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Abstract

We construct new continuous families of AdS; x S3 x T4 and AdS3 x S3 x 3 x S solutions in
heterotic and type II supergravities. These families are found in three-dimensional consis-
tent truncations and controlled by 17 parameters, which include TsT 3 deformations and
encompass several supersymmetric sub-families. The different uplifts are constructed in a
unified fashion by means of Exceptional Field Theory (EXFT). This allows the computation
of the Kaluza-Klein spectra around the deformations, to test the stability of the solutions,
and to interpret them holographically and as worldsheet models. To achieve this, we
describe how the half-maximal SO(8, 8) EXFT can be embedded into Eg(g) EXFT.
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1 Introduction

In any Lorentz invariant quantum field theory in d dimensions, operators can be classified
according to their behaviour under the renormalisation group (RG), and for conformal field
theories (CFTs) sitting at the fixed points of the RG flow this behaviour can be characterised
by the operator’s conformal dimension A. For irrelevant operators, A exceeds the spacetime
dimension and the RG flow takes the theory back to the original CFT. Conversely, relevant
deformations are triggered by operators with A < d and RG flow drives the theory away
from the starting point. A third class of deformations, called marginal, stay unaffected by
changes in the energy scale. Instead, these marginal operators encode the space of theories
into which the original theory can be deformed without breaking conformal invariance. This
space is called the CFT’s conformal manifold. Holographically, it corresponds to a continuous
family of AdS solutions sharing the same cosmological constant, but having different internal
spaces. Although there is no systematic way of constructing these gravity solutions from the
CFT information, the AdS/CFT dictionary identifies marginal operators with modes in the bulk
that are massless to all orders in the 1/N expansion.

Supersymmetry is expected to be required for holographic conformal manifolds to exist,
as non-supersymmetric AdS solutions are believed to be unstable [1-3]. However, recent
scrutiny [4] has revealed AdS, configurations that might evade this requirement, as all the
standard decay channels, both perturbative and non-perturbative, are absent for this solution.
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In AdS;/CFT,, the scenario could be richer and there is a long-standing counter-example [5,6]
which is understood both in the field theory and gravity sides. It is based on current-current
deformations of the two-dimensional CFT, which are known to be exactly marginal [7] despite
possibly supersymmetry breaking. From the gravity perspective, these deformed solutions will
remain in the small curvature regime for small values of the deformation parameters, and
this assures that the deformed solution can also be studied in the supergravity approximation.
More generally, in the supergravity approximation continuous deformations are identified with
classically marginal operators, which will be exactly marginal only if they persist for finite
values of N and the CFT coupling. In the present work, we will mostly focus on the supergravity
regime, and for this reason we will omit this distinction henceforth. However, we note that
some quantum corrections can already be assessed in this limit from the n-point couplings
among the supergravity modes [8].

The purpose of this note is to explore the landscape of continuously connected AdS;
solutions in type IIB and heterotic supergravities, expanding the work of [9]. The class of
theories we focus on is given by the near-horizon limit of NS5-F1 branes, and thus related by
S-duality to the D1-D5 configuration [10-13] and have been recently studied in ref. [14-16].
These latter works, together with [17, 18], conjecture that string theory on AdS; x §3 x 83 x §!
and AdS; x S x T* are holographic duals to non-linear sigma models on symmetric SU(2) x U(1)
and T* orbifolds, respectively. They take advantage of the absence of RR fluxes to encode the
dynamics as a supersymmetric Wess-Zumino-Witten (WZW) model on the worldsheet, and for
the most part focus on the tensionless string limit, where the supergravity description is not
valid. The opposite limit, where all string excitations decouple, remains largely unexplored.

Previous works have studied deformations of the AdS; x S° x S3 x ! background in type
IIB supergravity [19], and its AdS; x S® x T* counterpart in both the type IIB and heterotic
theories [9]. This has shown very similar structures on both examples, and here we propose
a generic framework to study their deformations for both half-maximal as well as maximal
theories simultaneously. We enlarge our understanding of the landscape of deformations by
exhibiting a 17-parameter family of solutions that includes cases which in 10d correspond to
Lunin-Maldacena TsT deformations [20] and Wilson loops analogous to the recently studied
fibrations in [21-27]. The parameters generically break all supersymmetries, but in certain loci
some supersymmetry is recovered. We further study the spectra of Kaluza-Klein excitations
on these solutions, and discuss the perturbative stability of several supersymmetry breaking
subfamilies. Additionally, given the fact that the deformations do not excite any RR fluxes, the
solutions stay pure NSNS and can thus be described from a worldsheet point of view. This
allows us to show that the marginal parameters induce JJ operators on the worldsheet.

The techniques we employ to obtain these large conformal manifolds are based on a
convenient feature of the AdS; x S x T# and AdS; x S x S3 x S! solutions: they admit
consistent truncations to three-dimensional gauged supergravity. These are restrictions to a
finite subset of modes in the Kaluza-Klein tower such that any solution of the three-dimensional
gauged supergravity defines a solution of the full set of equations of motion in ten dimensions.
Having a consistent truncation is a particularly valuable tool given that they give access to a
subsector of the higher-dimensional theory using only the lower-dimensional dynamics. In
the three-dimensional truncation, the theory for the modes retained has a scalar potential
featuring stationary points. The solution at these points correspond to AdS; x K solutions in
ten dimensions, and in particular, marginal deformations correspond to flat directions in the
3d potential, leading to continuous deformations of the internal manifold /.

The existence of these consistent truncations can be exploited through the tools of Excep-
tional Field Theory (EXFT) [28,29]. EXFT is a reformulation of higher-dimensional supergravity
making it formally covariant under the U duality group of the lower-dimensional theory ob-
tained by toroidal reductions. The higher-dimensional fields are reorganised to mimic the ones
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in lower dimensions, thus allowing the use of the U duality symmetry before the compactifi-
cation already. This reformulation is extremely efficient to build and parameterise consistent
truncations [30,31] and to compute Kaluza-Klein spectra [32-36] and higher-couplings [37]
around any solution in the truncation. Most prominently, these techniques also apply to
vacua preserving few or no (super)symmetries, which were beyond the reach of traditional
methods. In this note, we focus on ExFTs based on the U duality groups of maximal and half-
maximal supergravities in three dimensions, respectively given by Eggy and SO(8, n), which
were constructed in ref. [38,39].

The rest of the paper is divided in two main parts. The first one exposes the technical
tools necessary to the study, and can be skipped by readers only interested in the main results,
which are presented in the second part. In sec. 2 we review the main features of maximal and
half-maximal supergravities in three dimensions, and explain how the half-maximal theories
can be embedded in their maximal counterparts. By these means, we will construct new
AdS; x S3 xS x S and AdS; x S3 x T# solutions in maximal supergravity through computations
in the half-maximal theory. Sec. 3 introduces the Egg) and SO(8, n) exceptional field theories
with an emphasis on their applications to the study of consistent truncations and Kaluza-Klein
spectra. We show that SO(8, 8) ExFT can be consistently embedded into its Eg(g) analogue, and
use this embedding to demonstrate that a consistent truncation of half-maximal supergravity
automatically defines a consistent truncation in maximal supergravity. Finally, in sec. 4 we
exemplify how this framework applies to the round AdS; x S3 x $ x S and AdS; x §% x T*
solutions in both type II and heterotic supergravity.

The second part is dedicated to the analysis of new families of marginal deformations of
these solutions. This constitutes the main result of this note. In sec. 5, we present for each
family the details of the ten-dimensional solution and explain how the deformation affects
the spectrum of Kaluza-Klein modes. From the spectrum, we deduce possible supersymmetry
enhancements and discuss the perturbative stability of the non-supersymmetric solutions by
testing the masses of scalar fields against the Breitenlohner-Freedman bound [40]. All deformed
solutions we present are purely NSNS and we use this fact in sec. 6 to study them from the
point of view of the worldsheet action. This shows that these deformation parameters induce
current-current operators of the original worldsheet model, and this can be used to predict the
holographic CFT operators as combinations of JJ deformations. We end in sec. 7 with some
final comments and relegate further technical details to four appendices.

2 Gauged supergravities in D = 3

2.1 Half-maximal theories

The first instance of AdS; families leading to the AdS; x S x §® xS! and AdS; x S x T# solutions
mentioned above was found in [41] as a family of vacua in half-maximal D = 3 supergravity
with four scalar multiplets. For theories containing n scalar multiplets, the global symmetry
of the ungauged theory is SO(8,n) [42], and the pure supergravity multiplet containing the
graviton and eight gravitini is supplemented by 8n scalars and spin-1/2 fermions. The former
parameterise the manifold
SO(8,n)
SO(8) x SO(n)”’

and the gravitini and spin-1/2 fields transform respectively in the spinorial and co-spinorial of
the denominator SO(8). To describe the gauging, vectors can be included in this theory that are
dual to the scalar and live in the adjoint representation of SO(8,n) [43]. The gauging of these
matter-coupled supergravities is specified by an embedding tensor ©¢1 55, with indices in the

Y]
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vector representation of SO(8,n). As customary, apart from introducing covariant derivatives’

D =d + Oy ATV, @)
for TMN the generators of SO(8, n) in the relevant representation, such a gauging induces extra
fermionic couplings and a potential for the scalars, respectively linear and quadratic in the

embedding tensor. The Lagrangian of the gauged half-maximal theory reads [41,43,44]
1 —
et =R+ gg””DuMMNDvMMN + e_lﬁcs, hm. — Vim + fermions, 3

with M = VYT for VMN the coset representative specifying the point in (1). The Chern-Simons
kinetic term for the vectors is given by

S - = 1 - = - _ -

Los=—€""" Oy pg AL (3vApPQ + 3 Orsiov f PQ’R‘SXYAVUVA[)XY) : 4
with " the constant Levi-Civita density and f MNP Qm = 46[K[M nN IPgs i]Q] the structure
constants of s0(8, n) for generators normalised as

TMN ;@ =25,MpNIQ, (5)

Consistency of the gauging requires two constraints, one linear and the other quadratic in
the embedding tensor. The linear constraint restricts the representations in which ©z; |y can
live. Given that it is antisymmetric in each pair of indices and symmetric under exchange of
both pairs,? based only on its index structure it includes®

(B@B)Symzlemje o . (6)

Supersymmetry of the gauged supergravity requires that not all representations in (6) appear
in ©. In particular, one needs to implement the projection [44]

P ©=0, (7)
which allows the embedding tensor to be parameterised as
1
Oximn = Oximn + E(TIM[RQMN — N Byin) + 0 Mgk N » (8)

in terms of totally antisymmetric, symmetric traceless and singlet tensors. The second require-
ment, quadratic in the embedding tensor, is the invariance of © under gauge transformations
generated by @ itself. This amounts to the vanishing of

QrLApe = —2OrLiir: ON PG — 2Ok I[P OGIRINN » 9

with indices raised and lowered with the SO(8, n) invariant tensor 1);;. The space of non-trivial
constraints can be computed to be

Qripmpg CL | |@—®2x ® : (10)

In 3d, all our indices have overbars so as to distinguish them from their EXFT counterparts, introduced in sec. 3.
2We do not consider gaugings of the trombone unless otherwise stated.
3We employ Young tableaux to refer to SO(N) representations. For example, dim([\j) = %(N —1)(N +2) and

dim(H-) = SNV —3)(N + 1)(N +2).
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The scalar potential and couplings describing the dynamics of the gauged D = 3 supergravity
are determined entirely by the embedding tensor (8). The former, taking into consideration
that the embedding tensors we are going to consider also satisfy the quadratic relation [39]

Orkiian Opors] = 0, (11)
for them to be compatible with a generalised Scherk-Schwarz origin, is given by [41,45]

1 - - - - _ - _ _ - - . _
+ 8MI_<PT’EQT’MRT)NS -3 nf(ﬁniQnMRnNS) (12)
1 _ - . _ - - - - - _ -
+ 3 Qkiepé(z MEP MR _anP,nLQ —MKLMPQ) + 499KI:MKL —3262.

Critical points are those that annihilate

SVim = 3 O i Oprs (MKPMLQMNS —3MRPIQpNS | o nKP,nLQnNS)]MR
(13)
1 55 1 56 I -

+ E(QMPGNQ M — EGMNGPQMPQ)jMN +40055 ™",

for arbitrary jy; 5 € s0(8,n)©(s0(8)®so(n)). The rest of the couplings can be described through
the dressed embedding tensor

Trimw =V D"V D0V D" (Ve Opqies » 14
which can be decomposed into Tz, Tz; and T following (8). Given that fermions transform
as representations of SO(8) x SO(n) in the denominator of (1), with the gravitini in the spinorial
of SO(8) and the spin-1/2 fields in the product of the co-spinorial of SO(8) and the vector of
SO(n), it is useful to introduce indices I,A,A € [1, 8] respectively in the vector, spinorial and
co-spinorial of SO(8), and hatted counterparts for SO(n). This way, the fermion fields are

denoted by W‘ and )(Af .
In terms of the T-tensor (14), the bosonic masses are given by [41,44,46]

M(l)MNPQ = (nK[M’f}N]i - 5K[M5N]]:)Tgi|pé , (15a)
Mol I ¢ =muy pqi™™ i, (15b)

respectively for vectors and scalars. In the latter,
kRsis 4 0V sKR LS
0°to 50776770

Mg pq = 4 Tipri Thars +3 Tiroki Tpvrs O

- - _ 8 _ -
— 4 Typri Tng" " —4 Tinoki Trv™ "xq 67" + 3 Twoke Tp ova e
+2Typ Tyg — Tiaw Tog + 2 Tk Thi 51\7(2 5I_d
— Tip Tki O§g KL y16T Ty15 O5G >
and the jMN currents project adjoint indices onto the coset (1). The fermionic masses and
couplings are specified by the SO(8) x SO(n)-covariant fermion shifts, which read

_ 1 I 1 5 -

AP == Tk 6% T +26% T,

<3 1 - 1 -

AAl IJK _ Sy SR, L

Ay =37 Tk — 57 a T a7
ey 1 Y . Tz %3 Tz 1 i3 33

AIBJ _ 1J, IJKL __ ____ 1J __ __ AB <1J AB __ AB s1J 7__

6
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as

M(A;jz) =—AP, Mgﬁf)’ =—Ay. (18)
The SO(8) gamma matrices in (17) are constructed in appendix A.

Several choices for n are relevant in string theory. The theory with four scalar multiplets was
shown in [39] to arise from the truncation of D =6 N = (1,1) and N = (2, 0) supergravities,
and the theory with n = 8 corresponds to the NSNS sector of the superstring [47,48]. In the
following, we will review how half-maximal gauged supergravities based on SO(8, 8) can be
embedded into maximal supergravity in D = 3, which arises as a truncation of the type II
superstrings. The addition of n, further scalar multiplets in D = 3 corresponds to the addition
of n, vector multiplets in half-maximal D = 10 supergravity, which for n, = 16 captures the
Cartan subsector of the low-energy regime of the heterotic stings [49].

2.2 Maximal theories

To make contact with type IIB supergravity, we must embed the gauged SO(8,8) half-maximal
theory into its maximal counterpart [50-52]. The matter content of this A" = 16 supergravity in
three dimensions is comprised by the dreibein and 16 Majorana gravitino fields, which do not
propagate degrees of freedom, together with 128 real scalar fields and 128 Majorana fermions.
The scalars are coordinates of [53]

Eg(g) S S0O(8,8)
SO(16) ~ SO(8) x SO(8)”

(19)

and together with the spin-1/2 fermions they represent the two inequivalent spinorial repre-
sentations of the denominator SO(16). Despite redundant, to describe gaugings of this theory
it is again useful to introduce the one-forms dual to the scalars, which furnish the adjoint
representation of Egg).
To describe the scalar dynamics, it is again convenient to represent the coset (19) in terms
of a symmetric matrix ) )
My =V Vir9Bpa. (20)
with M € [1,248] labelling the adjoint representation of Eg(g), and Ap 5 a matrix such that

(t o )5 A5 is symmetric if the generator t -, is non-compact and anti-symmetric if compact.
MIP ARG 1S Sym 8 M P ym P
In terms of these fields, the Lagrangian reads

ety =R+ ﬁ g“”DHMMNDVMMA—/ + e_l,‘fcs’max — Vipax + fermions. 21D

The gauging is specified by a symmetric embedding tensor X i+ such that covariant derivatives
read o

D=d+X At eV, (22)
An expression for the Chern-Simons contribution in (21) can be found in [50] and will not be

needed in the sequel. For the gauging to preserve maximal supersymmetry, the embedding
tensor must lie in the 1 & 3875 representation of Egg) and obey the quadratic relation

XpXsonfin® =0 &= X Xylp ==X 5™ Xrp?, 23)

with the gauge group generator in the adjoint representation defined in terms of the Egg)

structure constants as X v/ = —X 1 of Q Nﬁ [54]. Throughout, Eg(g) indices are raised and
lowered with the Cartan-Killing form « ,; ;- normalised as in equation (A.12).
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For generic gaugings satisfying the above constraints, the potential and matter couplings
are known in terms of SO(16)-covariant fermions shifts [50]. The former is also known to have
a formally Eg(g)-covariant expression [55] given by

1 opano.l vup o 3 b Na 2 N PO
Vi :XMNXﬁQ_(%MMPMNQ n 5MMPKNQ _ %KMPKNQ _ ﬁKMNKPQ)_ (24)

The embedding of half-maximal supergravity into the maximal theory then follows from*

Eg(g) D SO(8,8),

248 — 120+128;, (26)
T (o

with M € [1,16] labelling the vector representation of SO(8,8) as in sec. 2.1. The maximal
embedding tensor thus decomposes under SO(8, 8) into

193875 — 16 135® 18209 1920, 27)

where one can recognise the three first representations as the ones appearing in (8). The
spinorial representation 1920, cannot be excited in half-maximal supergravity, the SO(8, 8)
and Egg) singlets can be identified, and the symmetric and four-fold antisymmetric tensors lie
in the 3875 representation of Eg(g). The explicit breaking of the embedding tensor components
is [46]
Xgpmy = 2Or1imn » Xi5=—0M415+ 35 TﬁéMN OkLinn - (28)
Details on the construction of Eg(g) based on SO(8, 8) can be found in appendix A. The chiral
SO(8,8) gamma matrices are given by (A.7) if we work in the basis in which the SO(8, 8)
invariant metric assumes the diagonal form (A.2). In this basis, the charge conjugation matrix
1 45 is simply given by (A.3).
Breaking the Egg) indices as in (26), the consistency condition (23) leads to three equations

R5,5,8
XRyRy|Py Py X 5,5, |0, I, fN1N2 P2 =0, (29a)
A5,
X i Xs5,8, im0, fe~ 7 =0, (29b)
X 45 Xep frn, € =0. (29¢)

The first relation leads to (9), transforming as (10), upon the decomposition (28). The equations
(29b) and (29c) imply extra compatibility conditions transforming in the 35® 6435, of SO(8, 8)
[46] for the half-maximal gauging to admit an embedding into the maximal theory. Moreover,
for the theory to be obtainable by Scherk-Schwarz reduction from type II/eleven-dimensional
supergravity, the embedding tensor must also satisfy [19]

X XMN-F@(M 12 =0, (30)

Supergravity vacua are solutions to the equation

SViax = 1—4XMX75Q—(MNQ + 76N MP (31)

“Given the breaking (26), the summing rule for Eg(g) indices acquires extra combinatorial factors, e.g.

UMV = 5UMNVMN+U Wi (25)
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with arbitrary j/‘;175 € ¢g(g) © 50(16). For a theory fulfilling (29), given a solution of (13) it
automatically solves (31). The consistency of this truncation is guaranteed by the “fermion
number” Z, symmetry that acts on the SO(8, 8) indices in (26) as

Instead of using the embedding (19) to construct the Es(s)/ SO(16) coset representatives
and define the dressed embedding tensor

Tor =0 D" V%55, (33)
one can equivalently build it as
A A 1 T NANT
Trimn =2 Trpjmn » Tas=-Tnas+ s Tkivy s (349

in terms of the dressed embedding tensor in (14) for the half-maximal supergravity. At the
different solutions of (31), the masses of the bosonic modes captured in gauged supergravity
sit among the eigenvalues of

M(l)MN = —(AMP + KMP) 'IA"75/\7, (35a)
2 _p MNp PO[L1A & 1 AKL KLY A o A

for vectors and scalars, respectively. In the mass matrix for the scalars, P ;M = (¢ Jz;)ﬁMAPN
are the projectors onto the non-compact generators of (19), with .« € [1,128] labelling the
spinorial of SO(16).

As for the scalars, fermion mass matrices for the maximal theory are written naturally in
SO(16)-covariant form [50,51],°

o 16 2 . PG

Avan = — O nuR + -~ Tup R “,

A 2. R TR A

Mg =770 a1 Tung (36)
1 MRPQ o

A3 g =40M55+ 52T g4 Tanea

with indices M € [1,16], and .&/ € [1,128] respectively in the vector and co-spinorial of SO(16).
As discussed in appendix A, the invariant tensors 1y, .75 and 1 ; z for this signature are
simply given by identity matrices and the SO(16) components of the dressed embedding tensor
follow from (33) under the decomposition in (A.14).

As in the half-maximal case, the eigenvalues of these matrices also encompass non-physical
modes such as the vectors which are not gauged by the embedding tensor (and therefore sit
outside the gauge group), and massless scalars that serve as Goldstone modes for the massive
vectors.

2.3 Gaugings for S x M*

In the following, unless otherwise stated, we will restrict ourselves to the case n = 8. As will
become apparent in sec. 3, a convenient basis to describe the SO(8, 8)-supergravities is such

The coefficients for the terms in 0 are not tested by our solutions.
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that the invariant metric 71y is given by

(0 1:0 0:0 0:0 0
100 0:0 0:i00

0 0{0 I;;0 0i0 0
0 0il; 0:0 0:0 O

MIN=1707070 00 150 0 | 37

0 0i0 0il; 0:i0 0

0 0:0 0:0 0:0 1

\0 0:0 0:0 0:1 o]

according to the breaking

SO(8,8) > SO(1,1)x GL(3) x GL(3) x SO(1,1),

XM (X0, X, X, X, X, X5, X7, X5} (38)
This choice aligns the D = 3 supergravity with the coordinates that solve the section constraint in
Exceptional Field Theory. For this reason, we take the ranges of the indices above as m € [1, 3]
and i € [4,6]. In this basis, the class of embedding tensors determining the half-maximal
supergravities of interest are specified by the choice

1
9(—)(—)2—4V1+a2, QMNP(_):_EXMNP’ (39)
with
_ Ap _ mp_ mA - _
Xmap = Emnp » X' = Emap » X3P = map » X5 = Emap » 40)
e JK — oy one ik o 0. — o
Xijk—asijk, X3 = Q€5 Xj = Q€5 X k= Q&R

and a € R* a free parameter.® For a # 0, this theory admits an uplift into ten-dimensional
supergravities on S x §2 x S!. As we will see in eq. (124), the ratio of the S radii is then
given by a. For a = 0, the uplift is on $® x T* and the sphere has unit radius, c.f eq. (129).

The embedding tensor described in [41] can be obtained by taking the a — 0 limit of (39)
and truncating SO(8, 8) down to SO(8, 4). For generic a, the half-maximal supergravity in 3d
resulting from (39) has gauge group

Go*0 =[s0(3) x T2]* x T2, (41)
which, for a = 0, reduces to
6= =[50(3) x T3]* x T%, (42)

with the remaining SO(4) becoming a global symmetry.

One can verify that the SO(8, 8) embedding tensor in (39) does verify the quadratic con-
straint (9) and also the compatibility conditions with maximal supergravity. In fact, it satisfies
the stronger relations

O Oupor =0,  Orgimn Opgrs1 =0, Oy 0™ =0, (43)

after which the others automatically follow. Upon embedding the half-maximal embedding
tensor (39) into its Eg(g) counterpart via (28), these identities also guarantee that (30) holds,
and therefore the resulting embedding tensor can be obtained via generalized Scherk-Schwarz
reduction of Eg(g)-ExFT.

The sign of a only affects the chirality of the fermionic modes, and can be taken to be positive without loss of
generality. Following the ten-dimensional uplifts, its range can in fact be restricted to [0, 1] (see eq. (202)).
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In the maximal theory, the gauge groups (41) and (42) are promoted into

G0 =[s0(3)* x 2] x (T1)?, (44)
for non-vanishing a, which reduces to
G0 =[s0(3)2 x '] x (T1)°, (45)
in the a = 0 case. Here X is a nilpotent subalgebra decomposing as
ST, @75, (46)

where 77, is an abelian subalgebra transforming in the adjoint of SO(3)*, and 73, represents
two copies of the (%, %, %, %) of SO(3)* which close into 775. In (45), the nilpotent subalgebra
is Y ~ Tg® 7A§2 now representing the adjoint of SO(3)? and eight copies of its bi-spinor
representation, which close into 7. The groups in (44) and (45) have the expected structure of
gauged groups of three-dimensional Chern-Simons gauged supergravity [52] (see also sec. 3.2

of ref. [56]).

2.4 Solutions

In the half-maximal theory, a family of solutions annihilating (13) with embedding tensor (39)
is given by the natural inclusion of the two-parameter locus found in the SO(8,4) theory [41]
into SO(8, 8). In the basis (38) and with the generators of s0(8, 8) normalised as is (5), it can
be characterised by the representative

(1, 00 0 {0i0 O
0 e 0 e”¢*10:¢ ¢
) o 0 0il, 0 {0i0 O
v=exp[ 07— (17 -1%)]=| 0 00 e foloo | @
0.0:0 0 L0 0
0 0:0 e?Z:0:1 0
\0 0i0 —“¢i0i0 1 )

All points in this family of solutions share the AdS radius

2 1
Ggg=—— =7 48
AdS Vo 1+a2 (48)
For a # 0, the preserved gauge group out of (41) is SO(4) x SO(2) x SO(2) at generic values of
the parameters, whilst it reduces to SO(2) x SO(2) in the a = 0 case. There are special loci
where symmetry enhances. On the line

P=1—e2, (49)

two more vectors become massless,” and the gauge symmetry becomes SO(4) x SO(3) x SO(2)
for a # 0. At the scalar origin, it further enhances to SO(4) x SO(4). For a = 0, one of these
SO(4) factors is always absent from the gauge group, and instead there is a global factor.
Whenever ¢ = 0, this global symmetry is SO(4), which is broken down to SO(3);,, otherwise.

7We consider massless vectors and gravitini in spite of the fact that, together with the massless graviton, in D = 3
they are non-propagating. We find this useful as they correspond to the unbroken (super-)symmetry of the solution.
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At generic points of the two-parameter family no supersymmetry is preserved. As discussed
in [41], the symmetry enhancement at (49) corresponds to the locus where four gravitini become
massless, resulting in ' = (0,4) preserved supersymmetry. Away from the supersymmetric
locus, stability is not guaranteed, as can already be observed at the gauged supergravity level.
The modes that trigger instabilities can already be found in the SO(8, 4) truncation with a =0
of [41].

The family of solutions (47) can be embedded into the sigma model (19) pertaining to the
maximal theory. Following (26), the representative reads

VMN=GXP[—wf3:§— 1_0)§_w(f37—f37)], (50)
with indices in the (38) basis. As shown in [9], for a = 0 this family can be uplifted into type
IIB supergravity on an AdS; x S x T# background, with the parameters « and { controlling
the squashing of the S® and its fibration over one of the torus directions. With this intuition, a
detailed analysis of (13) allows us to promote the solution (50) into a 15-parameter family for
generic a, with two extra moduli in the case @ = 0. The coset representative depending on
these 17 parameters can be given as

] _ o . _ ]
ViV =eXP[_‘°f33_ 1—e—w(xlf:”+Xzf§7+ﬂlf37+ﬂ2f37)

— 6 S — (11 57 + T fs + B £+ B fisr) (51)

= r36 —= 3 - 6 = 4 5 7
—E Py fR—Es £ — By fis—0uf i — 05 f5— 0, f75 ],

with 04 and o5 stabilised to zero in the a # 0 case. This class of solutions generalises the ones
found in ref. [19] and [9], as will be described in sec. 5. This conformal manifold is entirely
contained inside SO(7,7) C SO(8,8) C Egg). Despite intensive search, no solution has been
found in the half-maximal theory where excited scalars lie outside this SO(7, 7). Generically,
the gauge group breaks to SO(2)* for a # 0 and SO(2)? for a = 0, and all supersymmetries
are broken. At certain loci, partial (super-)symmetry enhancements take place, as will be
discussed for the computation of the Kaluza-Klein spectra in sec. 5. As will also be described
in that section, the solutions with non-vanishing values for the 3’s and w correspond to TsT
transformations of the undeformed background. In fact, some subfamilies uplift to the standard
Lunin-Maldecena deformations [20]. It is a remarkable characteristic of D = 3 supergravity
that such 8 deformations can be captured in a consistent truncation, unlike in the otherwise
similar AdS, x S” and AdSs x S° solutions [20,57,58].

From a 3d perspective, the parameters in (51) span R!7. Nevertheless, as will be seen in
sec. 5, geometric identifications in 10d render the y; and #; moduli periodic. Similarly, string
theory dualities [20] also compactify the  directions.

3 Exceptional field theories in 3d

Exceptional field theories are duality covariant formulations of supegravity theories in higher
dimensions, i.e. before any dimensional reduction. In the following we are interested in
the reformulations that make explicit the duality symmetries that appear in reductions from
heterotic and type II supergravities down to three dimensions, namely the SO(8,n) and Egg
exceptional field theories of ref. [39] and [38]. We review here these constructions and explain
how to use them to build and study new solutions in ten dimensions for both heterotic and type
I thanks to consistent truncations down to half-maximal supergravity in three dimensions.
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3.1 Review of SO(8,n) exceptional field theory

We are interested in the SO(8, n)-covariant reformulation of half-maximal 10d supergravity,
first constructed in ref. [39], to make contact with the 3d gauged supergravity in sec. 2.1. The
bosonic fields of such an extended field theory are

{guw MMN: A“MN’ B,u,MN}’ (52)

with u € [0,2] and M,N € [1,8 + n] in the fundamental of SO(8, n). The metric g,,, is a 3d
metric, M,y is the generalised metric parameterising the coset SO(8,n)/(SO(8) x SO(n)) and
AMMN parameterise the gauge fields of the gauged supergravity. The gauge fields B,y are
covariantly constrained and necessary for the gauge algebra to close, as we will review below.
The internal indices of both AHMN and B, ;v belong to the adjoint representation of SO(8, n).
All these fields depend on 3 external coordinates x* and internal ones Y™V in the adjoint
representation of SO(8,n). Their dependence on YM¥ is subject to the section constraints

3[MN ® apQ] = 0, (533)
such that there are only 7 physical coordinates y' among YMN. The ® product in eq. (53)

means that the derivatives act on any combination of fields or gauge parameters.
The Lagrangian of the SO(8, n) exceptional field theory is

int

~ 1
gSO(S,n) — /|g| (RSO(S,H) + gDuMMN D;,LMMN + ZSO(S,n)) +$gso(8,n) ) (54)

The first term is an SO(8, n) covariantisation of the scalar curvature (see ref. [39] for more
details). The second term is the kinetic term for the generalised metric, and the Chern-Simons
term, which ensures the on-shell duality between scalars and vectors, is given by®

2
SO(8,
‘gcs( W — 9 ghP (FWMN Byun + 3MAVNK aKMApMN 3 Omn 3KL'AI~LKP°AVMNAPPL
2 4
+ 3 A Oy AM p B AT — 3 A Oyp AMy aKLApPK) , (55)

where F,,," are the Yang-Mills field strength associated to A,M" (see eq. (2.55) of ref. [39]
for an explicit expression). Finally, the potential is [36]

int

L0 =2 3 Mygy Bpg MM ME? MU+ 53 MNP By MY M MK?

- % By MPK B, MM ML MY — By MK Gy MM

+¢ " By g Oy MMEMNE 4 % MMEMNE ¢ 72058 Fir 8

+ %MMKMNL Ovn &y k18" - (56)

Such defined, the Lagrangian (54) is invariant under local generalised internal diffeomorphisms,
defined by their action on a vector VM of weight A as follows

S0(8,n)

ﬁ(A,Z)

VM = AKEG VM + 2 (0 M Ay — Fen AM +25M JUN + A G AKEVM . (57)

8The global factor has been corrected compared to [39] by recovering the SO(8, 8) theory as a truncation of the
Eg() EXFT reviewed in the following.
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To make sure that these generalised diffeomorphisms close into an algebra, the gauge parameters
Xy are subject to constraints similar to eq. (53),

XN ZpQ) =0, Zmn Opq1 =0,
NP NP (58)
N XyN Zpe =0, N Zyn g =0.
The associated covariant external derivatives used in eq. (54) are defined as
_ o _ pSOB.n)
Dy=8u=Ly 5y (59)

with the weights of the fields in (52) and the gauge parameters A¥YN and %,y specified as

Euv My A,];/IN BMMN AM ZyN

A2 0 1 0 1 0 (60)

To ensure the invariance of the action, the gauge fields 5, must also enter constraints analogous
to (58).

The section constraints (53) for the SO(8, n) theory admit two inequivalent solutions [39].
One corresponds to the N'=(2,0) theory in six dimensions coupled to 5 self-dual and n— 3
anti self-dual tensor fields and 5(n — 3) scalars. Such a theory cannot be oxidised to more than
six dimensions. For the alternate solution of (53), the theory (54) describes the NSNS sector
of ten-dimensional supergravity coupled to n — 8 ten-dimensional vectors. Setting n = 8 and
denoting the physical internal coordinates as y' with i € [1, 7], the constraints (53) are solved
by breaking

SO(8,8) > SO(1,1)xGL(7),

XM (X9, Xo, XU, X, 61

and restricting coordinate dependence to y' = Y. The ExFT indices are aligned with the ones
of the three-dimensional half-maximal theory by embedding GL(3) x GL(3) x SO(1,1) C GL(7)
as in (38). The explicit dictionary between the SO(8, 8)-ExXFT generalised metric and the
internal components of the NSNS fields is given by [9]

MO0 = g_le‘i’/z
0i _ 1 00 Lij1.--J6 T
M i aM Slh J6 bjl.--je , (62)
MOOMij _MOiMOj — g—léij’
MOOMl]' _MOlMOj — g—lglk bk] ;

where g;; is the purely internal block of the ten-dimensional metric in Einstein frame, and § its

determinant. The ExFT fields b and b do not directly embed into the ten-dimensional two-form,
but determine its field strength H = dB through

A =db+e?8+,,db, (63)

with the ten-dimensional Hodge star taken with respect to the Einstein-frame metric. To
describe our configuration in the string frame, the only change needed is the usual rescaling of
s oA b /2a
the metric ;5 = e®/ £ns-
The consistent truncation of the NSNS sector of type II supergravity on S3xT# and $®xS3xS?!
down to a half-maximal supergravity can be described in terms of generalised Scherk-Schwarz

Ansétze, where the dependence on external and internal coordinates factorises. The dependence
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on the former is carried by the D = 3 fields and the latter by a group-valued twist matrix U(Y')
and a scale factor p(Y) of weight —1. The precise factorisation reads [39]

g,uv(x: Y)= P(Y)_ng(x),
My (x,Y) = UM (VUGN (Y )My (),
AMN (e, v) = p (V) UM ()0 N (04,78 (), (64)

B (6, 1) == POV Uy (N3 (U (14, ().

On the right-hand sides, g,,, My and AHMN are the fields of the half-maximal three-
dimensional supergravity described in sec. 2.1. The truncation to these fields is consistent
if
SO(8, - TP
LU i =20k (U5, (65)
with

1 p— _ 1 _ _
Ut " =p7 (U U D", and Bgrg = =77 U )" Upry,  (66)

and a constant embedding tensor ©g; ;- This tensor specifies the explicit gauging and its
components (8) can be expressed using the twist matrix and the scaling function as

Okiiny = =3P Jiki Ny
Oy =20 Jranmy — Nian 0 + Eqn » 67)
2 1, kL
=— Jei KL
8+n KL

with the SO(8,8) currents Jyy " = (U_l)M M (U‘l)NN (U_l)RKé‘MN Ux! and the trombone
gauging _

Ean =2p 2 (U, (U ™)g "k — 20 Jrpiman™ - (68)
In the following, all twist matrices will be such that ;5 = 0, allowing for a Lagrangian
formulation of the three-dimensional supergravity. For the SO(8, n) case with n > 8 relevant to
heterotic supergravity, equations (64)—(68) generalise straightforwardly.

3.2 Review of Egg) exceptional field theory

We can similarly employ an exceptional field theory suited to studying compactifications of
maximal 10d supergravity (and 11d supergravity) down to 3d. As detailed in sec. 2.2, the
duality group is then Eg(gy. The Eg(gy-covariant reformulation of type IIB and 11d supergravities
is Eg(g) exceptional field theory [38]. Its structure is very similar to what we described in the
previous section. The fields are

{g!“” M_/\/l_/\f) AHMa BI,,LM}J (69)

alongside their fermionic superpartners. As before, they depend on both the external coordinates
x* and on a set of 248 extended coordinates Y. Here and in (69), the index M € [1,248] is
the adjoint index of Eg(gy. The dependence on the YM coordinates must be restricted by the
section constraints

KMVo ®dy =0, (70a)
FMN L8 ®3) =0, (70b)
(Pag7s) a0 ® 3, =0, (70¢)
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which have two inequivalent solutions. One preserves seven physical coordinates and corre-
sponds to type IIB supergravity, and the other has eight coordinates and is associated to M-theory.
The Eg(g) structure constants f,, " and Cartan-Killing metric xkMN can be respectively found
in eq. (A.11) and (A.12) in appendix A. The components of the projector 248 ® 248 — 3875
can also be found in (A.21).

The theory is invariant under gauge symmetries generated by the Eg(g) generalised Lie
derivative. On a vector VM of weight A, it acts as

E
LG VM = ANV VM — (60 (Pogg) N L8NS — FIE s JVV + AV MaaN, (71

with (Pys)™ A\~ in (A.21). As previously, the closure of the algebra of El(ii(;))

constraints on the gauge parameters %, and By, fields similar to eq. (70), and the fields in
(69) need to be assigned weights analogously to the (60) assignment.
The bosonic Lagrangian, invariant under eq. (71), is given by [38]

imposes

~ 1 E E
LB = 1/|g|(REste) + %DMMMND“MMN + 2in§(8)) +2c§(8) ) (72)
We denote RFs® the Eg(g)-covariantised Ricci scalar and define the Egg)-covariant derivative
9
as

_ Eg(g)
Du=0u=La 5, (73)

8(8)

. reads

The potential term ffli
1 1
L = s MMV O M E O Mic — 2 MY B MFEoL M

int
1

~ 7200 FNpfME MPRG M ok MREay M,

1 _ 1 _ 1
+ 58 g MM 4 2 M 20 g dg 2 MM gy, Ovg™, (74)

Eg(g)

and the Chern-Simons term £ has the following expression:

E 1 2
L3 = 3 ghvp (FWMBP wm—fieeN 8,AF O A" — 3 N e O A AMALE

1
— 3 fmre PR AuMa’P-Aan’RApS) - (75)

We refer to the eq. (2.26) of ref. [38] for the expression of the covariant field strength F WM of

.AMM, which will not be needed in the following.

Within Eg(g) exceptional field theory, the Scherk-Schwarz Ansatz describes consistent trun-
cations of type II supergravity down to maximal D = 3 gauged supergravities. It is expressed in
term of a twist matrix U ™M € Eg(g) and a scaling function p, and parallels eq. (64) [54,59]:

guv(X’ Y)= p(Y)_zg,uv(X);
Mo (x,Y) = Uy MUY (VM (%),
A MG, Y) = p(V) U oM AM ), (76)

-1 - -
p(zg Fa"2 U Npp(V)aMU s (1) AM ().

°For the sake of readability, we use the same notation for the SO(8,n) and Egg, covariant derivatives in eq. (59)
and (73).

B,u/\/[(x5 Y) =
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The fields g,,, M v and AMM now belong to the maximal three-dimensional supergravity
described in sec. 2.2. The truncation to these fields is consistent if the following condition for
generalised parallelisability is satisfied:

E _
C(L{;(j;,zm)u/\'/M =X N UP'M ) a7
where
p— — 1 — _) 9 — — ’)
ZAMM =p ! (U 1)MM s LM = 60 P 1fM Q(b 1)75738,/\/1(U 1)@ 5 (78)

and with constant torsion [19]
- _ - _ - i - 1 _ - - - ~
X == Tax” 07 P of s Te” — 0P VEPR Gz Tro”
(79)
1 4.5 3¢ 5 e 5 1 Ap 5
— 5 o lf'PA_[Q_fQICM jﬁICR + (5MK5N73 _ EfMUCfNEP ‘EIC ,
which can be identified with the embedding tensor of the three-dimensional gauged supergrav-
ity. Here we have introduced the Eggg) current Jy " = (U)o (U™) ¢“0cU.” and the
trombone gauging
£ =20 NN avp™ +p7 oy (U (80)

As before, we will always consider & ,;; = 0. This consistency condition is most nicely expressed
once projected on the adjoint representation

_ - - ie K
Xor=—2p" T —P  Tewt” fns™ (81)
with
1 PO _ 1 PO
Xonw=wXupofy' 2, and Ty =g Tupsfv 2 (82)

3.3 EXFT matryoshka

We embed the SO(8, 8) exceptional field theory into its Eg(g) counterpart by breaking the latter
group as in eq. (26):

Eggy — SO(8,8),

XM [x[MN] xAY (83)

The SO(8, 8)-EXFT coordinates YN of sec. 3.1 are identified with the components in the 120
of the Eg(gy coordinates Y™, and all fields and parameters are independent of Y+,

YMN cYyM, and 8,=0. (84)

The fields of the two theories can also be related through (83). The relevant sigma models are
identified through the inclusion (19), and the vectors in the adjoint of SO(8, 8) are identified
in the two theories:

E
A 8&)MN _ 2./420(8’8)MN

; , and B8 =4B508), 85)

uMN uMN

The remaining components are identified with the Ramond-Ramond fields of maximal super-
gravity. From an SO(8, 8) perspective, the consistency of the truncation to the NSNS sector
follows from the projection in (32).

In the following, we describe how the Egg) section constraints and generalised Lie deriva-
tives are related to their SO(8,8) counterparts. For configurations that admit a generalised
Leibniz parallelisation in the SO(8,8) theory, we detail how to build a twist matrix UMM
from UyM in such a way that the embedding tensors in the corresponding consistent trunca-
tions are related as in (28).
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Section constraints For the adjoint coordinate dependence (84), the Eg(g) section condi-
tions (70) follow from the SO(8, 8) ones (53). This can be seen explicitly using the SO(8, 8)
decomposition of the Eg(g) structure constants given in (A.11). For the conditions (70a)
and (70b), the non-trivial components are

1
MNG ® Oy =—= By ® OMN
K M N 3 MN s 86)

fFUNPQ By ® Opq =—4 3[RT ® 517 >

which vanish as a consequence of eq. (53b). Concerning the last condition (70c), let us first
note that it is equivalent to eq. (70a) and (70b) together with

FMerfN R0 @8y —28;c ® 8 =0. 87)
The only non trivial components of this equation are

fMMN,RfNPQR I ® I\ — Ayn ® Opg — Fpg ® Fun = —6Fmn ® Fpq»
1 (88)
FMarfN R o @ay = 16 (FUFKL)AB 91y ® Ik -
They both vanish thanks to the SO(8, 8) section condition (53) and

N M
(FMNFPQ)AB = F%gPQ + ZnM[PI‘Sé —27)N[PF3\;3 —ZT)M[PnQ]N NAB - (89)

For the solution of the section constraint in (61), the dictionary between the Egg)-ExFT
generalised metric and the internal components of the NSNS fields is obtained by further
splitting SO(8, 8) under SO(1, 1) x GL(7) and using eq. (62). The internal components of the
RR fluxes could be computed similarly through the components of the Egg)-EXFT generalised
metric in the 128 of SO(8,8). However, as the deformations of the AdS; x S3 x T* and
AdS; x S% x §2 x S solutions we consider do not excite those fluxes, this part of the dictionary
will not be needed in here.

Generalised Lie derivative ~With the coordinates (84), the Eg(g) generalised Lie derivative (71)
decomposes as

Bss) 1, MN _ »SO(8,8),MN , L (-MNpKL A B_ 1/ mn)A B
LoagyVMN =L 57V +§(r Tt) s VA8 A _E(F ) BEAVE,

E 1 A 1 A
LamV™= ﬁ?/i(igig)vA ) (T79)” gV F koA p + 16 (TP )” sVpodkLA®  (90)

1 AB
+ p (T8 (2 Vir + 2k Vi) »
where (AMN,33),v) = (3AMN, 25,y), in accordance with eq. (85), and V* is considered a set
of SO(8, 8) scalars. Restricting all the objects to have vanishing components in the spinorial

representation of the orthogonal group, the generalised Lie derivative of the Eg(g) theory can
be observed to reduce to the one for the SO(8, 8) EXFT.

Uplift An Egg) twist matrix satisfying the consistency condition (77) can be constructed from
an SO(8, 8) twist matrix satisfying the condition (65). We identify the scale factors p and

define!® _ .
- 20 MUY 0 0
UMM = ([MN] """" ) s 91)

19The coefficients in eq. (91) are different from those in ref. [9] to match the summing convention (25).
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where U AA is a 128, representation of UMM s

UAAzexp(luMN I‘MN) A 92)
2 A
where the matrix u is such that Uy = exp (upq T7?),, ™, with TM the generators of s0(8, 8)
normalised as in eq. (5). Then, using the decomposition (90) of the generalised Lie deriva-
tive, the Egg) generalised parallelisability condition (77) has the following non-vanishing
components:

Eg(s) __MN _ .. [Ps.Qly, _MN
E(UMN’ZMN)MKL - 4'(_)MNl[K 5L] UPQ ’
Egg) A 1 __ __(+KRLY B,,;.A
E(MMN’ZMN)MA ) O kL (F )A Ug”™,

E 1 1 e .
£(1’8{(;),2A)UZ§MN =2 (_ Onac+ 5 DPORs QPQRS) (I—-MN) s U™

E a1 1 5ois BC, 4
E(sz(;),z pUan” =3 (— Onas+ 35 ' 15 GpQRs) (Tn)™ Ue™,
where we used SO(8,8) consistency equation (67). Hence, the consistency of the Eg(g
Ansatz (76) is ensured by the one of the SO(8,8) Ansatz (64). The components of the re-
sulting Eg(gy embedding tensor read

1 PR
Xinpq =20unpe,  Xap=—0nas+ gl “asbmweqs  Xuwa=0. (94)

The relation between the embedding tensors reproduces the three-dimensional embedding
tensor (28). Thus, a twist matrix Uy, € SO(8,8) and a scale factor p satisfying the consis-
tency condition (65) will both give a consistent truncation of half-maximal ten-dimensional
supergravity down to A/ = 8 three-dimensional supergravity through eq. (64) and a consistent
truncation of IIB supergravity down to N = 16 supergravity in 3d through eq. (76) and (91).
In sec. 4, we describe the pairs (p, Uy, M) suited to the reductions on S x $% x § and $% x T%.

3.4 Kaluza-Klein spectroscopy

On Leibniz parallelisable solutions of exceptional field theory, the Kaluza-Klein spectrum can
be obtained by extending the Scherk-Schwarz factorisations in (64) and (76) to include the
linearised perturbations. These linear perturbations have a natural tower structure when
expanded in terms of the harmonics of the most symmetric configuration homeomorphic to
the relevant background [32,33]. In fact, only the scalar harmonics are needed and the levels
are not mixed by the mass operators, a feature that turns the computation of the Kaluza-Klein
masses into a diagonalisation problem for a set of mass matrices. In the following we will discuss
how to compute the Kaluza-Klein spectrum on any solution that uplifts from 3d supergravity
using these EXFT techniques.

3.4.1 SO(8,n) mass matrices

For the modes arising from the 10d metric, dilaton, Kalb-Ramond field, and possibly extra ten-
dimensional vector multiplets, it suffices to extend the Scherk-Schwarz Ansatz (64) in analogy
with [36]. Starting from a background specified by three-dimensional SO(8, n)-supergravity
fields

{8uv Migg> AN} = {8, gy, O}, (95)
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we consider the expansion

2y (6, 1) = p(¥) (2,00 () + R, (VAT
Myn (e, V) = UM (UGN (V) (A + jan* (0)OVAY)),
AMY (G, ¥) = p(r) LU M (D)WY (NAT A YA (Y, 96)

By (x,Y) = —% P (V) Ut (V)3 (UM (DA AGOPAY),

extending (64). Here, A denotes a possibly composite Kaluza-Klein index which will depend
on the topology of the background solution. These harmonics lead to the definition of 755"
as the constant representation matrix encoded in the SO(8, n) twist matrix as

p—l(U—l )MM(U—l )]\_INaMNyA —_9 %MNAZJJZ ) (97)

The properties of the twist matrix (67) guarantee that the 7' % represent the gauge algebra,
with the commutator normalised as [36]

[ Ts> Tog ] = =™ Tawk + @papin™ Tank - (98)

To describe backgrounds corresponding to other points of the scalar manifold, it is conve-
nient to dress this tensor analogously to eq. (14),

Tan =V~ 1)MK(V 1)NL (99)

Then, the Kaluza-Klein mass matrices are those presented in [36,41], which we reproduce here
in the present notation. The mass matrices corresponding to the bosonic Kaluza-Klein modes
read

M(zz)m — 26MP6NQTMNZI‘7;_)QI‘Q’ (100a)
M(l) ’ PQEQ = (nk[MnN]i — 5R[M5N]i)( IZ’I:lPQE + 47% 0 Q]I:) , (100b)

2 »Q :MN,% :PQ.0 20\ :MN,3 :PG,0
M(O)MN,PQ J J (mMN PQ5 +mMN PQ )J J 5 (100c¢)

where my;y 54 is given in eq. (16) and
m;V[N,' 0 _ 8 TI\-/H_’RI_( 6NR5I_<Z, 7-Q]:ZQ +8 TI\-/[PRI_( 6QR5KI: 7;\_”:29
—8np Trgrr 60" Tas™ +8mp Trr 75>
+8 (TMP +T ’r]Mp) 7;\7(229 + 255 MNg SKR§LS 7}@21\7}251\9 (101)
+16 51\7”_) 5KL 7&21\7}11‘(1\9 _451\7IK515L 7-QI:ZA7;\_IRAQ
+16 Tip " g™

In turn, the mass matrices for the fermionic fields are'

My B A% = —A1B 0% 4 2y 1 T3 A%, (102a)

M(l/Z)AIBJ AY _ Azgl BJ 5AE -2 ,)/IJATé 5ff 7;_.] +8 5/_u§ 7§JAZ] , (102b)

in terms of the shift tensors in (17) and the SO(8) x SO(8) components of ;5

"This corrects a sign in eq. (4.13) of [41].
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As in previously studied 3d Kaluza-Klein spectra [36,41], all the eigenvalues of the graviton
and gravitino mass matrices correspond to physical modes in the spectrum (on the proviso
remarked in footnote 7), and one must take into account that each of the eigenvalues of (100a)
in fact corresponds to two states of opposite spin. The eigenvalues of the remaining matrices
include the Goldstone modes which are absorbed by massive gravitons, gravitini and vectors in
the super-BEH mechanism upon taking into account the off-diagonal couplings between modes
of different spin. Ignoring these couplings, the eigenvalues to be discarded can be identified
given the masses of the gravitons and gravitini [41,60]. The relevant relations in D = 3 are [41]

2
(Meylads)goidsione = T2V 1+ (Meylags) (m(l/z)eAdS)goldstino =3mepylags,  (103)

for goldstinos and Goldstone vectors. Out of the eigenvalues of the scalar mass matrix (100c),
one must also remove the usual massless fields corresponding to longitudinal polarisations of
massive vectors, as well as two values for every massive graviton. One of them is always zero
and the other is given by

(m(O)KAdS)éoldstone =-3 (m(Z)KAdS)2 . (104)

3.4.2 Eg(g) mass matrices

For the spectrum of the full type II supergravity, we need to consider a deformation of (76) for
Eg(g) EXFT. Around the background specified by 3d fields

{8 M A7 = {8 A 03, (105)
the fluctuation Ansatz is [9]

(%, Y) = p(¥) 2 (gun(x) + " () VE(Y))
Mo, Y) = U MUV (V) (A o + g S0 VEY))
AMx,Y) = p(V) U™ oM AME () VE(Y),

p(¥Y)!

o L 2 WU Dpp (AU (AP VEY). (106)

BMM(-X: Y) =

The scalar fluctuations are parametrised as j o> = 2P.7 57 &% where P 7. 1S the
projector onto the coset (19). The scalar harmonics satisfy

P U)MoY = =T * V®, (107)
such that the constant matrices 7?;129 define the algebra
[Thee T ] = X Tr - (108)

As in eq. (33) and (99), these matrices can be dressed to describe backgrounds corresponding
to other points of the scalar manifold.

With the twist matrix (91) and the physical coordinates embedded in Y™V as in eq. (84),
the matrices 73\;12“ have as only non-vanishing components

T =2Tan » (109)

where 7,y is the SO(8, 8) tensor in (97).
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Inserting the Ansatz (106) into the EXFT action (72), one can read off the bosonic mass
matrices

M(zz)zn _ _AM/\Tj-Mzrj-Nm’ (110a)
M(1)sz\‘/n - (AMﬁ + K/\?t75) (X75A7 5= +f75/\'/Q j—g_m) ’ (110b)
M) = 5% =650 P M p PO (;XMﬁXNQ— +X g1z G AR K’“')Xﬁ—ﬁ AA—/Q-)

+2(X g8 —2Xga) AT 4+ 2X g 1 T (1100)

)ZQ )Eﬂ

- (’AfMﬁv)m AWV g +2(ToT) AP N fao™ —2(T47

Upon considering the supersymmetric completion of (72) in [54] and the expansions [34]
P, M, Y) = p V2)EM, A OPAY), 17 (6, 1) = pHANET A OPA(Y), (111)

for the ExFT gravitini and spin-1/2 fields, their mass matrices can also be found to be

M(g/z)MZ,NQ — _A, N gm0 _4(V—1)MNM7A-M29 , 12
AEBY . p IB<IQ_ MN | (y—1 MA_ =0
M) =—Ag P& TN (VD) T

in terms of the shift matrices in eq. (36). The mass matrices (110) and (112) also contain
unphysical Goldstone modes that need to be removed using (103) and (104) and decoupled
vectors.

4 The round S3 x S3 x S! and S3 x T4 solutions

In this section we show how the techniques discussed in sec. 3 apply to the consistent truncations
on the round AdS; x $ x §3 x S and AdS; x S® x T* solutions, and how can be used to compute
their associated Kaluza-Klein spectra.

4.1 Scherk-Schwarz factorisation

Twist matrix for $3 x S3 x S1  The relevant pair (p, Uy,™) which makes contact with the
embedding tensor (39) can be constructed out of two copies of the SO(4,4)-ExFT parallelisation
discussed in [41] as

[ o 0 P VItaZém 0 (VIt+aZE 0 10
0 p 1 ; 0 0 ! 0 0 0
0 —p WVi+a2Zané™ ! K™  Zam! O 0 {0
U g =| 0 zplvita?ZhEmi K™  Zh,i 0 0 10 |, (113)
0 —p Wil+ta2Z | 0 0 ! aff alZio
O e WIxeEZE 0 0 i Rl a7'3io
0 0 : 0 0 0 0 1,

in terms of the SO(8,8) D SO(1,1) x GL(3) x GL(3) x SO(1, 1) breaking of both flat and curved
indices such that .

XM = {XO,XOJXmJXmJXIJXi)X7)X7}) (114)
following eq. (38). The parameter a is the same as in sec. 2, and the objects appearing in
eq. (113) are constructed from the Killing vectors on the round S§%s,

Kapm = Na)OnYip]> Kapi = Yia01Y57 (115)
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with Y@ and )% the