
, (8)

where ια is an unspecified reference spinor corresponding to residual gauge freedom. From (2)
we also deduce that

∂̄ = rλαn̄α̇
∂

∂ xαα̇
, (9)

and that the contraction with the polarization tensor is

∂̄ ⌟ε(+) = ∂̄ αα̇ε(+)αα̇ = r
〈λι〉
〈ιζ〉

, ∂̄ ⌟ε(−) = ∂̄ αα̇ε(−)αα̇ = r
〈λζ〉[n̄ ῑ]
[ζ̄ῑ]

. (10)

In the same vein, we note that

xαα̇qαα̇ = u+ r〈λζ〉[λ̄ζ̄] = u+ r|z − ζ|2 . (11)

2.2 A trivial journey

We now detail the round trip from I to twistor space and back as depicted in Fig. 2, namely
we check that one can recover the asymptotic shear from its uplift to twistor space by applying
a Penrose transform, followed by a stationary phase space approximation. These are coordi-
nate invariant operations and we will work with the coordinate system (3) for concreteness.
Following the notations and conventions of [51], we start with the Carrollian representative
(shear)4

σ̄(u,λ, λ̄) = −
iκ

8π2

∫ ∞

0

dω
�

a−(ω,λ, λ̄)e−iωu − a†
+(ω,λ, λ̄)eiωu
�

, (12)

which encodes the self-dual radiative degrees of freedom [54–57], together with its opposite
helicity counterpart,

σ(u,λ, λ̄) = −
iκ

8π2

∫ ∞

0

dω
�

a+(ω,λ, λ̄)e−iωu − a†
−(ω,λ, λ̄)eiωu
�

, (13)

2Here and everywhere in this article ∂ stands for the partial derivative ∂
∂ z while ∂̄ stands for ∂

∂ z̄ . To avoid
potential confusion, the Dolbeault operator on twistor space will be denoted d.

3(u,λ, λ̄)∼ (|b|2u, bλ, b̄λ) then stand for homogeneous coordinates on I .
4The expression below really corresponds to the projection of CAB along the null sphere frame in Bondi coordi-

nates, which relates to Newman-Penrose’s shear as σ̄NP = 1
2 σ̄

here.
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which encodes the anti-self-dual radiative degrees of freedom. Here, κ =
p

32πG and a, a†

are annihilation and creation operators in momentum basis. The fields’ commutation relations
are given by

[aα(ω,λ, λ̄), a†
α′
(ω′,λ′, λ̄′)] = 16π3δα,α′ω

−1δ(ω−ω′)δ(z − z′) ,

[σ(u, z, z̄), σ̄(u′, z′, z̄′)] = −i
κ2

4
sign(u− u′)δ(z − z′) .

(14)

i) Lift to twistor space I → PT

Let us start with the positive helicity Carrollian field (12). We introduce, following [27,44],

h(u,λ, λ̄) = ∂ −1
u σ̄(u,λ, λ̄) =

κ

8π2

∫ ∞

0

dω
ω

�

e−iωu a−(ω,λ, λ̄) + eiωua†
+(ω,λ, λ̄)
�

, (15)

where ∂ −1
u =
∫ u

du acts on plane waves as ∂ −1
u eiωu = 1

iω eiωu.
The uplift to twistor space of the Carrollian representative (12) then is

h(ZA, Z̄A) = h
�

µα̇λ̄α̇,λ, λ̄
�

Dλ̄

= −
κ

8π2

∫ ∞

0

dω
ω

�

e−iωµα̇λ̄α̇ a−(ω,λ, λ̄) + eiωµα̇λ̄α̇a†
+(ω,λ, λ̄)
�

dz̄ ,
(16)

where Dλ̄ := [λ̄dλ̄] and twistor coordinates are ZA =
�

µα̇,λα
�

∈ C4. The weights of σ̄
ensures that h is homogeneous of degree (2,0) in the twistor coordinates

�

ZA, Z̄A
�

. Indeed, σ̄
has Carrollian weights (k, k̄) = (−1

2 , 3
2) i.e.

σ̄(|b|2u, bλα, b̄λ̄α̇) = b−2k b̄−2k̄σ̄(u,λα, λ̄α̇) =
b

b̄3
σ̄(u,λα, λ̄α̇) , (17)

for any non-vanishing complex number b, and hence

h(bZA, b̄Z̄A) = b2h(ZA, Z̄A) . (18)

One can also check that the twistor representative h ∈ Ω0,1(PT,O(2)) is holomorphic in twistor
space, dh= 0, where d := dZ̄A ∂

∂ Z̄A .
For the negative helicity field (13) of Carrollian weights (3

2 ,−1
2), we introduce instead

h̃(u,λ, λ̄) := ∂ 3
u σ(u,λ, λ̄) =

κ

8π2

∫ ∞

0

dωω3
�

e−iωu a+(ω,λ, λ̄) + eiωua†
−(ω,λ, λ̄)
�

, (19)

and the following uplift to twistor space

eh(ZA, Z̄A) = h̃
�

µα̇λ̄α̇,λ, λ̄
�

Dλ̄

= −
κ

8π2

∫ ∞

0

dωω3
�

e−iωµα̇λ̄α̇ a+(ω,λ, λ̄) + eiωµα̇λ̄α̇a†
−(ω,λ, λ̄)
�

dz̄ .
(20)

The weights of σ imply that the twistor representative eh ∈ Ω0,1(PT,O(−6)) is homogeneous
of degree (−6, 0) in the twistor coordinates ZA, Z̄A. It also satisfies deh= 0.

To summarize, we have two linear maps (one for each helicity),

T+2

�

�

�

�

�

C∞
(− 1

2 , 3
2)
(I ) → Ω0,1(PT,O(2)) ,

σ̄ 7→ h ,

T−2

�

�

�

�

�

C∞
( 3

2 ,− 1
2)
(I ) → Ω0,1(PT,O(−6)) ,

σ 7→ eh ,

(21)
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lifting the shear to the corresponding twistor representatives. For a general Carrollian field
φ(u, z, z̄) of weight (k, k̄) =

�1−s
2 , 1+s

2

�

we have a map

Ts

�

�

�

�

�

C∞
( 1−s

2 , 1+s
2 )
(I ) → Ω0,1(PT,O(2s− 2)) ,

φ 7→ f= f D̄λ ,
(22)

given by f (ZA, Z̄A) :=
�

∂ 1−s
u φ
�

(u= µα̇λ̄α̇,λ, λ̄).

i i) Penrose transform: PT→M

Functions f (ZA, Z̄B) on T which are homogeneous degree k in the holomorphic twistor coor-
dinate ZA i.e.

f (bZA, b̄Z̄B) = bk f (ZA, Z̄B) , (23)

correspond to sections of the holomorphic bundle O(k) → PT. Twistor representatives are
given by d closed (but not exact) (0,1)-forms f ∈ Ω0,1(PT,O(2s− 2)). The Penrose transform
then identifies the corresponding cohomology class with massless fields of helicity s ∈ Z (see
e.g. [58–63]):
¦

zero rest mass fields onMC of helicity s
©

≃ H0,1 (PT,O(2s− 2)) . (24)

In particular, from our twistor representative h ∈ Ω0,1(PT,O(2)), given by (16), one can re-
cover the corresponding positive helicity 2 fields as5

Φαα̇ββ̇(x) =
1

2πi

∫

CP1

〈ζdζ〉 ∧
ιαιβ

〈ιζ〉2
∂ 2h

∂ µα̇∂ µβ̇
(µα̇ = xαα̇ζα,ζα) (25)

=
κi

16π3

∫

CP1

〈ζdζ〉 ∧ [ζ̄dζ̄]
ιαιβ ζ̄α̇ζ̄β̇

〈ιζ〉2

×
∫ ∞

0

ωdω
�

e−iωxαα̇ζαζ̄α̇ a−(ω,ζ, ζ̄) + eiωxαα̇ζαζ̄α̇a†
+(ω,ζ, ζ̄)
�

=
iκ

16π3

∫ ∞

0

ωdω

×
∫

CP1

dζdζ̄ ε(+)
αα̇ββ̇

(ζ, ζ̄)
�

e−iωxαα̇ζαζ̄α̇ a−(ω,ζ, ζ̄) + eiωxαα̇ζαζ̄α̇a†
+(ω,ζ, ζ̄)
�

.

Here, in order not to confuse it with the spacetime coordinate λα = (1, z), the integration
variable has been taken to be ζα = (1,ζ).

The negative helicity linearized Weyl tensor is recovered from the twistor representative
eh ∈ Ω0,1(PT,O(−6)), given by (20), as:

Ψαβγδ(x) =
i

2π

∫

CP1

〈ζdζ〉ζαζβζγζδ eh(µα̇ = xαα̇ζα,ζα) (26)

=
iκ

16π3

∫ ∞

0

ω3dω

×
∫

CP1

dζdζ̄ ζαζβζγζδ
�

e−iωxαα̇ζαζ̄α̇ a+(ω,ζ, ζ̄) + eiωxαα̇ζαζ̄α̇a†
−(ω,ζ, ζ̄)
�

.

5The Weyl tensor would have been obtained as Ψα̇β̇ γ̇δ̇(x) =
i

2π

∫

CP1〈ζdζ〉∧ ∂ 4h

∂ µα̇∂ µβ̇ ∂ µγ̇∂ µδ̇
(µα̇ = xαα̇ζα,ζα). Note

the sign difference which ultimately mirror the fact that Ψ0
4 = −∂

2
u σ̄.
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i i i) Large r limit: M→I

Contracting (25) with (∂z̄)αα̇ and making use of (9), we obtain

Φz̄z̄(x) =
r

2πi

∫

CP1

〈ζdζ〉 ∧
〈ιλ〉2

〈ιζ〉2
nαnβ

∂ 2h

∂ µα̇∂ µβ̇
(µα̇ = xαα̇ζα,ζα) (27)

=
κr2

8π3

∫ ∞

0

ωdω

∫

CP1

i
2

dζdζ̄
〈ιλ〉2

〈ιζ〉2
�

e−iωxαα̇ζαζ̄α̇ a−(ω,ζ, ζ̄) + eiωxαα̇ζαζ̄α̇a†
+(ω,ζ, ζ̄)
�

.

Taking the large r limit and making use of the saddle point approximation or the identity
e∓iωxαα̇ζαζ̄α̇ = ∓ πi

ωr e∓iωuδ(z−ζ)+O(r−2), one recovers6 the asymptotic shear (12) from which
we started, namely

σ̄(u,λ, λ̄) = lim
r→∞

r−1Φz̄z̄(x) (28)

= −
iκ

8π2

∫ ∞

0

dω
�

e−iωu a−(ω,λ, λ̄)− eiωua†
+(ω,λ, λ̄)
�

,

as expected.
Similarly, for the opposite helicity, we contract (26) with nα to obtain Ψ4

Ψ4(x) = nαnβnγnδΨαβγδ(x) (29)

=
i

2π

∫

CP1

〈ζdζ〉 ∧ eh(µα̇ = xαα̇ζα,ζα)

=
κ

8π3

∫ ∞

0

ω3dω

∫

CP1

i
2

dζdζ̄
�

e−iωxαα̇ζαζ̄α̇ a+(ω,ζ, ζ̄) + eiωxαα̇ζαζ̄α̇a†
−(ω,ζ, ζ̄)
�

,

and recover σ(u,λ, λ̄) as given in (13) from [64,65]

∂ 2
u σ(u,λ, λ̄) = −Ψ0

4(u,λ, λ̄) (30)

= − lim
r→∞

rΨ4(x)

=
iκ

8π2

∫ ∞

0

ω2dω
�

e−iωu a+(ω,ζ, ζ̄)− eiωua†
−(ω,ζ, ζ̄)
�

,

as it should.

3 Carrollian representation of the Lw1+∞ algebra

3.1 Representation of the Lw1+∞ algebra

We now turn to the action of Lw1+∞ algebra on Carrollian fields living at I .

The Lw1+∞ algebra

The generators g(ZA, Z̄A) of theLw1+∞ algebra, as realized in twistor space, are the functions
on T of homogeneity degree 2 (in ZA = (µα̇,λα)) such that

g = g0(z)
︸︷︷︸

n=0

+ gα̇(z)µ
α̇

︸ ︷︷ ︸

n=1

+ gα̇(2)(z)µ
α̇(2)

︸ ︷︷ ︸

n=2

+ . . . , (31)

6Note the δ-function normalisation
∫

i
2 dζdζ̄ δ(ζ) = 1.
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with

gα̇(n)(z) =
+∞
∑

k=−∞
g(k)
α̇(n)z

k , (32)

some holomorphic functions onC∗ = C\{0}. The generators are decomposed into polynomials
gα̇(n)(z)µα̇(n) of degree n ∈ N on the plane of coordinates µα̇ = (µ0̇,µ1̇). Here and everywhere
in this article we make use of the notation (commonly used in the higher-spin literature)
α(n) := (α1α2 . . .αn) for n symmetrized indices and similarly µα̇(n) = µα̇1 . . .µα̇n .

The Lw1+∞ algebra is explicitly realized through the holomorphic Poisson bracket
ε= εα̇β̇ ∂

∂ µα̇
∂

∂ µβ̇
[27]

{g1, g2} := εα̇β̇
∂ g1

∂ µα̇
∂ g2

∂ µβ̇
. (33)

It can be alternatively expressed in terms of the modes

wp
m := (µ0̇)p+m−1(µ1̇)p−m−1 , |m| ≤ p− 1 , (34)

with p = n+2
2 as (see e.g. [22] in the celestial literature)

{wp
m, wq

n}= 2(m(q− 1)− n(p− 1))wp+q−2
m+n . (35)

Carrollian fields

A Carrollian field φ(u, z, z̄) ∈ C∞
(k,k̄)
(I ) of weight (k, k̄) = (1−s

2 , 1+s
2 ) lifts, through the map

(22), to an holomorphic form f = f D̄λ̄ ∈ Ω0,1(PT,O(2s− 2)) in twistor space. The action of
the Lw1+∞ algebra is then given by (see [27]7)

δg f= {g, f}= {g, f }D̄λ̄ . (36)

Since g is generically singular at z = 0 and z =∞, the resulting twistor field δg f(µα̇,λα) will
be singular. This is a problem as it might render the Penrose transform ill-defined or generate
a singularity in the resulting field. It will thus be useful to restrict ourselves to Carrollian fields
with support inside an annulus

A=
§

z ∈ C s.t.
1
R
< |z|< R
ª

,

where R is some fixed number that can be taken as large as we want. We will denote such
fields φ(u, z, z̄) ∈ C∞

(k,k̄)
(IA). These are such that, for example, (36) is regular on the whole

of S2. A perhaps more physical justification for this space of fields is the following: as was
pointed out in [27], due to Dolbeault-Cech equivalence of cohomology, the generator (31) of
a symmetry can be equivalently realized as the twistor representative d̄ g of a linearized field;
the presence of a singularity now being essential to ensure that the corresponding cohomology
class is non trivial. Accordingly, (36) can be thought of as the action of a graviton on an other
and the above restriction amounts to requiring that these are not inserted at the same point
of the celestial sphere (thus avoiding a type of collinear singularity).

7In this reference the symmetry is thought of as a deformation of the complex structure, which yields an extra
inhomogeneous term dg. In this article, we restrict ourselves to the linear action on the linearized fields. This
action will induce a representation on the Carrollian fields and, by construction, this excludes an inhomogeneous
(soft) shift.
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Carrollian representation of the algebra

The action δgφ(u, z, z̄) of a generator (31) on a Carrollian field φ(u, z, z̄) ∈ C∞
(k,k̄)
(IA)

of weight (k, k̄) = (1−s
2 , 1+s

2 ), with s = ±2, is obtained by following the successive steps of
Fig. 1: i) First the Carrollian field φ(u, z, z̄) is lifted to the preferred twistor representative
f := Ts(φ) ∈ Ω0,1(PT,O(2s− 2)) via the map (22). The generator g of the algebra then acts
on this representative as (36). ii) Second the Penrose transform of δg f yields a solution δgΦ(x)
of the zero-rest-mass equation of helicity s. iii) Third, taking the limit r →∞ we obtain the
corresponding Carrollian field δgφ(u, z, z̄).

In section 5 we go through this procedure for a Carrollian field σ̄ ∈ C∞
(− 1

2 , 3
2 )
(IA) corre-

sponding to a field of helicity +2 (respectively for σ ∈ C∞
( 3

2 ,− 1
2 )
(IA), corresponding to a field

of helicity −2) and derive the following.

Proposition 1. The action of the generator gα̇(n)(z) of theLw1+∞ algebra on the Carrollian
fields of spin 2, σ̄(u, z, z̄) and σ(u, z, z̄), is given by the following:

δnσ̄ =
n
∑

ℓ=0

∂̄ n−ℓ
�

gα̇(n)λ̄
α̇(n)
� ℓ

(n− ℓ)!
∂ 3

u

�

un−ℓ ∂ −1−ℓ
u ∂̄ ℓ−1σ̄

�

,

δnσ =
n
∑

ℓ=0

∂̄ n−ℓ
�

gα̇(n)λ̄
α̇(n)
� ℓ

(n− ℓ)!
∂ −1

u

�

un−ℓ ∂ 3−ℓ
u ∂̄ ℓ−1σ
�

,

(37)

where n ∈ N and ∂̄ := ∂
∂ z̄ .

Proof. See section 5.

The proposition can also be rephrased as follows: for a Carrollian field φ of weight
(1+s

2 , 1−s
2 ), corresponding to a zero-rest-mass field of helicity s = ±2, we can write the action

of the generators as

δnφ =
n
∑

ℓ=0

∂̄ n−ℓ
�

gα̇(n)λ̄
α̇(n)
� ℓ

(n− ℓ)!
∂ 1+s

u

�

un−ℓ ∂ 1−s−ℓ
u ∂̄ ℓ−1φ
�

, (38)

and it is tempting to conjecture that this formula extends to any spin s ∈ Z. Even though
our method of derivation in principle applies to any spin in practice the computation is rather
lengthy and in this article we will only explicitly show the proof for the spin-two case formula.
Nevertheless, as it should be clear from the proof of the proposition below, the representation
itself does extend to any spin. Let us emphasize, though, that the corresponding representation
on spin-one fields should not be confused with the infinitesimal action of the symmetries of self-
dual Yang-Mills in twistor space (as e.g. in [6, 7]) nor with the one appearing in the celestial
gluon OPE [22–24]. Rather, these are the extension of the gravitational twistor symmetry to
other spins (this is similar to the fact that the BMS group acts on all fields regardless of their
helicity but e.g. is not the group of asymptotic symmetries of QED).

The action (38) is obviously linear (and as such does not contain an inhomogeneous
(soft) shift). In fact, as we shall now see, it forms a representation of the algebra.

Proposition 2. The action of the generators (31) on Carrollian fields C∞
(k,k̄)
(IA) of weight

(k, k̄) = (1−s
2 , 1+s

2 ), as defined through the procedure explained before Proposition 1, forms a rep-
resentation of theLw1+∞ algebra. In particular the action (37) is a representation ofLw1+∞.
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Proof.
Let φ(u, z, z̄) be a Carrollian field of weight (k, k̄) = (1−s

2 , 1+s
2 ). Via the map (22) it defines

a preferred twistor representative f = Ts(φ) ∈ Ω0,1(PT,O(2s− 2)). In this proof only, let us
introduce a shorthand notation that will be very useful: if A ∈ Ω0,1(PT,O(2s−2)) is any twistor
representative we will denote by eA(u, z, z̄) the Carrollian field of weight (k, k̄) = (1−s

2 , 1+s
2 )

obtained from A by successive Penrose transform and large r expansion. For example we
have, by construction,ef(u, z, z̄) = φ(u, z, z̄). Let δgi

f= { f , gi}D̄λ̄ be the twistor representative

resulting from the action of elements g1, g2, on f and let δgi
φ(u, z, z̄) :=Þδgi

f(u, z, z̄) be the
corresponding action on the Carrollian field. We will note fi = Ts

�

δgi
φ
�

the preferred twistor
representative associated to δgi

φ(u, z, z̄). Both δgi
f and fi define the same spacetime fields

through the Penrose transform,

δgi
φ(u, z, z̄) =Þδgi

f(u, z, z̄) = efi(u, z, z̄) ,

but they do not have to coincide in general. Rather these two representatives must be in
the same cohomology class (this is because of the isomorphism (24) underlying the Penrose
transform, see [59] for a proof). This means that

δgi
f= fi + dαi ,

where α1, α2 are some functions on twistor space. Importantly, since both δgi
f and fi only have

support on the annulus A so do α1 and α2. Now by definition δg2
δg1
φ(u, z, z̄) =àδg2

f1(u, z, z̄)
and thus

δg2
δg1
φ(u, z, z̄) =äδg2

δg1
f(u, z, z̄)−äδg2

dα1(u, z, z̄) .

In order to prove that we have a representation of the algebra, we need to prove that the

Carrollian field δ{g1,g2}φ(u, z, z̄) =åδ{g1,g2}f(u, z, z̄) obtained from δ{g1,g2}f= (δg1
δg2
−δg2

δg1
)f

coincides with (δg1
δg2
−δg2

δg1
)φ(u, z, z̄). We therefore need to prove that,

δ{g1,g2}φ(u, z, z̄)− (δg1
δg2
−δg2

δg1
)φ(u, z, z̄)

=åδ{g1,g2}f(u, z, z̄)− (δg1
δg2
−δg2

δg1
)φ(u, z, z̄)

=
�

äδg1
δg2

f(u, z, z̄)−äδg2
δg1

f(u, z, z̄)
�

−
�

δg1
δg2
φ(u, z, z̄)−δg2

δg1
φ(u, z, z̄)
�

=äδg1
dα2(u, z, z̄) +äδg2

dα1(u, z, z̄) ,

vanishes. We will in fact prove that the terms δgdα are d-exact, since the Penrose transform
annihilates exact forms this will be enough to conclude. To see this, we note that

δgdα= {g, dα}= d{g,α} − {dg,α} .

Now dg has only support on z = 0 and z =∞, while α only has support on the annulus A
therefore the last term vanishes. Finally since g is non singular on A and α only has support on
this set it follows that {g,α} is a non singular function on the whole of S2. Thus δgdα= d{g,α}

is d-exact andáδgdα(u, z, z̄) = 0.

Note that, even though the action (36) would be admissible for any g(z, z̄), holomorphicity
on A of g, ∂̄ g = 0, is crucial in the above proof.

3.2 Action of the simplest generators n = 1, 2, 3

In order to illustrate the general expression of Proposition 1, let us write down the action
of the simplest generators.8

8Notice that the n= 0 (p = 1) generator acts trivially.
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n = 1

δ1σ̄ =
�

gα̇1
λ̄α̇1∂u

�

σ̄ , δ1σ =
�

gα̇1
λ̄α̇1∂u

�

σ . (39)

This coincides with the usual action of a supertranslation vector field which can be ex-
panded in modes as

τg1
(z, z̄)∂u = gα̇1

λ̄α̇1∂u =

� ∞
∑

m=−∞

1
∑

m̄=0

Tm,m̄zmz̄m̄

�

∂u . (40)

n = 2

From

δ2σ̄ =
�

∂̄
�

2gα̇(2)λ̄
α̇(2)
�

�

3
2
+

u
2
∂u

�

+
�

2gα̇(2)λ̄
α̇(2)
�

∂̄

�

σ̄ ,

δ2σ =
�

∂̄ (2gα̇(2)λ̄
α̇(2))
�

−
1
2
+

u
2
∂u

�

+
�

2gα̇(2)λ
α̇(2)
�

∂̄

�

σ ,
(41)

one recognizes the usual action of the vector field,

τg2
(z, z̄) ∂̄ = 2g α̇β̇(z)λ̄

α̇λ̄β̇ ∂̄ =

� ∞
∑

m=−∞

2
∑

m̄=0

Lm,m̄zmz̄m̄

�

∂̄ , (42)

on the shear. To interpret this, it is here useful to read from (33) with n= 2 the algebra,
¦

g1αβ(z, z̄)µαµβ , g2αβ(z, z̄)µαµβ
©

= 4 g1γα(z, z̄)g2
γ
β(z, z̄)µαµβ . (43)

When the generators are globally holomorphic, this is the SL(2,C) algebra. Under the more
general assumption (32) that the generators admit Laurent series on C∗, this is the SL(2,C)-
loop algebra [66]. A direct computation shows that it is isomorphic to the algebra of vector
fields on C∗ of the form (42).

n = 3

Let us finally illustrate the action for the (less familiar) n= 3 generator,

δ3σ̄ =
�

�

λ̄α̇(3)gα̇(3)
�

3 ∂ −1
u ∂̄ 2 + ∂̄
�

gα̇(3)λ̄
α̇(3)
�

�

2u+ 6∂ −1
u

�

∂̄ + ∂̄ 2
�

gα̇(3)λ̄
α̇(3)
�

�

3u+ 3∂ −1
u +

1
2

u2∂u

�

�

σ̄ ,

δ3σ =
�

�

λ̄α̇(3)gα̇(3)
�

3 ∂ −1
u ∂̄ 2 + ∂̄
�

gα̇(3)λ̄
α̇(3)
�

�

2u− 2∂ −1
u

�

∂̄ + ∂̄ 2
�

gα̇(3)λ̄
α̇(3)
�

�

− u+ ∂ −1
u +

1
2

u2∂u

�

�

σ .
(44)

This action corresponds to the one of the sub-subleading current labelled by s = 2 in [47,48]
and denoted by p = 5

2 in [22].

4 Canonical action of charges

In this section, we show that the action of the Lw1+∞ symmetries at null infinity derived
in Proposition 1 coincides with the action of the canonical charges on the radiative data that
was derived from gravitational phase space methods in [48]. The dictionary is that the label
s referred to as the spin there is related to the generator index as s = n− 1 = 2p − 3 (hence
supertranslations are spin 0, superrotations spin 1, etc.).
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4.1 Canonical charges

Let us first review the prescription of [48] for the construction of spin-s charges Qs.
9 As part

of the procedure, a first set Qs for s ≥ −2 is defined by solving the following recursion relation

Qs(u, z, z̄) =
�

∂ −1
u ∂̄
�

Qs−1 +
s+ 1

2
∂ −1

u [σ̄Qs−2] , (45)

starting from Q−2 := 1
2∂

2
u σ. The hard charges, denoted by Q2

s , are then obtained by only
keeping the terms in Qs which are quadratic (hence the superscript 2) in the shear σ̄, σ. The
result is

Q2
s (u, z, z̄) =

1
4

s
∑

ℓ=0

(ℓ+ 1)∂ −1
u

�

∂ −1
u ∂̄
�s−ℓ �

σ̄
�

∂ −1
u ∂̄
�ℓ
∂ 2

u σ
�

. (46)

It receives the following interpretation: for s = −2,−1, 0,1, 2 each of the quantities Qs is
proportional to the Newman-Penrose scalars Ψ0

4 ,Ψ0
3 ,Ψ0

2 , Ψ0
1 , Ψ0

0 and the recursion relations
(45) correspond to their associated Bianchi identities [65]. The charges Q2

s for generic s are
thus quadratic quantities in the shear that generalize the behavior of the (quadratic part of)
Newman-Penrose scalars.

The action of these charges on the shear would generically be divergent (see [47]);
for this reason one introduces the following renormalization prescription

q̂2
s (u, z, z̄) :=

s
∑

n=0

(−u)s−n

(s− n)!
∂̄ s−nQ2

n(u, z, z̄) , (47)

which will define higher-spin charge aspects q2
s (z, z̄) = lim

u→−∞
q̂2

s (u, z, z̄). Using (46), one then

has

q̂2
s (u, z, z̄) =

1
4

s
∑

n=0

n
∑

ℓ=0

(ℓ+ 1)(−u)s−n

(s− n)!
∂ −(n−ℓ+1)

u ∂̄ s−ℓ
�

σ̄
�

∂ −1
u ∂̄
�ℓ
∂ 2

u σ
�

. (48)

Ashtekar-Streubel’s symplectic structure [69]

{∂uσ(u, z, z̄), σ̄(u′, z′, z̄′)}=
κ2

2
δ(u− u′)δ(z − z′) , (49)

then allows to compute the action of the charges as

{q2
s (z, z̄), σ̄(u′, z′, z̄′)}= lim

u→−∞
{q̂2

s (u, z, z̄), σ̄(u′, z′, z̄′)} ,

{q2
s (z, z̄),σ(u′, z′, z̄′)}= lim

u→−∞
{q̂2

s (u, z, z̄),σ(u′, z′, z̄′)} .
(50)

The result is10 [48]

�

q2
s (z, z̄), σ̄(u′, z′, z̄′)

	

=
κ2

8

s
∑

n=0

(−1)s+n (n+ 1)(∆̂+ 2)s−n

(s− n)!
∂ 1−s

u′ ∂̄
nσ̄(u′, z′, z̄′)∂̄ s−nδ(z − z′) ,

�

q2
s (z, z̄),σ(u′, z′, z̄′)

	

=
κ2

8

s
∑

n=0

(−1)s+n (n+ 1)(∆̂− 2)s−n

(s− n)!
∂ 1−s

u′ ∂̄
nσ(u′, z′, z̄′)∂̄ s−nδ(z − z′) ,

(51)

where ∆̂ := u∂u + 1 and (x)n = x(x − 1) · · · (x − n+ 1) is the falling factorial.

9The dictionary to convert the expressions of this reference into ours is C 7→ σ̄ and D := 1p
2
ð 7→ ∂̄ . Note again

that, as compared to the usual definition of the shear, we have σ̄here = Cz̄z̄ = 2σ̄NP; see [67,68] for a remainder of
Newman-Penrose (NP) conventions.

10See eq. (67) and (68).
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4.2 Matching with the twistor space action

The integration of (51) against a functionτs(z, z̄) on the sphere yields the actions of a generator

δτs
σ̄(u, z, z̄) =

�

8
κ2

∫

S2

dζ2τs(ζ, ζ̄)q2
s (ζ, ζ̄) , σ̄(u, z, z̄)

�

,

δτs
σ(u, z, z̄) =

�

8
κ2

∫

S2

dζ2τs(ζ, ζ̄)q2
s (ζ, ζ̄) , σ(u, z, z̄)

�

,

(52)

which reads

δτs
σ̄(u, z) =

s
∑

ℓ=0

(ℓ+ 1)(∆̂+ 2)s−ℓ
(s− ℓ)!

(∂̄ s−ℓτs)∂̄
ℓ∂ 1−s

u σ̄(u, z) ,

δτs
σ(u, z) =

s
∑

ℓ=0

(ℓ+ 1)(∆̂− 2)s−ℓ
(s− ℓ)!

(∂̄ s−ℓτs)∂̄
ℓ∂ 1−s

u σ(u, z) .

(53)

In order to relate these expressions with the results of section 3, it is useful to note the
following identities [48]

un∂ n
u = (∆̂− 1)n , ∂ n

u un = (∆̂+ n− 1)n ,

u−n∂ −n
u = (∆̂+ n− 1)−1

n ,

∂u(∆̂+α)n = (∆̂+α+ 1)n∂u , ∂ −1
u (∆̂+α)n = (∆̂+α− 1)n∂

−1
u ,

u(∆̂+α)n = (∆̂+α− 1)nu , u(∆̂+ n− 1)−1
n = (∆̂+ n− 2)−1

n u .

(54)

They lead to

(∆̂+ 2)s−ℓ
(s− ℓ)!

= ∂ 3
u

�

(∆̂− 1)s−ℓ
(s− ℓ)!

�

∂ −3
u = ∂ 3

u

�

us−ℓ

(s− ℓ)!
∂ s−ℓ

u

�

∂ −3
u , (55)

and, similarly, one has

(∆̂− 2)s−ℓ
(s− ℓ)!

= ∂ −1
u
(∆̂− 1)s−ℓ
(s− ℓ)!

∂u = ∂
−1
u

�

us−ℓ∂ s−ℓ
u

(s− ℓ)!

�

∂u . (56)

We can therefore rewrite the action (53) as

δτs
σ̄(u, z) =

s
∑

ℓ=0

(ℓ+ 1)
(s− ℓ)!

(∂̄ s−ℓτs)∂
3
u

�

us−ℓ∂ −2−ℓ
u ∂̄ ℓσ̄(u, z)
�

,

δτs
σ(u, z) =

s
∑

ℓ=0

(ℓ+ 1)
(s− ℓ)!

(∂̄ s−ℓτs)∂
−1
u

�

us−ℓ∂ 2−ℓ
u ∂̄ ℓσ(u, z)
�

.

(57)

Using the relationship s = n− 1, they read

δτn−1
σ̄(u, z) =

n
∑

ℓ=1

ℓ

(n− ℓ)!
(∂̄ n−ℓτn−1)∂

3
u

�

un−ℓ∂ −1−ℓ
u ∂̄ ℓ−1σ̄(u, z)

�

,

δτn−1
σ(u, z) =

n
∑

ℓ=1

ℓ

(n− ℓ)!
(∂̄ s−ℓτn−1)∂

−1
u

�

un−ℓ∂ 3−ℓ
u ∂̄ ℓ−1σ(u, z)
�

,

(58)

with coincides with the twistor actions of Proposition 1 with generators τn−1 = gα̇(n)λ̄
α̇(n).

In [49], a direct proof that this action forms a representation of the Schouten-Nijenhuis algebra
of multivector fields, [70]

[τn−1,τ′m−1] = mτ′m−1∂̄ τn−1 − nτn−1∂̄ τ
′
m−1 , (59)
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was given under the condition that ∂̄ n+1τn−1 = 0, which is satisfied by the generators
τn−1 = gα̇(n)λ̄

α̇(n). This condition corresponds to the vanishing of the integrated soft charge.
This result confirms the conclusion of Proposition 2 derived from the twistor action. In [33,49],
it was also shown that relaxing the condition ∂̄ n+1τn−1 = 0 is possible at the price of having a
non-linear action of the Schouten-Nijenhuis algebra on the asymptotic phase space. We leave
the discussion on the meaning of this nonlinear extension from the twistor space perspective
for future work.

5 Details of the proof

This section contains the proof of Proposition 1, following the different steps as described in
Fig. 1.

5.1 Positive helicity

We will evaluate the action of the algebra on plane waves,

σ̄(u,λ) = ∓
iκ

8π2
e∓iω0uδ(〈λw〉) ∈ C∞

(− 1
2 , 3

2 )
(IA) , (60)

by linearity of the representation it will extend to any Carrollian field (12) admitting a Fourier
transform.

The first step (i) consists in uplifting the self-dual Carrollian field (60) to twistor space.
One easily obtains the twistor representative h= h(u= µα̇λ̄α̇,λ)Dλ̄ with

h(µα̇λ̄α̇,λ) =
κ

8π2ω0
e∓iω0(µα̇λ̄α̇)δ(〈λw〉) . (61)

The action of the w1+∞ symmetries on h is given by (36)

δh= {g,h}=
�

∂ g
∂ µα̇

�

εα̇β̇
∂ h

∂ µβ̇
Dλ̄ , (62)

with the generators g given in (31). We thus get, at fixed n,

δh(µ,λ) =
∓iκ
8π2

�

∂ g
∂ µα̇1

�

λ̄α̇1 e∓iω0(µα̇λ̄α̇)δ(〈λw〉)[λ̄dλ̄]

=
∓iκn
8π2

G(n)(µ,λ)δ(〈λw〉)[λ̄dλ̄] ,
(63)

where
G(n)(µ,λ) := gα̇1...α̇n

λ̄α̇1µα̇2 . . .µα̇n e∓iω0(µα̇λ̄α̇) . (64)

We now implement the second step (ii) by plugging the transformed twistor representative
h into the Penrose transform. This leads to

δΦαα̇ββ̇(x) =
1

2πi

∫

CP1

〈ζdζ〉 ∧
ιαιβ

〈ιζ〉2
∂ 2δh

∂ µα̇∂ µβ̇
(µα̇ = xαα̇ζα,ζα)

= ∓
κn

16π3

∫

CP1

〈ζdζ〉 ∧ [ζ̄dζ̄]δ(〈ζw〉)
ιαιβ

〈ιζ〉2
∂ 2G(n)

∂ µα̇∂ µβ̇
(µα̇ = xαα̇ζα,ζα)

= ±
iκn
8π3

ιαιβ

〈ιw〉2
∂ 2G(n)

∂ µα̇∂ µβ̇
(µα̇ = xαα̇wα, wα) ,

(65)
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where

∂ 2G(n)

∂ µα̇∂ µβ̇
(µ, w) =
�

− (ω0)
2 gα̇1...α̇n

w̄α̇1µα̇2 . . .µα̇n w̄α̇w̄β̇ ∓ iω02(n− 1)w̄(β̇ gα̇)α̇1...α̇n−1
w̄α̇1µα̇2 . . .µα̇n−1

+ (n− 1)(n− 2)gα̇β̇α̇1...α̇n−2
w̄α̇1µα̇2 . . .µα̇n−2

�

e∓iω0(µα̇w̄α̇) , (66)

and where we used the δ-function normalisation
∫ i

2 dζdζ̄ δ(ζ) = 1. Note that in the above
equation the generators gα̇(n) really are functions of w, which correspond to the direction of
the plane wave, and not functions of z which are the Bondi coordinates. Contracting (65)
with (9), we obtain the transformed bulk field

δΦz̄z̄(x) = ±r2 iκn
8π3

〈ιλ〉2

〈ιw〉2
n̄α̇n̄β̇

∂ 2G(n)

∂ µα̇∂ µβ̇
(µα̇ = xαα̇wα, wα) . (67)

We will split the computation according to the three different terms that appear in (66), namely

δΦz̄z̄(x) := F1(x) + F2(x) + F3(x) , (68)

with

F1(x) = ±r2 iκn
8π3

〈ιλ〉2

〈ιw〉2
n̄α̇n̄β̇
�

− (ω0)
2 gα̇1...α̇n

w̄α̇1µα̇2 . . .µα̇n w̄α̇w̄β̇
�

e∓iω0(µα̇w̄α̇)
�

�

�

µα̇=xαα̇wα

= −
〈ιλ〉2

〈ιw〉2
�

(ω0)
2 gα̇(n)w̄

α̇µα̇(n−1)
�

�

±r2 iκn
8π3

e∓iω0(µα̇w̄α̇)
�
�

�

�

µα̇=xαα̇wα
,

(69)

where we recall that we use the notation α̇(n) := (α̇1 . . . α̇n) for n symmetrized indices,

F2(x) = ±r2 iκn
8π3

〈ιλ〉2

〈ιw〉2
n̄α̇n̄β̇
�

∓iω02(n− 1)w̄(β̇ gα̇)α̇1...α̇n−1
w̄α̇1µα̇2 . . .µα̇n−1

�

e∓iω0(µα̇w̄α̇)
�

�

�

µα̇=xαα̇wα

= ∓2i(n− 1)
〈ιλ〉2

〈ιw〉2
�

ω0 gα̇(n)n̄
α̇w̄α̇µα̇(n−2)
�

�

±r2 iκn
8π3

e∓iω0(µα̇w̄α̇)
�
�

�

�

µα̇=xαα̇wα
, (70)

and

F3(x) = ±r2 iκn
8π3

〈ιλ〉2

〈ιw〉2
n̄α̇n̄β̇
�

(n− 1)(n− 2)gα̇β̇α̇1...α̇n−2
w̄α̇1µα̇2 . . .µα̇n−2

�

e∓iω0(µα̇w̄α̇)
�

�

�

µα̇=xαα̇wα

= (n− 1)(n− 2)
〈ιλ〉2

〈ιw〉2
�

gα̇(n)n̄
α̇(2)w̄α̇µα̇(n−3)
�

�

±r2 iκn
8π3

e∓iω0(µα̇w̄α̇)
�
�

�

�

µα̇=xαα̇wα
. (71)

We will first focus on working out the first term (69), which reads

F1(x) = −
〈ιλ〉2

〈ιw〉2
�

(ω0)
2 gα̇(n)w̄

α̇x α̇(n−1)α(n−1)wα(n−1)

�

�

±r2 iκn
8π3

e∓iω0(xαα̇wαw̄α̇)
�

. (72)

Remembering that
xαα̇wα = (u nαn̄α̇ + r λα λ̄α̇)wα

= rλ̄α̇〈λw〉+ un̄α̇ ,
(73)

one finds the identity

gα̇(n)x
α̇(n−1)α(n−1)wα(n−1) = gα̇(n)

�

rλ̄α̇1〈λw〉+ un̄α̇1
�

. . .
�

rλ̄α̇n−1〈λw〉+ un̄α̇n−1
�

= gα̇(n)

n−1
∑

ℓ=0

�

n− 1
ℓ

�

�

r〈λw〉
�ℓ
λ̄α̇(ℓ) un−1−ℓn̄α̇(n−1−ℓ) .

(74)
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We now arrive at a crucial step in the proof (step (iii)), which consists of performing the large-
r expansion in order to obtain the transformed field at I . At face value, it seems from the
presence of rℓ terms in expression (74) that (72) will render an expression which dramatically
blows up at I . This is however not the case, due to a mechanism we will now detail.

As r →∞, the plane waves admit to be written as11

e∓iω0(xαα̇wαw̄α̇) = e∓iω0(u+r|z−w|2)

= ∓iπ
e∓iω0u

rω0

�

1+
1
±iω0r

∂ ∂̄ +
1

2(±iω0r)2
(∂ ∂̄ )2 + . . .
�

δ(〈λw〉)

= ∓iπ
e∓iω0u

rω0

∞
∑

k=0

1
k!

�

r−1

±iω0
∂ ∂̄

�k

δ(〈λw〉) ,

(75)

and hence

±r2 inκ
8π3

e∓iω0(xαα̇wαw̄α̇) =
rnκ

8π2ω0
e∓iω0u

∞
∑

k=0

1
k!

�

r−1

±iω0
∂ ∂̄

�k

δ(〈λw〉) . (76)

Plugging (74) and (76) into (72), we arrive at

F1(x) = −
rnκω0

8π2
e∓iω0u 〈ιλ〉

2

〈ιw〉2
(77)

× gα̇(n)w̄
α̇

n−1
∑

ℓ=0

∞
∑

k=0

�

�

n− 1
ℓ

�

(r〈λw〉)ℓ λ̄α̇(ℓ)un−1−ℓn̄α̇(n−1−ℓ)
� 1

k!

�

r−1

±iω0
∂ ∂̄

�k

δ(〈λw〉) .

Therefore, thanks to the distributional identity

〈λw〉m∂ nδ(〈λw〉) = δm,n(−1)nn!δ(〈λw〉) , ∀ m≥ n , (78)

we see that each overleading term in r vanishes! Moreover, all factors neatly combine to give
a leading O(r) term free from the residual gauge ambiguity related to ια, namely

F1(x) =
rnκω0

8π2
e∓iω0u gα̇(n)w̄

α̇
n−1
∑

ℓ=0

(−1)ℓ+1
�

n− 1
ℓ

�

λ̄α̇(ℓ)n̄α̇(n−1−ℓ)un−1−ℓ
�

∂̄

±iω0

�ℓ

δ(〈λw〉) +O(r0) . (79)

We can now rewrite F1 by recalling the definition of the plane waves (60); using

(±iω0)
me∓iω0u = (−∂u)

me∓iω0u , (80)

we get

F1(x) = ±irnω0 gα̇(n)w̄
α̇

� n−1
∑

ℓ=0

(−1)ℓ+1
�

n− 1
ℓ

�

λ̄α̇(ℓ)n̄α̇(n−1−ℓ)un−1−ℓ
�

∂̄

±iω0

�ℓ �

×
�∓iκ

8π2
e∓iω0uδ(〈λw〉)
�

+O(r0)

= rngα̇(n)w̄
α̇

� n−1
∑

ℓ=0

�

n− 1
ℓ

�

λ̄α̇(ℓ)n̄α̇(n−1−ℓ) un−1−ℓ ∂̄ ℓ(∂u)
1−ℓ
�

σ̄+O(r0) . (81)

11This expression can be derived by looking for the unique solution of the wave equation in Bondi coordinates
�

− 1
r ∂u − ∂u∂r +

1
r2 ∂z∂z̄

�

φ = 0 which is the form e∓iω0uψ(r, z, z̄) and satisfies the asymptotic boundary condition

e∓iω0(xαα̇wα w̄α̇) = ∓ πi
ω0 r e∓iω0uδ(z − ζ) +O(r−2). See also [71] for similar asymptotic expressions.
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We now make use of the following identity

w̄α̇(∂̄ )mδ(〈λw〉) = λ̄α̇(∂̄ )mδ(〈λw〉) +m∂̄ λ̄α̇(∂̄ )m−1δ(〈λw〉) , (82)

and obtain

F1(x) = rngα̇(n)

� n−1
∑

ℓ=0

�

n− 1
ℓ

�

λ̄α̇(ℓ+1)n̄α̇(n−1−ℓ) un−1−ℓ ∂̄ ℓ(∂u)
1−ℓ

+
n−1
∑

ℓ=0

ℓ

�

n− 1
ℓ

�

λ̄α̇(ℓ)n̄α̇(n−ℓ) un−1−ℓ ∂̄ ℓ−1(∂u)
1−ℓ
�

σ̄+O(r0)

= rngα̇(n)

� n
∑

ℓ=1

�

n− 1
ℓ− 1

�

λ̄α̇(ℓ)n̄α̇(n−ℓ) un−ℓ ∂̄ ℓ−1(∂u)
2−ℓ (83)

+
n−1
∑

ℓ=1

ℓ

�

n− 1
ℓ

�

λ̄α̇(ℓ)n̄α̇(n−ℓ) un−1−ℓ ∂̄ ℓ−1(∂u)
1−ℓ
�

σ̄+O(r0)

= rngα̇(n)

� n
∑

ℓ=1

λ̄α̇(ℓ)n̄α̇(n−ℓ)
�

n− 1
ℓ− 1

�

�

un−ℓ(∂u)
2−ℓ + (n− ℓ)un−1−ℓ(∂u)

1−ℓ
�

∂̄ ℓ−1
�

σ̄+O(r0)

= rngα̇(n)

n
∑

ℓ=1

λ̄α̇(ℓ)n̄α̇(n−ℓ)
�

n− 1
ℓ− 1

�

∂u

�

un−ℓ(∂u)
1−ℓ ∂̄ ℓ−1σ̄
�

+O(r0) ,

where we used
�n−1
ℓ

�

= n−ℓ
ℓ

�n−1
ℓ−1

�

in the third equality. Finally, using that

gα̇(n)λ̄
α̇(ℓ)nα̇(n−ℓ) = gα̇(n)

ℓ!
n!
∂̄ n−ℓ �λ̄α̇(n)
�

, (84)

we end up with

F1(x) = rngα̇(n)

n
∑

ℓ=1

∂̄ n−ℓ
�

λ̄α̇(n)
� ℓ!

n!

�

n− 1
ℓ− 1

�

∂u

�

un−ℓ(∂u)
1−ℓ ∂̄ ℓ−1σ̄
�

+O(r0)

= r gα̇(n)

n
∑

ℓ=1

∂̄ n−ℓ
�

λ̄α̇(n)
� ℓ

(n− ℓ)!
∂u

�

un−ℓ(∂u)
1−ℓ ∂̄ ℓ−1σ̄
�

+O(r0) .

(85)

The computation for the two remaining terms will follow along very similar lines. The
second term (70) reads

F2(x) = ∓2i(n− 1)
〈ιλ〉2

〈ιw〉2
�

ω0 gα̇(n)n̄
α̇w̄α̇x α̇(n−2)α(n−2)wα(n−2)

�

�

±r2 iκn
8π3

e∓iω0(xαα̇wαw̄α̇)
�

. (86)

Using again (76) together with the identity

gα̇(n)x
α̇(n−2)α(n−2)wα(n−2) = gα̇(n)

n−2
∑

ℓ=0

�

n− 2
ℓ

�

(r〈λw〉)ℓ λ̄α̇(ℓ)un−2−ℓn̄α̇(n−2−ℓ) , (87)

we obtain

F2(x) = ∓
n(n− 1)irκ

4π2
e∓iω0u 〈ιλ〉

2

〈ιw〉2
�

gα̇(n)n̄
α̇w̄α̇

n−2
∑

ℓ=0

�

n− 2
ℓ

�

(r〈λw〉)ℓ λ̄α̇(ℓ)un−2−ℓ
�

n̄α̇(n−2−ℓ)
�

×
∞
∑

k=0

1
k!

�

r−1

±iω0
∂ ∂̄

�k

δ(〈λw〉) . (88)
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All overleading terms in r and residual gauge factors in (88) again disappear thanks to the
identity (78) and we are left with

F2 =
∓n(n− 1)irκ

4π2
e∓iω0u gα̇(n)w̄

α̇
n−2
∑

ℓ=0

(−1)ℓ
�

n− 2
ℓ

�

λ̄α̇(ℓ)n̄α̇(n−1−ℓ)un−2−ℓ
�

∂̄

±iω0

�ℓ

δ(〈λw〉) +O(r0)

= 2n(n− 1)r gα̇(n)w̄
α̇

�n−2
∑

ℓ=0

�

n− 2
ℓ

�

λ̄α̇(ℓ)n̄α̇(n−1−ℓ)un−2−ℓ∂̄ ℓ∂ −ℓu

�

σ̄+O(r0) , (89)

where we have reinstated σ̄ as given in (60). We can now make use of the identity (82) to
write

F2(x) = 2n(n− 1)r gα̇(n)

� n−2
∑

ℓ=0

�

n− 2
ℓ

�

λ̄α̇(ℓ+1)n̄α̇(n−1−ℓ)un−2−ℓ∂̄ ℓ∂ −ℓu

+
n−2
∑

ℓ=0

ℓ

�

n− 2
ℓ

�

λ̄α̇(ℓ)n̄α̇(n−ℓ)un−2−ℓ∂̄ ℓ−1∂ −ℓu

�

σ̄+O(r0)

= 2n(n− 1)r gα̇(n)

� n−1
∑

ℓ=1

�

n− 2
ℓ− 1

�

λ̄α̇(ℓ)n̄α̇(n−ℓ)un−1−ℓ∂̄ ℓ−1∂ 1−ℓ
u (90)

+
n−2
∑

ℓ=1

ℓ

�

n− 2
ℓ

�

λ̄α̇(ℓ)n̄α̇(n−ℓ)un−2−ℓ∂̄ ℓ−1∂ −ℓu

�

σ̄+O(r0)

= 2n(n− 1)r gα̇(n)

� n−1
∑

ℓ=1

λ̄α̇(ℓ)n̄α̇(n−ℓ)
�

n− 2
ℓ− 1

�

�

un−1−ℓ∂ 1−ℓ
u + (n− 1− ℓ)un−2−ℓ∂ −ℓu

�

∂̄ ℓ−1
�

σ̄

+O(r0)

= 2n(n− 1)r gα̇(n)

n−1
∑

ℓ=1

λ̄α̇(ℓ)n̄α̇(n−ℓ)
�

n− 2
ℓ− 1

�

∂u

�

un−1−ℓ∂ −ℓu ∂̄ ℓ−1σ̄
�

+O(r0) ,

where we used
�n−2
ℓ

�

= (n−ℓ−1)
ℓ

�n−2
ℓ−1

�

in the third equality. Finally, using (84), we end up with

F2(x) = 2n(n− 1)r gα̇(n)

n−1
∑

ℓ=1

∂̄ n−ℓ
�

λ̄α̇(n)
� ℓ!

n!

�

n− 2
ℓ− 1

�

∂u

�

un−1−ℓ∂ −ℓu ∂̄ ℓ−1σ̄
�

+O(r0)

= 2r gα̇(n)

n−1
∑

ℓ=1

∂̄ n−ℓ
�

λ̄α̇(n)
� ℓ

(n− ℓ− 1)!
∂u

�

un−1−ℓ∂ −ℓu ∂̄ ℓ−1σ̄
�

+O(r0) .

(91)

Finally, following the same procedure as described above for the last term (71), we get

F3(x) = (n− 1)(n− 2)
〈ιλ〉2

〈ιw〉2
�

gα̇(n)n̄
α̇(2)w̄α̇x α̇(n−3)α(n−3)wα(n−3)

�

�

±r2 iκn
8π3

e∓iω0(xαα̇wαw̄α̇)
�

,

=
n(n− 1)(n− 2)rκ

8π2ω0
e∓iω0u 〈ιλ〉

2

〈ιw〉2
�

gα̇(n)n̄
α̇(2)w̄α̇un−3−ℓ

n−3
∑

ℓ=0

�

n− 3
ℓ

�

(r〈λw〉)ℓ λ̄α̇(ℓ)n̄α̇(n−3−ℓ)
�

×
∞
∑

k=0

1
k!

�

r−1

±iω0
∂ ∂̄

�k

δ(〈λw〉) (92)

=
n(n− 1)(n− 2)rκ

8π2ω0
e∓iω0u gα̇(n)w̄

α̇
n−3
∑

ℓ=0

(−1)ℓ
�

n− 3
ℓ

�

λ̄α̇(ℓ)n̄α̇(n−1−ℓ)un−3−ℓ
�

∂̄

±iω0

�ℓ

δ(〈λw〉)

+O(r0)

= n(n− 1)(n− 2)r gα̇(n)w̄
α̇

�n−3
∑

ℓ=0

�

n− 3
ℓ

�

λ̄α̇(ℓ)n̄α̇(n−1−ℓ)un−3−ℓ∂̄ ℓ(∂u)
−1−ℓ

�

σ̄+O(r0) .
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The identity (82) then leads to

F3(x) = n(n− 1)(n− 2)r gα̇(n)

� n−3
∑

ℓ=0

�

n− 3
ℓ

�

λ̄α̇(ℓ+1)n̄α̇(n−1−ℓ)un−3−ℓ∂̄ ℓ(∂u)
−1−ℓ

+
n−3
∑

ℓ=0

ℓ

�

n− 3
ℓ

�

λ̄α̇(ℓ)n̄α̇(n−ℓ)un−3−ℓ∂̄ ℓ−1(∂u)
−1−ℓ
�

σ̄+O(r0)

= n(n− 1)(n− 2)r gα̇(n)

� n−2
∑

ℓ=1

�

n− 3
ℓ− 1

�

λ̄α̇(ℓ)n̄α̇(n−ℓ)un−2−ℓ∂̄ ℓ−1(∂u)
−ℓ (93)

+
n−3
∑

ℓ=1

ℓ

�

n− 3
ℓ

�

λ̄α̇(ℓ)n̄α̇(n−ℓ)un−3−ℓ∂̄ ℓ−1(∂u)
−1−ℓ
�

σ̄+O(r0)

= n(n− 1)(n− 2)r gα̇(n)

n−2
∑

ℓ=1

λ̄α̇(ℓ)n̄α̇(n−ℓ)
�

n− 3
ℓ− 1

�

∂u

�

un−2−ℓ(∂u)
−ℓ−1∂̄ ℓ−1σ̄
�

+O(r0) ,

where we used
�n−3
ℓ

�

= (n−ℓ−2)
ℓ

�n−3
ℓ−1

�

to get the last equality. Finally, using (84), we end up
with

F3(x) = n(n− 1)(n− 2)r gα̇(n)

n−2
∑

ℓ=1

∂̄ n−ℓ
�

λ̄α̇(n)
� ℓ!

n!

�

n− 3
ℓ− 1

�

∂u

�

un−2−ℓ(∂u)
−ℓ−1∂̄ ℓ−1σ̄
�

+O(r0)

= r gα̇(n)

n−2
∑

ℓ=1

∂̄ n−ℓ
�

λ̄α̇(n)
� ℓ

(n− ℓ− 2)!
∂u

�

un−2−ℓ(∂u)
−ℓ−1∂̄ ℓ−1σ̄
�

+O(r0) . (94)

We are now ready to collect all three terms Fi(x) (i = 1,2, 3) and read off the action on
the shear. From (85), (91) and (94), we obtain the final expression

δσ̄ = gα̇(n)

n
∑

ℓ=1

∂̄ n−ℓ
�

λ̄α̇(n)
� ℓ

(n− ℓ)!
∂u

�

un−ℓ(∂u)
1−ℓ ∂̄ ℓ−1σ̄
�

+ 2gα̇(n)

n−1
∑

ℓ=1

∂̄ n−ℓ
�

λ̄α̇(n)
� ℓ

(n− ℓ− 1)!
∂u

�

un−1−ℓ∂ −ℓu ∂̄ ℓ−1σ̄
�

+ gα̇(n)

n−2
∑

ℓ=1

∂̄ n−ℓ
�

λ̄α̇(n)
� ℓ

(n− ℓ− 2)!
∂u

�

un−2−ℓ(∂u)
−ℓ−1∂̄ ℓ−1σ̄
�

= gα̇(n)

n
∑

ℓ=1

∂̄ n−ℓ
�

λ̄α̇(n)
� ℓ

(n− ℓ)!
(95)

× ∂u

�

�

un−ℓ(∂u)
1−ℓ + 2(n− ℓ)un−1−ℓ∂ −ℓu + (n− ℓ)(n− ℓ− 1)un−2−ℓ(∂u)

−ℓ−1
�

∂̄ ℓ−1σ̄

�

= gα̇(n)

n
∑

ℓ=1

∂̄ n−ℓ
�

λ̄α̇(n)
� ℓ

(n− ℓ)!
∂ 3

u

�

un−ℓ(∂u)
−ℓ−1∂̄ ℓ−1σ̄

�

.

We now need to remember that gα̇(n) here is a function of w and can therefore freely move
through the derivatives to give

δσ̄ =
n
∑

ℓ=1

∂̄ n−ℓ
�

λ̄α̇(n)
� ℓ

(n− ℓ)!
∂ 3

u

�

un−ℓ(∂u)
−ℓ−1∂̄ ℓ−1
�

gα̇(n)σ̄
�

�

. (96)
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In the above formula, the generator g can now be taken to be a function of z (since σ̄ given in
(60) is proportional to a Dirac δ-function). Since, for any integer k, ∂̄ k g is only non-zero at
z = 0, z =∞, we can write (remembering (60) that the plane wave only has support on A)

δσ̄ =
n
∑

ℓ=1

∂̄ n−ℓ
�

gα̇(n)λ̄
α̇(n)
� ℓ

(n− ℓ)!
∂ 3

u

�

un−ℓ(∂u)
−ℓ−1∂̄ ℓ−1σ̄
�

. (97)

The formula finally extends to any Carrollian field σ̄ ∈ C∞
(− 1

2 , 3
2 )
(IA) by linear combinations of

plane waves. This concludes the derivation the first equality of Proposition 1.

5.2 Negative helicity

For the opposite helicity, we consider the plane waves

σ(u,λ) = ±
iκ

8π2
e±iω0uδ(〈λw〉) ∈ C∞

( 3
2 ,− 1

2 )
(IA) . (98)

The twistor representative is eh= eh
�

µα̇λ̄α̇,λ
�

Dλ̄ ∈ Ω0,1(PT,O(−6)) with (19)

eh=
κω3

0

8π2
e±iω0(µα̇λ̄α̇)δ(〈λw〉) . (99)

The action of the w1+∞ symmetries on eh is given by (36)

δeh= {g,eh}=
�

∂ g
∂ µα̇

�

εα̇β̇
∂eh

∂ µβ̇
Dλ̄ , (100)

and we get, at fixed n,

δeh(µ,λ) =
±iκω4

0

8π2

�

∂ g
∂ µα̇

�

λ̄α̇ e±iω0(µα̇λ̄α̇)δ(〈λw〉)Dλ̄

=
±iκnω4

0

8π2
gα̇1...α̇n

λ̄α̇1µα̇2 . . .µα̇n e±iω0(µα̇λ̄α̇)δ(〈λw〉)Dλ̄ .

(101)

We can now plug the transformed twistor representative into expression (26) leading to
the Weyl tensor:

δΨαα̇ββ̇(x) =
i

2π

∫

CP1

〈ζdζ〉ζαζβζγζδ δeh(µα̇ = xαα̇ζα,ζα)

= ∓
κnω4

0

16π3

∫

CP1

dζ∧ dζ̄ ζαζβζγζδ gα̇1...α̇n
ζ̄α̇1µα̇2 . . .µα̇n e±iω0(µα̇ζ̄α̇)δ(〈ζw〉)

�

�

�

µα̇=xαα̇wα

= ±
iκnω4

0

8π3
wαwβwγwδ gα̇1...α̇n

w̄α̇1µα̇2 . . .µα̇n e±iω0(µα̇w̄α̇)
�

�

�

µα̇=xαα̇wα
, (102)

where we integrated the δ-function. This leads to

δΨ4(x) = ±
iκnω4

0

8π3
gα̇(n)w̄

α̇x α̇(n−1)α(n−1)wα(n−1) e
±iω0(xαα̇wαw̄α̇) . (103)

We already computed a very similar expression in the previous section; see (72). We can thus
directly use the result (85) and read from (30) that

δσ = −∂ −2
u lim

r→∞
rδΨ4(x)

= ∂ −2
u

n
∑

ℓ=0

∂̄ n−ℓ
�

λ̄α̇(n)
� ℓ

(n− ℓ)!
∂u

�

un−ℓ(∂u)
1−ℓ∂̄ ℓ−1
�

gα̇(n)∂
2
u σ
�

�

=
n
∑

ℓ=0

∂̄ n−ℓ
�

λ̄α̇(n)
� ℓ

(n− ℓ)!
∂ −1

u

�

un−ℓ(∂u)
3−ℓ∂̄ ℓ−1
�

gα̇(n)σ
�

�

.

(104)
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By the same argument that we used for the positive helicity case, we can replace the w depen-
dence of g by a dependence on z and are allowed to move it freely through the derivatives
thanks to our requirement (98) on the support of σ, therefore

δσ =
n
∑

ℓ=0

∂̄ n−ℓ
�

gα̇(n)λ̄
α̇(n)
� ℓ

(n− ℓ)!
∂ −1

u

�

un−ℓ(∂u)
3−ℓ∂̄ ℓ−1σ
�

. (105)

The formula is then extended to any Carrollian field σ ∈ C∞
( 3

2 ,− 1
2 )
(IA) by linear combinations,

which proves the second equality of Proposition 1.
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[1] C. P. Boyer and J. F. Plebański, An infinite hierarchy of conservation laws and nonlin-
ear superposition principles for self-dual Einstein spaces, J. Math. Phys. 26, 229 (1985),
doi:10.1063/1.526652.

[2] C. P. Boyer, The geometry of complex self-dual Einstein spaces, in Nonlinear phenomena,
Springer, Berlin, Heidelberg, Germany, ISBN 9783540387213 (1983), doi:10.1007/3-
540-12730-5_2.

[3] R. Penrose, The nonlinear graviton, Gen. Relativ. Gravity 7, 171 (1976),
doi:10.1007/BF00763433.

[4] R. Penrose, Nonlinear gravitons and curved twistor theory, Gen. Relativ. Gravity 7, 31
(1976), doi:10.1007/BF00762011.

[5] N. M. J. Woodhouse, Twistor description of the symmetries of Einstein’s equations
for stationary axisymmetric spacetimes, Class. Quantum Gravity 4, 799 (1987),
doi:10.1088/0264-9381/4/4/017.

[6] L. Mason, S. Chakravarty and E. T. Newman, A simple solution generation method for
anti-self-dual Yang-Mills equations, Phys. Lett. A 130, 65 (1988), doi:10.1016/0375-
9601(88)90240-X.

22

https://scipost.org
https://scipost.org/SciPostPhys.17.4.118
https://doi.org/10.1063/1.526652
https://doi.org/10.1007/3-540-12730-5_2
https://doi.org/10.1007/3-540-12730-5_2
https://doi.org/10.1007/BF00763433
https://doi.org/10.1007/BF00762011
https://doi.org/10.1088/0264-9381/4/4/017
https://doi.org/10.1016/0375-9601(88)90240-X
https://doi.org/10.1016/0375-9601(88)90240-X


SciPost Phys. 17, 118 (2024)

[7] L. Mason, S. Chakravarty and E. T. Newman, Bäcklund transformations for the anti-self-
dual Yang-Mills equations, J. Math. Phys. 29, 1005 (1988), doi:10.1063/1.528014.

[8] N. M. J. Woodhouse and L. J. Mason, The Geroch group and non-Hausdorff twistor spaces,
Nonlinearity 1, 73 (1988), doi:10.1088/0951-7715/1/1/004.

[9] Q.-H. Park, Self-dual gravity as a large-N limit of the 2D non-linear sigma model, Phys.
Lett. B 238, 287 (1990), doi:10.1016/0370-2693(90)91737-V.

[10] Q.-H. Park, Extended conformal symmetries in real heavens, Phys. Lett. B 236, 429 (1990),
doi:10.1016/0370-2693(90)90378-J.

[11] L. Mason, H-space: A universal integrable system?, Twist. Newsl. 30, 14 (1990)

[12] L. J. Mason and N. M. J. Woodhouse, Integrability, selfduality, and twistor theory, Oxford
Universtity Press, Oxford, UK, ISBN 9780198534983 (1996).

[13] M. Dunajski and L. J. Mason, Hyper-Kähler hierarchies and their twistor theory, Commun.
Math. Phys. 213, 641 (2000), doi:10.1007/PL00005532.

[14] A.-M. Raclariu, Lectures on celestial holography, (arXiv preprint)
doi:10.48550/arXiv.2107.02075.

[15] S. Pasterski, Lectures on celestial amplitudes, Eur. Phys. J. C 81, 1062 (2021),
doi:10.1140/epjc/s10052-021-09846-7.

[16] T. McLoughlin, A. Puhm and A.-M. Raclariu, The SAGEX review on scattering amplitudes
chapter 11: Soft theorems and celestial amplitudes, J. Phys. A: Math. Theor. 55, 443012
(2022), doi:10.1088/1751-8121/ac9a40.

[17] L. Donnay, Celestial holography: An asymptotic symmetry perspective, Phys. Rep. 1073, 1
(2024), doi:10.1016/j.physrep.2024.04.003.

[18] L. Donnay, A. Puhm and A. Strominger, Conformally soft photons and gravitons, J. High
Energy Phys. 01, 184 (2019), doi:10.1007/JHEP01(2019)184.

[19] T. Adamo, L. Mason and A. Sharma, Celestial amplitudes and conformal soft theorems,
Class. Quantum Gravity 36, 205018 (2019), doi:10.1088/1361-6382/ab42ce.

[20] A. Puhm, Conformally soft theorem in gravity, J. High Energy Phys. 09, 130 (2020),
doi:10.1007/JHEP09(2020)130.

[21] A. Guevara, Notes on conformal soft theorems and recursion relations in gravity, (arXiv
preprint) doi:10.48550/arXiv.1906.07810.

[22] A. Strominger, w1+∞ algebra and the celestial sphere: Infinite towers of soft
graviton, photon, and gluon symmetries, Phys. Rev. Lett. 127, 221601 (2021),
doi:10.1103/PhysRevLett.127.221601.

[23] A. Guevara, E. Himwich, M. Pate and A. Strominger, Holographic symmetry al-
gebras for gauge theory and gravity, J. High Energy Phys. 11, 152 (2021),
doi:10.1007/JHEP11(2021)152.

[24] E. Himwich, M. Pate and K. Singh, Celestial operator product expansions and w1+∞ sym-
metry for all spins, J. High Energy Phys. 01, 080 (2022), doi:10.1007/JHEP01(2022)080.

23

https://scipost.org
https://scipost.org/SciPostPhys.17.4.118
https://doi.org/10.1063/1.528014
https://doi.org/10.1088/0951-7715/1/1/004
https://doi.org/10.1016/0370-2693(90)91737-V
https://doi.org/10.1016/0370-2693(90)90378-J
https://doi.org/10.1007/PL00005532
https://doi.org/10.48550/arXiv.2107.02075
https://doi.org/10.1140/epjc/s10052-021-09846-7
https://doi.org/10.1088/1751-8121/ac9a40
https://doi.org/10.1016/j.physrep.2024.04.003
https://doi.org/10.1007/JHEP01(2019)184
https://doi.org/10.1088/1361-6382/ab42ce
https://doi.org/10.1007/JHEP09(2020)130
https://doi.org/10.48550/arXiv.1906.07810
https://doi.org/10.1103/PhysRevLett.127.221601
https://doi.org/10.1007/JHEP11(2021)152
https://doi.org/10.1007/JHEP01(2022)080


SciPost Phys. 17, 118 (2024)

[25] R. Monteiro, Celestial chiral algebras, colour-kinematics duality and integrability, J. High
Energy Phys. 01, 092 (2023), doi:10.1007/JHEP01(2023)092.

[26] H. Jiang, Celestial OPEs and w1+∞ algebra from worldsheet in string theory, J. High Energy
Phys. 01, 101 (2022), doi:10.1007/JHEP01(2022)101.

[27] T. Adamo, L. Mason and A. Sharma, Celestial w1+∞ symmetries from twistor space, SIGMA
18, 016 (2022), doi:10.3842/SIGMA.2022.016.

[28] A. Ball, S. A. Narayanan, J. Salzer and A. Strominger, Perturbatively exact w1+∞ asymp-
totic symmetry of quantum self-dual gravity, J. High Energy Phys. 01, 114 (2022),
doi:10.1007/JHEP01(2022)114.

[29] J. Mago, L. Ren, A. Y. Srikant and A. Volovich, Deformed w1+∞ algebras in the celestial
CFT, SIGMA 19, 044 (2023), doi:10.3842/SIGMA.2023.044.

[30] L. Ren, M. Spradlin, A. Y. Srikant and A. Volovich, On effective field theories with celestial
duals, J. High Energy Phys. 08, 251 (2022), doi:10.1007/JHEP08(2022)251.

[31] W. Bu, S. Heuveline and D. Skinner, Moyal deformations, w1+∞ and celestial holography,
J. High Energy Phys. 12, 011 (2022), doi:10.1007/JHEP12(2022)011.

[32] R. Monteiro, From Moyal deformations to chiral higher-spin theories and to celestial alge-
bras, J. High Energy Phys. 03, 062 (2023), doi:10.1007/JHEP03(2023)062.

[33] Y. Hu and S. Pasterski, Detector operators for celestial symmetries, J. High Energy Phys.
12, 035 (2023), doi:10.1007/JHEP12(2023)035.

[34] S. Banerjee, H. Kulkarni and P. Paul, An infinite family of w1+∞ invariant theories on the
celestial sphere, J. High Energy Phys. 05, 063 (2023), doi:10.1007/JHEP05(2023)063.

[35] S. Banerjee, H. Kulkarni and P. Paul, Celestial OPE in self dual gravity, Phys. Rev. D 109,
086017 (2024), doi:10.1103/PhysRevD.109.086017.

[36] R. Bittleston, S. Heuveline and D. Skinner, The celestial chiral algebra of self-
dual gravity on Eguchi-Hanson space, J. High Energy Phys. 09, 008 (2023),
doi:10.1007/JHEP09(2023)008.

[37] H. Krishna, Celestial gluon and graviton OPE at loop level, J. High Energy Phys. 03, 176
(2024), doi:10.1007/JHEP03(2024)176.

[38] L. Mason, R. Ruzziconi and A. Y. Srikant, Carrollian amplitudes and celestial symmetries,
J. High Energy Phys. 05, 12 (2024), doi:10.1007/JHEP05(2024)012.

[39] T. Adamo, L. Mason and A. Sharma, Twistor sigma models for quaternionic
geometry and graviton scattering, Adv. Theor. Math. Phys. 27, 623 (2023),
doi:10.4310/ATMP.2023.v27.n3.a1.

[40] L. Mason, Gravity from holomorphic discs and celestial Lw1+∞ symmetries, Lett. Math.
Phys. 113, 111 (2023), doi:10.1007/s11005-023-01735-2.

[41] T. Adamo, L. Mason and A. Sharma, Graviton scattering in self-dual radiative space-times,
Class. Quantum Gravity 40, 095002 (2023), doi:10.1088/1361-6382/acc233.

[42] T. Adamo, W. Bu and B. Zhu, Infrared structures of scattering on self-dual radiative back-
grounds, J. High Energy Phys. 06, 76 (2024), doi:10.1007/JHEP06(2024)076.

24

https://scipost.org
https://scipost.org/SciPostPhys.17.4.118
https://doi.org/10.1007/JHEP01(2023)092
https://doi.org/10.1007/JHEP01(2022)101
https://doi.org/10.3842/SIGMA.2022.016
https://doi.org/10.1007/JHEP01(2022)114
https://doi.org/10.3842/SIGMA.2023.044
https://doi.org/10.1007/JHEP08(2022)251
https://doi.org/10.1007/JHEP12(2022)011
https://doi.org/10.1007/JHEP03(2023)062
https://doi.org/10.1007/JHEP12(2023)035
https://doi.org/10.1007/JHEP05(2023)063
https://doi.org/10.1103/PhysRevD.109.086017
https://doi.org/10.1007/JHEP09(2023)008
https://doi.org/10.1007/JHEP03(2024)176
https://doi.org/10.1007/JHEP05(2024)012
https://doi.org/10.4310/ATMP.2023.v27.n3.a1
https://doi.org/10.1007/s11005-023-01735-2
https://doi.org/10.1088/1361-6382/acc233
https://doi.org/10.1007/JHEP06(2024)076


SciPost Phys. 17, 118 (2024)

[43] R. Penrose and M. A. H. MacCallum, Twistor theory: An approach to the quantisation of
fields and space-time, Phys. Rep. 6, 241 (1973), doi:10.1016/0370-1573(73)90008-2.

[44] M. Eastwood and P. Tod, Edth-a differential operator on the sphere, Math. Proc. Camb.
Phil. Soc. 92, 317 (1982), doi:10.1017/S0305004100059971.

[45] E. T. Newman, Heaven and its properties, Gen. Relativ. Gravity 7, 107 (1976),
doi:10.1007/BF00762018.

[46] M. Ko, M. Ludvigsen, E. Newman and K. Tod, The theory of H-space, Phys. Rep. 71, 51
(1981), doi:10.1016/0370-1573(81)90104-6.

[47] L. Freidel, D. Pranzetti and A.-M. Raclariu, Sub-subleading soft graviton theo-
rem from asymptotic Einstein’s equations, J. High Energy Phys. 05, 186 (2022),
doi:10.1007/JHEP05(2022)186.

[48] L. Freidel, D. Pranzetti and A.-M. Raclariu, Higher spin dynamics in grav-
ity and w1+∞ celestial symmetries, Phys. Rev. D 106, 086013 (2022),
doi:10.1103/PhysRevD.106.086013.

[49] L. Freidel, D. Pranzetti and A.-M. Raclariu, On infinite symmetry algebras in Yang-Mills
theory, J. High Energy Phys. 12, 009 (2023), doi:10.1007/JHEP12(2023)009.

[50] L. Donnay, A. Fiorucci, Y. Herfray and R. Ruzziconi, Carrollian perspective on celestial
holography, Phys. Rev. Lett. 129, 071602 (2022), doi:10.1103/PhysRevLett.129.071602.

[51] L. Donnay, A. Fiorucci, Y. Herfray and R. Ruzziconi, Bridging Carrollian and celestial holog-
raphy, Phys. Rev. D 107, 126027 (2023), doi:10.1103/PhysRevD.107.126027.

[52] A. Bagchi, S. Banerjee, R. Basu and S. Dutta, Scattering amplitudes: Celestial and Carrol-
lian, Phys. Rev. Lett. 128, 241601 (2022), doi:10.1103/PhysRevLett.128.241601.

[53] G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, J. High Energy
Phys. 05, 062 (2010), doi:10.1007/JHEP05(2010)062.

[54] R. Sachs, Gravitational waves in general relativity. VI. The outgoing radiation
condition, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 264, 309 (1961),
doi:10.1098/rspa.1961.0202.

[55] E. Newman and R. Penrose, An approach to gravitational radiation by a method of spin
coefficients, J. Math. Phys. 3, 566 (1962), doi:10.1063/1.1724257.

[56] R. K. Sachs, On the characteristic initial value problem in gravitational theory, J. Math.
Phys. 3, 908 (1962), doi:10.1063/1.1724305.

[57] H. Bondi, M. G. J. van der Burg and A. W. K. Metzner, Gravitational waves in general
relativity, VII. Waves from axi-symmetric isolated system, Proc. R. Soc. Lond. A: Math.
Phys. Eng. Sci. 269, 21 (1962), doi:10.1098/rspa.1962.0161.

[58] R. Penrose, Solutions of the zero-rest-mass equations, J. Math. Phys. 10, 38 (1969),
doi:10.1063/1.1664756.

[59] M. G. Eastwood, R. Penrose and R. O. Wells, Cohomology and massless fields, Commun.
Math. Phys. 78, 305 (1981), doi:10.1007/BF01942327.

[60] N. M. J. Woodhouse, Real methods in twistor theory, Class. Quantum Gravity 2, 257
(1985), doi:10.1088/0264-9381/2/3/006.

25

https://scipost.org
https://scipost.org/SciPostPhys.17.4.118
https://doi.org/10.1016/0370-1573(73)90008-2
https://doi.org/10.1017/S0305004100059971
https://doi.org/10.1007/BF00762018
https://doi.org/10.1016/0370-1573(81)90104-6
https://doi.org/10.1007/JHEP05(2022)186
https://doi.org/10.1103/PhysRevD.106.086013
https://doi.org/10.1007/JHEP12(2023)009
https://doi.org/10.1103/PhysRevLett.129.071602
https://doi.org/10.1103/PhysRevD.107.126027
https://doi.org/10.1103/PhysRevLett.128.241601
https://doi.org/10.1007/JHEP05(2010)062
https://doi.org/10.1098/rspa.1961.0202
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1724305
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1063/1.1664756
https://doi.org/10.1007/BF01942327
https://doi.org/10.1088/0264-9381/2/3/006


SciPost Phys. 17, 118 (2024)

[61] R. J. Baston and M. G. Eastwood, The Penrose transform: Its interaction with representa-
tion theory, Oxford University Press, Oxford, UK, ISBN 9780198535652 (1989).

[62] R. S. Ward and R. O. Wells, Twistor geometry and field theory, Cambridge University Press,
Cambridge, UK, ISBN 9780511524493 (1990), doi:10.1017/CBO9780511524493.

[63] T. Adamo, Lectures on twistor theory, Proc. Sci. 323, 003 (2018),
doi:10.22323/1.323.0003.

[64] E. T. Newman and T. W. J. Unti, Behavior of asymptotically flat empty spaces, J. Math.
Phys. 3, 891 (1962), doi:10.1063/1.1724303.

[65] E. T. Newman and R. Penrose, New conservation laws for zero rest-mass fields in asymp-
totically flat space-time, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 305, 175 (1968),
doi:10.1098/rspa.1968.0112.

[66] S. Banerjee, S. Ghosh and P. Paul, MHV graviton scattering amplitudes and cur-
rent algebra on the celestial sphere, J. High Energy Phys. 02, 176 (2021),
doi:10.1007/JHEP02(2021)176.

[67] T. M. Adamo, C. Kozameh and E. T. Newman, Null geodesic congruences, asymptotically-
flat spacetimes and their physical interpretation, Living Rev. Relativ. 12, 6 (2009),
doi:10.12942/lrr-2009-6.

[68] M. Geiller and C. Zwikel, The partial Bondi gauge: Further enlarging the asymptotic struc-
ture of gravity, SciPost Phys. 13, 108 (2022), doi:10.21468/SciPostPhys.13.5.108.

[69] A. Ashtekar and M. Streubel, Symplectic geometry of radiative modes and conserved quan-
tities at null infinity, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 376, 585 (1981),
doi:10.1098/rspa.1981.0109.

[70] C.-M. Marle, The Schouten-Nijenhuis bracket and interior products, J. Geom. Phys. 23,
350 (1997), doi:10.1016/S0393-0440(97)80009-5.

[71] L. Donnay, E. Esmaeili and C. Heissenberg, p-forms on the celestial sphere, SciPost Phys.
15, 026 (2023), doi:10.21468/SciPostPhys.15.1.026.

26

https://scipost.org
https://scipost.org/SciPostPhys.17.4.118
https://doi.org/10.1017/CBO9780511524493
https://doi.org/10.22323/1.323.0003
https://doi.org/10.1063/1.1724303
https://doi.org/10.1098/rspa.1968.0112
https://doi.org/10.1007/JHEP02(2021)176
https://doi.org/10.12942/lrr-2009-6
https://doi.org/10.21468/SciPostPhys.13.5.108
https://doi.org/10.1098/rspa.1981.0109
https://doi.org/10.1016/S0393-0440(97)80009-5
https://doi.org/10.21468/SciPostPhys.15.1.026

	Introduction
	From null infinity to twistor space and back
	Bondi coordinates and spinors
	A trivial journey

	Carrollian representation of the Lw1+ algebra
	Representation of the Lw1+ algebra
	Action of the simplest generators n=1,2,3

	Canonical action of charges
	Canonical charges
	Matching with the twistor space action

	Details of the proof
	Positive helicity 
	Negative helicity

	References

