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Abstract

Efficient numerical methods are still lacking to probe the unconventional dynamics of
quantum many-body systems under non-unitary evolution. In this work, we use Faber
polynomials to numerically simulate both the dynamics of non-Hermitian systems and
the quantum jumps unravelling of the Lindblad dynamics. We apply the method to the
non-interacting and interacting Hatano-Nelson models evolving from two different se-
tups: i) a Néel state, and ii) a domain wall. In the first case, we study how interactions
preserve the initial magnetic order against the skin effect. In the second example, we
present numerical evidence of the existence of an effective hydrodynamic description for
the domain-wall melting problem in the non-interacting limit. Additionally, we investi-
gate both the conditional and unconditional dynamics of the quantum jump unravelling
in two quantum spin chains, which exhibit either the non-Hermitian or the Liouvillian
skin effect. This numerical method inherently generalises the well-established method
based on Chebyshev polynomials to accommodate non-Hermitian scenarios.
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1 Introduction

In recent years, the scientific community has shown a growing interest in elucidating the
distinctive characteristics of many-body quantum systems subjected to effective non-unitary
dynamics. In quantum mechanics, non-unitary dynamics typically arises when a closed quan-
tum system interacts with an external environment, leading to dissipation, decoherence, or
wave function collapse that disrupts the usual unitary Schrödinger evolution. While a fully
microscopic description of both environment and system is a daunting task, in many cases
of experimental and theoretical interest, one can assume the dynamics of the environment
to be sufficiently fast, allowing for the derivation of a local-in-time, Markovian, non-unitary
evolution for the system of interest [1,2].

Different types of Markovian open quantum system dynamics have been considered in
the literature. A first relevant example is provided by systems that evolve according to the
Lindblad master equation [3–5]. Here, the evolution of the system density matrix is gener-
ated by a non-unitary (super)operator, the Lindbladian. Many-body versions of Lindblad mas-
ter equations have been studied in a number of contexts and with different objectives, from
dissipative phase transitions [6, 7] to quantum transport [8]. Another class of non-unitary
dynamics arises for continuously monitored quantum systems [2,9,10], whose stochastic evo-
lution - a so-called quantum trajectory [11] - is described by a non-unitary unravelling of the
Lindblad master equation [12]. In particular, under the quantum jump unravelling, a deter-
ministic non-unitary evolution is driven by a non-Hermitian Hamiltonian between stochastic
measurements [13–15]. Recent works have raised interest in possible phase transitions in the
entanglement structure of those quantum many-body trajectories [16–22].

Finally, as a last example of non-unitary Markovian dynamics, we can consider the one
generated by a purely non-Hermitian Hamiltonian. Non-Hermitian physics emerges intrinsi-
cally in various domains of physics beyond quantum physics, encompassing photonics [23],
hydrodynamics [24] and active matter [25, 26]. In the context of open quantum systems,
a non-Hermitian evolution can be obtained by post-selecting the quantum trajectories corre-
sponding to no quantum jumps, i.e. the no-click limit [27]. Non-Hermitian quantum systems
show anomalous static and dynamical properties, which are attracting widespread interest.
Among these, we mention the unconventional propagation of quantum correlations [28–30],
the distinct entanglement transitions generated by time evolution [31–35] or their extraor-
dinary sensitivity to boundary conditions, also known as the skin effect [36–41]. The latter
manifests itself through the unusual localisation of all single-particle eigenstates at the sys-
tem’s edges under open boundary conditions [42–46]. Furthermore, it has unique signatures
in the dynamics, leading to non-reciprocal transport [47].
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Besides these theoretical developments, unlike their Hermitian counterparts, the toolbox
of computational many-body physics is more limited when it comes to non-unitary dynam-
ics. In this work, we introduce a new method to tackle the quantum dynamics of a non-
unitary system. Our approach is based on expanding the evolution operator in Faber polynomi-
als [48,49]. This numerical approach is a natural generalisation of its Hermitian counterpart,
the Chebyshev polynomial method for time evolution [50], which has been the primary choice
for efficiently simulating nonequilibrium transport phenomena in both interacting [51] and
non-interacting systems [52–54]. Although time evolution integrators based on Faber polyno-
mials have already been proposed in some works [55–57], for example, in the simulation of
electromagnetic wave propagation through passive media [58, 59], it appears that their full
potential remains largely unexplored. Namely, in the simulation of non-Hermitian quantum
systems, they could have a significant impact owing to their numerical stability and adjustable
accuracy compared to other methods such as integrators based on Runge-Kutta [60] or Trot-
terization techniques [61]. Furthermore, the use of Faber Polynomials could replace current
techniques [62–64] that still employ Chebyshev polynomials but need to rely on hermitiza-
tion. This results in the need to operate within a vector space that has twice the original
dimensionality.

In this manuscript, we test, benchmark and apply the Faber polynomial method to investi-
gate the time evolution of particle density, charge current, and entanglement in several setups
involving the interacting and non-interacting Hatano-Nelson model [65, 66], a paradigmatic
non-Hermitian model showing non-reciprocity [67] and the skin effect at the single particle
level, and non-Hermitian quantum spin chains. In addition, we merge the Faber polynomial
method with quantum jumps in order to simulate the dynamics of the full Lindblad master
equation through a suitable unravelling and the conditional dynamics encoded in the entan-
glement of quantum trajectories.

The manuscript is structured as follows. In Sec. 2 we set the stage and define the classes of
non-unitary dynamics that we will focus on throughout this manuscript. In Sec. 3 we describe
the Faber polynomial method for non-unitary dynamics and discuss its convergence. In Sec. 4
we present our first application to quadratic (Gaussian) non-Hermitian systems. In particular,
we explore the melting of a domain-wall state under the Hatano-Nelson Hamiltonian. Fur-
thermore, in Sec. 5, we focus on the spin version of the many-body interacting Hatano-Nelson
chain, examining the evolution of both an initial Néel state and a domain wall under the influ-
ence of non-reciprocal hopping and interactions. Finally, in Sec. 6, we apply the method to the
stochastic quantum jump dynamics obtained by the unravelling of a Lindblad master equation.
Sec. 7 summarises our conclusions and discusses potential future research directions.

2 Non-unitary dynamics of open quantum systems

In this work, we focus on the dynamics of open quantum many-body systems described by a
Hamiltonian H and a set of independent environments. A typical example will be a quantum
spin chain connected on each site to an external bath. In practice, we will always assume
a Markovian description of the environment, which can also be identified as a measurement
apparatus that monitors a certain physical property of the system, for example the particle
density [18,20–22]. However, our primary focus is on the non-unitary dynamics of the system,
obtained by tracing out the environment. This is naturally modelled by the Lindblad master
equation and its unravelling [10]. In this setting, we consider two types of quantum dynamics:
(i) the stochastic evolution of the system conditioned to a given set of measurement outcomes,
and (ii) the dynamics of the averaged state. In the first case, the system evolves according to
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the stochastic Schrödinger equation,

d |ψ(ξt , t)〉= −id t
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(1)

where 〈◦〉t ≡ 〈ψ(ξt , t)| ◦ |ψ(ξt , t)〉, and ξt =
�

ξµ,t

	

are a set of statistically independent

Poisson processes dξµ,t ∈ {0, 1} with average value dξµ,t = d t〈L†
µLµ〉t . The above dynamics

breaks down into two steps: a deterministic non-unitary evolution driven by a non-Hermitian
Hamiltonian

HnH =H− i
2

∑

µ

L†
µLµ , (2)

and a series of stochastic quantum jumps at random times, at which the wave function changes
discontinuously (see second line of Eq. (1)). We note that the non-Hermitian evolution is nor-
malised and state dependent. This is encoded in the last term in the first line of Eq. (1). If one
post-selects the quantum trajectories over the records of no-click, the dynamics is deterministic
and driven by HnH [32–34]. Otherwise, if one considers all the trajectories and averages over
the measurement outcomes, the conditional density matrix ρc(ξt , t) = |ψ(ξt , t)〉〈ψ(ξt , t)|,
i.e.

ρ(t) = ρc(ξt , t) , (3)

evolves according to the Lindblad master equation with jump operators Lµ, i.e.

dρ(t) = −id t [H,ρ] + d t
∑

µ

�

Lµρ(t)L
†
µ −

1
2

¦

L†
µLµ,ρ

©

�

. (4)

In both cases, the basic building block of the non-unitary dynamics is the evolution driven by
a non-Hermitian Hamiltonian. In the next section, we introduce the Faber polynomial method
to accurately solve the time evolution governed by a non-unitary Schrödinger equation.

3 Faber polynomial method

The knowledge of the time evolution operator, U(t), allows a comprehensive description of
the physical properties of a system when it is far from equilibrium. This operator is necessary
to propagate a given initial state, |Ψ(t)〉 = U(t) |Ψ0〉, allowing the calculation of observables
that characterise the nonequilibrium state. In principle, an exact expression for the state is
necessary as soon as one moves beyond the scope of linear response theory. Nevertheless, this
problem is equivalent to solving for the spectrum and eigenstates of the Hamiltonian, as in the
case of a time-independent Hamiltonian,

U(t) = exp (−iHt) . (5)

The idea behind both the Chebyshev (unitary evolution) and Faber (non-unitary) polyno-
mial methods is to perform an expansion of the time evolution in the respective polynomial
basis,

U(t) =
+∞
∑

n=0

cn (t)Pn (H) , (6)
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where cn (t) is the nth coefficient of the series expansion and Pn is the nth polynomial, which
corresponds to a Chebyshev polynomial of the first kind or to a Faber polynomial, depending
on the situation. Then the state after the time step, δt, can be approximated by truncating the
series expansion to the order Np,

|Ψ(t0 +δt)〉 ≃
Np−1
∑

n=0

cn(δt) |Ψn〉 , (7)

Hamiltonian where we define |Ψn〉= Pn (H) |Ψ (t0)〉. As will be demonstrated, the coefficients
cn(δt) decrease as the order n increases. Moreover, the states |Ψn〉 are efficiently computed
through the recurrence relations that the polynomials satisfy. To compute the subsequent level
of the expansion, the main computational task is the application of the system’s Hamiltonian
onto a particular state. Consequently, the most demanding operation involves only multiplying
the Hamiltonian by a limited group of vectors, leading to a resource usage that increases lin-
early with dim (H) for sparse matrices or quadratically with dim (H) for dense matrices. Linear
scaling is expected for Hamiltonians characterising a system with short-range interactions or
hoppings. These principles are exactly those underpinning Kernel Polynomial Methods [68],
which has become an essential computational resource in condensed matter physics, partic-
ularly for calculating various spectral quantities [69–73]. There has also been established a
Non-Hermitian Kernel Polynomial Method [62–64], designed for computing dynamic corre-
lators or spectral functions of the Liouvillian superoperator (or of an effective non-Hermitian
Hamiltonian), which still uses Chebyshev polynomials through hermitization techniques.

3.1 Warm-up: Unitary evolution

When the time evolution is generated by a Hermitian Hamiltonian, one can expand Eq. (5)
using Chebyshev polynomials of the first kind (for further details check Tal-Ezer and
Kosloff [50]),

U (t) =
∞
∑

n=0

cn(t)Tn

�

H̃
�

, cn(t) =
2

1+δn,0
(−i)nJn(λt) , (8)

where H̃ =H/λ is the rescaled Hamiltonian, Jn(x) is the nth Bessel Function of the first kind,
and Tn is the nth Chebyshev polynomial of the first kind. It is necessary to rescale the Hamil-
tonian so that its eigenvalues fall within the domain of the definition of polynomials, the open
interval (−1, 1). It is always possible to do this given that the Hamiltonian is always bounded
in finite-size lattice models. Using the recursion relation of the Chebyshev polynomials, the
states |Ψn〉 in Eq. (7) are computed on the run using,

|Ψ0〉= |Ψ(t0)〉 ,

|Ψ1〉= H̃ |Ψ0〉 ,

|Ψn+1〉= 2H̃ |Ψn〉 − |Ψn−1〉 , n≥ 2 ,

(9)

with |Ψn〉= Tn(H̃)|Ψ〉.
This expansion is feasible solely because the Hamiltonian is Hermitian. Therefore, in the

context of open quantum systems where a non-Hermitian operator dictates the dynamics, a
different set of polynomials is necessary. Under these circumstances, the spectrum is defined
in the complex plane and the operator has right and left eigenvectors, which can be distinct.

3.2 Non-unitary evolution

For a non-Hermitian Hamiltonian, the propagator Eq. (5) is expanded using Faber polynomials
[74, 75] instead. These are a familiar tool in complex analysis, used as a polynomial basis to
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represent a complex-valued function within the domain D in which it is analytical. The Faber
polynomials are generated by conformal mapping, which maps the complement of a closed disk
of radius ρ to the complement of the region containing all the spectra of the Hamiltonian (the
domain D). In our work, we assume D to be an elliptic region containing all the eigenvalues
of H. This fits our purposes, as the conformal mapping associated with this shape generates a
class of Faber polynomials with a minimum recurrence relation (see the Appendix A for further
details). The expansion of Eq. (5) for a non-Hermitian Hamiltonian with this choice reduces
to

U (t) =
+∞
∑

n=0

cn (t) Fn

�

H̃
�

, cn(t) = e−iλtγ0

�

−i
p
γ1

�n

Jn

�

2
p

γ1λt
�

, (10)

where Fn is the nth Faber polynomial. The parameter λ is used to rescale the Hamiltonian so
that the norm of Fn (z) is bounded [58], and it is obtained from the bounds of the real and
imaginary part of the spectra. γ0 and, γ1 are associated with the details of the elliptic contour
chosen, γ0 is the centre of the ellipse and γ1 = 1 − b, where b is the semi major-axis.1 The
ellipse must be constructed to be close as possible to eigenvalues of H, thereby reducing the
magnitude of λ. One can show [59] that this is achieved using

λ=

�

ℓ2/3 + p2/3
�3/2

2
, γ1 =

�

p̃2/3 + ℓ̃2/3
� �

p̃4/3 − ℓ̃4/3
�

4λ
, (11)

with ℓ = [max [Im (E)]−min [Im (E)]]/2, p = [max [Re (E)]−min [Re (E)]]/2 , ℓ̃ = ℓ/λ and
p̃ = p/λ. Using the recursion relation of the Faber Polynomials (consult Appendix A) the states
|Ψn〉= Fn

�

H̃
�

|Ψ〉 are given by,

|Ψ0〉= |Ψ (t0)〉 ,

|Ψ1〉=
�

H̃− γ0

�

|Ψ0〉 ,

|Ψ2〉=
�

H̃− γ0

�

|Ψ1〉 − 2γ1 |Ψ0〉 ,

|Ψn+1〉=
�

H̃− γ0

�

|Ψn〉 − γ1 |Ψn−1〉 , n> 2 .

(12)

In order to perform one time step of evolution, one simply has to truncate Eq. (10) up
to the desired order Np, and calculate the associated states |Ψn〉. Through the relations in
Eq. (12), one never has to store the Hamiltonian matrix, only needing to store in memory at
most the previous two states, |Ψn−1〉 and |Ψn〉, to compute the following term of the expansion
|Ψn+1〉. Furthermore, the expansion coefficients can be computed once at the beginning of the
algorithm, as they depend only on the chosen time step. Given this, the computation of the
state of the system after a time step scales linearly in the number of polynomials and linearly
in the Hilbert space dimension (assuming that the Hamiltonian has a sparse representation
on the used basis). This scaling can be improved by using parallelisation techniques [72] and
making use of the underlying symmetries of the Hamiltonian [76].

An additional procedure is required when addressing purely non-Hermitian dynamics,
specifically, ensuring the normalisation of the quantum state throughout the time evolution.
Theoretically, this normalisation can only be done prior to the computation of an observable.
However, the algorithm may exhibit instability if the coefficients fluctuate within the limits of
machine precision. Consequently, it is prudent to normalise the state following each time step,

|Ψ (t +δt)〉=
U (δt) |Ψ (t)〉
∥U (δt) |Ψ (t)〉∥

. (13)

In the following section, we revise how to do this when dealing with fermionic Gaussian
states.

1Recall that the equation of an ellipse is: (x−x0)2

a2 + (y−y0)2

b2 = 1.
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Figure 1: Absolute value of the coefficients associated with the Faber expansion of
the time-evolution operator. We represent the absolute of the nth Faber polynomial
for different rescaled time steps.

3.2.1 Convergence

In this section, we discuss the convergence properties of our algorithm, illustrating in Fig. 1
how the absolute value associated with the nth Faber polynomial varies for different rescaled
time steps, λδt noting that a greater time step naturally requires more polynomials to achieve
convergence. For numerical purposes, the Faber series is an exact representation of the time-
evolution operator if the coefficient of the last polynomial used is within the machine precision.
This argument holds because of Hamiltonian rescaling, as demonstrated in [77], which guar-
antees that ∀m maxz∈G |Fm(z)| ≤ 2. Using the asymptotic properties of the Bessel functions,
we see that the weight of the coefficient decreases with n according to [78],

|cn| ∼
(λδt)n

n!
, (14)

whenever λδt ≪ n. In the remaining of this work, the number of polynomials is chosen such
that the last coefficient of the absolute value of the last coefficient of the expansion is of the
order |cn| ∼ 10−16.

4 Application to non-Hermitian Gaussian systems

In this Section, we use the Faber polynomial method to study the dynamics of a fermionic
Gaussian non-Hermitian system. Here, the many-body wave function can be expressed using
a single-particle basis, and the Faber polynomials can be employed to represent the single-
particle propagator. In the case of Hamiltonians with U(1) symmetry, associated with particle
number conservation, for an initial Gaussian state with a well-defined particle number M, the
many-body state can always be represented in the form

|Ψ (t)〉=
M−1
∏

n=0

�L−1
∑

ℓ=0

Uℓn (t) c
†
ℓ

�

|vac〉 , (15)

with M the total number of particles and L the total number of sites. The time evolution is
given by the following equation

i
d
d t

Un = h Un , (16)
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where Un is the nth column vector and h is the single-particle Hamiltonian, a L × L matrix.
This translates the evolution of the many-body state into the evolution of the M single-particle
states, each represented by a column in the matrix U. This is expected, as the dynamics and
characteristics of a non-interacting system can be simplified to those of the single-particle
Hamiltonian, assuming the appropriate quantum statistics. For a typical tight-binding Hamil-
tonian with a finite number of hopping terms, the complexity of our algorithm for a single
time step of evolution scales as O(Np · L ·M).

Following the time step, it is essential to restore proper normalisation and particle statis-
tics. In the case of Gaussian states, this is achieved through a QR decomposition [18], which
guarantees that the U matrix is an isometry, specifically U†U= IM×M ,

U(t +δt) = QR , (17)

with Q a unitary L×M matrix. So the proper-normalised many-body state is obtained by assign-
ing U(t+δt) =Q. Although this document focuses on particle-number conserving models, the
method can also be easily applied to non-particle conserving Hamiltonians using similar tech-
niques [21, 79]. Typically, this normalisation step is the most computationally intensive part
of the time-evolution process. However, unlike other methods, this step can be executed less
frequently since the time-step does not need to be small. Thus, this computationally intensive
procedure can be minimised while still ensuring high accuracy in the time integration.

The method of directly evolving the state presents a more cost-effective alternative to ap-
proaches that solve the equations of motion for all two-point functions. The latter typically
employs conventional ordinary differential equation solvers, such as the fourth-order Runge-
Kutta method. Firstly, Runge-Kutta methods are only accurate up to a given order. As such,
to ensure an accurate time integration, it is necessary to select a short time-step in compari-
son to the energy scales of the problem, a requirement not imposed by the Faber algorithm.
Secondly, the Runge-Kutta method involves the evolution of the full correlation matrix, which
in practice involves the evolution of L · (L− 1)/2 elements. In contrast, the evolution of U
requires the evolution of L×M elements with M ≤ L. Finally, the Faber algorithm only needs
to store two vectors of length L in memory to evolve a given column, while the integration of
the correlation matrix demands the storage of four vectors of size L to evolve each of the L
columns.

The Faber algorithm is also more beneficial compared to methods that use the exponential
of the Hamiltonian. Firstly, one would need to store the exponentiated matrix for repeated
application without recalculations. In our approach, it is only necessary to store the system
state, since the Hamiltonian matrix is never kept in memory. Additionally, the exponentiated
matrix is typically a dense matrix, leading to a computational cost that scales quadratically
with its size when multiplied by a vector. Conversely, the Faber Polynomial technique takes
advantage of the possible sparcities of the Hamiltonian matrix, making the computational cost
linear with respect to the dimension of the single-particle Hilbert space.

4.1 Benchmark: Dynamics of the Hatano-Nelson model

The Hatano-Nelson (HN) model [65, 66] is a paradigmatic lattice model for non-Hermitian
phenomena. It corresponds to a chain of spinless fermions with an asymmetric hopping,

HHN = −
1
2

L−1
∑

ℓ=0

�

(J + γ) c†
ℓ
cℓ+1 + (J − γ) c

†
ℓ+1cℓ

�

, (18)

where J is a hopping term to the first-neighbour, γ ∈ R parameterised the left-right imbalance
in charge hopping, also called non-reciprocity, and c†

ℓ
(cℓ) is the creation (annihilation) oper-

ator which creates (destroys) a fermion on site ℓ. Under open boundary conditions (OBC),
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Figure 2: Left panel: Comparison between the results obtained with the Faber poly-
nomial method and those reported in [35] for the entanglement entropy of half of
the chain for a total chain of size L = 100. Right panel: Entanglement entropy for
half of the chain, with γ = −0.05J using a different number of polynomials and the
time step of 0.1J−1. We note that we use a symmetric definition for γ with regard
to [35].

this non-reciprocal hopping gives rise to a unique phenomenon of non-Hermitian systems, the
skin effect [36–41]. This corresponds to the localisation of the single-particle eigenstates at
the edges of the system. In addition, the model has a huge sensitivity to the boundary condi-
tions: under periodic boundary conditions (PBC), the single-particle spectrum encircles E = 0
in the complex plane, with the eigenstates manifesting as delocalised plane waves. In contrast,
with OBC, the spectrum is real for |γ| < J and purely imaginary for |γ| > J . Additionally, all
right single-particle eigenstates show an exponential localisation at the left (right) boundary
for positive (negative) γ (check Appendix B for further details).

In the following, we benchmark our results using the Faber polynomial method, with those
reported by Kawabata et al [35]. That is, we investigate the dynamics of the entanglement [80]
associated with a segment of the chain, denoted ℓ. This is rigorously derived from the von
Neumann entropy of the reduced density matrix(ρℓ) [81],

Sℓ(t) = −Tr (ρℓ lnρℓ) . (19)

ρℓ is determined by tracing out the complementary degrees of freedom of the subregion ℓ.
However, the Gaussianity of the state allows us to use the standard techniques [82–84] to
perform this computation using the one-particle density matrix restricted to the lattice sites
belonging to the region ℓ, Cn,m∈ℓ =




c†
ncm

�

. Thus, Eq. (19) for a free fermionic system is
simplified to

Sℓ(t) = −Tr (C|ℓ ln C|ℓ + (Iℓ×ℓ − C|ℓ) ln (Iℓ×ℓ − C|ℓ)) , (20)

where Iℓ×ℓ is the ℓ× ℓ identity matrix. Similarly to the authors of Ref. [35], we prepare our
system in a charge density wave state in the system with open boundaries,

|Ψ0〉=

 

L/2
∏

l=1

c†
2l

!

|vac〉 . (21)

In Fig. 2 (left) we benchmark the dynamics of the half-chain entanglement entropy SL/2(t)with
the results of Ref. [35], for two values of γ finding perfect agreement. In the right panel, we
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demonstrate convergence with respect to the number of polynomials Np, for a given time-step
δt = 0.1J−1. We validate the decreasing of the entanglement due to the presence of non-
Hermitian Skin effect [35]. In addition to the entanglement entropy, we have also validated
our results against other metrics presented in Ref. [35]. For instance, we equally observe the
initial charge density wave state rapidly evolving into a state with charge accumulation at
one boundary due to non-reciprocal hopping. In Fig. 3 (top panels) we plot the space-time
dynamics of particle density as well as a cut at long-times, describing the steady-state density
profile along the chain for different system sizes. We see that for short systems, as compared
to the single particle wave function localisation length, the accumulation takes the form of a
domain wall, while upon increasing system size a finite slope emerges, which we have checked
to vanish exponentially with L. In Fig. 3 (bottom panels) we plot the dynamics of the local
current [35] defined as

Iℓ =
J i
2




c†
ℓ+1cℓ − c†

ℓ
cℓ+1

�

. (22)

We see that, consistently with the density plot, a finite (negative) current flows in the bulk
of the chain, for sufficiently long systems and long times, while at the boundaries the current
vanishes due to the localised charge in the domain walls. This current is a feature of this
non-equilibrium steady-state, given that it is not present in the ground-state of the Hatano-
Nelson model. Besides, in contrast to the Hermitian scenario, the density profiles exhibit a
spatial gradient within the bulk of the chain. This non-trivial spatial distribution of density
arises from the single-particle skin effect. Additionally, in contrast to the Hermitian scenario,
non-Hermiticity permits spatial variations in the local charge current while the density profile
remains time-independent. This phenomenon is facilitated by the fact that the continuity
equation associated to charge conservation in non-Hermitian systems takes the form

∂t




c†
ℓ
cℓ
�

+ (Iℓ − Iℓ−1) = Tℓ , (23)

where the additional term Tℓ corresponds to the sink/source of particles due to coupling with
the environment equal to,

Tℓ = −
γ

J

L−2
∑

n=0

�
�

c†
ℓ
cℓ, In

	�

− 2 〈In〉



c†
ℓ
cℓ
��

. (24)

This term is unique to systems evolving under non-unitary dynamics generated by a non-
Hermitian Hamiltonian and has important consequences for the transport properties of these
systems [35,85], as we will further discuss below.

4.2 Domain wall melting for Hatano-Nelson

In this Section, our focus is on exploring the impact of non-Hermiticity on the temporal evo-
lution of particle density, current, and entanglement profiles in an HN system initialised in
a domain-wall state, |DW〉 = |111 · · ·10 · · ·000〉.2 This configuration has been the subject of
extensive investigations in the unitary case [88–91], as it exemplifies the distinctive charac-
teristics of non-equilibrium dynamics. In addition, it has inspired the development of gen-
eralised hydrodynamics (GHD) [92–94], which facilitates precise calculations of charge and
current profiles using a hydrodynamic description. Quantum correlations and entanglement
entropy can also be calculated under an extension of this framework, quantum GHD [95]. In
the non-Hermitian case, the dynamics of an initial domain wall has been less studied, even in
the simple non-interacting HN model.

2Using the Jordan-Wigner [86, 87] transformation the Hatano-Nelson model can be viewed in the spin-1/2
language as an XX chain with a non-reciprocal XX exchange term.
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Figure 3: Left - Time and spatial dependence of the particle density (top plot) and
charge current (bottom) profile for a system size of 100 sites. Right - Spatial de-
pendence of the particle density (top) and charge current (bottom) in the steady for
different system sizes. Other parameters: γ= −0.8J .

We start considering the time-evolution of the particle density profile under the HN dy-
namics, that we plot in Fig. 4 for increasing values of the non-reciprocal coupling γ. In the
unitary case (γ = 0) a clear light cone is visible, corresponding to ballistically propagating
quasiparticles. In the non-Hermitian case a light cone is still visible at short times, at least
for |γ| < J , when the particle density satisfies a scaling function n (ℓ/t) = f (ℓ/(veff t), where
veff is an effective velocity. As the non-reciprocal coupling increases, the light cone shrinks
more and more, up to γ = J , corresponding to the exceptional point of the HN, at which the
domain-wall state remains stable. We now focus on the short-time dynamics and discuss the
origin of the velocity renormalisation. From the numerical data we obtain (see Fig. 5 (top
left))

veff = J − γ . (25)

According to this, the domain wall spreads less for higher values of the non-Hermiticity pa-
rameter, and the renormalised velocity vanishes at γ = J . We note that this simple formula
is distinct and is not related to those derived for the propagation of wave packets through a
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Figure 4: Time evolution of the particle density profile of the Hatano-Nelson model
for different values of the non-Hermitian parameter γ. The total system length cor-
responds to L = 256. The dashed white lines correspond to the effective penetration
length.

non-Hermitian medium [96, 97], or to the one obtained from the energy dispersion relation
of the model, which would be proportional to

p

J2 − γ2 (see Fig. 5 (top left) and consult Ap-
pendix. B for the explicit derivation). Moreover, it depends on the initial conditions chosen, as
if the system was initialised in the state |· · ·000111 · · ·〉 instead, the formula should be replaced
by veff = J + γ. The reduction in propagation velocity results in a suppression of correlations
relative to the Hermitian scenario, a phenomenon previously observed in other non-Hermitian
systems [34,35,98].

A simple argument to justify the renormalisation of the velocity due to non-hermiticity can
be provided. The renormalised velocity can be obtained by using a local continuity equation
for the particle density (Eq. (23)) and expanding the term Tℓ. In the non-interacting limit, this
term can be expanded using Wick’s theorem in a local and non-local term,

Tℓ = −
γ

J
(Iℓ + Iℓ−1)

�

1− 2



c†
ℓ
cℓ
��

− iγ
L−2
∑

n̸={ℓ,ℓ−1}

�


c†
ℓ
cn+1

� 


c†
ncℓ
�

−



c†
n+1cℓ

� 


c†
ℓ
cn

��

. (26)

The second term of this equation is highly non-local and it is zero outside the light-cone region.
We proceed by writing the local continuity equation for a site ℓ, outside the light-cone region,
for an instant of time before the arrival of the particle density wavefront. Under these condi-
tions, Iℓ = 0 and 〈c†

ℓ
cℓ〉= 0 for ℓ > 0; and Iℓ−1 = 0 and 〈c†

ℓ
cℓ〉= 1 for ℓ < 0. Furthermore, the

non-local correlator vanishes, and so, the continuity equation is approximately given by

∂t 〈nℓ〉 −
�

1−
γ

J

�

Iℓ−1 = 0 , ℓ > 0 ,

∂t 〈nℓ〉+
�

1−
γ

J

�

Iℓ = 0 , ℓ < 0 .
(27)

The ± sign reflects the different propagation directions. This formula holds only before the
particle density wavefront reaches a given site ℓ. Afterwards, off-diagonal correlations emerge
within the light-cone area.
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Figure 5: Top - Quasi-particle effective velocity as a function of non-reciprocal cou-
pling (left plot). Particle density profile as a function of space for a fixed time (right
plot). Bottom – Spatial profile of charge current at different times for γ= 0.2J (right
plot). The plot in the bottom left shows the current profile as a function of space and
time for γ = 0.8J . Out of the ballistic region, the renormalised GHD equations are
no longer valid. Other parameters: L = 256.

Since at short times we can still identify a sharp light cone, it is tempting to try to use
a hydrodynamic description for the HN model. Although some advances have been made
within the framework of Linblad dynamics [99, 100], formulating a hydrodynamic descrip-
tion for the non-Hermitian variant of the XXZ model remains extremely challenging, even in
the absence of interactions. The nonlinearity of the equations of motion results in the loss of
most local conservation laws. We proceed in a somewhat phenomenological way and incor-
porate the renormalised velocity into the hydrodynamic expressions derived for the Hermitian
case [101]. Surprisingly, as we show for the Hatano-Nelson model in Fig. 5, the hydrody-
namic equations, derived in the unitary problem, still hold in the initial time, as long as the
appropriate renormalised velocity is included.
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Figure 6: Entanglement entropy for the subsystem [−L/2,ℓ] in different times. From
right to left, the non-Hermiticity is γ= 0,0.2J and 0.4J .

With this in mind, the particle density in the spatial interval, −t ≤ ℓ ≤ t, is given by the
following expression,

n (ℓ, t) =
1
π

arccos
�

ℓ

veff t

�

, (28)

which perfectly matches the results of the full numerical calculations (see Fig. 5 top right). This
is also applicable to the charge current, as we show in Fig. 5 (bottom left). Finally, using the
quantum GHD formalism [95, 101], it can likewise be extended to the entanglement entropy
of the region [−L/2,ℓ],

I (ℓ, t) =
1
π

√

√

√

1−
�

ℓ

veff t

�2

, (29)

S (ℓ, t) =
1
6

ln

�

veff t

�

1−
�

ℓ

veff t

�2
�3/2�

+ c1 , (30)

where c1 ≃ 0.4785 [102] as shown in the Fig. 6. Similarly to the unitary case, the entanglement
increases as a result of the development of quantum correlations within a well-defined spatial
region [103]. Ballistic transport of the charge current prevails, leading to a region that expands
linearly over time without significant entropy production. This phenomenon is characterised
by growth ln(t), which is emblematic of a local quantum quench protocol [104,105].

It is important to emphasise that these equations only correctly predict the behaviour at
short times, where there is ballistic propagation of the particle density wavefront. At later
times, the non-hermiticity plays a greater role than merely renormalising the velocity of prop-
agation.

In the unitary regime, ballistic propagation ceases within temporal scales commensurate
with the entire system size, which is applicable to systems of finite dimensions. The non-
reciprocal hopping stabilises the domain wall, thus preventing it from melting. With a finite
magnitude of non-reciprocal coupling, the particle density wavefront is constrained to pene-
trate only to a prescribed depth. This maximum penetration depth corresponds to the total
system size, L, for, γ= 0 and tends to zero at the exceptional point γ= J . It is as if the system
length is renormalised to an effective one given by

L∗ ∼
J − γ
J + γ

L . (31)
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Figure 7: Temporal and spatial dependence of the magnetisation profile, 〈Sz
ℓ
〉, for

different values of ∆ in the interacting Hatano-Nelson model. Other parameters:
γ= 0.8J and L = 24.

This length is marked by the white dashed lines in Fig. 4. Note that this reasoning is only
valid for γ > 0, since for γ < 0 the particle density wavefront necessarily reaches the system’s
boundary. The expression suggests that faster quasiparticles with velocity v∗ = J + γ cease
the ballistic propagation of the particle density wavefront upon hitting the physical bound-
ary. Thus, the maximum propagation velocity allowed in the system increases compared to
the Hermitian case, since particles can hop from right to left with velocity J + γ (assuming
γ > 0). Following the initial propagation of the particle density wavefront, the system reaches
a steady state characterised by the presence of a charge current traversing the two domains.
This current emerges due to a flux of particles sourced from the environment, which are sub-
sequently annihilated, as depicted in Fig. 5. However, contrary to the setting described by
Kawabata [35], non-Hermiticity leads to the spatial suppression of this current.

5 Application to non-Hermitian many-body systems

We now consider an application of the Faber polynomial method to a full non-Hermitian many-
body problem. In this case, one can simplify the evaluation of the evolution operator, while
the cost of storing the state is still exponential in system size since, as we stress again, in the
Faber polynomial method there is no approximation on the state which is fully represented in
the basis.

5.1 Magnetisation dynamics in the interacting Hatano-Nelson model

In this section, we study the effects of interactions in the dynamics of the magnetisation profile
and spin current on a non-Hermitian XXZ chain with a non-reciprocal XX exchange term.

H = −
L−2
∑

ℓ=0

�

(J + γ)
2

S+ℓ S−ℓ+1 +
(J − γ)

2
S+ℓ+1S−ℓ +∆Sz

ℓS
z
ℓ+1

�

, (32)
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Figure 8: Long-time behaviour of the magnetisation profile shown in Fig. 7, 〈Sz
ℓ
〉∞,

for different values of ∆. We see that at ∆ = 0 an emergent domain wall is formed,
which is stable for small ∆ (left panel). Increasing ∆, the system develops a poten-
tial drop in the middle of the chain, akin to diffusive dynamics, which then further
develops into an oscillating patter as ∆ increases (right panel). Other parameters
γ= 0.8J .

where J is a XX exchange term between neighbouring spins, γ induces an imbalance between
the propagation of left/right magnetic excitations and∆ is an Ising like exchange. This system
can also be viewed as an interacting Hatano-Nelson model by performing the Jordan-Wigner
transformation [86,87]. The system is prepared at time zero in an unentangled Néel state,

|Ψ(t = 0)〉= |↑,↓, · · · ,↓,↑〉 , (33)

which is an eigenstate of the Ising part of the model, so, one can expect that when∆≫ J ,γ the
Néel order is preserved. For ∆ = 0, when the model reduces to the non-recriprocal XX chain
(or Hatano-Nelson in fermionic language), it is known that the initial Néel state gives rise to a
domain wall state at long times as all magnetic excitations are transported to one of the edges
of the system [35], just as in the Hatano-Nelson model which exhibits charge accumulation at
a boundary. The extent of this proximity is governed by the degree of non-Hermiticity, which is
regulated by the parameter γ. Here, we are interested in understanding the role of interactions
in the magnetisation dynamics and the stability of this emergent domain wall. In Fig. 7 we
plot the spatial-temporal dynamics of the magnetisation 〈Sz

ℓ
(t)〉 for an increasing value of ∆.

We see that at short times there is a rapid reshuffling of magnetic excitations driven by the
non-reciprocity, towards a boundary accumulation. Interactions compete with this process and
tend to preserve the initial antiferromagnetic pattern at the expense of boundary accumulation,
as we see well in the right panel of Fig. 7. To better characterise the long-time dynamics, we
compute the average magnetisation profile




Sz
ℓ

�

∞ = limT→∞
1
T

∫ τ∗+T

τ∗
d t 〈Sz

ℓ(t)〉 , (34)

where τ∗ is the initial time corresponding to the reshuffling of magnetisation until there is
a stable boundary accumulation. We plot in Fig. 8




Sz
ℓ

�

∞ for different values of ∆. We see
that the emergent domain-wall state generated by the non-reciprocal exchange is stable at
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Figure 9: Temporal and spatial dependence of the local current profile, 〈In〉. Other
parameters: γ= 0.8J and L = 24.

weak interactions (left panel). However, as ∆ increases, a novel region emerges that interpo-
lates between the two magnetic domains (right panel). In particular, the system develops a
magnetisation drop, similar to a potential drop in systems that show diffusive transport. Fur-
ther increasing ∆, antiferromagnetic correlations emerge on top of this magnetisation slope,
which, as expected, are frozen by the large interaction and do not decay away. The result
above is particularly intriguing as it suggests that non-reciprocal coupling and interaction col-
laborate to establish a current-carrying steady state in the system’s centre: the former driving
the formation of a domain wall that acts as source and drain, the latter providing the neces-
sary scattering term to dissipate and establish a finite average current. Comparable findings
have been reported [106] for the ground state of the interacting Hatano-Nelson model with
nearest-neighbour repulsion. In that study, they also noted that the initial magnetisation pro-
file (referred to as the real-space Fermi surface) is disrupted by interactions that induce a
Néel order. In this work, we demonstrate that such a phenomenon can also be dynamically
generated by the non-unitary time-evolution.

Similarly to the non-interacting case, there is a current in this interpolating region, which
satisfies the same continuity equation as in Eq. (27). As clearly seen in Fig. 9, once again there
is a competition between non-reciprocity and the interaction parameter ∆ in defining the size
of this intermediate region, where it is possible for the particle to enter from the environment
and give rise to this current. As one is looking at small system sizes, it is not possible to create
a stable steady current (like in the non-interacting case). Due to this, we see oscillations in the
direction of the central current, and thus there is current flowing in both directions. However,
in the extreme case where γ= J , this oscillatory behaviour ceases to exist, and the current has
a fixed direction. When ∆ is much greater than J , the current disappears in the bulk region,
where the Néel order is maintained.

5.2 Effect of interaction in the domain-wall melting for Hatano-Nelson

Finally, we conclude this section by discussing the effect of interactions on the non-Hermitian
problem discussed in Sec. 4.2, namely an initial domain wall state.
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Figure 10: Spatial and temporal dependence of the magnetisation profile for differ-
ent values of the Ising exchange parameter. Other parameters: spins γ = 0.2J and
L = 24.

In the previous section, we have focused on the domain wall melting for the non-interacting
non-reciprocal Hatano-Nelson model, or in the spin analogue, the XX chain as ∆ = 0. For a
conventional Hermitian XXZ spin chain, the domain wall is only stabilised when the Ising
exchange is greater than the XX exchange, |∆| > J . In contrast, |∆| < J , the domain wall
melts, with a ballistic propagation of the magnetisation wavefront [107]. The Heisenberg
point, ∆= J , is special given the existence of the extra spin SU(2) symmetry, which allows for
superdiffusive behaviour of the spin current [90, 108]. Nevertheless, there is no Heisenberg
point in the spin version of the Hatano-Nelson model, as the non-Hermiticity explicitly breaks
the spin SU(2) symmetry. We observe that the interactions contribute to prevent the domain
wall from melting, as shown in Fig. 10. In a certain sense, non-Hermiticity and interactions
help to preserve the initial magnetic order, which otherwise would be eroded by the dynamics.
We have benchmarked this result with matrix product of states (MPS) calculations presented
in the Appendix C.

6 Application to quantum jumps unravelling

In this Section, we combine the Faber polynomial technique with a high-order Monte Carlo
Wave Function algorithm [10,12] to investigate the Quantum Jumps unravelling of the Lind-
blad master equation, discussed in Sec. 2. In particular, we address the stochastic Schrödinger
equation by propagating the initial state with the Faber polynomial method up to the time in-
stance (τ) when a quantum jump occurs. Therefore, within the time interval t ∈ [t0, t0 +τ],
the state evolves purely non-unitary according to

|ψ(t)〉=
e−iHt |ψ(t0)〉
∥e−iHt |ψ(t0)〉∥

. (35)

The time instance τ is obtained via the standard higher-order Monte Carlo wave function tech-
nique. It corresponds to the specific time at which the norm of the state equates
to a random variable, r, drawn from a uniform distribution over the interval [0, 1].
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Figure 11: Magnetisation profile in function of the lattice site and time. Left - Dy-
namics in Model A. Right - Dynamics in Model B. The system was initially prepared
in a Néel State (Eq. (33)). Other parameters: ∆= 0, γ= 0.8J and L = 20.

Consequently, τ is implicitly defined by the following equation,

r = 1− 〈ψ(t0)| eiH†(τ−t0)e−iH(τ−t0) |ψ(t0)〉 . (36)

The quantum jump is applied by first selecting the quantum jump channel µ in accordance to
their probability

pµ =

¬

L†
µLµ

¶

∑

µ




L†
µLµ

� , (37)

where the average is taken with the state, |ψ (t +τ)〉. Then, the post-jump state, |ψ
�

t +τ+
�

〉,
is obtained by applying the chosen jump operator, Lα,

|ψ
�

t +τ+
�

〉=
Lα |ψ (t +τ)〉

q

〈ψ (t +τ)| L†
αLα |ψ (t +τ)〉

. (38)

This algorithm gives access to the full Lindbladian dynamics, by averaging over the propa-
gated quantum trajectories. Further, it also provides access to the dynamics under continuous
monitoring [10,21]. This is accomplished by tracking the many-body quantum trajectory and
computing, for example, non-linear functions of the state. One such function is the entangle-
ment entropy of quantum trajectories, as we shall discuss below.

6.1 Magnetisation and entanglement dynamics in monitored spin chains

As an application, we consider a quantum spin chain described by the Hermitian XXZ model
with Hamiltonian

H = −
L−2
∑

ℓ=0

�

J
2

S+ℓ S−ℓ+1 +
J
2

S+ℓ+1S−ℓ +∆Sz
ℓS

z
ℓ+1

�

, (39)

where J is the XX exchange term between neighbouring spins and∆ an Ising like exchange. We
compare the dissipative dynamics generated by two different types of quantum jump operators.
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A first set of jump operators that we consider describe next-neighbour decoherence of spin
excitations along the chain and take the form

L0 =
Æ

|γ|S−0 ,

L1+ℓ =
Æ

|γ|
�

S−ℓ − isgn (γ)S−ℓ+1

�

, ℓ= {0, · · · , L − 2} ,

LL =
Æ

|γ|S−L−1 .

(40)

Through the rest of the document, we name this system Model A. Interestingly, with this choice
of jump operators the non-Hermitian Hamiltonian associated to the no-click limit turns out to
be given by a spin version of the many-body Hatano-Nelson model. Indeed, the following
straightforward calculation yields the non-Hermitian Hamiltonian

Heff =H− i
2

∑

ℓ

L†
ℓ
Lℓ

=H−
γ

2

L−2
∑

ℓ=0

�

S+ℓ S−ℓ+1 − S+ℓ+1S−ℓ
�

− i |γ|
L−1
∑

ℓ=0

S+ℓ S−ℓ .

(41)

The last term does not affect the dynamics, as it just an overall background decay. Although
this model can be connected to the fermionic version of the Hatano-Nelson model, the Linblad
equation is not quadratic, hence the quantum trajectories are not gaussian, due to the Jordan-
Wigner strings in the quantum jumps, i.e. terms of the form S−ρS+.

We compare the dynamics generated by the quantum jumps above with the one induced
by a different set of jump operators that create a spin-flip excitation from site n+ 1 to site n.
These are read as follows,

Lℓ =
p
γS+ℓ S−ℓ+1 , (42)

with ℓ= {0, · · · , L − 2}. We refer to this configuration as Model B. Previous studies have shown
that these operators induce a phenomenon known as the Liouvillian skin effect [25,109–111].
Specifically, there is an exponential localisation of the Liouvillian modes at the boundaries of
the system. This becomes evident when the Linblad is projected onto the one-particle sector,
where, at J = 0 and ∆ = 0, it simplifies to an effective Hatano-Nelson Hamiltonian tuned to
its exceptional point [109],

H = γ
L−2
∑

ℓ=0

S+ℓ S−ℓ+1 . (43)

The non-click Hamiltonian differs from the Hatano-Nelson model, representing an XXZ chain
with an imaginary Ising exchange term and boundary imaginary magnetic fields,

Heff = −
J
2

L−2
∑

ℓ=0

�

S+ℓ S−ℓ+1 + h.c
�

−
h

∆− i
γ

2

i
L−2
∑

ℓ=0

Sz
ℓS

z
ℓ+1 +

iγ
4

�

Sz
0 − Sz

L−1

�

−
iγ
8
(L − 1) . (44)

In Fig. 11, we plot the magnetisation dynamics starting from an initial Néel state and
evolving under the two types of dissipative evolutions. In the left panel, we plot the dynam-
ics generated by Model A (Eq. (40)). Under this set of jump operators, manifestations of
non-reciprocity and accumulation of spins in the up state are still present in the transient dy-
namics [112,113]. We note that these are the same jump operators considered in [113] with
the phase, φ, defined by them, tuned to get the non-reciprocal regime. However, in the long
time limit, a generic state converges to a configuration with zero excitations, |↓ · · · ↓〉 [113]
(see the left plot of Fig. 11). This is attributed to the recycling terms of the form S−n ρS+n , which
effectively remove particles from the system. Additionally, the system has another dark state
within the one-magnon sector, which only plays a role in decelerating the relaxation dynamics
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towards the fully polarised down state [113]. The final state obtained under this Linbladian
does not resemble at all the magnetisation profile that one would have obtained in the no-click
limit.

We then focus on Model B (Eq. (42)), and plot in Fig. 11 (right panel) the resulting mag-
netisation dynamics. For the sake of simplicity, we consider the dynamics with ∆ = 0. The
dynamics driven by this model will facilitate the accumulation of spins in an up state at the
left extremity of the chain. The imaginary Ising exchange term is responsible for diminishing
the state’s norm when adjacent spins are antialigned, precipitating a quantum jump that prop-
agates a spin towards the left edge. This phenomenon is depicted in the spatial and temporal
evolution of the magnetisation profile shown in Fig. 11. In contrast to the behaviour observed
in Model A, Model B does not converge to a steady state characterised by zero excitations.
This distinction is attributable to a difference in symmetry. Model A exhibits only weak U(1)
symmetry, whereas the Model B possesses strong U(1) symmetry, thereby ensuring that the
system’s state is kept within the initial magnetisation sector at all times.

This disparity in symmetry radically changes the temporal dynamics of the conditionally
averaged entanglement entropy, which is defined as the mean entanglement entropy across
all conceivable quantum trajectories,

S̄ℓ (t) =

∫

Dξt P (ξt)Sℓ (ξt) , (45)

with S (ξt) is the entanglement of a given quantum trajectory that evolves according to Eq. (1).
For early times, the entanglement entropy in both models increases linearly. Without

non-Hermiticity, the system evolves under standard hermitian dynamics, leading to the en-
tanglement entropy saturating at a value proportional to the system’s volume as it locally
thermalises [114,115]. However, in the presence of non-Hermiticity and quantum jumps, this
behaviour may drastically alter. In Model A, the entanglement entropy drops to zero after an
initial period determined by the measurement rate γ [116]. Each jump causes a spin-flip, driv-
ing the system to a state devoid of magnetic excitations. This occurs regardless of the system’s
total size, resulting in a trivial entanglement area law for any nonzero value of γ. The no-click
limit of Model A, which corresponds to the Hatano-Nelson model, also has this area law scaling
of the entanglement entropy; however, this is driven by the single-particle skin effect [35].

In contrast, the system in Model B does not relax to a zero excitation state, as seen in
Fig. 12. The strong U(1) symmetry confines the dynamics to the magnetisation sector of the
initial state.3 Initially, the system has a linear growth of the entanglement entropy, reminis-
cent of the unitary evolution. However, similarly to the Hatano-Nelson model, the steady-state
supports an area law entanglement for a positive value of γ, as seen in the left plot of Fig.12.
This can be understood through the spectral properties of the no-click Hamiltonian (Eq. (44)).
The spectrum is always complex-valued, and so, in the no-click limit, the steady-state corre-
sponds to right-eigenstate with the slowest decaying mode in the zero magnetisation sector.
In particular, for certain values of γ/J , the imaginary component of the spectrum is gapped.
Thus, the entanglement entropy inevitably follows an area law in the long-time limit, similar
to the ground state of a gapped Hamiltonian [33, 117]. The imaginary gap (∆Im) in the zero
magnetisation sector can be analytically obtained in the limit of γ≫ J ,

∆Im = −i
γ

2J
+O

�

J
γ

�

. (46)

3The dynamics conserves the total number of excitations in the initial state as the initial state is eigenstate of
∑L−1

n=0 Sz
n and the Hamiltonian in Eq. (44) as U(1) symmetry.
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Figure 12: Top - Time dependence of the conditional entanglement entropy for differ-
ent system sizes with γ= 0.8J . On the left, the dynamics corresponds to Model A, see
Eq. (40)), while on the right to Model B, see Eq. (42). Bottom Left: Time evolution of
the entanglement entropy for γ= 0.1J in the case of Model B. The inset corresponds
to the fit of the steady-state entanglement entropy to the law SL/2 (∞) = a0 + a1 L,
with a0 = (0.145± 0.002) and a1 = (0.18± 0.03). Bottom Right - Steady-state en-
tanglement entropy in Model B, for different system sizes as a function of the non-
hermitian parameter. Other parameters: ∆= 0.0J .

The measurement apparatus effectively disentangles the system, pushing excitations to-
wards the left boundary, and preventing the formation of long-range correlations. It is harder
to completely confirm this for smaller values of γ, where the unitary evolution dominates both
the non-Hermitian and stochastic terms. This mainly affects systems with a smaller dimension,
where finite-size effects are substantial, since the terms proportional to L−n with n > 0 in the
entanglement entropy cannot be ignored. For example, for γ = 0.1J , one cannot extrapolate
the true entanglement scaling, as the observed linear growth might be an artefact of small
system sizes, so it remains uncertain whether a genuine entanglement transition occurs in the
thermodynamic limit. Nevertheless, the remaining data points clearly indicate the collapse
of all system sizes to the same value, thus revealing the area law nature of the entanglement
entropy.
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7 Conclusions

Throughout this study, we have successfully used the Faber polynomial method to characterise
the non-unitary dynamics of both non-interacting and interacting Hatano-Nelson models. Ad-
ditionally, we have seamlessly integrated this approach with a high-order Monte Carlo Wave
Function algorithm to rigorously examine both Lindblad and continuous monitoring dynamics.

In the non-interacting problem, we provided the first numerical evidence supporting the
existence of a valid hydrodynamic description for the melting dynamics of a domain wall in the
presence of non-Hermitian terms. This finding encourages further developments to properly
formalise a theory of generalised hydrodynamics applicable to non-Hermitian systems.

Our study also reveals an intriguing competition between the Ising exchange term, which
tends to preserve the initial Néel order, and the non-reciprocal XX coupling, which tends to
form a domain-wall ordering. For comparable values of ∆ and J , the interaction allows the
formation of an intermediate region that interpolates between the two magnetic domains,
allowing the flow of current. However, we could not reach considerable system sizes to de-
termine if this region could support a non-equilibrium steady-state current flowing in only
one direction, as seen in the non-interacting case. It is clear, however, that this cannot be the
case for ∆≫ J , as the dynamics preserve the initial magnetic ordering, and the current can
only exist in the interpolating region between the Néel-ordered domain and the ferromagnetic
one generated by the non-reciprocal coupling. Conversely, our work shows that interactions
and non-reciprocity help preserve the initial magnetic order when the system is initialised in a
domain-wall setup, a result consistent with both the non-interacting non-Hermitian problem
and the interacting Hermitian case.

This study offers additional insights into the entanglement transition in quantum spin
chains exhibiting Non-Hermitian or Liouvillian skin effects. In Model A, we found that the
area law behaviour of entanglement entropy remains for any nonzero γ, similar to the no-click
limit. However, the sources are different: in the no-click limit, the area law stems from the
single-particle skin effect, while in the monitored stochastic trajectory, it is due to the quantum
jumps that relax the system into the fully polarised down spin-state, a product state. On the
other hand, the dynamics with two-body jump operators (Model B), Lℓ∝ S+

ℓ
S−
ℓ+1, allow for a

non-equilibrium steady state with a magnetisation profile resembling the no-click limit of the
Hatano-Nelson model. Furthermore, the average entanglement entropy still follows an area
law for finite values of the ratio γ/J in conditional dynamics. The measurement apparatuses
effectively disentangle the state, suppressing the volume law that would otherwise be gener-
ated in unitary dynamics. This work extends previous studies that focused on the one-particle
sector [35,109].

Overall, our results support the utility and applicability of Faber polynomials in various
research domains. This encompasses investigations into measurement-induced phase transi-
tions, open quantum systems, and the exploration of purely non-unitary dynamics governed
by non-Hermitian Hamiltonians. For instance, Faber Polynomials could be employed to study
non-Hermitian Floquet problems in the high-frequency limit, where the Floquet Hamiltonian
is well-defined and time-independent. Moreover, these polynomials can also be used to cal-
culate general spectral properties of non-Hermitian Hamiltonians, potentially replicating the
role of Chebyshev polynomials within the Kernel polynomial method [68]. This would comple-
ment the existing Non-Hermitian Kernel polynomial method [62–64]. Furthermore, the Faber
polynomial approach could potentially be combined with MPS, similar to the developments
already made in the Hermitian case [118–121].

23

https://scipost.org
https://scipost.org/SciPostPhys.17.5.128


SciPost Phys. 17, 128 (2024)

Acknowledgments

Funding information R.D.S. acknowledges funding from Erasmus+ (Erasmus Mundus pro-
gramme of the European Union) and from the Institute Quantum-Saclay under the project
QuanTEdu-France. M.S. acknowledges funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (Grant agree-
ment No. 101002955 - CONQUER). We acknowledge Collège de France IPH cluster where the
numerical calculations were carried out.

A Further details on Faber polynomials

As discussed previously, Faber polynomials serve as a polynomial basis to represent complex-
valued functions that are analytic within the domain D. These are generated by a conformal
mapping ξ(w) that maps the complement of a closed disk of radius ρ to the complement of
D,

ξ′(w)
ξ(w)− z

=
∞
∑

n=0

1
wn+1

Fn (z) , (A.1)

with Fn(z) being the nth Faber polynomial generated by the conformal mapping ξ(w), z ∈ D
and w is such that |w| > ρ. The existence of such a map, which also satisfies the conditions
ξ(w)/w→ 1 in the limit |w| →∞, is guaranteed by the Riemann mapping theorem [58,122].
Furthermore, ξ(w) admits a Laurent expansion at w=∞ of the form,

ξ(w) = w+
∑

m≥0

γmw−m , (A.2)

where γm ∈ C. Using the Laurent expansion and integrating in the contour defined around the
disk of radius ρ, it is straightforward to check that the Faber polynomials satisfies the following
recurrence relation,

Fn+1(z) = zFn(z)−
n
∑

j=0

γ j Fn− j(z)− nγn , n> 0 , (A.3)

where F0(z) = 1. For our purposes, we are interested in using the Faber polynomials to approx-
imate a given function of our non-Hermitian Hamiltonian, f (H). The domain D, is defined
by the spectrum of the Hamiltonian. Using Eq. (A.1), the expression in a Faber series is given
by

f (z) :=
+∞
∑

k=−∞
ckFk(z) , (A.4)

with the coefficients given by the integral,

cn =
1

2πi

∫

|w|=ρ

f (ξ (w))
wn+1

dw . (A.5)

As stated in the main text, we perform this integral with ρ = 1 by properly rescaling the
Hamiltonian. Furthermore, we compute the Faber coefficients related to an elliptic contour.
For this contour, the conformal mapping reduces to ξ(w) = w+ γ0 + γ1w−1, where γ0 is the
centre of the ellipse and γ1 = 1− b, with b the major semiaxis. This maximises the memory
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efficiency of the algorithm, as the recurrence relation in Eq. (A.3) only depends on the two
previous polynomials,

F0(z) = 1 ,

F1(z) = z − γ0 ,

F2(z) = (z − γ0) F1(z)− 2γ1F0(z) ,

Fn+1(z) = (z − γ0) Fn(z)− γ1Fn−1(z) , n≥ 2 .

(A.6)

The coefficients cn of the Faber series presented in the main text (Eq. (10)) are straightfor-
wardly computed by performing the contour integral in Eq. (A.5) for the function f (z)=e−iδtsz .
This is done through the use of the identity [78],

exp
� z

2

h

s+
a
s

i�

=
+∞
∑

n=−∞

�

s
i
p

a

�n

Jn

�

i
p

az
�

. (A.7)

The Faber Polynomials have two interesting limits; when γ1 = 0 the conformal mapping cor-
responds to a circle, thus the Faber Polynomials reduce to the Taylor polynomials centred
around γ0,

Fn(z) = (z − γ0)
n , (A.8)

Whereas, in the limit γ1 = 1, the conformal mapping evolves the real line, and so, the Faber
Polynomials can be related with the Chebyshev polynomials by

F1(z) = T1

�z − γ0

2

�

,

F2(z) = T2

�z − γ0

2

�

− 1 ,

Fn(z) = Tn

�z − γ0

2

�

, n≥ 2 .

(A.9)

B General features on the Hatano-Nelson model

In this Appendix, we review the essential characteristics of the non-interacting Hatano-Nelson
model, highlighting the importance of boundary conditions on the resulting physical proper-
ties. Specifically, we examine the diagonalisation of the non-interacting Hatano-Nelson model
(Eq. (18)) under both open and periodic boundary conditions. For OBCs, the Hamiltonian
can be diagonalised through a similarity transformation. This is done using the GL (1) gauge
transformation [35],

p̂†
ℓ

:= eℓθ ĉ†
ℓ

, q̂ℓ := e−ℓθ ĉℓ , (B.1)

with θ ∈ R and both pℓ and qℓ two fermionic operators satisfying the unusual anti-
commutation relations:

�

p†
ℓ
, qn

	

= δℓ,n,
�

p†
ℓ
, pn

	

= e2ℓθδℓ,n,
�

q†
ℓ
, qn

	

= e−2ℓθδℓ,n and

{pℓ, qn}=
�

p†
ℓ
, q†

n

	

= 0. This indicates the biorthogonality of the Hamiltonian’s eigenbasis.
The Hamiltonian can subsequently be expressed in the form

HHN = −
L−2
∑

n=0

�

eθ (J + γ)
2

p†
nqn+1 +

e−θ (J − γ)
2

p†
n+1qn

�

. (B.2)

The θ parameter is chosen so that the final Hamiltonian becomes hermitian,

θ =
1
2

log
�

J − γ
J + γ

�

. (B.3)
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This reduces the Hamiltonian to

HHN = −
p

J2 − γ2

2

L−2
∑

n=0

�

p†
nqn+1 + p†

n+1qn

�

. (B.4)

The Hamiltonian can be diagonalised through a straightforward Fourier transformation,

HHN = −
Æ

J2 − γ2
∑

k

cos (k) p†
kqk , (B.5)

where k = π
L+1 n, n ∈ {1, · · · , L}. The quasi-particles generated by p†

k and q†
k are nonorthog-

onal, as shown by their anticommutation relations. Furthermore, they correspond to states
exponentially localised at the left and right edges of the chain,

p†
k |vac〉=

√

√ 2
L + 1

L−1
∑

ℓ=0

eℓθ sin (k · (ℓ+ 1)) c†
ℓ
|vac〉 ,

q†
k |vac〉=

√

√ 2
L + 1

L−1
∑

ℓ=0

e−ℓθ sin (k · (ℓ+ 1)) c†
ℓ
|vac〉 .

(B.6)

The parameter θ controls wave-function localisation, inducing a characteristic length scale l,

l ∼
�

log
�

J − γ
J + γ

��−1

. (B.7)

This characteristic length scale emerges due to the skin effect and is exclusive to the open-
boundary condition scenario. Conversely, under PBCs, the Hamiltonian can be diagonalised
using a Fourier transform without employing the GL gauge transformation,

HHN = −
∑

k∈FbZ

[J cos (ka) + iγ sin (ka)] c†
kck . (B.8)

Unlike the previous case where the eigenstates were confined to the chain ends, under
periodic boundary conditions, both the right and left eigenstates are indistinguishable and
delocalised. Furthermore, the spectra is always complex for all values of γ.

C Comparison with MPS based methods

In this Appendix, we compare the Faber Polynomial technique with MPS calculations for the
interacting domain-wall melting problem. First, using a second-order time-evolution block
decimation (TEBD) algorithm [123], and second, a first-order matrix product operator (MPO)
representation of the time-evolution operator [124]. These methods were implemented using
the ITensor Library [125, 126]. The TEBD algorithm consists in performing a Suzuki-trotter
break-up of the time evolution operator,

e−iδt(Heven+Hodd) ≃ e−iδtHeven e−iδtHodd , (C.1)

where the Hamiltonian in Eq. (32) is decomposed as a sum of two body terms either acting
on the left or right sites, H = Hodd +Heven. While in the first-order MPO, we use a Euler
expansion of the time-evolution operator, e−iδtH ≃ 1− iδtH, and represent the Hamiltonian
through an MPO.
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Figure 13: Comparison between the Faber polynomial expansion and the TEBD
(MPO) algorithm, shown on the left (right). The calculations on the left were per-
formed with γ = 0.0J , ∆ = 0.5J and L = 18, while on the right we used γ = 0.2J ,
∆= 0.4J and L = 18.

MPS calculations could be effective for this problem, as the entanglement entropy increases
logarithmically over time and the domain-wall order is favoured by non-Hermiticity. However,
the TEBD and MPO algorithms face errors that the Faber algorithm avoids. Firstly, there is
a restriction on the maximum allowed time step. In the TEBD algorithm, the Hamiltonian
is decomposed into smaller two-body terms that can be exactly exponentiated, as shown in
Eq. (C.1). The approximation neglects the non-zero commutator term [Hodd,Heven], causing
an error of order δt2. To minimise this error, the time step must be small relative to the prob-
lem’s energy scale. This is evident in the left panel of Fig. 13, where longer integration times
with a larger time step deviate from results obtained with Faber polynomials. A comparable
error is present in the MPO algorithm due to the use of a first-order expansion. The Faber
algorithm circumvents this issue by precisely representing the time evolution operator for any
time step with any desired accuracy, though it requires the computation of the appropriate
number of polynomials. Another limitation of the TEBD algorithm is the handling of long-
range interactions with the Suzuki-Trotter decomposition, which requires the use of advanced
techniques such as swap gates [127]. The TEBD and MPO techniques also face inaccuracies
because of the truncation of the MPS bond dimension, a problem that the Faber algorithm
avoids at the cost of working with a state encompassing the entire Hilbert space dimension.
Of course, using the Faber polynomial limits the analysis to smaller system sizes. However, it
can be advantageous in situations where MPS calculations fail, such as when the entanglement
entropy scales proportionally to the system size.
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