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Abstract

We consider an Ising model with quenched surface disorder, the disorder average of
the free energy is the main object of interest. Explicit expressions for the free energy
distribution are difficult to obtain if the quenched surface spins take values of ±1. Thus,
we choose a different approach and model the surface disorder by Gaussian random
matrices. The distribution of the free energy is calculated. We chose skew-circulant
random matrices and analytically compute the characteristic function of the free energy
distribution. From the characteristic function we numerically calculate the distribution
and show that it becomes log-normal for sufficiently large dimensions of the disorder
matrices, and in the limit of infinitely large matrices tends to a Gaussian. Furthermore,
we establish a connection to the central limit theorem.
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1 Introduction

One of the most prominent models in statistical mechanics is the anisotropic two-dimensional
Ising model [1] on the L×M square lattice. Besides the exact solution of the periodic case [2,3]
there has also been much work done on different boundary conditions or surface effects [4–6].
There are many interesting phenomena present in the study of the Ising model one of which
is the emergence of the critical Casimir effect. It was shown by Fisher and De Gennes [7] that
at the critical point the Casimir forces are universal. The critical point is the point at which
the model undergoes a continuos phase transition, from a disordered high-temperature phase
to an ordered low-temperature phase.

In a previous work [8] one of the present authors studied a two-dimensional Ising model
of cylindrical geometry with an open boundary and another one with random surface disorder.
The random surface consisted of fixed randomly orientated spins with spin values of ±1, only
next neighbour interactions were included. The goal was to study the aforementioned univer-
sal properties at the critical point, mainly the behaviour of the Casimir force. The contribution
to the free energy depending on the surface disorder, in the following simply referred to as
free energy, was log-normal distributed for sufficiently large systems. This specific log-normal
distribution tends to a Gaussian as the systems becomes arbitrarily large, however, this limit
is not of interest as it goes in hand with a vanishing Casimir force.

Therefore, the goal of this paper is to investigate this log-normal behaviour to better under-
stand its emergence. We achieve this by modelling the disorder by Gaussian random matrices,
whose variance scales with the system size to the power of a disorder parameter. This requires
altering the original definition of the free energy since the original definition does not make
any further analytic progress permissible.
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Modelling the disorder by Gaussian random matrices allows us to make use of Random
Matrix Theory. Random Matrix Theory is a powerful tool originally developed to study spectral
correlations. However, its scope is not limited to that. In the present work we aim to combine
Random Matrix Theory and the Ising model to analyse the distribution of the free energy.

We calculate the characteristic function for the distribution of the free energy analytically
and study the cumulants extensively. The distribution itself is not obtained in this work but is
investigated numerically. Remarkably, this investigation shows that for all relevant values of
the disorder parameter a log-normal distribution can be fitted which accurately captures the
behaviour of the distribution of the free energies. Furthermore, we shows that the limit of large
system sizes is Gaussian explained by the central limit theorem, resulting in constraints for the
parameters of the log-normal distribution. Lastly, different intervals of the disorder parameter
are identified with systems in which the disorder dominates the behaviour, an intermediate
case where there is an explicit dependency on the disorder parameter in the leading order and
the trivial case in which the disorder is weak enough that the system is not affected.

The present work is structured such that we first give an introduction into some key aspects
of the theoretical background in Sec. 2. We then explicitly calculate the characteristic function
of our system in Sec. 3 and then investigate its cumulants in Sec. 4. In Sec. 5, we will find a
connection to the central limit theorem and revisit the cumulants after introducing a scaling
of the variance of the disorder with the system size. These investigations are then supported
by a numerical analysis in Sec. 6. In Sec. 6, we also fit the distribution with a log-normal
distribution and discuss the quality of the fit. In Sec. 7, we introduce two types of similarity
measures to further check the quality of the fit in Sec. 6. Lastly, in Sec. 8 we summarise our
results.

2 Salient features of the Ising model and of random matrix theory

In Sec. 2.1 we give a brief summary of the Ising model and the specific configuration used in the
present work. Furthermore, we allude to past results and formulate the starting point for our
work. In Sec. 2.2 we introduce key points of Random Matrix Theory. Lastly, in Secs. 2.3 and 2.4
we give an overview of skew-circulant matrices and hypergeometric function, respectively.

2.1 Two-dimensional Ising model with surface disorder

The two-dimensional Ising model is one of the central models in the study of phase transitions
and magnetism. It is defined on a square lattice where each lattice site is equipped with a spin.
These spins interact through nearest neighbour interaction with a certain coupling constant J .
We want to focus on the anisotropic Ising model on a cylinder with length L and circumfrence
M at the critical point. The Hamiltonian of the system is given by

H = −J↔
L−1
∑

l=1

M
∑

m=1

σl,mσl+1,m − J↕
L
∑

l=1

M
∑

m=1

σl,mσl,m+1 , (1)

with the coupling constants J↔ and J↕ in the two directions, σl,m is the spin at the respec-
tive lattice site with values ±1. For critical systems it is useful to write the couplings as
z = tanh(βJ↔) and t = e−2βJ↕ , with the inverse temperature β . The critical point is then
at

t = z . (2)

In the statistical analysis the partition function,

Z = tr exp (−βH) =
∑

{σ}

exp (−βH) , (3)
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is of interest. The trace in this case is a sum over all possible spin configurations in the system.
This sum is difficult to calculate in general, since the dimension of the Hilbert space, and
therefore the size of the sum, scales exponentially with the system size. However, by mapping
the Ising model to a model of dimers [9] and by making use of transfer matrix methods [10]
it is possible to find a much simpler expression for the case where one of the edges has open
boundary conditions and the other edge has randomly chosen surface spins [8]. The resulting
expression for the partition function is

Z = Z1

Æ

det(Q+ κ) , (4)

where Z1 contains bulk contributions and is independent of the effects of the random surface
spins. In the Hamiltonian limit (t = 1 = z) [11] which means J↔→∞ and J↕→ 0 simulta-
neously while staying at the critical point, see Eq. (2), and for aspect ratio ρ = L/M →∞ it
holds that

Q =

�

1

M sin
�

π
M

�

m− n+ 1
2

��

�

m,n=1,...,M

, (5)

is a M ×M (M even) real skew-circulant matrix with all of its eigenvalues laying on the unit
circle [12]. The M ×M matrix,

κ= diag (εMε1,ε1ε2, . . . ,εM−1εM ) , (6)

is diagonal, where εi are the quenched surface spins with values of ±1. Quenched in this case
means that the spins are fixed and therefore cannot flip in contrast to the spins in the bulk.
Hence, all contributions from the disorder, the randomness, of the surface is contained in the
term

p

det(Q+κ) of the partition function.
Another central quantity is the dimensionless free energy F , given in terms of the partition

function as

F = − ln Z = F1 + F2(κ) , with F1 = − ln Z1 , F2(κ) = −
1
2

lndet(Q+κ) . (7)

The term F1 is independent of the surface disorder and F2(κ) contains all contributions of
the surface disorder. The free energy is particularly interesting, since it relates to important
quantities like the Casimir amplitude and force [8]. However, it is crucial for this analysis to
average over all possible configurations of the surface disorder

|F2(κ)|{ε}∝
∑

{ε}

lndet(Q+ κ) . (8)

This is physically motivated since in real systems, e.g. a ferromagnet, the exact configuration
is difficult to access and a statistical description is needed. Additionally, these systems are
macroscopic such that the large-M behaviour is particularly interesting.

Numerically it was possible to obtain a good agreement of the distribution of F2(κ) with
an appropriately rescaled log-normal distribution [8]. Ideally, the exact distribution of F2(κ)
in terms of the surface disorder could be obtained.

The key idea of this work is to replace the discrete disorder of κ with a random ma-
trix whose entries are independently Gaussian distributed. We investigate the distribution
of ln det(Q + κ) under the assumption that κ is a skew-circulant matrix. Therefore, a brief
summary of random matrix theory and skew-circulant matrices follows.
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2.2 Random matrix theory

Random Matrix Theory (RMT) finds copious applications in many different areas of physics,
such as quantum chaos, scattering theory, condensed matter, complex systems and wireless
communication. A detailed overview of the fields of application and methodology is given
in Ref. [13–15]. Random Matrix Theory is capable of modelling universal spectral statistics of
large classes of systems, based on symmetries, and invariances, as well as randomness. The
Hamiltonian H in a basis of the Hilbert space is replayed by N × N random matrices where
eventually the limit N → ∞ is taken. An ensemble is defined by the Gaussian probability
density

p(H)∝ exp
�

−
1

2v2
tr HH†

�

. (9)

Universality holds, i.e. the spectral fluctuations on the local scale of the mean level spacing do
not alter when other function forms of p(H) are used [13]. The most prominent ensembles are
the three Dyson ensembles, the Gaussian orthogonal ensemble (GOE), the Gaussian unitary
ensemble (GUE) and the Gaussian symplectic ensemble. These three ensembles are commonly
characterised by the Dyson index β = 1, 2,4, respectively, not to be confused with the inverse
temperature in Sec. 2.1. The objects of interest are the k-point correlation functions of the
eigenvalues,

Rk(x1, . . . , xk) = lim
ε→0

1
πk

∫

d[H]P(H)
k
∏

j=1

tr Im
1

�

x j − ıε
�

1−H
, (10)

involving the imaginary part of the matrix resolvent, i.e. the spectral density. The volume
element is the flat measure

d[H] =
N
∏

i=1

dHnn

∏

n<m

β
∏

α=1

dH(α)nm , (11)

where β is the Dyson index, if there are no symmetry constraints. For invariant integrands the
diagonalisation H = U†X U is useful. For H being Hermitian, U is a unitary matrix and X is a
diagonal matrix containing the eigenvalues of H. The volume element then transforms [16]
according to

d[H] =∆2(X )d[X ]dµ(U) , (12)

with the Vandermonde determinant

∆(X ) =
∏

i< j

(x j − x i) , (13)

and the invariant Haar measure dµ(U). In the present study, spectral correlations are not in
the focus, but RMT will allows us to address fundamental properties of the system.

2.3 Skew-circulant matrices

A matrix type important for the sequel is the skew-circulant one. The defining conditions for
a M × M real skew-circulant matrix S =

�

Si j

�M−1
i, j=0, with M even, are that its entries Si j are

determined by the difference of the indices, that is Si j = Si− j = Sm for m ∈ {−M+1, . . . , M−1},
and that Sm = −Sm−M for m ∈ {1, . . . , M−1} [17]. This implies that S only has M independent
entries and that any skew-circulant matrix S has to be of the form

S =
M−1
∑

m=0

Smhm , with hi, j = δi−1, j −δi,0δ j,M−1 . (14)
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For M = 4 a skew-circulant matrix is given by

S =







S0 −S3 −S2 −S1
S1 S0 −S3 −S2
S2 S1 S0 −S3
S3 S2 S1 S0






. (15)

Hence, all skew-circulant matrices share a common eigenbasis due to the power series struc-
ture. The eigenbasis of h is given by

h= GλhG† , with Gi, j =
1
p

M
ωi( j+ 1

2) , and λh,i =ω
i+ 1

2 , (16)

where ω= exp (ı2π/M) is an M -th root of unity and i ranges from 0 to M −1. Consequently,
the eigenbasis of any skew-circulant matrix is [18]

S =
M−1
∑

m=0

Smhm = G

� M
∑

m=0

Smλ
m
h

�

G† = GλSG† , with λS,i =
M−1
∑

m=0

Smω
m(i+ 1

2) . (17)

The eigenvalues of a skew-circulant matrix with even dimension come in complex conjugated
pairs which can be seen by comparing the i-th and the (M − 1)− i-th eigenvalue

λS,i =
M−1
∑

m=0

am exp
�

ı
2π
M

�

i +
1
2

�

m
�

, (18)

λS,M−1−i =
M−1
∑

m=0

am exp
�

ı
2π
M

�

M − 1− i +
1
2

�

m
�

(19)

=
n−1
∑

m=0

am exp
�

ı
2Mπ

M
m
�

︸ ︷︷ ︸

=1

exp
�

ı
2π
M

�

−i −
1
2

�

m
�

(20)

= λ⋆S,i . (21)

From this property it follows that the determinant of any skew-circulant matrix with even
dimension is always non-negative

det S =
M−1
∏

i=0

λS,i =
M/2−1
∏

i=0

λS,iλ
⋆
S,i ≥ 0 . (22)

Similarly, the trace of any skew-circulant matrix times its Hermitian conjugate is non-negative,

tr SS† = trλSλ
⋆
S = 2

M/2−1
∑

i=0

λS,iλ
⋆
S,i ≥ 0 , (23)

and reduces to a sum of only M/2 terms. It follows that the integration measure for ensemble
SR(RM ) of skew-circulant matrices is

d[S] =
M−1
∏

m=0

dSm with Sm ∈ R , (24)

since Sm are the independent entries.
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2.4 Kummer hypergeometric functions

The most general definition of the hypergeometric function depending on a complex variable
z and real parameters a1, . . . , ap and b1, . . . , bq is [19]

pFq

�

a1, . . . , ap
b1, . . . , bq

z
�

=
∞
∑

j=0

(a1) j · · · (ap) j
(b1) j · · · (bq) j

z j

j!
, (25)

under the assumption that none of the bi are non-positive integers. We recall the definition of
the Pochhammer symbol

(x)n =
n−1
∏

j=0

(x + j) . (26)

Kummer’s differential equation

z
d2w
dz2

+ (b− z)
dw
dz
− aw= 0 , (27)

has among other two solutions that are of particular interest, first the Kummer confluent hy-
pergeometric function

M(a, b, z) := 1F1(a, b, z) =
∞
∑

j=0

(a) j
(b) j j!

z j , (28)

and second

M(a, b, z) :=
∞
∑

j=0

(a) j
Γ (b+ j) j!

z j , (29)

which is Olver’s confluent hypergeometric function [20, Ch. 13]. The two confluent hyperge-
ometric functions are related to each other via

M(a, b, z) = Γ (b)M(a, b, z) , (30)

and coincide for b = 1,2, since Γ (1) = 1= Γ (2). It also immediately follows from the definition
of the two confluent hypergeometric function that

M(0, b, z) = 1 , and M(0, b, z) =
1
Γ (b)

, (31)

since only the term j = 0 contributes to the power series.

3 Skew-circulant disorder

The discrete nature of κ entering the generating function Eq. (6) makes analytical progress
difficult. Thus, in the present work κ is replaced by a real skew-circulant matrix S whose
independent entries are Gaussian distributed. This choice constitutes the simplest choice since
we discussed in Sec. 2.3 all skew-circulant matrices share a common eigenbasis and therefore Q
and S can be diagonalised simultaneously. Gaussian distributed skew-circulant type of disorder
is realised by Gaussian distributed spin orientations in the Fourier space. In the real space
the skew-circulant nature would manifest through interaction of all M spins on the surface.
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However, the interaction only depends on the distance between the two spins. Our goal is to
calculate the distribution of F = ln det(Q+ S). The distribution of F is given by

pS (F |Q,σ) = (2πσ2)−
M
2

∫

SR(RM )

d[S]δ (F − lndet(Q+ S))exp
�

−
1

4σ2
tr SS†

�

, (32)

with the integration measure defined in Eq. (24). We replace the delta function by its Fourier-
representation

δ (F − lndet(Q+ S)) =
1

2π

∞
∫

−∞

dk exp {−ık (F − lndet(Q+ S))} , (33)

and introduce the characteristic function

χS (k|Q,σ) = (2πσ2)−
M
2

∫

SR(RM )

d[S]detık(Q+ S)exp
�

−
1

4σ2
tr SS†

�

, (34)

such that

pS(F |Q,σ) =
1

2π

∞
∫

−∞

dk exp(−ıkF)χS(k|Q,σ) , (35)

where we used that the determinant of skew-circulant matrices with even dimension is pos-
itive. The integral over the skew-circulant matrices is simplified by using that any skew-
circulant matrix is diagonalised by the matrix G, as discussed in Sec. 2.3. The matrix G is
constant, dG = 0, and therefore

trdS2 = tr
�

dGλSG† + GdλSG† + GλSdG†
�2
= tr dλ2

S , (36)

employing the cyclic invariance of the trace. Thus, the metric of the transformation, and
therefore the Jacobian, is unity since the infinitesimal length element trdS2 is invariant under
transformations [21]. Hence, the integration can be rewritten in terms of the eigenvalues

χS (k|Q,σ) = (2πσ2)−
M
2

∫

CM/2

d [λS]detık
�

λQ +λS

�

exp
�

−
1

4σ2
trλSλ

†
S

�

, (37)

where the integration has to be understood in the sense that λS is a diagonal matrix with
entries in the complex plane. The determinant and trace are given by

det
�

λQ +λS

�

=
M/2−1
∏

j=0

�

λQ, j +λS, j

� �

λQ, j +λS, j

�⋆
=

M/2−1
∏

j=0

�

�λQ, j +λS, j

�

�

2
, (38)

trλSλ
†
S = 2

M/2−1
∑

j=0

�

�λS, j

�

�

2
, (39)

and the integral over the eigenvalues factorises

χS (k|Q,σ) =
M/2−1
∏

j=0

1
2πσ2

∫

C

d2λS, j

�

�λQ, j +λS, j

�

�

ı2k
exp

 

−

�

�λS, j

�

�

2

2σ2

!

. (40)
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We change variables, λS, j 7→ λS, j +λQ, j and find

χS (k|Q,σ) =
M/2−1
∏

j=0

1
2πσ2

∫

C

d2λS, j

�

�λS, j

�

�

ı2k
exp

 

−

�

�λS, j −λQ, j

�

�

2

2σ2

!

. (41)

A transformation to spherical coordinates λS, j = rS, j exp
�

ıϕS, j

�

yields

χS (k|Q,σ) =
M/2−1
∏

j=0

1
2πσ2

∞
∫

0

drS, j

π
∫

−π

dϕS, j r
ı2k+1
S, j exp

 

−

�

�rS, j exp
�

ıϕS, j

�

− exp
�

ıϕQ, j

��

�

2

2σ2

!

, (42)

rQ, j = 1 since Q only has eigenvalues on the unit circle. The argument of the exponential
function is

�

�rS, j exp
�

ıϕS, j

�

− exp
�

ıϕQ, j

��

�

2
= r2

S, j + 1− 2rS, j cos
�

ϕS, j −ϕQ, j

�

, (43)

and the angular integral yields the Bessel function J0 of order zero [20]. The characteristic
function reads

χS (k|Q,σ) =
M/2−1
∏

j=0

exp
�

− 1
2σ2

�

σ2

∞
∫

0

drS, j r ı2k+1
S, j exp

�

−
r2
S, j

2σ2

�

J0

�

−ı
rS, j

σ2

�

. (44)

We note that the integration over the angles is quite an important step as the dependence on
angular contributions of the eigenvalues of Q vanishes due to the invariance of the angularϕS, j
integral. The angular integrals are given by a simple product and are thus the determinant of
a diagonal matrix of dimension M/2 with the factors in Eq. (44) as entries. The characteristic
function is further simplified by the change of variable u j = r2

S, j/2σ
2

χS (k|Q,σ) =
M/2−1
∏

j=0

exp
�

−
1

2σ2

�

�

2σ2
�ık

∞
∫

0

du j uık
j exp

�

−u j

�

J0

�

−2ı

√

√ u j

2σ2

�

. (45)

Since Olver’s confluent hypergeometric function [19] may be written as

M(a, b,−z) =
z

1
2 (1−b)

Γ (a)

∫ ∞

0

du ua− 1
2 (1+b) exp(−u)Jb−1

�

2
p

zu
�

, (46)

we arrive at

χS (k|Q,σ) =
�

exp
�

−
1

2σ2

�

�

2σ2
�ık
Γ (ık+ 1)M

�

ık+ 1, 1,
1

2σ2

��
M
2

. (47)

We notice the connection (30) to the Kummer function. A quick check also shows that the
characteristic function is properly normalised. Since

M(1,1, z) =
∞
∑

j=0

(1) j
Γ (1+ j) j!

z j =
∞
∑

j=0

z j

j!
= ez , (48)

we have

χS (0|Q,σ) =
�

exp
�

−
1

2σ2

�

Γ (1)exp
�

1
2σ2

��
M
2

= 1 . (49)
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We bring the characteristic function to a more convenient form, using the identity [20]

M(ık+ 1,1, z) = 1F1(ık+ 1, 1, z) = ez
1F1(−ık, 1,−z) = ezM(−ık, 1,−z) , (50)

as

χS (k|σ) =
�

�

2σ2
�ık
Γ (ık+ 1)M

�

−ık, 1,−
1

2σ2

��
M
2

. (51)

This representation of the characteristic function is better suited for numerical calculations
of the distribution, due to the absorption of the exponential prefactor into the hypergeomet-
ric function. This representation of the characteristic function is the one we will use in the
following.

As shown, the characteristic function does not depend on Q since all eigenvalues of Q are
on the unit circle and therefore have radius one. We want to mention that it is also possible
to calculate the characteristic function when Q has arbitrary complex eigenvalues.

4 Cumulants and scaling functions

As discussed, an exact functional form of the distribution cannot be obtained for large M and
other approaches are needed. One way to further characterise the distribution is to calculate
the cumulants, which are the logarithmic derivatives of the characteristic functions at ξ = 0,
with ξ= ık

κ j = ∂
j
ξ

lnχS(ξ|σ)
�

�

�

ξ=0
(52)

=
M
2
∂

j
ξ

�

ξ ln(2σ2) + ln Γ (ξ+ 1) + lnM
�

−ξ, 1,−
1

2σ2

��

�

�

�

�

ξ=0

. (53)

Especially the first cumulant, the mean value, is of interest due to its connection to Casimir
forces. Conveniently, it has a closed form. For the higher order cumulants we were unfortu-
nately unable to obtain such a closed form but it is still possible to make statements about the
asymptotic behaviour.

It is useful to introduce a multi-index notation for the derivatives. We denote the j-th
derivative of the confluent hypergeometric function as

∂
j
ξ
M
�

−ξ, 1,−
1

2σ2

�

=: (−1) jM( j,0,0)
�

−ξ, 1,−
1

2σ2

�

, (54)

where the superscript ( j, 0, 0) indicates that the confluent hypergeometric function is differ-
entiated j times with respect to the first argument, the additional factor (−1) j appears due to
the chain rule.

4.1 First cumulant

The first cumulant is a special case since an explicit functional form exists that does not involve
the use of derivatives of the hypergeometric function. According to Eq. (52), the first cumulant
is

κ1 =
M
2

�

ln(2σ2) +ψ0(1)−
M(1,0,0)

�

0, 1,−1/2σ2
�

M (0,1,−1/2σ2)

�

, (55)

with the digamma function ψ0(z), which simplifies due to

ψ0(1) = −γ , and M
�

0,1,−
1

2σ2

�

= 1 . (56)
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We refer to A for an explicit calculation of the first cumulant and only show the result of this
calculation here

κ1 =
M
2
Γ

�

0,
1

2σ2

�

, (57)

where Γ (a, x) is the incomplete Gamma function [22].
This is a remarkably simple expression since the first cumulant of the distribution is up to

a prefactor of M/2 given by the incomplete Gamma function Γ
�

0, 1/(2σ2)
�

. For an analysis
of the asymptotic behaviour of the first cumulant we refer to Appendix A. An analysis of the
cumulants in the case where 1/2σ2 is also M -dependent will be carried out in Sec. 5.2.

4.2 Higher order cumulants

The cumulants are given by Eq. (53) implying that it is necessary to calculate higher order
logarithmic derivatives of the Gamma and of the confluent hypergeometric function. The
term ξ ln(2σ2) does not contribute and can simply be neglected since it is only of order ξ.
Making use of the chain rule the logarithmic derivatives of the Gamma function involves the
polygamma-function ψ j−1, and we observe

∂
j
ξ

ln Γ (ξ+ 1) =ψ j−1(ξ+ 1) . (58)

The logarithmic derivatives of the hypergeometric function are more involved and given in
terms of derivatives of the hypergeometric functions by using Faà di Bruno’s formula [23],

∂ j

∂ z j
ln f (z) = !

∑

m1+2m2+...+ jm j= j

j!
m1!m2! · · ·m j!

(−1)m1+...+m j−1
�

m1 + . . .+m j − 1
�

!

f (z)m1+...+m j

j
∏

l=1

�

∂ l
z f (z)

l!

�ml

.

(59)
This translates in the present case into

∂
j
ξ

lnM
�

−ξ, 1,−
1

2σ2

�

�

�

�

�

ξ=0

=
∑

m1+2m2+...+ jm j= j

j!
m1!m2! · · ·m j!

(−1)m1+...+m j−1 (60)

×
�

m1 + . . .+m j − 1
�

!
j
∏

l=1

�

(−1)lM(l,0,0)
�

−ξ, 1,− 1
2σ2

�

l!

�ml

.

Consequently, the cumulants for j > 1 are

κ j =
M
2

�

ψ j−1(1) +
∑

m1+2m2+...+ jm j= j

j!
m1!m2! · · ·m j!

(−1)m1+...+m j−1

×
�

m1 + . . .+m j − 1
�

!
j
∏

l=1

�

(−1)lM(l,0,0)
�

0,1,− 1
2σ2

�

l!

�ml�

. (61)

We investigate the asymptotic behaviour in Appendix B.

5 Scaling for M dependent 1/(2σ2)

For better understanding the role that the variance of the distribution of S has, it is useful to

substitute S 7→
p

2σ2−1
S in the original definition Eq. (32) of the distribution,

pS (F |Q,σ) = (2πσ2)−
M
2

∫

SR(RM )

d[S]δ
�

F − lndet
�

Q+
p

2σ2S
��

exp
�

−
1
2

tr SS†
�

. (62)
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The variance of S now becomes a prefactor in the log-determinant which can be understood
as a coupling strength between the surface disorder S and the matrix Q which describes the
influence of the surface disorder on the bulk, see the discussion in Sec. 2.1. We choose the
coupling strength in such a way that it scales with the system size M where the exact behaviour
is then determined by an exponentα and we investigate the specific case where 1/(2σ2) = Mα.
This choice is motivated by models like the famous Sherrington-Kirkpatrick-model in which
the coupling strength also depends on the size of the system [24]. We leave the exponent
variable to investigate differences in the behaviour depending on the choice of the exponent.
Thus,

χS (k|Mα) =
�

M−ıαkΓ (ık+ 1)M (−ık, 1,−Mα)
�

M
2 , (63)

is the characteristic function for 1/(2σ2) = Mα.

5.1 Connection to the central limit theorem

It is now interesting to study the large-M limit of the distribution with that scaling. As it is
the case for many interesting systems in physics, this large-M limit is directly connected to the
central limit theorem which is best seen by rewriting Eq. (32) as

pS (F |Q, Mα) = (2πσ2)−
M
2

∫

SR(RM )

d[S]δ (F − ln det(Q+ S))exp
�

−
Mα

2
tr SS†

�

. (64)

When applying the substitution S → S + Q, transforming into the eigenbasis of the skew-
circulant matrices and using spherical coordinates for the eigenvalues
λS/Q, j = rS/Q, j exp(ıφS/Q, j), we have

pS (F |Q, Mα) =
M/2−1
∏

j=0

Mα

π

∞
∫

0

drS, j rS, j exp
�

−Mα
�

r2
S, j + r2

Q, j

��

δ (F − lndet(λS))

×
M/2−1
∏

j=0

π
∫

−π

dφS, j exp
�

2MαrS, j rQ, j cos
�

ϕS, j −ϕQ, j

��

. (65)

Recalling the properties of the determinant of a skew circulant matrices, see Sec. 2.3, the delta
function is

δ (F − ln det(λS)) = δ

 

F −
M/2−1
∑

j=0

ln r2
S, j

!

. (66)

Hence, the integral can be written more compactly as

pS (F |Q, Mα) =
M/2−1
∏

j=0





∞
∫

0

drS, j p
�

ln r2
S, j

�



δ

 

F −
M/2−1
∑

j′=0

ln r2
S, j′

!

, (67)

with the distribution

p
�

ln r2
S, j

�

=
Mα

π
rS, j exp

�

−Mα
�

r2
S, j + r2

Q, j

��

π
∫

−π

dϕS, j exp
�

2MαrS, j rQ, j cos
�

ϕS, j −ϕQ, j

��

. (68)
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Thus, due to the delta function the integral is evaluated where F is given as a sum of ran-
dom variables ln r2

S, j with the distribution p
�

ln r2
S, j

�

, For the case where rQ, j = 1 all of those
random variables are identically and independently distributed and the central limit theorem
can be applied. The large-M limit of pS (F |Mα) is a Gaussian with mean µG = Mµ/2 and
variance σ2

G = Mσ2/2, where µ and σ2 are the cumulants of the distribution in Eq. (68).
However, the cumulants of this distribution are exactly given by the logarithmic derivatives of
the characteristic function

χ̃S(k|Mα) = M−ıαkΓ (ık+ 1)M (−ık, 1,−Mα) , (69)

which one can see by carrying out the angular integrals in Eq. (68). This characteristic function
is precisely the one obtained in Eq. (51) without the power M/2 since only one of the M/2
radial coordinates is accounted for. As in Sec. 5.2, this characteristic function gives the rescaled
cumulants

κ̃ j =
2
M
κ j . (70)

Thus, the mean and variance of the Gaussian in the central limit theorem are given by the
cumulants calculated in Sec. 5.2, i.e. µG = κ1 and σ2

G = κ2.
We mention that the above derivation is not dependent on the choice 1/(2σ2) = Mα and

therefore also holds in the more general case where the variance of the disorder does not
depend on M . The central limit theorem is simply a consequence of the free energy being
given by a sum of the logarithms of the eigenvalues of the disorder and that all eigenvalues of
Q are on the unit circle.

5.2 Cumulants for M dependent variance

We start by revisiting the first and second cumulant and their scaling behaviour to distinguish
between different cases for the exponent α, it will become apparent that five qualitatively dif-
ferent regimes can be identified, as already mentioned in Sec. 4.1. In Sec. 5.2.1, we investigate
the behaviour of the cumulants for α < 0 and find an asymptotic expression for the first four
cumulants. The same is done in Secs. 5.2.2 to 5.2.5 for the cases α = 0, 0 < α < 1, α = 1,
α > 1, respectively. At the end of the section we give a small synopsis.

5.2.1 Case of α < 0

For small 1/(2σ2), thus negative α and large M , the incomplete gamma function is asymptot-
ically given by, see Sec. 4.1,

Γ (0, Mα)∼ − ln (Mα)− γ+Mα , (71)

therefore the first cumulant is

κ1 ∼
M
2
(−γ− ln Mα +Mα) . (72)

The leading order contributions are the logarithmic term M/2 ln Mα and the linear term γM/2;
whereas the term Mα+1/2 will only contribute to sublinear growth, for α < −1 it will even
tend to zero for large M .

We stress that the asymptotics do not simply follow from the results of Sec. 4.1, as only the
rescaled cumulants were analysed assuming that 1/(2σ2) is independent of M . However, in
the present case, where 1/(2σ2) depends on M , higher orders can contribute because together
with the prefactor M/2 they do not necessarily vanish, see Eq. (72).
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Figure 1: Scaling behaviour of ψ1(1)− κ̃2 versus Mα, blue line, compared to a poly-
nomial decay M2α/2, dashed orange line, for α < 0.

From the above asymptotics we conclude that an important characteristic of the case α < 0
is the leading term of the first cumulant, the mean value, is given by M ln M and we have
additional linear contributions.

We adress the scaling behaviour of the higher order cumulants numerically. We do this
by analysing the rescaled cumulants κ̃ j which only depend on Mα, as seen in Eq. (61) for
1/
�

2σ2
�

= Mα, and therefore we can plot them as functions of Mα. For α < 0 we know that
Mα ∈ (0,1] and recall that the second cumulant, the variance, converges to
ψ1(1)M/2 = Mπ2/12 for small 1/(2σ2), see Appendix B. Thus, it is interesting to analyse
the quantity π2/6− κ̃2, where κ̃2 is the rescaled cumulant, in a double logarithmic plot, see
Fig. 1.

Fig. 1 shows that the convergence behaviour is given by

κ2 ∼
M
2

�

π2

6
−

M2α

2

�

. (73)

In leading order the variance grows linearly in M with additional corrections of order M1+2α

which vanish for exponents α < −1/2.
Consequently, the case of α < 0 is characterised by a logarithmic growth with linear correc-

tions in M of the mean value and a linear growth in M for the variance. While not necessary to
distinguish between different cases it is still interesting to investigate higher order cumulants,
their behaviour can be analysed numerically which we show in Figs. 2a and 2b. Hence, the
higher order cumulants are asymptotically

κ j ∼
M
2

�

ψ j−1(1) + (−1) j−1c j M
jα
�

=
M
2
ψ j−1(1) +

(−1) j−1

2
c j M

1+ jα , (74)

where c j is some constant. This is similar to the variance where the leading contribution
is linear in M with additional corrections which are sublinear for α > − j−1, constant for
α = − j−1 and vanish if α < − j−1. This investigation was only done for the orders two up to
four but it is plausible that Eq. (74) also holds for j > 4, especially since we show in Appendix B
that all contributions from the confluent hypergeometric function vanish in the limit of large
M and negative α. This implies that the leading order of all higher order cumulants is always
linear in M for α < 0.
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(a) Scaling behaviour of κ̃3 − ψ2(1) versus Mα,
blue line, compared to a polynomial decay 2

3 M3α,
dashed orange line.
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(b) Scaling behaviour of ψ3(1) − κ̃4 versus Mα,
blue line, compared to a polynomial decay 4

3 M4α,
dashed orange line.

Figure 2: Comparison of the rescaled cumulants and polynomial decays versus Mα

for α < 0.

5.2.2 Case α = 0

The case of α = 0 is comparably easy since it coincides with the case of M independent be-
haviour which was analysed in Secs. 4.1 and 4.2. Therefore, the mean and variance are re-
spectively given by

κ1 =
M
2
Γ (0,1) , (75)

κ2 =
M
2

�

ψ1(1)−M(1,0,0) (0,1,−1)2 +M(2,0,0) (0, 1,−1)
�

. (76)

The case α= 0 is characterised by linear growth in M for mean and variance. All of the higher
order cumulants depict the same behaviour as mean and variance as they grow linearly with
M and the slope is determined by the logarithmic derivatives of the gamma function and the
confluent hypergeometric function.

5.2.3 Case 0 < α < 1

For 0 < α < 1 and large M the asymptotic of the incomplete gamma function, found in
Sec. 4.1, is given by zero. However, as before, it is necessary to analyse the exact convergence
behaviour of the gamma function to determine whether the prefactor M/2 will yield additional
corrections. This is not the case here since the incomplete Gamma function exponentially
decays for large arguments

Γ (0, Mα)< exp(−Mα) . (77)

This implies that for large M the first cumulant tends to zero

κ1 =
M
2
Γ (0, Mα)<

M
2

exp(−Mα)→ 0 , for M →∞ , (78)

for all α > 0. Thus, the case 0 < α < 1 depicts a constant mean of zero, provided that the
chosen M is large enough. The second cumulant is not accessible analytically and will be
analysed numerically. Similar to the case α < 0 we show the rescaled second cumulant κ̃2 in
a double logarithmically in Fig. 3 We infer that the behaviour of the second cumulant is

κ2 ∼
M
2

2M−α = M1−α , (79)
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Figure 3: Scaling behaviour of κ̃2, blue line, compared to a polynomial decay 2M−α,
dashed orange line, for 0< α < 1, versus Mα.
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(a) Scaling behaviour of −κ̃3 versus Mα, blue line,
compared to a polynomial decay 6M−2α, dashed
orange line, for 0< α < 1.

100 101 102 103

10-6

10-4

10-2

100

102

(b) Scaling behaviour of κ̃4 versus Mα, blue line,
compared to a polynomial decay 40M−3α, dashed
orange line, for 0< α < 1.

Figure 4: Comparison between the rescaled cumulants and polynomial for 0< α < 1,
versus Mα.

which is a sublinear growth in M . Thus, the characteristic behaviour in the case of 0 < α < 1
is determined by a mean of 0 and sublinear growth of the variance in M . To analyse the
behaviour of higher order cumulants it is once again useful to look at the rescaled cumulants
in a double logarithmic plot, see Figs. 4a and 4b.

The behaviour of the higher order cumulants is given by

κ j ∼
(−1) j

2
c′j M

1−( j−1)α , (80)

where c′j are some constants, similar to the case α < 0. Three possibilities exist, for α<( j−1)−1

the j-th cumulant depicts a sublinear growth in M , for α = ( j − 1)−1 the j-th cumulant is
constant, and for α > ( j − 1)−1 the cumulant vanishes for large M . It is important to mention
that instead of only j appearing, as in the case for α < 0, j−1 appears which is crucial for the
behaviour of the case α = 1 that will be dealt with in the following section. The behaviour is
only shown for j = 2, 3,4 but it is once again plausible that it also holds for j > 4.
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5.2.4 Case α = 1

The characteristics for α= 1 follow directly from the above case of 0< α < 1 since it was only
assumed that α is greater than zero. It is still useful to distinguish the cases α = 1 and α > 1
from the above case, since the behaviour of the variance differs. The asymptotics of the mean
value is still given by zero and the second cumulant by one which can be seen from Eq. (79)
at α= 1

κ2 ∼ 1 . (81)

As mentioned before, this results from the presence of j−1 instead of j in Eq. (80) as was the
case for α < 0. All the higher order cumulants will converge to zero for sufficiently large M ,
see Eq. (80). Consequently, only the variance has a non-zero limit in the case α= 1.

5.2.5 Case α > 1

For α > 1 the mean is given by zero for large M . However, in contrast to the case of α= 1 the
variance is not constant but rather vanishes in the limit of large M , following from Eq. (79)
since 1− α < 0 for α > 1. As for α = 1 all higher order cumulants also converge to zero for
large M .

5.2.6 Synopsis

For both α = 0 and α < 0 the leading order contributions to the cumulants of order two or
higher are linear in M , however the rescaled cumulants are different and for α < 0 additional
sublinear corrections appear. It is interesting that the leading order behaviour is not dependent
on the value of α, except for the first cumulant κ1.

For the case α > 0 we showed that the mean is exponentially suppressed and quickly
converges to zero for larger M . For 0< α < 1 higher order cumulants do not necessarily show
that behaviour and especially the variance always grows with M . Unlike to the prior two cases
the behaviour of the cumulants explicitly depends on the value of α. For α = 1 we find a
constant variance while all higher order cumulants tend to zero. For α > 1 all cumulants tend
to zero.

For α > 1 the distribution converges to a delta function. This cases is rather uninteresting
since it shows that for α > 1 the disorder in the system becomes irrelevant and therefore it
will be omitted in the further investigation. Similarly we saw that for any α > 0.5 all but the
first two cumulants tend to zero which is not of particular interest either since the focus of the
investigation is an intermediate limit of the distribution to capture non-Gaussian features.

6 Cumulant expansion and approximation of the distribution

In Sec. 6.1, we will introduce a cumulant expansion of the characteristic function and show
the equivalence of the large-M limit and a small k approximation. In Appendix C, the ap-
proximated characteristic function is then Fourier transformed and we show that the resulting
distribution verifies the Gaussian limit resulting from the central limit theorem, see Sec. 5.1.
In Sec. 6.2, we present numerical data for the cumulants, compare it to the analytical expres-
sions and find a suitable fit for the distribution. This fit and its parameters are then analysed
in detail.
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6.1 Cumulant expansion

The logarithm of the characteristic function expanded in the cumulants takes the form

lnχS(k|Mα) =
∞
∑

j=1

κ j

j!
(ık) j . (82)

We notice that the exponent M/2 becomes a prefactor. Furthermore, it is instructive to intro-
duce a new variable k′ =pκ2k rescaled by the standard deviation. A normalising factor goes
hand in hand with such a rescaling. The new cumulant generating function reads

lnχS(k
′|Mα) = −

1
2

lnκ2 +
∞
∑

j=1

1
j!

κ j
p
κ2

j

�

ık′
� j

. (83)

This representation allows us to assess the relevance of the higher order cumulants on the scale
of the standard deviation. We omit the cases where α > 1 as they do not yield any particularly
interesting results. The disorder in the system is not strong enough to have any significant
influence. Using the scaling behaviour as calculated in Sec. 4.2 the ratio of cumulants is given
by

κ j
p
κ2

j ∼



















(−1) jc′j
2

M1−( j−1)α

M j(1−α)/2 ∝ M1− j
2−α

�

j
2−1

�

, 0≤ α≤ 1 ,

2
j
2−1

ψ j−1(1)
p

ψ1(1)
j M1− j

2 , α < 0 .

(84)

For orders higher than two, the ratio tends to zero for large M , hence in the limit of M →∞
the cumulant generating function becomes

lnχS(k
′|Mα)∼ −

1
2

lnκ2 +
κ1p
κ2

ık′ −
1
2

k′2 . (85)

This is the cumulant generating function of a normal distribution with mean κ1 and vari-
ance κ2, consistent with the application of the central limit theorem, see Sec. 5.1. However,
the more important aspect is that for sufficiently large M the first few cumulants produce
significant contributions to the characteristic function. In this case, we choose the first four
cumulants, since all higher order cumulants tend to zero with exponents larger than 2.5, imply-
ing that this drop off in the exponential function renders the contributions insignificant. The
choice of which cumulants to neglect is somewhat arbitrary but it is useful to keep cumulants
of up to an order larger than two to be able to observe non-Gaussian behaviour. Therefore,
when comparing fits with the distribution the first few cumulants serve as a good measure to
determine the accuracy of the fit.

We investigate the approximation of the distribution further in Appendix C and show that
the distribution can be expanded in the cumulants which yields polynomial correction to the
Gaussian. We also show that there is an equivalence between the large-M and the small-k
limit.

6.2 Numerical simulations

To facilitate numerical calculations, we simplify the Fourier transform since the characteristic
function has following property

χS(−k|Mα) = (Γ (−ık+ 1)M (ık, 1,−Mα))
M
2 = χ⋆S(k|M

α) , (86)

18

https://scipost.org
https://scipost.org/SciPostPhys.17.4.122


SciPost Phys. 17, 122 (2024)

500 1000 1500 2000
10-9

10-8

10-7

10-6

10-5

10-4

0.001

(a) α= −2.
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Figure 5: Absolute value of the relative error between numerical and analytical re-
sults of rescaled cumulants κi versus M for α= −2, 1/4.

which reflects that the distribution is real. Thus,

pS (F |Mα) =
1
π

∞
∫

0

dk Re (exp(−ıkF)χS(k|Mα)) , (87)

the imaginary parts cancel each other.
We numerically calculate the distribution with Mathematica [25] in the interval

�

κ1 − 6
p
κ2,κ1 + 6

p
κ2

�

with the standard deviation
p
κ2. This ensures that for all com-

binations of M and α the chosen intervals are comparable. The α values considered are
{−2,−1.5,−1,−0.5,−0.25,0, 0.25,0.5}. For any given α, values of M range from 200 to 2000
in increments of 10.

6.2.1 Comparison of analytical and numerical cumulants

Higher order cumulants do not contribute significantly for larger M and therefore we use the
first four cumulants to determine the quality of the numerical data. In Fig. 5 we show the
relative error between the analytically and numerically calculated cumulants for α = −2 and
α= 0.25. The other values are not shown since the agreement is very good.

The comparison in Fig. 5 shows that the numerical results agree very well with the analyt-
ical ones. Some deviations exist and we attribute these to numerically inaccuracies since the
largest differences are about 0.2%. Importantly, the plots show that the quantitative behaviour
is captured by the numerical data. A larger interval in which the distribution is calculated is
expected to improve the quality of the data, however, this comes at a cost of much larger
computation times while not yielding any meaningful results and therefore it was disregarded
here.

6.2.2 Log-normal behaviour and large-M limit

It is clear from the analysis of the cumulants that the distribution is asymmetric since the third
cumulant is non-zero. Another constraint is that the asymptotic for large M should still be
Gaussian with mean κ1 and variance κ2 on a standardized scale. As mentioned in Sec. 2.1 the
log-normal distribution is an appropriate fit for the case of discrete disorder [8], making it a
plausible choice for the case of anti-circulant disorder as well. The log-normal distribution we
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used to fit the numerical data is

plog(F |a, f0,σ′, s) =















1
f0

1
p

2πσ′2
�

1− F−s
f0

� exp



−
ln
�

1− F−s
f0

�2

2σ′2



 , 1− F−s
f0
> 0 ,

0 , else.

(88)

The parameter s is a simple shift of F , which influences the mean of distribution and f0,σ′ influ-
ence the shape and the support of the log-normal distribution. To avoid confusion we mention
that the parameter σ′ is not the variance σ of the disorder S which was set to 1/(2σ2) = Mα.
The prefactor f −1

0 normalizes the distribution. The parameters are determined by fitting the
log-normal distribution to the numerical data. However, in the case α > 0 we slightly modify
the fit by setting s = κ1, since we showed in Eq. (78) that the mean drops off exponentially
on a scale that depends on α with M and therefore the fit performs significantly better when
fixing the parameter s. In Table 1, we show the scaling of the parameters determined by the
fits. The leading order contributions for large M indicate that for negative α the results are not
subject to any significant change and all of the considered cases exhibit very similar behaviour.
This is not surprising as for negative α the leading order contributions to the cumulants do
not depend on α, only going to higher orders will yield dependencies on α. On the contrary,
non-negative α are subject to change in the leading orders, which by a similar argument as
before is not surprising, since the leading order contributions to the cumulants depend on α.
For all α > 0 the leading order of σ will no longer be proportional to M−1/2 but rather some
other fractional power of M . This is somewhat peculiar but is simply a consequence of the
central limit theorem.

In the following, F̃ = F − κ1 to simplify the notation, is treated as a quantity that is on
the scale of the standard deviation

p
κ2, since the log-normal distribution only has non-zero

values if F̃/ f0 < 1. This observation also implies that we can represent the logarithm by its
power series

ln

�

1−
F̃
f0

�

=
∞
∑

l=1

(−1)l−1

l

�

−
F̃
f0

�l

= −
F̃
f0
+O

�

f −2
0

�

, (89)

where all higher order contributions of f0 vanish since f0 ∼ M and only the leading con-
tributions will be considered. Additionally, since F̃ is of the order of the standard deviation
p
κ2 ∼
p

M
1−Θ(α)α

, Θ(α) is the Heaviside step function, the factor (1− (F − κ1)/ f0) is approxi-
mated by 1 with the same argument as before. Reinserting this into the log-normal distribution

Table 1: Fit parameter scaling with M rounded to the fourth digit.

α f0 σ′

−2 1.6882 M + 3.7350 0.5395 M−
1
2 − 0.1106 M−1

−3
2 1.6882 M + 3.7348 0.5395 M−

1
2 − 0.1106 M−1

−1 1.6882 M + 3.6921 0.5390 M−
1
2 − 0.1011 M−1

−1
2 1.6882 M + 2.7032 0.5390 M−

1
2 − 0.08916 M−1

−1
4 1.6735 M − 7.5824 0.5401 M−

1
2 + 0.0684 M−1

0 1.3223 M + 2.4223 0.6314 M−
1
2 − 0.1701 M−1

1
4 0.8261 M − 8.6247 1.3180M−

5
8 − 1.2333M−

5
4

1
2 1.0265 M − 16.9825 0.9707 M−

3
4 + 5.1601 M−

3
2
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Table 2: Leading order in M of parameters compared with κ2.

α ( f0σ′)2 κ2 relative error approx.

−2 0.829399 M π2

12 M 0.8%

−3
2 0.829399 M π2

12 M 0.8%

−1 0.821701 M π2

12 M 0.09%

−1
2 0.828087 M π2

12 M 0.6%

−1
4 0.817057 M π2

12 M 0.6%
0 0.697191 M 0.68794 M 1.3%
1
4 1.18549 M

3
4 M

3
4 18.5%

1
2 0.992693

p
M

p
M 0.7%

gives

plog

�

F
�

�

� f0,σ′,κ1

�

∼
1

f0
p

2πσ′2
exp

�

−
F̃2

2 (σ′ f0)
2

�

, (90)

i.e. a Gaussian distribution with mean κ1 and variance
�

σ′ f0
�2

. The condition that in the
large-M limit the log-normal distribution converges to a Gaussian with mean κ1 and variance
κ2 goes hand in hand with the condition that ( f σ′)2 → κ2 for large M which enforces the
leading order contributions to σ′ to be M−(1+Θ(α)α)/2. This follows from the empirical result
that f0 depends linearly on M .

We investigate whether the condition ( f σ′)2 → κ2 is indeed fulfilled from our fits and
show the obtained values in Table 2.

The obtained fits accurately capture the large-M limit enforced by the central limit the-
orem. The relative error for negative α is small and we attribute them to numerical errors.
However, for α = 1/4 the deviations are large which is most likely due to the values of M
being too small such that they are not yet able to reflect the asymptotic behaviour which was
discussed previously. Nevertheless, it is remarkable how well the fits coincide with the limit
for all other cases. Table 2 also shines light on why the cases for positive α have a different
scaling for the parameter σ′, the variance no longer depends linearly on M but rather with
some other power. Furthermore, as f0 in leading order grows linearly the scaling behaviour of
σ′ changes.

Similar to the comparison between the analytically calculated cumulants and the results
from the numerical data, the cumulants originating from the fitted distribution are compared
to the analytically calculated cumulants and we show the relative error in Fig. 6. The examples
α= −2 and α= 1/4 are representative for all other evaluated α.

Just as before the cumulants calculated from the log-normal fit for negative α coincide very
well and any deviations only appear for the 4th cumulant and are of the order of a few percent,
when considering the rescaled cumulants. However, for positive α there are deviations for the
mean which is to be expected since we fixed s = κ1 and the first cumulant of a log-normal
distribution is given by κlog,1 = f0(1− exp(σ2/2)) + s. Similarly, the higher order cumulants
show larger deviations as well, nevertheless, the qualitative behaviour is captured by the fit,
see Fig. 7. We generally see that for the considered values of α the case α= 1/4 performs the
worst, in the range of M values chosen here. We suspect that the smaller the α > 0 the higher
the M values would have to be to achieve results comparable to those of negativeα. A plausible
reason for this is the behaviour of the mean κ1 ∼ M exp(−Mα) which grows linearly and then
decays exponentially with growing M , the scale on which this decay occurs is determined by
α and the smaller α the larger M has to be.
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Figure 6: Absolute value of the relative error between analytical results and fitted
data of rescaled cumulants κ̃i versus M for α= −2, 1/4.
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Figure 7: Rescaled cumulants κ̃1, κ̃4 versus M for α= 1/4 for analytical results (blue
line) and fitted data (orange dots).

This shows that in this regime of M values the log-normal distribution does capture the be-
haviour of the full distribution, at least up to the order that was considered here. However, the
question arises whether the higher orders, which were neglected provide better understanding.
Additionally, it is also interesting to study if the distribution is already converged to a Gaussian
or whether log-normal behaviour is still prevalent in this regime. We give an answer to these
questions by analysing the similarity between the numerical data and Gaussian/log-normal
data in the following.

7 Similarity measures

Many measures exist to asses the quality of a fit. Here, we find it convenient to use the Jensen-
Shannon divergence and Hellinger distance. The Jensen-Shannon divergence [26] for two
discrete distributions P and Q is given by

JSD (P||Q) =
1
2
(D (P||M) + D (Q||M)) , with M =

1
2
(P +Q) , (91)

where the quantity D(P||Q) is the Kullback-Leibler divergence [27]

D(P||Q) =
k
∑

i=1

pi ln
�

pi

qi

�

, (92)

22

https://scipost.org
https://scipost.org/SciPostPhys.17.4.122


SciPost Phys. 17, 122 (2024)

200 500 1000 2000
1.× 10-4

5.× 10-4
0.001

0.005
0.010

0.050

(a) α= −2.

200 500 1000 2000

5.× 10-4
0.001

0.005
0.010

0.050

(b) α= 1
4 .

Figure 8: Hellinger distance H between a Gaussian (blue), the log-normal fit (green)
and the fourth order approximation (orange) and the numerical data versus M for
different α.
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Figure 9: Jensen-Shannon divergence (JSD) of a Gaussian (blue), the log-normal fit
(green) and the fourth order approximation (orange) and the numerical data versus
M for different α.

with k the number of sample points of P,Q. The Kullback-Leibler divergence itself is also a valid
measure for similarity however it is not symmetric in P and Q contrary to the Jensen-Shannon
divergence.

The second measure is the Hellinger distance [28] which for discrete distributions P,Q is
defined by

H(P,Q) =
1
p

2

√

√

√

√

k
∑

i=1

�
p

pi −
p

qi

�2
. (93)

All of the above measures quantify the similarity between two distributions. The Kullback-
Leibler and Jensen-Shannon divergence as well as the Hellinger distance indicate that two
distributions are the same if the resulting value is zero. All non-zero values mean that the
two distributions differ from each other. The Jensen-Shannon divergence is bounded by ln2
and the Hellinger distance by one. The Kullback-Leibler divergence is not bounded. There is
no absolute scale to determine the similarity between two distributions such that we need a
comparison. Therefore, we compare the similarity between the numerical data and the fitted
data and the similarity between the numerical data and the Gaussian limit. This allows us to
asses whether the fit captures the numerical data better than the Gaussian limit.

In Figs. 8 and 9 we show the results of these comparisons for α = −2, 1/4. The other
values are not shown because they do not differ in a meaningful way.
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For both, the Hellinger distance and the Jensen-Shannon divergence, the fitted log-normal
distribution provides a significantly better description of the numerically calculated data than
the Gaussian limit. In the case of the Jensen-Shannon divergence it is orders of magnitude
better. However, compared to a cumulant expansion of the distribution up to the fourth cumu-
lant, the absolute value of this is used here since the approximation is not positive, for positive
α the log-normal distribution provides a worse fit. This is in line with our prior analysis where
we found qualitative agreement for positive α but there are quantitative differences. For all
other α’s the log-normal fit is better than the approximation. The Gaussian provides an upper
bound since we know from the central limit theorem that for M →∞ our distribution is Gaus-
sian. However, we are particularly in the behaviour deviating from the Gaussian behaviour
and therefore for a reasonable fit we expect that it not only decays with M but also that it is
below the Gaussian curve and only meets it for M →∞.

8 Conclusions

We investigated the distribution of the free energy for skew-circulant disorder. We were able
to obtain the characteristic function and the cumulants in a closed form. Remarkably, the first
cumulant is given by the incomplete Gamma function, up to a prefactor, depending only on the
variance of the disorder. We investigated the case that the variance of the disorder scales with
the system size to the power of a parameter α. We then identified different regimes in which
the system is dominated by the disorder, independent of the disorder and transitional regime
where the cumulants explicitly depend on α in the leading order. For the limit M →∞ we
found that the central limit theorem holds and the distribution becomes Gaussian with mean
κ1 and variance κ2. This limit was also accessible via a cumulant expansion and a small k
approximation of the characteristic function.

We computed the distribution numerically and showed that the distribution is log-normal
by investigating the first four cumulants since we showed that higher cumulants become irrele-
vant for larger M . For all considered α we found qualitative agreement and only for positive α
there existed significant quantitative differences. The computed parameters of the log-normal
distribution also fulfilled the Gaussian limit.

Lastly, we used the Jensen-Shannon divergence and the Hellinger distance and investigated
whether our log-normal fit performs better than the Gaussian limit when compared to the
numerical data. This was the case for all α. We also compared it to an approximation of the
distribution up to the fourth order in the cumulants and observed that for non-positive α our
log-normal fit was more similar to the numerical data.

In conclusion, we managed to access the characteristic function for the case of skew-
circulant and its cumulants analytically. Remarkably, we also found that the distribution is
well described by a log-normal fit for larger but finite M . Additionally, we found that in the
regime where the disorder dominates the system there is no dependence on the parameter α
and the log-normal distribution quantitatively describes the system. The transitional regime
is more difficult to handle because of the explicit dependence on α, and the log-normal distri-
bution only captures qualitative features.
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Figure 10: Rescaled first cumulant κ̃1 versus 1/2σ2. For comparison the asymptotic
expressions −γ+ ln 2σ2 (green) and 0 (orange).

A First cumulant

The derivatives of the confluent hypergeometric function, i.e. of Kummer’s confluent hyper-
geometric function, were calculated in Ref. [29]. The first derivative,

M(1,0,0) (a, b, z) =
z
(b)1

∞
∑

m1=0

(a)m1
(1)m1

(b+ 1)m1
(2)m1

zm1

m1!2F2

�

1, a+ 1+m1
2+m1, b+ 1+m1

z
�

, (A.1)

reduces to a rather simple expression in the case of a = 0, b = 1, z = −(2σ2)−1,

M(1,0,0)
�

0,1,−
1

2σ2

�

= −
1

2σ2 2F2

�

1, 1
2, 2 −

1
2σ2

�

. (A.2)

Because of the Pochhammer-symbol (a)m1
the sum only yields non-zero results for m1 = 0. We

further simplify the hypergeometric function by using the identities [30, 31] which together
yield the result

2F2

�

1,1
2,2

z
�

=
1
2z

�

2Ei(z) + ln
1
z
− ln z − 2γ

�

=
−Γ (0,−z)− ln(−z)− γ

z
, (A.3)

where Ei(z) is the exponential integral. Hence, the derivative of the hypergeometric function
for z = −1/(2σ2) is given by

M(1,0,0)
�

0,1,−
1

2σ2

�

= −Γ
�

0,
1

2σ2

�

− ln
1

2σ2
− γ . (A.4)

This is reinserted into the expression of the first cumulant Eq. (55) together with the values
from Eq. (56) to arrive at the result

κ1 =
M
2

�

ln
�

2σ2
�

− γ+ Γ
�

0,
1

2σ2

�

− ln
�

2σ2
�

+ γ
�

=
M
2
Γ

�

0,
1

2σ2

�

. (A.5)

In Fig. 10, we plot the rescaled cumulant κ̃1. For small values of 1/(2σ2) the incomplete
gamma function depicts a logarithmically divergent behaviour

Γ

�

0,
1

2σ2

�

∼ − ln
�

1
2σ2

�

− γ . (A.6)
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This follows from Eq. (A.3) and inserting the definition of the exponential integral [32]

Ei(z) =
∞
∑

k=1

zk

k!k
+ γ+

1
2

�

ln z − ln
1
z

�

, (A.7)

which then gives

Γ

�

0,
1

2σ2

�

= −
∞
∑

k=1

(−1)k

(2σ2)kk!k
− γ− ln

�

1
2σ2

�

. (A.8)

This clearly represents the asymptotics in Eq. (A.6), as for z = −1/2σ2 the contributions from
the series become arbitrarily small for large 2σ2. In later parts of the analysis higher orders
will be important and therefore we mention here that the next order is bounded linearly

Γ

�

0,
1

2σ2

�

∼ − ln
�

1
2σ2

�

− γ+
1

2σ2
. (A.9)

For large 1/2σ2 the incomplete Gamma function tends to zero since for a = 0 and for
2σ2 < 1 it is clear that t−1 < 1 for any t in the interval and thus

Γ

�

0,
1

2σ2

�

=

∞
∫

1/2σ2

dt t−1 exp(−t)<

∞
∫

1/2σ2

dt exp(−t) = exp
�

−
1

2σ2

�

, (A.10)

is bounded by an exponentially decay in 1/2σ2.

B Higher order cumulants

In Figs. 11a to 11c, we show the rescaled cumulants κ̃ j for j = 2,3, 4. Similar to the first
cumulant it is possible to identify three regimes, one for small and one for large values of
1/(2σ2), where the rescaled cumulants converge to a non-zero constant and zero, respectively,
and a third transition area that connects both of the asymptotics. The values for the case of
small 1/2σ2 coincide with those of the polygamma functionψ j−1(1). This is not a coincidence
but rather a result of the behaviour of the derivatives of the confluent hypergeometric function.
The derivatives with respect to the first argument were explicitly calculated in Ref. [29]

M( j,0,0) (a, b, z) =
z j

(b) j

∞
∑

m1,...,m j+1=0

(1)m1
· · · (1)m j+1

( j + 1)m1+...+m j+1
(b+ j)m1+...+m j+1

×
(a)m1

· · · (a+ j)m1+...+m j+1

(a+ 1)m1
· · · (a+ j)m1+...+m j

zm1+...+m j+1

m1! · · ·m j+1!
. (B.1)

For a = 0, b = 1, z = −1/2σ2 it is clear that in the case of small 1/2σ2 the derivatives all tend
to 0 for j ≥ 1. This is so, because the lowest order in 1/2σ2 in the power series is of order 1
which together with the prefactor

�

2σ2
�− j

clearly approaches zero as 1/2σ2 goes to zero.
In contrast to the first cumulant the higher order rescaled cumulants do not show any

logarithmic divergence but rather asymptotic behaviour given by a non-zero constant and
zero. It is important that in this case 1/2σ2 was always assumed to be independent of M such
that the only M contribution to the cumulants is the prefactor M/2.
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C Approximation of the distribution

This conclusion is consistent with an approximation of the characteristic function and subse-
quent calculation of the distribution. Importantly, the characteristic function has significant
values for k close to zero only, see Fig. 12.

Splitting off the Gaussian contribution of the characteristic function

χS(k|Mα) = exp
�

κ1ık+
κ2

2
(ık)2

�

exp

 

∞
∑

j=3

κ j

j!
(ık) j

!

, (C.1)

which are the only significant contributions for k close to zero. This means that it is sufficient
to consider powers of ık up to two in the argument of the exponential function and powers up
to five linearly. Thus, the exponential function containing those higher powers is approximated
by

exp

 

∞
∑

j=3

κ j

j!
(ık) j

!

≈ 1+
4
∑

j=3

κ j

j!
(ık) j . (C.2)

In principle even higher orders may be taken into account. However, the expression will be-
come lengthy due to contributions combining lower order terms. From the above consider-
ations we expect that these higher order will drop off with large M . We confirm this in the
following and therefore they neglect these terms here.
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(a) Rescaled second cumulant κ̃2.
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(b) Rescaled third cumulant κ̃3.
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(c) Rescaled fourth cumulant κ̃4.

Figure 11: Comparison of the rescaled (a) second, (b) third, (c) fourth cumulant,
blue line, the asymptotics (a) ψ1(1), (b) ψ2(1), (c) ψ3(1), green line, and zero,
orange line, versus 1/2σ2.
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Figure 12: Comparison of |χS(k|Mα)| versus k for M = 1000 and α = −1 (blue),
α= −0.5 (orange), α= 0 (green) and α= 0.5 (red).

We now carry out the Fourier transformation 35 and arrive at the intermediate result

pS(F |Mα)≈
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4
∑

j=3

κ j

j!
(−∂F )

j

!

1
p

2πκ2
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�

−
(F −κ1)

2

2κ2

�

. (C.3)

From the definition of the Hermite polynomials [20] it follows that the distribution is of the
form

pS(F |Mα)≈
1

p

2πκ2

exp

�

−
(F − κ1)

2

2κ2

�

 

1+
4
∑

j=3

κ j

j!
p

2κ2
j H j

�

(F −κ1)
p

2κ2

�

!

, (C.4)

which is Gaussian in leading order with additional polynomial corrections. Importantly the
deviations around the Gaussian behaviour are weighted by the ratio in Eq. (84) which shows
that the quantity indeed measures the relevance of certain orders. This ratio appears linearly
instead of in an exponential because all other terms inside the exponential function were
neglected and these higher order terms drop off faster.

Furthermore, the contribution of higher orders are always measured on the scale of the
standard deviation. Even if higher order cumulants are non-zero, or grow with M , the dis-
tribution will still tend to a Gaussian, as is to be expected from the central limit theorem.
However, this makes it possible to fit a distribution which reproduces said higher order cu-
mulants while also fulfilling the Gaussian limit. This allows us to determine whether the fit
accurately captures the behaviour of the distribution pS(F |Mα) in a given interval for M or if
it only obeys the same Gaussian limit.

The approximation of the characteristic function for small k is equivalent to the large M
approximation of the distribution, because higher powers of k can be expressed by derivatives
with respect to F which then in turn yield the prefactors in Eq. (84). The different powers in k
correspond to the contributions from different orders of the cumulants such that if one takes
only very small k into account the higher order cumulants are negligible and the dependence
of the interval of significant k-values on M is shown in Fig. 12.
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