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Josephson current through the SYK model
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Abstract

We calculate the equilibrium Josephson current through a disordered interacting quan-
tum dot described by a Sachdev-Ye-Kitaev model fully contacted by two BCS supercon-
ductors, such that all modes of the dot contribute to the coupling, which encodes hopping
and spin-flip processes. We show that, at zero temperature and at the conformal limit,
i.e. in the strong interacting limit, the Josephson current is suppressed by U, the strength
of the interaction, as ln(U)/U and becomes universal, namely it gets independent on the
superconducting gap. At finite temperature, instead, it depends on the ratio between
the gap and the temperature. A proximity effect exists but the self-energy corrections
induced by the coupling with the superconducting leads seem subleading as compared
to the interaction self-energy and the tunneling matrix for large number of particles.
Finally we compare the results of the original four-fermion model with those obtained
considering zero interaction, two-fermions and a generalized q -fermion model.
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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model, a non-Fermi liquid describing fermions with infinite-
range interactions, has attracted a lot of scientific interest in recent years [1, 2]. Compared
to ordinary Fermi liquids, it displays highly unusual properties; for example, its resistivity is
linear in temperature [3–5]. Moreover, it has been shown that the SYK model is dual to an
anti-de Sitter space in two-dimensions [2, 6–8], opening an alternative way for investigat-
ing black holes. Regarding its experimental implementation, several proposals have already
been formulated in solid state physics based on quantum dots coupled to topological super-
conducting wires [9], graphene flakes with irregular boundary [10, 11], by applying optical
lattices [12], and in the field of cavity quantum electrodynamics [13].

A lot of theoretical studies have been devoted to study many peculiar properties of the
SYK model, either at equilibrium and out-of equilibrium. Different investigations about many
aspects of this model have been carried out, ranging from the dynamics triggered by a quan-
tum quench [14], to realizing traversable wormholes [15], or about the Bekenstein-Hawking
entropy [16, 17] and the existence of anomalous power laws in the temperature dependent
conductance [18,19]. Several studies have been also conducted investigating the mesoscopic
physics by the SYK model, considering a lattice of SYK dots [20], analyzing the thermoelectric
transport [21] and the charge transport by coupling with metallic leads [22,23], characterizing
the current and supercurrent driven by double contact setups [24], looking at the dynamics by
coupling with Markovian reservoirs [25], and thermal baths, detecting some peculiar thermal-
ization properties [26–29]. Several attempts have been done also to include superconductivity
in the SYK model [30–33] with the need of upgrading the original complex model to a spin-
full version with, in addition, a mechanism of particle attraction provided by phonons or by a
negative Hubbard term.

Despite this intense scientific activity done on the transport properties of the SYK model,
one of the most interesting and yet-little studied topic is about the currents driven by supercon-
ducting leads. Non-equilibrium currents triggered by a voltage applied either through normal
and superconducting leads have been investigated [24], however a study of the equilibrium
Josephson current is still laking. The Josephson effect provides a fundamental signature of
phase-coherent transport through mesoscopic samples [34]. We calculate the direct Joseph-
son current obtained by contacting a SYK dot by two conventional Bardeen-Cooper-Schrieffer
(BCS) superconductors. The coupling between the dot and the superconductors involves uni-
formly all the degrees of freedom of the dot and encodes either hooping and spin-flip processes,
in the same spirit of what done linking a topological p-wave superconductor with s-wave super-
conducting leads [35,36]. We show that a proximity effect is induced in the dot, which causes
the tunneling current originated by a phase-difference without applying any voltage, however
the self-energy of the dot is weakly affected by the coupling with the superconducting leads in
the so-called conformal limit, namely for large interaction and in the limit of large number of
particles. We found that, in this limit, the Josephson current is suppressed by U , the strength
of the interaction, as ln(U)/U and becomes universal, namely the current gets independent on
the superconducting pairing. This means that the Josephson current, at zero temperature, and
in the conformal limit, is the same for all BCS-like superconductors. Strikingly this result turns
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out to be formally the same as that obtained for a chaotic Josephson junction in the ergodic
and long-dwell time regime reported in Ref. [37]. At finite temperature T , instead, the depen-
dence on the superconducting gap∆ is restored. The current turns out to be dependent on the
ratio between the gap and the temperature and goes as ∆2/T2 for large temperatures. More-
over we also considered the SYK model with two fermionic operators, keeping the coupling
with the leads the same. In this case the current depends on ∆ and is highly non sinusoidal.
Finally for a generalized q-fermion SYK model, the SYKq model, we find that, for q > 4 and in
the weak coupling regime, the current looses completely its dependence on the gap.

2 Model

We study a system composed by a dot, modeled by a complex SYK Hamiltonian Hd , and two-
superconducting leads described by H0. The hybridization of the dot and the superconducting
reservoirs takes place by the tunneling term HT . The full Hamiltonian is, therefore,

H = H0 +HT +Hd , (1)

where the first term

H0 =
∑

p=L,R

 

∑

k,σ

(εk −µp)c
†
pσkcpσk +

∑

k

∆peiφp c†
p↑kc†

p↓−k

!

+ h.c. , (2)

describes the two BCS-Hamiltonians, contacted to the left side (p = L) and to the right side
(p = R) of the dot, cLσk, cRσk the annihilation and c†

Lσk, c†
Rσk creation fermionic operators, εk

is the single particle spectrum, µL and µR the chemical potentials, ∆L and ∆R the gaps with
phases φL and φR, respectively.

The second term is the tunneling Hamiltonian

HT =
1
p

N

∑

p=L,R

∑

k,σ,n

tpnσ c†
pσkdn + h.c. , (3)

where tLnσ and tRnσ are the spin-dependent hybridization parameters. This tunneling Hamil-
tonian encodes either the hopping which allows a fermion to jump into or out of the dot with
same spin projection and the spin-flip processes at the interface for opposite spin projections,
in the same spirit of Refs. [35], [36], where a topological superconductor made of spinless
fermions is coupled to s-wave BCS superconducting electrodes. The fermionic operators dn
and d†

n are defined in the dot. The last term of Eq. (1) is the following complex SYK Hamilto-
nian of the dot

Hd =
1

(2N)3/2

N
∑

i, j,n,l=1

Ui jnl d†
i d†

j dndl −µ
∑

i

d†
i di , (4)

where N fermions have a disordered all-to-all four-body interaction Ui jnl , Gaussian distributed.

2.1 Tunneling term

Let us first consider the leads and the tunneling term. We introduce the following Nambu-
Jona-Lasinio spinors

Ψpk =

�

cp↑k
c†

p↓−k

�

, Ψ̄pk =
�

c†
p↑k cp↓−k

�

, (5)
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for the fermions of the leads, and

Dn =

�

dn
d†

n

�

, D̄n =
�

d†
n dn

�

, (6)

for the fermions of the dot. The Hamiltonian of the leads, H0, in this representation, becomes

H0 =
∑

p k

Ψ̄pk

�

(εk −µp)τ3 +∆p cos(φp)τ1 −∆p sin(φp)τ2

�

Ψpk , (7)

where τ1,τ2,τ3 are Pauli matrices, and the tunneling Hamiltonian HT reads

HT =
1
p

N

∑

p,k,n

�

Ψ̄pk T̂pnDn ,+D̄n T̂ †
pnΨpk

�

, (8)

where

T̂pn =

�

tpn↑ 0
0 −t∗pn↓

�

. (9)

Let us take µR = µL = µ, i.e. at equilibrium. Defining

G−1
kp = iω+ ξkτ3 +∆p cos(φp)τ1 −∆p sin(φp)τ2 , (10)

where ξk = εk −µ, and integrating over Ψ,

e−Sc =

∫

DΨ̄DΨ exp

(

−
∑

pkω

�

Ψ̄pkG−1
pk Ψpk +

1
p

N

∑

n

(Ψ̄pk T̂pnDn + D̄n T̂ †
pnΨpk)

�

)

, (11)

we get the contribution to the action of the dot due to the coupling with the leads

Sc = −
∑

nmω

D̄n(ω)Tnm(ω)Dm(ω) , (12)

where, after defining

Γ̃+pnm =
1
2

�

t∗pn↑ tpm↑ + tpn↓ t
∗
pm↓

�

, (13)

Γ̃−pnm =
1
2

�

t∗pn↑ tpm↑ − tpn↓ t
∗
pm↓

�

, (14)

Γ̃ s+
pnm =

1
2

�

t∗pn↑ t
∗
pm↓ + tpn↓ tpm↑

�

, (15)

Γ̃ s−
pnm =

1
2

�

t∗pn↑ t
∗
pm↓ − tpn↓ tpm↑

�

, (16)

the kernel reads

Tnm(ω) =
1
N

∑

kp

(

iω
�

τ0Γ̃
+
pnm +τ3Γ̃

−
pnm

�

− ξk

�

τ3Γ̃
+
pnm +τ0Γ̃

−
pnm

�

ξ2
k +∆

2
p +ω2

+
∆p cos(φp)

�

τ1Γ̃
s+
pnm + iτ2Γ̃

s−
pnm

�

−∆p sin(φp)
�

τ2Γ̃
s+
pnm − iτ1Γ̃

s−
pnm

�

ξ2
k +∆

2
p +ω2

)

. (17)

We can integrate over ξk, and introducing ν0 the density of states at the Fermi energy, equal
for both sides, we get

Tnm(ω) =
1
N

∑

p

πν0
q

ω2 +∆2
p

¦

iω
�

τ0Γ̃
+
pnm +τ3Γ̃

−
pnm

�

+∆p cos(φp)
�

τ1Γ̃
s+
pnm + iτ2Γ̃

s−
pnm

�

−∆p sin(φp)
�

τ2Γ̃
s+
pnm − iτ1Γ̃

s−
pnm

�

©

. (18)
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Defining, in the symmetric case, φL = −φR = φ/2, ∆L =∆R =∆, tRnσ = tLnσ = tnσ and

Γ±nm = 2πν0Γ̃
±
Rnm = 2πν0Γ̃

±
Lnm , (19)

Γ s±
nm = 2πν0Γ̃

s±
Rnm = 2πν0Γ̃

s±
Lnm , (20)

summing over p = R, L, namely summing the right and left terms, we get

Tnm(ω) =
1
N

iω
�

τ0Γ
+
nm +τ3Γ

−
nm

�

p
ω2 +∆2

+
1
N

∆ cos(φ/2)
�

τ1Γ
s+
nm + iτ2Γ

s−
nm

�

p
ω2 +∆2

. (21)

Let us now make the reasonable assumption that tnσ = tmσ = tσ for any n and m, then we
define Γ+nm ≡ Γ0 Jnm, Γ−nm ≡ Γ3 Jnm, Γ s+

nm ≡ Γ1 Jnm and iΓ s−
nm ≡ Γ2 Jnm, where J is a N × N unit

matrix, a matrix consisting of all 1s

J =









1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1









.

Specifically

Γ0 = πν0(|t↑|2 + |t↓|2) , Γ3 = πν0(|t↑|2 − |t↓|2) , Γ1 = 2πν0 Re[t↑ t↓] , Γ2 = 2πν0 Im[t↑ t↓] . (22)

For real values of tpnσ we have Γ2 = 0. We can write, therefore,

T (ω) = 1
N

�

iωΓ0p
ω2 +∆2

τ0 +
iωΓ3p
ω2 +∆2

τ3 +
Γ1∆ cos(φ/2)
p
ω2 +∆2

τ1 +
Γ2∆ cos(φ/2)
p
ω2 +∆2

τ2

�

, (23)

such that
Tnm(ω) = T (ω)Jnm . (24)

Strictly, in order to take into account that the anomalous terms (proportional to τ1 and τ2)
cannot have diagonal elements in the mode space which actually give zeros contributions in
the action Eq. (12), we can use the following form

T ′nm(ω) = Tnm(ω)−
1
N

�

Γ1∆ cos(φ/2)
p
ω2 +∆2

τ1 +
Γ2∆ cos(φ/2)
p
ω2 +∆2

τ2

�

δnm . (25)

Actually either Eq. (24) and Eq. (25) give the same action Eq. (12), while by using Eq. (25)
instead of Eq. (24) one gets subleading irrelevant terms for the current in the large N limit (as
shown in Appendix A), therefore, at leading orders, these expressions are equivalent.

Finally, let us discuss the role of the random fluctuations in the tunneling matrix. Let
us suppose that tnσ are independent random variables whose distribution has σσ as standard
deviation, then we can define tσ ≡

1
N

∑

n tnσ, the average value, providing that tσ ̸= 0, namely
in the presence of a residual coherence which makes it non-vanishing, which is still a random
variable with standard deviation of the mean σ̄σ =

1p
N
σσ. As a result the hybridization

matrices fluctuate statistically as Γs,nm ≃ ΓsJnm +
δΓnmp

N
with some random variables δΓnm with

zero average. Random fluctuations in the tunneling, therefore, can be neglected for large
N , which is the limit we are interested in and where SYK models can be treated analytically.
Actually the terms of order 1/N for uniform matrices are marginally relevant which leads to
finite contributions also for N → ∞, while higher order terms are subleading and vanish
upon increasing N . Since we are going to consider N ≫ 1, we can neglect the effects of these
random fluctuations. At finite N instead, those effects should be taken into account, on the
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same footing of other sources of finite N corrections. The previous argument can be of some
relevance in the presence of a residual coherence. However, as we will be seeing in Sec. 4.2, at
least at the leading order in the tunneling parameters, the Josephson current will depend only
on the absolute values of the tunneling amplitudes while the phase fluctuations are irrelevant,
obtaining the same result as that for the uniform tunneling matrix, providing that the uniform
amplitudes are |tσ|

2 = 1
N

∑

n |tnσ|
2.

Quite in general one can take somehow random fluctuations into account after defining
the random distributions Pσ(tσ) and getting the distributions for the transmission parameters
as ρs(Γ ) =

∫

d t↑d t↓δ(Γ − Γs(t↑, t↓))P↑(t↑)P↓(t↓), where Γs(t↑, t↓) are defined above Eq. (23).
In this way one can easily incorporate the randomness from the couplings between the dot and
the leads, by integrating the observables (i.e. the Josephson current) over the Γs with weights
ρs, as done in Ref. [38].

3 SYK4 dot

The Hamiltonian of the dot is given by Eq. (4), where Ui jnl are complex, independent Gaussian
random couplings with zero mean obeying Ui jnl = −U jinl = Ui jln, Ui jnl = U∗nli j and mean value

|Ui jnl |2 = U2. Introducing r replicas, a = 1, ... , r, labeling the field as dna, we can average over
disorder so that the action of the uncoupled dot can be written as follows

S′d =
∑

n,a

∫ β

0

dτ d†
na(τ) (∂τ −µ) dna(τ)−

U2

4N3

∑

a,b

∫ β

0

dτdτ′
�

�

�

�

�

∑

n

d†
na(τ)dnb(τ

′)

�

�

�

�

�

4

+ Sc . (26)

3.1 Effective action

We can decouple the interaction, in different channels, introducing a number of auxiliary fields,
e−S′d =

∫

D{Q0P0QP P Q∆∆}e−Sd , getting

Sd =
∑

na

∫ β

0

dτ d†
na(τ) (∂τ −µ) dna(τ) +

∑

ab

∫ β

0

dτdτ′
� N

4c0U2
[Q0

ab(τ,τ′)]2 +
N3

4c1U2
|QP

ab(τ,τ′)|2

+
N3

4c2U2
[Q∆ab(τ,τ′)]2 +

N
2

Q0
ab(τ,τ′)|Pab

0 (τ,τ′)|2 −Q0
ab(τ,τ′)Pab

0 (τ,τ′)
∑

n

d†
na(τ)dnb(τ

′)

+
1
4

QP
ab(τ,τ′)

∑

nm

Pab
nm(τ,τ′)Pab

mn(τ,τ′)−
1
2

QP
ab(τ,τ′)

∑

nm

d†
na(τ)P

ab
nm(τ,τ′)dmb(τ

′)

−
1
2

QP
ab(τ,τ′)

∑

nm

d†
ma(τ)P

ab
mn(τ,τ′)dnb(τ

′) +
1
2

Q∆ab(τ,τ′)
∑

nm

|∆ab
nm(τ,τ′)|2

−
1
2

Q∆ab(τ,τ′)
∑

nm

d†
na(τ)∆

ab
nm(τ,τ′)d†

mb(τ
′)−

1
2

Q∆ab(τ,τ′)
∑

nm

dma(τ)∆
ab∗
nm (τ,τ′)dnb(τ

′)
�

+ Sc , (27)

where the weights c0, c1, c2 are arbitrary positive real numbers such that c0 + c1 + c2 = 1.
The auxiliary fields are such that Q∆ab(τ,τ′) is real, ∆ab

nm(τ,τ′) is complex and
∆ab

nm(τ,τ′) = ∆ab
mn(τ,τ′), while QP

ab(τ,τ′) is complex and QP
ab(τ,τ′) = QP∗

ba(τ
′,τ) and

Pab
nm(τ,τ′) = Pab

mn(τ,τ′) can be taken real (it can be complex but only the real part mat-
ters), while Q0

ab(τ,τ′) = Q0
ba(τ

′,τ) is real and Pab
0 (τ,τ′) = P ba∗

0 (τ′,τ) complex. Using the

representation in Eq. (6), with replica indices, namely D̄a
n =

�

d†
na dna

�

and Db
m =

�

dmb

d†
mb

�

,
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we can write

Sd =
1
2

∑

nmab

∫ β

0

dτdτ′
¦

D̄a
n (τ)

�

δττ′δabδnm (τ0∂τ −τ3µ)−
1
2

Q0
ab(τ,τ′)δnm

�

Pab
0 (τ,τ′)(τ3 +τ0)

+Pab∗
0 (τ,τ′)(τ3 −τ0)

�

−
1
2

�

QP
ab(τ,τ′)Pab

nm(τ,τ′)(τ3 +τ0) +QP
ba(τ

′,τ)P ba
nm(τ

′,τ)(τ3 −τ0)
�

−
1
2

Q∆ab(τ,τ′)
�

∆ab
nm(τ,τ′)(τ1 + iτ2) +∆

ab∗
nm (τ,τ′)(τ1 − iτ2)

�

�

Db
m(τ
′)
©

+
∑

ab

∫ β

0

dτdτ′
� N

4U2

� 1
c0
[Q0

ab(τ,τ′)]2 +
N2

c1
|QP

ab(τ,τ′)|2 +
N2

c2
[Q∆ab(τ,τ′)]2

�

+
N
2

Q0
ab(τ,τ′)|Pab

0 (τ,τ′)|2 +
1
4

QP
ab(τ,τ′)

∑

nm

(Pab
nm(τ,τ′))2 +

1
2

Q∆ab(τ,τ′)
∑

nm

|∆ab
nm(τ,τ′)|2

�

+ Sc .

(28)

We have to remind that the terms Pnm and ∆nm, should be finite only for n ̸= m. Let us now
calculate the main contributions to the partition function, deriving the saddle point equations.

3.2 Saddle point equations

Imposing δSd = 0 under varying the auxiliary fields we derive the following saddle point
equations

Pab
0 (τ,τ′) = −

1
2N

∑

n

Tr
�

〈Db
n (τ
′)D̄a

n (τ)〉(τ3 −τ0)
�

, (29)

P ba
0 (τ

′,τ) = −
1

2N

∑

n

Tr
�

〈Db
n (τ
′)D̄a

n (τ)〉(τ3 +τ0)
�

, (30)

Pab
nm(τ,τ′) = −

1
2

Tr
�

〈Db
m(τ
′)D̄a

n (τ)〉(τ3 +τ0)
�

, (31)

P ba
mn(τ

′,τ) = −
1
2

Tr
�

〈Db
m(τ
′)D̄a

n (τ)〉(τ3 −τ0)
�

, (32)

∆ab
nm(τ,τ′) = −

1
2

Tr
�

〈Db
m(τ
′)D̄a

n (τ)〉(τ1 − iτ2)
�

, (33)

∆ab∗
nm (τ,τ′) = −

1
2

Tr
�

〈Db
m(τ
′)D̄a

n (τ)〉(τ1 + iτ2)
�

, (34)

Q0
ab(τ,τ′) = −c0U2

¦

|P ba
0 (τ

′,τ)|2 +
1

2N

∑

n

Tr
�

〈Db
n (τ
′)D̄a

n (τ)〉
�

(τ3 +τ0)P
ab
0 (τ,τ′)

+ (τ3 −τ0)P
ab∗
0 (τ,τ′)

�

�©

= c0U2|P ba
0 (τ

′,τ)|2 , (35)

QP
ab(τ,τ′) = −

c1U2

N3

¦∑

nm

(P ba
nm(τ

′,τ))2 +
∑

nm

Tr
�

〈Db
m(τ
′)D̄a

n (τ)〉(τ3 −τ0)
�

P ba
nm(τ

′,τ)
©

=
c1U2

N3

∑

nm

(P ba
nm(τ

′,τ))2 , (36)

QP
ba(τ

′,τ) = −
c1U2

N3

¦∑

nm

(Pab
nm(τ,τ′))2 +

∑

nm

Tr
�

〈Db
m(τ
′)D̄a

n (τ)〉(τ3 +τ0)
�

Pab
nm(τ,τ′)

©

=
c1U2

N3

∑

nm

(Pab
nm(τ,τ′))2 , (37)

Q∆ab(τ,τ′) = −
c2U2

N3

¦∑

nm

|∆ba
nm(τ

′,τ)|2 +
1
2

∑

nm

Tr
�

〈Db
m(τ
′)D̄a

n (τ)〉
�

(τ1 + iτ2)∆
ab
nm(τ,τ′)

+ (τ1 − iτ2)∆
ab∗
nm (τ,τ′)

��

©

=
c2U2

N3

∑

nm

|∆ba
nm(τ

′,τ)|2 . (38)
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We restrict our attention to replica diagonal solutions, Pab
0 (τ,τ′) = δabG0(τ,τ′),

Pab
nm(τ,τ′) = δabGnm(τ,τ′) and ∆ab

nm(τ,τ′) = δabFnm(τ,τ′) = δabF∗nm(τ
′ −τ). We define

Gnm(τ,τ′) =

�

−G0(τ′,τ)δnm + Gnm(τ,τ′) F∗nm(τ,τ′)
Fnm(τ,τ′) G0(τ,τ′)δnm − Gmn(τ′,τ)

�

, (39)

and the self-energies

Σ(τ,τ′) = −
�

Q0(τ,τ′)G0(τ,τ′) 0
0 −Q0(τ′,τ)G0(τ′,τ)

�

, (40)

Lnm(τ,τ′) = −
�

QP(τ,τ′)Gnm(τ,τ′) 0
0 −QP(τ′,τ)Gmn(τ′,τ)

�

, (41)

Anm(τ,τ′) = −
�

0 Q∆(τ,τ′)Fnm(τ,τ′)
Q∆(τ,τ′)F∗nm(τ,τ′) 0

�

. (42)

We can define

G0(τ,τ′) =

�

−G0(τ′,τ) 0
0 G0(τ,τ′)

�

, (43)

Gnm(τ,τ′) =

�

Gnm(τ,τ′) 0
0 −Gmn(τ′,τ)

�

, (44)

Fnm(τ,τ′) =

�

0 F∗nm(τ,τ′)
Fnm(τ,τ′) 0

�

. (45)

At the saddle point, from Eqs. (29)-(34), we have

Gnm(τ,τ′) = G0(τ,τ′)δnm + Gnm(τ,τ′) +Fnm(τ,τ′) = −〈Dm(τ
′)D̄n(τ)〉 , (46)

which depends on the time difference τ̄ = τ′ − τ ∈ [−β ,β], namely Gnm(τ,τ′) = Gnm(τ̄).
In Fourier space the full matrix Ĝ(τ̄) in spinorial and in the multimodal spaces, including the
tunneling contribution T̂ (ω) = T (ω)J , reads

Ĝ(ω) =
��

iωτ0 +µτ3 −Σ(ω)
�

Î+ T̂ (ω)−
�

L̂(ω) + Â(ω)
� �−1

, (47)

where, from Eqs. (35)-(38), the self-energies Σ(ω), L̂(ω) and Â(ω) are the Fourier transforms
of

Σ(τ̄) = c0U2G0(τ̄)
2G0(−τ̄) = −c0U2

�

G0(τ̄)2 G0(−τ̄) 0
0 −G0(−τ̄)2 G0(τ̄)

�

, (48)

and of L̂(τ̄) and Â(τ̄), whose elements are

Lnm(τ̄) = −
c1U2

N3

∑

kl

Gkl(−τ̄)2Gnm(τ̄) = −
c1U2

N3

∑

kl

�

Gkl(−τ̄)2 Gnm(τ̄) 0
0 −Gkl(τ̄)2 Gmn(−τ̄)

�

, (49)

Anm(τ̄) = −
c2U2

N3

∑

kl

Fkl(τ̄)
2Fnm(τ̄) = −

c2U2

N3

∑

kl

�

0 |Fkl(τ̄)|
2 Fnm(τ̄)

|Fkl(τ̄)|
2 F∗nm(τ̄) 0

�

. (50)

One has to solve self-consistently Eqs. (47)-(50), fixing then c0, c1, c2, with constraint
c0 + c1 + c2 = 1, by minimizing the action at the saddle point. However what we found is
that, if Gnm and Fmn ∼ 1/Nδ with δ > 0, the self-energies L̂ and Â can be neglected in the
large N limit. As we will see in Section 4.4, this seems to be the case.
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4 Josephson current

As shown in the previous section, the self energies induced by he coupling can be neglected in
the large N limit. In such approximation the Green’s function of the dot can be written as

G−1
nm = G−1

0 δnm + T Jnm , (51)

where G0 is the Green’s function of the uncoupled dot, solution of the equations

G−1
0 (ω) = iωτ0 +µτ3 −Σ(ω) , (52)

Σ(τ) = U2G0(τ)
2G0(−τ) . (53)

Actually if we include T or T ′ in Eq. (52) we have just subleading corrections of order O(1/N)
in the diagonal self-energy Σ(ω), which can be neglected. Let us write the self-energy in the
following form

Σ(ω) = Σ0(ω)τ0 +Σ3(ω)τ3 , (54)

so that we can write

G−1
0 (ω) = G̃−1

0 (ω)τ0 + G̃−1
3 (ω)τ3 ≡

�

iω−Σ0(ω)
�

τ0 +
�

µ−Σ3(ω)
�

τ3 . (55)

Actually, from Eq. (43), defining

G0(ω) =
1
2

∫

dτ eiωτ
�

G0(τ)− G0(−τ)
�

, G3(ω) =
1
2

∫

dτ eiωτ
�

G0(τ) + G0(−τ)
�

, (56)

we have that

G̃−1
0 (ω) =

G0(ω)
G0(ω)2 − G3(ω)2

, G̃−1
3 (ω) =

G3(ω)
G3(ω)2 − G0(ω)2

. (57)

The Josephson current can be obtain from the phase derivative of the free energy

I = −
1
β
∂φ

∑

ω

ln
�

det[G−1(ω)]
�

, (58)

where β = 1/T is the inverse of the temperature and the determinant of G−1(ω), from Eq.
(51), is given by

det[G−1] =
�

det[G−1
0 ]

�N
�

1+ N Tr[T G0] + N2 det[T ]
det[G−1

0 ]

�

, (59)

from which, using det[G−1
0 ] = (G̃

−1
0 )

2 − (G̃−1
3 )

2, we get the following expression

det[G−1] =
�

det[G−1
0 ]

�N−1 (60)

×
�

�

G̃−1
0 (ω) +

iω Γ0p
ω2 +∆2

�2

−
(Γ 2

1 + Γ
2
2 )∆

2 cos2(φ/2)

ω2 +∆2
−
�

G̃−1
3 (ω)−

iω Γ3p
ω2 +∆2

�2
�

.

We observe that, since
Γ 2 ≡ Γ 2

1 + Γ
2
2 = 4π2ν2

0

�

�t↑ t↓
�

�

2
, (61)

the coupling is finite for finite values of both t↑ and t↓, namely there should be finite values of
both spin projections, therefore also spin-flip processes in the presence of strongly polarized
fermions in the dot, in order to have a non-vanishing Josephson current.
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From Eq. (58) we finally obtain the Josephson current

I =
sin(φ)
β

∑

ω

Γ 2∆2

Γ 2∆2 cos2(φ/2)−
�

G̃−1
0 (ω)

p
ω2 +∆2 + iωΓ0

�2
+
�

G̃−1
3 (ω)

p
ω2 +∆2 − iωΓ3

�2 . (62)

By numerically solving Eqs. (52), (53), using Eqs. (54), (55), one gets the Josephson cur-
rent for the SYK dot from Eq. (62). As a remark we point out that, using Eq. (25) instead of
Eq. (24), we get the same expression for the current with subleading terms of order O(1/N)
(see Appendix A). The same observation is valid if we want to improve the bare SYK solution
including 1/N corrections. Actually If we include those corrections in the bare Green’s func-
tion, the phase independent part of the free energy acquires a term of order O(1) but does not
contribute to the Josephson current since it is phase independent, while the phase dependent
part, which is O(1), and therefore, the Josephson current, acquires trivially a term O(1/N),
which is subleading and vanishes for large N . As a result, the Josephson current remains the
same in the large N limit.

4.1 Large interaction limit

In the so-called conformal limit, namely for very large U , i.e. for |ω| ≪ U , the analytical
solution of Eqs. (52) and (53), obtained for Σ3(0) = µ, implying G3(0) = 0 and G̃0 = G0, and
for T → 0, is given by [1,5,16]

G−1
0 (ω) = iC sgn(ω)|ω|1/2 , (63)

with C =(U2/π)1/4, solution of the equations G−1
0 (ω)=−Σ0(ω) and Σ0(τ)=−U2G0(τ)2G0(−τ).

The Josephson current, Eq. (62), for T → 0, in the continuum, becomes

I =
Γ 2∆2

π
sin(φ)

∫ ∞

0

dω

Γ 2∆2 cos2(φ/2) +
�

C
p

ω(ω2 +∆2) +ωΓ0
�2
−ω2Γ 2

3

. (64)

The term ω2Γ 2
3 does not lead to any singularity since Γ 2

0 − Γ
2
3 = 4π2ν2

0

�

�t↑ t↓
�

�

2
which is ex-

actly equal to Γ 2, Eq. (61), and is positive defined. This equation, for U ≫ Γ , can be well
approximated by

I ≃
Γ 2

π
sin(φ)

∫ ∆

0

dω
Γ 2 cos2(φ/2) + C2ω

, (65)

getting the following analytical result

I ≃
Γ 2

πC2
sin(φ) ln

�

1+
C2∆

Γ 2 cos2(φ/2)

�

. (66)

For U∆≫ Γ 2, the current I drops the dependence on ∆, except for logarithmic corrections,

I ≃
1
p
π

Γ 2

U
sin(φ) ln

�

U∆
p
π Γ 2 cos2(φ/2)

�

, (67)

namely, we get a universal behavior, I ∼ ln(Ũ)/Ũ , with Ũ = U/Γ 2, that is valid for all BCS-like
superconductors. Quite interestingly a very similar result for the Josephson current reported in
Eq. (67), had been obtained for a disordered Josephson junction in the so-called ergodic regime
with long dwell time, namely when the ergotic time is small compare to∆−1 and the Thouless
energy scale ET is such that ET ≪∆ [37]. In our case Γ 2/U plays the role of ET , or alternatively
U/Γ 2 the role of the dwell time, so that a large interaction U corresponds to a large diffusion
time in the dot. We remind that, contrary to the case reported in Ref. [37], where the dot is
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a cavity weakly linked to the superconducting leads and the coupling with the leads involves
few modes of the dot, in the present paper we considered a dot fully contacted to the leads,
namely all the modes contribute to the coupling. The long dwell time in Ref. [37] is due to the
diffusion of the particles in the cavity while, in our case, it is due to strong correlations which
produces such a sort of self-trapping phenomenon. Moreover the anomalous self-energy plays
a crucial role in Ref. [37], while in our case this term is negligible for large N because of the
uniform coupling.

Perturbative analysis: Before we proceed, let us reconsider the previous case by expanding
the free energy for small tunneling parameters Γα, withα= 0, 1,2, 3. From Eq. (59), expanding
in terms of Γα, we have

ln
�

det[G−1]
�

= N ln
�

det[G−1
0 ]

�

+ ln

�

1+ N Tr[T G0] + N2 det[T ]
det[G−1

0 ]

�

(68)

= N ln
�

det[G−1
0 ]

�

+ N Tr[T G0] + N2 det[T ]
det[G−1

0 ]
−

1
2

N2 (Tr[T G0])
2 + o(Γ 2

α) ,

where T is given by Eq. (23) and the bare Green’s function is simply G0 = G0τ0, as before. As
a result we have

ln
�

det[G−1]
�

= −2N ln(G0) +
2iG0ωΓ0p
ω2 +∆2

+
G2

0

ω2 +∆2

�

(Γ 2
0 + Γ

2
3 )ω

2 − Γ 2∆2 cos2(φ/2)
�

+ o(Γ 2
α) , (69)

where Γ 2 is given by Eq. (61). The Josephson current, Eq. (58), at the leading order in the
tunneling parameters, then, reads

I = −
Γ 2∆2

β
sin(φ)

∑

ω

G0(ω)2

ω2 +∆2
+ o(Γ 2

α) , (70)

which can be obtained also expanding Eq. (62). At zero temperature, in the continuum, and
in the conformal limit, using Eq. (63), we have

I ≃
Γ 2∆2

p
πU

sin(φ)

∫ ∞

λ

dω
ω(ω2 +∆2)

≃
Γ 2

p
πU

sin(φ) ln
�

∆

λ

�

, (71)

where we introduced a positive infrared cut-off λ to guarantee the convergence of the integral.
Quite interestingly Eq. (71) has the same form of Eq. (67), with λ∝ Γ 2/U . Actually, from
first principles, λ has to be a function of the the prefactor Γ 2/U and viceversa, in such a
way that when λ → 0 also Γ 2/U → 0, getting a vanishing current. Conversely, if λ and
Γ 2/U were independent, there would be a possibility to reduce λ getting absurdly an arbitrary
large current at fixed, even weak, tunneling parameter or strong interaction. This dependence
agrees with the fact that the tunneling and the spectral properties are related.

What we learned is that the leading order in the tunneling parameters is enough to catch
the logarithmic form of the Josephson current in our system, also because the strong inter-
action limit is equivalent to the weak tunneling regime, U ≫ Γ , validating the perturbative
expansion.

4.2 Random couplings

Let us now introduce random fluctuations in the tunneling amplitudes, relaxing the uniform
form for the tunneling matrix Tnm.
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Random phases: We will consider first the case where random phases occur

tnσ = |tσ| eiθσn , (72)

where σ =↑,↓ and θσn can be a random angle depending on the orbital index of the SYK dot.
Let us now redo the expansion for the free energy in the presence of a more general matrix
Tnm. Let us write

G−1 = G−1
0 I+ T̂ , (73)

with T̂ a matrix whose elements are Tnm reported in Eq. (21), where, now, from Eqs. (13)-(16),
(19), (20), and (72),

Γ+nm =
1
2

�

Γ ↑e−i(θ ↑n−θ
↑
m) + Γ ↓ei(θ ↓n−θ

↓
m)
�

, (74)

Γ−nm =
1
2

�

Γ ↑e−i(θ ↑n−θ
↑
m) − Γ ↓ei(θ ↓n−θ

↓
m)
�

, (75)

Γ s+
nm =

Γ

2

�

e−i(θ ↑n+θ
↓
m) + ei(θ ↓n+θ

↑
m)
�

, (76)

Γ s−
nm =

Γ

2

�

e−i(θ ↑n+θ
↓
m) − ei(θ ↓n+θ

↑
m)
�

, (77)

with
Γ ↑ = 2πν0

�

�t↑
�

�

2
, Γ ↓ = 2πν0

�

�t↓
�

�

2
, Γ = 2πν0

�

�t↑ t↓
�

� , (78)

noticing that Γ 2 = Γ ↑Γ ↓. The free energy, apart from -β−1 and frequency summation, then
reads

ln
�

det[G−1]
�

= N ln
�

det[G−1
0 ]

�

+ Tr ln
�

I+ G0T̂
�

. (79)

Expanding Eq. (79) in terms of the tunneling matrix, we obtain

ln
�

det[G−1]
�

= −2N ln(G0) +
∑

n

Tr (G0Tnn)−
1
2

∑

nm

Tr (G0TnmG0Tmn) + o(T 2) . (80)

Let us consider the terms separately. The first order term is given by

∑

n

Tr (G0Tnn) =
iG0ωp
ω2 +∆2

(Γ ↑ + Γ ↓) =
2iG0ω Γ0p
ω2 +∆2

, (81)

which is exactly the same as that appearing in Eq. (69), since Γ0 = (Γ ↑+ Γ ↓)/2, from Eq. (22).
The second order term is the one relevant for the Josephson current

−
1
2

∑

nm

Tr (G0TnmG0Tmn) =
1

N2

G2
0

ω2 +∆2

∑

nm

�

ω2
�

Γ+nmΓ
+
mn + Γ

−
nmΓ
−
mn

�

−∆2 cos2(φ/2)
�

Γ s+
nmΓ

s+
mn − Γ

s−
nmΓ

s−
mn

��

. (82)

From Eqs. (74)-(77) we have

Γ±nmΓ
±
mn =

1
4

�

Γ ↑2 + Γ ↓2 ± 2Γ ↑Γ ↓ cos(θ ↑m − θ
↑
n + θ

↓
m − θ

↓
n)
�

, (83)

Γ s±
nmΓ

s±
mn =

Γ 2

2

�

cos(θ ↑m + θ
↑
n + θ

↓
m + θ

↓
n)± 1

�

. (84)

Therefore, intriguingly, in the combinations entering Eq. (82)

Γ+nmΓ
+
mn + Γ

−
nmΓ
−
mn =

1
2

�

Γ ↑2 + Γ ↓2
�

= Γ 2
0 + Γ

2
3 , (85)

Γ s+
nmΓ

s+
mn − Γ

s−
nmΓ

s−
mn = Γ

2 , (86)
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the phase dependence cancels out completely. As a result the second order term simplifies as
follows

−
1
2

∑

nm

Tr (G0TnmG0Tmn) =
G2

0

ω2 +∆2

��

Γ 2
0 + Γ

2
3

�

ω2 − Γ 2∆2 cos2(φ/2)
�

, (87)

which is the same term appearing in Eq. (69), therefore, the Josephson current is also exactly
the same as that reported in Eq. (71). In conclusion, replacing Eqs. (81) and (87) in Eq. (80)
we get the same free energy obtained for a uniform phase, Eq. (69), and, then, the same
current.

We proved, therefore, that, at least up to second order in the tunneling parameters, the
random phases in the tunneling amplitudes do not play any role. At the same time we showed
that the second order term is enough to derive the logarithmic form of the Josephson current,
therefore the result in Eq. (71) is robust against random phase fluctuations.

Fully random couplings: Let us consider tnσ fully random variables so that the tunneling
matrix has random entries Tnm, Eq. (21), with tunneling parameters written in Eqs. (13)-(16),
(19), (20), where we will drop the right-left index p, since we will consider symmetric contacts.
Now let us consider once again the expansion of the free energy, which, up to second order in
the tunneling parameters is given by Eq. (80). In this case the first order term reads

∑

n

Tr (G0Tnn) =
iG0ωp
ω2 +∆2

2πν0

N

∑

n

(
�

�tn↑
�

�

2
+
�

�tn↓
�

�

2
)≡

iG0ωp
ω2 +∆2

(Γ̄ ↑ + Γ̄ ↓) , (88)

where we defined, analogously to Eq. (78), the following positive real quantities

Γ̄ ↑ = 2πν0
1
N

∑

n

�

�tn↑
�

�

2
, Γ̄ ↓ = 2πν0

1
N

∑

n

�

�tn↓
�

�

2
, Γ̄ 2 = Γ̄ ↑Γ̄ ↓ . (89)

The second order term is given by Eq. (82) where now, from Eqs. (13)-(16), (19), (20), we
have

Γ+nmΓ
+
mn + Γ

−
nmΓ
−
mn = 2π2ν2

0

�
�

�tn↑ tm↑
�

�

2
+
�

�tn↓ tm↓
�

�

2�
, (90)

Γ s+
nmΓ

s+
mn − Γ

s−
nmΓ

s−
mn = 2π2ν2

0

�
�

�tn↓ tm↑
�

�

2
+
�

�tn↑ tm↓
�

�

2�
. (91)

As a result, under the double sum, for the second order term, using Eq. (89), we have

−
1
2

∑

nm

Tr (G0TnmG0Tmn) =
G2

0

ω2 +∆2

�

1
2

�

Γ̄ ↑2 + Γ̄ ↓2
�

ω2 − Γ̄ 2∆2 cos2(φ/2)
�

. (92)

As a consequence the Josephson current is the same as in the uniform case, Eq. (71), where
we replace Γ → Γ̄ , namely Γσ→ Γ̄σ, or equivalently defining

|tσ|
2 =

1
N

∑

n

|tnσ|
2 . (93)

In conclusion, the Josephson current has exactly the same form for either uniform and com-
pletely random tunneling matrix, at least up to second order in the tunneling parameters,
providing the equivalence given in Eq. (93).

This analysis shows that randomness in the dot-to-leads couplings does not spoil the cur-
rent and justifies our choice of a simple uniform tunneling matrix which allowed us to perform
an analytical calculation of the full Josephson current at any order.
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4.3 Finite temperature

At finite temperature, the analytical solution Eq. (63) becomes [1,5,16]

G−1
0 (ω) = iC

p
2πT eiθ Γ(3/4+ω/2πT + iε)

Γ(1/4+ω/2πT + iε)
, (94)

where Γ(x) is the Gamma function, C = (U2 cos(2θ )/π)1/4, while θ and ε are linked by
e2πε = sin(π/4+ θ )/ sin(π/4− θ ), and G0(τ = 0−) = 1/2− θ/π− sin(2θ )/4. Let us fix the
density of particles at half-filling, θ = 0, ε= 0. Defining

gω = i ΓG0(ω) , (95)

from Eq. (62), in the case U T ≫ Γ 2, the Josephson current becomes

I ≃
∆2

β
sin(φ)

∑

ω

g2
ω

ω2 + g2
ω∆

2 cos2(φ/2) +∆2
. (96)

The Green’s function G0(ω) is cut-offed by 1/
p

T at low frequency. We approximate, therefore,
gω ≈ g0 in Eq. (96) and, after summing over the Matsubara frequencies, we get

I ≃
∆

2α
sin(φ) g2

0

tanh
�

β
2∆
q

1+ g2
0 cos2(φ/2)

�

q

1+ g2
0 cos2(φ/2)

, (97)

which is a function of the temperature T = 1/β , and of the interaction U since g0 = rΓ/
p

U T ,
with r a numerical coefficient, r = Γ(1/4)/(

p
2π1/4Γ(3/4)). We find numerically that Eq. (96)

is better approximated by the same expression where gω is replaced by g0 if we include an
overall factor α≈ 5.6. Since g2

0 ≪ 1, calling c = r2/(2α) the numerical coefficient, we have

I ≃ c
Γ 2∆

U T
sin(φ) tanh

�

∆

2T

�

. (98)

Therefore, for large temperature, T ≫∆, it reads

I ≃
c
2
Γ 2∆2

U T2
sin(φ) , (99)

namely, approaching the superconductive critical temperature Tc , it vanishes as ∆
2

T2 ∝
Tc(Tc−T )

T2 .
On the contrary, in the intermediate regime with small enough temperatures, specifically

for ∆≫ T ≫ Γ 2/U , we can approximate the hyperbolic tangent by one, getting a 1/T decay

I ≃
∆

2α
sin(φ)

g2
0

q

1+ g2
0 cos2(φ/2)

≃ c
Γ 2∆

U T
sin(φ) . (100)

For U T ≪ Γ 2 (g0 ≫ 1), instead, we have to distinguish two regions in frequency space, with
|ω|< ΛT and |ω|> ΛT , where ΛT ∼ T is an energy cut-off below which gω ∼ g0 while above
gω ∼ C−1sgn(ω)|ω|−1/2, as for the zero temperature limit. We have, therefore, the following
expression

I ≃
1
β

sin(φ)

(

∑

|ω|<ΛT

∆2

ω2 +∆2 cos2(φ/2) + g−2
0 ∆

2
+

∑

∆>|ω|>ΛT

Γ 2

Γ 2 cos2(φ/2) + g−2
ω

)

. (101)

Since T ≪ 1 we can use the integrals, 1
β

∑

ω→
∫ dω

2π , getting

I ≃
∆

π
sin(φ) g0

arctan
�

g0ΛT
q

1+g2
0 cos2(φ/2)

�

q

1+ g2
0 cos2(φ/2)

+
Γ 2

πC2
sin(φ) ln

�

Γ 2 cos2(φ/2) + C2∆

Γ 2 cos2(φ/2) + C2ΛT

�

. (102)
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4.4 Proximity effect

Let us discuss, now, how the dot is affected by the presence of the superconducting leads and
check whether we can neglect the self-energy corrections in the large N limit. We will focus
in particular on the hybridization of the dot due to the superconducting pairing, considering
the following tunneling matrix, neglecting, for simplicity, the term proportional to τ0,

T̂ (ω)≃ 1
N
T1(ω)τ1 J ≡

Γ∆ cos(φ/2)

N
p
ω2 +∆2

τ1 J . (103)

We make the following ansatz for the anomalous contribution to the self-energy: Aτ1J . The
Green’s function, then, reads

G−1
nm ≃ G−1

0 τ0δnm +
�

1
N
T1(ω)− A

�

τ1 Jnm . (104)

From Eq. (33), we have the following effective equal-time pairing between two generic modes
n ̸= m

F ≡ Fnm(τ,τ) =
1
β

∑

ω

Tr
�

G(ω)τ1

�

nm , (105)

and, therefore, from Eq. (50), we will have, consistently,

A= −
U2F3

N
. (106)

At low temperature the sum in Eq. (105) becomes an integral, which reads

F =

∫ Λ

−Λ

dω
2π

T1(ω)/N − A

N2(T1(ω)/N − A)2 − G−2
0

, (107)

and, using Eqs. (63), (103) and (106),

F =
1
N

∫ Λ

−Λ

dω
2π

Γ∆ cos(φ/2)
p
ω2 +∆2 + U2F3(ω2 +∆2)

�

Γ∆ cos(φ/2) + U2F3
p
ω2 +∆2

�2
+ C2|ω|(ω2 +∆2)

, (108)

where we introduced a cut-off since ω≪ U for the expression of G0 to be valid, therefore we
can take Λ∼ U .

For large U and for large but still finite N such that U2F3 ≫ Γ , we can approximate Eq.
(107) getting

F ≃
1
N

∫ Λ

0

dω
π

U2F3

(U4F6 + C2ω)
=

U2F3

πNC2
ln

�

1+
C2Λ

U4F6

�

, (109)

which has to be solved in terms of F . For U4F6≫ C2Λ∼ U2, we get, for F and A, the following
results

F ≈
�

Λ

NπU2

�1/4

, A≈ −
U2/3

N

�

Λ

Nπ

�3/4

. (110)

We found that the pairing is super-extensive, meaning that a single particle in the dot is paired
with all the other particles in such a way that N F is not O(1) but O(N3/4).
We expect that U2F3 becomes irrelevant upon further increasing N , therefore Eq. (107) be-
comes

F =
1
N

∫ ∞

−∞

dω
2π

Γ∆ cos(φ/2)
p
ω2 +∆2

Γ 2∆2 cos2(φ/2) + C2|ω|(ω2 +∆2)
, (111)
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which can be approximated by

F ≃
Γ∆2

Nπ
cos(φ/2)

∫ Λ

0

dω
Γ 2∆2 cos2(φ/2) + C2∆2ω

≃
1
N
Γ

πC2
cos(φ/2) ln

�

1+
C2Λ

Γ 2 cos2(φ/2)

�

, (112)

where now Λ∼max(∆, Γ cos(φ/2)). Therefore we have

F ∼
1
N
Γ

U
cos(φ/2) ln

�

U
Γ cos2(φ/2)

�

, A= −
U2F3

N
∼ −

�

Γ ln(U)
�3

UN4
. (113)

This result implies that, even if the pairing is a uniform matrix whose elements are ∝ 1
N ,

the corresponding self-energy decays much faster upon increasing N , validating the approach
used for calculating the Josephson current.

5 Other cases

Let us consider three different situations in order to compare the results with those obtained
for the SYK model. The first case is just the non-interacting dot with N modes. The second
one is the bilinear version of the SYK model, also called SYK2 (the original model is also
called SYK4), that is a non-interacting all-to all random hopping model. We will conclude
discussing the generalized model with q fermions.

5.1 Zero interaction

For U = 0 we have Σ = 0, therefore G̃−1
0 = iω and G̃−1

3 = µ, therefore the Josephson current,
Eq. (62), becomes

I =
Γ 2∆2

β
sin(φ)

∑

ω

1

Γ 2∆2 cos2(φ/2) +
�

ω
p
ω2 +∆2 +ωΓ0

�2
+
�

µ
p
ω2 +∆2 − iωΓ3

�2 . (114)

For Γ0≫∆, using Γ 2
0 − Γ

2
3 = Γ

2, and approximating Eq. (114) as follows

I ≃
Γ 2∆2

β
sin(φ)

∑

ω

1
Γ 2∆2 cos2(φ/2) +µ2∆2 +ω2(Γ 2 +µ2)− 2iωµΓ3∆

, (115)

we can sum over the Matsubara frequencies by complex analysis. Introducing the transmission
coefficient, to ranging from 0 to 1,

to =
Γ 2

Γ 2 +µ2
, (116)

we get the following analytical form

I ≃
∆

2
sin(φ)

to sinh
�

β∆
q

1− to sin2(φ/2) + to(1− to)Γ 2
3 /Γ

2
�

cosh
�

β∆
q

1− to sin2(φ/2) + to(1− to)Γ 2
3 /Γ

2
�

+ cosh
�

β∆
p

to(1− to)Γ3/Γ
�

×
1

q

1− to sin2(φ/2) + to(1− to)Γ 2
3 /Γ

2
. (117)

For Γ3 = 0, namely for
�

�t↑
�

�=
�

�t↓
�

�, Eq. (117) reduces to the same result of a spinfull single level
dot

I ≃
∆

2
sin(φ)

to tanh
�

β
2∆
Æ

1− to sin2(φ/2)
�

Æ

1− to sin2(φ/2)
. (118)
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For T → 0, Eq. (117) becomes simply

I ≃
∆

2
sin(φ)

to
q

1− to sin2(φ/2) + to(1− to)Γ 2
3 /Γ

2
. (119)

For large temperature, T ≫∆, the current in Eq. (117) becomes

I ≃
∆2to

4T
sin(φ) , (120)

namely, it decays as ∆2/T . This result has to be contrasted with Eq. (99) obtained for large
interaction.

5.2 SYK2 dot

Let us consider the SYK version with two fermions, called SYK2, which reads

Hd =
1
p

N

N
∑

i, j=1

Ui jd
†
i d j , (121)

with Ui j random variables with zero mean and such that |Ui j|2 = U2. In the strong coupling
and for large N , at for zero temperature, the single particle Green’s function has an analytic
form

G−1
0 (ω) = iU sgn(ω) . (122)

As done for the SYK4 model, we can integrate over disorder getting

S′d =
∑

n,a

∫ β

0

dτ d†
na(τ) (∂τ −µ) dna(τ) +

U2

2N

∑

a,b

∫ β

0

dτdτ′
�

�

�

�

�

∑

n

d†
na(τ)dnb(τ

′)

�

�

�

�

�

2

+ Sc , (123)

which can be decoupled as

Sd =
∑

na

∫ β

0

dτ d†
na(τ) (∂τ −µ) dna(τ) +

∑

ab

∫ β

0

dτdτ′
� N

2U2

�

�Σab(τ,τ′)
�

�

2
+

N
2U2

∑

nm

�

�F ab
nm(τ,τ′)

�

�

2

+iΣba(τ′,τ)
∑

n

d†
na(τ)dnb(τ

′)−
1
2

∑

nm

�

d†
na(τ)F

ab∗
nm (τ,τ′)d†

mb(τ
′) + dnb(τ

′)F ab
nm(τ,τ′)dma(τ)

�

�

+Sc ,

with Σab∗(τ,τ′) = Σba(τ′,τ) and F ab
nm(τ,τ′) = F ab

mn(τ,τ′). In the diagonal replica index, and
for zero replica limit, the saddle point equations are

Σ(τ,τ′) = −
iU2

2N

∑

n

〈d†
n(τ)dn(τ

′)〉 , (124)

Fnm(τ,τ′) =
U2

2N
〈d†

n(τ)d
†
m(τ
′)〉 . (125)

One has to solve these equations self-consistently. Let us consider, for simplicity, µ = 0, and
tσ real, so that Γ2 = 0, and t↑ = t↓ which implies Γ3 = 0. The tunneling matrix, therefore has
only components proportional to τ0 and τ1. We then select only the self-energies in the same
channels. The Green’s function G, then reads

G−1
nm = G−1

0 δnm + (T + F̂)Jnm = (iω−Σ)τ0δnm +
1
N

�

T0τ0 + (T1 + N F)τ1

�

Jnm , (126)
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where we absorb i in Σ, namely iΣ→ Σ, and consider uniform F̂ like T . We also define

T0 =
iωΓ0p
ω2 +∆2

, T1 =
Γ1∆ cos(φ/2)
p
ω2 +∆2

, (127)

with Γ0 = Γ1 ≡ Γ for our choice of the parameters tσ. We can write the self-consistent equa-
tions, in Fourier space, in the following form

Σ=
U2

2N

∑

n

Tr (Gnnτ0) , (128)

F =
U2

2N
Tr (Gnmτ1) . (129)

We recognize in Eqs. (128), (129) the rainbow diagram equations reported in Refs. [39]
and [37]. The self-energies can be obtained by employing Eq. (A.15) where we replace G′0
by G0 (we neglect corrections of order 1/N in the diagonal part, encoding Pauli exclusion
principle, which would lead to subleading terms, as shown in Appendix A) and T by (T + F̂),
namely

Gnm = G0δnm −
��

N(T + F̂) + G−1
0

�−1
(T + F̂)G0

�

Jnm . (130)

The self-consistent equations Eqs. (128), (129), using Eq. (130), read explicitly

Σ=
U2

(iω−Σ)

�

1−
1
N

�

(iω−Σ+ T0)T0 − (T1 + N F)2

(iω−Σ+ T0)2 − (T1 + N F)2

��

, (131)

F = −
U2

N

�

(T1 + N F)
(iω−Σ+ T0)2 − (T1 + N F)2

�

. (132)

In the large N limit Eq. (131) reduces to the uncoupled self-energy Σ= U2

(iω−Σ) whose solution
is

Σ=
i
2

�

ω− sgn(ω)
p

ω2 + 4U2
�

, (133)

which implies the following uncoupled dot Green’s function

G0 = G0τ0 = (iω−Σ)−1τ0 =
i

2U2

�

ω− sgn(ω)
p

ω2 + 4U2
�

τ0 , (134)

and for large U one recovers Eq. (122), where sign(ω) comes from requiring vanishing Σ in
the zero interaction limit and then odd function in imaginary time. One can check that actually
Eq. (134) is obtained by summing over the rainbow diagrams using the bare Green’s function
(iω)−1

G0 =
1

iω

∞
∑

n=0

Cn

�

U
iω

�2n

, (135)

where Cn =
(2n)!
(n+1)n! are the Catalan numbers. By inspection of Eq. (132) we have F ∼ 1/N

therefore it can not be neglected in the large N limit, since N F appears in the Green’s function.
Defining for simplicity

A= T 2
1 + 3

�

(iω−Σ+ T0)
2 + U2

�

, (136)

B = 2T 3
1 + 9

�

U2 − 2(iω−Σ+ T0)
2
�

T1 , (137)

we can solve algebraically Eq. (132) getting

N F = −
2
3
T1 +

S
3
A
�

2

B+
p
B2 − 4A3

�1/3

+
S∗

3

�

B+
p
B2 − 4A3

2

�1/3

, (138)
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where S = 1, for T1 > 0 (0 ≤ φ ≤ π), and S = −1+i
p

3
2 , for T1 < 0 (π ≤ φ ≤ 2π). Inserting

Eq. (133) one can calculate the Josephson current

I = −
1
β

∑

ω

∂φ ln
�

(T1 + N F)2 − (iω−Σ+ T0)
2� , (139)

which, since Σ does not depend on φ, can be also written as

I = −
2

U2β
N
∑

ω

F ∂φ (T1 + N F) . (140)

Let us now consider the limit of very large U , namely U ≫ Γ and ∆. In this limit
Σ→−iUsgn(ω), and A→ T 2

1 , B→ 33U2T1, therefore

N F ≃ sgn(cos(φ/2))

�

U2Γ∆ |cos(φ/2)|
�1/3

(ω2 +∆2)1/6
. (141)

Notice that this expression is accurate for φ far from π, since the term
�

(iω−Σ+ T0)2 + U2
�

induces a gap close to φ = π for any finite value of U . The Josephson current is, therefore

I ≃ −
1

U2β
N2
∑

ω

∂φF2 , (142)

since N F ≫ T1. At zero temperature, introducing an ultraviolet cut-off Λ, we have

I ≃
∆

6π

�

Γ

U

�2/3 sin(φ)
(cos2(φ/2))2/3

∫ Λ

0

dω
(ω2 + 1)1/3

≈
∆

2π

�

Γ

U

�2/3 sin(φ)
(cos2(φ/2))2/3

Λ1/3 . (143)

Since Eq. (122) is valid for U ≫ |ω| the cut-off Λ might be taken ∼ U .
Here a comment is in order. If we used a different coupling with the leads, such that

only few and specific modes of the dot were involved, the tunneling matrix would be sparse
diagonal, with many null elements. In our case, since the dot is made by spinless fermions,
stricktly speaking the anomalous terms should vanish. Nevertheless let us consider this case
discussed in Ref. [37] where two superconducting leads were coupled to a chaotic metallic
cavity. The calculation is pretty similar to what reported here. The only difference is that both
T and F are now diagonal. The saddle point equations are again equivalent to those obtained
by resummation of the non-crossing diagrams, as shown also in our case. We have, then, to
solve the self-consistent equations, where Eq. (126) is replaced by the following Eq. (146),

Σ=
U2

2N

∑

n

Tr (Gnnτ0) , (144)

F =
U2

2N

∑

n

Tr (Gnnτ1) , (145)

G−1
nm = [(iω−Σ+ T0)τ0 + (T1 + F)τ1]δnm , (146)

since Γnm∝ δnmΓn and Γn ̸= 0 for n= 1, ... , nc and Γn = 0 for n= nc+1, ... , N . We have exactly
the same kind of equations reported in Ref. [37]. Quite strikingly, in the so-called ergodic and
long dwell-time regime, the authors of Ref. [37] solved Eqs. (144)-(146) for N ≫ nc getting
a Josephson current of the same form of Eq. (67), where the Thouless energy ET is replaced
by Γ 2/U ≪∆. The crucial difference between the SYK2 model discussed here, with respect to
the case of a chaotic tunneling Josephson junction discussed in Ref. [37], is that the dot here
is considered fully coupled with the leads, because all modes of the dot are equivalent to each
other.
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5.3 SYKq dot

Let us conclude discussing the generalized model with q fermions. As shown previously, for
q = 2 and fully contacted dot, the effect of the hybridization and, more specifically, the induced
pairing in the dot are very strong also in the large N limit. For q = 4, instead, the self-energy
induced by the coupling with the leads remains the bare one for large N . One expect that the
same situation is valid for any q ≥ 4. In this situation we can directly write the large U limit
for the Josephson current as

I =
Γ 2∆2

2π
sin(φ)

∫ ∞

−∞

dω

Γ 2∆2 cos2(φ/2)−
�

G−1
0 (ω)

p

(ω2 +∆2) + iωΓ0
�2
−ω2Γ 2

3

, (147)

where we fixed µ= 0 and, for q ≥ 2, the exact Green’s function in the large N limit reads [40]

G−1
0 (ω) = iCq U

2
q sgn(ω)|ω|1−

2
q , (148)

with coefficient Cq =
(2π)1/q sec(πq )

2
��

1− 2
q

�

tan(πq )
�1/q

Γ(1− 2
q )

.

For any q > 4 and for weak tunneling, Γ ≪∆, we get the following result for the current

I ≃
Γ 2

π
sin(φ)

∫ ∞

0

dω

Γ 2 cos2(φ/2) + C2
q U

4
qω2− 4

q

, (149)

namely the superconducting pairing drops out completely, since∆ does not even play the role
of an ultraviolet cut-off, as for q = 4. Introducing a cut-off Λ the result, for any q ≥ 4, is

I ≃
sin(φ)Λ
π cos2(φ/2)2F1





q
2(q− 2)

, 1, 1+
q

2(q− 2)
;−

C2
q U

4
qΛ2− 4

q

Γ 2 cos2(φ/2)



 , (150)

where 2F1(a, b, c; z) is the hypergeometric function. For q = 4, we recover the result reported
in Eq. (67) with Λ = ∆, while for any q > 4 the limit Λ→∞ is finite therefore we do not
need to use any cut-off.

For the very extreme case of q →∞ we have that Cq → 1/2 and G−1
0 (ω) → iω/2, and

always for Γ ≪∆, the current reduces simply to

I ≃ Γ
sin(φ)
|cos(φ/2)|

, (151)

namely, it approaches a π-junction upon increasing q, loosing the dependence also on U .
In the other limit, Γ ≫ ∆ and for q such that U2/q ≪ Γ , e.g. q→∞, from Eq. (147) we

get

I ≃
∆

2
sin(φ)
|cos(φ/2)|

, (152)

which is the same current for the non-interacting case, Eq. (119) for to = 1, at resonance.

6 Conclusions

We studied the Josephson effect obtained by contacting a SYK4 dot by two superconducting
leads. We showed that a proximity effect is induced in the dot, however the self-energy is
weakly affected by the coupling with the leads in the so-called conformal limit, namely for
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large interaction and large number of particles. We found that, in this limit, the Josephson
current is suppressed by U , the strength of the interaction, as ln(U)/U and becomes univer-
sal, since the current turns out to be independent on the superconducting pairing, and robust
under phase fluctuations. This result implies that the Josephson current, at zero temperature,
and in the conformal limit, is almost the same, up to logarithmic corrections, for all BCS-like
superconductors. At finite temperature T , instead, the dependence on the superconducting
gap is restored. The current becomes dependent on the ratio between the gap and the temper-
ature and goes as∆2/T2 for sufficiently large temperatures. Finally we compare the Josephson
current got for the SYK4 with those obtained for other SYKq models.
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A Appendix

If we used Eq. (25) instead of Eq. (24) in Eq. (51), to take into account that the diagonal
terms in the action Eq. (12) are null, we would get corrections of order O(1/N) in the diagonal
self-energy. Specifically, since δG0∝ G0(T1τ1 + T2τ2)G0 where G0 contains only τ0 and τ3,
then at the leading order in 1/N the self energy is corrected by δΣ∝ G2

0δG0 which is only
proportional to τ1 and τ2. Let us consider

iωτ0 +µτ3 −Σ−
δΣ

N
+ T ′nm , (A.1)

where δΣ/N is the self-energy correction and T ′nm as in Eq. (25). We can define conveniently
the following generic form for the Green’s function

G′−1
0 = G̃−1

0 τ0 + G̃−1
1 τ1 + G̃−1

2 τ2 + G−1
3 τ3 , (A.2)

where now

G̃−1
0 = iω−Σ0 , (A.3)

G̃−1
1 = −

1
N

�

Γ1∆ cos(φ/2)
p
ω2 +∆2

+δΣ1

�

, (A.4)

G̃−1
2 = −

1
N

�

Γ2∆ cos(φ/2)
p
ω2 +∆2

+δΣ2

�

, (A.5)

G̃−1
3 = µ−Σ3 , (A.6)

so that Eq. (A.1) can be written as

G′−1
nm = G′−1

0 δnm + T Jnm , (A.7)
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where T is defined in Eq. (23), or, to simplify the notation,

T = 1
N
(T0τ0 + T1τ1 + T2τ2 + T3τ3) . (A.8)

We can, now, employ Eq. (59) simply replacing G0 by G′0 and G by G′, namely

det[G′−1] =
�

det[G′−1
0 ]

�N−1 �
det[G′−1

0 ] + N Tr[T G′0]det[G′−1
0 ] + N2det[T ]

�

, (A.9)

getting, from Eqs. (A.2) and (A.8),

det[G′−1] =
�

det[G′−1
0 ]

�N−1 ��
G̃−1

0 + T0

�2 −
�

G̃−1
1 − T1

�2 −
�

G̃−1
2 − T2

�2 −
�

G̃−1
3 − T3

�2� , (A.10)

so that

ln det[G′−1] = (N − 1) ln
�

(G̃−1
0 )

2 − (G̃−1
1 )

2 − (G̃−1
2 )

2 − (G̃−1
3 )

2
�

+ ln
�

�

G̃−1
0 + T0

�2 −
�

G̃−1
1 − T1

�2 −
�

G̃−1
2 − T2

�2 −
�

G̃−1
3 − T3

�2�
. (A.11)

Expanding in 1/N we get

lndet[G′−1] = ln[(G̃−1
0 )

2 − (G̃−1
3 )

2]N−1 + ln
�

�

G̃−1
0 + T0

�2 − T 2
1 − T

2
2 −

�

G̃−1
3 − T3

�2�
+O

�

1
N

�

= ln det[G−1] +O
�

1
N

�

, (A.12)

which is equal to the logarithm of Eq. (60) up to corrections of order O(1/N).
Finally, we can invert a matrix of the form reported in Eq. (A.7), by using the geometric

series,

G′ =
�

I+ G′0T J
�−1 G′0 =

∞
∑

n=0

(−1)n(G′0T J)nG′0 , (A.13)

and noticing that Jn = N (n−1)J . We get the following result

G′ =
�

I+
1
N

∞
∑

n=1

(−1)n(NG′0T )
n J

�

G′0 = G′0 I+
�

τ0 + NG′0T
�−1 G′0T G′0 J , (A.14)

which can be rewritten explicitly as

G′nm = G′0δnm −
��

NT + G′−1
0

�−1T G′0
�

Jnm , (A.15)

useful to calculate the self-energy corrections due to the coupling with the leads.
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