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Abstract

We construct a family of one-dimensional (1D) quantum lattice models based on G-
graded unitary fusion category CG. This family realize an interpolation between the
anyon-chain models and edge models of 2D symmetry-protected topological states, and
can be thought of as edge models of 2D symmetry-enriched topological states. The mod-
els display a set of unconventional global symmetries that are characterized by the input
category CG. While spontaneous symmetry breaking is also possible, our numerical ev-
idence shows that the category symmetry constrains the models to the extent that the
low-energy physics has a large likelihood to be gapless.
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1 Introduction

It is hard to overstate the importance of symmetry in physics. Over the past decade, the role
of symmetry has been extensively studied in topological states of matter, such as symmetry-
protected topological (SPT) phases [1–3] and symmetry-enriched topological (SET) phases
[4]. A lot of novel quantum states and phenomena are discovered by studying the interplay
between symmetry and topology in quantum many-body systems.

The study of topological phases of matter in turn has advanced our understanding of sym-
metry. One of such advances is on ’t Hooft anomaly of symmetry [5, 6]. ’t Hooft anomaly
is invariant under renormalization group flows, so it becomes a powerful tool to constrain
the low-energy physics of a system. An anomalous system cannot admit a symmetric gapped
non-degenerate ground state, but has to break symmetry spontaneously, or be gapless, or be
topologically ordered (in two and higher dimensions) [7]. It is now understood that an anoma-
lous system can be thought of as the boundary of an SPT bulk. In fact, for a given symmetry,
’t Hooft anomalies are in one-to-one correspondence to SPT phases in one higher dimension.
Because of the tremendous progress in the study of SPT phases in recent years, many new
types of ’t Hooft anomalies are discovered. One of the important instances is the famous Lieb-
Shultz-Mattis theorem and its generalizations [8–10], which are actually consequences of ’t
Hooft anomalies involving lattice translation [11].

Recently people are interested in generalizing the concept of symmetry itself. Ordinary
symmetries in quantum many-body systems are characterized by operators that act on the
whole spatial manifold and form a group mathematically. One kind of generalized symmetries
are p-form symmetries, which act on submanifolds of spatial co-dimension p [12, 13]. For
example, closed string operators associated with moving Abelian anyons in the 2D toric-code
model are 1-form symmetries [14]. Another kind of generalized symmetries are non-invertible
symmetries, whose corresponding operators form an algebra that does not admit a definition of
inverse (i.e., beyond group). Non-invertible symmetries of a 1D system are naturally described
by a fusion category [15–19]. In high dimensions, invertible and/or non-invertible symmetries
of various co-dimensions collectively are characterized by higher fusion category, which itself
is a subject still under development [20–26]. In this work, we will refer to all these generalized
symmetries as category symmetries.
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In fact, ’t Hooft anomalies of ordinary finite symmetries can be well described within the
language of category. For example, consider a 1D quantum system with a finite unitary sym-
metry group G. The ’t Hooft anomalies are described by a 3-cocycle ν3 : G×G×G→ U(1) [2].
The doublet (G,ν3) forms a special fusion category, in which all simple objects are invertible.
With this connection in mind, it is then not hard to understand that general category sym-
metries are also invariant under renormalization group flow and provide strong constraints
on the low-energy physics of a theory [27]. Similar to conventional group-like symmetries,
it is also possible to define anomaly-free and anomalous category symmetries [19,27,28]. In
most of our discussions and statements, we implicitly assume that the category symmetries
are anomalous, which are our main interests.

In this work, we pursue the idea of constraining low-energy physics with category symme-
try in the particular context of building 1D quantum lattice models. A previous example of
such lattice models is the Fibonacci anyon-chain model [29–31]. It describes a 1D array of in-
teracting Fibonacci anyons, and has a generalized symmetry described by the Fibonacci fusion
category. It turns out that the model is pinned at the tri-critical Ising conformal field theory
(CFT) at low energy by the Fibonacci category symmetry. Classical counterparts of anyon-
chain models are studied in Refs. [32, 33] and a recent on duality of category symmetry and
extension to module category is given in Ref. [34] using the framework of the tensor-network
states. Another family of such 1D lattice models are the effective edge theory of 2D SPT lattice
models, e.g., those in Refs. [35–38]. These models respect a non-onsite symmetry group G
with a nontrivial 3-cocycle ν3, or equivalently, a category symmetry C = (G,ν3). It is found
that the low-energy physics of these models in a very large parameter space are gapless CFTs
(spontaneous symmetry breaking is another possibility).

We construct a family of 1D quantum lattice models based on a general G-graded uni-
tary fusion category (UFC) CG . A fusion category equipped with a G-grading structure has a
decomposition CG =

⊕

g∈G Cg, with G being a finite group (see Sec. 2.1). In our model, CG
serves both as the input data and as the characterization of symmetries. We start by building a
1D lattice Hilbert space out of CG , which in general does not have a tensor-product structure.
The language of fusion category allows us to naturally associate every object in CG with an
operator, which we will use as symmetry operator. Then, we design a minimal Hamiltonian
that commutes with these symmetry operators. It turns out that our model unifies the anyon
chain model [29] and edge model of 2D bosonic SPTs [37]. When G is trivial, it reduces to the
anyon chains; when C0 is trivial (“0” denotes the identity of G), i.e., CG = (G,ν3), it reduces to
the SPT edge model (our model is slightly more general than Ref. [37] by having more param-
eters). Therefore, our model provides an interpolation between the anyon-chain model and
the SPT edge model. For general CG , we find that our model can be thought of as a boundary
theory of 2D SET models (under an appropriate boundary condition) [39,40].

We have numerically studied the low-energy physics of a few examples of our model. As
mentioned above, we are mainly interested in anomalous category symmetries. A sufficient
condition for a category to be anomalous is that it contains objects with non-integer quan-
tum dimensions [27], and most of our examples satisfy this condition. In the example of
CG = (Z2,ν3) with ν3 being the nontrivial 3-cocycle, the phase diagram shows an extended
quantum critical region in the parameter space which are characterized by Luttinger liquids
(Fig. 4). When CG is the Ising fusion category (Sec. 3.3), we find that the low-energy physics is
characterized by the critical Ising CFT at certain choices of parameters (this example is iden-
tical to that in Ref. [38]). For the Z3 Tambara-Yamagami category (Sec. 3.4), we find the
low-energy physics is described by the critical 3-state Potts CFT. While more numerical effort
is needed for investigating the whole phase diagram of the latter examples, our current results
have already demonstrated that anomalous category symmetry CG constrains the model to the
extent that the low-energy physics has a large likelihood to sit at quantum criticality. We note
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that Ref. [41] has constructed a class of exactly solvable models with fusion category symme-
try. The fusion category symmetry of these models is non-anomalous, so the models admit a
symmetric gapped non-degenerate ground state.

The rest of the paper is outlined as follows. In Sec. 2, we build up the model. After
introducing some basic knowledge of G-graded UFC in Sec. 2.1, we construct the Hilbert space
in Sec. 2.2, write out explicit expressions of the symmetry operators in Sec. 2.3, and construct
a minimal symmetric Hamiltonian in Sec. 2.4. We then present a few examples of our model
in Sec. 3, including the two limiting cases (G being trivial and C0 being trivial), Ising fusion
category, Tambara-Yamagami category, etc. We also present some numerical results in Sec. 3.5.
We discuss the issue of the gauge choice of F symbol and its consequence to the model in
Sec. 4.1, and the relation of our model to the boundary of SET models in Sec. 4.2. In Sec. 5,
we make a summary and discuss a few future directions. Appendices include some technical
details.

2 Model

In this section, we describe the model. We begin with some basics of G-graded unitary fusion
category, which describes the input data of the model. The Hilbert space is constructed out of
fusion spaces of a G-graded UFC, which, in general, does not admit a tensor product structure.
Then, we write down a series of generalized symmetries and construct a general minimal
Hamiltonian that respects these symmetries. The generalized symmetries are characterized by
the input category CG too.

2.1 Basics of G-graded fusion category

The input data of our model is a G-graded unitary fusion category CG [42, 43], where G is
a finite group. A category CG contains a finite list of simple objects,1 denoted as a, b, c, etc.
Composite objects are written as a formal sum of simple objects

∑

a naa, with na a non-negative
integer. Simple objects follow a set of fusion rules a× b =

∑

c N ab
c c, where the integer N ab

c ≥ 0
is called fusion multiplicity. In general, fusion rules are not commutative, i.e. a × b ̸= b × a.
There exists a special object 1, called the identity or vacuum, satisfying 1×a = a×1= a for any
a. Every simple object comes with a quantum dimension da, which satisfies dadb =

∑

c N c
abdc .

D =
q

∑

a d2
a is called the total quantum dimension. Every fusion channel c in a × b with

N c
ab ̸= 0 is associated with a vector space Vab

c of dimension N c
ab, called the fusion space. The

basis state |ab; c,µ〉 ∈ Vab
c can be graphically represented as

|ab; c,µ〉=

a b

c

µ . (1)

An important quantity of CG is the F symbol, which is an isomorphism
F abc

d :
⊕

eVab
e ⊗V

ec
d →
⊕

f V
a f
d ⊗V

bc
f . With the basis vectors, it is given by

a b c

d

µ

ν
e =
∑

f αβ

�

F abc
d

� f αβ
eµν

a b c

d

α

β
f . (2)

1If a fusion category is braided, simple objects correspond to anyons in two-dimensional topological order. In
our model, a braiding structure in CG is not required.
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(a)
ai−1 ai ai+1 ai+2

αi−1 αi αi+1

x i−2 x i−1 x i x i+1 x i+2

(b)
ai−1 ai ai+1 ai+2

x i−2 x i−1 x i x i+1 x i+2

Figure 1: (a) Lattice of our 1D model. Blue regions are viewed as domains, and
lines are viewed as domain walls. Each unit cell contains two dynamical variables αi
and x i (empty circle), and a slaved variable ai (black dot). The “domain” variable
αi is an element of a finite group G. The empty region below the horizontal line is
viewed as the domain associated with the identity of G. A given configuration {αi}
fixes the “domain wall” variables {ai}. Each ai is a pre-selected object in Cα−1

i−1αi
⊂ CG ,

where CG is a G-graded fusion category. The second dynamical variable x i ∈ Cαi
is a

fusion channel of x i−1 × ai . Every valid configuration {αi , x i} gives a quantum state
|{αi , x i}〉, which all together form a basis of the lattice model. (b) The domain wall
lines form a fusion tree of the objects {ai}.

Since we can perform basis transforms in Vbc
c , the F symbols depend choices of basis. In

addition, they also satisfy consistency conditions, known as the pentagon equations [42].
Throughout the paper, we assume that CG is multiplicity-free, i.e., N c

ab = 0 or 1, for simplicity.
Accordingly, the index µ in (1) is not needed.

The above properties are true for any unitary fusion category. The G-grading structure
means that CG has the following decomposition

CG =
⊕

g∈G
Cg , (3)

with 1 ∈ C0.2 If a ∈ Cg, we will often denote it as ag. The grading structure is respected by
fusion, ag × bh =

∑

cgh
N c

abcgh. Given a set of F symbols F ag bhck , we can modify it to obtain a

new G-graded fusion category C̃G as follows

F̃ ag bhck = F ag bhckν3(g,h,k) , (4)

where ν3(g,h,k) is a 3-cocycle of G. If we define Dg =
Ç
∑

a∈Cg
d2

a , then Dg = D0 for all g.

Then, D = D0

p

|G|.
Such G-graded fusion categories naturally appear in the study of SET phases. For more

details of unitary fusion categories, readers may consult Ref. [16, 42, 43]. For our purpose
of constructing models, we will need the set of simple objects {a}, fusion rules described by
{N c

ab}, explicit expressions of F symbols, and the G-grading structure.

2We use either 0 or 1 to denote the identity of G depending on the context.
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2.2 Hilbert space

The Hilbert space H of our model is defined on a 1D lattice of length L, shown in Fig. 1. It
has the following structure

H =
⊕

{αi}
Hfusion
{αi}

, (5)

where αi ∈ G is a “domain” variable in the ith unit cell, and Hfusion
{αi}

is the fusion space of
objects {ai} with ai ∈ CG . The set {ai} is determined by the domain configuration {αi} as
follows: each {αi} defines a series of “domain walls” labeled by gi = α−1

i−1αi (vertical lines
in Fig. 1a), and an object ai ∈ Cgi

is then picked out and put on the ith domain wall. We
pre-select a particular object ag ∈ Cg for every g, such that ai is determined by gi via ai = agi

.
Let A = {ag|∀g ∈ G} be the collection of selected objects. Then, the triplet (G,CG ,A) defines
the Hilbert space H.

Let {x i} be the possible fusion channels of {ai}. The space Hfusion
{αi}

is spanned by fusion
states of {ai}, pictorially described by Fig. 1b. To avoid ambiguity, we take x i ∈ Cαi

. This
corresponds to the choice that the empty region below the horizontal line in Fig. 1a is viewed
as the identity domain, i.e., αempty = 1. Accordingly, x i is the domain wall between αempty and
αi . Combining domain variables {αi} and fusion channels {x i}, we denote the basis vectors of
H as |{αi , x i}〉. In most part of the paper, we assume periodic boundary conditions.

A few remarks are in order. First, in general, H does not have a tensor-product structure.
In the special case that C0 = {1}, Hfusion

{αi}
is one-dimensional. This makes H a tensor-product

vector space, H =⊗i VG
i , where VG

i = span{|αi〉|αi ∈ G}. Second, we have selected a subset
A ⊂ CG when building up the Hilbert space. Physically, we view objects in Cg as different
topological defects that can live on a g domain wall. Those defects in A are selected by hand
in the current construction. Alternatively, one may allow ai to vary in Cgi

and add a term in
the Hamiltonian to select the particular defect ag ∈ A energetically (see a discussion around
Eq. (71) in Sec. 4.2). However, this will make the Hilbert space larger and less friendly for
numerical calculations. Third, if CG has nontrivial fusion multiplicities, one needs to include
another variable µi = 1, . . . , N x i

x i−1ai
at the vertex associated with fusing x i−1 and ai into x i . It

is neglected in our construction as we always assume that CG is multiplicity-free.

2.3 Category symmetry

An advantage of using the fusion category language to build up the Hilbert space is that it helps
to naturally define a set of operators which will serve as symmetry operators in our model. An
interesting feature is that these operators follow the fusion algebra of CG [Eq. (7)], which in
general is not group-multiplication-like. Such kind of symmetries are called different names
in the literature, e.g., algebraic symmetry, categorical symmetry or non-invertible symmetry.
We will simply call them category symmetry, as opposed to the usual group symmetry. Even if
in the special case that C0 = {1} and the fusion algebra associated with CG reduces to group
multiplication of G, we will see that the symmetry group G carries a ’t Hooft anomaly in general
due to nontrivial F symbols. It implies that our model is not featureless in general, but has to
either break symmetries or be gapless.

For each simple object yh ∈ CG , we can write down a symmetry operator U(yh). Under
the action of U(yh), the domain variable αi is mapped hαi , simultaneously for every i. This
leaves the domain wall gi = α−1

i−1αi unchanged, so does the defect ai on it. The action on the
fusion channels is associated with the matrix element

〈{hαi , x ′i}|U(yh)|{αi , x i}〉=
L
∏

i=1

h

(F yh,x i ,ai+1

x ′i+1
)†
ix ′i

x i+1

, (6)
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ai−1 ai ai+1 ai+2

αi−2 αi−1 αi αi+1 αi+2

x i−2 x i−1 x i x i+1 x i+2
yh

=
∑

{x ′i}

L
∏

i=1

�

F yh,x i ,ai+1

x ′i+1

�† x ′i

x i+1

ai−1 ai ai+1 ai+2

hαi−2 hαi−1 hαi hαi+1 hαi+2

x ′i−2 x ′i−1 x ′i x ′i+1 x ′i+2

Figure 2: Graphical representation of U(yh). The equation is obtained by fusing a
uniform h domain onto {αi}, and a yh line into {x i}.

where x i ∈ Cαi
and x ′i ∈ Chαi

. The matrix element 〈{α′i , x ′i}|U(yh)|{αi , x i}〉 = 0, if α′i ̸= hαi .
The operator U(yh) has a graphical representation, shown in Fig. 2: it is represented by fusing
a uniform h domain and its yh domain wall with respect to the vacuum into the state |{αi , x i}〉.
We show in Appendix A that the fusion process indeed gives Eq. (6).

The symmetry operators satisfy the algebraic relation

U(xg)U(yh) =
∑

zk

N zk
xg yh

U(zk) . (7)

This relation follows directly from that fusion processes are associative and the fusion rule
is given by xg × yh =

∑

zk
N zk

xg yh
zk. One can also use Eq. (6) to explicitly check this algebra.

As studied in many previous works, this kind of algebraic symmetries can help (although not
guarantee) a lattice model to sit at quantum criticality. We will demonstrate this when we
discuss examples in Sec. 3.

2.4 Hamiltonian

With the set of symmetries U(yh) in hand, we would like to write down a “minimal” Hamilto-
nian that respects these symmetries. We will consider a Hamiltonian of the form

H = −
∑

i

Hi , (8)

and require Hi to be an operator that acts only on the (i−1)th, ith and (i+1)th unit cells. To
define Hi , it is convenient to work in an alternative basis. The alternative basis is related to
the original basis through an F move as follows:

αi−1 αi αi+1

x i−1 x i x i+1

ai ai+1

=
∑

zi

�

F x i−1ai ai+1
x i+1

�zi

x i

αi−1

αi
αi+1

x i−1

zi

x i+1

ai ai+1

, (9)
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where zi runs over all outcomes in the fusion product ai × ai+1. The term Hi in the new basis
is given by

α′i+1

α′i
α′i−1

x ′i+1

z′i
x ′i−1

a′i+1a′i

Hi αi−1

αi
αi+1

x i−1

zi

x i+1

ai ai+1

= wzi

α−1
i α
′
i
δ
α′i−1
αi−1
δ
α′i+1
αi+1
δ

x ′i−1
x i−1
δ

x ′i+1
x i+1
δ

z′i
zi

, (10)

where δa′
a = 1 if a = a′, and δa′

a = 0 otherwise. That is, Hi only flips the domain variable αi to
α′i , with the transition amplitude denoted as wzi

α−1
i α
′
i
. We assume the transition amplitude only

depends on the domain shift hi = α−1
i α
′
i and the fusion channel zi . One may consider a more

complicated transition amplitude. However, we find that the current choice is already enough
to produce interesting results. Hermiticity requires that wz

h−1 = (wz
h)
∗.

Using the transformation (9), the nonzero matrix elements of Hi in the original basis are
given by

αi+1α′iαi−1

x i+1x ′ix i−1

a′i+1a′i

Hi αi−1 αi αi+1

x i−1 x i x i+1

ai ai+1

=
∑

zi

wzi

α−1
i α
′
i

�

�

F
x i−1a′i a

′
i+1

x i+1

�†�x
′
i

zi

�

F x i−1ai ai+1
x i+1

�zi

x i
,

(11)
where the sum runs over those zi ’s that are simultaneously in ai × ai+1 and a′i × a′i+1. Note
that F symbols can be zero for certain choices of zi due to incompatible fusion. Our model is
a natural generalization of the anyon fusion chain model first proposed in Ref. [29].

The Hamiltonian H is symmetric under the category symmetry U(yh) in (6). An easy
way to see this is through Eq. (10). In that expression, Hi is independent of x i−1 and x i and
diagonal in the variable zi . Meanwhile, U(yh) corresponds to flipping all αi and fusing a yg
string, which does not change zi and only flips x i−1 and x i+1. It is clear that the action of Hi
and U(yh) commute. For a more explicit derivation, readers are referred to Appendix A.

We remark that F symbols depend on gauge choices. Since Eq. (11) explicitly depends
on F , our model has an explicit dependence on the gauge choice. Below we mainly focus on
examples with gauge-inequivalent F symbols. We discuss some implications of gauge choices
of F in Sec. 4.1.

3 Examples

The model defined in Eqs. (8) and (11) provides an “interpolation” of the anyon-chain model
[29] and the SPT edge model [37]. The latter two are special cases of our model. More
generally, our model can be thought of as an edge model of 2D SET phases (see Sec. 4.2).
Below we discuss how it is related to anyon chains and SPT edge models, and explore a few
interesting examples with numerical calculations.

3.1 Anyon chain

When G is trivial, CG = C0. Then, our model reduces to the well-known anyon chain model.
In this case, there is no domain variable, i.e., αi = 0. On domain walls, every ai is set to be a
simple object a ∈ C0. The Hamiltonian (11) then reads

〈x i−1 x ′i x i|Hi|x i−1 x i x i+1〉=
∑

z

wz
h
�

F x i−1aa
x i+1

�†ix
′
i

z

�

F x i−1aa
x i+1

�z

x i
, (12)
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where the site dependence of zi is dropped since all ai ’s are identical. The coefficient wz ≡ wz
0

is the energy of the fusion channel z of two neighboring a’s. This is exactly the anyon-chain
Hamiltonian that has been widely studied, e.g., in Refs. [29–31]. The simplest example is the
golden chain model, with C0 being the fusion category of Fibonacci anyons. It was found the
the category symmetries {U(y)} enforce the anyon-chain model to sit at quantum criticality
[29,44] or to break symmetry spontaneously.

3.2 Edge model of bosonic SPTs

Another limit of our model is C0 = {1}. In this case, CG is equivalent to the doublet (G,ν3),
where ν3 = ν3(g,h,k) ∈ H3(G, U(1)) is a 3-cocycle. There is only one simple object in each
Cg, and the fusion algebra of CG reduces to group multiplication of G. We use the group
element g to denote the simple object in Cg. It has dg = 1. The F symbol is determined by

ν3, (Fg,h,k
ghk )

hk
gh = ν3(g,h,k). This kind of G-graded fusion category appears in the study of

symmetry defects in 2D bosonic SPT phases with symmetry group G [2]. Below we will see
that our model can be viewed as an effective edge model for 2D bosonic SPT phases.

Since all simple objects in CG have quantum dimension 1, the Hilbert space has a tensor-
product structure, H =⊗i VG

i , where VG
i = span{|αi〉|αi ∈ G}. Given a domain configuration,

{ai} and {x i} are uniquely determined, with ai = α−1
i−1αi and x i = αi . Then, our model reduces

to

〈αi−1α
′
iαi+1|Hi|αi−1αiαi+1〉= wzi

hi

ν3(αi−1,α−1
i−1αi ,α

−1
i αi+1)

ν3(αi−1,α−1
i−1α

′
i , (α
′
i)
−1αi+1)

, (13)

where zi = α−1
i−1αi+1 and hi = α−1

i α
′
i . If we take wz

h = 1 for every h and z, the model reduces
to the SPT domain-wall model of Ref. [37], which was derived by considering a domain wall of
two 2D SPT models and projecting out the bulk degrees of freedom.3 It was shown numerically
there that for various choices of G and ν3, the low-energy spectrum is gapless and described
by a conformal field theory with an integer central charge (i.e., a Luttinger liquid). For more
general wz

h, we will also give numerical evidence in Sec. 3.5 that the model is gapless and
quantum critical in an extended region of the parameter space, by considering the example
G = Z2 (see Fig. 4).

The model carries a ’t Hooft anomaly of the symmetry group G. For CG = (G,ν3), the
symmetry operator U(yg)≡ U(g) in (6) becomes

〈gα1, ...,gαL|U(g)|α1, ...,αL〉=
L
∏

i=1

ν∗3(g,αi ,α
−1
i αi+1) . (14)

The symmetry algebra (7) reduces to the multiplication of group elements in G. While the
Hilbert space has a tensor-product structure, this particular realization {U(g)} of symmetry
group G is not onsite, making it to carry a ’t Hooft anomaly. The anomaly can be extracted
through the procedure proposed in Ref. [45], which we find is precisely the 3-cocycle ν3.
According to bulk-boundary correspondence, this model cannot be realized on a 1D lattice if we
insist G to be realized in an onsite way (when ν3 is a nontrivial cocycle). Onsite realizations can
only be achieved at the edge of a 2D SPT bulk characterized by the 3-cocycle ν3 ∈H3(G, U(1))
(Sec. 4.2 gives an explicit discussion of the edge viewpoint). Therefore, our 1D model mimics
the edge of a 2D bosonic SPT bulk by sacrificing the onsiteness of the symmetry operators.

3To make an exact match, the 3-cocycle νab in Eq. (40) of Ref. [37] is related to our 3-cocycle by
νab(α1,α2,α3) = ν∗3(α

−1
3 ,α−1

2 ,α−1
1 ). One also needs to convert the homogeneous cocycle in Ref. [37] to inho-

mogeneous cocycle and set the parameter g∗ = 1 there.
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As is known, such a 1D system cannot be featureless (i.e., gapped and symmetric with a non-
degenerate ground state). While we cannot rule out spontaneous symmetry breaking, the ’t
Hooft anomaly does increase the likelihood of being gapless.

3.2.1 G = Z2

After the above general remarks, we now take a close look at the Z2 case. Taking Z2 = {0, 1}
with an additive group multiplication, we have four real parameters in the Hamiltonian (13):
w0

0, w1
0, w0

1 and w1
1. The cohomology group H3(Z2, U(1)) = Z2, so there are two inequivalent

classes of ν3. An explicit expression of ν3 is given by

ν3(a, b, c) = (−1)kabc , (15)

where a, b, c = 0, 1 are group elements of Z2. When k = 0, ν3 is trivial. When k = 1, ν3 is
nontrivial.

Let us take αi = ±1 to represent Z2 and rewrite the Hamiltonian (13) with Pauli matrices.
Let sx

i , s y
i and sz

i be the Pauli matrices. It is straightforward to show that, for the trivial ν3,

H0
i =

w0
0 −w1

0

2
sz
i−1sz

i+1 +
1
2

�

w0
1(1+ sz

i−1sz
i+1) +w1

1(1− sz
i−1sz

i+1)
�

sx
i , (16)

and for the nontrivial ν3,

H1
i =

w0
0 −w1

0

2
sz
i−1sz

i+1 +
1
2

�

w0
1(s

z
i−1 + sz

i+1) +w1
1(1− sz

i−1sz
i+1)
�

sx
i , (17)

where a constant term (w0
0 + w1

0)/2 has been omitted in both H0
i and H1

i . The symmetry
operator for the nontrivial Z2 group element can be written as

U0 =
∏

i

sx
i , U1 = eiπ

∑

i(1−sz
i sz

i+1)/4
∏

i

sx
i , (18)

for the two models, respectively. Note that the term
∑

i(1− sz
i sz

i+1) is always a multiple of 4
under periodic boundary conditions. Also note that the two models are identical when w0

1 = 0.
When w0

0 = w1
0, the model H1 = −

∑

i H1
i is exactly the Ising domain wall model in Ref. [37]

derived from the interface between 2D SPT bulks.
Let us introduce the following re-parametrization,

J = w1
0 −w0

0 , ∆=
q

(w0
1)2 + (w

1
1)2 , w0

1 =∆ cosθ , w1
1 =∆ sinθ . (19)

Then, the two Hamiltonians Ha = −
∑

i Ha
i (a = 0, 1) can be written as

H0 =
J
2

∑

i

sz
i−1sz

i+1 −
∆

2

∑

i

�

cosθ (1+ sz
i−1sz

i+1) + sinθ (1− sz
i−1sz

i+1)
�

sx
i , (20)

and
H1 =

J
2

∑

i

sz
i−1sz

i+1 −
∆

2

∑

i

�

cosθ (sz
i−1 + sz

i+1) + sinθ (1− sz
i−1sz

i+1)
�

sx
i . (21)

We define the dimensionless parameter r = J/∆. The phase diagrams of H0 and H1 will be
plotted in the (r,θ ) plane.

The model H0 can be mapped to the usual XYZ model by the Kramers-Wannier duality:
sz
i−1sz

i = µ
x
i and sx

i = µ
z
iµ

z
i+1. With the mapping, we have

H0 = −
∑

i

(Jxµ
x
i µ

x
i+1 + Jyµ

y
i µ

y
i+1 + Jzµ

z
iµ

z
i+1) , (22)
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where

Jx = −
J
2

, Jy =
∆(sinθ − cosθ )

2
, Jz =

∆(sinθ + cosθ )
2

. (23)

The phase diagram of XYZ model is known [46]. It is gapless if and only if the condition
|Jx | = |Jy | ≥ |Jz| or its cyclic permutation is satisfied; otherwise, it is gapped with magnetic
ordering. The gapless condition leads to the phase diagram in Fig. 3. Let us take the θ = 0
critical line for example. It reduces to the XXZ model. When |r| > 1, the model is in a
magnetically ordered phase, i.e, a spontaneous symmetry breaking phase. When |r| < 1, the
model is a Luttinger liquid, with the Luttinger liquid parameter K ∈ (1

2 ,∞). At the transition
point r = −1, the model is equivalent to the SO(3)-symmetric anti-ferromagnetic Heisenberg
chain, whose low-energy physics is a Luttinger liquid with K = 1/2, or equivalently, the SU(2)1
conformal field theory. At the transition point r = 1, the Luttinger liquid parameter K →∞
and the low-energy spectrum has a quadratic dispersion in momentum. Other critical lines in
the phase diagram are similar.

To study the phase diagram of H1, we first perform a unitary transformation H1→ SH1S†

with S =
∏

j eiπsz
j s

z
j+1/8+i(π−2θ )sz

j /4. After the transformation, the new Hamiltonian reads

H1 =
J
2

∑

i

sz
i−1sz

i+1 +
∆

2

∑

i

(cos 2θ sx
i + sin 2θ s y

i + sz
i−1sx

i sz
i+1) . (24)

Accordingly, the phase diagram is symmetric under the shifting θ → θ +π. In addition, under
the transformation S′ =

∏

i sx
i , the Hamiltonian H1(θ )→ H1(−θ ). Therefore, it is enough to

study the phase diagram for θ ∈ [0,π/2].

r

θ

π
2

π

1−1

Figure 3: Phase diagram of H0. Red lines correspond to a Luttinger liquid with
the Luttinger liquid parameter K ∈ (1/2,∞). Red dots correspond to a Luttinger
liquid with K = 1/2 and blue dots correspond to a quadratic energy-momentum
dispersion (and K =∞). Empty regions are magnetically ordered. The phase di-
agram is symmetric under the reflection θ → −θ . The curves on the two sides are
|r|=
p

1+ sin2θ (0≤ θ ≤ π/2) and |r|=
p

1− sin 2θ (π/2≤ θ ≤ π) with |r| ≥ 1.
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−2 −1 0 1 2
r

0

1
4π

1
2π

θ

0.0

0.2

0.4

0.6

0.8

1.0

Luttinger
Liquid

SSB

SSB

Figure 4: Color plot of central charge c extracted from entanglement entropy of the
ground state of H1, calculated by DMRG with system size up to L = 80. The dashed
lines are conjectured phase boundaries which we cannot determine precisely due
to finite size effects. Both the θ = 0 and θ = π/2 lines are equivalent to the XXZ
model, but are mirror reflection of each other. The red dots are Luttinger liquids with
Luttinger liquid parameter K = 1/2 (equivalent to SU(2)1 CFT) and the blue dots
are gapless states with quadratic dispersion. The phase diagram is symmetric under
θ →−θ and θ → θ +π. “SSB” stands for spontaneous symmetry breaking.

We are not able to solve H1 analytically. We have performed a density matrix renormal-
ization group (DMRG) study and computed the entanglement entropy of the ground state.
The extracted central charge c in the (r,θ ) plane are shown in Fig. 4. We briefly describe the
phase diagram mapped out from the value of c (additional numerical results are presented
in Sec. 3.5). The key feature is that there exists an extended region of gapless phase in the
phase diagram. The gapless states are Luttinger liquids with a varying Luttinger liquid pa-
rameter K . In comparison, the gapless region in the phase diagram of H0 has a co-dimension
1. That means, there is one symmetric relevant direction under renormalization group flow
for the gapless region of H0, while there is none symmetric relevant direction for the gapless
region of H1. This distinction is a consequence of the anomalous Z2 symmetry of H1. All
other regions break the Z2 symmetry spontaneously, in agreement with the expectation that
no symmetric and gapped phase is supported by an anomalous Z2 symmetry. Comments on
a few special lines are in order. (1) On the θ = π/2 line (i.e. w0

1 = 0), H1 is equal to H0,
so it is equivalent to the XXZ model. It is a Luttinger liquid when |r| < 1. (2) On the r axis
(θ = 0), H1 is also equivalent to the XXZ model, but it is the mirror image of the θ = π/2 line
under r →−r. To see that, one may use the Kramers-Wannier duality to map (24) to the XYZ
model and find that one of the three parameters Jx , Jy , Jz differs by a minus sign compared
to θ = π/2. (3) For = 0 and θ ∈ [π/4,π/2], it was numerically studied in Ref. [37]. I was
found to be a Luttinger liquid, with the Luttinger liquid parameter K varying from 1 to 1/2 as
θ decreases.
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3.3 Ising fusion category

The simplest example beyond the above two limits is that G = Z2 and CG = CIsing the Ising
fusion category. The Ising fusion category contains three simple objects, 1, ψ and σ. The
nontrivial fusion rules are σ×σ = 1+ψ, ψ×ψ = 1 and ψ×σ = σ. Quantum dimensions
are d1 = dψ = 1 and dσ =

p
2. Let G = Z2 = {0, 1} with group multiplication being addition

modulo 2. The Ising category CIsing has the following Z2 grading structure

C0 = {1,ψ} , C1 = {σ} . (25)

Under certain gauge choice, the nontrivial F symbols are given by [42]

(Fψσψσ )σσ = (F
σψσ

ψ
)σσ = −1 ,

Fσσσσ =
κ
p

2

�

1 1
1 −1

�

, (26)

where κ = ±1 is the Frobenius-Shur indicator distinguishing two variants of Ising fusion cat-
egory. All other F symbols are equal to 1. The two Ising fusion categories with κ = ±1 can
be understood as differing by a nontrivial 3-cocycle in H3(Z2, U(1)) = Z2. With CIsing as the
input, we find that our model coincides with that of Ref. [38]. This model can be properly
interpreted as the edge model of 2+1D Z2 × Z

f
2 topological superconductors (fermionic SPT

phases).
Let us discuss some details of the model for CIsing. First, we pick the slaved domain-wall

variables to be ag=0 = 1 and ag=1 = σ.4 While both {αi} and {x i} are dynamical variables,
the fusion-channel variables {x i} are enough to uniquely label a state. Therefore, we take the
short-hand notation

|x i−1 x i x i+1〉 ≡ αi−1 αi αi+1

x i−1 x i x i+1

ai ai+1

. (27)

With the F symbols in (26), the Hamiltonian in (11) reads

Hi|µµµ〉= w1

0 |µµµ〉+w1

1 |µσµ〉 ,
Hi|µµσ〉= wσ0 |µµσ〉+wσ1 |µσσ〉 ,

Hi|µσν〉= wµ×ν0 |µσν〉+δµνw1

1 |µµµ〉 ,
Hi|σµµ〉= wσ0 |σµµ〉+wσ1 |σσµ〉 ,
Hi|µσσ〉= wσ0 |µσσ〉+wσ1 |µµσ〉 ,

Hi|σµσ〉=
∑

ν

1
2

�

w1

0 + (2δµν − 1)wψ0
�

|σνσ〉+
κw1

1p
2
|σσσ〉 ,

Hi|σσµ〉= wσ0 |σσµ〉+wσ1 |σµµ〉 ,

Hi|σσσ〉= w1

0 |σσσ〉+
κw1

1p
2
(|σ1σ〉+ |σψσ〉) , (28)

where µ,ν = 1 or ψ. There are five real parameters in this model, w1

0 , wψ0 , wσ0 , w1

1 and wσ1
(only three of them are important, while the other two set the zero energy and energy unit,
respectively). When w1

0 = wψ0 = wσ0 = 0, our model reduces exactly to the model of Ref. [38].

4A different choice is ag=0 =ψ and ag=1 = σ.
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Let us simplify the model by assuming w1

0 = wψ0 ≡ w0. We further perform an energy shift

H → H +w0Î and a rescaling H → H/∆, with ∆=
q

(w1

1)2 + (w
σ
1 )2. Let

r =
wσ0 −w0

∆
, w1

1 =∆ cosθ , wσ1 =∆ sinθ . (29)

Then, the Hamiltonian reads

Hi|µµµ〉= cosθ |µσµ〉 ,
Hi|µµσ〉= r|µµσ〉+ sinθ |µσσ〉 ,
Hi|µσν〉= δµν cosθ |µµµ〉 ,
Hi|σµµ〉= r|σµµ〉+ sinθ |σσµ〉 ,
Hi|µσσ〉= r|µσσ〉+ sinθ |µµσ〉 ,

Hi|σµσ〉=
κ cosθ
p

2
|σσσ〉 ,

Hi|σσµ〉= r|σσµ〉+ sinθ |σµµ〉 ,

Hi|σσσ〉=
κ cosθ
p

2
(|σ1σ〉+ |σψσ〉) . (30)

There are two continuous parameters r and θ . We will leave the complete phase diagram for
future study. At the special point r = 0 and θ = π

4 , we show numerically in Sec. 3.5 that the
ground state is the Ising CFT, in agreement with Ref. [38].

Let us discuss the category symmetry in this example. The symmetry operator (6) for
yh = σ reads

〈x ′1, ..., x ′L|U(σ)|x1, ..., xL〉=
L
∏

i=1

(Fσ,x i ,ai+1

x ′i+1
)

x ′i
x i+1

. (31)

Since we take ag=0 = 1, a valid state is always of the form

| . . .σσµkµkµkσσσσµk+1µk+1µk+1σσ . . . 〉 , (32)

i.e., with segments of σ’s separated by segments of µ’s. The length of each segment can vary.
Due to periodic boundary conditions, the number ofσ segments is always equal to the number
of µ segments. Under the action of U(σ), the state in (32) will be mapped to

| . . .µ′k−1µ
′
k−1 σσσµ

′
kµ
′
kµ
′
kµ
′
kσσσµ

′
k+1µ

′
k+1 . . . 〉 . (33)

With the F symbols in (26), the symmetry operator (31) can be simplified to

〈{µ′k}|U(σ)|{µk}〉=
�

κ
p

2

�n n
∏

k=1

(−1)(µk+µk−1)µ′k , (34)

where µk = 0,1 corresponds to 1 andψ respectively, and n is the number ofσ (or µ) segments.
Furthermore, one can explicitly check that

U(σ)2 = U(1) + U(ψ) , (35)

which is consistent with the fusion rule σ × σ = 1 + ψ. Under U(ψ), the state |{µk}〉 is
mapped to |{µ̄k}〉, with µ̄k = 1 − µk. We note that the U(σ) operator is related to U11 in
Ref. [38] by U11 = U(σ)/

p
2. The factor 1/

p
2 is important to make U11 a unitary operator if

one restricts to the U(ψ) symmetric subspace (the restriction is necessary when one gauges the
U(ψ) symmetry, which is indeed done in Ref. [38]). Note that U(σ) is not unitary, justifying
that it is a symmetry beyond the description of group.
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3.4 Tambara-Yamagami category

Tambara-Yamagami category CTY is a family of Z2-graded fusion categories [47]. It is param-
eterized by a triplet (A,χ,κ), where A is an Abelian group, χ is a symmetric non-degenerate
bicharacter χ : A× A→ U(1), and κ = ±1. The simple objects of CTY include the elements of
A and an object σ of quantum dimension

p

|A|, where |A| is the order of A. The Z2-grading
structure is given by

C0 = {a|a ∈ A} , C1 = {σ} . (36)

Fusion rules of simple objects in C0 are given by the group multiplication of A. Other fusion
rules are a×σ = σ× a = σ for any a ∈ A, and σ×σ =

∑

a∈A a. The nontrivial F symbols are
given by

�

F aσb
σ

�σ

σ
=
�

Fσaσ
b

�σ

σ
= χ(a, b) ,

�

Fσσσσ

�b
a =

κ
p

|A|
χ∗(a, b) , (37)

where κ is the Frobenius-Shur indicator of σ. If we take A = ZN = {1, e, e2, . . . , eN−1} with
eN = 1, the bicharacter χ can be explicitly written as

χ(em, en) = e
i2πqmn

N . (38)

The integer q is coprime with N such that χ is non-degenerate. For A= Z2 and q = 1, we see
that CTY becomes CIsing.

To construct the model out of CTY, we take the domain wall variables to be ag=0 = 1 and
ag=1 = σ. Using the same short-hand notation as Eq. (27), the Hamiltonian is given by

Hi|µµµ〉= w1

0 |µµµ〉+w1

1 |µσµ〉 ,
Hi|µµσ〉= wσ0 |µµσ〉+wσ1 |µσσ〉 ,

Hi|µσν〉= wµ̄×ν0 |µσν〉+δµνw1

1 |µµµ〉 ,
Hi|σµµ〉= wσ0 |σµµ〉+wσ1 |σσµ〉 ,
Hi|µσσ〉= wσ0 |µσσ〉+wσ1 |µµσ〉 ,

Hi|σµσ〉=
∑

ν,z∈A

χ(z, µ̄× ν)
|A|

wz
0|σνσ〉+

κw1

1
p

|A|
|σσσ〉 ,

Hi|σσµ〉= wσ0 |σσµ〉+wσ1 |σµµ〉 ,

Hi|σσσ〉= w1

0 |σσσ〉+
κw1

1
p

|A|

∑

µ∈A

|σµσ〉 , (39)

where µ,ν ∈ A, and µ̄ is the dual of µ satisfying µ× µ̄= 1.
The bicharacter χ appears only in the sixth line of Eq. (39). To make a simplification, we

take wx
0 = w0 for all x ∈ A. Then,

∑

z∈Aχ(z, µ̄×ν)wz
0/|A|= δµ,νw0, which simplifies the sixth

line, and the model becomes independent of χ. In addition, we will make an energy shift
H → H + w0Î and further rescale the Hamiltonian H → H/∆, with ∆ =

q

(w1

1)2 + (w
σ
1 )2.
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With the same parameterization as (29), the shifted and rescaled Hamiltonian reads

Hi|µµµ〉= cosθ |µσµ〉 ,
Hi|µµσ〉= r|µµσ〉+ sinθ |µσσ〉 ,
Hi|µσν〉= δµν cosθ |µµµ〉 ,
Hi|σµµ〉= r|σµµ〉+ sinθ |σσµ〉 ,
Hi|µσσ〉= r|µσσ〉+ sinθ |µµσ〉 ,

Hi|σµσ〉=
κ cosθ
p

|A|
|σσσ〉 ,

Hi|σσµ〉= r|σσµ〉+ sinθ |σµµ〉 ,

Hi|σσσ〉=
κ cosθ
p

|A|

∑

µ∈A

|σµσ〉 . (40)

For A= Z2, it reduces to Eq. (30) of the Ising fusion category.

3.5 Numerical results

In this section, we present some numerical results on the models introduced in Sec. 3.2.1, 3.3
and 3.4. We compute the energy spectrum by exact diagonalization (ED) and entanglement
entropy of the ground state obtained by density matrix renormalization group (DMRG) [48].

Our main interests are the gapless states described by conformal field theory (CFT). Accord-
ing to CFT, the low-lying energies of a system of finite size L in periodic boundary conditions
take the form [49]

E = E1 L +
2πv

L

�

−
c

12
+ h+ h̄
�

, (41)

where the velocity v is an overall scale factor and c is the central charge of the CFT. The scaling
dimensions h+ h̄ take the form h = h0 + n, h̄ = h̄0 + n̄, with n and n̄ non-negative integers,
and h0 and h̄0 are the holomorphic and antiholomorphic conformal weights of the primary
fields in the given CFT. We will compare the ED spectrum to Eq. (41). Instead of using (41),
we compute the central charge c from the entanglement entropy S of the many-body ground
state. Under periodic boundary conditions, it is given by [50]

S(x) =
c
3

ln
�

L
π

sin
�πx

L

�

�

+ a , (42)

where L is the system size, x is the length of the subsystem used to calculate the entanglement
entropy, and a is a non-universal constant. For computation of S(x), we use DMRG to access
larger system sizes. We use the ITensor package for DMRG calculations. [51]

Below we present the results for the Z2 SPT edge models H0 (16) and H1 (17), Ising fusion
category model (30), and Tambara-Yamagami category model (40) with A = Z3. We remark
that the Ising category model is the same as Tambara-Yamagami model with A= Z2. Also, the
Z2 edge models H0 and H1 are equivalent to the Tambara-Yamagami models with A= Z1, for
κ = 1 and κ = −1 respectively. Therefore, we put the numerical results together and make
a comparison. We will leave a complete study of the phase diagrams for future study. In this
work, we mainly focus on

wz
g = 1 , ∀z ,g , (43)

i.e., r = 0 and θ = π/4 in (24), (30), and (40). These values are chosen without any priori
knowledge, but only because of simplicity. It turns out that all models with κ = 1 are CFTs
at parameters in (43), while the cases with κ = −1 are less conclusive. We remark that the
gapless state at the parameters (43) for the κ = 1 Ising and Z3 Tambara-Yamagami models
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Figure 5: Entanglement entropy S of different models: (a) Z2 edge model
H0 with system size L = 60, 80,100, 120,140; (b) Ising category model with
L = 100, 120,140, 160; and (c) TY category model with L = 30,40, 50,60. All re-
sults are obtained with periodic boundary conditions and subsystem size x = L/2.
For both Ising category and Z3 Tambara-Yamagami category models, the parame-
ters κ = 1, r = 0 and θ = π/4. For the Z2 edge model H0, parameters are set at
ω0

0 −ω
1
0 = 2 and ω0

1 =ω
1
1 = 1.

is not an isolated point in the parameter space. Our preliminary calculations show that there
exists an extended nearby gapless region, similar to Fig. 4, which we will present elsewhere
after a more careful numerical investigation.

3.5.1 κ = 1

Let us first consider the models with κ= 1 and the parameters in (43). With the ground state
from DMRG calculations, we obtain the entanglement entropy S and fit the results according
to Eq. (42), as shown in Figs. 5. For the Ising and Tambara-Yamagami category models, we
find c ≈ 1/2 and c ≈ 4/5, respectively. This indicates that, with the parameters (43), the two
models belong to the critical Ising and critical 3-state Potts universality classes, respectively.
This is verified by computing the low-energy ED spectra, which fit well with the CFT prediction
Eq. (41) (see Fig. 6). (Another c = 4/5 CFT is the tetra-critical Ising theory, but its low-energy
spectrum does not fit into our ED spectrum.)

The model H0 in (16) can be solved exactly by mapping to XYZ model. Nevertheless, we
did some numerical calculations for verification. It is gapped for the parameters in (43), so
instead we set w0

0 −w1
0 = 2 and w0

1 = w1
1 = 1 (it is equivalent to r = −

p
2 and θ = π/4 in the

Tambara-Yamagami Hamiltonian (40) with A= Z1). With this setting, the low-energy physics
is described by double copies of the Ising CFT, see Fig. 6. It is equivalent to a free massless
complex fermion after a Z2 orbifolding [52], which is a K = 1 Luttinger liquid. This agrees
with the analytic results [46].

3.5.2 κ = −1

For κ= −1, all models display a much stronger finite-size effect than the case of κ= 1. So far,
we have only done a relatively complete search of gapless regions for the Z2 edge model H1.
The phase diagram mapped out from the central charge is shown in Fig. 4 (see discussions
in Sec. 3.2.1). In all the gapless regions, we find the central charge c = 1, i.e., a Luttinger
liquid. At the parameters r = 0 and θ = π/4, the numerical results of entanglement entropy
are shown Fig. 7(a). The ED spectrum at L = 16 is also shown in Fig. 7(b), but not much
information can be extracted due to strong finite size effect.
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Figure 6: Finite-size energy spectra of (a) Z2 edge model H0 at L = 16, (b) Ising
category model L = 14 and (c) Z3 TY category model at L = 12, corresponding
to double Ising CFT, Ising CFT and critical 3-state Potts CFT, respectively. Dots are
numerical results and bars are analytic predictions [49]. Parameters are same as in
Fig. 5 and energies are properly shifted and rescaled. All dots in (a) and (b) are
non-degenerate. Black and red dots in (b) correspond to the eigenvalue +1 and −1
of U(ψ), respectively. Every red dot in (c) is doubly degenerate, corresponding to
the eigenvalue U(e) = e±i2π/3 respectively, with e being the generator of Z3.
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Figure 7: (a) Entanglement entropy S(x) at L = 40, 60,80, 100,120 and (b) energy
spectrum for H1 at L = 16. Parameters are r = 0 and θ = π/4.

For Ising category and Z3 Tambara-Yamagami category, we find that models are gapped at
r = 0 and θ = π/4, as we observe S decreases to a constant as L increases (not shown here).
We have searched for gapless spectra at other values of parameters and found some evidence.
Nevertheless, it is not conclusive yet. We leave a careful numerical investigation for the future.

3.6 SU(2)k theory

Another family ofZ2-graded category is associated with anyons from SU(2)k theory. We denote
the category as CSU(2)k . The objects in CSU(2)k are closely related to the ordinary SU(2) spins,
which can be labeled by s = 0, 1

2 , 1, ..., k
2 , with k being a positive integer. There are k+1 objects

in total. The fusion rule between s and s′ is given by

s× s′ =
min(s+s′,k−s−s′)
∑

s′′=|s−s′|

s′′ , (44)

where the summation is incremented by 1, similar to addition of ordinary angular mo-
menta. One can see that integer spins are closed under fusion. By taking C0 = {0,1, ...}
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and C1 = {
1
2 , 3

2 , ...}, we have the following decomposition

CSU(2)k = C0 ⊕ C1 . (45)

This gives the Z2-grading structure of CSU(2)k : C0 is closed under fusion, two objects from C1
fuse into objects in C0, and fusing an object from C0 and an object from C1 gives objects in
C1. To build our model (11), we need the F symbols in CSU(2)k . The F symbols are known
explicitly [53] (see also, e.g., Ref. [30]), but we will not list them here. It is interesting to
perform a detailed numerical study of this family of models in the future.

We give a brief further discussion on the k = 3 case. It is closely related to the famous Fi-
bonacci anyon. In this case, CSU(2)3 = {0,1}⊕{12 , 3

2}. The quantum dimensions are d0 = d 3
2
= 1

and d1 = d 1
2
=
p

5+1
2 . The object s = 1 corresponds the Fibonacci anyon. Therefore, C0 = {0, 1}

is the usual Fibonacci category, and CSU(2)3 is a Z2 extension of C0. (There are two kinds of
Z2 extensions of the Fibonacci category, whose F symbols differ by the non-trivial 3-cocycle in
H2(Z2, U(1)), see Eq. (4).) It is interesting to study the low-energy physics of our model (11)
based on CSU(2)3 , and compare it to the golden chain model [29] whose low-energy physics is
captured by the tricritical Ising conformal field theory.

3.7 CG from groups

From group extensions, one can define many G-graded unitary fusion categories. Consider
the short exact sequence

1→ N → CG → G→ 1 , (46)

where N and G are two finite groups, and CG is called an extension of G by N . The group N
is a normal subgroup of CG and G is isomorphic to the quotient group CG/N . Let C0 ≡ N , and
Cg ≡ gN to be the coset in CG associated with g ∈ G. Then, CG has the following decomposition

CG =
⊕

g∈G
gN =
⊕

g∈G
Cg . (47)

Taking a 3-cocycle ν3 ∈ Z3(CG , U(1)), we can then regard the doublet (CG ,ν3) as a G-graded
fusion category. Without causing confusion, we will sometimes simply call CG the G-graded
fusion category, although it is only a group in this subsection.

Given N and G, the extended group CG is not unique. Let a, b, ... be elements of N , and
g,h, ... be elements of G. Then, group elements in CG can be labeled by ag, with a running
through elements in N and g running through elements in G.5 To specify the multiplication
law of CG , we need two pieces of data: (i) a group homomorphism ρ : G → Out(N), where
Out(N) is the outer automorphism group of N , and (ii) a torsor µ in H2

ρ(G, Z(N)), where Z(N)
is the center of N . Let g ∈ G and ρg ≡ ρ(g) ∈ Out(N). Then, ρg(a) describes the action of g
on a ∈ N . The torsor µ is a function µ : G × G → Z(N), which satisfies the twisted 2-cocycle
conditions associated with ρ. Given ρ and µ, group multiplication in CG can be defined by

ag × bh = [a ·ρg(b) ·µ(g,h)]gh , (48)

where “·” denotes group multiplication in N . It is clear that the group multiplication respects
the G-grading structure.

A cocycle ν3 in Z3(CG , U(1)) can also be parameterized by a set of data associated with N
and G. Based on the Lyndon-Hochschild-Serre spectral sequence, it was shown in Ref. [54] that

5This notation has a different meaning from ag elsewhere in this paper. In this subsection, a ∈ N and g ∈ G are
independent. In other parts of the paper, a ∈ CG and g denotes the grading property of a.
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ν3 valued at general ag, bh, ck can be fully determined by ν3 at special elements of CG . Specif-
ically, ν3(ag, bk, ck) is determined by ν3(a, b, c), ν3(a, b, 1g), ν3(a, 1g, 1h) and ν3(1g, 1h, 1k),
with a, b, c ∈ N and g,h,k ∈ G (note that a ≡ a1). We refer the readers to Ref. [54] for the
general parameterization. Here, we only consider the special case that both ρ and µ are triv-
ial. In this case, CG = N × G, and the 3-cocycle ν3 is simply the product of the four special
pieces

ν3(ag, bh, ck) = ν3(a, b, c)ν3(a, b, 1k)ν3(a, 1h, 1k)ν3(1g, 1h, 1k) . (49)

This expression can be well understood from the Künneth formula

H3(N × G, U(1)) =H3(N , U(1))⊕H1(G,H2(N , U(1)))

⊕H2(G,H2(N , U(1))⊕H3(G, U(1)) . (50)

The four pieces in (49) have a one-to-one correspondence to elements in the cohomology
groups on the right hand side of (50). The parameterization of ν3 with general ρ and µ is
more complicated but follows a similar structure.

With (CG ,ν3), we can construct a lattice model following Sec. 2. For simplicity, we assume
that ρ and µ are trivial. The domain degrees of freedom αi take values in G, and domain walls
ai and x i take values in a proper coset Cg = gN . To build up the model, we need to manually
pick up a fixed element b̄ ∈ N for every g ∈ G, which together select a representative b̄g from
each coset Cg. Then, on the ith domain wall, it lives an object ai = b̄α−1

i−1αi
≡ (b̄i)α−1

i−1αi
(we use

b̄i to denote the b̄ ∈ N that lives on the ith domain wall). The fusion channel x i ∈ Cαi
and let

us denote x i ≡ (di)αi
, with di ∈ N . With fusion rules, we have x i = x i−1ai and di = di−1 b̄i .

Two features of the Hilbert space deserve to be mentioned. (1) Given {αi} and {ai}, there are
only |N | possible {x i}:

x i = (di)αi
, with di = d0

i
∏

j=1

b̄ j , (51)

where d0 runs though elements in N . Hence, states in the Hilbert space can be labeled as
|{αi}, d0〉. We will give a further discussion on d0 below. (2) The periodic boundary condition
requires that

L
∏

i=1

b̄i = 1 . (52)

It follows from dL+1 = d1
∏

i b̄i and dL+1 = d1.
The symmetry operator U(yh), defined in Eq.(6), is given by

〈{hαi , x ′i}|U(yh)|{αi , x i}〉=
L
∏

i=1

ν∗3(yh, (di)αi
, b̄α−1

i αi+1
),

=
L
∏

i=1

ν∗3(y, di , b̄i)ν
∗
3(y, di , 1α−1

i αi+1
)

× ν∗3(y, 1αi
, 1α−1

i αi+1
)ν∗3(1h, 1αi

, 1α−1
i αi+1

) , (53)

where we have inserted Eq. (49) into the second equality. Note that the action of yh gives
x ′i = yh × x i = [y · di]α′i . The Hamiltonian can be written down following Sec. 2.4.

Let us compare this example to that in Sec. 3.2. First, while both examples realize the sym-
metry (CG ,ν3), the allocation of degrees of freedom from N and G on the lattice are different.
In the example of Sec. 3.2, αi can fluctuate freely in CG . In the current example, αi fluctu-
ates only within G, while elements from N which live on the domain walls are constrained.
Accordingly, to realize the same symmetry (CG ,ν3), the current example could have a smaller
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Hilbert space as long as one properly divides CG into N and G. This is useful for numerical
investigations. Second, the degree of freedom d0, absent in the example of Sec. 3.2, is a global
degree of freedom. It enters every di and cannot be changed by any local operators. This
makes the ground states of local Hamiltonian to be |N |-fold degenerate. For simplicity, let us
consider the case G = 1, i.e., with no {αi} degrees of freedom. In this case, the whole Hilbert
space is |N | dimensional, and the Hamiltonian is proportional to the identity matrix. Since
the |N |-fold degenerate ground-state space transforms non-trivially under N , the group N is
actually “spontaneously broken”. To make the “symmetry breaking” claim more explicit, let
us allow {b̄i} to fluctuate (see a more general discussion around Eq. (71)). Let us denote the
states in the enlarged Hilbert space as |{bi}, d0〉, with the “¯” removed to indicate that they
can fluctuate. Note that {bi} are subject to the constraint (52). The state |{bi}, d0〉 can be
equivalently labeled as |{di}〉, with di = d−1

i−1 bi . In the notation |{di}〉, each di can fluctuate
freely in N . With this preparation, the selection of b̄i corresponds to adding the action

H ′ = −∆
∑

i

δd−1
i−1di ,b̄i

, (54)

and taking the limit ∆→∞. The interaction H ′ describes a kind of “ferromagnetic” interac-
tion between di and di−1, and it is symmetric under N . In particular, if b̄i = 1, the interaction
becomes −δdi−1,di

. It is now obvious that the ground state of H ′ spontaneously breaks the
symmetry group N .

4 Discussions

4.1 Gauge choice of F and 1D SPT states

In category theory, F symbol is not a gauge invariant quantity. Given CG , one can take different
gauge choices for F . Since the Hamiltonian (11) explicitly depends the F symbol, we expect
the ground states to be dependent on the gauge choices of F too. In fact, gauge-equivalent F
symbols can lead to inequivalent CG-symmetric ground states. Loosely speaking, these distinct
ground states can be thought of differing by 1D SPT states of CG category symmetry.

To demonstrate this point, we consider the special example CG = (G,ν3), with ν3 being a
trivial 3-cocycle. Recall from Sec. 3.2 that the F symbol is determined by ν3, and our model
can be thought of as an effective edge model of a 2D SPT bulk. When ν3 is a trivial 3-cocycle,
it can be written as

ν3(g,h,k) =
c2(h,k)c2(g,hk)
c2(gh,k)c2(g,h)

, (55)

where c2 is an arbitrary 2-cochain, i.e., a function c2 : G × G → U(1). Inserting (55) into the
expression (14) of U(g), we have

U(g)|α1,α2 . . . ,αL〉=
∏

i

c2(gαi ,α
−1
i αi+1)

c2(αi ,α
−1
i αi+1)

|gα1,gα2, . . . ,gαL〉 , (56)

If we take a local unitary transformation to the new basis

|α1, . . . ,αL〉〉=
∏

i

c2(αi ,α
−1
i αi+1)|α1, . . . ,αL〉 , (57)

the symmetry U(g) acts in the conventional onsite fashion

U(g)|α1,α2 . . . ,αL〉〉= |gα1,gα2, . . . ,gαL〉〉 . (58)
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This onsite form can be achieved because ν3 is a trivial 3-cocycle, or equivalently because the
corresponding 2D SPT bulk is trivial. In the new basis, the Hamiltonian (13) of our model is
given by

〈〈αi−1,α′i ,αi+1|Hi|αi−1,αi ,αi+1〉〉= wzi
hi

c2(α−1
i−1αi ,α

−1
i αi+1)

c2(α−1
i−1α

′
i ,α
′−1
i αi+1)

. (59)

It is straightforward to see that the Hamiltonian is symmetric under the onsite symmetry (58).
So far, c2 is an arbitrary 2-cochain. If we take wzi

hi
= 1 and c2 to be a 2-cocycle, i.e.,

c2(h,k)c2(g,hk) = c2(gh,k)c2(g,h), the Hamiltonian (59) can be rewritten as

〈〈αi−1,α′i ,αi+1|Hi|αi−1,αi ,αi+1〉〉=
c2(α−1

i−1αi ,α
−1
i α
′
i)

c2(α−1
i α
′
i ,α
′−1
i αi+1)

. (60)

It is precisely the fixed-point group-cohomology model of 1D SPT states proposed in Ref. [2].
It is known that inequivalent 2-cocycles c2 give rise to topologically distinct gapped SPT states
of symmetry group G. Therefore, we see that for the trivial ν3, different gauge choices (i.e.,
different c2) give rises to topologically distinct SPT phases. We remark that, in general, c2 is
not a 2-cocycle as we do not require our model to sit at a fixed point. Our model may also
break symmetry spontaneously.

If ν3 is a non-trivial 3-cocycle, we cannot write ν3 into the form (55). However, we can still
take different gauge choices by shifting ν3(g,h,k) → ν3(g,h,k) c2(h,k)c2(g,hk)

c2(gh,k)c2(g,h) . A nontrivial ν3
means the symmetry group G carries ’t Hooft anomaly. The ground state cannot be simultane-
ously non-degenerate, gapped and symmetric. Let us assume a gapless and symmetric ground
state, and discuss a potential implication from different gauge choices of ν3. From the above
discussion on the trivial ν3 case, we speculate that different gauge choices of non-trivial ν3
correspond to the gapless state to be stacked with different 1D SPT states of the same group G.
Since SPT states are gapped, stacking them will not modify the gapless spectrum dramatically.
However, topological properties of the gapless system might be modified. We do not know the
precise meaning of topological properties of a gapless system yet. It would be interesting to
explore this question in the future. We note that it might have a close relation to gapless SPT
phases discussed in Refs. [55,56].

For a general category CG , it is also possible to study “generalized SPT” phases under
appropriate definitions. A reasonable definition is that an SPT state is a gapped, symmetric
and non-degenerate ground state of a Hamiltonian that respects the category symmetry CG .
However, SPT state may not always exists. For example, as just discussed, if CG = (G,ν3)
and ν3 is a nontrivial 3-cocycle, it cannot support systems with a gapped symmetric unique
ground state. If a category symmetry does not support (trivial or nontrivial) SPT phases, it
is called anomalous, generalizing the concept of ’t Hooft anomaly of group-like symmetries.
Criteria on whether a category symmetry is anomalous have been studied in Ref. [27]. For
non-anomalous category symmetry, we expect that different gauge choices of F correspond
to different CG-symmetric SPT phases. For anomalous category symmetries, implications of
different gauge choices of F is subtler, as the meaning of “stacking” shall be elaborated before
we generalize the case of groups. All these are interesting questions to explore in the future.

4.2 Relation to boundary of 2+1D topological phases

Our model with symmetry (6) and Hamiltonian (8) can be viewed as a boundary theory of
2+1D topological phases. More precisely, in this subsection, we show that it can be viewed
as a boundary theory of 2+1D symmetry enriched string-net model (SESN) defined on a disk
geometry under certain choice of boundary conditions.
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Let us start with a brief review of the SESN model. It is defined on a trivalent lattice with
the orientated links. The input data is a G-graded unitary fusion category CG . There are two
types of degrees of freedom on the lattice. On each oriented link, there lives a |CG|-component
“spin”. Each component of the spin is a simple object a ∈ CG , which is also called a string
type. On each plaquette, there lives a |G|-component “spin”, with each component being a
group element g ∈ G, as see Fig. 8. The basis vectors of the Hilbert space can be denoted as
|{al ,gp}〉, with l runs over the links and p runs over the plaquettes. The Hamiltonian is

H = −
∑

v

Av −
∑

l

Pl −
∑

p

Bp , (61)

where the sum runs over the vertices (v), the links (l), and plaquettes (p). All Av , Pl and Bp are
projector operators, with eigenvalues being 0 and 1. The term Av = δabc when acts on basis
vectors, where a, b and c are the three strings meeting at vertex v, δabc = 1 if a, b, c satisfy the
fusion rules of CG and δabc = 0 otherwise (again, we assume CG is fusion multiplicity free).
Assuming the string type on link l is ag ∈ CG , the term Pl = δg,g−1

p gq
, where gp and gq are the

plaquette spins on left and right of the link l, respectively (under an appropriate orientation
convention). The term Bp is defined as

Bp =
1
D2

∑

s∈CG

dsB
s
pŨgs

p , (62)

where ds is the quantum dimension of s and D =
q

∑

s d2
s is the total quantum dimension. The

notation gs is used to denote s ∈ Cgs
. The term Ũgs

p flips the plaquette spin in the following
way

Ũgs
p |gp〉= |gpgs〉 , (63)

where irrelevant spins are omitted in the notation |gp〉. The Bs
p can be understood as creating

a string s inside the plaquette p and fusing it into the boundary strings of the plaquette, so
the matrix element of Bs

p is a product of F symbols. A nice property of the SESN model is that
all the projectors Av , Pl and Bp commute with each other, making the model exactly solvable.
The SESN model has an onsite G symmetry

Ug =
∏

p

Ug
p , Ug

p |gp〉= |ggp〉 . (64)

The SESN model realizes a topological order which mathematically is the Drinfeld center
Z(C0). Since it is G symmetric, it is an SET state of the Z(C0) topological order. Readers
are referred to Refs. [39,40] for more details.

Now we consider the 2D SESN model on a disk geometry. In Fig. 8, the orange region
represents the string-net bulk while the blue region represents the boundary. We will see that
our 1D model lives in the subspace of the 2D SESN model after projecting the bulk into its
ground state. To match the notation of our 1D model (Fig. 1), we have labeled the corre-
sponding αi , ai , and x i in the blue region in Fig. 8: the plaquette spins αi ∈ G correspond to
the domain variables in the 1D model, and the link spins ai ∈ CG and x i ∈ CG correspond to
the domain wall variables. For convenience, we will call {αi , ai , x i} the boundary spins below.
Let us consider the following Hamiltonian

Hdisk = −
∑

v∈all

Av −
∑

l∈all

Pl −
∑

p∈bulk

Bp , (65)

where p runs only over the orange “bulk plaquette” in Fig. 8. The projectors Av , Pl and Bp are
the same as above. There is an ambiguity on Pl for the outermost links of the disk. To fix this
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x i
x i−1

αi−1αi
ai

ai−1

...
...

...
...

Figure 8: Trivalent lattice of 2D symmetry-enriched string-net model. The blue re-
gion corresponds to the boundary of the model.

ambiguity, we assume that the empty region outside the disk is a big plaquette on which lives a
“ghost” spin gempty. We set the “ghost” spin gempty = 1 as a choice of boundary conditions. This
choice corresponds the convention that the empty region below the horizontal line in Fig. 1a
is taken to be the identity domain. Under this convention, all Pl can be defined in the same
way. All terms in (65) commute.

We would like to find the ground-state subspace of Hdisk. We will see that it is highly
degenerate, and the degeneracy comes from the states of boundary spins. First of all, we note
that, in the ground-state subspace, the requirements Av = Pl = 1 on the boundary spins (in
the blue region) are exactly those we impose when building up the Hilbert space of our 1D
model (Sec. 2.2). For the convenience of later discussions, we define a subspace HAv=Pl=1 in
which Av = Pl = 1 are fulfilled for all v’s and l ’s. The ground-state space HGS ⊂ HAv=Pl=1.
To find HGS, we note that all terms in Hdisk does not change the boundary spins {αi , ai , x i}.
Then, we can diagonalize Hdisk in the subspace with fixed {αi , ai , x i}. We claim that, for a
fixed set {αi , ai , x i} that satisfies the requirements Av = Pl = 1, the ground-state subspace is
one-dimensional. That is, the ground-state subspace

HGS =
⊕

{αi ,ai ,x i}
HGS
{αi ,ai ,x i}

, (66)

where each space HGS
{αi ,ai ,x i}

is one-dimensional.

We need to showHGS
{αi ,ai ,x i}

is one-dimensional for given {αi , ai , x i} that statisfy Av = Pl = 1.
To simplify the calculation, we make use of the fact that the SESN bulk ground state is a fixed-
point wave function, such that topological quantities, specifically ground-state degeneracy for
our purpose, are invariant if we add or remove vertices, links or plaquettes in the bulk (orange
region in Fig. 8). For detailed discussions about this property, readers may consult Ref. [57]
(strictly speaking, only the original string-net model was discussed there, but we believe it
can be straightforwardly generalized to the SESN model). With this property, we choose a
simple graph, shown in Fig. 9(a), which contains only one bulk plaquette. On this lattice,
besides the boundary spins {αi , ai , x i}, the only bulk degrees of freedom are the link spins
{yi} and a central plaquette spin gp. A general basis state is labeled as |{αi , ai , x i , yi ,gp}〉. In
following discussion, we will restrict ourselves in the subspace HAv=Pl=1. In this subspace, the
Hamiltonian Hdisk effectively contains only one Bp term associated with the central plaquette.
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· · ·
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ω3
ωL

xL

gp
yL

Figure 9: (a) Lattice with only one bulk plaquette. (b) and (c) States in HAv=Pl=1
after proper F moves. The dashed lines wL and zL correspond to the trivial string.

To proceed, we perform “basis transformations” for HAv=Pl=1. More precisely, we will
perform a transformation within the space

H{αi ,gp} = span
�

|{αi , ai , x i , yi ,gp}〉|ai , x i , yi ∈ CG , Av = Pl = 1,∀ v, l
	

, (67)

where {αi} and gp are fixed, and

HAv=Pl=1 =
⊕

{αi ,gp}
H{αi ,gp} . (68)

Because of the constraint Av = 1 for all v’s, the states in H{αi ,gp} can be viewed of as fusion
states of objects {ai , x i , yi}. In this view, we can then perform F moves which transformH{αi ,gp}
into a different basis. Such transformation is not a standard basis transformation on lattice,
as the underlying lattice structure is modified. However, it works well for our purpose of
counting dimensions of the constrained Hilbert space H{αi ,gp}. First, we perform F moves and
turn Fig. 9(a) into Fig. 9(b). Basis vectors in Fig. 9(b) are denoted as |αi , ai , x i , wi , yL ,gp〉,
subject to Av = Pl = 1. An important feature is that the total fusion channel wL of {ai}
(dashed line in Fig. 9(b)) must be 1. To see that, we recall a basic diagrammatic relation in
fusion category theory [42]:

=

c

c′

ba δc,c′ . (69)

The perimeter of the central plaquette is a special case of this relation with c′ = 1 and c = wL .
Hence, wL = 1. Then, the yL string decouples from the rest strings.

Now we make two claims for states in Fig. 9(b): (i) {wi} are completely fixed by {αi , ai , x i}
due to constraints Av = Pl = 1 and thereby are redundant and (ii) the remaining degeneracy
due to gp and yL is completely lifted by the Bp term associated with the central plaquette in
Hdisk. Under these two claims, we then immediately have HGS

{αi ,ai ,x i}
is one-dimensional.

The first claim can be shown by performing additional F moves into Fig. 9(c). Note that
these F moves do not touch on {wi}. Accordingly, if {wi} are fully fixed by other spins in
Fig. 9(c), so are they in Fig. 9(b). Indeed, in the basis of Fig. 9(c), we have wi = zi for every
i. This is obtained by repeatedly applying the relation (69) to Fig. 9(c).

Given the first claim, we then have all valid states in HAv=Pl=1 with fixed {αi , ai , x i} form
the following space

H{αi ,ai ,x i} = span
�

|yL ,gp〉|yL ∈ CG , gp = αLgyL

	

, (70)
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where the condition gp = αLgyL
follows from the constraint Pl = 1. We note that H{αi ,ai ,x i}

is always |CG|-dimensional. The action of Hdisk = −Bp is closed in H{αi ,ai ,x i}. To prove the
second claim, we need to calculate the ground state degeneracy inside H{αi ,ai ,x i}. We recall
that Bp is a projector, i.e., B2

p = Bp. Hence, the ground states have Bp eigenvalue 1 and the
excited states have Bp eigenvalue 0. Then, the ground state degeneracy is given by Tr(Bp).
We show in Appendix B that Tr(Bp) = 1 in H{αi ,ai ,x i} for arbitrary {αi , ai , x i}, i.e., HGS

{αi ,ai ,x i}
is

one-dimensional.
To summarize, we have shown that the ground-state space HGS of Hdisk in (65) is of the

form (66), with HGS
{αi ,ai ,x i}

being one-dimensional. That is, HGS is fully described by the bound-
ary spins {αi , ai , x i} subject to the constraints Av = Pl = 1 for all relevant vertices and links.
To exactly match our 1D model, we introduce additional interaction between the boundary
spins

H ′ = H1D −∆
∑

la

Kla , (71)

where H1D is the 1D Hamiltonian in Sec. 2.4, and ∆ is a large positive number. The sum in
the second piece runs over all links la that {ai} lives. When acting on basis states, the operator
Kla = δ(ai , āα−1

i−1αi
), where āg is the selected object from Cg discussed in Sec. 2.2 (we have

added a bar in the notation to distinguish it from ai on links). In the limit ∆ → ∞, this
boundary theory matches exactly to our 1D model.

In the above discussions, we have focused on the Hilbert space and Hamiltonian, and have
not touched on symmetry. The SESN model has an onsite G group symmetry, while the 1D
model is not symmetric under onsite G, instead is symmetric under CG . To understand this,
let us apply Ug of (63) onto HGS. Let |{αi , ai , x i}〉 be the state in HGS

{αi ,ai ,x i}
. Due to the con-

straints Pl = 1 and the boundary condition gempty = 1, we have x i ∈ Cαi
and ai ∈ Cα−1

i−1αi
. Then,

Ug|{αi , ai , x i}〉 ∼ |gαi , ai , x ′i〉 with x ′i ∈ Cgαi
. On the one hand, since x ′i /∈ Cαi

, the ground-state
|{αi , ai , x i}〉 transforms nontrivially under G, making it broken in some sense. On the other
hand, the choice of {x ′i} is not unique. To fix this ambiguity, we think of Ug =

∏

p Ug
p as

a union of all plaquettes and take a string s ∈ Cg as its termination on the boundary. This
termination means that, after applying Ug, we further fuse s onto {x i} from outside. Let us
denote the string fusion operator as Bs

0, such that the combination sends |{αi , ai , x i}〉 to the
state Bs

0Ug|{αi , ai , x i}〉. One may notice that it is similar to the Bp operator in the Hamiltonian,
except that Ug has a left group action and Bs

0 fuses the s string from outside of the plaquette
in comparison to “right action” and “fusion from inside” for Bp in the Hamiltonian. The collec-
tion {Bs

0Ugs} with s running over all simple objects in CG are exactly the category symmetries
discussed in Sec. 2.3.

Finally, we remark that while we have taken the limit ∆→∞ in (71), one may also set
∆ = 0 and allow {ai} to fluctuate more freely, such that different boundary theories result.
In addition, we only consider the case that bulk is in the ground state. If the bulk contains
a topological defect, including both anyon excitations and G symmetry defects, there must
be a corresponding anti-defect on the boundary. (Note that it is enough to consider only one
topological defect in the bulk. Multiple defects can always be fused into one.) This will make
at least one of the constraints Av = Pl = 1 to be violated at the boundary, corresponding to
insertion of twisted boundary conditions associated with the category symmetry CG in the 1D
systems.
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5 Summary and outlook

In summary, we have constructed a 1D quantum lattice model that explicitly displays category
symmetry CG . The model can be viewed as an interpolation between the anyon chain model
and edge model of 2D bosonic SPTs, and as an edge model of 2D bosonic SETs. Our numerical
results show that the category symmetry constrains the model to the extent that it has a large
likelihood to be quantum critical. Hence, this model, with different input categories and tuning
parameters, is a good source for studying gapless phases. It is clear that more numerical effort
is desired.

We discus a few possible future directions.

1. One may generalize our model to G-graded super or spin unitary fusion category (we
notice that a related work is done in Ref. [58]). Super fusion category describes defects
in fermionic systems, and spin fusion category is the corresponding category after gaug-
ing fermion parity. [59,60] Our model can be readily generalized to spin fusion category,
which has no difference to the usual unitary fusion category except that it has a special
simple object, the fermion ψ. To make a connection to fermionic SPT/SET edges, one
needs to find a way to ungauge the fermion parity, or equivalently gauge the dual sym-
metry U(ψ). This gauging procedure has been worked out in Ref. [38] in the example of
Ising fusion category (the simplest spin fusion category). It is interesting to work out the
general case and understand the connection to fermionic SPT/SET edges. (Note added.
During the publication process of our work, we noticed a few recent works [61, 62] on
1+1 systems with fermionic categorical symmetries.)

2. Another generalization is to make the variable x i valued in a module category M over
a fusion category C [16]. It is known that a general way to terminate the string-net
model at the boundary is to use module category [63]. The recent study on duality of
category symmetry in Ref. [34] precisely uses this language. The essence of having a
G-grading structure in the input data CG of our model is to enable a partial ungauging
of the category symmetry. We expect that generalization to module category may help
to ungauge general category symmetry in our model, which is essentially the duality
discussed in Ref. [34].

3. CG serves both as the input data and as the category that characterizes the symmetries of
our model. In principle, one may make use of the Drinfeld center Z(CG), which describes
all the anyons in the SET bulk after gauging G. For example, in the case that CG = CIsing

as input, the gauged SET bulk is characterized by CIsing × CIsing. In our construction,
we only make use of CIsing to constrain the low-energy physics, while CIsing has not be
explicitly used. It is interesting to study how to construct models with the larger category
symmetry Z(CG) manifested.

4. It is also interesting to extend this construction to higher dimensions. In this perspective,
one needs to make use of higher fusion categories [20–22].
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A Symmetry and Hamiltonian

In this appendix, we give a derivation of the explicit expression (6) of the symmetry U(yh).
We also explicitly show that the Hamiltonian (8) is invariant under U(yh).

A.1 Derivation of Eq. (6)

The graphical representation of U(yh) is shown in Fig. 2. Under the action of U(yh), the do-
main variables αi are simultaneously mapped to hαi . Since α−1

i αi+1 is unchanged, the domain
wall defect ai keeps invariant under U(yh). Meanwhile, the variables x i will be mapped to
other variables x ′i

U(yh) : |{αi , x i}〉 → |{hαi , x ′i}〉 . (A.1)

In general, U(yh)|{αi , x i}〉 is a linear superposition of |{hαi , x ′i〉}. Below we show that the
matrix element 〈{hαi , x ′i}|U(yh)|{αi , x i}〉 is given by (6). The derivation is divided into four
steps, as follows. Note that this derivation is equivalent to that for the usual anyon-chain
models [29].

1. Add a trivial line connecting yh and x i+1 as in (A.2) and perform an F move

which would give an amplitude
�

(F yh x i+1 x i+1
yh

)†
�x ′i+1

1
=

√

√ dx′i+1
dyh

dxi+1
δyh x i+1 x ′i+1

. Here,

δyh x i+1 x ′i+1
= N

x ′i+1
yh x i+1

= 0 or 1. Summation over x ′i+1 is not shown.

√

√

√

dx′i+1
dyh dxi+1

ai−1 ai ai+1 ai+2

xi−2 xi−1 xi xi+1 xi+2

yh

ai−1 ai ai+1 ai+2

xi−2 xi−1 xi x ′i+1
xi+2

yh

(A.2)

2. Perform a F move associated with the three defects yh, x i , ai+1, with x ′i+1 viewed as the
total fusion channel, as in (A.3). We call this procedure “sliding yh across ai+1”. It gives

an amplitude
h

(F yh,x i ,ai+1

x ′i+1
)†
ix ′i

x i+1

.

ai−1 ai ai+1 ai+2

xi−2 xi−1 xi x ′i+1
xi+2

yh

(F
yh ,xi ,ai+1
x′i+1

)
†x′i
xi+1

ai−1 ai ai+1 ai+2

xi−2 xi−1 x ′i x ′i+1
xi+2

yh

(A.3)
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3. Continue the second step, and keep sliding yh across the rest a j , as in (A.4). This gives

the amplitude
�

∏

j ̸=i,i+1

(F
yh,x j ,a j+1

x ′j+1
)
†x ′j
x j+1

�

(F yh,x i+1,ai+2

x ′′i+2
)
†x ′i+1
x i+2

.

ai−1 ai ai+1 ai+2

xi−2 xi−1 x ′i x ′i+1
xi+2

yh

�

∏

j ̸=i,i+1

(F
yh ,x j ,a j+1
x′j+1

)
†x′j
x j+1

�

×(F
yh ,xi+1,ai+2
x′′i+2

)
†x′i+1
xi+2

ai−1 ai ai+1 ai+2

x ′i−2 x ′i−1 x ′i xi+1 x ′i+2

x ′′i+1x ′i+1
yh

(A.4)

4. Shrink the “bubble” as in (A.5) which gives a coefficient

√

√ dxi+1dyh
dx′i+1

and imposes the con-

dition x ′i+1 = x ′′i+1.

ai−1 ai ai+1 ai+2

x ′i−2 x ′i−1 x ′i xi+1 x ′i+2

x ′′i+1x ′i+1
yh

√

√

√

dxi+1dyh
dx′i+1

δ
x′i+1
x′′i+1

ai−1 ai ai+1 ai+2

x ′i−2 x ′i−1 x ′i x ′i+1 x ′i+2

(A.5)

Combining all the steps and multiplying all the amplitudes, we obtain Eq. (6).

A.2 Hamiltonian is symmetric under U(yh)

Now we show that the Hamiltonian (8) is symmetric under U(yh) (6). Specifically, we show
HiU(yh) = U(yh)Hi when acting on any state. The graphical representation of U(yh) in Fig. 2
has the advantage of being basis independent. We will make use of this and mainly work in
the basis (9). We will act Hi and U(yh) on an arbitrary state in different orders, and compare
the final sates, which turn to be the same.

On the one hand,

U(yh)Hi αi−1 αi αi+1

x i−1 x i x i+1

ai ai+1

=
∑

zi

�

F x i−1ai ai+1
x i+1

�zi

x i
U(yh)Hi

αi−1

αi

αi+1

x i−1

zi

x i+1

ai ai+1

(A.6)

=
∑

α′i

∑

zi

wzi

α−1
i α
′
i

�

F x i−1ai ai+1
x i+1

�zi

x i
U(yh) αi−1

α′i
αi+1

x i−1

zi

x i+1

a′i a′i+1

=
∑

α′i

∑

zi

∑

{x ′j | j ̸=i}

wzi

α−1
i α
′
i

�

F x i−1ai ai+1
x i+1

�zi

x i
U
{x ′i}
{x i},yh,zi

hαi−1

hα′i
hαi+1

x ′i−1

zi

x ′i+1

a′i a′i+1

,

where we have used the basis transformation (9) in the first line, and the definition (10) of Hi
in th second line. The coefficient in the last line is

U
{x ′i}
{x i},yh,zi

=
�

F yh,x i−1,zi

x ′i+1

�†x ′i−1

x i+1

∏

j ̸=i,i+1

�

F
yh,x j ,a j+1

x ′j+1

�†x ′j

x j+1

, (A.7)
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which is obtained in the same way as Appendix A.1. On the other hand,

HiU(yh) αi−1 αi αi+1

x i−1 x i x i+1

ai ai+1

=
∑

zi

�

F x i−1ai ai+1
x i+1

�zi

x i
HiU(yh) αi−1

αi

αi+1

x i−1

zi

x i+1

ai ai+1

(A.8)

=
∑

zi

∑

{x ′j | j ̸=i}

�

F x i−1ai ai+1
x i+1

�zi

x i
U
{x ′i}
{x i},yh,zi

Hi hαi−1

hαi

hαi+1

x ′i−1

zi

x ′i+1

ai ai+1

=
∑

α′i

∑

zi

∑

{x ′j | j ̸=i}

�

F x i−1ai ai+1
x i+1

�zi

x i
U
{x ′i}
{x i},yh,zi

wzi

α−1
i α
′
i

hαi−1

hα′i
hαi+1

x ′i−1

zi

x ′i+1

,

where we have used (hαi)−1(hαi+1) = α−1
i αi+1. Comparing (A.6) and (A.8), we see the final

expressions are exactly the same. As the initial state and i are arbitrary, we have proven
HU(yh) = U(yh)H for any yh.

B Proof of Tr(Bp) = 1 in H{αi ,ai ,x i}

In this appendix, we show that Tr(Bp) = 1 in the space H{αi ,ai ,x i} with given {αi , ai , x i}. We
will represent a state |Ψ〉 in H{αi ,ai ,x i} graphically as

|Ψ〉= αLgp

yL

, (B.1)

where yL can be any simple object in CG , gp = αLgyL
, and other spins on the lattice (Fig. 9(b))

are omitted as Bp does not act on them. Since gp is fixed by yL and αL , the dimension of

H{αi ,ai ,x i} is |CG|. The term Bp is defined as Bp =
1

D2

∑

s∈CG
dsB

s
pŨgs

p , where D =
q

∑

s d2
s and

Bs
pŨgs

p αLgp

yL

= Bs
p αLgpgs

yL

= αLgpgs

yL

s =
∑

y ′L

N
y ′L
yL ,s αLgpgs

y ′L
. (B.2)

In the last equation, we have fused yL and s strings, with N
y ′L
yL ,s = 0,1 being the fusion co-

efficient. Note that individual action of Ũgs
p or Bs

p goes out of the space H{αi ,ai ,x i}. We have
omitted arrows of the strings for simplicity, which can be easily restored.
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We calculate Tr(Bp) as follows:

Tr(Bp) =
∑

yL∈CG

αL gp

yL

Bp αLgp

yL

=
∑

yL∈CG

∑

s∈CG

ds

D2 αL gp

yL

Bs
pŨgs

p αLgp

yL

=
∑

yL∈CG

∑

s∈CG

∑

y ′L∈CG

ds

D2
N

y ′L
yL ,s αL gp

yL

αLgpgs

y ′L

=
∑

yL∈CG

∑

s∈CG

∑

y ′L∈CG

ds

D2
N

y ′L
yL ,sδyL ,y ′L

δgs ,1

=
∑

yL∈CG

∑

s∈C0

ds

D2
N yL

yL ,s =
∑

yL∈CG

d2
yL

D2
= 1 . (B.3)

In the third line, we have inserted Eq. (B.2). In the last line, we have used da = dā, N c
ab = N b̄

ac̄
and dadb =
∑

c dcN
c
ab for any a, b, c ∈ CG , such that

∑

s dsN
yL
yL ,s =
∑

s ds̄N
s̄
yL ,yL

= d2
yL

. Note that

if N yL
yL ,s ̸= 0, we must have s ∈ C0 due to the G-grading structure in CG .
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