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Abstract

We study Olshanski twisted Yangian based models, known as one-dimensional “soliton
non-preserving” open spin chains, by means of algebraic Bethe Ansatz. The even case,
when the bulk symmetry is gl,, and the boundary symmetry is sp,, or so,,, was studied
in [12]. In the present work, we focus on the odd case, when the bulk symmetry is gl,,,1
and the boundary symmetry is so0,,,,. We explicitly construct Bethe vectors and present
a more symmetric form of the trace formula. We use the composite model approach
and Y(gl,)-type recurrence relations to obtain recurrence relations for twisted Yangian
based Bethe vectors, for both even and odd cases.
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1 Introduction

Twisted Yangian based models, known as one-dimensional “soliton non-preserving” open spin
chains, were first investigated by means of analytic Bethe Ansatz techniques [ 1-3,9] and more
recently in [4]. Such models are known to play a role in Yang-Mills theories, where twisted Yan-
gians emerge in the context of integrable boundary overlaps [7,15] and open fishchains [17].

A crucial step in understanding twisted Yangian based models is finding explicit expressions
of Bethe vectors. In the case when the bulk symmetry is gl,,, and the boundary symmetry is sp,,,
Or $04,,, this was achieved in [12] using algebraic Bethe anstaz techniques put forward in [8,
29]. These techniques apply to the cases, when the R-matrix intertwining monodromy matrices
of the model can be written in a six-vertex block-form. The monodromy matrix is then also
written in a block-form, in terms of matrix operators A, B, C, and D, that are matrix analogues
of the conventional creation, annihilation and diagonal operators. Exchange relations between
these matrix operators turn out to be reminiscent of those of the standard six-vertex model.
Such techniques have been used to study so,,- and sp,,,-symmetric spin chains in [13, 14, 16,
28,30]. A more general framework of such techniques has recently been proposed in [11].

In the present paper we extend the results of [ 12] to the odd case, when the bulk symmetry
is gly,4+1 and the boundary symmetry is so,,,;. This extension is based on a simple observa-
tion that the generating matrix of the odd twisted Yangian Y " (gl5,,;) can be decomposed into
four overlapping (n+1) x (n+1)-dimensional matrix operators satisfying the same exchange
relations as those of Y*(gl,,,.,) thus allowing us to employ the same algebraic Bethe Ansatz
approach. However, the overlapping introduces a new challenge since the middle entry of
the generating matrix is now included in both A and B matrix operators leading to an uncer-
tainty in the AB exchange relation. This issue is resolved in the technical Lemma 3.8 stating
action of the middle entry on Bethe vectors. Computing this action requires knowledge of
recurrence relations for Bethe vectors. We use the composite model techniques together with
the Y (gl,)-type recurrence relations found in [20] to obtain the Y*(gly,)- and Y (gly,41)-
type recurrence relations. The main results of this paper are presented in Theorem 3.9 and
Propositions 4.4 and 4.6.
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The first main result, Theorem 3.9, states that Bethe vectors, defined by formula (66), are
eigenvectors of the transfer matrix, defined by formula (68), provided Bethe equations (77)
and (78) hold. This Theorem is an extension of Theorems 4.3 and 4.4 in [12] to the odd
case. Commutativity of transfer matrices is shown in Appendix A.2. We also found a more
symmetric form of the trace formula for Bethe vectors derived in [12]. The new formula is
presented in Proposition 3.12. Its main ingredient is the so-called “master” creation operator,
defined by formula (79). Low rank examples of the “master” creation operator are presented
in Example 3.11.

The second main result, Propositions 4.4 and 4.6, present recurrence relation for Y=(gls,,)-
and Y *(gly,41)-based Bethe vectors, respectively. Schematically, they are of the form

\I](mlx---:mn) — E Si zn_i+1\Ij(m1:--~;mi—l:mi_zy---’ mn—l_zx mn_]-)
1<i<n

mq,..,m_y,mi—1,..m_—1,m:—2,...m, 1—2,m,—1
+ E: (Si,20—j41 F 57 20—i41) @ Mmn e 2 mel) (1)
1<i<j<n

in the even case and

\Il(ml’ e Mp) E s; n+1qj(m1, vy, m—1, ... ,m,_;—1,m,—1)

1<i<n

+ E (Si,n+2 + sn,n+i+2) \I,(ml,...,mi,l,ml——l,...,mn,l—l,mn—z)
1<i<n

+ E Si on—it2 \Il(ml’ ey M1, M—2, oy Mpy_—2, M, —2)
1<i<n

+ E (si,Zn—j+2 + Sj,Zn—i+2) \IJ(ml’ oMy, my=1, . omy_ —1,m;—2,...,m,_;—2,m,—2) , (2)
1<i<j<n

in the odd case. Here m;’s indicate excitation numbers associated with the i-th simple root of
the boundary symmetry algebra, s;;’s represent generating series of the twisted Yangian, and
all scalar factors and spectral parameter dependencies are omitted. These relations are com-
patible with the weight grading of twisted Yangian (see Appendix A.1). Repeated application
of relations (1) and (2) allows us to express Bethe vectors @lm-Ma) iy terms of those with
no level-n excitations, i.e. with m, = 0. The latter Bethe vectors obey Y (gl,,)-type recurrence
relations of the form [20]

Plm,emy,0) — E Si’n\p(ﬁh ----- m;_1,m;—1,..., mn71—1,0)’ 3)

1<i<n

the explicit form of which is recalled in Appendix A.3. This feature is explained in Remark 3.3.
Recurrence relations (1) and (2) are rather complex, especially in the odd case. However, low
rank cases, explicitly stated in Examples 4.5 and 4.7, are manageable for practical computa-
tions. Moreover, the known results of Y (gl,,)-based models [19-21,23] can be employed after
the first step of nesting.

The paper is organised as follows. In Section 2 we introduce notation used throughout
the paper and recall the necessary algebraic properties of twisted Yangians. In Section 3 we
present the algebraic Bethe anstaz: Bethe vectors, their eigenvalues and the corresponding
Bethe equations. We consider both even and odd cases simultaneously giving a coherent frame-
work needed for obtaining recurrence relations. In Section 4 we obtain recurrence relations
and present a proof of the technical Lemma 3.8. In Appendix A we recall weight grading of
Y*(gly), a recurrence relation for Y (gl,,)-based Bethe vectors, and provide a proof of commu-
tativity of transfer matrices.
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2 Definitions and preliminaries

Throughout the manuscript the middle alphabet letters i, j, k, ... will be used to denote inte-
ger numbers, letters u, v, w, ... will denote either complex numbers or formal parameters, and
letters a and b (often decorated with additional indices) will be used to label vector spaces.

2.1 Lie algebras

Choose N = 2. Let gly denote the general linear Lie algebra and let e;; with 1 <i,j < N be
the standard basis elements of gl satisfying

Leij»ex] = 6 ke — irex; - 4

The orthogonal Lie algebra so, and the symplectic Lie algebra spy can be regarded as subal-
gebras of gly as follows. For any 1 <1i,j < N set 0;; := 6;0; with 6; := 1 in the orthogonal
case and 6; := 8;5n/2 — O;j<n/2 in the symplectic case. Introduce elements f;; := e;; — 0;e5;
with7:=N —i+1and j:=N —j + 1. These elements satisfy the relations

Ufijs ful = 6 fu— 6ufij + 6:(8ific — 6 f51) (5)
fij+6iif;:=0, 6)
which in fact are the defining relations of soy and spy. It will be convenient to denote both

algebras by gy . Write N = 2n or N = 2n+ 1. In this work we will focus on the following chain
of Lie algebras

gy Dgnv D9l Dl D+ Dgly,

where gl,, gl,—1, ..., gly are subalgebras of gy generated by f;; with 1 < i,j < k and
k=n,n—1,...,2, respectively.

2.2 Matrix operators

For any k € N let El.(J’.{) € End(CK) with 1 < i,j < k denote the standard matrix units with
entries in C and let E(k) € Ck with 1 < i < k denote the standard basis vectors of C¥ so that

E (k)E (k) — =0; E(k) We will frequently use the barred index notation

(k) . (k) (k) . (k)
i Ek—i+1,k—j+1’ E‘ =E - ™)

Introduce matrix operators

(k) . N7 00 o (0 () . N7 00 o (0 () . N (0 o (0
1®H0 =" E ®EY, P .—ZEi ®EY, Q .—ZEU ®EL, (8
0 0 0

where the tensor product is defined over C. We will always assume that the summation is over

all admissible values, if not stated otherwise. Note that the operator Q%X is an idempotent

operator, (QK)2 = QK obtained by partially transforming the permutation operator

P56 with the transposition w : El(Jk) — EJEZ;), that is, Q%K) = (id ®w)(PH*K)) = (w ®@id)(PKK).
Next, we introduce a matrix-valued rational function

RER (1) := 1K) =1 plek) C))
called the Yang’s R-matrix. It is a solution of the quantum Yang-Baxter equation in Ck® Ck®Ck:

REPw—REPw—2)REP (v —2) = REP (v — ) REP (u— ) REP (w—v). (10)

4
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Here the subscript notation indicates the tensor spaces the matrix operators act on. We will
use such a subscript notation throughout the manuscript. We will also make use the partially
w-transposed R-matrix

RER @) := (id @ w)(R*F(w)) = 1D — = 1QkH) | (11)

satisfying a transposed version of (10):

(kk)( V)R(kk)(v Z)R(kk)(u z)= (kk)(u Z)R(kk)(v z)R(kk)(u—v). (12)

2.3 Twisted Yangian Y*(gly)

We briefly recall the necessary details of the “p-shifted” twisted Yangian Y*(gly) adhering
closely to[3,12] (see also [27] and Chapters 2 and 4 in [26]); here the upper (resp. lower) sign
in £ corresponds to the orthogonal (resp. symplectic) case. The parameter p € C is introduced
to accommodate applications to Yang-Mills theories and condensed matter systems, where p
plays a role of a boundary parameter, and integrable overlaps, where p appears as an integer
parameter in the nesting procedure.

Twisted Yangian Y*(gly) is a unital associative C-algebra with generators sij[r] where
1 <i,j £ N and r € N. The defining relations, written in terms of the generating series
sij(u) :=6;;+ 2r21 sijlr]u™", where u is a formal variable, are

[syj(u0) 51007)] = (sk](u)slz(v) S (Vs (w)
1
= — (B sp () = (s )
1
+ [ Y 9ij(5ki(u)sjz(v) _SkI(V)SjZ(u)) , (13)
e (1) —si;(8)
s;i(u)—s;i(t
0;;s7:(@) = s;5(u) + e ans (14)
u—i
Herei=N—i+1,7=N—j+1,etc, and @i := —u—p, ¥ := —v — p. These relations can be
cast in a matrix form as follows. Combine the series s;;(u) into the generating matrix
sMw) ::ZE(N)Q@sU(u) (15)

i,j
The defining relations (13) and (14) are then equivalent to the twisted reflection equation
RN w—v)SM@)RYNM 5 —u)sM) = sSWmREV G —w) SN w) RV (w—v), (16)
and the symmetry relation

SMw) —sM(ir)

(M (@) = sM(w) .
u—u

(17)

2.4 Block decomposition

Setn:=nwhen N =2nand n:=n+1 when N = 2n + 1. Then define fi X /i dimensional
matrix operators

A<“)(u)—ZE(”)®sij(u), B®(u) = ZE(%si,nﬂ(u),

(18)
c(u) = Z ED ®@spir @),  DP(u)= Z D ® St ().
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These operators are matrix analogues of the conventional a, b, ¢ and d operators of the six-
vertex type algebraic Bethe Ansatz. The exchange relations that we will need are [12]:

AP BD(w) = R%D w—v) B RGP (5 — ) AP (v)
PP BPOIRGP G —wAD @) BP0 D w
u—v u—7v
R —v) BOW RV (5 —w) BV (v) = BV RAD (5 — ) BD) R (u—v),  (20)
RAD (1 —v) AD (W) AP (v) — AP (1) AP () RED (1w — v)
RGP —BPwQY" V() - B (104" PRV w—v)
=F - , 2D
C(gﬁ)(u)A(bn)(v) = Ag)n)(v)l/ig;’n)(\? —u) Céﬁ)(u) Rg;’n)(u —v)
, P APWRGPO—w ) 0P e e )

u—v u—v

; (19)

, (22)

and

DM (@) =AM W) +

AD (1) — /}(ﬁ)(a), L BO(7) = B®() + B () — 1~3(ﬁ)(ﬂ) @3
u

u—u u—

Here indices a and b label two distinct copies of End(C"), and D®(@), B™ () are w-transposed
matrices. Taking matrix coefficients of (19)-(23) one obtains relations among generating
series that coincide with those given by the defining relations (13) and (14).

Remark 2.1. In the i = n+ 1 case all four operators in (18) are “overlapping”. For example,
when N = 3, we have 1 = n+ 1 = 2 giving

AD() = (511(u) 812(U)) , B (1) = (512(11) 513(“)) ,

591(1)  spp(u) Soo(u)  sp3(w)

c® () = (sm(u) Szz(u)) . DW= (szz(u) 523(11)) .

s31(w)  s3a(w) s3a(u)  s33(w)

We will mostly be interested in the A and B operators. The A operator will be used to construct a
transfer matrix of the spin chain and the B operator will be used to construct creation operators.
Both A and B operators include generating series s;;(u) with 1 < i < n associated with the short
root of 50,5, 1. These series will be used to construct level-n creation operator and should only
be considered as elements of the B operator. Likewise, the “middle” generating series s4;(u)
is also included in both A and B operators (and C and D), but should only be considered as
an element of the A operator. These issues will be resolved by restricting to the upper-left
(n—1) x (n—1)-dimensional submatrix of the A operator (such a restriction is compatible with
the AB exchange relation, see Lemma 3.5) and by explicitly computing the action of sz;(u) on
level-n Bethe vectors (see Lemma 3.8).

3 Bethe Ansatz

3.1 Quantum space

We study spin chains with the full quantum space given by

LM:=1Me---eL(AP)e M(w), (24)
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where ¢ € N is the length of the chain, each L(A(®)) and M () are finite-dimensional irreducible
highest-weight representations of gly and gy, respectively, and the N-tuples A() and w are
their highest weights. We will say that L is a level-n quantum space.

The space L™ can be equipped with a structure of a left Y*(gy)-module as follows. Intro-
duce Lax operators

[,(N)(ll) = ZESV) ® (511 - u_leﬁ), (25)
L,J
i,j

Choose an {-tuple ¢ = (¢y,...,¢;) of distinct complex parameters. Then for any & € L(V the
action of Y*(gly) is given by

sMw-&=] [Pu-c) MY, w+ ez [ |2 @-c)-¢, @

where the subscript a labels the matrix space of S") and the subscripts i = 1,...,¢ and £ + 1

label the individual tensorands of the space L™, which we call bulk and boundary quantum

spaces. The bulk spaces are evaluation representations of Y (gly) and the boundary space is

an evaluation representation of Y*(gly). Moreover, since L™ is finite-dimensional, the formal

variable u can be evaluated to any complex number, not equal to any c;, ¢;, and —(p £1)/2.
Let 1, and 1, denote highest-weight vectors of L(A®D) and M(u), respectively. Set

nN=Lune® -0l nel,. (28)
Then s;;(u) - n =0if i > j and s;;(u) - n = w;(u) n where

u+(p£1)/2—u; l—[”_ci_)‘?).ﬂ_cf_kl('])

u+(p+1)/2 u—c; i—c¢; (29)

wi(u) ==
j<t

Note that uy_;+; =—u; and us =0 whenfi=n+1.

An important property of L(™ is that the subspace (L(™)° c L™, annihilated by sij(u)
withi > n, j < and i > j, is isomorphic to an (£ + 1)-fold tensor product of irreducible gl,,
representations. Its subspace (L)' c (L(™)°, annihilated by s,;(u) with i < n, is isomorphic
to an (¢ + 1)-fold tensor product of irreducible gl,,_; representations. This can be continued
to give the following chain of (sub)spaces

L0 5 (LMY 5 (LMYl 5 ... 5 LMy (30)

where (L0)°, (LM .. (L)1 are isomorphic to (£+1)-fold tensor products of irreducible
finite-dimensional gl,,, gl,_;, ..., gl, representations, respectively. This property ensures that
nested algebraic Bethe Ansatz techniques can be applied.

3.2 Nested quantum spaces

Choose an n-tuple m := (m,, ..., m,) of non-negative integers, the excitation (magnon) num-
bers. For each m; assign an my-tuple u®® := (u(lk), et uﬁ‘g) of complex parameters (off-shell
Bethe roots) and an my-tuple a* := (a’l‘, e a,knk) of labels, except that for m, we assign two
my,-tuples of labels, a := (a;,...,d, ) and @ := (4, ...,dy,, ). We will often use the following
shorthand notation:

ukD = (O kD) Oy (31)
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We will assume that u*~*) = u* and that u*-D is an empty tuple if k > [ so that, for instance,
f(ll(l'"k), u(k...l)) — f(u(l...k)) ,

for any function or operator f when k > [. For any tuples u and v of complex parameters we
set

_ u; — Vj +1 . 1
f (ulJ ]) _ij) f (u V) l_[f (uw ] —v.’ (32)
where the products are over all admissible 1nd1ces iand j.
Let V( ) denote a copy of Ck labelled by “a k” and let Wéf) be defined by
k k k) ~
wi = vcf,{)&--@v(f,%z > (Cky®me, (33)

Labels alk will be used to trace the action of matrix operators. We illustrate this property with

an example. Let £ = & @ ® Eik € Wéf) and let Mil,f) € End(Va(,f{ )) be a matrix operator
Tk j j

acting in the space labelled a}‘. Then

g — . (k) .
MiE =840 0y @ (Ma? Eat) @y, @ @Ey .

Let V(n) (") >~ C" and W(“) éﬁ) > (C™")®™ be defined analogously to (33). We define a
level-(n— 1) quantum space by

(n-1) . ™ () (n)y0
L =w, " oW, ® (L"), (34)
When fi = n + 1, we additionally introduce “reduced” vector spaces
w ._ 7@ () w . _ _(ﬁ) ()
W=V, e eV, W=V e eV, (35)
Where A A A A A A
VC.(:) = spanC{EJ(.n) :2<j<na}c Va(in)’ V(.(;) = spanC{Egn)} C Vd(i”). (36)

Specifically, Wg’) is isomorphic to (C")®™ and Wén) a 1-dimensional vector space. We then
define a reduced level-(n—1) quantum space by

10D :=wV e W, & (L") c 10D, G7

The spaces L") and L™V will serve as the full (nested) quantum spaces of the Y (gl,)-
based models obtained after the first step of nesting in the even and odd cases, respectively;
see Remark 3.3.

Then, for each k =n—2,n—3,...,1 we define a level-k quantum space by

L(k) = Wéllf;l) ® (L(k+1))0 ) (38)
where (L*+1)0 is g level-(k+1) vacuum subspace given by

(L(k+1))0 = ( (k+2))0 .® (W(n 1))0 ® (W(n))O ® (W(ﬂ))O ® (L(n))n —k—1 L(k+1) . (39)

ak+2

where

(k+2 k+2 —1 A A A A
WD cwS?, L i ewlE, i ew, Wi cw®,
are 1-dimensional subspaces spanned by vectors
e . B Ve..er", EWe...0E", EMe...eE",
i i

respectively. When A = n + 1, note that (L""1)% ¢ Z(*=1, Moreover, (L*+1)0 2 (g (M)n—k-1
for 1 < k < n—2. The spaces L® will serve as the full (nested) quantum spaces of the
Y (gli,1)-based models obtained after n — k steps of nesting.

8
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3.3 Monodromy matrices

We will say that the matrix S®™)(u), acting in the space L(™ via (27), is a level-n monodromy
matrix. In this setting, we will treat u as a non-zero complex number not equal to any c;, ¢; and
—(p £ 1)/2. We define a level-(n—1) nested monodromy matrix, acting in the space L1, by

Téﬁ)(v; u(”)) = l_[ ﬁg’?&ﬁ)(ugn) —v) l_[ ﬁgj&ﬁ)(ﬂgn) — v)AElﬁ)(v). (40)
i<m, i<m,

When fi = n + 1, we introduce a reduced level-(n—1) nested monodromy matrix, acting in the
space L™V by

Tén)(v; u™y .= l_[ ﬁg:l"ln)(ugn) —v) [Aflﬁ)(v)](") , (41)
i<m,

where IA{?&") is the restriction of IA{E{T) to ng) ® VM c Vd(_ﬁ) ® VI (recall (11) and (36)), and

the notation [ ]™ means the restriction to the upper-left (n x n)-dimensional submatrix; this
notation will be used throughout the manuscript.

Lemma 3.1. When fi = n+ 1, in the space L") we have the equality of operators

[Téﬁ)(v, u(n))](n) — Tén)(V, u(n)) . (42)

Moreover, the space L™V is stable under the action of TCE")(V sut),

Proof. From (11) observe that
[REDM)]EP =6, E® —v 6500 B (43)

where [ ];; selects the (k,)-th matrix element of ﬁ(ﬁ’ﬁ) in the a-space; this notation will be

used throughout the manuscript. Therefore, for any 1 < k,I <n and any 1 € W(”) e W(n)

£ e (LM)°, viz. (37), we have
[TPw;u™)] -necel

—Z[ﬂ#mdmﬂ]n®“1WWW)ﬂ]KMAWE
pr

p.r i<m, i<m,
_ Z |: l_[ R(n n)(u(n) v):| nel ®5pl(v) £, (44)
p<n Li<m, kp

since s4(v) - £ = 0 by definition of (L™)°, and, by (43),

[ l_lﬁé’?f)mﬁ”)—v)] =6l
pr

i<m,

when r < fi because ( is a scalar multiple of Egﬁ) ® - ® E&ﬁ). But

[ PR —v)] W,
kp

i<m,
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when k, p < n only if the product includes [ﬁgj&ﬁ)(ug") —v)]ﬁr with r < n, but then it must also

include [ﬁg’iﬁ)(ugn) — v)]rﬁ which acts by zero on 7 since the spaces Vgl) have no E%ﬁ)’s. Thus

[HR(”")(u(”) v)] = [“R(“")(u(”) v)} neW”, (45)
kp

i<m, i<m,

implying (42). To prove the second part of the claim, notice that (L(™)° is stable under the
action of s,,;(u) with 1 < p,[ < n. Indeed, by definition, it is the subspace of L™ annihilated by
s;j(w) with1>n, j <fiand 1> j. Assuming 1 <1, j,k,l <n, (13) gives s;;(u)s;;(v) = 0 in the

space (L()° thus proving its stability. The stability of L") under the action of Tén)(v; u™)
then follows immediately from (44) and (45). O

Next, foreach k =n—1,n—2,...,2, we define a level-(k—1) nested monodromy matrix,

acting in the space L&D, by

T(Ek)(v; u(k...n)) l_[ R(k k)(u(k) ) [ Tékﬂ)(v; u(k+1,..n))](k) , (46)

i<my

where Tékﬂ) should be Tékﬂ) wheni=n+1 and k =n.

Lemma 3.2. Foreach 2 < k < n, the space L*=1) is stable under the action of T(Sk)(v; uk-m)y and
REO(y —w) TO (s u &) TO ; u®my = 70 (0 )y TE g ey RB ) — ) (47)

in this space, except, when i =n+1 and k = n, L* should be L*V and T should be T®).

Proof. When k = n and fi = n, this was shown in Proposition 3.13 in [12]. When k = n and
1 = n+ 1, the first part of the claim follows from Lemma 3.1; the second part follows from the
observation that

R (w—v) [AD @) ] [AP ) |® = [AP W) W [AD@) W R P (w—v),  48)

in the space L") and application of the transposed quantum Yang-Baxter equation (12).
The (48) follows from (21) or directly from (13) upon restricting to 1 < i,j,k,l < n. The
k < n cases then follow by the standard arguments. O

Remark 3.3. Lemma 3.2 together with (40), (41) say that Y*(gly,)- and Y *(gly,.1)-based
models, after the first step of nesting, are equivalent to Y (gl,)-based models with off-shell
Bethe roots given by v(1-"2) := y(1-m72) apnd vy .= (™ ™) in the even case, and
v(® := 4™ in the odd case. This property will be explored in Section 4.

3.4 Creation operators

We define a level-n creation operator by

. (”")(N(”) ulM)
gg(n)(u(n)):: l_[ (I-Elnc)ll( (Tl)) l_[ (f (~(n) (n)))5 ) “9)

1<i<m, i<j<m,

where

150 @™y = > EPY e By o [BRWM, € (Vi) © (Vi) ® End(L™),  (50)

kl<n
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and B((lﬁ)(ul(”)) is the B-block of the operator in the right hand side of (27). The R-matrices in
(49) are necessary for the wanted order of the R-matrices in (40), which in turn is necessary
for Lemma 3.2 to hold. The denominator is an overall normalisation factor.

From (49) it is clear that %(”)(u(”)) satisfies the recurrence relation

B (™) =M

Clmn amn

(uf) B\l 2D (WD u O\, (51)

where %(“)(u(”)\ugln)) is defined via (49) except the ranges of products are 1 < i < m,, and
i<j<m,,and
P (n ) (u(n) (n))
RO, M\ (MY .= l_[ Raa, M
" " Kkmxfwéﬂuﬁnﬁn
We will later meet operators %(”)(u(”)\u(n)) and %(ﬁ)(u(") u(”)\u(n)) for any [ that are defined
analogously except u( n) (resp. it N(")) should be replaced with u(n) (resp. u(”) )foralll <i < m,.

(52)

Next, for each k =n—1,n—2,...,1 we define a level-k creatlon operator by
K)o (k
<%(k)(u(k);u(k+1...n)):: l_[ I-flk)(ul(' );u(k+1...n))’ (53)
1<i<m;
where
K)o (k k k k
[( )(u( ). (k1 )Y = Z (E( ))* [Tcgk+1)(u§ );u(k+1...n))]7’k+l E(V;?))*®End(L(k)). (54)

1<j<k

Note that Té”)(ugn_l) :u™) should be replaced with T\ (ugn_l) ;u™)whenA=n+1.
Parameters of creation operators may be permuted using the following standard result,
which follows from (20); see Lemma 3.6 in [12].

Lemma 3.4. The level-n creation operator satisfies

%(n)(u(n))_ ,%(n)(u(n) ) (n i) ( (n) (n)) (n,h) ( (n) _ul(_n))‘ (55)

i—i+17" ;a4 l+1 diqd; l+1

For each 1 < k < n—1 the level-k creation operator satisfies

%(k)(u(k) (k+1.. n))_%(k)(u(k) (k+1 n))R(k ,k) (u(k) (k) (56)

1<—>l+1’ 1+1

Here the “check” R-matrices are defined by

k,k u k,k) o (k,k
RGP = — P PRG (), (57)
and ulH ;41 denotes the tuple u® with parameters u( ) and u(k) interchanged.
Recall the notation ¥ = —v — p and introduce the following notation for a symmetrised
combination of functions or operators
MY =fMM+f), (58)
and a rational function )
p(v) =1+ —, (59)
v—7

representing the right hand side of the symmetry relation (17). The Lemma below rephrases
the results obtained in [12] in a compact form.

11
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Lemma 3.5. The AB exchange relation for the level-n creation operator (49) is
{PMAP M} BW(™)
= BWW™) {p(m) TP (v;u™)}

1 V
et
i P(U ) -V o

v
) } B (n)(u(n) \ugn)) R (ﬁ)(ugn); u(n) \ugn))

x Res {p(w) T(”)(W u(”))} l_[“(n ) (u(n) (n))R(n ,A) (u(n) (n)), (60)

an ﬂa -1
j>i

)\, () . _ n) ._
where u( )\ui = (U, Ui1, Ujgq,- - -5 Uy ) and ugi) = (U, e U1, Ui 1, e o5 Uy, U)-

Proof. From [12], relations (19) and (23) and properties of the Q(ﬁ’ﬁ) matrix operator (viz. (8))
lead to the following exchange relation with a single creation operator

{pAPW} L(") W)= L(”) @™) {p(v) TO;u™)} 1)
1 p(v) ’ e (W
p(u(n)) { (n) —y |'didi(V)} WEeu?n) {p(W) Ta (W’ ui )} )

where Téﬁ)(v; ugn)) = }A{dia(ul(.n)—v)Rdl_a(ﬂgn)—v)A(aﬁ)(v). We extend this to the creation operator
for m,, excitations by the standard argument. Indeed, the right hand side of the equation
consists of terms with A(”)(u) as the rightmost operator, for u equal to each of v, u( ) . ug:)

and the corresponding tilded elements. Due to the w — W symmetry of {p(w)AEln)(w)}W in

(61), it is sufficient to find those terms corresponding to v, u( ) . (”)

First, we find the term corresponding to v to be %(”)(u(”)) {p(v) T(”)(v u™)}”. The re-
quired order of R-matrices inside TCE”)(V, u™) is a result of Yang-Baxter moves through the

R-matrices inside 28 (u™). Using factorisation (51) we find the term corresponding to ugf)
to be

4
1 p(v) . )
{0, 0] AR D R )T

(62)
This is because, after applying (61) to [g;) i, (ugr’l?), there can be no further contributions from
the parameter-swapped term in the subsequnent applications of (61).

To find the remaining terms, we note that Lemma 3.4 allows us to apply any permutation to
the spectral parameters of the level-n creation operator before applying the above argument.
By applying the permutation o; : (1,...,i—1,i,i+1,....m,) — (1...,i—1,i+1,...,m,,i),
we obtain the term corresponding to u( ). O

The Lemma below states Y (gl;,1)-based column-nested AB and DB exchange relations.
They follow from Lemma 3.2 using standard arguments, see e.g. [5].
Lemma 3.6. The exchange relation for the level-k creation operator (53) is
[Ték+1)(v; u(k+1...n)):|(k) %(k)(u(k); u(k+1...n))
— W (R, yy (k+1..m)y T(k)(v; u k)

1 (k) k+1..n (k) ., (k) (k) u (k1)
+>. o Ly, (s BOUO )

X Res T(k)(w (u(k) (+1.. ”)))l_[R(kk) (u(k) (.k)). (63)

W=, j>i

12
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Moreover,

k+1 . k+1...
[Té Dy ult n))]k+1,k+1

— %(k)(u(k); u(k+1...n))f—(v; ll(k)) [T(k+1)(v; u(k+1...n)):|

B (B, k10

K 1,k+1
1 100 et Tny (k) (g (0 (O, (k1)
+ E (k) (v;u ) B (U \y; )

Clk
-V

X Res f (w; u(k))[T(kH)(w y (k1 ”)):|kJrl 1 l_[R(kk) (u(k) (.k)). (64)
J =

w—>ul j>i

Here we used the notation

«—

k k), (k k), (k
gg(k)(u(k)\ul( );u(k+1..4n))= l_[ [( )(u() (kt1..n)y l_[ ()(u§+)1’ (etn)y
1<j<i % i<j<my
3.5 Bethe vectors
Recall (28) and define a nested vacuum vector by
mi= (B e @ (BT V)P @ (BSY)Pm o (Bf) "™ @ . (65)

Note that E(n) E("H) when i = n+ 1. For each 1 < k < n we define a level-k (off-shell)

Bethe vector with (off-shell) Bethe roots u*%) and free parameters u*+!--" by
\I,(u(l...k) | u(k+1...n)) = l_[ %(i)(u(i); u(i+1...n)) . ,r)m ) (66)
i<k

We will say that vector n™ is the reference vector of this Bethe vector. Note that, by construction,
W(u-0 | yk+1-m) e 1) except when A=n+1and k =n—1, ¥(u-"D |uM) e LD,
The Lemma below follows by a repeated application of Lemma 3.4.

Lemma 3.7. Bethe vector U(u(®) |u®+1-1) is inyariant under interchange of any two of its

0] ®

Bethe roots, u; * and u; , for all admissible i, j, and l.

The last technical result that we will need is the action of s3;(v) = [SC(IN Y(V)an, viz. (27),
on a level-n Bethe vector, when i = n + 1. It is motivated by the following relation in
Y (glye) (v ) for 1 <k <n:

p(v)

$aa (V) sial) = £ (v, 0) £, u)skn(u)s,m(v)—{ skn(v)} Saa(u).

We postpone the proof of the Lemma below to Section 4.3.

Lemma 3.8. Whenn=n+1,

spa(v) \p(u(l...n)) = (v, u(n))f+(v’ ﬁ(n)) pa(v) \I—’(u(l"'"))

v
p(v) (N (). (1) -
' Z p(u(n)) { (m_ v Ldm"dmn(v) %(n)(u(n)\ui ) z%(n)(ui > u(n)\ui )

i

x Res f(w,u™)f*(w, ™) pp(w) L [ul). (67)

W—>Lli
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3.6 Transfer matrix and Bethe equations

We define the transfer matrix by
T(v) :=tr, (M(EN)S((IN)(V)) =tr, (agﬁ) I:MCEN)](ﬁ){p(V)A(aﬁ)(V)}V) s (68)

where M®) = =>¢ E; ™) with g; € C* satisfying ey_;,1 = €; is a twist matrix, a solution to the
dual twisted reﬂectlon equation

My ) R =) MM @)« RN (v —w)
=Ry — 1) MM ) RV w—5) M), (69)
ensuring commutativity of transfer matrices, see Appendix A.2. Here t denotes the usual
matrix transposition. The right hand side of (68) follows from the symmetry relation (23);

the a is a diagonal matrix with entries a; = 1 for all k except a; = 1/2 when fi = n + 1,
which resolves the double-counting of s;4(v).

Theorem 3.9. The Bethe vector ¥(ul™) is an eigenvector of (v) with the eigenvalue

A3 uTD) =Y e O T u ")}, (70)

k<h

where p(v) is given by (59) and

L(vsu®") = f~ (o, u® ) Fr o, u®) e (v), fork <, (71)
and
L (vs (Y = Fmu ) o, u™) v, a™M) p,(v), whenfi=n, 72
e =, u™) FH,a™)u,(v), wheni=n+1,

provided Re(sk) A(v;u™M) = 0 for all admissible k and j; these equations are called Bethe

v—ou.
J

equations.

Proof. When i = n, this is a restatement of Theorems 4.3 and 4.4 in [12]. We will briefly
recall the main steps of the proofs therein. They will provide a backbone of the proof of the
more complex i =n+ 1 case.

The i = n case. We start by noticing that

| | R(n ) 1(u(n) (n))REInan)l(u(n) (n)) \I’(u(l"'n_l) | u(n)) — \I/(u(l“'n_l) | u((;)) i (73)
J J 1
i<j<m,

where ug? = (u,--,Uj—1,Uj41,---, Uy, 4;). This identity is a consequence of Yang-Baxter
moves and the identities
ROD @ —uymm=nm,  RED @ —u™) ™ =m, (74)

aal

which are computed using (43) and (65).
Next, using (66) and (68), we write

T(V) \Il(u(l"'")) =tr, ([MCEN):I(H) {p(v)A(an)(v)}V %(n)(u(n))) \I—’(u(l"'n_l) | u(n)) .

14
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Lemma 3.5 allows us to exchange {p(v)AEI”)(v)}v and 8™ (u™). Applying (73) to the result
gives

(M) T(u) = BWW™) 7 (v;u™) e ™)

\4
p(v)
+2, (n) { m Lo 4, (v)} AOuN\")
: p(u ) —vy n n
W, . (), ) (1..n=1),,(n)
x B (w5 u\u; ) Re%l) Tw;ug ) (ut " ug), (75)

W—>ui

where
t(v;u™) = tr, ([MM ] {p(r) T3 u™)}),

is a nested transfer matrix. It remains to compute the action of 7(v; u™) on the nested Bethe
vector ¥(u-"D|u™) e L"), By Lemma 42, this can be achieved using Y (gl,,)-type nested
Bethe Ansatz techniques assisted by Lemmas 3.6 and 3.7 leading to the eigenvalue (70) and
the corresponding Bethe equations.

The i = n+ 1 case. In this case we can not apply Lemma 3.5 directly since this would lead to
the following nested transfer matrix

t(v;u™) =tr, (aflﬁ) [M(EN)](ﬁ){p(v) Téﬁ)(v; u(”))}v)
—r, ([MgN)](”){p(v) [T (w; u(n))](n)}V) 1 Eﬁ{p(v) (1O u™] }

However, the space L™ is not stable under the action of [T(")(v u(”))] This is because
[TCE”)(V, u("))]ﬁf1 has operators [Rgzan)(ugn) )] with j < n that map E(n) S VZi to Egn).
Therefore, the right hand side of (60) would no longer represent a sphttlng 1nto “wanted” and
“unwanted” terms. A resolution of this issue is to single-out the operator s;;(v) from the very
beginning. From (14) we know that s;;(i1) = spa(u) giving {p(v)spa(v)} = 2s54(v). This
allows us to rewrite the transfer matrix as

t(v) = tr, ([M® ] {p () [AD W)W} ) + £.534(v). (76)

We can now use Lemma 3.5 to exchange {p(v) [A(aﬁ)(v)](”)}v and 2™ (u™), and Lemma 3.8
to compute the action of s;,(v) on W(u~™). This gives an expressions equivalent to (75)
except the nested transfer matrix is now given by

o5 u®) = r, (MO {p(r) T3 w0} ) + 25 £ (v, ™) £ (v, 800 g (0).

Here we invoked Lemma 3.1 to replace [Té”)(v; u("))](") with Tén)(v; u™). The remaining

steps are the same as in the 1 = n case. O
Remark 3.10. Let (q; ])” denote Cartan matrix of type A,. Let (b;;)} i1 denote a zero matrix
when 1 =n+1 and let b,m =2, by_1,n = by n1 =—1, and b;; = 0 otherwise, when fi = n. Set
mg := 0 and z(k) g.k) — E(k — p). Then Bethe equations can be written as, for each k < n,
ﬁ ﬁ Z(k) (l) + akl (k) + Z(l) +n+ %bkl 8k+1 Uk+1 (u(k))
LR MO (1) “lg, (k) P T )
z](") F(n+1) l_[ ﬁ z(") (l) +3ay ﬁ ﬁ z(n) +z(l) +n+1by e ,un(u("))
1 1

](n) 2( _1)1 n—1i=12% ](n) i() é anl 1=h—1 i= 12(71) () lb €n .U'n(u(n))

(78)

15


https://scipost.org
https://scipost.org/SciPostPhys.17.5.126

e SciPost Phys. 17, 126 (2024)

3.7 Trace formula

Define the “master” creation operator

Ay =[] ] 1 ) 500

ken j<i £, ul) (Fr @, al))onn

N0, () 0 W) (F) SN () (D)
[ [ R (@ ')l_[(sa’? @ 1] R (@ —u; ))

(k)= (L) ) (k,i) ' (ki)-1j) 7

X(E(N) )@mn®...®(Eg¥))®m1:|’ (79)

n+1,n

where (k,i) > (I,j) means that k > [ or k = [ and i > j, and the products over tuples are
defined in terms of the following rule

[T=1T11-
(k,i)  k<n i<my

In other words, these products are ordered in the reversed lexicographical order. The trace is
taken over all ag‘ spaces, including a;', which are associated with level-n excitations. Note that
(k,1) is fixed in the third product inside the trace. Diagrammatically, the operator inside the

trace is of the form

where X = Rafqé(ugk) - ug.l)), X = }Alaﬁaé(ﬂl(‘k) — ug.l)), and v = Saf(ugk)).

Example 3.11. The “master” creation operators of low rank:

1
513(“ )Szz(u( ))
o _ -~ ’
Uy "=y

By) = s, Bal? w5 = 510 510l +

2 1 1 ~(2 2 1
52455y @ =8P 4 1) 515?50 @)

By, u'?) = 505?51,V +

1 _~2 (1 @y, D) _ ~(2)

U " —uy (uy " —uy )y =)
2 1 2 1
313(“5 ))Szz(ug )) 525(u(1 ))Ssz(u(l ))

B, u'?) = 505 (P) s1,WV) +

+
u(11) _ ”(12) u(11) _ ﬁ(12)
2 1

+ 314(11( ))ng(u( ))
(u(ll) (2))( (€Y ~(2))

Proposition 3.12. The level-n Bethe vector (66) can be written as
\IJ(u(l“n)) — %N(u(l...n)) .. (80)

Proof. First, notice that R-matrices R(N N)(u(k) (.k)) in (79) evaluate to f +(u§k) —ul(k)) under

l

the trace. This cancels the first overall factor in (79). The second overall factor is the choice of
normalisation in (49). Next, let Va(N ) and Vb(N) denote copies of CN. Then, for any ¢ € (L()°

and El.(N) ® E](.N) S Va(N) ® Vb(N) with 1 <i,j < n, we have

QN EN g BN — o,
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Q(NN)S(N)( ). E(N) E(N)®C ZQ(NN) E(N) EJ(,N)®Ski(V)C=0~

Thus ﬁif;lf)(ﬁgk) — ugl)) with 1 < k,l < n act as identity operators in (80). This gives an
i%

expression analogous (up to Yang-Baxter moves) to that in Proposition 4.7 of [12]. The N = 2n
case then follows from that proposition. The N = 2n + 1 case is proven analogously. O

4 Recurrence relations

4.1 Notation

Given any tuple u of complex parameters, let (u;, uy;) - u be a partition of this tuple and let
up g :=uy Uuy = u. Assume that 1 <k < |u] and set

Dlfw)= > fu\ gy, .u)),

luy|=k i1 <ip<--<iy

for any function or operator f. We will use a natural generalisation of this notation for any
partition of u. For instance, for (uy, uy;, uy;) - u we have u; ;; = uy Uuyy, uy i = uy Uuyy, ete.,

and e.g.
DT Fugw) =" > Fluy, ) g\ (g, gy, 1))
[u[=1 |ug|=2 J h<iy
£, iaF]

We extend the notation above to partitions of tuples u(’™ by allowing empty partitions.
The empty partitions will be the ones that are missing from the expressions. For instance, an

expression of the form
> f) g™,

lug 1=k
i<r<n

will mean that u(l) = ul(ll) @ so that ul(l"'") =@®,...,ud, u(lH) . uI(")). We will

also use the notation |u111)| = 0 meaning uI(IrI) =0.

Q)

ur | = 1 and the notation

The notation |uII III| = (k,1) will mean that |u; r)l =k and |u
|lu (”)l = (k,1) will mean that |u(r)| =k and |u(s)| =1 so that

> eXN.om X =% 3

il =) g 1= g |=k g l=d) g |= g |=k

(rs)

ILIII will not be used.

A notation of the form u

4.2 Recurrence relations

We will combine the composite model method and the known Y (gl,,)-type recurrence relations
to obtain recurrence relations for Y*(gy)-based Bethe vectors. The composite model method
was introduced in [24]. For a pedagogical review, see [32]. Recurrence relations for Y (gl,,)-
based Bethe vectors were obtained in [20]. We will need the following statement which follows
directly from those in [20] recalled in Appendix A.3. Recall the notation (32) of rational
functions.

17
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Proposition 4.1. Consider a Y (gl,,)-based Bethe vector &(v@-m=1 |y (M) in the quantum space

Va(;l) ® - ® Va(ln) ® L(A), (81)

with Va(.”) & C", a finite-dimensional irreducible Y (gl,,)-module L(A), Bethe roots v(1"~1 and
inhomogeneities v associated with spaces VCI(TI). Set

A (z; v(l"'”_l)) = f(z, v(k_l))f+(z, v(k)) Ar(2). (82)

An expansion of (v | v(™M)Y in the space Va(”) is given by

— 1.. 1
CI)(v(l"'n 1)|v(n)): Z Z l_[ (k 1) (k) (n)®¢( 1..n— )| I(n)) (83)
—V

1<isn),(Oj_pi<ksn Vi 11
i<r<n
where v(n) v(”) and v(r) 0 for all 1 < r < i so that v(1 M=,y V(l) "vl(n))'

Corollary 4.2. An expansion of Bethe vector ®(v1-"~1 | v(M) in the space Va(”) ®Va(”)_1 is given by

k—1 k k—1 1.. 1.. 1
Z Z l_[K(v( ) I(II)H)Ak(v( ), I( n))E(n) (n)®<1>(v( = )lv(n))

1<i<n |V1(1r,1)11| (2,0) i<k<n

i<r<n
Vim V1 j— .n—
+ Z Z Z l_[ OV A (v )

1<i<jsn, Oy, Ojopi<k<i  Vm T Vi

i<r<n j<s<n

k—1 1..n—1 k—1 1. 1
AT A s v

< |1

k—1 (k k—1
j<k<n (V( ) ~ Vi ))(VI(II ) vIII))
G- ()
frug vy ) (m 1 () o o) (1.n=1) . (n)
X(WE ®E m 7 ®E ®<I’(VI |VI ), (84)
I I I 11
where vI(I'Il) = v(”), vI(I) = v( n) ', and vI(I'i) = v(r) =@ forall 1 <r < iin the first sum and

vI(IrI) = vI(Is) @forall1<r<iand1 <s < jin the second sum, and

l_[i (ul—v1+1) 1
K(ul|v):= el det ( ), (85)
]_[Kj(ui—uj)(v —v) i \(u;—v)(w;—v;j+1)
is the domain wall boundary partition function.
Proof. Applying (83) to ®(v1-"= | y(M) twice gives
(k=1),  (1..n) - 1...
My v ™) A(vy (=0, (-1 ® 86
Z Z Z l_[ MCVEN0) l_[ (z O] > (86)
1<ijsn, O pOpi<ksn - Y TV j<isn Voo TV

111
i<r<n j<s<n

where vI(IrI) = (S) =f@foralll1<r<iand1<s<j,and ®;j = Ei(n) ®El.(n) ®<I>(v1(1“'"_1) | vl(n)).

Cases i = j. Notice that
k— — . (k= k— k— k—
Ak(vI(II D). vI(}I n)) =f (v( D) vI(I 1))f+(v( 1 v ))Ak(v( 1) 1 n))

111 111 111
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and
—r. (k—1) _ (k-1) (k—1) (k—1) _ (k—1) (k—1) _ (k)
[~y vy D) f vy vII ) fvy vy DfTvy vy ) K(v (k— 1)| ()
(k=1) _ (k) (k=1) _ (k) (k=1) _ (k) (k=1) _ (k) Vi 1L
Vi v vy ) (v Vi )V )

These identities allow us to rewrite the i = j cases of (86) as

(k=1) (k) (k—1), (1 .n)
Z Z l_[ Ky Vi) Ay 5 v ) @iz,
1<i<n |VI(I’:I)II|:(1 1) i<k<n

i<r<n

giving the first sum in (84).

Cases i < j. Since V =) for s < j in (86) we have
k=1). (L. k=1). (1. .
Ak(vl(n )’ I(II n)) =A (VI(II ), I( n)) for k <7,
and

(-1, ,,1..n) G-1 _ () ] 1) 1
AJ(VIIJI vlnn):f+(v11]1 ’vIIJ )Aj(vII]I n))

allowing us to rewrite the i < j cases as

> 2 2 T === o v

1<i<jsn ), Oy 0= i<k<) Yim "~ Vm

i<r<n j<s<n

k1), . (1. k—1). (1. i ;
Ak(V( ) ( n))Ak(vl(II ). vI(II n)) f+(vI(IJI 1) (J))
<] NN N R IO 87)
j<ksn (vyp v ) vy —v) Vir "~ Vm

Cases i > j. Interchanging indices i and j in (86) gives

(k— 1) p L=
DD e R

1<1<]<n| HSI)I 1|v(r)| 11<k<] 11 II
j<s<n i<r<n
k—1 1. k—1 1.
y LS e LV T D )
X __
k—1 k k—1 k j—1 j) It
j<k<n (vy (D ())( I(II ) 1(11)) VI(I] )_VI(IJ)

Since i < j we can rename v by vIII for i < r < j and combine the result with (87). This
gives the second sum in (84). O

Example 4.3. When N = 3, expansion (84) of (v |v®) is
2),.3 2). (1,23
(bll + Z K(VI(I ) | vI(I,I)II)A?J(vI(I ): ( ))4)22
viP1=2

1 2 2 3 1 1,2,3 2 ,2,3
+ > KOPIVKEP ) A v a0 v ) g
v ?1=(2,2)

+(p@ 3
@, 029, (£ 0wV 1
+ 5 sy, )( e atieg gt
|Vm)| 1 111 111 111 II
1), ,,(1,23) 2 ,3)
L0 @ s @_,@ e 6)
v =(1,1) 111 111

m Vi m Vi
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(2) 1 ,2,3) 2)...(1,2,3)
A (D), (1 2,3) A3(VII v )AS(VHI ) v[ it )
+ Z Z 25 v ) (2)

w3 =(1,1) p®)=1 (v = vy ))(VI(IZI)_VIII )
x (f+(VI(IlI)’vH L gyt —— )
vl(Ill)_vI(IZI) - 1(111)_"1(12) v
where vI(I:’;) = vr(f), vI(IB) = vr(fg)_l, and v1(121) = v1(111) = vl(Il) @ in the first sum, vI(IZI) = v1(111) f in
m_ @ _ @ _ (2 _ 0 _

the second sum, vy, 0 =V = { in the third sum, v =v = f in the fourth sum and

vl(ll) @ in the last sum, and ¢;; = E(B) ® E(S) ® <I>(v1(1’2) | vl(s)).

=v 1

We are ready to state the main results of this section, recurrence relations for twisted
Yangian based Bethe vectors. The even case follows almost immediately from Corollary 4.2.
The odd case will require additional steps which are due to the E(”) E("H) factors in the
reference vector n™

Proposition 4.4. Y*(gl,,)-based Bethe vectors satisfy the recurrence relation

k— k k—
\I/(u(l n))_ Z Z l_[ K( ( 1) I(II)II) Fk( ( 1) 1 n)) 512n 1+1(uIII))\II( (- n))

<i<
1<i n|u1(1i1)11| (2,0) i<k<n

i<r<n

b (D, -y b
m_ Y (G-, (L
+ Z Z Z l_[ k=1 _ ,(® Giug, up ™)

1<1<]<n| (r)l 1|u(5)| 1i<k<j U 111

i<r<n j<s<n

k—1). . (1... k—1). (1.
Fk(u( ) ( "))Fk(ul(n )uI(II n))

(k 1) (k) (k-1) k)
(u )(ugy um)

< |1
j<k<n
G- _ 0
f+(u1H > Uypp ) 1 1.
X( G- _ () Si,2n_j+1(ul(g))+ G-1) (j)sj,Zn—i+1(uI(ﬁ)) \IJ(UI( n)):
u u —u
111 111 111 II
(89)

where ul(ﬁ) = (") uI(I") S and u(") = u(“)\u(n) forany 1 <j<m,, and uI(IrI) = uI(Ir) @ for
) _ () _

al1<r<iin theﬁrst sum, uyy =uy” =@ forall1 <r <iand1<s < jin the second sum,

and Fk(ul(ﬁ . uﬁl ™Y when k = n denotes f+(ul(ﬂ D T )y 1 (uI(I'} . 11 )y,

Example 4.5. When n = 2, the recurrence relation (89) gives

2 1,2 1 2 1 1,2 2 1,2
W) = sy w )+ > K [uF ) B uP) s w?)
luf?=2

(1. . (1,2) f+(”1(111)’u11) 2 1 2) (1,2)
+ >, L su )| i s i) + g s2e (i) | ¥ M), (90)

- _ _
|u1(11) |=1 I 111 111 II

where u1(121) = uSz), uI(IZ) = ﬂgz) and uI( = u(z)\u( ) for any 1 < j < m,, and uIII = () in the first

sum and uII = () in the second sum.

Proof of Proposition 4.4. By Lemma 3.7, it is sufficient to consider the j = m, case. Recall
(51), (66) and consider a level-(n—1) vector

2D W uNu@) (- [ u ™). (91)
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With the help of Yang-Baxter equation we can move operator %(")(u(”) (")\u(")) all way to
the reference vector n™. As a result of this, the level-(n—1) nested monodromy matrix (40)
factorises as

p(,h) p(h) ~ )y,

Rdmna(ug’;) - v)Rdmna(ug’fg —v) Té”)(v, u(”)\ugl?) . (92)
Since %(ﬁ)(u(”)' u(”)\u(”)) n™ = n™ when fi = n, we may view vector (91) as a Y (gl,,)-based
Bethe vector with monodromy matrix (92) and apply expansion (84) in the space V(") ® V(n)

n

Recall (50), (71), (72) and act with Lg“) i (ufg)) %(”)(u(”)\ug’;)) on the resulting expression.
This immediately gives the wanted result. O

Proposition 4.6. Y *(gl,,,1)-based Bethe vectors satisfy the recurrence relation

Fk(u(k 1),u(1...n)) » L)

m 1

vy = 35 [T A el )
I<isn |, (r)l pi<k<n U T Upg

i<r<n

Fk(u(k .y (1...n)) Fﬁ(ul(ln); (1...n))
+ 2 2 R R )
1<l<n| (r)l 1i<k<n II I III
i<r<n
T PO |
X( - (n-1) _ - (n) l"+1(u111 ) +sp n+l+1(u111)))‘1’(u1(1 n))
Uy I

N Z Z Z l_[ T (u(k n. I(1...n)) K(ul(f—l)ml(llfl)n

<i< <
1<i Sny I(Ir,%lll (2;0)|u1(1n)| 1i<k<n
i<r<n

1.
a5l

1..
(n) - (n) S; 21— l(uHI))le( ¢ n))
Uy~ — Uy

(k=1), }, (.m)y

+ Z Z Z l_[ Fk(u(lli] 1)’ul(k) _r}(ul(lj'l—l);ul(l...n))

1<i<j<n 0oy Oz i<k<j  Um T Um

i<r<n j<s<n

k—1 1... k—1 1..
Fk(u( ) ( n))rk(( ). ( n))

X | | = (k) - 1111) ‘2(;1 i n(uI(I,fI_Hl);ul(lmn))rﬁ(ul(ln);ul(lmn))
j<k<n (uH )( HI HI)
X [((ﬁo + %)W + 51 B ;)si,Zﬁ—j(ul({?)
v/ oD 2y U7y )
+(&.M+(ﬂo+ﬂz);) )
2Y uI(I]I 1) uI(I]I) 2'}/ uI(I]I 1) uI(I]) ]2n i\Hyn

x Wy M), (93)

where (n—1) _ (n—1) (n—1) ~(n)
By = f_(unr; an )f+(u112 ﬂII’;) ’
(uI(In_l) ~(n))(u("l 1) _ (n))(u(n) ~(n))

Uy Ny Uy I
(n—1) (n) (n—-1) _ ~(n)
Uy Uy (n=1) =~ (n) U~ — U
b= —w (“II —ly + 14 —(n—l) ) 94
Uy ~—Up Uy
(n—-1) _ ~(n) (n 1) (mye,, (1) _ ~(T1)
B :f+(u(n D, (n)) up =iy (g g )(ugy ) +1
2 w1 _ w1 _ ’
Uy il 11 11


https://scipost.org
https://scipost.org/SciPostPhys.17.5.126

e SciPost Phys. 17, 126 (2024)

and
— (=D _ =)y (n=1) _ ~(n)ye (n—1) (n)yc,, (n—1) (n)
y= Gy =g )y =l )y =gy )y =), (95)
and ul(ﬁ) = ug.")for any 1 < j <m,, and uI(IrI) = ul(f) =fQforall1<r<iand1<s<ninthe
first sum, uI(Ir) = ul(fl) =@foralll1 <r <iand1 <s < nin the second sum, uI(Ir) = ul(fl) =0 for

all1<r<iand1<s<nin the thirdsumandul(lrl)=u1(f)=0forall1Sr<iand1 <s<j
in the last sum.

Example 4.7. When n = 1, the recurrence relation (93) gives

r(u®; u®

1 1 > 1 1
W) =) Ve + D =g sl ) ¥, ©0)

=1 U T Um

where u1(111) = ug.l) for any 1 < j <m;. When n = 2, we have

1), (1,2)
L(uy s u
2 1,2 208 > ¥y 2 1,2
\I/(u(l’Z)) = 523(u1(11))qj(u1( )) + Z 8)) _ 2 513(uI(II)) \Il(ul( ))

D=1 Uy — Uy

1 1,2 2 1,2
+ Z Fz(ul(l)ﬂll( ))Fs(ul(l)ﬂll( ))
u® _q®
lu?|=(1,1) I I

1 ()
f+(uII > Up ) ) 1 @) (1.2)
( (1) 2) sl4(uIH )+ 6 ) SZS(u[H ) \I”(ul )
Uy — Uy Uy —uy
.. (1,2 2) (1,2
Z Ll u) T ul™)

2) _ ~(2)
L e

1.2 2 1,2
K(uI(I ) | uI(I,I)II) 515(”1(11)) \P(ul( ))

luf ) =(2,1)
(2, ()
G(uy 5 u™) 2 1,2
Z 2 =2 524(”1(11))\1'(“1( ’ ))’ (97)
u®=1 U T Wm
where u1(121) = u§2) forany 1 < j < m,, and u
1) _

1(11) = uI(I2 ) — @ in the first sum, u1(111) = () in the

second sum, uy; = @ in the third sum and ul(lll) = ul(ll) = () in the last sum.

The technical Lemma below will assist us in proving Proposition 4.6.

Lemma 4.8. Let \I/j(u(l“'”)) denote a Y (gly,,1)-based Bethe vector with the reference vector
n;” = (Eg))djnm. Then

Fﬁ(ugn), u(@-m) \ugn))

1
\I/-(u(l'“”)) — \Ij(u(l‘..n)\u(.ﬂ)) . (98)
j
1;}_ u§n) . ugn) +1 l_[k>jf+(u(kn)’ ugn)) i
Proof. Recall (49) and consider level-(n—1) vector
[ TR =y w2 1u). 99

j>1

With the help of Yang-Baxter equation we can move the product of R-matrices all way to the
reference vector nY". As a result of this, the level-(n—1) nested monodromy matrix (40) takes
the form

[ [REP@™ -] [REP@ - REP @ - vREP @ —v)aAD).  100)
i>1 i>1
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In the space L™ it is equivalent to Té”)’ (v; u(”)\u(ln)). Next, recall (65) and note that

[REDG ) n = 5, aN) aon
j>1

Hence, vector (99) can be expanded in the space Va(lﬁ) ® Vd(lﬁ) as
£ a\a@ M) B @ B @ wy (w7 [uM\u(Y). (102)

From (50) note that [E:)iil(v) . Egﬁ) ® Egﬁ) = 544(v). Defining relations of Y (gl,,,.;) imply that

Sﬁﬁ(u(ln)) l_[ %(i)(u(i); u(i+1...n)\u(1n)) — l_[ %(i)(u(i); u(i+1...n)\u(1n))Sﬁﬁ(u(ln)) +UWT,
i<n i<n

where UWT denotes “unwanted” terms, all of which act by 0 on n7". We have thus shown
that

\Ifl(u(l'“”)) — %(n)(u(n)\ugn)) Lfirllzil (u(n)) l_[R(n n)(u(n) (n)) \Ill(u(l"'n_l) | u(n))
j>1

= ) f (@, @) W) (103)

This gives the j = 1 case of the claim. Then, using Yang-Baxter equation, Lemma 3.4, and the
identity

+ W Wy g - (1) (n) g o, _ 0
M = TG g )R 5 (W —w )R 6 (w7 —u )y +W”§"’
Ui — Y
we find
1
1...
+ (u(l n)) f+(u(n) 51)1)\11 (u((n) n) (n) )+ (n) o) \Pj(u(l...n))' (104)
Ujpr — Y
A simple induction on j together with Lemma 3.7 gives the wanted result. O

Proof of Proposition 4.6. The main idea of the proof is similar to that of Proposition 4.4.
We start from the level-(n—1) vector (91) and move operator %(")(ug);u(”)\ug)) all way

to the reference vector n™. In the odd case Egﬁ) = Eé"H) giving (recall (52))

I | f+(u(n) ~(n)) o
() () (W, (WY, ym _ om j<k<m, (A,A) . m
R (|, w P \ug 1) - ™ =1 +§ OO Pygon™. (105)

j<my

Hence, in the odd case we can rewrite (91) as

. l_[‘<k< f+(u(n) ~(n))
g (D [u) 4 Y T (D ™), (106)

j<m, j umn

where \ilk,l and \ilk 1;j denote level-(n—1) Bethe vectors based on the transfer matrix (92) and
reference vectors (E(”))a (E("))a n™ and (E(n))am (E("))am (E (”))a n™, respectively.
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Consider the second term in (106). Acting with %(”)(u(")\ufg)) and applying Lemma 4.8
gives

Z l—[ +(u(n) ~(n)) F(u(n) (1.. n)\(u(n) (n)))
s £ ) @ 4 1) )

x BN, ul)) b o (@D P\, (107)
Using the identity

f + (u(n) ~(n))

1 1
= [1 &g am®
1

Um,  i<j<m, (uﬁn) —Ugn) + 1)(u§~n) - ﬁgﬁ?) j<k<m, f+(uk > U; )

which follows by a descending induction on i, expression (107) becomes

). (n) (n) (n)
Ga(u; 5w\ (w5 ug))
B (™ () (Mg (1..n=1) | ., (W, ()
>, 0 @™\ @™, 1)) by 5 (u lu™\{™). (109)
( o

i<m,

Thus, acting with L((.I”) p ™) 2™ (u™\u) on (106) we obtain

\p(u(l...n)) — Lgf;)ndmn (uggg) (%(n)(u(n)\ugllj)\ijz’l(u(l...n—l) | u(n))

(n) u(l n)\(u(n) (n)))

* Z D

i<m, i m,

x B W\ (@, ul)) ¥y (w7 | u(">\u£”))) . (110)

We will view vectors ‘i’2,1 and \i/z,z as Y(gl,)-based Bethe vectors and apply Y (gl,)-based re-
currence relations.

First, consider vector \ifz,z. Its reference vector is annihilated by the (j,1)-th entries of the
monodromy matrix (92) satisfying the condition i < j. Hence, we may use (84) to obtain an

expansion in the space V(") V(") Taking ul(ﬁ) = u(") the second term inside the brackets of

(110) becomes (we have smgled out the i < j=n terms for further convenience)

Z Z Z l_[ K(u (k D) I(IkI)H) Iﬂk(u(k D, I(l...n))

<i<
1<i <ny I(Irjn| (20)|u1(1n)| 1i<k<n

i<r<n
(n). (1 .n)
FA(u ) )
ks S S EM o EM @ w(u") (111)
n _ ~m
Uy uIII

k 1 k ~
1<i<n |uI(Ir)|:1 i<k<n uI(I ) - 1(1 ) uI(In) - uI(Ir?
i<r<n
(n—1) ~(n)
fruy i) () O 1 () (R) (1..n)
x( CEVO) E;"®E, —u(”_l)— ~(n)E ®E | @ ¥(u; ) (112)

Uy Uy i U
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(k=1). . (1..n)
Gelup, Sup ) (G-1).. (1..n)
+ Z Z Z l_[ (k1) _ Tilugg Sup )

1<i<j<nyyO)=q [u)=1 i<k<] m M

i<r<n j<s<n

k— k— —
ey o) Gy 5wy ™) TCotgs ) ey ™)

<11

k—1 k k—1 K N
j<k<n (uI(I ) uI(I ))(uI(II ) uI(II)) uI(In) - ul(ﬁ)
—r,, (n=1) _ (n—1) (n—1) ~(n)
y fluy Cuy ) (ugy L dg)
(n—-1) _ ~(n) (n—1) (n)
(uy =g uy " —ugy)
Pl 0y ) o
x fm—“ ENep®y — = W™ | g wu™"). (113)
u(l—l) _u(J) [ J u(J—l) _u(J) ] 1
1 il I i

Next, consider vector \ifz’l. This time we can not apply expansion (84). Instead, we will

use the composite model approach to obtain the wanted expansion. Set L' := Vd(ﬁ) ® Vc.i(ﬁ) and
L= Wé@ ® W(Rl()l ® (LM)0 5o that LD 2= [ @ L!. Recall (54) and set

A )= D E T @ RO (v —ufO RN =],

j<n

L) = TS u D], -
The cases when k = n, 71 will be denoted by

@)= @), 0= 00, PO =0, Te)=[o),

so that

1D su®y = L)+ 0o+ S .
' k<n ’ ! !

This notation is reminiscent of the Bethe Ansatz notation commonly used in the composite
model approach only \/2“—1 is an additional creation operator specific to the case at hand.
i

Consider the |l-labelled operators. Their action on the reference state Egﬁ) ® Egﬁ) e L' is given
by

1

I () o () _ Z (n—1) A o ()
La{ifl(v) . E2 ® E1 - (Tl) (EJ )2{171 ° EJ+2 ® El )
! - umn j<n ¢
I OPON (n—1) 1 A o p(A) |, oA o p(R)
yart ) B @ B = 2 )Zrl-l( o Ein®E tE"® Ej+z),
t v—umn j<n t v—umn

I I () (") _
F—l(W) La?—l(V) : Ezn ®E1n =

1 (—Dye =Dy«
v 2 T B

w—a) v —u) 52,

1 ) o () | () o ()
X ( 0l B ®E HhtE L,®E 5.
W—Up’
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The products L”H(v) L”n (),

- 1] (V)
g Vi «/ «/
(") ® E(“) The homogeneous (aa and bb, pp) exchange relatlons of the ll-labelled operators
are analogous to (55) and (56), respectively. The mixed (ab, ap, bp) exchange relations have
the form

| (),and " _ (w) - 1(V)|_”n ,(u) act by zero on

n ,N— 1 n LI
e ) (0 = s (0 s IRGE e P+ — ") A L@ phY.
u—v 4 j a;

J !

Consider the I-labelled operators. The dc, cb, db exchange relations have the form

') @ =m0l @re + —— 0w

The standard Bethe Ansatz arguments then imply

l_[ (n— 1)(u(n 1) (n)) E(n) E(n)®q,(n 2)(u(1 n— 2)|u(n 1n)\u(n))

B |:E£”) oF"e 1_[ Lo (") (114)
(Tl 1) (n 1)\u(n 1))
(1) () (n—1)
+Z (n 1) _ (n) ZEk+2®E1 ®(Ek )Z;H
my k<n
]_[L'“(u(” ") (115)
i#j
(n 1) (n 1)\u(n 1))
1 () @ g | g1 g g®
+Z (n 1) ~(n) Z (n 1) ()Ek+2 E2 +E2 Ek+2
m, k<n umn
®(E(n 1))*n_ l_ll_ln—l(u(n 1))J (u(n 1)) (116)
Y i#]
—((,,(n=1) (n—=1)y _ (n—1)\ (,,(n—1)  (n—1)
+ 3, ul ), u @D, W0 Y))

j<j’

1 ) o () A o p(R) (n—1) (n—1)
x Z (;(allEku ®F ,tank,;® Ek+2) ® (B, )Z;H(El )Z;;l

k,l<n

x [ T @) Pl e

i#),5'
1 -1 -1
+;(amEi’i’z®E§Z§+azzEfié®E£’?2)®(E£" D@
1_[ Lo ") P ”))] (117)
i#],J’

1...n—2 -1,
x W(u- 2 g\ W),
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where

agy o= (P —u) Y — ) — @ =)/ @Y ),

1) - -1 1) =~ -1 -1
oy =" =@ — (@D —u)@ Y —al) + 1)/ a7,

A1 = f+(ll§-n_l), u§7_1)) (UEII—U - ug::) ) (118)
-1 -1 -1 -1 ~
@z 1= T —u e —a) + ),
-1 —1 ~ —1 —1 ~
y o= @Y —u) @ — g —u) T - i),

We will consider the terms (114-117) individually.

First, consider the term (114). Acting with [g;) i, (ugg) %(")(u(”)\ugj) gives the i = n
case of the first term on the right hand side of (93).n '

Next, consider the term (115). The operator ['(ug.n_l)) acts on (u1-"=2) | u(”_l’”)\uglz)

via multiplication by f +(u§”_1), u(”)\ug’l?) ,un(ug.n_l)) giving

(n=1), (1..n)\ ¢,,(n=1) _ (n)
L ut "\ 7, up))
J ] mp (R) () (n—1)
Z (n—1) (n) Z Ek+2 ® E ® (Ek )Z’?ﬂ
u —Uu J

j j m, k<n

X \I/(u(l"'n_l)\ug."_l) | ug.”_l), u(”)\ugf)) . (119)

Using (83), we expand ¥(u-"~ 1)\u(" 1)lu(" D (")\u(”)) in the space V(n i

(k—l) (1 .n)
T (u )
S B D euu ),
i<n |u1(1r1)|:1 i<k<n um 111
i<r<n—1
where ul(ﬁ_l) = ugn_l) and ul(n) = u(")\ug’;n). Substituting (120) into (119) yields
(k1) 1 )
Te(uyy ) @) ) (1n=1) | .. (n)
> 2 1 =g Bl e B o uy lu™). (121)
i<n |uI(Ir)|:1 i<k<n  Uypp — Uy
i<r<n
. . (n) . . . .
Acting with I'dmndmn (ug’;)) %(”)(u(”)\ugg) gives the i < n cases of the first term on the right
hand side of (93).

We are now ready to consider the term (116). Let n' denote the restriction of n™ to the
space L'. Set nl = (E(n))al -n!. Using the explicit form of | (u(n 1)) we find

-1
[ew f @)

| -1 I -1 I
J(u;n ))'77 = Z (n-1) (n) un(u§n )) UiB (122)
I<m, j -
giving
—r,,(n=1) _ (n—1)\,,(n—1)
[ u A ) 1 .
J J (" () (A) o () (n—1)«
S B e es e,
j uj —Um, k<n umn Y
+(,,(n=1) ()
[Liaif ;" ") -1 _ -1 -1
x D o M) NG D Ny (123)
I<m, j — Y
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Acting with %(”)(u(")\ugj) and applying Lemma 4.8 to the second line of (123) gives

-1
5 [Tea /@0 L™, w-m\@™, u))
i<om l_[l<k<m f+(u(n) (_n)) (ugn)_ul(n)_i_1)(u§n—1)_u§n))

x (W) W\, u U@y W) a24)
Using the identity
f+(u§n_1),u(”)\(ul(-n) u(n))) Z l—[k<lf+(u(_n—1)’u(n)) 1
-1 -1 ’
ugn ) ul(_n) i< l_[l<k<m f+(u(n) (n)) (ugn) _ ul(n) + 1)(u§n ) ugn))

which follows by a descending induction on i, expression (124) becomes

A CE RN CTERT))
] )

1?2 m
D (IO R C L U
i<m, uj —U;
x (") W\ @, u™, u®) ). (125)

Therefore, action of %(”)(u(”)\ugj) on (123) gives

IPIE

(Tl 1). u(l n)\(u(n 1) u(n) u(n)))l—- (u(n) u(l n)\(u(n) (n)))
@™ =M — )

j i<m,
1 ) o () | () o o(R) (n-1)
X Z ( (n D Bk ®Ey T Ey ®EL, | ®(E, )
k<n —Um, !

x (- @0, 0, u®y ). (126)

Finally, we expand \I!(u(l"'“)\(ugn_l),u(”) (”))Iu(n D) in the space V(n D analogously to
(120). This gives

Uy su
Z Z l_[ (k 1) I(Ik) (uI(In 1) n))(u(n 1) ~(n))

i<n |, (0)_qi<k<n U — Uy ~ U
Ju |

i<r<n

1
x (— Mo +EM e EE”)) ® w(u"). (127)
(n—1) (n) I
Uy Uy
Combining (127) with (112) and acting with Lgn) i (ug’:)) gives the second term on the right
hand side of (93).

It remains to consider the term (117). Using the same arguments as above, and renaming
j—p,j — p’, we obtain

— -1 - -1
20 20 TGN, Y, ) Tl O\, )

(B m
i<m, p<p’

1 ) o o(A) () o () (n—1) (n-1)
x Z ; (/31 Ek+2 E1+2 + B2 Ez+2 Ek+2) ® (Ek )ngl(Ez )2271

k,l<n

x W\ @S, uG ™, u, Uy [, W), (128)
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where

+(, (n=1) () +(,, (=1 (n)
5 Ty )a +f (u, " u; )a
e een_ o T (1) _ () 3
u(n—l) (n) u(n—l) ~(n)
e Y SV ™ T
LD (n)( m T G u(n))
p’ p i
f+(u(n—1) u(_n)) f+(u(n—1) u(")) (129
ug}—l) — ™ W —
u D — g (D — (n=1) _ ()
_ e, (n)) m () Nuy =) +1
LD ™ u(” n_,m
Uy i p i
Note that

Y - -1 - —1) |~
/51+/52=W(K(u§” D, a8V 1™, u®) — K@, u 0 1@, ul)). (130)

i Um,
We can now use (84) to expand vector

1..n\ (,,(n—1)  (n=1) (1) _(n)y, (n—1) , (n—1)
W\ @D, w0, u™, w0y [, ul ),

in the space Va(:__ll) Va(: 11).

p/

k—1 1. k—1 k -1 —1 1.
> > T o ul) k@l 1ul)) BV o BV e v ) 131)

<
1<i<n |u1(8H| (2,0) i<k<n
i<r<n—1

I (D, )y oD

m o j=1).  (L.n

20 20 2 I =5 e ™)
1i<j<n | 0oy W O)=1 i<k<j  Um T Ui

i<r<n—1j<s<n—1

" l_[ Tie(uy m oUW
k—1 (k k—1
j<k<n (”( )_uII))(uI(II ) um))
G-1 . ()
S ug 7ug’) (n=1) o (n—1) 1 (n 1) (n 1) (1...n)
X (W En—i ® En—j + m E ® E ® \I/( ), (132)
I I il 1
where u(" D= ugl D ul(ﬁ D=4 ang ul(n) = u(”)\(ugn),u%?).

Substltutmg the term (131) into (128) and applying (130) gives

Z Z Z l_[ Fk(u(k 1), (1. n)) l_[ K( (k 1) (k))

1<l<n| I(Ir)l 2|u1(1n)| 1i<k=<n i<k<n
i<r<n

(n). . (1..n)
T (ul™; ul") ; A
L(K(uln D1u() - k@l P lal, uf) ) EP o EP @ o(u™).  (133)

() _ 5 ILIII

Lt 11

Upon combining (133) with (111) and acting with [g") i (ugr’f)) gives the third term on the

right hand side of (93).

29


https://scipost.org
https://scipost.org/SciPostPhys.17.5.126

e SciPost Phys. 17, 126 (2024)

Finally, substituting (132) into (128) and exploiting symmetry of Bethe vectors gives

(k—1). (1...n)
Z Z Z l—[ Fk( HI 5 I )F(u(]_l)u(ln))
(k 1) (k) JVEIL 2 I
1<1<]<n|uIIrI)| 1|u(5)| 1i<k<j U I

i<r<n j<s<n

k 1 1...11 k— 1 1. ll
X l_[

-1). (1. 1.
: Fn(ul(lr,lm ) uI( IV uI( ")

k—1 k—1 i)
j<k<n (”( )_uu ))(uI(II ) uIII))
G 1) J)
1 B [ ug 7ug’) + By 1 E® g g
* o | \ P2 LwUD _ ) LU _ 0 )T T
U I U 1
HuU™D 4,0 ) A
(ﬁlf G 1111) (IJI) + P25 (]))E(n) Elgn)} ® w(u™). (134)
Ug ~ — Uy Uy~ — Uy
Combining (134) with (113) and acting with [f.ln) a (ug’:)) gives the last term on the right hand
side of (93). O

4.3 Proof of Lemma 3.8

The idea of the proof is to construct a certain Bethe vector and evaluate this vector in two
different ways. Equating the resulting expressions will yield the claim of the Lemma.

We begin by rewriting the wanted relation in a more convenient way. From (23) and (50)
we find that

v + (n) ~
p(™M o [y, 9) 1 )
{ u(n) —y [amnamn(V) = Ldmndmn ) u(n) + u(.n) S Pdmndmn . (135)
i i ;

-V
Repeating the steps used in deriving (110) and applying (135) we rewrite (67) as
saa(v) \p(u(l...n)) =Tx(v, u(l...n)) \P(u(l...n))

T (AC L J
Amy, am ul(.n) (n) —9 amnamn

; —v u;

x T, u®-M\u™) BO@P\u) \ivz,l(u“"-"—” |ug?)

(n) ~
B O )
= Amy—1Gm,, 1 ul(n)_v ugn)_f/ amn 1Gmp,—1

-, (n) + (n) ~(n)
f )y, )
1 )
(n)_~(n)

l

x B @O\, 1) Uy o (w1 u\?). (136)

X T ((u(n) (Tl)) u(l n)\(u(n) (Tl)))

Let \I/mnﬂ(u(l'“”) Uv) denote a Bethe vector with m,+1 level-n excitations and the reference

vector nﬂnﬂ = (E(”))am 4N™; here v denotes the (m,+1)-st level-n Bethe root.
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Applying (98) and (110) to this Bethe vector we obtain

qjmn+1(u(1.,.n) uv)= Fﬁ(V, u(l...n)) \I-’(u(l"'n))

+ (n) v
f (u )1_,( (n) (1 n)\u(n))
m_,
t i
X |_(r;) i v) %(n)(u(n)\u(_n))\i, (u(l...n—1)|u(n)\ul(_n)Uv)
—ZF ((u(n), (n)) ul- ")\(u("), (n)))K(u(”) (n)|v v)f+(u(n) (n))
i/
Lg’:_lam 1(V) c@(n)(u(n)\(ul(.n) (n)))

x By (@D u O\ @™ Py uv). (137)

Next, recall (105) and note that P(n ) pm = pA) n. giving

il 'mMy, Ay, A
+ (n) ~(n)
A i<k<mnf (u )
e N T U
i<m, u; Um,

This yields an analogue of (110) for \I/mnﬂ(u(l'"”) uv):

‘Ijmn+1(u(1mn) uv)= L(n) e l(v) %(n)(u(n)) \I,Ll(u(l...n—l) | u(n) uv)

Fﬁ(ul(-n); u(l...n) \ugn))

+
%m—ﬁ

i

x |

amnamn

(v) %(")(u(”)\ugn))\i/l,z(u(l"'”_l) | u(”)\ugn) uv). (139)

The next step is to evaluate products of creation operators 28" and the dotted Bethe vectors B,
This is done by applying the same techniques used in the proof of Proposition 4.6. Hence, we
will skip the technical details and state the final expressions only.

Evaluating the named products in (137) and (139) gives

%(n)(u(n)\ugn))\ijz’l(u(l...n—l) | u(n)\ul(n) uv)
— Egn) ® Egn) ® \I/(u(l"'")\ul(.n))
(n-1), (1. (n-1) ()
L™ s u "N\, u™))

n j >
+Z (n—1)
j U;

fl -1 -1 -1
* 24 B OB o B v\ )

1<k<n

-V

(n 1) (1 n)\(u(n 1)’ (n), (n)))l—‘ (u(n).u(l...n)\(ul(_n), (n)))

+ZZ (ugn 1) -

JovA

— A" —ug?)
1 W) o () | ) o (R (n-1)
x Z (—(n 5 B ® B + B ® B, |@ (B,
1<k<n u] J

X\I/(u(l n)\(u(n 1),u(n) (n))lu(” 1))
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+ZZF ((u(n 1)’ (H 1)) u(l n)\(u(n 1)’ (n 1) (n) (n)))l—- (u(n) (1.. n)\(u(n) (n)))
J<ji'#i

Leoen o) o o) | p@D G0 o o) (n-1) (n—1)
x Z ;(ﬁ Eiia®E 5+ By El+2®Ek+2)®(Ek )Z?—l(Ez )Zn,—l
1<k,l<n

W\ @, u Y, u, W) R, WGTY), 40

and

gg(n)(u(n)\ugn))\i,l’z(u(l...n—l) | u(n)\ul(n) uv)
— Egn) ® Eén) ® \P(u(l...n)\ul(n))
(n-1). . (1. (n—1) _ (n)
L s u-m\@" ™)

nTj ’ J
+ Z (n-1) =~
j u

. -V
J

1 (1) o g® | p® g g (n—1)
X Z (u(" ) ka+2 E; " +E®E., |®(E )Z;H

1<k<n j

x \I/(u(l"‘”)\(u(,n_l), u(.n)) | u(.n_l))
(n 1), u(l n)\(u(n 1) (n)’ (n)))r (u(n) u@- n)\(u(n), (n)))

DM

T @Y =) —ul?)
1 1 1
% Z E£?2®E(n)®(E(n ))*nlqj(u(l n)\(u(n ),u(n), (n))lu(n ))
1<k<n
+ 3 3 (@, ) B @, a0 s u @, uf)
<) i
1ra02) ) () (12) () () (n—-1) (n—-1)

X Z ;(ﬁ1 Ein®E 5+ By B, ® Ek+2)®(Ek )Z?—l(Ez )Zr?,—l

1<k,l<n

x W\ @D, a0 u) [, a4

and
%(n)(u(n)) ‘i’l 1(u(l...n—l) | u(n) uv)
— Egﬁ) ® E&ﬁ) ® \I/(u(ln))
Fn(ugn—l); u(l...n)\(ugn—l)’ ufn))) I—uﬁ(ugn); u(l___n)\ugn))
p»3 S
i o

J i

U u k+2
1<k<n j j

@ ¢ (1=1) (W, (n—1)
x ¥(u \(uj U )|u )
-1 1 -1 .
+E El"n((uE” )’u§7 ));u(l...n)\(ugn )’u§7 ) (n) (n)))

’ l b l/
Jj<ji<i’

FH ™, 9) !
(A) o p(A) (1) g p(®) (=1«
X Z ( (n— 1)_v Ek+2 El + (n—l)_f}El ®F )®(Ek )a}H

% T ((u(n), (n)) u(l n)\(u(n)’ (n)))K(u(n 1), (Tl 1)| (n), (n))f+(u(n), ~(n))
11 11 1 —1
x >, (BIVEL, e B+ 6 )E{E@E,E’BZ)@(E,E" s B
1<kl<n J 7

X\D(u(l n)\(u(n 1) (n 1) (") ("))|u(n 1)

2 i/ ’
J

D), (142)
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and

%(n)(u(n)\(u(n), (n))) ‘il (u(l...n—l) | u(n)\(ugn) (n)) uv)
— E(n) ® E(n) ® \If(u(l n)\(u(n), (n)))
+ 2 L NG, 1)
J
(n—1) ~
fr™,9) 1
J (A) (Tl) (A1) (A) (n—1)
X Z ( (n—1) Ek+2 ® E (n—1) E ® Ek+2) ® (Ek )Z?—1
1<k<n uj -V uj -7
v \I}(u(l...n)\(ugn—l) u(n) (Tl)) | u(n 1))
—1 —1 -1 1
b, Dy a0, )

]/
J<j’
1) (™) (") (11) (M) (") (n—1) (n—1)
X Z (/5 Ea®E 5+ B, El+2®Ek+2)®(Ek )1 (Ey )Zryl
1<k,l<n !
><\I/(u(l"'“)\(ugn_l),ugil_l),ul(n) (Tl))|u(” 1), (Tl 1) (n)) (143)
where /3121) ﬂ(m) and y are given by (129) and (118) except ugﬁf) should be replaced by v,
and
(n—-1) _ (n _ (n) (n-1) _ &
P B VOO L Ny =9
PTG o T )
(n—l)_f}
(12)y,_ _7J +(,,(n—1) (n) (n—1) (n 1
2 - u(n_l) _u(n) f (u]'/ ,U )f (u ,U )
j i
LD g . (144)
J + (n—l) (n) (=1 _ _
o AR Rl Ot )|
j i j j
(n— 1) ~
an,_ ST an.__ 1 ( an,__ 1 )
Lo o =)y, (D sy 2 (n1) 1 n-1)_ 5 |
(uj v)(uj, V) u, u;

Adapting (140) and (143) to the relevant products in (136) allows us to rewrite the latter as

Fﬁ(u(.n), (1.‘.n)\ul(.fl)) E;ﬁ) ® Egﬁ) ® \I/(u(l...n)\ugn))
I (u(n) u(l...n)\u(n)) Fn(u(.n_l)' u(l...n)\(ugn—l), ul(n)))

1 Jj ’
+ Z u(n—l) _ u(n)

J j i
x > ER @ EM e (BN VY, w®-\@ Y, u) (oY)
J

k+2
1<k<n

(n) (n) + (n) ~(n)

f(y ) [ (y; )
5L, 1) u @, 1)) O
= u.,’ —1il;

(E(”) ESY @ w(u®-m\@", (”)))+A) (145)
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where

A= ZF (u(n 1) (1 n)\(u(n 1), (Tl) (n)))
J

3

1<k<n

(n-1) ~(n)
D, a0 A .
() (1) () () (n=1)yx
( (n—1) (n) Ek+2 Ey"+ (n—1) (n) Ey”® Ek+2) ® (Ek )av—l
w U —u u" Y —u, j

5 \p(n—l)(u(l...n)\(UEH—l)’ ul(n)’ ug/n)) | uS."_l))
Fn((u(-n_l) ugjl—l)); u(l...n)\(u(n—l) u(n—l) (Tl) (n)))

) ) j/
+2
—1 1
<7 @ —uM)I Y —ul?)
1 -1 -1
< >0 (e u™ER, e B + 0 B o B, ) @ (B ), (B
1<k,l<n 7 b

X\Il(u(l“‘")\(uEn_l),u(n D, m (n))lu(n D)

j/ > l 3

(n 1))

)

and
(ug_n—l)_ugn))(ugl—l) (n))+u(n 1) (n)+1

0:

(n—1) (n) (n—1) (n)
(u]' _ui’ )(uj/ _ui )

The final step is to substitute (140)—(143) into the difference of (139) and (137), and (145)
into (136), and equate the resulting expressions.

5 Conclusions

This paper is a continuation of [12], where twisted Yangian based models, known as one-
dimensional “soliton non-preserving” open spin chains, were studied by means of algebraic
Bethe Ansatz. The present paper extends the results of [12] to the odd case, when the bulk
symmetry is gl,,,; and the boundary symmetry is so,,,;. Theorem 3.9 states that Bethe vec-
tors, defined by formula (66), are eigenvectors of the transfer matrix, defined by formula (68),
provided Bethe equations (77) and (78) hold. It is important to note that Bethe equations for
Y*(gly)-based models were first considered in [1,9]. However, the completeness of solutions
of such Bethe equations is still an open question. Investigation of higher-order transfer matri-
ces and Q-operators might help to shed more light on this problem.

In Proposition 3.12 we presented a more symmetric form of the trace formula for Bethe
vectors than the one found in [12]. This formula can be used to obtain Bethe vectors when
the number of excitations is not large since the complexity of the “master” creation operator
grows rapidly when the total excitation number increases. This is a well-known issue of trace
formulas for both closed and open spin chains. Low rank examples of the “master” creation
operator are given in Example 3.11.

We also obtained recurrence relations for twisted Yangian based Bethe vectors. They are
given in Propositions 4.4 and 4.6 for even and odd cases, respectively. Repeated application
of these relations allow us to express Y *(gly)-based Bethe vectors in terms of Y (gl,)-based
Bethe vectors obeying recurrence relations found in [20] and recalled in Appendix A.3. The
recurrence relations found in this paper provide elegant expressions when the rank is small,
see Examples 4.5 and 4.7. The n = 2 even case in Example 4.5 may help investigating the
open fishchain studied in [17]. However, recurrence relations become rather complex when
the rank is not small, especially in the odd case. This raises a natural question, if there ex-
ists an alternative (simpler) method of constructing Bethe vectors for open spin chains. For
closed spin chains the current (“Drinfeld New”) presentation of Yangians and quantum loop
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algebras [10] has played a significant role in obtaining not only recurrence relations, but also
action relations, scalar products and norms of Bethe vectors, see [19-23]. Thus, it is natural
to expect that a current presentation of twisted Yangians could pave a fruitful path for open
spin chains analysis.

A current presentation of twisted Yangian Y *(gly) was recently obtained in [25].
(The rank 2 case was considered earlier in [6].) However, in [25] a different, the so-called
non-split, presentation of twisted Yangian is considered (see Chapter 2 in [26]), which is based
on the Chevalley involution of gly and is not compatible (at least in a natural way) with the
Bethe vacuum state. Nonetheless, we believe that the presentation obtained in [25] may have
applications in open spin chain analysis and deserves attention. For example, integrable over-
laps for twisted boundary states are constructed using the non-split presentation of twisted
Yangians [15].

Overall, the approach presented in this paper does open a door to an exploration of scalar
products and norms of Bethe vectors for twisted Yangian based models. However, developing
Bethe Ansatz techniques in the current presentation of twisted Yangians might open a broader
path to open spin chain analysis. An alternative path could be a development of separation of
variable techniques along the lines of e.g. [18,31].
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A Appendix

A.1 Weight grading of Y*(gly)

Define an n-tuple w; € Z" by (w;); := §;; and recall the notation 7 = N —j + 1. Then define
weights of the elements s;;[ ] using the following rule

wt(s;;[r]) == Z wy + Z Wi, when i<j, i+j<N+1, (A1)
i<k<j J<k<f
and require
wisyilr) = welsy[r]),  welsi[r]) = —wi(s,[rD), (A2)

forall1 <1i,j < N. Note thatwt(s;;[r]) = (0,...,0) € Z". Extending linearly on all monomials
this defines a weight grading on Y*(gly).

The recurrence relations (89) and (93) are compatible with this grading. The master cre-
ation operator (79) has the weight

my,...,m,_1,m,), when fA=n,
w :=wt(By (")) = my w12 ) (A.3)
(mq,...,m,_4,2m,), when fA=n+1,

which we assign to the corresponding Bethe vector. Then (89) and (93) can be schematically
written as

NI Z S WO (A.4)

w'ew
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where W is the set of weights of s; ,,,j[r] with1 <i<nand 1< j <, thes,, is a generating
series of Y*(gly) of weight w’, and all scalar factors and spectral parameter dependencies are
omitted, as in (1) and (2).

A.2 Commutativity of transfer matrices

Lemma A.1. Transfer matrices T(u) defined by (68) form a commuting family of operators.

Proof. We follow arguments in the Proof of Theorem 2.4 in [33]. In this proof, we will write
S, (u) instead of SC(IN)(u) and R, (u) instead of RE{IZ’N)(u). Then

(W) T(v) = trg Mie(w) Ske(w) try Mp(v) Sp(v) = trgp Mie(w) My(v) Ste(u) Sp(v), (A.5)

where t, denotes the usual matrix transposition in the space labelled a. Upon inserting a
resolution of identity in terms of R-matrices and using properties of matrix transposition and
the trace (see Appendix A in [33]) we rewrite the right hand side of (A.5) as

trgp M (W) Mp(v) (RY, (5 — ) ' RY, (5 — ) St (w) Sp(v)
= trg, (M () (R, (7 —u)) ™) M (1)) (So () Rap (7 — 1) Sp(1))
= trgp (Mo (W) (RS (5 —w) DO MP (1) " "SRy (F—w) Sp(v).  (A6)

We insert a resolution identity in terms of R-matrices and use properties of matrix transposition
and the trace once again. This gives

trgp (Ml (u) (R (F —w) ™) M,* (v))
X (Rab(u - V))_l Rab(u - V) Sa(u)ﬁab(f’ - u) Sb(v)

tptq

= trgp ((Rap(u—v)) et M () (R, (5 —w) ™) M, (v) ™
X Ryp(u—v)S,(W) Ry, (¥ —1) Sy (v). (A.7)

The R-matrix (9) satisfies

(Rap@) ) = r@Ryp(—w),  (Rew) )" =r@Rp(-w),  (A8)
where r(u) := u?/(u?—1). Relations (A.8) and the dual twisted reflection equation (69) imply
(Rapu—v)) ) et Mle(u) (R, (F —w)) ™) e My ()™
=r(u—v)r( —u) (Rep(v —u) Ml () Ryp(u — 9) M, (v))
= r(u—)r(7 —uw) (M (v) Rp(u—7) M (W) Ry (v —w)) ™
= (M, ) (Rig, (7 =)™ M () (Rap (u —v)) ™)' 8) (A.9)
Applying (A.9) to the right hand side of (A.7) gives

trgp (ML (V) (RS, (F—w)) ™) M () (R u—)) ™)) 28, () Ry (7 —10) S () Ry (u—)..

(A.10)
It remains to repeat similar steps as above in reversed order and use cyclicity of the trace.
The (A.10) then becomes

trap(Rap (= )) T (M5 (V) (RS, (F —w) ™) ML () S (V) Ryp (7 — 1) Sy (W) Ry (u—v)
= trgp (M, (V) (R (F —w) ™) " Mo ()™ S (V)R (P — ) S(w)
= try, (M (V) (R, (5 —w)) ™) ML ()™ (S5 (v) Ry (F — 1) So ()
= tr,p(RY, (F — 1)) M, (V) M2 (1) Sy (v) So(w)« 24, (5 — u)
= tr, M,"(v) S(v) try Mo (1) S, ()« RA (§ —w) = T(v) T(w), (A.11)

tptq

as required. O
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A.3 A recurrence relation for Y(gl,)-based models

The Proposition below is a restatement of Proposition 4.2 in [20] in terms of notation intro-
duced in Section 4.1 and Proposition 4.1. Recall (82):

Az v D) = £ (5, v D) £ (5,90 2, (2).
Let t;;(z) denote the standard generating series of Y (gl,).

Proposition A.2. Y(gl,)-based Bethe vectors satisfy the recurrence relation

Ak(v(k 1), v(l .n—l))
— 1 l.n—1
o(v(L-n—1)y = 2 : E : | | = I © m(V(" ))cp(vl( n ))’ (A.12)

1<i<n |V1(1r)|:1 i<k<n I 1I
i<r<n—1
(n-1) _  (n—1) : () _ ;
where v 0 = v; forany 1<j<m,_,and vy’ =0 forall 1 <s <iso that
(1 1) = (@) D vl(l), ...,vl(n_l)). (A.13)

Example A.3. When n = 4, the recurrence relation (A.12) gives

o(v129) = £5,(v) o(v D, v, v

—(V(Z), (2)) +(V(2), (3))l (V(Z))
+ Z t24(v(3))<1>((v(1) (2) (3)))f VY1 f m oV 3
(2) (3)
@)1 Vi Vi

vy

—r (1) (DN petr (D) (2) O]
3) o @ .03 Sy v ) v v ) Aa(vy )

+ Z f14(VH )CIJ((VI V1 LV ) 1) _,@

e 1 1

r=1,2

Lo o ) A )
@ _,6) ’
n Vi

(A.14)
v

(3)

where v —v()forany1<]<m3
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