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Abstract

We construct new continuous families of AdS3×S3×T4 and AdS3×S3×S3×S1 solutions in
heterotic and type II supergravities. These families are found in three-dimensional consis-
tent truncations and controlled by 17 parameters, which include TsT β deformations and
encompass several supersymmetric sub-families. The different uplifts are constructed in a
unified fashion by means of Exceptional Field Theory (ExFT). This allows the computation
of the Kaluza-Klein spectra around the deformations, to test the stability of the solutions,
and to interpret them holographically and as worldsheet models. To achieve this, we
describe how the half-maximal SO(8, 8) ExFT can be embedded into E8(8) ExFT.
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1 Introduction

In any Lorentz invariant quantum field theory in d dimensions, operators can be classified
according to their behaviour under the renormalisation group (RG), and for conformal field
theories (CFTs) sitting at the fixed points of the RG flow this behaviour can be characterised
by the operator’s conformal dimension ∆. For irrelevant operators, ∆ exceeds the spacetime
dimension and the RG flow takes the theory back to the original CFT. Conversely, relevant
deformations are triggered by operators with ∆ < d and RG flow drives the theory away
from the starting point. A third class of deformations, called marginal, stay unaffected by
changes in the energy scale. Instead, these marginal operators encode the space of theories
into which the original theory can be deformed without breaking conformal invariance. This
space is called the CFT’s conformal manifold. Holographically, it corresponds to a continuous
family of AdS solutions sharing the same cosmological constant, but having different internal
spaces. Although there is no systematic way of constructing these gravity solutions from the
CFT information, the AdS/CFT dictionary identifies marginal operators with modes in the bulk
that are massless to all orders in the 1/N expansion.

Supersymmetry is expected to be required for holographic conformal manifolds to exist,
as non-supersymmetric AdS solutions are believed to be unstable [1–3]. However, recent
scrutiny [4] has revealed AdS4 configurations that might evade this requirement, as all the
standard decay channels, both perturbative and non-perturbative, are absent for this solution.
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In AdS3/CFT2, the scenario could be richer and there is a long-standing counter-example [5,6]
which is understood both in the field theory and gravity sides. It is based on current-current
deformations of the two-dimensional CFT, which are known to be exactly marginal [7] despite
possibly supersymmetry breaking. From the gravity perspective, these deformed solutions will
remain in the small curvature regime for small values of the deformation parameters, and
this assures that the deformed solution can also be studied in the supergravity approximation.
More generally, in the supergravity approximation continuous deformations are identified with
classically marginal operators, which will be exactly marginal only if they persist for finite
values of N and the CFT coupling. In the present work, we will mostly focus on the supergravity
regime, and for this reason we will omit this distinction henceforth. However, we note that
some quantum corrections can already be assessed in this limit from the n-point couplings
among the supergravity modes [8].

The purpose of this note is to explore the landscape of continuously connected AdS3
solutions in type IIB and heterotic supergravities, expanding the work of [9]. The class of
theories we focus on is given by the near-horizon limit of NS5-F1 branes, and thus related by
S-duality to the D1-D5 configuration [10–13] and have been recently studied in ref. [14–16].
These latter works, together with [17,18], conjecture that string theory on AdS3 × S3 × S3 × S1

and AdS3×S3×T4 are holographic duals to non-linear sigma models on symmetric SU(2)×U(1)
and T4 orbifolds, respectively. They take advantage of the absence of RR fluxes to encode the
dynamics as a supersymmetric Wess-Zumino-Witten (WZW) model on the worldsheet, and for
the most part focus on the tensionless string limit, where the supergravity description is not
valid. The opposite limit, where all string excitations decouple, remains largely unexplored.

Previous works have studied deformations of the AdS3 × S3 × S3 × S1 background in type
IIB supergravity [19], and its AdS3 × S3 × T4 counterpart in both the type IIB and heterotic
theories [9]. This has shown very similar structures on both examples, and here we propose
a generic framework to study their deformations for both half-maximal as well as maximal
theories simultaneously. We enlarge our understanding of the landscape of deformations by
exhibiting a 17-parameter family of solutions that includes cases which in 10d correspond to
Lunin-Maldacena TsT deformations [20] and Wilson loops analogous to the recently studied
fibrations in [21–27]. The parameters generically break all supersymmetries, but in certain loci
some supersymmetry is recovered. We further study the spectra of Kaluza-Klein excitations
on these solutions, and discuss the perturbative stability of several supersymmetry breaking
subfamilies. Additionally, given the fact that the deformations do not excite any RR fluxes, the
solutions stay pure NSNS and can thus be described from a worldsheet point of view. This
allows us to show that the marginal parameters induce J J̄ operators on the worldsheet.

The techniques we employ to obtain these large conformal manifolds are based on a
convenient feature of the AdS3 × S3 × T4 and AdS3 × S3 × S3 × S1 solutions: they admit
consistent truncations to three-dimensional gauged supergravity. These are restrictions to a
finite subset of modes in the Kaluza-Klein tower such that any solution of the three-dimensional
gauged supergravity defines a solution of the full set of equations of motion in ten dimensions.
Having a consistent truncation is a particularly valuable tool given that they give access to a
subsector of the higher-dimensional theory using only the lower-dimensional dynamics. In
the three-dimensional truncation, the theory for the modes retained has a scalar potential
featuring stationary points. The solution at these points correspond to AdS3 ×K solutions in
ten dimensions, and in particular, marginal deformations correspond to flat directions in the
3d potential, leading to continuous deformations of the internal manifold K.

The existence of these consistent truncations can be exploited through the tools of Excep-
tional Field Theory (ExFT) [28,29]. ExFT is a reformulation of higher-dimensional supergravity
making it formally covariant under the U duality group of the lower-dimensional theory ob-
tained by toroidal reductions. The higher-dimensional fields are reorganised to mimic the ones
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in lower dimensions, thus allowing the use of the U duality symmetry before the compactifi-
cation already. This reformulation is extremely efficient to build and parameterise consistent
truncations [30,31] and to compute Kaluza-Klein spectra [32–36] and higher-couplings [37]
around any solution in the truncation. Most prominently, these techniques also apply to
vacua preserving few or no (super)symmetries, which were beyond the reach of traditional
methods. In this note, we focus on ExFTs based on the U duality groups of maximal and half-
maximal supergravities in three dimensions, respectively given by E8(8) and SO(8, n), which
were constructed in ref. [38,39].

The rest of the paper is divided in two main parts. The first one exposes the technical
tools necessary to the study, and can be skipped by readers only interested in the main results,
which are presented in the second part. In sec. 2 we review the main features of maximal and
half-maximal supergravities in three dimensions, and explain how the half-maximal theories
can be embedded in their maximal counterparts. By these means, we will construct new
AdS3×S3×S3×S1 and AdS3×S3×T4 solutions in maximal supergravity through computations
in the half-maximal theory. Sec. 3 introduces the E8(8) and SO(8, n) exceptional field theories
with an emphasis on their applications to the study of consistent truncations and Kaluza-Klein
spectra. We show that SO(8, 8) ExFT can be consistently embedded into its E8(8) analogue, and
use this embedding to demonstrate that a consistent truncation of half-maximal supergravity
automatically defines a consistent truncation in maximal supergravity. Finally, in sec. 4 we
exemplify how this framework applies to the round AdS3 × S3 × S3 × S1 and AdS3 × S3 × T4

solutions in both type II and heterotic supergravity.
The second part is dedicated to the analysis of new families of marginal deformations of

these solutions. This constitutes the main result of this note. In sec. 5, we present for each
family the details of the ten-dimensional solution and explain how the deformation affects
the spectrum of Kaluza-Klein modes. From the spectrum, we deduce possible supersymmetry
enhancements and discuss the perturbative stability of the non-supersymmetric solutions by
testing the masses of scalar fields against the Breitenlohner-Freedman bound [40]. All deformed
solutions we present are purely NSNS and we use this fact in sec. 6 to study them from the
point of view of the worldsheet action. This shows that these deformation parameters induce
current-current operators of the original worldsheet model, and this can be used to predict the
holographic CFT operators as combinations of J J̄ deformations. We end in sec. 7 with some
final comments and relegate further technical details to four appendices.

2 Gauged supergravities in D = 3

2.1 Half-maximal theories

The first instance of AdS3 families leading to the AdS3×S3×S3×S1 and AdS3×S3×T4 solutions
mentioned above was found in [41] as a family of vacua in half-maximal D = 3 supergravity
with four scalar multiplets. For theories containing n scalar multiplets, the global symmetry
of the ungauged theory is SO(8, n) [42], and the pure supergravity multiplet containing the
graviton and eight gravitini is supplemented by 8n scalars and spin-1/2 fermions. The former
parameterise the manifold

SO(8, n)
SO(8)× SO(n)

, (1)

and the gravitini and spin-1/2 fields transform respectively in the spinorial and co-spinorial of
the denominator SO(8). To describe the gauging, vectors can be included in this theory that are
dual to the scalar and live in the adjoint representation of SO(8, n) [43]. The gauging of these
matter-coupled supergravities is specified by an embedding tensor ΘK̄ L̄|M̄ N̄ , with indices in the
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vector representation of SO(8, n). As customary, apart from introducing covariant derivatives1

D = d +ΘK̄ L̄|M̄ N̄ AK̄ L̄ T M̄ N̄ , (2)

for T M̄ N̄ the generators of SO(8, n) in the relevant representation, such a gauging induces extra
fermionic couplings and a potential for the scalars, respectively linear and quadratic in the
embedding tensor. The Lagrangian of the gauged half-maximal theory reads [41,43,44]

e−1Lh.m. = R+
1
8

gµνDµM M̄ N̄ DνMM̄ N̄ + e−1LCS, h.m. − Vh.m. + fermions, (3)

with M = VVT for VM̄
N̄ the coset representative specifying the point in (1). The Chern-Simons

kinetic term for the vectors is given by

LCS = −ϵµνρΘM̄ N̄ |P̄Q̄ Aµ
M̄ N̄
�

∂ν Aρ
P̄Q̄ +

1
3
ΘR̄S̄|Ū V̄ f P̄Q̄,R̄S̄

X̄ Ȳ Aν
Ū V̄ Aρ

X̄ Ȳ
�

, (4)

with ϵµνρ the constant Levi-Civita density and f M̄ N̄ ,P̄Q̄
K̄ L̄ = 4δ[K̄

[M̄ηN̄][P̄δ L̄]
Q̄] the structure

constants of so(8, n) for generators normalised as

T M̄ N̄
P̄

Q̄ = 2δP̄
[M̄ηN̄]Q̄ . (5)

Consistency of the gauging requires two constraints, one linear and the other quadratic in
the embedding tensor. The linear constraint restricts the representations in which ΘK̄ L̄|M̄ N̄ can
live. Given that it is antisymmetric in each pair of indices and symmetric under exchange of
both pairs,2 based only on its index structure it includes3

�

⊗
�

sym
≃ 1⊕ ⊕ ⊕ . (6)

Supersymmetry of the gauged supergravity requires that not all representations in (6) appear
in Θ. In particular, one needs to implement the projection [44]

P Θ = 0 , (7)

which allows the embedding tensor to be parameterised as

ΘK̄ L̄|M̄ N̄ = θK̄ L̄M̄ N̄ +
1
2

�

ηM̄[K̄θ L̄]N̄ −ηN̄[K̄θ L̄]M̄
�

+ θ ηM̄[K̄η L̄]N̄ , (8)

in terms of totally antisymmetric, symmetric traceless and singlet tensors. The second require-
ment, quadratic in the embedding tensor, is the invariance of Θ under gauge transformations
generated by Θ itself. This amounts to the vanishing of

QK̄ L̄|M̄ N̄ |P̄Q̄ = −2ΘK̄ L̄|[M̄
R̄ΘN̄]R̄|P̄Q̄ − 2ΘK̄ L̄|[P̄

R̄ΘQ̄]R̄|M̄ N̄ , (9)

with indices raised and lowered with the SO(8, n) invariant tensor ηM̄ N̄ . The space of non-trivial
constraints can be computed to be

QK̄ L̄|M̄ N̄ |P̄Q̄ ⊂ ⊕ ⊕ 2× ⊕ . (10)

1In 3d, all our indices have overbars so as to distinguish them from their ExFT counterparts, introduced in sec. 3.
2We do not consider gaugings of the trombone unless otherwise stated.
3We employ Young tableaux to refer to SO(N) representations. For example, dim

� �

= 1
2 (N − 1)(N + 2) and

dim
� �

= 1
12 N(N − 3)(N + 1)(N + 2).
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The scalar potential and couplings describing the dynamics of the gauged D = 3 supergravity
are determined entirely by the embedding tensor (8). The former, taking into consideration
that the embedding tensors we are going to consider also satisfy the quadratic relation [39]

θ[K̄ L̄M̄ N̄θP̄Q̄R̄S̄] = 0 , (11)

for them to be compatible with a generalised Scherk-Schwarz origin, is given by [41,45]

Vh.m. =
1

12
θK̄ L̄M̄ N̄θP̄Q̄R̄S̄

�

M K̄ P̄ M L̄Q̄M M̄R̄M N̄ S̄ − 6 M K̄ P̄ M L̄Q̄ηM̄R̄ηN̄ S̄

+ 8 M K̄ P̄η L̄Q̄ηM̄R̄ηN̄ S̄ − 3ηK̄ P̄η L̄Q̄ηM̄R̄ηN̄ S̄
�

+
1
8
θK̄ L̄θP̄Q̄

�

2 M K̄ P̄ M L̄Q̄ − 2ηK̄ P̄η L̄Q̄ −M K̄ L̄ M P̄Q̄
�

+ 4θθK̄ L̄ M K̄ L̄ − 32θ2 .

(12)

Critical points are those that annihilate

δVh.m. =
1
3
θK̄ L̄M̄ N̄θP̄Q̄R̄S̄

�

M K̄ P̄ M L̄Q̄M N̄ S̄ − 3 M K̄ P̄η L̄Q̄ηN̄ S̄ + 2ηK̄ P̄η L̄Q̄ηN̄ S̄
�

jM̄R̄

+
1
2

�

θM̄ P̄θN̄Q̄ M P̄Q̄ −
1
2
θM̄ N̄θP̄Q̄M P̄Q̄
�

jM̄ N̄ + 4θθM̄ N̄ jM̄ N̄ ,
(13)

for arbitrary jM̄ N̄ ∈ so(8, n)⊖(so(8)⊕so(n)). The rest of the couplings can be described through
the dressed embedding tensor

TK̄ L̄|M̄ N̄ = (V−1)K̄
P̄(V−1)L̄

Q̄(V−1)M̄
R̄(V−1)N̄

S̄ ΘP̄Q̄|R̄S̄ , (14)

which can be decomposed into TK̄ L̄M̄ N̄ , TK̄ L̄ and T following (8). Given that fermions transform
as representations of SO(8)×SO(n) in the denominator of (1), with the gravitini in the spinorial
of SO(8) and the spin-1/2 fields in the product of the co-spinorial of SO(8) and the vector of
SO(n), it is useful to introduce indices Ī , Ā, ¯̇A∈ J1,8K respectively in the vector, spinorial and
co-spinorial of SO(8), and hatted counterparts for SO(n). This way, the fermion fields are

denoted by ψĀ and χ
¯̇A¯̂I .

In terms of the T-tensor (14), the bosonic masses are given by [41,44,46]

M(1)
M̄ N̄

P̄Q̄ =
�

ηK̄[M̄ηN̄] L̄ −δK̄[M̄δN̄] L̄
�

TK̄ L̄|P̄Q̄ , (15a)

M2
(0) M̄ N̄ ,P̄Q̄

jM̄ N̄ j P̄Q̄ = mM̄ N̄ ,P̄Q̄ jM̄ N̄ j P̄Q̄ , (15b)

respectively for vectors and scalars. In the latter,

mM̄ N̄ ,P̄Q̄ = 4 TM̄ P̄ K̄ L̄ TN̄Q̄R̄S̄ δ
K̄R̄δ L̄S̄ +

4
3

TM̄ Ū K̄ L̄ TP̄ V̄ R̄S̄ δN̄Q̄ δ
Ū V̄δK̄R̄δ L̄S̄

− 4 TM̄ P̄ K̄ L̄ TN̄Q̄
K̄ L̄ − 4 TM̄ Ū K̄ L̄ TP̄ V̄

K̄ L̄δN̄Q̄ δ
Ū V̄ +

8
3

TM̄ Ū K̄ L̄ TP̄
Ū K̄ L̄δN̄Q̄

+ 2 TM̄ P̄ TN̄Q̄ − TM̄ N̄ TP̄Q̄ + 2 TM̄ K̄ TP̄ L̄ δN̄Q̄ δ
K̄ L̄

− TM̄ P̄ TK̄ L̄ δN̄Q̄ δ
K̄ L̄ + 16 T TM̄ P̄ δN̄Q̄ ,

(16)

and the jM̄ N̄ currents project adjoint indices onto the coset (1). The fermionic masses and
couplings are specified by the SO(8)× SO(n)-covariant fermion shifts, which read


















AĀB̄
1 = −

1
12
γ Ī J̄ K̄ L̄

ĀB̄ TĪ J̄ K̄ L̄−
1
4
δĀB̄ TĪ Ī + 2δĀB̄ T ,

AĀ ¯̇A¯̂I
2 = −

1
3
γ Ī J̄ K̄

Ā ¯̇A TĪ J̄ K̄ ¯̂I −
1
2
γ Ī

Ā ¯̇A TĪ ¯̂I ,

A
¯̇A¯̂I ¯̇B ¯̂J
3 =

1
12
δ

¯̂I ¯̂Jγ Ī J̄ K̄ L̄
¯̇A¯̇B TĪ J̄ K̄ L̄ + 2γ Ī J̄

¯̇A¯̇B TĪ J̄ ¯̂I ¯̂J − 4δ
¯̇A¯̇Bδ

¯̂I ¯̂J T − 2δ
¯̇A¯̇B T¯̂I ¯̂J +

1
4
δ

¯̇A¯̇Bδ
¯̂I ¯̂J TĪ Ī ,

(17)
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as
M ĀB̄
(3/2) = −AĀB̄

1 , M
¯̇A¯̂I ¯̇B ¯̂J
(1/2) = −A

¯̇A¯̂I ¯̇B ¯̂J
3 . (18)

The SO(8) gamma matrices in (17) are constructed in appendix A.
Several choices for n are relevant in string theory. The theory with four scalar multiplets was

shown in [39] to arise from the truncation of D = 6 N = (1,1) and N = (2, 0) supergravities,
and the theory with n= 8 corresponds to the NSNS sector of the superstring [47,48]. In the
following, we will review how half-maximal gauged supergravities based on SO(8,8) can be
embedded into maximal supergravity in D = 3, which arises as a truncation of the type II
superstrings. The addition of nv further scalar multiplets in D = 3 corresponds to the addition
of nv vector multiplets in half-maximal D = 10 supergravity, which for nv = 16 captures the
Cartan subsector of the low-energy regime of the heterotic stings [49].

2.2 Maximal theories

To make contact with type IIB supergravity, we must embed the gauged SO(8,8) half-maximal
theory into its maximal counterpart [50–52]. The matter content of this N = 16 supergravity in
three dimensions is comprised by the dreibein and 16 Majorana gravitino fields, which do not
propagate degrees of freedom, together with 128 real scalar fields and 128 Majorana fermions.
The scalars are coordinates of [53]

E8(8)

SO(16)
⊃

SO(8, 8)
SO(8)× SO(8)

, (19)

and together with the spin-1/2 fermions they represent the two inequivalent spinorial repre-
sentations of the denominator SO(16). Despite redundant, to describe gaugings of this theory
it is again useful to introduce the one-forms dual to the scalars, which furnish the adjoint
representation of E8(8).

To describe the scalar dynamics, it is again convenient to represent the coset (19) in terms
of a symmetric matrix

MM̄N̄ = VM̄
P̄VN̄

Q̄∆P̄Q̄ , (20)

with M̄ ∈ J1,248K labelling the adjoint representation of E8(8), and ∆P̄Q̄ a matrix such that

(tM̄)P̄
R̄∆R̄Q̄ is symmetric if the generator tM̄ is non-compact and anti-symmetric if compact.

In terms of these fields, the Lagrangian reads

e−1Lmax = R+ 1
240 gµνDµMM̄N̄ DνMM̄N̄ + e−1LCS,max − Vmax + fermions. (21)

The gauging is specified by a symmetric embedding tensor XM̄N̄ such that covariant derivatives
read

D = d + XM̄N̄ AM̄ tN̄ . (22)

An expression for the Chern-Simons contribution in (21) can be found in [50] and will not be
needed in the sequel. For the gauging to preserve maximal supersymmetry, the embedding
tensor must lie in the 1⊕ 3875 representation of E8(8) and obey the quadratic relation

XR̄P̄ X S̄(M̄ fN̄ )
R̄S̄ = 0 ⇐⇒ [XM̄, XN̄ ]P̄

Q̄ = −XM̄N̄
R̄ XR̄P̄

Q̄ , (23)

with the gauge group generator in the adjoint representation defined in terms of the E8(8)

structure constants as XM̄N̄
P̄ = −XM̄Q̄ f Q̄N̄

P̄ [54]. Throughout, E8(8) indices are raised and
lowered with the Cartan-Killing form κM̄N̄ normalised as in equation (A.12).
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For generic gaugings satisfying the above constraints, the potential and matter couplings
are known in terms of SO(16)-covariant fermions shifts [50]. The former is also known to have
a formally E8(8)-covariant expression [55] given by

Vmax = XM̄N̄ XP̄Q̄

� 1
28

MM̄P̄M N̄ Q̄ +
1
2

MM̄P̄κN̄ Q̄ −
3
28
κM̄P̄κN̄ Q̄ −

2
6727

κM̄N̄κP̄Q̄
�

. (24)

The embedding of half-maximal supergravity into the maximal theory then follows from4

E8(8) ⊃ SO(8,8) ,
248 → 120+ 128s ,
tM̄ → {t[M̄ N̄], tĀ} ,

(26)

with M̄ ∈ J1,16K labelling the vector representation of SO(8,8) as in sec. 2.1. The maximal
embedding tensor thus decomposes under SO(8,8) into

1⊕ 3875→ 1⊕ 135⊕ 1820⊕ 1920c , (27)

where one can recognise the three first representations as the ones appearing in (8). The
spinorial representation 1920c cannot be excited in half-maximal supergravity, the SO(8,8)
and E8(8) singlets can be identified, and the symmetric and four-fold antisymmetric tensors lie
in the 3875 representation of E8(8). The explicit breaking of the embedding tensor components
is [46]

X K̄ L̄|M̄ N̄ = 2ΘK̄ L̄|M̄ N̄ , XĀB̄ = −θ ηĀB̄ +
1

48 Γ
K̄ L̄M̄ N̄
ĀB̄ θK̄ L̄M̄ N̄ . (28)

Details on the construction of E8(8) based on SO(8, 8) can be found in appendix A. The chiral
SO(8,8) gamma matrices are given by (A.7) if we work in the basis in which the SO(8,8)
invariant metric assumes the diagonal form (A.2). In this basis, the charge conjugation matrix
ηĀB̄ is simply given by (A.3).

Breaking the E8(8) indices as in (26), the consistency condition (23) leads to three equations

X R̄1R̄2|P̄1 P̄2
X S̄1S̄2|M̄1M̄2

fN̄1N̄2

R̄1R̄2,S̄1S̄2 = 0 , (29a)

XĀB̄ X S̄1S̄2|M̄1M̄2
fC̄

ĀS̄1S̄2 = 0 , (29b)

XĀB̄ X C̄D̄ fN̄1N̄2

ĀC̄ = 0 . (29c)

The first relation leads to (9), transforming as (10), upon the decomposition (28). The equations
(29b) and (29c) imply extra compatibility conditions transforming in the 35⊕6435c of SO(8, 8)
[46] for the half-maximal gauging to admit an embedding into the maximal theory. Moreover,
for the theory to be obtainable by Scherk-Schwarz reduction from type II/eleven-dimensional
supergravity, the embedding tensor must also satisfy [19]

XM̄N̄ XM̄N̄ +
1

1922

�

XM̄
M̄�2 = 0 . (30)

Supergravity vacua are solutions to the equation

δVmax =
1
14

XM̄N̄ XP̄Q̄
�

M N̄ Q̄ + 7κN̄ Q̄� jM̄P̄ , (31)

4Given the breaking (26), the summing rule for E8(8) indices acquires extra combinatorial factors, e.g.

UM̄VM̄ =
1
2

U M̄ N̄ VM̄ N̄ + UĀVĀ . (25)
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with arbitrary jM̄P̄ ∈ e8(8) ⊖ so(16). For a theory fulfilling (29), given a solution of (13) it
automatically solves (31). The consistency of this truncation is guaranteed by the “fermion
number” Z2 symmetry that acts on the SO(8,8) indices in (26) as

X [M̄ N̄] 7→ X [M̄ N̄] , X Ā 7→ −X Ā . (32)

Instead of using the embedding (19) to construct the E8(8)/SO(16) coset representatives
and define the dressed embedding tensor

T̂M̄N̄ = (V−1)M̄
P̄(V−1)N̄

Q̄XP̄Q̄ , (33)

one can equivalently build it as

T̂K̄ L̄|M̄ N̄ = 2 TK̄ L̄|M̄ N̄ , T̂ĀB̄ = −T ηĀB̄ +
1
48 Γ

K̄ L̄M̄ N̄
ĀB̄ TK̄ L̄M̄ N̄ , (34)

in terms of the dressed embedding tensor in (14) for the half-maximal supergravity. At the
different solutions of (31), the masses of the bosonic modes captured in gauged supergravity
sit among the eigenvalues of

M(1)
M̄

N̄ = −
�

∆M̄P̄ +κM̄P̄
�

T̂P̄N̄ , (35a)

M2
(0)Ā B̄ = PĀ M̄N̄PB̄ P̄Q̄

�

1
7 T̂M̄P̄ T̂N̄ Q̄ +
�

1
7 ∆

K̄L̄ +κK̄L̄
�

T̂M̄K̄ T̂L̄P̄∆N̄ Q̄

�

, (35b)

for vectors and scalars, respectively. In the mass matrix for the scalars, PĀ M̄N̄ = (tĀ )P̄
M̄∆P̄N̄

are the projectors onto the non-compact generators of (19), with Ā ∈ J1,128K labelling the
spinorial of SO(16).

As for the scalars, fermion mass matrices for the maximal theory are written naturally in
SO(16)-covariant form [50,51],5

Â1M̄N̄ =
16
7
θ ηM̄N̄ +

2
7

T̂M̄P̄,N̄Q̄η
P̄Q̄ ,

Â2M̄ ¯̇A = −
2
7
Γ N̄Ā ¯̇A η

Ā B̄ T̂
M̄N̄B̄ ,

Â3 ¯̇A ¯̇B = 4θ η ¯̇A ¯̇B +
1

24
Γ M̄N̄P̄Q̄

¯̇A ¯̇B T̂M̄N̄P̄Q̄ ,

(36)

with indices M̄ ∈ J1, 16K, and ¯̇A ∈ J1, 128K respectively in the vector and co-spinorial of SO(16).
As discussed in appendix A, the invariant tensors ηM̄N̄, ηĀ B̄ and η ¯̇A ¯̇B for this signature are
simply given by identity matrices and the SO(16) components of the dressed embedding tensor
follow from (33) under the decomposition in (A.14).

As in the half-maximal case, the eigenvalues of these matrices also encompass non-physical
modes such as the vectors which are not gauged by the embedding tensor (and therefore sit
outside the gauge group), and massless scalars that serve as Goldstone modes for the massive
vectors.

2.3 Gaugings for S3 ×M4

In the following, unless otherwise stated, we will restrict ourselves to the case n= 8. As will
become apparent in sec. 3, a convenient basis to describe the SO(8, 8)-supergravities is such

5The coefficients for the terms in θ are not tested by our solutions.
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that the invariant metric ηM̄ N̄ is given by

ηM̄ N̄ =

























0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 13 0 0 0 0
0 0 13 0 0 0 0 0
0 0 0 0 0 13 0 0
0 0 0 0 13 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

























, (37)

according to the breaking

SO(8, 8) ⊃ SO(1, 1)×GL(3)×GL(3)× SO(1, 1) ,
X M̄ −→ {X 0̄, X 0̄, X m̄, X m̄, X ī, X ī, X 7̄, X 7̄} .

(38)

This choice aligns the D = 3 supergravity with the coordinates that solve the section constraint in
Exceptional Field Theory. For this reason, we take the ranges of the indices above as m̄ ∈ J1, 3K
and ī ∈ J4,6K. In this basis, the class of embedding tensors determining the half-maximal
supergravities of interest are specified by the choice

θ
0̄0̄
= −4
p

1+α2 , θM̄ N̄ P̄ 0̄ = −
1
2

X M̄ N̄ P̄ , (39)

with

X m̄n̄p̄ = ϵm̄n̄p̄ , X m̄
n̄p̄ = ϵm̄n̄p̄ , X m̄

n̄
p̄ = ϵm̄n̄p̄ , X m̄n̄

p̄ = ϵm̄n̄p̄ ,

X ī̄jk̄ = α ϵ̄ījk̄ , X ī
j̄k̄ = α ϵ̄ījk̄ , X ī

j̄
k̄ = α ϵ̄ījk̄ , X ī̄j

k̄ = α ϵ̄ījk̄ ,
(40)

and α ∈ R+ a free parameter.6 For α ≠ 0, this theory admits an uplift into ten-dimensional
supergravities on S3 × S3 × S1. As we will see in eq. (124), the ratio of the S3 radii is then
given by α. For α= 0, the uplift is on S3 × T4 and the sphere has unit radius, c.f. eq. (129).

The embedding tensor described in [41] can be obtained by taking the α→ 0 limit of (39)
and truncating SO(8, 8) down to SO(8, 4). For generic α, the half-maximal supergravity in 3d
resulting from (39) has gauge group

Gα̸=0 =
�

SO(3)⋉ T3
�4 × T2 , (41)

which, for α= 0, reduces to

Gα=0 =
�

SO(3)⋉ T3
�2 × T8 , (42)

with the remaining SO(4) becoming a global symmetry.
One can verify that the SO(8,8) embedding tensor in (39) does verify the quadratic con-

straint (9) and also the compatibility conditions with maximal supergravity. In fact, it satisfies
the stronger relations

θM̄
P̄Q̄R̄ θN̄ P̄Q̄R̄ = 0 , θ[K̄ L̄M̄ N̄ θP̄Q̄R̄S̄] = 0 , θM̄ N̄ θ

M̄ N̄ = 0 , (43)

after which the others automatically follow. Upon embedding the half-maximal embedding
tensor (39) into its E8(8) counterpart via (28), these identities also guarantee that (30) holds,
and therefore the resulting embedding tensor can be obtained via generalized Scherk-Schwarz
reduction of E8(8)-ExFT.

6The sign of α only affects the chirality of the fermionic modes, and can be taken to be positive without loss of
generality. Following the ten-dimensional uplifts, its range can in fact be restricted to [0, 1] (see eq. (202)).
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In the maximal theory, the gauge groups (41) and (42) are promoted into

Gα̸=0 =
�

SO(3)4 ⋉Σ
�

×
�

T1
�2

, (44)

for non-vanishing α, which reduces to

Gα=0 =
�

SO(3)2 ⋉Σ′
�

×
�

T1
�8

, (45)

in the α= 0 case. Here Σ is a nilpotent subalgebra decomposing as

Σ≃ T12 ⊕ T̂32 , (46)

where T12 is an abelian subalgebra transforming in the adjoint of SO(3)4, and T̂32 represents
two copies of the (1

2 , 1
2 , 1

2 , 1
2) of SO(3)4 which close into T12. In (45), the nilpotent subalgebra

is Σ′ ∼ T6 ⊕ T̂32 now representing the adjoint of SO(3)2 and eight copies of its bi-spinor
representation, which close into T6. The groups in (44) and (45) have the expected structure of
gauged groups of three-dimensional Chern-Simons gauged supergravity [52] (see also sec. 3.2
of ref. [56]).

2.4 Solutions

In the half-maximal theory, a family of solutions annihilating (13) with embedding tensor (39)
is given by the natural inclusion of the two-parameter locus found in the SO(8, 4) theory [41]
into SO(8, 8). In the basis (38) and with the generators of so(8, 8) normalised as is (5), it can
be characterised by the representative

V = exp
�

−ω T 3̄
3̄ −

ωζ

1− e−ω
�

T 3̄7̄ − T 3̄
7̄

�

�

=





















14 0 0 0 0 0 0
0 e−ω 0 eω ζ2 0 ζ −ζ
0 0 12 0 0 0 0
0 0 0 eω 0 0 0
0 0 0 0 16 0 0
0 0 0 eω ζ 0 1 0
0 0 0 −eω ζ 0 0 1





















. (47)

All points in this family of solutions share the AdS radius

ℓ2
AdS = −

2
V0
=

1
1+α2

. (48)

For α ̸= 0, the preserved gauge group out of (41) is SO(4)×SO(2)×SO(2) at generic values of
the parameters, whilst it reduces to SO(2)× SO(2) in the α = 0 case. There are special loci
where symmetry enhances. On the line

ζ2 = 1− e−2ω , (49)

two more vectors become massless,7 and the gauge symmetry becomes SO(4)× SO(3)× SO(2)
for α ̸= 0. At the scalar origin, it further enhances to SO(4)× SO(4). For α= 0, one of these
SO(4) factors is always absent from the gauge group, and instead there is a global factor.
Whenever ζ= 0, this global symmetry is SO(4), which is broken down to SO(3)diag otherwise.

7We consider massless vectors and gravitini in spite of the fact that, together with the massless graviton, in D = 3
they are non-propagating. We find this useful as they correspond to the unbroken (super-)symmetry of the solution.
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At generic points of the two-parameter family no supersymmetry is preserved. As discussed
in [41], the symmetry enhancement at (49) corresponds to the locus where four gravitini become
massless, resulting in N = (0,4) preserved supersymmetry. Away from the supersymmetric
locus, stability is not guaranteed, as can already be observed at the gauged supergravity level.
The modes that trigger instabilities can already be found in the SO(8, 4) truncation with α= 0
of [41].

The family of solutions (47) can be embedded into the sigma model (19) pertaining to the
maximal theory. Following (26), the representative reads

VM̄
N̄ = exp
�

−ω f 3̄
3̄ −

ωζ

1− e−ω
�

f 3̄7̄ − f 3̄
7̄

�

�

, (50)

with indices in the (38) basis. As shown in [9], for α= 0 this family can be uplifted into type
IIB supergravity on an AdS3 × S3 × T4 background, with the parameters ω and ζ controlling
the squashing of the S3 and its fibration over one of the torus directions. With this intuition, a
detailed analysis of (13) allows us to promote the solution (50) into a 15-parameter family for
generic α, with two extra moduli in the case α = 0. The coset representative depending on
these 17 parameters can be given as

VM̄
N̄ = exp
�

−ω f 3̄
3̄ −

ω

1− e−ω
�

χ1 f 3̄7̄ +χ2 f3̄
7̄ + β1 f 3̄

7̄ + β2 f3̄7̄

�

− ω̃ f 6̄
6̄ −

ω̃

1− e−ω̃
�

χ̃1 f 6̄7̄ + χ̃2 f6̄
7̄ + β̃1 f 6̄

7̄ + β̃2 f6̄7̄

�

−Ξ1 f 3̄6̄ −Ξ2 f 3̄
6̄ −Ξ3 f3̄

6̄ −Ξ4 f3̄6̄ −σ4 f 4̄
4̄ −σ5 f 5̄

5̄ −σ7 f 7̄
7̄

�

,

(51)

with σ4 and σ5 stabilised to zero in the α ̸= 0 case. This class of solutions generalises the ones
found in ref. [19] and [9], as will be described in sec. 5. This conformal manifold is entirely
contained inside SO(7,7) ⊂ SO(8,8) ⊂ E8(8). Despite intensive search, no solution has been
found in the half-maximal theory where excited scalars lie outside this SO(7,7). Generically,
the gauge group breaks to SO(2)4 for α ̸= 0 and SO(2)2 for α = 0, and all supersymmetries
are broken. At certain loci, partial (super-)symmetry enhancements take place, as will be
discussed for the computation of the Kaluza-Klein spectra in sec. 5. As will also be described
in that section, the solutions with non-vanishing values for the β ’s and ω correspond to TsT
transformations of the undeformed background. In fact, some subfamilies uplift to the standard
Lunin-Maldecena deformations [20]. It is a remarkable characteristic of D = 3 supergravity
that such β deformations can be captured in a consistent truncation, unlike in the otherwise
similar AdS4 × S7 and AdS5 × S5 solutions [20,57,58].

From a 3d perspective, the parameters in (51) span R17. Nevertheless, as will be seen in
sec. 5, geometric identifications in 10d render the χi and χ̃i moduli periodic. Similarly, string
theory dualities [20] also compactify the β directions.

3 Exceptional field theories in 3d

Exceptional field theories are duality covariant formulations of supegravity theories in higher
dimensions, i.e. before any dimensional reduction. In the following we are interested in
the reformulations that make explicit the duality symmetries that appear in reductions from
heterotic and type II supergravities down to three dimensions, namely the SO(8, n) and E8(8)
exceptional field theories of ref. [39] and [38]. We review here these constructions and explain
how to use them to build and study new solutions in ten dimensions for both heterotic and type
II thanks to consistent truncations down to half-maximal supergravity in three dimensions.
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3.1 Review of SO(8,n) exceptional field theory

We are interested in the SO(8, n)-covariant reformulation of half-maximal 10d supergravity,
first constructed in ref. [39], to make contact with the 3d gauged supergravity in sec. 2.1. The
bosonic fields of such an extended field theory are

{gµν, MMN , AµMN , BµMN} , (52)

with µ ∈ J0,2K and M , N ∈ J1,8+ nK in the fundamental of SO(8, n). The metric gµν is a 3d
metric, MMN is the generalised metric parameterising the coset SO(8, n)/(SO(8)× SO(n)) and
AµMN parameterise the gauge fields of the gauged supergravity. The gauge fields BµMN are
covariantly constrained and necessary for the gauge algebra to close, as we will review below.
The internal indices of both AµMN and BµMN belong to the adjoint representation of SO(8, n).
All these fields depend on 3 external coordinates xµ and internal ones Y MN in the adjoint
representation of SO(8, n). Their dependence on Y MN is subject to the section constraints

∂[MN ⊗ ∂PQ] = 0 , (53a)

ηPQ∂M P ⊗ ∂NQ = 0 , (53b)

such that there are only 7 physical coordinates y i among Y MN . The ⊗ product in eq. (53)
means that the derivatives act on any combination of fields or gauge parameters.

The Lagrangian of the SO(8, n) exceptional field theory is

L SO(8,n) =
Æ

|g|
�

bRSO(8,n) +
1
8

DµMMN DµMMN +L SO(8,n)
int

�

+L SO(8,n)
CS . (54)

The first term is an SO(8, n) covariantisation of the scalar curvature (see ref. [39] for more
details). The second term is the kinetic term for the generalised metric, and the Chern-Simons
term, which ensures the on-shell duality between scalars and vectors, is given by8

L SO(8,n)
CS = 2ϵµνρ

�

Fµν
MN BρMN + ∂µAνN

K ∂KMAρMN −
2
3
∂MN∂K LAµKPAνMNAρ P

L

+
2
3
AµLN ∂MNAνM

P ∂K LAρPK −
4
3
AµLN ∂M PAνM

N ∂K LAρPK
�

, (55)

where Fµν
MN are the Yang-Mills field strength associated to AµMN (see eq. (2.55) of ref. [39]

for an explicit expression). Finally, the potential is [36]

L SO(8,n)
int =

1
8
∂K LMMN ∂PQMMN MKPMLQ + ∂MKMN P ∂N L MMQMPQMK L

−
1
4
∂MNMPK ∂K LMMQ MP

LMQ
N − ∂MKMNK ∂N LMM L

+ g−1 ∂MN g ∂K L MMKMN L +
1
4
MMKMN L g−2∂MN g ∂K L g

+
1
4
MMKMN L ∂MN gµν ∂K L gµν . (56)

Such defined, the Lagrangian (54) is invariant under local generalised internal diffeomorphisms,
defined by their action on a vector V M of weight λ as follows

LSO(8,n)

(Λ,Σ) V
M = ΛK L∂K LV M + 2

�

∂ KMΛKN − ∂KNΛ
KM + 2ΣM

N

�

V N +λ∂K LΛ
K L V M . (57)

8The global factor has been corrected compared to [39] by recovering the SO(8, 8) theory as a truncation of the
E8(8) ExFT reviewed in the following.
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To make sure that these generalised diffeomorphisms close into an algebra, the gauge parameters
ΣMN are subject to constraints similar to eq. (53),

¨

Σ[MN ΣPQ] = 0 ,

ηN PΣMN ΣPQ = 0 ,

¨

Σ[MN ∂PQ] = 0 ,

ηN PΣMN ∂PQ = 0 .
(58)

The associated covariant external derivatives used in eq. (54) are defined as

Dµ = ∂µ −LSO(8,n)
(Aµ,Bµ)

, (59)

with the weights of the fields in (52) and the gauge parameters ΛMN and ΣMN specified as

gµν MMN AMN
µ BµMN ΛM ΣMN

λ 2 0 1 0 1 0
(60)

To ensure the invariance of the action, the gauge fields Bµ must also enter constraints analogous
to (58).

The section constraints (53) for the SO(8, n) theory admit two inequivalent solutions [39].
One corresponds to the N = (2,0) theory in six dimensions coupled to 5 self-dual and n− 3
anti self-dual tensor fields and 5(n− 3) scalars. Such a theory cannot be oxidised to more than
six dimensions. For the alternate solution of (53), the theory (54) describes the NSNS sector
of ten-dimensional supergravity coupled to n− 8 ten-dimensional vectors. Setting n= 8 and
denoting the physical internal coordinates as y i with i ∈ J1, 7K, the constraints (53) are solved
by breaking

SO(8, 8) ⊃ SO(1,1)×GL(7) ,
X M −→ {X 0, X0, X i , X i} ,

(61)

and restricting coordinate dependence to y i = Y i0. The ExFT indices are aligned with the ones
of the three-dimensional half-maximal theory by embedding GL(3)×GL(3)× SO(1, 1) ⊂ GL(7)
as in (38). The explicit dictionary between the SO(8,8)-ExFT generalised metric and the
internal components of the NSNS fields is given by [9]

M00 = ĝ−1eΦ̂/2 ,

M0i = 1
6! M00ϵi j1... j6 b̃ j1... j6 ,

M00Mi j −M0iM0 j = ĝ−1 ĝ i j ,

M00Mi
j −M0iM0

j = ĝ−1 ĝ ik bk j ,

(62)

where ĝi j is the purely internal block of the ten-dimensional metric in Einstein frame, and ĝ its
determinant. The ExFT fields b and b̃ do not directly embed into the ten-dimensional two-form,
but determine its field strength Ĥ = dB̂ through

Ĥ = db+ eΦ̂/8 ⋆10 db̃ , (63)

with the ten-dimensional Hodge star taken with respect to the Einstein-frame metric. To
describe our configuration in the string frame, the only change needed is the usual rescaling of
the metric ĝs µ̂ν̂ = eφ̂/2 ĝµ̂ν̂.

The consistent truncation of the NSNS sector of type II supergravity on S3×T4 and S3×eS3×S1

down to a half-maximal supergravity can be described in terms of generalised Scherk-Schwarz
Ansätze, where the dependence on external and internal coordinates factorises. The dependence
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on the former is carried by the D = 3 fields and the latter by a group-valued twist matrix U(Y )
and a scale factor ρ(Y ) of weight −1. The precise factorisation reads [39]

gµν(x , Y ) = ρ(Y )−2 gµν(x) ,

MMN (x , Y ) = UM
M̄ (Y )UN

N̄ (Y )MM̄ N̄ (x) ,

AµMN (x , Y ) = ρ(Y )−1(U−1)M̄
M (Y )(U−1)N̄

N (Y )Aµ
M̄ N̄ (x) ,

BµK L(x , Y ) = −
1
4
ρ(Y )−1UMN̄ (Y )∂K L(U

−1)M̄
M (Y )Aµ

M̄ N̄ (x) .

(64)

On the right-hand sides, gµν, MM̄ N̄ and Aµ
M̄ N̄ are the fields of the half-maximal three-

dimensional supergravity described in sec. 2.1. The truncation to these fields is consistent
if

LSO(8,n)
(UK̄ L̄ ,ΣK̄ L̄)

(U−1)M̄
M = 2ΘK̄ L̄|M̄

N̄ (U−1)N̄
M , (65)

with

UK̄ L̄
K L = ρ−1 (U−1)[K̄

K(U−1)L̄]
L , and ΣK̄ L̄,K L = −

1
4
ρ−1 ∂K L(U

−1)[K̄
P UP L̄] , (66)

and a constant embedding tensor ΘK̄ L̄|M̄ N̄ . This tensor specifies the explicit gauging and its
components (8) can be expressed using the twist matrix and the scaling function as

θK̄ L̄M̄ N̄ = −3ρ−1 J[K̄ L̄,M̄ N̄] ,

θM̄ N̄ = 2ρ−1 JK̄(M̄ ,N̄)
K̄ −ηM̄ N̄ θ + ξM̄ N̄ ,

θ = −
2

8+ n
ρ−1 JK̄ L̄

K̄ L̄ ,

(67)

with the SO(8,8) currents JM̄ N̄ ,K̄
L̄ =
�

U−1
�

M̄
M
�

U−1
�

N̄
N
�

U−1
�

K̄
K∂MN UK

L̄ and the trombone
gauging

ξM̄ N̄ = 2ρ−2
�

U−1
�

M̄
K
�

U−1
�

N̄
L∂K Lρ − 2ρ−1 JK̄[M̄ ,N̄]

K̄ . (68)

In the following, all twist matrices will be such that ξM̄ N̄ = 0, allowing for a Lagrangian
formulation of the three-dimensional supergravity. For the SO(8, n) case with n> 8 relevant to
heterotic supergravity, equations (64)–(68) generalise straightforwardly.

3.2 Review of E8(8) exceptional field theory

We can similarly employ an exceptional field theory suited to studying compactifications of
maximal 10d supergravity (and 11d supergravity) down to 3d. As detailed in sec. 2.2, the
duality group is then E8(8). The E8(8)-covariant reformulation of type IIB and 11d supergravities
is E8(8) exceptional field theory [38]. Its structure is very similar to what we described in the
previous section. The fields are

{gµν, MMN , AµM, BµM} , (69)

alongside their fermionic superpartners. As before, they depend on both the external coordinates
xµ and on a set of 248 extended coordinates YM. Here and in (69), the index M ∈ J1, 248K is
the adjoint index of E8(8). The dependence on the YM coordinates must be restricted by the
section constraints

κMN ∂M ⊗ ∂N = 0 , (70a)

f MN
P∂M ⊗ ∂N = 0 , (70b)

(P3875)MN
KL∂K ⊗ ∂L = 0 , (70c)
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which have two inequivalent solutions. One preserves seven physical coordinates and corre-
sponds to type IIB supergravity, and the other has eight coordinates and is associated to M-theory.
The E8(8) structure constants fMN

P and Cartan-Killing metric κMN can be respectively found
in eq. (A.11) and (A.12) in appendix A. The components of the projector 248⊗ 248 7→ 3875
can also be found in (A.21).

The theory is invariant under gauge symmetries generated by the E8(8) generalised Lie
derivative. On a vector VM of weight λ, it acts as

LE8(8)

(Λ,Σ)V
M = ΛN ∂N VM −

�

60 (P248)
M

N
K
L∂KΛ

L − f MK
NΣK
�

VN +λVM∂NΛ
N , (71)

with (P248)MN
K
L in (A.21). As previously, the closure of the algebra of LE8(8)

(Λ,Σ) imposes
constraints on the gauge parameters ΣM and BµM fields similar to eq. (70), and the fields in
(69) need to be assigned weights analogously to the (60) assignment.

The bosonic Lagrangian, invariant under eq. (71), is given by [38]

L E8(8) =
Æ

|g|
�

bRE8(8) +
1

240
DµMMN DµMMN +L E8(8)

int

�

+L E8(8)
CS . (72)

We denote bRE8(8) the E8(8)-covariantised Ricci scalar and define the E8(8)-covariant derivative
as9

Dµ = ∂µ −L
E8(8)

(Aµ,Bµ)
. (73)

The potential term L E8(8)

int reads

L E8(8)

int =
1

240
MMN ∂MMKL∂NMKL −

1
2
MMN ∂MMKL∂LMNK

−
1

7200
f NQ

P f MS
RMPK∂MMQKMRL∂NMSL

+
1
2

g−1∂Mg ∂NMMN +
1
4
MMN g−2∂Mg ∂N g +

1
4
MMN ∂Mgµν ∂N gµν , (74)

and the Chern-Simons term L E8(8)
CS has the following expression:

L E8(8)
CS =

1
2
ϵµνρ
�

Fµν
MBρM − fKL

N ∂µAνK∂NAρL −
2
3

f NKL ∂M∂NAµKAνMAρL

−
1
3

fMKL f KP
Q f LRS AµM∂PAνQ∂RAρS

�

. (75)

We refer to the eq. (2.26) of ref. [38] for the expression of the covariant field strength Fµν
M of

AµM, which will not be needed in the following.
Within E8(8) exceptional field theory, the Scherk-Schwarz Ansatz describes consistent trun-

cations of type II supergravity down to maximal D = 3 gauged supergravities. It is expressed in
term of a twist matrix UM

M̄ ∈ E8(8) and a scaling function ρ, and parallels eq. (64) [54,59]:

gµν(x , Y ) = ρ(Y )−2 gµν(x) ,

MMN (x , Y ) = UM
M̄(Y )UN

N̄ (Y )MM̄N̄ (x) ,

AµM(x , Y ) = ρ(Y )−1(U−1)M̄
M(Y )Aµ

M̄(x) ,

BµM(x , Y ) =
ρ(Y )−1

60
fM̄

P̄Q̄ (U−1)P̄P(Y )∂M(U
−1)Q̄

P(Y )Aµ
M̄(x) .

(76)

9For the sake of readability, we use the same notation for the SO(8, n) and E8(8) covariant derivatives in eq. (59)
and (73).

16

https://scipost.org
https://scipost.org/SciPostPhys.17.4.123


SciPost Phys. 17, 123 (2024)

The fields gµν, MM̄N̄ and Aµ
M̄ now belong to the maximal three-dimensional supergravity

described in sec. 2.2. The truncation to these fields is consistent if the following condition for
generalised parallelisability is satisfied:

LE8(8)

(UM̄,ΣM̄)
UN̄

M = XM̄N̄
P̄ UP̄

M , (77)

where

UM̄
M = ρ−1 (U−1)M̄

M , ΣM̄M =
1

60
ρ−1 fM̄

P̄Q̄(U−1)P̄P∂M(U
−1)Q̄

P , (78)

and with constant torsion [19]

XM̄N̄
P̄ = −ρ−1 JM̄N̄

P̄ +ρ−1 f P̄ N̄ Q̄ f Q̄K̄
L̄JK̄M̄

L̄ −
1
60
ρ−1 f P̄K̄

N̄ fM̄L̄
Q̄JK̄Q̄

L̄

−
1
2
ρ−1 f P̄ N̄ Q̄ f Q̄K̄

M̄JR̄K̄
R̄ +
�

δM̄
K̄δN̄

P̄ −
1
2

fM̄
L̄K̄ fN̄ L̄

P̄
�

ξK̄ ,
(79)

which can be identified with the embedding tensor of the three-dimensional gauged supergrav-
ity. Here we have introduced the E8(8) current JM̄N̄

P̄ = (U−1)M̄
K(U−1)N̄

L∂KUL
P̄ and the

trombone gauging
ξM̄ = 2 (U−1)M̄

N ∂Nρ
−1 +ρ−1 ∂N (U

−1)M̄
N . (80)

As before, we will always consider ξM̄ = 0. This consistency condition is most nicely expressed
once projected on the adjoint representation

XM̄N̄ = −2ρ−1 J(M̄N̄ ) −ρ
−1 JK̄(M̄

L̄ fN̄ )L̄
K̄ , (81)

with
XM̄N̄ =

1
60 XM̄P̄Q̄ fN̄

P̄Q̄ , and JM̄N̄ =
1
60 JM̄P̄Q̄ fN̄

P̄Q̄ . (82)

3.3 ExFT matryoshka

We embed the SO(8, 8) exceptional field theory into its E8(8) counterpart by breaking the latter
group as in eq. (26):

E8(8) −→ SO(8,8) ,
XM −→
�

X [MN], XA	 .
(83)

The SO(8, 8)-ExFT coordinates Y MN of sec. 3.1 are identified with the components in the 120
of the E8(8) coordinates YM, and all fields and parameters are independent of YA,

Y MN ⊂ YM , and ∂A = 0 . (84)

The fields of the two theories can also be related through (83). The relevant sigma models are
identified through the inclusion (19), and the vectors in the adjoint of SO(8, 8) are identified
in the two theories:

AE8(8)
µ

MN = 2ASO(8,8)
µ

MN , and BE8(8)
µMN = 4BSO(8,8)

µMN . (85)

The remaining components are identified with the Ramond-Ramond fields of maximal super-
gravity. From an SO(8,8) perspective, the consistency of the truncation to the NSNS sector
follows from the projection in (32).

In the following, we describe how the E8(8) section constraints and generalised Lie deriva-
tives are related to their SO(8,8) counterparts. For configurations that admit a generalised
Leibniz parallelisation in the SO(8,8) theory, we detail how to build a twist matrix UM

M̄

from UM
M̄ in such a way that the embedding tensors in the corresponding consistent trunca-

tions are related as in (28).
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Section constraints For the adjoint coordinate dependence (84), the E8(8) section condi-
tions (70) follow from the SO(8,8) ones (53). This can be seen explicitly using the SO(8,8)
decomposition of the E8(8) structure constants given in (A.11). For the conditions (70a)
and (70b), the non-trivial components are

κMN ∂M ⊗ ∂N = −
1
8
∂MN ⊗ ∂ MN ,

f MN ,PQ
RS ∂MN ⊗ ∂PQ = −4∂[R

T ⊗ ∂S]T ,
(86)

which vanish as a consequence of eq. (53b). Concerning the last condition (70c), let us first
note that it is equivalent to eq. (70a) and (70b) together with

f MKR f NL
R ∂M ⊗ ∂N − 2∂(K ⊗ ∂L) = 0 . (87)

The only non trivial components of this equation are

f MMN ,R f N PQ
R ∂M ⊗ ∂N − ∂MN ⊗ ∂PQ − ∂PQ ⊗ ∂MN = −6∂[MN ⊗ ∂PQ] ,

f MAR f NB
R ∂M ⊗ ∂N = −

1
16

�

Γ I JΓ K L
�

AB ∂I J ⊗ ∂K L .
(88)

They both vanish thanks to the SO(8,8) section condition (53) and
�

ΓMNΓ PQ
�

AB = Γ
MN PQ
AB + 2ηM[PΓ

Q]N
AB − 2ηN[PΓ

Q]M
AB − 2ηM[PηQ]N ηAB . (89)

For the solution of the section constraint in (61), the dictionary between the E8(8)-ExFT
generalised metric and the internal components of the NSNS fields is obtained by further
splitting SO(8, 8) under SO(1, 1)×GL(7) and using eq. (62). The internal components of the
RR fluxes could be computed similarly through the components of the E8(8)-ExFT generalised
metric in the 128 of SO(8,8). However, as the deformations of the AdS3 × S3 × T4 and
AdS3 × S3 × eS3 × S1 solutions we consider do not excite those fluxes, this part of the dictionary
will not be needed in here.

Generalised Lie derivative With the coordinates (84), the E8(8) generalised Lie derivative (71)
decomposes as

LE8(8)

(Λ,Σ)V
MN = LSO(8,8)

(Λ̂,Σ̂)
V MN +

1
8

�

ΓMNΓ K L
�

AB VA∂K LΛ
B −

1
2

�

ΓMN
�A

BΣAVB ,

LE8(8)

(Λ,Σ)V
A = LSO(8,8)

(Λ̂,Σ̂)
VA −

1
2

�

Γ PQ
�A

BVB∂KQΛ
K

P +
1
16

�

Γ PQΓ K L
�A

BVPQ∂K LΛ
B

+
1
4

�

Γ K L
�AB
(ΣBVK L +ΣK LVB) ,

(90)

where (Λ̂MN , Σ̂MN ) = (
1
2Λ

MN , 1
4ΣMN ), in accordance with eq. (85), and VA is considered a set

of SO(8,8) scalars. Restricting all the objects to have vanishing components in the spinorial
representation of the orthogonal group, the generalised Lie derivative of the E8(8) theory can
be observed to reduce to the one for the SO(8,8) ExFT.

Uplift An E8(8) twist matrix satisfying the consistency condition (77) can be constructed from
an SO(8,8) twist matrix satisfying the condition (65). We identify the scale factors ρ and
define10

UM
M̄ =

�

2 U[M
M̄ UN]

N̄ 0

0 UA
Ā

�

, (91)

10The coefficients in eq. (91) are different from those in ref. [9] to match the summing convention (25).
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where UA
Ā is a 128s representation of UM

M̄ ,

UA
Ā = exp
�

1
2

uMN Γ
MN
�

A

Ā , (92)

where the matrix u is such that UM
M̄ = exp
�

uPQ T PQ
�

M
M̄ , with T M̄ N̄ the generators of so(8, 8)

normalised as in eq. (5). Then, using the decomposition (90) of the generalised Lie deriva-
tive, the E8(8) generalised parallelisability condition (77) has the following non-vanishing
components:

LE8(8)

(UM̄ N̄ ,ΣM̄ N̄ )
UK̄ L̄

MN = 4ΘM̄ N̄ |[K̄
[P̄δ L̄]

Q̄]UP̄Q̄
MN ,

LE8(8)

(UM̄ N̄ ,ΣM̄ N̄ )
UĀ

A =
1
2
ΘM̄ N̄ |K̄ L̄

�

Γ K̄ L̄
�

Ā
B̄ UB̄

A ,

LE8(8)

(UĀ,ΣĀ)
UB̄

MN =
1
4

�

−θ ηĀC̄ +
1
48
Γ P̄Q̄R̄S̄

ĀC̄ θP̄Q̄R̄S̄

�

�

Γ M̄ N̄
�C̄

B̄ UM̄ N̄
MN ,

LE8(8)

(UĀ,ΣĀ)
UM̄ N̄

A =
1
2

�

−θ ηĀB̄ +
1

48
Γ P̄Q̄R̄S̄

ĀB̄ θP̄Q̄R̄S̄

�

�

ΓM̄ N̄

�B̄C̄ UC̄
A ,

(93)

where we used SO(8,8) consistency equation (67). Hence, the consistency of the E8(8)
Ansatz (76) is ensured by the one of the SO(8,8) Ansatz (64). The components of the re-
sulting E8(8) embedding tensor read

X M̄ N̄ ,P̄Q̄ = 2ΘM̄ N̄ ,P̄Q̄ , XĀB̄ = −θ ηĀB̄ +
1
48
Γ M̄ N̄ P̄Q̄

ĀB̄ θM̄ N̄ P̄Q̄ , X M̄ N̄ ,Ā = 0 . (94)

The relation between the embedding tensors reproduces the three-dimensional embedding
tensor (28). Thus, a twist matrix UM

M̄ ∈ SO(8,8) and a scale factor ρ satisfying the consis-
tency condition (65) will both give a consistent truncation of half-maximal ten-dimensional
supergravity down to N = 8 three-dimensional supergravity through eq. (64) and a consistent
truncation of IIB supergravity down to N = 16 supergravity in 3d through eq. (76) and (91).
In sec. 4, we describe the pairs (ρ, UM

M̄ ) suited to the reductions on S3 × eS3 × S1 and S3 × T4.

3.4 Kaluza-Klein spectroscopy

On Leibniz parallelisable solutions of exceptional field theory, the Kaluza-Klein spectrum can
be obtained by extending the Scherk-Schwarz factorisations in (64) and (76) to include the
linearised perturbations. These linear perturbations have a natural tower structure when
expanded in terms of the harmonics of the most symmetric configuration homeomorphic to
the relevant background [32,33]. In fact, only the scalar harmonics are needed and the levels
are not mixed by the mass operators, a feature that turns the computation of the Kaluza-Klein
masses into a diagonalisation problem for a set of mass matrices. In the following we will discuss
how to compute the Kaluza-Klein spectrum on any solution that uplifts from 3d supergravity
using these ExFT techniques.

3.4.1 SO(8,n) mass matrices

For the modes arising from the 10d metric, dilaton, Kalb-Ramond field, and possibly extra ten-
dimensional vector multiplets, it suffices to extend the Scherk-Schwarz Ansatz (64) in analogy
with [36]. Starting from a background specified by three-dimensional SO(8, n)-supergravity
fields

{gµν, MM̄ N̄ , AM̄ N̄
µ }= { ḡµν, ∆M̄ N̄ , 0} , (95)
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we consider the expansion

gµν(x , Y ) = ρ(Y )−2
�

ḡµν(x) + hµν
Λ(x)YΛ(Y )
�

,

MMN (x , Y ) = UM
M̄ (Y )UN

N̄ (Y )
�

∆M̄ N̄ + jM̄ N̄
Λ(x)YΛ(Y )
�

,

AµMN (x , Y ) = ρ(Y )−1(U−1)M̄
M (Y )(U−1)N̄

N (Y )Aµ
M̄ N̄ Λ(x)YΛ(Y ) ,

BµK L(x , Y ) = −
1
4
ρ(Y )−1UMN̄ (Y )∂K L(U

−1)M̄
M (Y )Aµ

M̄ N̄ Λ(x)YΛ(Y ) ,

(96)

extending (64). Here, Λ denotes a possibly composite Kaluza-Klein index which will depend
on the topology of the background solution. These harmonics lead to the definition of �TM̄ N̄

ΛΣ

as the constant representation matrix encoded in the SO(8, n) twist matrix as

ρ−1(U−1)M̄
M (U−1)N̄

N∂MNYΛ = −2�TM̄ N̄
ΛΣYΣ . (97)

The properties of the twist matrix (67) guarantee that the �TM̄ N̄
ΛΣ represent the gauge algebra,

with the commutator normalised as [36]
�

�TM̄ N̄ ,�TP̄Q̄

�

= −ΘM̄ N̄ |[P̄
K̄ �TQ̄]K̄ +ΘP̄Q̄|[M̄

K̄ �TN̄]K̄ . (98)

To describe backgrounds corresponding to other points of the scalar manifold, it is conve-
nient to dress this tensor analogously to eq. (14),

TM̄ N̄ = (V−1)M̄
K̄(V−1)N̄

L̄�TK̄ L̄ . (99)

Then, the Kaluza-Klein mass matrices are those presented in [36,41], which we reproduce here
in the present notation. The mass matrices corresponding to the bosonic Kaluza-Klein modes
read

M2
(2)
ΣΩ = −2δM̄ P̄δN̄Q̄TM̄ N̄

ΣΓTP̄Q̄
ΓΩ , (100a)

M(1)
M̄ N̄

P̄Q̄
ΣΩ =
�

ηK̄[M̄ηN̄] L̄ −δK̄[M̄δN̄] L̄
��

TK̄ L̄|P̄Q̄δ
ΣΩ + 4TK̄[P̄

ΣΩηQ̄] L̄

�

, (100b)

M2
(0) M̄ N̄ ,P̄Q̄

ΣΩ jM̄ N̄ ,Σ j P̄Q̄,Ω =
�

mM̄ N̄ ,P̄Q̄ δ
ΣΩ +m′

M̄ N̄ ,P̄Q̄
ΣΩ
�

jM̄ N̄ ,Σ j P̄Q̄,Ω , (100c)

where mM̄ N̄ ,P̄Q̄ is given in eq. (16) and

m′
M̄ N̄ ,P̄Q̄

ΣΩ = 8 TM̄ P̄R̄K̄ δN̄
R̄δK̄ L̄ TQ̄ L̄

ΣΩ + 8 TM̄ P̄R̄K̄ δQ̄
R̄δK̄ L̄ TN̄ L̄

ΣΩ

− 8ηM̄ P̄ TN̄Q̄K̄ L̄ δ
K̄R̄δ L̄S̄ TR̄S̄

ΣΩ + 8ηM̄ P̄ TN̄Q̄K̄ L̄ T K̄ L̄ΣΩ

+ 8
�

TM̄ P̄ + T ηM̄ P̄

�

TN̄Q̄
ΣΩ + 2ηM̄ P̄ ηN̄Q̄ δ

K̄R̄δ L̄S̄ TK̄ L̄
ΣΛTR̄S̄

ΛΩ

+ 16δM̄ P̄ δ
K̄ L̄ TQ̄ L̄

ΣΛTN̄ K̄
ΛΩ − 4δM̄

K̄δP̄
L̄ TQ̄ L̄

ΣΛTN̄ K̄
ΛΩ

+ 16TM̄ P̄
ΣΛTN̄Q̄

ΛΩ .

(101)

In turn, the mass matrices for the fermionic fields are11

M(3/2)
ĀB̄,ΛΣ = −AĀB̄

1 δ
ΛΣ + 2γ Ī J̄

ĀB̄ T Ī J̄
ΛΣ , (102a)

M(1/2)
¯̇A¯̂I ¯̇B ¯̂J ,ΛΣ = −A

¯̇A¯̂I ¯̇B ¯̂J
3 δΛΣ − 2γ Ī J̄

¯̇A¯̇B δ¯̂I ¯̂J T Ī J̄
ΛΣ + 8δ ¯̇A¯̇B T¯̂I ¯̂J

ΛΣ , (102b)

in terms of the shift tensors in (17) and the SO(8)× SO(8) components of TM̄ N̄
ΛΣ.

11This corrects a sign in eq. (4.13) of [41].
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As in previously studied 3d Kaluza-Klein spectra [36,41], all the eigenvalues of the graviton
and gravitino mass matrices correspond to physical modes in the spectrum (on the proviso
remarked in footnote 7), and one must take into account that each of the eigenvalues of (100a)
in fact corresponds to two states of opposite spin. The eigenvalues of the remaining matrices
include the Goldstone modes which are absorbed by massive gravitons, gravitini and vectors in
the super-BEH mechanism upon taking into account the off-diagonal couplings between modes
of different spin. Ignoring these couplings, the eigenvalues to be discarded can be identified
given the masses of the gravitons and gravitini [41,60]. The relevant relations in D = 3 are [41]

�

m(1)ℓAdS

�

Goldstone = ±2
r

1+
�

m(2)ℓAdS

�2
,
�

m(1/2)ℓAdS

�

goldstino = 3 m(3/2)ℓAdS , (103)

for goldstinos and Goldstone vectors. Out of the eigenvalues of the scalar mass matrix (100c),
one must also remove the usual massless fields corresponding to longitudinal polarisations of
massive vectors, as well as two values for every massive graviton. One of them is always zero
and the other is given by

�

m(0)ℓAdS

�2
Goldstone = −3
�

m(2)ℓAdS

�2
. (104)

3.4.2 E8(8) mass matrices

For the spectrum of the full type II supergravity, we need to consider a deformation of (76) for
E8(8) ExFT. Around the background specified by 3d fields

{gµν, MM̄N̄ , AM̄
µ }= { ḡµν, ∆M̄N̄ , 0} , (105)

the fluctuation Ansatz is [9]

gµν(x , Y ) = ρ(Y )−2
�

ḡµν(x) + hµν
Σ(x)YΣ(Y )
�

,

MMN (x , Y ) = UM
M̄(Y )UN

N̄ (Y )
�

∆M̄N̄ + jM̄N̄
Σ(x)YΣ(Y )
�

,

AµM(x , Y ) = ρ(Y )−1(U−1)M̄
M(Y )Aµ

M̄,Σ(x)YΣ(Y ) ,

BµM(x , Y ) =
ρ(Y )−1

60
fM̄

P̄Q̄ (U−1)P̄P(Y )∂M(U
−1)Q̄

P(Y )Aµ
M̄,Σ(x)YΣ(Y ) . (106)

The scalar fluctuations are parametrised as jM̄N̄
Σ = 2PĀ ,M̄N̄ Φ

Ā ,Σ, where PĀ ,M̄N̄ is the
projector onto the coset (19). The scalar harmonics satisfy

ρ−1(U−1)M̄
M∂MYΣ = − T̂M̄ΣΩYΩ , (107)

such that the constant matrices T̂M̄ΣΩ define the algebra

�

T̂M̄, T̂N̄
�

= X[M̄N̄ ]
K̄T̂K̄ . (108)

As in eq. (33) and (99), these matrices can be dressed to describe backgrounds corresponding
to other points of the scalar manifold.

With the twist matrix (91) and the physical coordinates embedded in Y MN as in eq. (84),
the matrices T̂M̄ΣΩ have as only non-vanishing components

T̂M̄ N̄ = 2�TM̄ N̄ , (109)

where �TMN is the SO(8, 8) tensor in (97).
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Inserting the Ansatz (106) into the ExFT action (72), one can read off the bosonic mass
matrices

M2
(2)
ΣΩ = −∆M̄N̄ T̂M̄ΣΓ T̂N̄ ΓΩ , (110a)

M(1)
M̄Σ

N̄
Ω = −
�

∆M̄P̄ + κM̄P̄
��

XP̄N̄ δ
ΣΩ + fP̄N̄

Q̄ T̂Q̄ΣΩ
�

, (110b)

M2
(0)Ā

Σ
B̄
Ω = δΣΩPĀ M̄N̄PB̄ P̄Q̄

�

1
7

XM̄P̄XN̄ Q̄ + XM̄K̄

�

1
7
∆K̄L̄ +κK̄L̄
�

XL̄P̄∆N̄ Q̄

�

+ 2
�

XM̄Ā B̄ − 2 X[Ā B̄]M̄
�

∆M̄N̄ T̂N̄ ΣΩ + 2 XM̄Ā B̄ κ
M̄N̄ T̂N̄ ΣΩ (110c)

−
�

T̂M̄T̂N̄
�ΣΩ
∆M̄N̄κĀ B̄ + 2

�

T̂M̄T̂N̄
�ΣΩ
∆P̄Q̄ fĀ P̄

N̄ fB̄Q̄
M̄ − 2
�

T̂B̄ T̂Ā
�ΣΩ

.

Upon considering the supersymmetric completion of (72) in [54] and the expansions [34]

ψµ
M(x , Y ) = ρ−1/2(Y )δMM̄ψµ

M̄Λ(x)YΛ(Y ) , χȦ (x , Y ) = ρ1/2(Y )δȦ
¯̇Aχ

¯̇AΛ(x)YΛ(Y ) , (111)

for the ExFT gravitini and spin-1/2 fields, their mass matrices can also be found to be

M(3/2)
M̄Σ,N̄Ω = −Â1

M̄N̄δΣΩ − 4
�

V−1
�

M̄N̄
M̄T̂M̄ΣΩ ,

M(1/2)
¯̇AΣ, ¯̇BΩ = −Â3

¯̇A ¯̇BδΣΩ − Γ M̄N̄
¯̇A ¯̇B

�

V−1
�

M̄N̄
M̄T̂M̄ΣΩ ,

(112)

in terms of the shift matrices in eq. (36). The mass matrices (110) and (112) also contain
unphysical Goldstone modes that need to be removed using (103) and (104) and decoupled
vectors.

4 The round S3 × S3 × S1 and S3 × T4 solutions

In this section we show how the techniques discussed in sec. 3 apply to the consistent truncations
on the round AdS3×S3×S3×S1 and AdS3×S3×T4 solutions, and how can be used to compute
their associated Kaluza-Klein spectra.

4.1 Scherk-Schwarz factorisation

Twist matrix for S3 × S3 × S1 The relevant pair (ρ, UM
M̄ ) which makes contact with the

embedding tensor (39) can be constructed out of two copies of the SO(4,4)-ExFT parallelisation
discussed in [41] as

(U−1)M̄
M =

























ρ 0
p

1+α2�ξm 0
p

1+α2�eξi 0 0
0 ρ−1 0 0 0 0 0
0 −ρ−1

p
1+α2 Zm̄m

�ξm Km̄
m Zm̄m 0 0 0

0 −ρ−1
p

1+α2 Z m̄
m
�ξm Km̄m Z m̄

m 0 0 0

0 −ρ−1
p

1+α−2 eZīi
�
eξi 0 0 α eKī

i α−1
eZīi 0

0 −ρ−1
p

1+α−2 eZ ī
i
�
eξi 0 0 α eKī i α−1

eZ ī
i 0

0 0 0 0 0 0 12

























, (113)

in terms of the SO(8, 8) ⊃ SO(1, 1)×GL(3)×GL(3)×SO(1, 1) breaking of both flat and curved
indices such that

X M = {X 0, X0, X m, Xm, X i, X i, X 7, X7} , (114)

following eq. (38). The parameter α is the same as in sec. 2, and the objects appearing in
eq. (113) are constructed from the Killing vectors on the round S3’s,

Kαβ m = Y[α|∂mY|β] , eKα̃β̃ i = Y[α̃|∂ iY|β̃] , (115)
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with Yα and Y α̃ the harmonics that embed the spheres in R4 as δαβYαYβ = 1 and likewise for
tilded indices. The fiducial unit-radius metrics on the round S3’s can be recovered from the
Killing vectors as

�gmn = 2Kαβ mKγδ nδ
αγδβδ , �

egij = 2eKα̃β̃ i
eKγ̃δ̃ jδ

α̃γ̃δβ̃ δ̃ , (116)

and the vectors can then be split into SO(4)≃ SO(3)L × SO(3)R as










Lm̄
m =
�

K4m̄ n +
1
2
ϵ4m̄n̄p̄ Kn̄p̄ n

�

�gnm ,

Rm̄
m =
�

K4m̄ n −
1
2
ϵ4m̄n̄p̄ Kn̄p̄ n

�

�gnm ,
(117)

normalised so that

LLm̄
Ln̄ = ϵm̄n̄p̄ L p̄ , LLm̄

Rn̄ = 0 , LRm̄
Rn̄ = −ϵm̄n̄p̄ R p̄ , (118)

and analogously for the tilded counterparts.
The different blocks in the twist matrix (113) are then given by the SO(3,3) ⊂ SO(4,4)

vectors
Km̄

m = Lm̄
m + Rm̄

m ,

Km̄m = (Rn̄
m − Ln̄

m)δn̄m̄ ,
(119)

and one-forms
Zm̄ m = δm̄n̄ Kn̄n�gnm − 2

Æ

�g Km̄
n ϵmnp

�ξp ,

Z m̄
m = δ

m̄n̄ Kn̄
n�gnm − 2
Æ

�g Km̄n ϵmnp
�ξp ,

(120)

with �ξ a vector satisfying �∇m
�ξm = 1 with respect to the Levi-Civita connection associated to

the metric (116). The analogous objects eKī
i, eKī i, eZīi, eZ ī

i and �eξi are defined similarly for eS3.
Together with the scaling function

ρ = α3�g−1/2�
eg−1/2 , (121)

these objects recover the embedding tensor (39) via eq. (67). Moreover, if we parameterise
the ExFT coordinates Y i,0 in (61) as

Y m,0 : Y 1,0 = cos(θ ) cos(ϕ1) , Y 2,0 = cos(θ ) sin(ϕ1) , Y 3,0 = sin(θ ) cos(ϕ2) ,

Y i,0 : Y 4,0 = cos (eθ ) cos ( eϕ1) , Y 5,0 = cos (eθ ) sin ( eϕ1) , Y 6,0 = sin (eθ ) cos ( eϕ2) ,

Y 7,0 = y7 ,

(122)

with
0≤ θ , eθ ≤

π

2
, 0≤ ϕi , eϕi ≤ 2π , 0≤ y7 ≤ 1 , (123)

with i ∈ {1, 2}, and using the dictionary in (62), we can write the AdS3 × S3 × eS3 × S1 solution
as

eΦ̂ = 1 ,

dŝ2 = ℓ2
AdS ds2(AdS3) + dθ2 + cos2(θ )dϕ2

1 + sin2(θ )dϕ2
2 +α

−2
�

deθ2 + cos2(eθ )d eϕ2
1 + sin2(eθ )d eϕ2

2

�

+ (dy7)2 ,

Ĥ(3) = 2ℓ2
AdS vol(AdS3) + 2 sin(θ ) cos(θ )dθ ∧ dϕ1 ∧ dϕ2 + 2α−2 sin (eθ ) cos (eθ )deθ ∧ d eϕ1 ∧ d eϕ2 ,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 , (124)

both in the string and Einstein frames owing to the vanishing dilaton. Here and throughout,
ds2(AdS3) denotes the unit-radius metric on AdS3, ℓAdS is the AdS length in (48), and vol(AdS3)
its associated volume form. In (124), S3 has unit radius, whereas eS3 has radius α−1. For later
convenience, we will choose a gauge such that the local two-form potential leading to the
internal part of the Kalb-Ramond three-form in (124) is given by

B̂(2) = sin2(θ )dϕ1 ∧ dϕ2 +α
−2 sin2(eθ )d eϕ1 ∧ d eϕ2 . (125)
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Twist matrix for S3 × T4 The twist matrix for S3 × T4 can be similarly parameterised as

(U−1)M̄
M =













ρ 0 2�ξm 0 0
0 ρ−1 0 0 0
0 −2ρ−1Zm̄m

�ξm Km̄
m Zm̄m 0

0 −2ρ−1Z m̄
m
�ξm Km̄m Z m̄

m 0
0 0 0 0 18













, (126)

in terms of the K, Z and �ξ tensors above, and the scaling function

ρ =�g−1/2 . (127)

Embedding the S3 × T4 coordinates in ExFT as

Y 1,0 = cos(θ ) cos(ϕ1) , Y 2,0 = cos(θ ) sin(ϕ1) , Y 3,0 = sin(θ ) cos(ϕ2) , Y a,0 = ya ,
(128)

the AdS3 × S3 × T4 solution reads

eΦ̂ = 1 ,

dŝ2 = ℓ2
AdS ds2(AdS3) + dθ2 + cos2(θ )dϕ2

1 + sin2(θ )dϕ2
2 +δab dyady b ,

Ĥ(3) = 2ℓ2
AdS vol(AdS3) + 2sin(θ ) cos(θ )dθ ∧ dϕ1 ∧ dϕ2 ,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 ,

(129)

with the coordinates now ranging as

0≤ θ ≤
π

2
, 0≤ ϕ1,ϕ2 ≤ 2π , 0≤ ya ≤ 1 , (130)

and the local two-form potential simply given by

B̂(2) = sin2(θ )dϕ1 ∧ dϕ2 . (131)

4.2 Sphere harmonics

For the products of spheres under consideration, the composite index Λ in (96) and (106)
labels representations in the infinite-dimensional towers

S3 × T4 :
⊕

pa∈Z
⊕∞

m=0

�

m
2 , m

2

�

(p4, p5, p6, p7)
of SO(4)× SO(2)4 ,

S3 × eS3 × S1 :
⊕

p7∈Z
⊕∞

m=0

⊕∞
m̃=0

�

m
2 , m

2 ; m̃
2 , m̃

2

�

p7
of SO(4)× SO(4)× SO(2) ,

(132)

and the corresponding harmonics factorise as

YΛ = YΛ e2πi
∑

pa ya , for S3 × T4 ,
YΛ = YΛY Λ̃ e2πip7 y7 , for S3 × eS3 × S1 ,

(133)

with each one-cycle having length 1. The SO(4) harmonics,

YΛ =
�

1, Yα, Y{αYβ}, . . .
	

, α ∈ J1, 4K , (134)

and similarly for Y Λ̃, correspond to symmetric-traceless products of the level-one harmonics
for the round S3’s, which we choose as

Yα =
�

y1, y2, y3,
Æ

1− (y1)2 − (y2)2 − (y3)2
	

, (135)

and analogously for Y α̃.
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Following (133) the matrices in (97) can in turn be decomposed as (c.f. S5 × S1 S-fold
solutions in [21,23])

�TM̄ N̄
(pa)ΛΣ = �TM̄ N̄

ΛΣ +δΛΣ �TM̄ N̄
(pa) , for S3 × T4 ,

�TM̄ N̄
(p7)ΛΛ̃ΣΣ̃ = δΛ̃ Σ̃ �TM̄ N̄

ΛΣ +δΛΣ �TM̄ N̄
Λ̃ Σ̃ +δΛΣδΛ̃ Σ̃ �TM̄ N̄

(p7) , for S3 × eS3 × S1 ,
(136)

analogously for their maximal counterparts in (107).
For the S3×T4 background (126), the SO(4) matrix �TM̄ N̄

ΛΣ has non-vanishing components

�T m̄0̄
αβ = δ[α4 δ

β]
m̄ , �T m̄

0̄
αβ =

1
2
ϵm̄4αβ , (137)

when acting on the level m= 1 harmonics in eq. (135). Similarly, in the S3 × eS3 × S1 case we
have

�T m̄0̄
αβ = δ[α4 δ

β]
m̄ , �T m̄

0̄
αβ =

1
2
ϵm̄4αβ , �T m̄0̄

α̃β̃ = αδ[α̃4 δ
β̃]
m̄ , �T m̄

0̄
α̃β̃ =

α

2
ϵm̄4α̃β̃ . (138)

At higher levels, the tensors �TM̄ N̄
ΛΣ can be constructed recursively from (137) and (138) as

(�TM̄ N̄ )α1...αm
β1...βm = m(�TM̄ N̄ ){α1

{β1δβ2
α2

. . .δβm}
αm}

, (139)

and analogously for �TM̄ N̄
Λ̃ Σ̃. Similarly, the SO(2) blocks are simply given by

�T ā0̄
(pa) = −πi pa . (140)

In this conventions, the matrices in (136) are complex, and hermitian conjugations need to be
introduced in the mass matrices. Equivalently, we could have used manifestly real objects at
the price of introducing a two-fold degeneracy in the eigenvalues.

4.3 Spectra on the round solutions

As the AdS3 isometry group SO(2,2) ≃ SL(2,R)× SL(2,R) is not simple, the superisometry
group of AdS3 background is in general a direct product of simple supergroups G = GL×GR. The
spectrum of such backgrounds organises into representations of G, with conformal dimension
∆ =∆L +∆R built from the conformal dimensions of each GL,R factor. The spacetime spin s
of a field in a given representation is then given by s =∆R−∆L. In the following, we use the
ExFT spectroscopy of sec. 3.4 to compute the masses m(s) of each Kaluza-Klein tower of spin s,
and identify the corresponding conformal dimensions from [61–66]
¨

∆(0)
�

∆(0) − 2
�

=
�

m(0)ℓAdS

�2
,

∆(1) = 1+ |m(1)ℓAdS| ,
and

¨

∆(1/2) = 1±m(1/2)ℓAdS ,

∆(3/2) = 1+ |m(3/2)ℓAdS| ,
(141)

where the masses are normalised by the AdS length ℓAdS.
The Kaluza-Klein spectrum on the round S3×eS3×S1 solution of type II supergravity, recently

revisited in [19], organises into supermultiplets of

Gα̸=0 = D(2, 1|α)L ×D(2,1|α)R×U(1) , (142)

with D(2, 1|α) the large N = 4 supergroup in three dimensions and α the ratio of the S3 radii.
The even part of (142),

SO(2,2)× SO(4)×âSO(4)×U(1) , (143)

now corresponds to the isometries of AdS3×S3×eS3×S1, with SO(2, 2)≃ SL(2,R)L×SL(2,R)R,
SO(4)≃ SU(2)L× SU(2)R and similarly for the tilded counterparts. The long multiplets of each
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D(2,1|α) can be labelled as
�

h, j+, j−
�

[67] (see appendix B for a review), and the complete
spectrum of type II supergravity then reads [67]

S =
⊕

ℓ, ℓ̃≥0
p7∈Z

�

�

h0,ℓ, ℓ̃
�

⊗
�

h0,ℓ, ℓ̃
�

�

p7
,

(144)

with p7 the U(1) integer charge and

h0 = −
1
2
+

1
2

√

√

√

1+
4ℓ
�

ℓ+ 1
�

+ 4α2 ℓ̃
�

ℓ̃+ 1
�

+ (2π p7)2

1+α2
. (145)

The dimension of the superconformal primary of
�

�

h0,ℓ, ℓ̃
�

⊗
�

h0,ℓ, ℓ̃
�

�

p7
is then ∆ = 2h0.

For these multiplets, shortening occurs when p7 = 0 and ℓ = ℓ̃ following equation (B.6) of
appendix B.

The case of the heterotic string can be described using the half-maximal supergravity of
sec. 2.1. Given the 16 vector fields coupled to the NSNS fields in ten-dimensions, the three-
dimensional supergravity arising from compactification to three dimensions has a coset space
in the class of eq. (1),

SO(8, 24)
SO(8)× SO(24)

. (146)

The heterotic gauged supergravity is then obtained by embedding theSO(8,8) tensors of
sec. 2.3 in SO(8, 24). All vacua of the SO(8, 8) theory are vacua from the SO(8, 24) theory. The
supergroup organising the spectrum at the scalar origin is

SL(2,R)L × SU(2)L ×âSU(2)L ×D(2,1|α)R×U(1)× SO(16) . (147)

The bosonic isometries of the background are built similarly as in the maximal case, with an
additional SO(16) factor for the heterotic vector fields. The spectrum can be described based
on that in eq. (144). For each term in the sum, the left factor [h0,ℓ,eℓ] breaks into

SL(2,R) SU(2)L ×âSU(2)L
h0

�

ℓ,eℓ
�

1+ h0

�

ℓ+ 1,eℓ
�

⊕
�

ℓ,eℓ− 1
�

⊕
�

ℓ,eℓ
�

⊕
�

ℓ,eℓ
�

⊕
�

ℓ− 1,eℓ
�

⊕
�

ℓ,eℓ+ 1
�

2+ h0

�

ℓ,eℓ
�

(148)

and the spectrum is supplemented at each level by 16 copies of the multiplet
�

�

1+ h0,ℓ,eℓ
�

⊗
�

h0,ℓ,eℓ
�

�

p7
, (149)

transforming as a vector of SO(16).
Regarding the spectrum of the round S3 × T4 solution, it abides by the supergroup

Gα=0 =
�

âSU(2)L ⋉ SU(2|1, 1)L
�

×
�

âSU(2)R⋉ SU(2|1,1)R
�

×U(1)4 , (150)

where SU(2|1,1) is the small N = 4 supergroup in three dimensions. The even part of the
superisometry corresponds to the isometries of AdS3 × S3 × T4,

SO(2,2)× SO(4)×U(1)4 , (151)

where SO(2, 2)≃ SL(2,R)L×SL(2,R)R and SO(4)≃ SU(2)L×SU(2)R correspond to the AdS3×S3

isometries, together with an extra globalâSO(4) ≃âSU(2)L ×âSU(2)R factor corresponding to
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relabelling of the torus angles. We denote
�

∆, j+, j−
�

the long multiplets of SU(2)−⋉SU(2|1, 1)+
and pa the U(1)4 charges. See appendix B for a review of the multiplet content of this
superalgebra. The spectrum is then given by

S =
⊕

ℓ≥0
pa∈Z4

�

�

h0,ℓ, 0
�

⊗
�

h0,ℓ, 0
�

�

p4,p5,p6,p7
, (152)

where

h0 = −
1
2
+

1
2

√

√

1+ 4ℓ
�

ℓ+ 1
�

+
∑

a

(2π pa)2 . (153)

The conformal dimension of the primary of each factor is then ∆ = 2h0. The unitary bound
(B.6) is saturated for p4 = p5 = p6 = p7 = 0, and the multiplets get shortened according to
(B.7). Therefore, at levels with ℓ= 0 equation (152) must be interpreted as a shorthand of
�

�1
2 , 1

2

�

S⊕
�

0,1
�

S

�

⊗
�

�1
2 , 1

2

�

S⊕
�

0,1
�

S

�

⊕
⊕

pa∈Z4\{0}

�

�

∆L, 0, 0
�

⊗
�

∆R, 0, 0
�

�

p4,p5,p6,p7
. (154)

In the heterotic case, the supergroup organising the spectrum is
�

SL(2,R)L ×âSU(2)L × SU(2)L
�

×
�

âSU(2)R⋉ SU(2|1,1)R
�

×U(1)4 × SO(16) . (155)

The spectrum can again be described based on that in eq. (152). The left factor
�

h0,ℓ, 0
�

of
each term breaks into

∆L SU(2)L ×âSU(2)L
h0

�

ℓ, 0
�

1+ h0

�

ℓ, 1
�

⊕
�

ℓ+ 1,0
�

⊕
�

ℓ, 0
�

⊕
�

ℓ− 1,0
�

2+ h0

�

ℓ, 0
�

(156)

with h0 given in (153), and 16 additional copies of the multiplet
�

�

1+ h0,ℓ, 0
�

⊗
�

ℓ, 0
�

�

p4,p5,p6,p7
(157)

adds up to each level.

5 Deformations

The three-dimensional solutions in (51) can be uplifted to ten dimensions as deformations of
the round S3 × T4 and S3 × eS3 × S1 configurations reviewed in the previous section. For clarity,
we will refrain from presenting the entire 17-parameter family, and focus instead on some
subfamilies that best exemplify different phenomena. We discuss only the solutions in type IIB,
but all of them have vanishing RR fluxes so the heterotic case follows easily.

Given that all the moduli in (51) belong to SO(7,7)/SO(7) × SO(7), it is interesting to
analyse the solutions from a generalised geometry perspective in terms of a generalised metric

H =
�

ĝs − B̂ ĝ−1
s B̂ B̂ ĝ−1

s
− ĝ−1

s B̂ ĝ−1
s

�

, (158)

with ĝs and B̂ the internal components of the string frame metric and two-form. The deformed
solutions (51) can be described as transformations of the undeformed solution by a constant
SO(7,7) element that depends on the marginal parameters,

Hdef = Γ ·Hround · Γ t , (159)
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with Γ ∈ SO(7,7). This element can be written as products of GL(7,R) transformations G,
constant shifts of the B field B and TsT transformations T , which are a sequence of T duality,
shifts in the B field and T duality, where

G =
�

ρ 0
0 ρ−t

�

, B =
�

1 s
0 1

�

, T =
�

1 0
β 1

�

, (160)

with

ρ ∈ GL(7,R) , β , s ∈
2
∧

R7 . (161)

In the following, we choose to represent the SO(7,7) elements as

Γ = T · G ·B . (162)

These elements will be expressed in the bases

{dθ , dϕ1, dϕ2, deθ , d eϕ1, d eϕ2, dy7} , for AdS3 × S3 × eS3 × S1 ,
{dθ , dϕ1, dϕ2, dy4, dy5, dy6, dy7} , for AdS3 × S3 × T4 .

(163)

5.1 Uplift of the (ωχβ)-family

The two-parameter family of AdS3 × S3 solutions in six-dimensional N = (1,1) supergravity
found in [41] through the uplift of (47) can be further lifted into the NSNS sector of type IIB
supergravity. See app. D for a direct account on how to construct this Ansatz for AdS3×S3×T4.
More generally, using ExFT we can obtain its embedding both in AdS3 × S3 × eS3 × S1 and
AdS3 × S3 × T4 [9], which reads

eΦ̂ =
p
∆ ,

dŝ2
s = ℓ

2
AdS ds2(AdS3) + dθ2 + eω∆

�

cos2θ dϕ2
1 + (ζ

2 + e−2ω) sin2θ dϕ2
2

�

+ ds2(M̃3)

+ 2 eωζ∆dy7
�

cos2θ dϕ1 − sin2θ dϕ2

�

+ (dy7)2 ,

Ĥ(3) = 2ℓ2
AdS vol(AdS3) + 2H(α)vol(M̃3)

+ sin(2θ )∆2e2ωdθ ∧ (dϕ1 + ζdy7)∧
�

(ζ2 + e−2ω)dϕ2 − ζdy7
�

,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 ,

(164)

with

ds2(M̃3) =

¨

α−2
�

deθ2 + cos2
eθ d eϕ2

1 + sin2
eθ d eϕ2

2

�

, for AdS3 × S3 × eS3 × S1 ,

δij dy idy j , for AdS3 × S3 × T4 ,
(165)

the function

∆=
e−ω

1+ (ζ2 + e−2ω − 1) cos2θ
, (166)

and H(α) a Heaviside function with H(0) = 0. The angles parameterising this manifold range
as in (123) and (130). The moduli (ω,ζ) define a perturbatively stable solution if all scalars
within the spectrum satisfy the Breithenlohner-Freedman (BF) bound (mℓAdS)

2 ≥ −1 [40].
This restricts the parameters as

e−ω ≤
2
p

3
, ζ2 ≥

p
3

2
e−ω − e−2ω . (167)
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ζ

e−ω

0

2/
√
3

√
3/2

1

1−1

SUSY loci:

N = (0, 4)

N = (4, 4)

Instability area

Figure 1: The solution (164) is perturbatively stable for any couple of parameters out-
side of the instability area, as given by eq. (167). The dashed line represents eq. (49),
where N = (0,4) supersymmetries are preserved. At ω = ζ = 0 supersymmetry
further enhances to N = (4, 4).

See fig. 1 for a graphical representation. At the locus (49), where supersymmetric enhancement
takes place, the configuration (164) becomes [9]

Φ̂= −
ω

2
,

dŝ2
s = ℓ

2
AdS ds2
�

AdS3

�

+ ds2
�

CP1
�

+ e−2ωη2 + ds2(M̃3) +
�

dy7 +
p

1− e−2ωη
�2

,

Ĥ(3) = 2ℓ2
AdS vol(AdS3) + 2H(α)vol(M̃3) + 2η∧ J + 2

p

1− e−2ω J ∧ dy7 ,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 ,

(168)

with
η= cos2θ dϕ1 − sin2θ dϕ2 , J = 1

2dη . (169)

In terms of the SO(7,7) transformations in (162), the family of solutions in (164) is
described by

β = −ζdϕ1 ∧ dy7 + (e−ω − 1)dϕ1 ∧ dϕ2 ,

ρ =







1 0 0 0
0 eω 0 0
0 0 14 0
0 eωζ 0 1






, s = 0 .

(170)

As apparent from (170), the family of solutions (164) cannot be generated via pure TsT
transformations [20], since there is no value of the moduli ω and ζ for which both G and
B reduce to the identity and T remains non-trivial. Nevertheless, we can achieve this by
uncoupling the parameters χ1 and β1 in (51). If we consider

VM̄
N̄ = exp
�

−ω f 3̄
3̄ −

ω

1− e−ω
�

χ1 f 3̄7̄ + β1 f 3̄
7̄

�

�

, (171)

the type IIB supergravity solution is

eΦ̂ =
p
∆ ,

dŝ2
s= ℓ

2
AdS ds2(AdS3) + ds2(M3) + dθ2

+eω∆
�

cos2θ
�

dϕ1 +χ1 dy7
�2
+ sin2θ
�

β1 dϕ2 + dy7
�2
+ e−2ω sin2θ dϕ2

2 + e−2ω cos2θ (dy7)2
�

,
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Ĥ(3) = 2ℓ2
AdS vol(AdS3) + 2H(α)vol(M̃3)

+ sin(2θ )∆2e2ωdθ ∧
�

dϕ1 +χ1 dy7
�

∧
�

�

β2
1 + e−2ω
�

dϕ2 + β1 dy7
�

,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 , (172)

with

∆=
e−ω

1+
�

β2
1 + e−2ω − 1
�

cos2θ
. (173)

The deformation generically breaks the SO(4) factor in (143) and (151) to the Cartan subalgebra
U(1)L × U(1)R and all supersymmetries. The relevant SO(7,7) transformation to construct
(172) is given by

β = β1 dϕ1 ∧ dy7 + (e−ω − 1)dϕ1 ∧ dϕ2 ,

ρ =







1 0 0 0
0 eω 0 0
0 0 14 0
0 eωχ1 0 1






, s = 0 .

(174)

Therefore, the deformation is the combination of a coordinate redefinition coupling the angles
ϕ1 and y7 and a rescaling of the ϕ1 coordinate, both described by the GL(7,R) transformation,
and TsT transformations between ϕ1 and y7 on one hand, and ϕ1 and ϕ2 on the other. For this
reason, the modulus χ1 is periodic, and taking spinors into account its period can be shown to
be χ1 ∼ χ1 + 4π.12 We can describe a pure TsT transformation by turning off ω and χ1 while
keeping a non-vanishing β1. To the best of our knowledge, this is the first example of such a
Lunin-Maldacena deformation captured among the modes of a consistent truncation down to a
gauged maximal supergravity.

Before analysing generalisations of this solution, let us discuss its complete Kaluza-Klein
spectrum. It can be obtained by shifting the dimensions (145) and (153) of each physical mode
in (144) and (152) as

(2π p7)
2 −→
�

2π p7 +
1
2
(qL + qR) (χ1 + β1)

�2

+
e2ω

4

�

(qL − qR) + (qL + qR)
�

e−2ω −χ1β1

�

− 4π p7 β1

�2
− q2

L , (175)

for qL and qR the integer-normalised charges under the bosonic Cartan subalgebra sitting in
the superalgebra, taking values

j→
2 j
⊕

k=0

2(k− j) , under SU(2) ⊃ U(1) . (176)

Under a shift χ1→ χ1+4π, the conformal dimensions following (175) map back to themselves
modulo a shift of the p7 number, as expected from the periodicity of the solution (172). For
pure TsT deformations the spectrum reads

(2π p7)
2 −→
�

2π p7 +
1
2
(qL + qR)β1

�2

+
1
4

�

2qL − 4π p7 β1

�2
− q2

L . (177)

Even though it is not apparent from the Kaluza-Klein spectrum, the construction of this family
using SO(7, 7) transformations also indicates that the parameter β1 is compact in the full string
theory.

12See ref. [4] for an anologous discussion.
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Conversely, for ω= β = 0 eq. (175) reduces to

2π p7 −→ 2π p7 +
1
2
(qL + qR)χ1 , (178)

following the pattern of other Wilson loop deformations in S-fold compactifications [21,23,24,
26].

The spectrum (175) can be used to determine potential supersymmetry enhancements
within the three-dimensional moduli space, as well as the stability of the solutions. Supersym-
metry enhancement points corresponds to combinations of the moduli such that some gravitini
become massless, i.e. ∆(3/2) = 3/2. This can first happen within the 3d consistent truncation,
by leaving the modes with ∆(3/2) = 3/2 unchanged. For the (ω,χ1,β1) deformation, it occurs
along the lines

¨

χ1 = ±
p

1− e−2ω ,

β1 = ∓
p

1− e−2ω ,
and

¨

χ1 = ±
p

1− e−2ω ,

β1 = ±
p

1− e−2ω ,
(179)

where supersymmetry is enhanced to N = (0,4) and N = (4,0), respectively. Both cases
reproduce the solution (168), with η as in (169) or η= cos2θ dϕ1 + sin2θ dϕ2, respectively.
We further find back the round N = (4, 4) solution at the origin ω = β1 = χ1 = 0. Alternatively
some gravitini, originally massive, can become massless under the deformation. This happens
here when
¨

χ1 = 4πq±
p

1− e−2ω ,

β1 = ∓
p

1− e−2ω ,
or

¨

χ1 = 4πq±
p

1− e−2ω ,

β1 = ±
p

1− e−2ω ,
q ∈ Z . (180)

There are then four massless gravitini, two of them belonging to the multiplets ℓ = eℓ = p4,5,6 = 0
and p7 = q of (144) and (152), and the two others in the multiplet with opposite charges.
Supersymmetry is then enhanced to N = (0, 4) or N = (4, 0). The existence of these additionnal
enhancement lines reflects the 4π-periodicity in χ1.

Concerning the stability of the solutions, in both cases it is guaranteed if

e−ω ≤
2
p

3
, and
�

χ1 +π p7

�2 ≥
3

4
�

1+ e2ωβ2
1

� − e−2ω , ∀p7 ∈ Z . (181)

There are such wide volumes inside the 3-dimensional parameter space inside which the
perturbative stability of the deformations is ensured (see fig. 2). This is for example the case if







e−ω ≤
2
p

3
,

β2
1 ≥

3
4
− e−2ω ,

(182)

and χ1 arbitrary.
The moduli space of this deformation is governed by the metric

ds2
Zam. = dω2 +

1
2

e2ω
�

dβ2
1 + dχ2

1

�

, (183)

which corresponds to the leading order in the large-N limit of the Zamolodchikov metric of the
holographic conformal manifold. Therefore, there are no infinite distances inside the family
(171), and we have neither found them in its further genelisation in (51). This metric was
deduced from the scalar kinetic term in eq. (21), with the scalar matrix parameterised by the
moduli through the coset representative (171).

In the following, we describe two four-parameter families of solution mixing S3 × M3

coordinates with y7. The first family generalises the χ1 deformations in (174), whilst the
second contains pure TsT deformations mixing S3 ×M3 and S1 for both topologies. Later on,
we also discuss deformations that mix S3 with M3 = eS3.
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e−ω

2/
√
3

1

χ1√
3/2

β1

√
3/2

SUSY loci:

N = (4, 0) or (0, 4)

N = (4, 4)

Instability volume

χ1 = −β1 plane

Figure 2: Instability volume (181) for the (ω,β1,χ1) deformations at level p7 = 0.
Supersymmetry is enhanced along dashed lines, following eq. (179). Within the
χ1 = −β1 plane (in blue), this reproduces fig. 1 for the (ω,ζ) family. For p7 ≠ 0,
similar instability volumes are repeated with π shifts along the χ axis. Those excluded
volumes do not intersect.

5.2 Wilson loop deformations

Based on the previous example, we are now led to consider the representative

VM̄
N̄ = exp
�

−χ1 f 3̄7̄ −χ2 f3̄
7̄ − eχ1 f 6̄7̄ − eχ2 f6̄

7̄
�

. (184)

At leading order in the large-N expansion, the Zamolodchikov metric on this submanifold is
given by

ds2
Zam. =

1
2

�

dχ2
1 + dχ2

2 + deχ2
1 + deχ2

2

�

. (185)

The corresponding 10d configuration on S3×eS3×S1 can be found in (C.4), and can be described
in terms of (162) as

β = 0 , ρ =



















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 χ1 −χ2 0 αχ̃1 −αχ̃2 1



















, s = 0 , (186)

whilst the S3 × T4 configuration can be found in (C.5) and is described by

β = 0 , ρ =



















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 χ1 −χ2 0 0 χ̃2 1



















, s = 0 , (187)

which shows that the parameter χ̃1 in (184) is pure gauge in the S3 × T4 reduction. In both
cases, the deformation consists only in local coordinate redefinitions coupling the angles ϕi , eϕi
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and y6 with y7. They can be interpreted as Wilson loops along the S1 with coordinate y7.
Generically, the only remaining isometries are

SO(2, 2)×U(1)L ×U(1)R×ßU(1)L ×ßU(1)R×U(1) , for AdS3 × S3 × eS3 × S1 ,
SO(2, 2)×U(1)L ×U(1)R×U(1)4 , for AdS3 × S3 × T4 ,

(188)

and all supersymmetries are broken. The deformed S3 × eS3 × S1 background can be identified
with equation (6.10) in [19].

The spectrum for these solutions is deformed out of (144) through the replacement

2π p7 −→ 2π p7 −
1
2

�

(qL + qR)χ1 + (qL − qR)χ2 +α (eqL + eqR) eχ1 +α (eqL − eqR) eχ2

�

, (189)

in the S3 × eS3 × S1 case, and out of (152) through

2π p7 −→ 2π p7 −
1
2

�

(qL + qR)χ1 + (qL − qR)χ2

�

− 2π p6 eχ2 , (190)

in the S3 × T4 one. They are invariant under
¨

χi → χi + 4πqi ,

eχi → eχi + 4α−1πeqi ,
for AdS3 × S3 × eS3 × S1 ,

and

¨

χi → χi + 4πqi ,

eχ2→ eχ2 + eq2 ,
for AdS3 × S3 × T4 ,

(191)

with qi ,eqi ∈ Z. Given the form of the deformations (189) and (190), both spectra are bounded
from below by the masses of the round solutions, and pertubative stability is ensured for the
entire 4-dimensional family of deformations.

The moduli space of the deformed S3×eS3×S1 solutions enjoys numerous supersymmetry en-
hancements, as described in ref. [19]. The possible enhancements within the three-dimensional
truncation are the following:

N = (2,0) : χ2 = χ1 ±α(eχ1 − eχ2) , N = (0,2) : χ2 = −χ1 ±α(eχ1 + eχ2) ,

N = (4, 0) :

¨

χ2 = χ1 ,

eχ2 = eχ1 ,
N = (0,4) :

¨

χ2 = −χ1 ,

eχ2 = −eχ1 ,

N = (2,2) :

¨

χ1 = ±αeχ1 ,

χ2 = ±αeχ2 ,
N = (2,2) :

¨

χ1 = ±αeχ2 ,

χ2 = ±αeχ1 ,

N = (4,2) :

¨

χ1 = χ2 = ±αeχ1 ,

eχ2 = eχ1 ,
N = (2,4) :

¨

χ1 = −χ2 = ±αeχ1 ,

eχ2 = −eχ1 .

(192)

SUSY enhancements at higher levels in the p7 tower can be obtained from the periodicities (191).
For the T4 background, supersymmetry is enhanced from N = (0,0) to N = (4,0) and
N = (0, 4) when

χ2 = 4πq+χ1 , and χ2 = 4πq−χ1 , q ∈ Z , (193)

respectively. There are then two massless gravitini at level p7 = q and two other at level
p7 = −q, all other charges and SU(2) spins vanishing.

5.3 TsT deformations

The deformation
VM̄

N̄ = exp
�

− β1 f 3̄
7̄ − β2 f3̄7̄ − eβ1 f 6̄

7̄ − eβ2 f6̄7̄

�

, (194)
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recovers a family previously obtained in [19]. As for (185), in this case the Zamolodchikov
metric is also flat

ds2
Zam. =

1
2

�

dβ2
1 + dβ2

2 + deβ2
1 + deβ2

2

�

. (195)

From a 10d perspective, this family can be shown to uplift to a type IIB solution which can
be constructed through the SO(7,7) transformation in (162), with

β = β1 dϕ1 ∧ dy7 +αeβ1 d eϕ1 ∧ dy7 − β2 dϕ2 ∧ dy7 −αeβ2 d eϕ2 ∧ dy7 ,

ρ =

















1 0 0 0 0 0
0 1 0 0 0 −β2
0 0 12 0 0 0
0 0 0 1 0 −α−1

eβ2
0 0 0 0 1 0
0 0 0 0 0 1

















, s = 0 ,
(196)

on the S3 × eS3 × S1 background, and

β = β1 dϕ1 ∧ dy7 − β2 dϕ2 ∧ dy7 + eβ2 dy6 ∧ dy7 ,

ρ =

















1 0 0 0 0 0
0 1 0 0 0 −β2
0 0 1 0 0 0
0 0 0 12 0 0
0 0 0 0 1 −eβ1
0 0 0 0 0 1

















, s = 0 ,
(197)

in the S3 × T4 case. The detailed D = 10 solutions can be respectively found in (C.11) and
(C.14). Again, the remaining isometries are those of eq. (188) and N = (0,0) for generic
values of the parameters. These deformations consist in couplings between the angles ϕi , eϕi
and y6 with y7, and TsT transformations between those same angles. Pure TsT deformations
are obtained for the couples of cycles (ϕ1, y7) and ( eϕ1, y7) when β2 = eβ2 = 0 in the eS3 × S1

case and similarly when β2 = eβ1 = 0 for T4. Alternatively, the solutions can be generated from
the SO(7, 7) transformation in (162), with

β = β1 dϕ1 ∧ dy7 − β2 dϕ2 ∧ dy7 +αeβ1 d eϕ1 ∧ dy7 −αeβ2 d eϕ2 ∧ dy7 ,

ρ =













12 0 0 0 0
0 1 0 0 β1
0 0 12 0 0
0 0 0 1 α−1

eβ1
0 0 0 0 1













, s = −dϕ1 ∧ϕ2 −α−2 d eϕ1 ∧ eϕ2 ,
(198)

on S3 × eS3 × S1, and

β = β1 dϕ1 ∧ dy7 − β2 dϕ2 ∧ dy7 + eβ2 dy6 ∧ dy7 ,

ρ =













12 0 0 0 0
0 1 0 0 β1
0 0 12 0 0
0 0 0 1 −eβ1
0 0 0 0 1













, s = −dϕ1 ∧ϕ2 ,
(199)

on S3 × T4, giving rise to pure TsT when β1 = eβ1 = 0. These two solutions differ from (196)
and (197) by the gauge choice for the undeformed 2-form in (125) and (131), respectively.
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The shift s would be absent in (198) and (199) if the sin2 θ and sin2
eθ would have been replaced

by − cos2 θ and − cos2
eθ in (125) and (131).

The spectrum of these deformations of S3×eS3×S1 can be obtained from eq. (144) and (145)
by shifting

(2π p7)
2 −→ (2π p7)

2
�

1+ β2
1 + β

2
2 + eβ

2
1 + eβ

2
2 + (β1β2 + eβ1
eβ2)

2
�

− 2π p7

�

(1+ β1β2 + eβ1
eβ2)
�

qL (β1 + β2) +αeqL (eβ1 + eβ2)
�

+ (−1+ β1β2 + eβ1
eβ2)
�

qR (β1 − β2) +αeqR (eβ1 − eβ2)
�

�

+
1
4

�

β1(qL + qR) + β2(qL − qR) +α eβ1(eqL + eqR) +α eβ2(eqL − eqR)
�2

.

(200)

Similarly, the spectrum for the deformed S3×T4 background follows from eq. (152) and (153)
by replacing

(2π p7)
2 −→
�

1
2

�

(qL + qR)β1 + (qL − qR)β2

�

− 2π p6
eβ2

�2

+ (2π p7)
2
�

1+ β2
1 + β

2
2 + eβ

2
1 + eβ

2
2 + (β1β2 + eβ1
eβ2)

2
�

− 2π p7

�

qL (β1 + β2) (1+ β1β2 + eβ1
eβ2) + qR (β1 − β2) (−1+ β1β2 + eβ1

eβ2)
�

+ 8π2 p6p7

�

eβ1 + β1β2
eβ2 + eβ1
eβ2

2

�

. (201)

For p7 = 0, these turn out to be the exact same spectra as the ones for the χ ’s in sec. 5.2
up to matching χi → βi and eχi → eβi. The solutions then enjoy the same supersymmetry
enhancements as the χ deformations restricted to the 3d consistent truncation, see eq. (192)
and (193) (for q = 0).

For eβ1 = eβ2 = 0, the solution is stable for any value of β1 and β2. The converse is not true,
however, with instabilities present when β1 = β2 = 0 and eβ1 and eβ2 are non-vanishing. This
apparent inequity is not in tension with the interchangeability between the two spheres, given
that is a symmetry of the equations of motion only if the S1 is also rescaled, as can be seen in
(124). This rescaling can be parameterised by the modulus σ7 in (51), and the configuration
is then invariant under the transformation

βi 7→ eβi , eβi 7→ βi , e−σ7 7→ α−1e−σ7 . (202)

The precise stability range when the four βs are turned on needs further study, but perturbative
stability is guaranteed in certain subregions by the existence of the supersymmetric loci.

5.4 Mixing of S3 and eS3

We now analyse the deformation

VM̄
N̄ = exp
�

−Ξ2 f 3̄
6̄ −Ξ4 f3̄6̄

�

, (203)

with Zamolodchikov metric

ds2
Zam. =

1
2

�

dΞ2
2 + dΞ2

4

�

. (204)

On the S3 × T4 background, this is analogous to the deformations in sec. 5.2 and 5.3 up to
relabelling of the torus coordinates. On the other hand, on the S3×eS3×S1 background it corre-
sponds to mixing the coordinates on the two spheres through the SO(7, 7) transformation (162)
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with

β = α
�

−Ξ2 dϕ1 +Ξ4 dϕ2

�

∧ d eϕ2 ,

ρ =



















1 0 0 0 0 0 0
0 1 0 0 0 αΞ4 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 α−1Ξ2 −α−1Ξ4 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



















, s = 0 , (205)

involving in particular TsT transformations coupling each ϕi with eϕ2. The explicit solution in
D = 10 can be found in eq. (C.20). Generically, the isometries are broken down to (188) and
there is no remaining supersymmetry. At the points

Ξ2 = −Ξ4 = ±
2
α

, and Ξ2 = Ξ4 = ±
2
α

, (206)

SUSY enhances to N = (2,0) and N = (0,2), respectively. This can be observed from the
deformed spectrum, given by eq. (144) and (145) by shifting

(2π p7)
2 −→(2π p7)

2 +
1
4

�

qL (Ξ2 +Ξ4) + qR (Ξ4 −Ξ2)
�2

+
α2

4
(eqL − eqR)
�

eqL (Ξ4 −Ξ2)
2 − eqR (Ξ2 +Ξ4)

2 + (eqL − eqR) (Ξ2Ξ4)
2
�

−
α

2
qL (Ξ2 +Ξ4)
�

(eqL − eqR)Ξ2Ξ4 − 2eqR

�

−
α

2
qR (Ξ4 −Ξ2)
�

(eqL − eqR)Ξ2Ξ4 − 2eqL

�

.

(207)

Regarding the perturbative stability of these deformations, analysis of the lowest Kaluza-
Klein levels indicates that the region in parameter space with tachyonic modes can get arbitrary
close to the SUSY lines (206). This feature is not apparent at low Kaluza-Klein levels (ℓ+eℓ < 1/2),
but already at level (1/2, 1/2) we find modes whose region of instability ends on the SUSY
enhancement lines, where the modes saturate the BF bound. This can be observed in fig. 3.
This analysis is not conclusive about the region of stability around the origin Ξ1 = Ξ2 = 0.

6 Worldsheet and holographic descriptions

The deformed solutions built in the previous section are all purely NSNS and can therefore
be described from the point of view of the worldsheet action. In this section, we start by
reviewing the WZW models relevant to the round AdS3 × S3 × T4 and AdS3 × S3 × S3 × S1

worldsheet realizations. We then show that the deformations built in sec. 5 can be described in
this formulation by J J̄ deformations.

The group manifolds for the N = 1 superconformal WZW models we consider are [14,15]

SL(2,R)× SU(2)×U(1)4 , for AdS3 × S3 × T4 ,

SL(2,R)× SU(2)×âSU(2)×U(1) , for AdS3 × S3 × S̃3 × S1 .
(208)

The undeformed WZW action at level k ∈ N for each factor is given by [68,69]

S =
k

4π

∫

Σ

dzdz̄ Tr
�

∂ g ∂̄ g−1
�

+
k

6π

∫

Ω

d3 xεi jk Tr
�

(g−1 ∂i g)(g
−1 ∂ j g)(g

−1 ∂k g)
�

, (209)
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Ξ

α

0 1 2 3

1

N = (0, 2)

Unstable areas:

(1/2, 1/2)

(1/2, 3/2)

Figure 3: Parameter space for the deformation (203) with Ξ1 = Ξ2 = Ξ. Supersym-
metry is enhanced to N = (2,0) along the dashed line (see eq. (206)) and totally
broken otherwise for non-vanishing Ξ. There are subregions of the parameter space
for which some modes become unstable, as presented at levels (ℓ,eℓ) = (1/2, 1/2) and
(1/2, 3/2) for p7 = 0. At the border of these regions, the modes have masses saturating
the BF bound. At level (1/2,eℓ), the potentially unstable modes are those arising from
the deformation of the SO(4)×âSO(4) scalars (3/2,eℓ, 1/2,eℓ+1) and (1/2,eℓ+1, 1/2,eℓ+1)
with extremal charges.

with Ω such that Σ = ∂Ω. As customary, the action is written in Euclidean signature and in
terms of a complex coordinate z with the shorthands ∂ = ∂z and ∂̄ = ∂z̄. The entire model is
superconformal if the levels of the different factors in (208) are related as

1
k0
=

1
k
+

1

k̃
, (210)

for k0 the SL(2,R) level and k, k̃ corresponding to the spheres. The AdS3 × S3 × T4 case is
given by the limit 1/k̃ = 0, which in terms of the geometric radii

k0 = 4π2ℓ2
AdS , k = 4π2ℓ2

S3 , k̃ = 4π2ℓ2
S̃3 = 4π2α−2ℓ2

S3 , (211)

corresponds to the limit α→ 0. With these identifications, the level matching condition (210)
reproduces the supergravity result (48) with normalisation ℓS3 = 1.

As the deformations we consider preserve the conformal algebra, in the following we will
omit the SL(2,R) factors. We parameterise the SU(2) elements in terms of Euler angles as

g = ei(ϕ1+ϕ2)σ3/2eiθσ1 ei(ϕ1−ϕ2)σ3/2 , (212)

with σi the Pauli matrices, and similarly forâSU(2) in terms of the tilded angles on S̃3. For the
circle directions, the representative is simply

ga = e2πi ya
. (213)

The angles are here understood as fields on the worldsheet depending on the coordinates z, z̄.
In the SU(2)×U(1)4 case, eq. (209) reads

SSU(2)×T4 =
k

2π

∫

Σ

�

∂ θ ∂̄ θ + cos2θ ∂ ϕ1∂̄ ϕ1 + sin2θ ∂ ϕ2∂̄ ϕ2 + sin2θ
�

∂ ϕ1∂̄ ϕ2 − ∂ ϕ2∂̄ ϕ1

�

�

+
1

2π

∫

Σ

δab∂ ya∂̄ y b . (214)
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In this theory, the currents associated with the translations in ya, as well as the SU(2)L×SU(2)R
currents

jL1 + i jL2 =
�

∂ θ − i
2 sin 2θ (∂ ϕ1 + ∂ ϕ2)

�

ei(ϕ1−ϕ2) , jL3 = cos2θ∂ ϕ1 − sin2θ∂ ϕ2 ,

jR1 + i jR2 =
�

∂̄ θ + i
2 sin 2θ (∂̄ ϕ1 − ∂̄ ϕ2)

�

e−i(ϕ1+ϕ2) , jR3 = cos2θ∂̄ ϕ1 + sin2θ∂̄ ϕ2 ,
(215)

are (anti-)holomorphic per the equations of motion,

∂̄ ∂ ya = 0 , and ∂̄ jLi = ∂ jRi = 0 . (216)

This conservation is preserved at the quantum level, and the algebraic structure determines the
current algebra OPE [68]

jLi (z) j
L
j (w)∼

kδi j

(z −w)2
+
∑

k

fi j
k jLk(z)

z −w
, (217)

with k as in (214) and fi j
k the SU(2) structure constants, and similarly for the translations and

anti-holomorphic currents.
Similarly, for SU(2)×âSU(2)×U(1), the action reads

SSU(2)2×U(1) =
k

2π

∫

Σ

∂ θ ∂̄ θ + cos2θ ∂ ϕ1∂̄ ϕ1+sin2θ ∂ ϕ2∂̄ ϕ2+sin2θ
�

∂ ϕ1∂̄ ϕ2 − ∂ ϕ2∂̄ ϕ1

�

+
k̃

2π

∫

Σ

∂ θ̃ ∂̄ θ̃+cos2θ̃ ∂ ϕ̃1∂̄ ϕ̃1+sin2θ̃ ∂ ϕ̃2∂̄ ϕ̃2+sin2θ̃
�

∂ ϕ̃1∂̄ ϕ̃2 − ∂ ϕ̃2∂̄ ϕ̃1

�

+
1

2π

∫

Σ

∂ y7∂̄ y7 , (218)

with now, besides the y7 translations, a group SU(2)2×âSU(2)2 worth of symmetries generated
by (215) and their tilded counterparts. In both eq. (214) and (218), the internal components
of the metric and B field can be read off from

S =

∫

Σ

∂ y i ∂̄ y j Ei j , (219)

with Ei j = ( ĝs)i j + B̂i j .

6.1 Deformations around generic points

For every solution in sec. 5, the worldsheet action is defined by eq. (219). Let us now show
that infinitesimal deformations around generic points of the families discussed in that section
are current-current deformations of this worldsheet action. The currents that participate in the
deformations can be expressed in terms of Ei j as [70]

jp = ∂ y i Ei jk
j
p , j̄p = ki

p Ei j ∂̄ y j , (220)

where kp are abelian Killing vectors of the round geometries in eq. (208).13 In particular, for
the cases under consideration,

kϕ1
= ∂ϕ1

, kϕ2
= ∂ϕ2

, kya = ∂ya , for AdS3 × S3 × T4 ,
kϕ1
= ∂ϕ1

, kϕ2
= ∂ϕ2

, kϕ̃1
= ∂ϕ̃1

, kϕ̃2
= ∂ϕ̃2

, ky7 = ∂y7 , for AdS3 × S3 × S̃3 × S1 .
(221)

13These Killing vectors leave the metric invariant and change the B-field only by a gauge transformation, i.e.
Lkp

g = 0 and Lkp
B = dλ.
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For the deformed solutions in sec. 5, the Ei j matrix can be read off from (158) and (159).
Infinitesimal variations of the parameters around the deformed solutions can be expressed in
terms of the currents in (220). For instance, for the three-parameter family of solutions in
(172) the relevant currents are

jϕ1
=

�

∂ ϕ1 + (χ1 + β1)∂ y7
�

cos2 θ − sin2 θ ∂ ϕ2

1+
�

e−2ω + β2
1 − 1
�

cos2 θ
,

j̄ϕ1
=

�

∂̄ ϕ1 + (χ1 − β1)∂̄ y7
�

cos2 θ + sin2 θ ∂̄ ϕ2

1+
�

e−2ω + β2
1 − 1
�

cos2 θ
,

jy7 =

�

1+
�

e−2ω +χ2
1 − 1
�

cos2 θ
�

∂ y7 + (χ1 − β1)
�

cos2 θ ∂ ϕ1 − sin2 θ ∂ ϕ2

�

1+
�

e−2ω + β2
1 − 1
�

cos2 θ
,

j̄y7 =

�

1+
�

e−2ω +χ2
1 − 1
�

cos2 θ
�

∂̄ y7 + (χ1 + β1)
�

cos2 θ ∂̄ ϕ1 + sin2 θ ∂̄ ϕ2

�

1+
�

e−2ω + β2
1 − 1
�

cos2 θ
,

(222)

which respectively reduce to jL3 , jR3 , ∂ y7 and ∂̄ y7 in (215) when ω= β1 = χ1 = 0. Upon the
equations of motion stemming from eq. (219) for the background (172), these currents are
(anti-)holomorphic (c.f. app. C)

∂̄ jϕ1
= ∂̄ jy7 = 0 , ∂ j̄ϕ1

= ∂ j̄y7 = 0 , (223)

and the results at (ω+ δω,β1 + δβ1,χ1 + δχ1) and (ω,β1,χ1) for the family in (172) are
related as

δE = 2(e−2ωδω−χ1δχ1) jϕ1
⊗ j̄ϕ1

+ (δχ1 −δβ1) jϕ1
⊗ j̄y7 + (δχ1 +δβ1) jy7 ⊗ j̄ϕ1

, (224)

to linear order in (δω,δβ1,δχ1) and for both cases in (208). Regarding the ten-dimensional
dilaton, it changes as a compensator of the variation of the metric so as to keep the generalised
dilaton d̂ = Φ̂− 1

4 log ĝs invariant under the deformations, as required by marginality [69,71].
The linear variation δE for all the instances discussed in sec. 5 can be expressed in terms

of products of currents which are (anti-)holomorphic upon imposing the equations of motion,
as can be found in app. C. For the 4χ and 4β families in (184) and (194) the infinitesimal
variations read

δE = (δχ1 +δχ2) jϕ1
⊗ ∂̄ y7 + (δχ1 −δχ2)∂ y7 ⊗ j̄ϕ1

+α(δχ̃1 +δχ̃2) jϕ̃1
⊗ ∂̄ y7 +α(δχ̃1 −δχ̃2)∂ y7 ⊗ j̄ϕ̃1

, (225)

δE = −(δβ1 +δβ2) jϕ1
⊗ j̄y7 + (δβ1 −δβ2) jy7 ⊗ j̄ϕ1

−α(δβ̃1 +δβ̃2) jϕ̃1
⊗ j̄y7 +α(δβ̃1 −δβ̃2) j7 ⊗ j̄ϕ̃1

− 2(β2δβ2 + β̃2δβ̃2) jy7 ⊗ j̄y7 , (226)

for the AdS3 × S3 × S̃3 × S1 topology, and

δE = (δχ1 +δχ2) jϕ1
⊗ ∂̄ y7 + (δχ1 −δχ2)∂ y7 ⊗ j̄ϕ1

+δχ̃2 ( jy6 ⊗ ∂̄ y7 + ∂ y7 ⊗ j̄y6) , (227)

δE = −(δβ1 +δβ2) jϕ1
⊗ j̄y7 + (δβ1 −δβ2) jy7 ⊗ j̄ϕ1

− (δβ̃1 +δβ̃2) jy6 ⊗ j̄y7 − (δβ̃1 −δβ̃2) jy7 ⊗ j̄y6 − 2(β2δβ2 + β̃1δβ̃1) jy7 ⊗ j̄y7 , (228)

for the AdS3× S3×T4. In (225) and (227), the forms ∂ y7 and ∂̄ y7 have definite chirality (i.e.
the field y7 is free), and gauge transformations of the B field have been omitted. Finally, the Ξ
deformation (203) gives rise to

δE =
�

δΞ2 +δΞ4

� �

jϕ1
−αΞ4 jϕ̃2

�

⊗
�

α j̄ϕ̃1
+Ξ4 j̄ϕ2

�

+
�

δΞ2 −δΞ4

� �

α jϕ̃1
+Ξ4 jϕ2

�

⊗
�

j̄ϕ1
−αΞ4 j̄ϕ̃2

�

−2Ξ2δΞ2

�

jϕ1
−αΞ4 jϕ̃2

�

⊗
�

j̄ϕ1
−αΞ4 j̄ϕ̃2

�

, (229)
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up to gauge transformations of B. In this case, the conservation laws are

∂̄
�

jϕ1
−αΞ4 jϕ̃2

�

= ∂̄
�

α jϕ̃1
+Ξ4 jϕ2

�

= 0 , ∂
�

α j̄ϕ̃1
+Ξ4 j̄ϕ2

�

= ∂
�

j̄ϕ1
−αΞ4 j̄ϕ̃2

�

= 0 , (230)

even though the currents jϕ1
, jϕ̃2

, etc are not separately conserved.
Around the origin, the deformations in (224)–(228) simplify drastically and can be written

in terms of the WZW currents in (215). For the (ω,β1,χ1) family, we get

(dŝ2
s + B̂(2)) = (dŝ2

s + B̂(2))0+2δω jL3 ⊗ jR3 +(δχ1−δβ1) jL3 ⊗ ∂̄ y7+(δχ1+δβ1)∂ y7⊗ jR3 . (231)

The 4χ and 4β deformations read

(dŝ2
s + B̂(2)) = (dŝ2

s + B̂(2))0 + (δχ1 +δχ2) jL3 ⊗ ∂̄ y7 + (δχ1 −δχ2)∂ y7 ⊗ jR3
+α−1(δχ̃1 +δχ̃2) j̃L3 ⊗ ∂̄ y7 +α−1(δχ̃1 −δχ̃2)∂ y7 ⊗ j̃R3 , (232)

(dŝ2
s + B̂(2)) = (dŝ2

s + B̂(2))0 − (δβ1 +δβ2) jL3 ⊗ ∂̄ y7 + (δβ1 −δβ2)∂ y7 ⊗ jR3
−α−1(δβ̃1 +δβ̃2) j̃L3 ⊗ ∂̄ y7 +α−1(δβ̃1 −δβ̃2)∂ y7 ⊗ j̃R3 , (233)

for AdS3 × S3 × S̃3 × S1, and

(dŝ2
s + B̂(2)) = (dŝ2

s + B̂(2))0 + (δχ1 +δχ2) jL3 ⊗ ∂̄ y7 + (δχ1 −δχ2)∂ y7 ⊗ jR3
+δχ̃2 (∂ y6 ⊗ ∂̄ y7 + ∂ y7 ⊗ ∂̄ y6) , (234)

(dŝ2
s + B̂(2)) = (dŝ2

s + B̂(2))0 − (δβ1 +δβ2) jL3 ⊗ ∂̄ y7 + (δβ1 −δβ2)∂ y7 ⊗ jR3
−δβ̃1(∂ y6 ⊗ ∂̄ y7 + ∂ y7 ⊗ ∂̄ y6) , (235)

in the AdS3 × S3 × T4 case. For each topology, these expressions match at the linearised level
up to a straightforward redefinition of the parameters given by

δχ1 7→ −δβ2 , δχ2 7→ −δβ1 , δχ̃1 7→ −δβ̃2 , δχ̃2 7→ −δβ̃1 . (236)

The Ξ deformation (203) also simplifies to

(dŝ2
s + B̂(2)) = (dŝ2

s + B̂(2))0 +α
−1(δΞ2 +δΞ4) jL3 ⊗ ej

R
3 +α

−1(δΞ2 −δΞ4)ej
L
3 ⊗ jR3 . (237)

6.2 Comments on the CFT dual

For all cases (224)–(229), the deformations are described by products of commuting (anti-
)holomorphic currents, and are thus exactly marginal [7]. Further checks of this exact marginal-
ity can be already be made in supergravity out of the three-point functions for the Kaluza-Klein
modes following ref. [37] so as to study the vanishing of the beta-functions in conformal
perturbation theory [8]. We plan to return to this question in the future.

From a holographic perspective, the identification of the WZW currents around the origin in
(231)–(237) allows us to conjecture that the marginal operators in the holographic conformal
field theories are also of j j̄ type. In the symmetric orbifold theories,

SymN (M4) , (238)

one can identify two SU(2) factors corresponding to the left- and right-moving currents associ-
ated to the R-symmetry, and extra flavour symmetries realised on every copy of M4 = U(1)4 or
M4 = SU(2)×U(1). The relevant “single trace” operators [72] on the orbifold are given by the
projection

O ∼
N
∑

k

( j j̄)k , (239)

with k an index on each of the copies.
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7 Discussion

This note focused on the construction and study of new marginal deformations of the
AdS3 × S3 × S3 × S1 and AdS3 × S3 × T4 solutions of heterotic and type IIB supergravities
using exceptional field theory. These solutions are of particular relevance for the AdS3/CFT2
correspondence and we built a general framework that unifies the description of those back-
grounds in both theories. The rich structure of marginal deformations thus revealed is in
sharp contrast with what happens in higher dimensions. These deformations include Lunin-
Maldacena TsT transformations and Wilson loops among more general deformations. However,
our search of moduli is far from being exhaustive and needs to be generalised, for example to
include mixing of TsT transformation between the sphere and multiple directions on the torus,
or couplings between TsT and Wilson loop deformations. The integrability of the WZW models
describing the round solutions [73] allows to describe our deformed solutions as Yang-Baxter
deformations along the lines of [74]. Integrability could provide powerful tools to study these
solutions in more detail.

All the deformation parameters we considered belong to three-dimensional consistent
truncations. This makes it possible to use the ExFT’s Kaluza-Klein spectrometer to compute
the effect of the deformations on the full Kaluza-Klein tower of excitations. We used these
deformation-dependent spectra to study the perturbative stability of some non-supersymmetric
vacua, and demonstrated that there is a vast subregion of parameter space where the solutions
are free from perturbative instabilities. The complete stability of these solutions has to be
tested against potential non-perturbative decay channels, as brane-jet instabilities [75–77]
and nucleations of bubbles [78–83]. This would require building their associated brane
configurations. It would also be very interesting to study the existence of positive energy
theorems in the lines of ref. [84].

Among the directions in the conformal manifold, the possibility of describing TsT defor-
mations acting on spheres in a consistent truncation is a three-dimensional peculiarity, as in
higher-dimensions the moduli triggering those transformations sit within higher Kaluza-Klein
levels [20,57,58]. Similarly to what happens for Wilson loop deformations, even though TsT
seems to be composed of symmetry transformations of string theory (T duality, shifts in coordi-
nates and T duality), our results demonstrate that such deformations affect the Kaluza-Klein
spectrum. This is because the coordinate shift couples directions with non-compatible periodic-
ities, and therefore the transformations are not globally well-defined for generic values of the
deformation parameters. It would be very interesting to study if these three-dimensional results
could provide insights on the Kaluza-Klein spectra for TsT deformations in higher dimensions.

The transformations in (51) do not excite RR fluxes. We took advantage of this property
to describe them as current-current couplings of the WZW worldsheet actions describing the
AdS3×S3×S3×S1 and AdS3×S3×T4 backgrounds. This suggests that the holographically dual
deformations are single-trace J J̄ . It will be interesting to analyse these deformed holographic
duals, and the fact that some of these deformations preserve some supersymmetries for both left-
and right-movers (see e.g. (192)) suggests that some subfamilies should be amenable to the CFT
analysis. Nevertheless, it would also be of interest to study whether some new deformations
could also excite RR fluxes. Given that U duality encompasses both T and S dualities, the
ExFT framework can also be used to generate transformations that excite them. Of particular
interest are the S dual rotation mapping the NS5-F1 and D1-D5 configurations, as well as
the S duality orbits of the pure NSNS deformations described above. If such deformations
belong to a three-dimensional consistent truncation to a gauged maximal supergravity, one
should expect to find them among the E8(8) generators in the 128 representation of SO(8,8)
in the decomposition (26). Describing the uplift to ten-dimensional supergravity would then
require the construction of the full dictionary between E8(8) ExFT and type IIB supergravity,
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generalising eq. (62). Such new deformations mixing NSNS and RR fluxes could make contact
with the recent families of AdS3 solutions constructed in ref. [85–87].

Given that both the AdS3 × S3 × S3 × S1 and AdS3 × S3 ×T4 spectra feature massless scalar
modes at higher Kaluza-Klein levels, one could wonder if these backgrounds also feature
moduli outside of their consistent truncations to 3d. This could be investigated by applying the
generalised geometry techniques developed in ref. [88–90]. Similar methods have recently
been applied in ExFT to relevant deformations in ref. [91].
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A Orthogonal decompositions and projectors of E8(8)

This appendix brings to our notation the construction of e8(8) based on so(8,8) and so(16)
found in [56]. In sec. A.3, we also detail some projectors used in the main text.

A.1 SO(8, 8) decomposition of E8(8)

Following (26), e8(8) is comprised by the 120 generators of so(8,8) together with 128 extra
generators transforming as spinors under the orthogonal group and closing back into it according
to the commutators14

[tMN , tPQ] = 2ηM P tNQ − 2ηN P tMQ − 2ηMQ tN P + 2ηNQ tM P ,

[tMN , tA] =
1
2(ΓMN )A

B tB , [tA, tB] = −
1
2Γ

MN
AB tMN .

(A.1)

Indices are raised and lowered using the invariant metrics ηMN and ηAB. Here, we use a basis
where the SO(8,8) invariant metric ηMN is diagonal and given by

η(diag) =

�

−δ Î Ĵ 0
0 δI J

�

. (A.2)

The charge conjugation matrices are then given by

ηAB =

�

δABδȦḂ 0
0 −δȦḂδAB

�

, ηȦḂ =

�

δACδBD 0
0 −δȦĊδḂḊ

�

, (A.3)

under the SO(8)× SO(8) breaking

SO(8,8) ⊃ SO(8)× SO(8) ,
16 → (8v,1)⊕ (1,8v) ,

128s → (8s,8c)⊕ (8c,8s) ,
128c → (8s,8s)⊕ (8c,8c) ,

(A.4)

14The discussion in this appendix applies both to the global E8(8) in D = 3 as well as to its ExFT counterpart, and
we have chosen to present the formulae with unbarred objects. In sec. 2.2, all indices here acquire overbars.
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with indices decomposing as XM = {X Î , X I}, YA = {YÂḂ
, Yˆ̇AB
} and YȦ = {YÂB

, Yˆ̇AḂ
} for

Ȧ ∈ J1,128K the 128c index and A, Ȧ ∈ J1,8K and their hatted counterparts respectively
labelling the 8s and 8c of each SO(8) factor.

The last ingredient in (A.1) are the generators of so(8, 8) in the 128s representation, which
are proportional to

ΓMN
A
B = 1

2

�

ΓM
A
Ċ Γ̄ N

Ċ
B − Γ N

A
Ċ Γ̄M

Ċ
B� , (A.5)

for Γ̄M the transpose of ΓM . These chiral SO(8,8) gamma matrices satisfy

ΓM
A
Ċ Γ̄ N

Ċ
B + Γ N

A
Ċ Γ̄M

Ċ
B = 2ηMNδA

B , (A.6)

and are conveniently parametrised in terms of SO(8) gamma matrices as

Γ Î
ÂḂ

ˆ̇C Ḋ = −δḂḊ γ
Î
Â ˆ̇C

, Γ Î
ˆ̇AB

Ĉ D = δBD γ
Î
Ĉ ˆ̇A

,

Γ I
ÂḂ

Ĉ D = δÂĈ γ
I
CȦ , Γ I

ˆ̇AB

ˆ̇C Ḋ = −δ ˆ̇A ˆ̇C
γI

BḊ .
(A.7)

These chiral SO(8) gamma matrices satisfy Clifford identities analogous to (A.6) and are chosen
so that the charge conjugation matrices, η

AB
, η ˆ̇Aˆ̇B

, etc, are just the identity matrix. Explicit
expressions fulfilling these requirements are given by

γI = {γIJ, γ+, γ−} , (A.8)

with

γIJ =

�

εIJ 2δIJ

−2δIJ εIJ

�

, γ+ =

�

1 0
0 −1

�

, Γ− =

�

0 1

1 0

�

, (A.9)

in terms of SO(4) ⊂ SU(4) ⊂ SO(8) invariant tensors (εIJ)KL = εIJKL and (δIJ)KL = δI[KδL]J

under the splitting I = {[IJ], +, −}, A= {I, J} and Ȧ= {I, J} with I,J ∈ J1, 4K, and analogously
for hatted indices.

For completeness, we also include expressions for the generators of so(8,8) in the 128c
representation as well as for the other higher-order products of SO(8, 8) gamma matrices that
play a rôle in the main text:

Γ̄MN
Ȧ
Ḃ = 1

2

�

Γ̄M
Ȧ
C Γ N

C
Ḃ − Γ̄ N

Ȧ
C ΓM

C
Ḃ� ,

ΓMN P
A
Ḃ = Γ [MN

A
C Γ P]

C
Ḃ , Γ̄MN P

Ȧ
B = Γ̄ [MN

Ȧ
Ċ Γ̄ P]

Ċ
B ,

ΓMN PQ
A
B = Γ [MN P

A
Ċ ΓQ]

Ċ
B , Γ̄MN PQ

Ȧ
Ḃ = Γ̄ [MN P

Ȧ
C Γ̄Q]

C
Ḃ .

(A.10)

In terms of these objects, the structure constants of E8(8) are given by [56]

fMN ,PQ
RS = −8δ[M

[RηN][PδQ]
S] ,

fMN ,A
B =

1
2
(ΓMN )A

B ,

fAB
MN = −

1
2
ΓMN

AB ,

(A.11)

and the Cartan-Killing metric,

κMN =
1
60

fMP
Q fNQ

P , (A.12)

decomposes as
κM1M2,N1N2

= −2ηM1[N1
ηN2]M2

, κAB = ηAB ,

κM1M2,N1N2 = −2ηM1[N1ηN2]M2 , κAB = ηAB .
(A.13)
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A.2 SO(16) decomposition of E8(8)

E8(8) can be decomposed under SO(16) analogously to (26),

E8(8) ⊃ SO(16) ,
248 → 120+ 128s ,
tM → {t[MN], tA } ,

(A.14)

with indices M andA now labelling the vector and spinorial representations of SO(16). The
E8(8) structure constants in this basis are

fMN,PQ
RS = −8δ[M

[RηN][PδQ]
S] ,

fMN,A
B =

1
2
ΓMNA

B ,

fAB
MN = −

1
2
ΓMN

AB ,

(A.15)

and the Cartan-Killing form (A.12) decomposes as

κM1M2,N1N2
= −2ηM1[N1

ηN2]M2
, κAB = ηAB ,

κM1M2,N1N2 = −2ηM1[N1ηN2]M2 , κAB = ηAB ,
(A.16)

for ΓM the SO(16) gamma matrices and the invariant metric ηMN and charge conjugation
matrices ηAB and ηȦ Ḃ given by identity matrices in the respective dimensions. For this
reason, the upstairs vs downstairs position of these indices lacks significance. The gamma
matrices are most easily defined by breaking SO(16) down to SO(8)× SO(8),

SO(16) ⊃ SO(8)× SO(8) ,
16 → (8c,1)⊕ (1,8s) ,

128s → (8v,8v)⊕ (8s,8c) ,
128c → (8s,8v)⊕ (8v,8c) ,

(A.17)

with indices decomposing as XM = {X ˆ̇A
, X

A
}, YA = {YÎ J , YÂḂ} and YȦ = {YÂI , ŶĴ Ḃ}. Then,

Γ
ˆ̇A
ÎJ ,B̂K = δJK γ

Î
B̂ ˆ̇A

, Γ
ˆ̇A
B̂Ċ , Î Ḋ = −δĊ Ḋ γ

Î
B̂ ˆ̇A

,

Γ A
ÎJ ,K̂ Ḃ = δ Î K̂ γ

J
AḂ , Γ A

B̂Ċ ,D̂I = δB̂D̂ γ
I
AĊ ,

(A.18)

and higher-order products follow (A.10).
One can finally map the SO(8, 8) and SO(16) representations appearing in the decomposition

(26) and (A.14), {XMN , YA} and {X ′MN, Y ′A }, via their respective SO(8)× SO(8) breakings:

2X ′ˆ̇Aˆ̇B
= −

1
4
γ Î Ĵ

ˆ̇Aˆ̇B
X Î Ĵ , X ′ˆ̇AB

= −Yˆ̇AB
, X ′

ÂḂ
= YÂḂ , X ′AB =

1
4
γI J

ABX I J ,

Y ′
Î J
= −X Î J , Y ′

ÂḂ
= YÂḂ .

(A.19)

A.3 E8(8) projectors

Some of the representations in the product

248⊗ 248→ 1⊕ 248⊕ 3875⊕ 27000⊕ 30380 , (A.20)
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play a prominent rôle in supergravity and ExFT. The projectors onto these irreducible represen-
tations are given by [38,92]

(P1)MN
KL = 1

248κMN κ
KL ,

(P248)MN
KL = 1

60 fMNP f PKL ,

(P3875)MN
KL = 1

7δ
K
(Mδ

L
N ) −

1
56κMN κ

KL − 1
14 f PM

(K fPN
L) ,

(P27000)MN
KL = 6

7δ
K
(Mδ

L
N ) +

3
217κMN κ

KL + 1
14 f PM

(K fPN
L) ,

(P30380)MN
KL = δK[Mδ

L
N ] −

1
60 fMNP f PKL .

(A.21)

In particular, given that the embedding tensor of maximal supergravity has index structure

(248⊗ 248)sym→ 1⊕ 3875⊕ 27000 , (A.22)

the linear constraint on the embedding tensor alluded to in sec. 2.2 can be phrased as

(P27000X )M̄K̄ = 0 . (A.23)

B D(2, 1|α) vs SU(2)⋉ SU(2|1, 1) superalgebras

The superalgebras SU(2)⋉ SU(2|1,1) and D(2,1|α) coincide as vector spaces. They are gen-
erated by bosonic elements Lm with m = 0,±1, and A±i with i = 1,2,3, which respectively
generate SL(2,R) and two copies of SU(2), and their fermionic counterparts Ga

r with r = ±1
2

and a = 1, 2, 3, 4, transforming in the bi-fundamental representation of SU(2)− × SU(2)+. For
D(2,1|α), the super-Lie bracket is [67,93]

[Lm, Ln] = (m− n)Lm+n , [A±i , A±j ] = iεi jkA±k , [Lm, A±i ] = 0 ,

[Lm, Ga
r ] =
�m

2
− r
�

Ga
r , [A±i , Ga

r ] = iα±i
abGb

r ,

{Ga
r , Gb

s }= 2δab Lr+s + 4i(r − s)
� α2

1+α2
α+i

abA+i +
1

1+α2
α−i

abA−i
�

, (B.1)

with
α±i

ab = ±δi+1,[aδb]1 +
1
2εi,a−1,b−1,4 . (B.2)

For SU(2)⋉ SU(2|1, 1), only the fermionic anti-commutator is modified into

{Ga
r , Gb

s }= 2δab Lr+s + 4i(r − s)α−i
abA−i , (B.3)

following the limit
lim
α→0

D(2,1|α) = SU(2|1,1)⋊ SU(2)+ . (B.4)

Therefore, SU(2|1, 1) ⊃ SL(2,R)× SU(2)− is an ideal of the non-semisimple SU(2)⋉ SU(2|1, 1)
superalgebra.

The limit (B.4) does not affect the matter content of long multiplets, whose states can be
given in terms of the weights under the bosonic subalgebras as (h, j−, j+), with h denoting
the SL(2,R) dimension and j± being half-integer spins for SU(2)±. Supermultiplets are then
determined by a primary state which is annihilated by all Ga

1
2

and L1. A supermultiplet with

superconformal primary (h, j−, j+) will be denoted [h, j−, j+], and its descendants can be
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obtained by successively applying antisymmetric products of the Ga
− 1

2
generators, which live in

representations

Ga
− 1

2
∈ (1

2 , 1
2 , 1

2) , G[a
− 1

2
Gb]
− 1

2
∈ (1, 1,0)⊕ (1, 0,1) ,

G[a
− 1

2
Gb
− 1

2
Gc]
− 1

2
∈ (3

2 , 1
2 , 1

2) , G1
− 1

2
G2
− 1

2
G3
− 1

2
G4
− 1

2
∈ (2,0, 0) , (B.5)

of SL(2,R)× SU(2)− × SU(2)+. Applying (B.5) onto a superconformal primary with charges
(h, j−, 0) one recovers the states in (A.20) of [41], whilst equation (A.17) therein applies
whenever the superconformal primary has both j− and j+ greater than one.

Shortening of the long multiplets occurs when the superconformal primaries saturate the
BPS bounds

h≥ 1
1+α2 j− + α2

1+α2 j+ , for D(2, 1|α) ,
h≥ j− , for SU(2|1, 1)⋊ SU(2) .

(B.6)

The missing factor in (B.3) implies that short multiplets of SU(2|1, 1)⋊ SU(2) are shorter than
those of D(2,1|α) with the same charges, since all states for which the SU(2)− weight rises
become null at the BPS bound. Therefore, the breaking rules are

[ 1
1+α2 ( j− +α2 j+) + ε, j−, j+] −−→

ε→0
[ j−, j+]s + [ j− +

1
2 , j+ + 1

2]s , for D(2, 1|α) ,

[ j− + ε, j−, j+] −−→
ε→0

[ j−, j+]s + [ j− +
1
2 , j+ + 1

2]s
+[ j− − 1

2 , j+ + 1
2]s + [ j

−, j+ + 1]s , for SU(2|1, 1)⋊ SU(2) ,

(B.7)

where the conformal dimensions of the short multiplets accord to (B.6) and have been omitted.
Note also that for both superalgebras the multiplet [0, 0]s is unphysical, as it has h = 0. Explicit
expressions for the state content of the short multiplets of D(2, 1|α) can be found in [19], and
for SU(2|1,1)⋊ SU(2) in [41].

In the following, we tabulate the states of a few of these multiplets for the convenience of
the reader.

Table 1: Long multiplet
�

h, 0, 0
�

.

SL(2,R) SU(2)− × SU(2)+
h
�

0,0
�

h+ 1/2
�

1/2, 1/2
�

h+ 1
�

1,0
�

⊕
�

0,1
�

h+ 3/2
�

1/2, 1/2
�

h+ 2
�

0,0
�

Table 2: Long multiplet
�

h, 1/2, 0
�

.

SL(2,R) SU(2)− × SU(2)+
h

�

1/2, 0
�

h+ 1/2
�

1, 1/2
�

⊕
�

0, 1/2
�

h+ 1
�

1/2, 1
�

⊕
�

3/2, 0
�

⊕
�

1/2, 0
�

h+ 3/2
�

1, 1/2
�

⊕
�

0, 1/2
�

h+ 2
�

1/2, 0
�

Table 3: Long multiplet
�

h, 1/2, 1/2
�

.

SL(2,R) SU(2)− × SU(2)+
h

�

1/2, 1/2
�

h+ 1/2
�

1,1
�

⊕
�

1,0
�

⊕
�

0, 1
�

⊕
�

0, 0
�

h+ 1
�

3/2, 1/2
�

⊕ 2
�

1/2, 1/2
�

⊕
�

1/2, 3/2
�

h+ 3/2
�

1,1
�

⊕
�

1,0
�

⊕
�

0, 1
�

⊕
�

0, 0
�

h+ 2
�

1/2, 1/2
�

Table 4: Long multiplet
�

h, 1, 0
�

.

SL(2,R) SU(2)− × SU(2)+
h

�

1,0
�

h+ 1/2
�

1/2, 1/2
�

⊕
�

3/2, 1/2
�

h+ 1
�

1,1
�

⊕
�

2,0
�

⊕
�

1, 0
�

⊕
�

0, 0
�

h+ 3/2
�

1/2, 1/2
�

⊕
�

3/2, 1/2
�

h+ 2
�

1,0
�
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Table 5: Short multiplet
�

1/2, 1/2
�

s for D(2, 1|α) and SU(2|1, 1)⋊ SU(2).

D(2, 1|α) SU(2|1,1)⋊ SU(2)
�

1/2, 1/2
� �

1/2, 1/2
�

�

1, 0
�

⊕
�

0,1
�

⊕
�

0,0
� �

0, 1
�

⊕
�

0,0
�

�

1/2, 1/2
�

−
�

0,0
�

−

Table 6: Short multiplet
�

1,1
�

s for D(2,1|α) and SU(2|1,1)⋊ SU(2).

D(2,1|α) SU(2|1, 1)⋊ SU(2)
�

1,1
� �

1, 1
�

�

3/2, 1/2
�

⊕
�

1/2, 1/2
�

⊕
�

1/2, 3/2
� �

1/2, 3/2
�

⊕
�

1/2, 1/2
�

�

1, 1
�

⊕
�

1,0
�

⊕
�

0,1
� �

0, 1
�

�

1/2, 1/2
�

−

C Solution details

In this appendix, we present the detailed 10d configurations corresponding to the solutions
presented in sec. 5, uplifted from 3d through (62) and (64). As discussed in sec. 6, the linear
variations around a vacuum in these conformal manifolds can be parameterised in terms of the
Noether currents introduced in (220). The conservation of the Noether current Jp associated
to the shift of the angle y p in (221) reads

d ∗Jp = [∂̄ jp + ∂ j̄p]dz ∧ dz̄ = 0 . (C.1)

The components of Jp are not necessarily (anti-)holomorphic, but in the following we show
that the linear combinations relevant for the different backgrounds are chiral upon imposing
the equations of motion

Ey = ∂
�

δL
δ∂ y

�

+ ∂̄
�

δL
δ∂̄ y

�

−
δL
δ y

, (C.2)

for the worldsheet Lagrangian in (219). For the three-parameter family of solutions in (172)
and the currents in (220), this amounts to

∂̄ jϕ1
=

1
2

�

1− e2ωβ1χ1

�

Eϕ1
−

e2ω

2
Eϕ2
+

e2ω

2
β1 Ey7 ,

∂̄ jy7 = −
1
2
β1

�

1+ e2ωχ2
1

�

Eϕ1
−

e2ω

2
χ1 Eϕ2

+
1
2

�

1+ e2ωβ1χ1

�

Ey7 ,

∂ j̄ϕ1
=

1
2

�

1+ e2ωβ1χ1

�

Eϕ1
+

e2ω

2
Eϕ2
−

e2ω

2
β1 Ey7 ,

∂ j̄y7 =
1
2
β1

�

1+ e2ωχ2
1

�

Eϕ1
+

e2ω

2
χ1 Eϕ2

+
1
2

�

1− e2ωβ1χ1

�

Ey7 ,

(C.3)

for both the S3× S1 and T4 backgrounds. In fact, one can show that y7 is a free field satisfying
∂̄ ∂ y7 = 0.
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C.1 Wilson loop deformations

For AdS3 × S3 × eS3 × S1, the four-axion geometry corresponding to (184) is given by [19]

eΦ̂ = 1 ,

dŝ2
s = ℓ

2
AdSds2(AdS3) + (dy7)2

+ dθ2 + cos2(θ )
�

dϕ1 +χ1 dy7
�2
+ sin2(θ )
�

dϕ2 −χ2 dy7
�2

+α−2
�

deθ2 + cos2(eθ )
�

d eϕ1 +α eχ1 dy7
�2
+ sin2(eθ )
�

d eϕ2 −α eχ2 dy7
�2�

,

Ĥ(3) = 2ℓ2
AdS vol(AdS3) + sin(2θ )dθ ∧

�

dϕ1 +χ1 dy7
�

∧
�

dϕ2 −χ2 dy7
�

+α−2 sin(2eθ )deθ ∧
�

d eϕ1 +α eχ1 dy7
�

∧
�

d eϕ2 −α eχ2 dy7
�

,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 ,

(C.4)

and for AdS3 × S3 × T4, it is realised by

eΦ̂ = 1,

dŝ2
s = ℓ

2
AdSds2(AdS3) + dθ2 + cos2(θ )

�

dϕ1 +χ1dy7
�2
+ sin2(θ )
�

dϕ2 −χ2dy7
�2

+ (dy4)2 + (dy5)2 +
�

dy6 + eχ2dy7
�2
+ (dy7)2 ,

Ĥ(3) = 2ℓ2
AdS vol(AdS3) + sin(2θ )dθ ∧

�

dϕ1 +χ1 dy7
�

∧
�

dϕ2 −χ2 dy7
�

,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 .

(C.5)

The currents taking part in (225) and (227) are respectively

jϕ1
=
�

∂ ϕ1 +χ1∂ y7
�

cos2 θ −
�

∂ ϕ2 −χ2∂ y7
�

sin2 θ ,

jϕ̃1
= α−2
�

∂ ϕ1 +αχ̃1∂ y7
�

cos2 θ̃ −α−2
�

∂ ϕ2 −αχ̃2∂ y7
�

sin2 θ̃ ,

j̄ϕ1
=
�

∂̄ ϕ1 +χ1∂̄ y7
�

cos2 θ +
�

∂̄ ϕ2 −χ2∂̄ y7
�

sin2 θ ,

j̄ϕ̃1
= α−2
�

∂̄ ϕ1 +αχ̃1∂̄ y7
�

cos2 θ̃ +α−2
�

∂̄ ϕ2 −αχ̃2∂̄ y7
�

sin2 θ̃ , (C.6)

and

jϕ1
=
�

∂ ϕ1 +χ1∂ y7
�

cos2 θ −
�

∂ ϕ2 −χ2∂ y7
�

sin2 θ , jy6 = ∂ y6 + χ̃2∂ y7 ,

j̄ϕ1
=
�

∂̄ ϕ1 +χ1∂̄ y7
�

cos2 θ +
�

∂̄ ϕ2 −χ2∂̄ y7
�

sin2 θ , j̄y6 = ∂̄ y6 + χ̃2∂̄ y7 . (C.7)

Furthermore, ∂ y7 can be expressed in terms of the currents in both cases. These currents
satisfy

∂̄ jϕ1
= 1

2 Eϕ1
− 1

2 Eϕ2
, ∂ j̄ϕ1

= 1
2 Eϕ1

+ 1
2 Eϕ2

, (C.8)

for both configurations, and

∂̄ jϕ̃1
= 1

2 Eϕ̃1
− 1

2 Eϕ̃2
, ∂ j̄ϕ̃1

= 1
2 Eϕ̃1

+ 1
2 Eϕ̃2

,

∂̄ ∂ y7 = −1
2χ1 Eϕ1

+ 1
2χ2 Eϕ2

− α
2 χ̃1 Eϕ̃1

+ 1
2 χ̃2 Eϕ̃2

+ 1
2 Ey7 ,

(C.9)

or
∂̄ jy6 = 1

2 Ey6 , ∂ j̄y6 = 1
2 Ey6 ,

∂̄ ∂ y7 = −1
2χ1 Eϕ1

+ 1
2χ2 Eϕ2

− 1
2 χ̃2 Ey6 + 1

2 Ey7 .
(C.10)

depending on the topology.
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C.2 TsT deformations

C.2.1 4β-family

For AdS3 × S3 × eS3 × S1, (194) uplifts to

eΦ̂=
p
∆ ,

dŝ2
s= ℓ

2
AdSds2(AdS3) + dθ2 + cos2(θ )dϕ2

1 + sin2(θ )dϕ2
2 +α

−2
�

deθ2 + cos2(eθ )d eϕ2
1 + sin2(eθ )d eϕ2

2

�

−∆
�

β1 cos2(θ )dϕ1 − β2 sin2(θ )dϕ2 +α
−1
eβ1 cos2(eθ )d eϕ1 −α−1

eβ2 sin2(eθ )d eϕ2

�2

+∆
�

dy7 − β2 cos2(θ )dϕ1 + β1 sin2(θ )dϕ2 −α−1
eβ2 cos2(eθ )d eϕ1 +α

−1
eβ1 sin2(eθ )d eϕ2

�2
,

Ĥ(3)= 2ℓ2
AdS vol(AdS3) + sin(2θ )dθ ∧ v1 ∧ v2 + sin(2eθ )deθ ∧ ev1 ∧ ev2 ,

Ĝ(1)= Ĝ(3) = Ĝ(5) = 0 , (C.11)

with the warping factor

∆=
1

1+ β2
1 cos2(θ ) + β2

2 sin2(θ ) + eβ2
1 cos2(eθ ) + eβ2

2 sin2(eθ )
, (C.12)

and the one-forms

v1=
�

1+∆
�

β2
2 − β

2
1

�

cos2(θ )
�

dϕ1 −∆
�

β2dy7 + (β1
eβ1 − β2
eβ2) cos2(eθ )

d eϕ1

α
+ (β2
eβ1 − β1
eβ2) sin

2(eθ )
d eϕ2

α

�

,

v2=
�

1+∆
�

β2
1 − β

2
2

�

sin2(θ )
�

dϕ2 +∆
�

β1dy7 + (β2
eβ1 − β1
eβ2) cos2(eθ )

d eϕ1

α
+ (β1
eβ1 − β2
eβ2) sin

2(eθ )
d eϕ2

α

�

,

ev1=
�

1+∆
�

eβ2
2 − eβ

2
1

�

cos2(eθ )
� d eϕ1

α
−∆
�

eβ2dy7 + (β1
eβ1 − β2
eβ2) cos2(θ )dϕ1 − (β2

eβ1 − β1
eβ2) sin

2(θ )dϕ2

�

,

ev2=
�

1+∆
�

eβ2
1 − eβ

2
2

�

sin2(eθ )
� d eϕ2

α
+∆
�

eβ1dy7 − (β2
eβ1 − β1
eβ2) cos2(θ )dϕ1 + (β1

eβ1 − β2
eβ2) sin

2(θ )dϕ2

�

. (C.13)

For AdS3 × S3 × T4, its uplift reads

eΦ̂=
p
∆ ,

dŝ2
s= ℓ

2
AdSds2(AdS3) + dθ2 + cos2(θ )dϕ2

1 + sin2(θ )dϕ2
2 + (dy4)2 + (dy5)2 +

�

dy6)2

−∆
�

β1 cos2(θ )dϕ1 − β2 sin2(θ )dϕ2 + eβ2dy6
�2

+∆
�

dy7 − β2 cos2(θ )dϕ1 + β1 sin2(θ )dϕ2 − eβ1dy6
�2

,

Ĥ(3)= 2ℓ2
AdS vol(AdS3) +∆

2 sin(2θ )dθ ∧
��

1+ β2
2 + eβ

2
2

�

dϕ1 + (β2
eβ1 − β1
eβ2)dy6 − β2dy7

�

∧
��

1+ β2
1 + eβ

2
2

�

dϕ2 − (β1
eβ1 − β2
eβ2)dy6 + β1dy7

�

,

Ĝ(1)= Ĝ(3) = Ĝ(5) = 0 , (C.14)

with the warping factor now being

∆=
1

1+ eβ2
2 + β

2
1 cos2(θ ) + β2

2 sin2(θ )
. (C.15)

The currents taking part in (228) and (225) are respectively

jϕ1
=∆
�

�

∆−1 + (β2
2 − β

2
1 ) cos2(θ )
�

jL3 −α
−1(β1 − β2)(β̃1 + β̃2) cos2(θ ) j̃L3 + (β1 − β2) cos2(θ )∂ y7

�

,

jϕ̃1
= α−1∆
�

α−1
�

∆−1 + (β̃2
2 − β̃

2
1 ) cos2(θ̃ )
�

j̃L3 − (β1 + β2)(β̃1 − β̃2) cos2(θ̃ ) jL3 + (β̃1 − β̃2) cos2(θ̃ )∂ y7
�

,

jy7=∆
�

∂ y7 − (β1 + β2) j
L
3 −α

−1(β̃1 + β̃2) j̃
L
3

�

,

j̄ϕ1
=∆
�

�

∆−1 + (β2
2 − β

2
1 ) cos2(θ )
�

jR3 −α
−1(β1 + β2)(β̃1 − β̃2) cos2(θ ) j̃R3 − (β1 + β2) cos2(θ )∂̄ y7

�

,

j̄ϕ̃1
= α−1∆
�

α−1
�

∆−1 + (β̃2
2 − β̃

2
1 ) cos2(θ̃ )
�

j̃R3 − (β1 − β2)(β̃1 + β̃2) cos2(θ̃ ) jR3 − (β̃1 + β̃2) cos2(θ̃ )∂̄ y7
�

,

j̄y7=∆
�

∂̄ y7 + (β1 − β2) j
R
3 +α

−1(β̃1 − β̃2) j̃
R
3

�

, (C.16)
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with ∆ in (C.12), and

jϕ1
=∆
�

�

1+ β2
2 + β̃

2
2

�

jL3 + (β1 − β2)(∂ y7 − (β̃1 + β̃2)∂ y6) cos2(θ )
�

,

jy6 =∆
�

�

β̃2
1 − β̃

2
2 +∆

−1
�

∂ y6 − (β̃1 − β̃2)∂ y7 + (β1 + β2)(β̃1 − β̃2) j
L
3

�

,

jy7 =∆
�

∂ y7 − (β̃1 + β̃2)∂ y6 − (β1 + β2) j
L
3

�

,

j̄ϕ1
=∆
�

�

1+ β2
2 + β̃

2
2

�

jR3 − (β1 + β2)(∂̄ y7 − (β̃1 − β̃2)∂̄ y6) cos2(θ )
�

,

j̄y6 =∆
�

�

β̃2
1 − β̃

2
2 +∆

−1
�

∂̄ y6 − (β̃1 + β̃2)∂̄ y7 − (β1 − β2)(β̃1 + β̃2) j
R
3

�

,

j̄y7 =∆
�

∂̄ y7 − (β̃1 − β̃2)∂̄ y6 + (β1 − β2) j
R
3

�

, (C.17)

with ∆ in (C.15). Here, jL3 and jR3 are the currents in (215), and j̃L3 and j̃R3 their tilded
counterparts. The deformed currents satisfy

∂̄ jϕ1
= 1

2 (1+ β1β2) Eϕ1
− 1

2

�

1+ β2
2

�

Eϕ2
+ α

2 β2β̃1 Eϕ̃1
− α2 β2β̃2 Eϕ̃2

+ 1
2

�

β1 + β1β
2
2 + β2β̃1β̃2

�

Ey7 ,

∂̄ jϕ̃1
= 1

2α β1β̃2 Eϕ1
− 1

2α β2β̃2 Eϕ2
+ 1

2

�

1+ β̃1β̃2

�

Eϕ̃1
− 1

2

�

1+ β̃2
2

�

Eϕ̃2
+ 1

2α

�

β̃1 + β̃1β̃
2
2 + β1β2β̃2

�

Ey7 ,

∂̄ jy7= −1
2β1 Eϕ1

+ 1
2β2 Eϕ2

− α2 β̃1 Eϕ̃1
+ α

2 β̃2 Eϕ̃2
+ 1

2

�

1− β1β2 − β̃1β̃2

�

Ey7 ,

∂̄ jϕ1
= 1

2 (1− β1β2) Eϕ1
+ 1

2

�

1+ β2
2

�

Eϕ2
− α2 β2β̃1 Eϕ̃1

+ α
2 β2β̃2 Eϕ̃2

− 1
2

�

β1 + β1β
2
2 + β2β̃1β̃2

�

Ey7

∂̄ jϕ̃1
= − 1

2α β1β̃2 Eϕ1
+ 1

2α β2β̃2 Eϕ2
+ 1

2

�

1− β̃1β̃2

�

Eϕ̃1
+ 1

2

�

1+ β̃2
2

�

Eϕ̃2
− 1

2α

�

β̃1 + β̃1β̃
2
2 + β1β2β̃2

�

Ey7 ,

∂̄ jy7= 1
2β1 Eϕ1

− 1
2β2 Eϕ2

+ α
2 β̃1 Eϕ̃1

− α2 β̃2 Eϕ̃2
+ 1

2

�

1+ β1β2 + β̃1β̃2

�

Ey7 , (C.18)

for the S3 × S1 topology, and

∂̄ jϕ1
= 1

2

�

1+ β1β2

�

Eϕ1
− 1

2

�

1+ β2
2

�

Eϕ2
+ 1

2 β2β̃2 Ey6 + 1
2

�

β1 + β1β
2
2 + β2β̃1β̃2

�

Ey7 ,

∂̄ jy6 = 1
2 β1β̃1 Eϕ1

− 1
2 β2β̃1 Eϕ2

+ 1
2

�

1+ β̃1β̃2

�

Ey6 + 1
2

�

β̃2 + β̃2β̃
2
1 + β1β2β̃1

�

Ey7 ,

∂̄ jy7 = −1
2β1 Eϕ1

+ 1
2β2 Eϕ2

− 1
2 β̃2 Ey6 + 1

2

�

1− β1β2 − β̃1β̃2

�

Ey7 ,

∂ j̄ϕ1
= 1

2

�

1− β1β2

�

Eϕ1
+ 1

2

�

1+ β2
2

�

Eϕ2
− 1

2 β2β̃2 Ey6 − 1
2

�

β1 + β1β
2
2 + β2β̃1β̃2

�

Ey7

∂ j̄y6 = −1
2 β1β̃1 Eϕ1

+ 1
2 β2β̃1 Eϕ2

+ 1
2

�

1− β̃1β̃2

�

Ey6 − 1
2

�

β̃2 + β̃2β̃
2
1 + β1β2β̃1

�

Ey7 ,

∂ j̄y7 = 1
2β1 Eϕ1

− 1
2β2 Eϕ2

+ 1
2 β̃2 Ey6 + 1

2

�

1+ β1β2 + β̃1β̃2

�

Ey7 , (C.19)

in the T4 background case. Again, in both cases ∂̄ ∂ y7 = 0 on shell.

C.2.2 Between S3 and S3

The family (203) can be embedded in 10d as

eΦ̂ =
p
∆ ,

dŝ2 = ds2(AdS3) + (dy7)2 + dθ2 +α−2deθ2

+∆

�

cos2(θ ) cos2(eθ )
�

dϕ1 +
Ξ2

α
d eϕ1

�2

+ sin2(θ ) cos2(eθ )
�

dϕ2 −
Ξ4

α
d eϕ1

�2

+ cos2(θ ) sin2(eθ )
�

Ξ4 dϕ1 +
1
α

d eϕ2

�2

+ sin2(θ ) sin2(eθ )
�

Ξ2 dϕ2 −
1
α

d eϕ2

�2

+ cos2(θ ) sin2(eθ )dϕ2
1 + sin2(θ ) sin2(eθ )dϕ2

2 +
1
α2

cos2(eθ )d eϕ2
1

�

,
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Ĥ(3) = 2ℓ2
AdS vol(AdS3)

+∆2 sin(2θ )dθ ∧
�

�

1+Ξ4
2 sin2(eθ )
�

dϕ1 +Ξ2 cos2(eθ )
d eϕ1

α
+Ξ4 sin2(eθ )

d eϕ2

α

�

∧
�

�

1+Ξ2
2 sin2(eθ )
�

dϕ2 −Ξ4 cos2(eθ )
d eϕ1

α
−Ξ2 sin2(eθ )

d eϕ2

α

�

+∆2 sin (2eθ )deθ ∧
�

�

1+Ξ2
2 cos2(θ ) +Ξ2

4 sin2(θ )
� d eϕ1

α
+Ξ2 cos2(θ )dϕ1 −Ξ4 sin2(θ )dϕ1

�

∧
�

d eϕ2

α
+Ξ4 cos2(θ )dϕ1 −Ξ2 sin2(eθ )dϕ2

�

,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 , (C.20)

with
∆=

1

1+
�

Ξ2
2 cos2(θ ) +Ξ2

4 sin2(θ )
�

sin2(eθ )
. (C.21)

The currents taking part in (229) read

jϕ1
−αΞ4 jϕ̃2

= ∆
�

�

1−Ξ2Ξ4 sin2(θ̃ )
�

jL3 +α
−1
�

Ξ2 cos2(θ ) +Ξ4 sin2(θ )
�

j̃L3
�

,

α jϕ̃1
+Ξ4 jϕ2

= ∆
�

�

Ξ2 cos2(θ̃ )−Ξ4(1+Ξ
2
2) sin

2(θ̃ )
�

jL3 +α
−1
�

1+Ξ2(Ξ2 cos2(θ ) +Ξ4 sin2(θ ))
�

j̃L3
�

,

j̄ϕ1
−αΞ4 j̄ϕ̃2

= ∆
�

�

Ξ2Ξ4 sin2(θ̃ ) + 1
�

jR3 +α
−1
�

Ξ2 cos2(θ )−Ξ4 sin2(θ )
�

j̃R3
�

,

α j̄ϕ̃1
+Ξ4 j̄ϕ2

= ∆
�

�

Ξ2 cos2(θ̃ ) +Ξ4(1+Ξ
2
2) sin

2(θ̃ )
�

jR3 +α
−1
�

1+Ξ2(Ξ2 cos2(θ )−Ξ4 sin2(θ ))
�

j̃R3
�

, (C.22)

with ∆ in (C.21) and jL3 , jR3 , j̃L3 and j̃R3 as in (C.16)-(C.17). In this case, the currents jϕ1
, jϕ2

,
jϕ̃1

and jϕ̃2
in (220) are not separately holomorphic, but for the combinations above,

∂̄
�

jϕ1
−αΞ4 jϕ̃2

�

= 1
2 Eϕ1
− 1

2 Eϕ2
− α2
�

Ξ4 +Ξ2

�

Eϕ̃2
,

∂̄
�

α jϕ̃1
+Ξ4 jϕ2

�

= 1
2

�

Ξ4 −Ξ2

�

Eϕ2
+ α

2 Eϕ̃1
− α2
�

1+Ξ2
2

�

Eϕ̃2
,

∂
�

j̄ϕ1
−αΞ4 j̄ϕ̃2

�

= 1
2 Eϕ1

+ 1
2 Eϕ2

+ α
2

�

Ξ2 −Ξ4

�

Eϕ̃2
,

∂
�

α j̄ϕ̃1
+Ξ4 j̄ϕ2

�

= 1
2

�

Ξ4 +Ξ2

�

Eϕ2
+ α

2 Eϕ̃1
+ α

2

�

1+Ξ2
2

�

Eϕ̃2
. (C.23)

D Uplift of 6d N = (1, 1) supergravity

In this appendix we give a self-contained account of the consistent truncation of the NSNS
sector of type II supergravity on a four-torus down N = (1, 1) supergravity in six dimensions.
The bosonic fields of the latter comprise the metric, the dilaton, four one-forms and a two-form,

{gmn, φ, Am
a, Bmn} , (D.1)

with indices m, n ∈ J0,5K and a ∈ J4,7K. The field strengths associated to the vectors and
two-form are

Fmn
a = 2∂[mAn]

a , and Hmnp = 3∂[mBnp] −
3
2
δab A[m

aFnp]
b . (D.2)

The action is given by

S =

∫

d6 x
p

−g
�

R− ∂mφ ∂
mφ −

1
4

e−φ δab Fmn
aFmn b −

1
12

e−2φ HmnpHmnp
�

. (D.3)
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This six dimensional theory can be obtained from the NSNS sector of all superstring theories.
The bosonic field content of this sector is given by a metric, a dilaton and a two-form,

{ ĝs µ̂ν̂, Φ̂, B̂µ̂ν̂} , (D.4)

with indices µ̂, ν̂ ∈ J0, 9K. The field strength associated to the two-form is

Ĥµ̂ν̂ρ̂ = 3∂[µ̂B̂ν̂ρ̂] . (D.5)

The action in string frame is given by

S =

∫

d10 x
Æ

− ĝs e−2Φ̂
�

R̂s + 4∂µ̂Φ̂∂
µ̂Φ̂−

1
12

Ĥµ̂ν̂ρ̂Ĥ µ̂ν̂ρ̂
�

. (D.6)

To compactify on the four-dimensional torus T4, we use the index split X µ̂ = {xm, ya}, with
index ranges as before, and drop the dependence of all fields on the internal coordinates ya.
We consider the following Kaluza-Klein Ansätze:

dŝ2
s = g̃mn dxmdxn + Gab

�

dya + A(1) am dxm
��

dy b + A(1) b
n dxn
�

, (D.7)

B̂(2) =
1
2 Bmn dxm ∧ dxn + A(2)m b dxm ∧

�

dy b + A(1) b
n dxn
�

+ 1
2 Bab

�

dya + A(1) am dxm
�

∧
�

dy b + A(1) b
n dxn
�

,

in terms of a six-dimensional metric g̃mn, two-form Bmn, vector fields A(1) am and A(2)m a, and scalar
fields Gab = Gba and Bab = −Bba. From a six-dimensional perspective, upon reducing on T4,
the ten-dimensional gravity multiplet (D.4) gives rise to a six-dimensional gravity multiplet
coupled to four vector multiplets

GRAV10→ GRAV6 ⊕ 4× VEC6 . (D.8)

The reduced action can be cast in the SO(4,4)-covariant form:

S =

∫

d6 x
p

− g̃ e−2Φ
�

R̃+4∂mΦ∂
mΦ+

1
8
∂mHAB∂ mHAB− 1

4
HABFmn

AFmnB−
1
12

HmnpHmnp
�

,

(D.9)
with Φ = Φ̂− ln(det(Gab))/2, the vector fields joined into a single SO(4, 4) vector Am

A and the
scalar fields parameterising the coset SO(4,4)/(SO(4)× SO(4)) through the SO(4,4) matrix
HAB. The three-form is given by

Hmnp = 3∂[mBnp] −
3
2
ηABA[mAFnp]

B . (D.10)

In a basis where the SO(4, 4) invariant matrix ηMN takes the form

ηAB =

�

0 δa
b

δb
a 0

�

, (D.11)

the SO(4, 4) fields are parameterised as follows in terms of the Ansätze (D.7)

Am
A =

�

A(1) am
A(2)m a

�

, (D.12)

HAB =
�

Gab − BacG
cd Bd b BacG

cb

−GacBcb Gab

�

. (D.13)

If we further move to the Einstein frame by redefining g̃mn→ gEmn = e−Φ g̃mn, then

S =
∫

d6 x
p

−gE

�

RE − ∂mΦ∂
mΦ+

1
8
∂mHAB∂ mHAB − 1

4
e−ΦHABFmn

AFmnB −
1

12
e−2ΦHmnpHmnp
�

. (D.14)
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To reduce (D.14) down to the minimal N = (1,1) theory (D.3), we need to truncate the
four vector multiplets in (D.8). Therefore, we consider the truncation to SO(4) singlets in
SO(4,4). There are two possible SO(4) factors in SO(4,4), denoted SO(4)±:15

SO(4)+ × SO(4)− ⊂ SO(4,4) , (D.15)

which respectively rotate ±1 in the basis in which the invariant SO(4,4) metric is diagonal.
Both truncations (either to singlets of SO(4)+ or the ones of SO(4)−) leave 4 vectors in Am

A

and no scalar in HAB (HAB = δAB), thus reproducing the field content (D.1). The truncation
to SO(4)− singlets then matches the field-strengths (D.2) and the action (D.3) upon identifying

gE mn = gmn , Φ= φ . (D.16)

In the basis where ηAB takes the off-diagonal form (D.11), Am
A and HAB are given by

Am
A =

1
p

2

�

Am
a

Am
aδab

�

, (D.17)

HAB = δAB , (D.18)

and the field strength (D.10) reduces to (D.2). Therefore, the embedding of the minimal
N = (1, 1) theory in 6d into ten dimensions reads

Φ̂= φ ,

dŝ2
s = eφ gmn dxmdxn +δab

�

dya + 1p
2

Am
a dxm
��

dy b + 1p
2

An
b dxn
�

,

B̂(2) =
1
2 Bmn dxm ∧ dxn + 1p

2
δab Am

a dxm ∧ dy b . (D.19)

The global SO(4) symmetry of D = 6 N = (1,1) supergravity can then be understood as
coordinate-independent rotations preserving δab, and thus becomes a gauge symmetry in the
full ten dimensional description.
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