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Abstract

The matrix element method is the LHC inference method of choice for limited statistics.
We present a dedicated machine learning framework, based on efficient phase-space
integration, a learned acceptance and transfer function. It is based on a choice of INN
and diffusion networks, and a transformer to solve jet combinatorics. We showcase this
setup for the CP-phase of the top Yukawa coupling in associated Higgs and single-top
production.
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1 Introduction and reference process

Optimal analyses are the key challenge for the current and future LHC program, including
specific model-based as well simulation-based search strategies. A classic method is the ma-
trix element method (MEM), developed for the top physics program at the Tevatron [1, 2].
It derives its optimality from the Neyman-Pearson lemma and the fact that all information
for a given hypothesis is encoded in the differential cross section. In the MEM, we compute
likelihood ratios for individual events, such that the log-likelihood ratio of an event sample
is the sum of the event-wise log-likelihood ratios. A combination of events to a kinematic
distribution is not necessary [3].

The MEM was first used in the top mass measurement [4–7] and the discovery of the single-
top production process [8] at the Tevatron. At the LHC, there exist several studies [9–15] and
analysis applications [14, 16–19]. The critical challenge to MEM analyses is the integration
over all possible parton-level configurations which could lead to the analyzed observed events.
It can be solved by using modern machine learning (ML) for a fast and efficient combination
of simulation and integration [20, 21]. A related ML approach to likelihood extraction is the
classifier-based estimation of likelihood ratios [22].

We present a comprehensive simulation and integration framework for the MEM, based
on modern machine learning [23, 24]. It makes extensive use of generative networks, which
are transforming LHC simulations and analyses just like any other part of our lives. This starts
with phase-space integration and sampling [25–30] and continues with more LHC-specific
tasks like event subtraction [31], event unweighting [32,33], loop integrations [34], or super-
resolution enhancement [35, 36]. At the LHC, generative networks generally work in inter-
pretable physics phase spaces, for example scattering events [37–43], parton showers [44–51],
and detector simulations [52–75]. These networks can be trained on first-principle simulations
and are easy to handle, efficient to ship, powerful in amplifying the training samples [76,77],
and — most importantly — precise [42, 78–80]. Conditional versions of these established
generative networks then enable new analysis methods, like probabilistic unfolding [81–89],
inference [21,90], or anomaly detection [91–96].

We introduce a new MEM-ML-analysis framework in Sec. 2. It combines two generative
network and one classifier network and pushes the precision beyond our conceptual study [21],
towards an experimentally required level. For a fast and bi-directional evaluation we use the
established cINNs with advanced coupling layers [42], updated to current precision require-
ments in Sec. 3. In Sec. 4, we add a learned acceptance network. In Sec. 5, we show how
a generative diffusion network [43] improves the precision, albeit at the expense of speed.
Finally, we employ a transformer architecture [43, 97, 98] to solve the jet combinatorics in
Sec. 6. This series of improvements allows us to extract likelihood distributions from small
and moderate-size event samples without a network bias and with close-to-optimal perfor-
mance.

Reference process

The focus of this paper is entirely on our new ML-method to enable MEM analyses at the LHC.
However, we use an established, challenging, and realistic physics process to illustrate our
method. This reference process is introduced and discussed in Ref. [21]. We target the purely
hadronic signature

pp→ tH j→ (b j j) (γγ) j + jets, (1)

with up to four additional jets from QCD radiation. The production process allows for a mea-
surement of a CP-phase in the top Yukawa coupling at future LHC runs [99–107]. The chal-
lenge of having to work with small event numbers is motivated by choosing the rare decay
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channel H → γγ, which allows us to control continuum backgrounds efficiently. The total
cross section is 43.6 fb, when we combine top and anti-top production.

To probe the symmetry structure of the Yukawa coupling, we introduce a mixed CP-even
and CP-odd interaction [108],

Lt t̄H = −
ytp
2

�

a cosα t̄ t + i b sinα t̄γ5 t
�

H . (2)

Choosing a = 1 and b = 2/3 [109] keeps the cross section for g g → H constant. The model
parameter we target with the matrix element method is the CP-angle α. For more details on
this reference process we refer to our conceptual study [21]. Obviously, all our findings can
be generalized to other LHC processes.

2 ML-matrix element method

The matrix element method is a simulation-based inference method which uses the fact that
for a given parameter of interest, α, the likelihood can be extracted from a simulation of the
differential cross section. It describes the hard scattering process and factorizes into the total
cross section and a normalized probability density,

dσ(α)
d xhard

= σ(α) p(xhard|α) ⇔ p(xhard|α) =
1
σ(α)

dσ(α)
d xhard

. (3)

Given the hard process, we then simulate the parton shower, hadronization, detector ef-
fects, and the reconstruction of analysis objects, with a forward-transfer or response function
r [110]. This function is assumed to be independent of the theory parameter α

xhard

xreco

rejected.

r(xreco|xhard)

preject(xhard)

(4)

The detector geometry and acceptance cuts will lead to, either, a valid reco-level event xreco
or a rejected event, introducing preject(xhard) as the probability that a given hard event xhard
is rejected. The transfer function r is not normalized, and a proper normalization condition
defines the efficiency or acceptance function,

ε(xhard) :=

∫

d xreco r(xreco|xhard) = 1− preject(xhard) . (5)

Using the transfer function we can parametrize the forward evolution of the differential cross
section following

dσfid(α)
d xreco

=

∫

d xhard r(xreco|xhard)
dσ(α)
d xhard

, (6)

where the subscript ‘fid’ indicates that the reco-level phase space is different from the parton
level. In this relation we can use Eq.(5) to replace r with a normalized transfer probability
p(xreco|xhard),

r(xreco|xhard) = ε(xhard) p(xreco|xhard) , with

∫

d xreco p(xreco|xhard) = 1 . (7)

Inserting Eq.(7) in Eq.(6) we obtain the final expression for the differential cross section

dσfid(α)
d xreco

=

∫

d xhard ε(xhard) p(xreco|xhard)
dσ(α)
d xhard

. (8)
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Equivalent to Eq.(3) we can now define the likelihood for reco-level events in terms of the
fiducial cross section and the differential cross section

dσfid(α)
d xreco

= σfid(α) p(xreco|α) ⇔ p(xreco|α) =
1

σfid(α)
dσfid(α)
d xreco

. (9)

To obtain the fiducial cross sectionσfid(α), we now need to integrate Eq.(8) over the reco-level
phase space

σfid(α) =

∫

d xreco

∫

d xhard ε(xhard) p(xreco|xhard)
dσ(α)
d xhard

=

∫

d xhard ε(xhard)
dσ(α)
d xhard

= σ(α)

∫

d xhard ε(xhard) p(xhard|α)

= σ(α)



ε(xhard)
�

x∼p(xhard|α)
, (10)

where we first use Eq.(7) to integrate out the reco-level phase space and then replace the
differential cross section using Eq.(3). This allows us to express the integral in terms of the
average acceptance 〈ε〉α which is used to evaluate the integral numerically. Using Eq. (8) in
Eq. (9) we obtain the final expression for the reco-level likelihood

p(xreco|α) =
1

σfid(α)

∫

d xhard
dσ(α)
d xhard

ε(xhard) p(xreco|xhard) . (11)

Note that in our training dataset, consisting of simulated event pairs (xreco, xhard), the hard-
scattering momenta are not distributed according to Eq.(3), because it does not contain events
xhard that have been rejected. Consequently, the accepted xhard are distributed as

pfid(xhard|α) =
1

σfid(α)
dσ(α)
d xhard

ε(xhard) . (12)

This means, we can directly relate the reco-level likelihood to a modified parton-level likeli-
hood

p(xreco|α) =
∫

d xhard p(xreco|xhard) pfid(xhard|α) , (13)

which connects the MEM with the completeness relation from statistics.

Acceptance classifier and transfer network

To compute the reco-level likelihood defined in Eq.(11) we rely on ε(xhard) and p(xreco|xhard),
defined through a forward simulation. We encode both functions in neural networks trained
on these forward simulations.

First, the acceptance ε(xhard) can be encoded as a standard classifier network

xhard
Acceptance network
−−−−−−−−−−−→ εψ(xhard) , (14)

where ψ denotes the trainable network parameters. Given the input xhard it learns the labels
1 for accepted events and 0 otherwise. Because the network is a classifier with a cross entropy
loss, its output will be the acceptance probability for the given event.
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p(xreco|α) =
1
σfid 〈 1

q(xhard)
dσ(α)
d xhard

ε(xhard)
p(xreco|
xhard) 〉

Sampling
cINN

Transfer
network

Acceptance
network

α

xreco

{r | r ∼ platent(r)}

{xhard}

Figure 1: Three-network MEM integrator evaluating Eq.(23) through sampling r.
The Sampling-cINN is conditioned on the CP-angle α and the reco-level event xreco.
The Transfer network is conditioned on the hard-scattering event xhard. For the three-
network setup the acceptance ε(xhard) is encoded in a network.

The transfer probability introduced in Eq.(7) is encoded in a generative network with den-
sity estimation capability, like a normalizing flow or diffusion model, and is trained on event
pairs (xreco, xhard). For this training dataset, we only include accepted events. The generative
network defines a bijective mapping between Gaussian random numbers and reco-level phase
space conditioned on parton-level events,

xreco ∼ pθ (xreco|xhard)
Transfer network
←−−−−−−−−→ r ∼ platent(r) , (15)

with trainable parameters θ . This mapping can than be used for density estimation in the
forward direction and for conditional generation of reco-level events in the inverse direction.

Sampling-cINN

The integration in Eq.(13) is challenging, because the differential cross section spans several
orders of magnitude, and the transfer probability typically forms a narrow peak. We solve the
integral using Monte Carlo integration sampling xhard ∼ q(xhard|xreco,α)≡ q(xhard),

p(xreco|α) =
∫

d xhard pfid(xhard|α) pθ (xreco|xhard)

=

�

1
q(xhard)

pfid(xhard|α) pθ (xreco|xhard)

�

xhard∼q(xhard)

, (16)

Ideally, this assumes

pθ (xreco|xhard) = p(xreco|xhard) , (17)
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in which case we can use Bayes’ theorem to arrive at

p(xreco|α) =
�

1
q(xhard)

pfid(xhard|α) p(xreco|xhard)

�

xhard∼q(xhard)

=

�

1
q(xhard)

p(xhard|xreco,α)p(xreco|α)
�

xhard∼q(xhard)

. (18)

For this integral the variance vanishes when

q(xhard)≡ q(xhard|xreco,α)∝ p(xhard|xreco,α) , (19)

where p(xhard|xreco,α) corresponds to the generative unfolding probability from reco-level to
parton-level [84]. However, in practice, we cannot expect the learned transfer probability to
match its truth counterpart perfectly. In that case the condition in Eq.(19) becomes

q(xhard|xreco,α)∝ pfid(xhard|α) pθ (xreco|xhard) . (20)

In both cases, we train a second conditional normalizing flow with trainable parameters ϕ to
encode this optimal transformation of the integration variables,

r ∼ platent(r)
Sampling-cINN
←−−−−−−−→ xhard(r)∼ qϕ(xhard|xreco,α) , (21)

which allows to parameterize the conditional sampling density as

qϕ(xhard|xreco,α)≡ qϕ(xhard(r)|xreco,α) =
platent(r)

Jϕ(r)
,

with Jϕ(r) =

�

�

�

�

∂ xhard(r; xreco,α;ϕ)
∂ r

�

�

�

�

. (22)

The MEM integral in Eq.(11) now reads

p(xreco|α) =
1

σfid(α)

∫

dr Jϕ(r)
�

dσ(α)
d xhard

εψ(xhard) pθ (xreco|xhard)
�

xhard(r;xreco,α;ϕ)

=
1

σfid(α)

�

Jϕ(r)

platent(r)

�

dσ(α)
d xhard

εψ(xhard) pθ (xreco|xhard)
�

xhard(r;xreco,α;ϕ)

�

r∼p(r)

.

(23)

The architecture of our MEM integrator is illustrated in Fig. 1.

3 Two-network baseline

In the proof-of-concept implementation of Ref. [21]we used a series of ad-hoc fixes to stabilize
the critical phase space integration in Eq.(11). Before we present more substantial improve-
ments to our framework, we introduce a series of numerical improvements to our baseline
two-cINN setup. For the two-network setup we assume that we can neglect the phase-space
dependence of the acceptance in the MEM integration,

p(xreco|α)≈
1

σfid(α)

∫

d xhard
dσ(α)
d xhard

pθ (xreco|xhard) . (24)
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Single-pass integration over model parameters

Initially, we integrate over the phase space for each theory parameter value separately. This
general approach does not make use of the fact that the detector response does not depend on
α, and the mapping for the importance sampling only has a small α-dependence. The phase
space samples xhard ∼ qϕ(xhard|xreco,α) and the corresponding values of pθ (xreco|xhard) can be
used to evaluate the differential cross section for multiple points in α. Moreover, parts of the
cross section calculation only depend on the phase space point and not on α, like for example
parton densities.

Consequently, we can understand the integrand for a given Monte Carlo sample as a smooth
function of α, so the integral will also be a smooth function of α. This means we do not have to
fit an explicit function to the likelihood values and instead extract a smooth log-likelihood as a
function of α. The MEM integration for a given xreco and a discrete set {α} can be performed
as:

1. For j ∈ {1, . . . , N}, draw α( j) from {α} randomly.

2. Using the sampling network, sample x ( j)hard ∼ qϕ(xhard|xreco,α( j)).

3. Evaluate the transfer probability pθ (xreco|x
( j)
hard) for each sample.

4. Evaluate the differential cross section dσ(α)/d x ( j)hard for each sample x ( j)hard and α.

5. Compute the MC integral Eq.(24) for all α values at the same time

p(xreco|α)≈
1

σfid(α)
1
N

N
∑

j=1

1

qϕ(x
( j)
hard|xreco,α( j))

dσ(x ( j)hard|α)
d xhard

pθ (xreco|x
( j)
hard) . (25)

This integral converges quickly for some events, while more statistics are needed for others.
One reason is that the peaks of the transfer probability and the importance sampling distri-
bution are not perfectly aligned for some events, resulting in a higher variance. To reduce
the integration time while guaranteeing a small integration error, we compute the integral
iteratively. We specify the number of samples per iteration as well as a minimal and max-
imal number of iterations. Furthermore, we specify a threshold for the maximum relative
uncertainty over the results for all values of α. The integration is repeated for new batches of
samples until the combined uncertainty drops below the threshold. In practice, a batch size of
10000, at least two and at most 15 iterations meet a target uncertainty of 2%. The uncertainty
on the normalized negative log-likelihood will be much smaller than these 2% because of the
correlation between different α.

Integration uncertainties

Using this single-pass integration, the results for different α values become correlated, because
the new algorithm ensures that the result is a smooth function of α. This means that the MC
integration error cannot be easily estimated point-wise. The uncertainty on the likelihood
ratio should be much smaller than the uncertainty of the absolute value of the likelihood
before normalization. To account for the correlations, we use bootstrapping to resample the
integrand multiple times and propagate the resulting replicas through the downstream tasks.
For this bootstrapping we take our samples of the integrand I ( j)(αi) and randomly draw M
batches of N samples from {I ( j)(αi) | j ∈ {1, . . . , N}} with replacement. We compute the mean
over the N samples per batch, defining M replicas of the integral as a function of α. They can
be used to estimate uncertainties on the following normalized negative log-likelihoods.
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Next, we can quantify the uncertainty from the training of the transfer probability using
a Bayesian network [111–117]. To estimate the training uncertainty we perform the phase
space integration for different samples from the distribution over the trainable parameters. In
Ref. [21] this is done by repeating the integration for different sampled networks. However, the
idea of the single-pass integration also applies to the Bayesian transfer probabilities. The same
importance sampling distribution should work well for different sampled networks, making
the integration more efficient. The training uncertainty estimation can be combined with
the bootstrapping procedure described above. For each replica, we do not only resample the
integrand but also compute the transfer probability for a different sample from the distribution
over the trainable parameters.

Factorization of differential cross section

For our example process, single-top plus Higgs production with an anomalous CP-phase, the
Lagrangian given in Eq.(2) can be written as

L =L1 + sinαL2 + cosαL3 , (26)

and the squared matrix element has the corresponding form

dσ(xhard|α)
d xhard

= g1 + sinα g2 + cosα g3 + sinα cosα g4 + sin2α g5 , (27)

with phase space dependent gi(xhard). This is an example where the matrix element factorizes
into an xhard-dependent and an α-dependent part. Similar factorization properties hold for
SMEFT corrections where it is often referred to as operator morphing [118]. For

dσ(xhard|α)
d xhard

=
∑

i

fi(α)gi(xhard) , (28)

the MEM integration in Eq.(24) becomes

p(xreco|α) =
1

σfid(α)

∑

i

fi(α)

∫

d xhard gi(xhard) pθ (xreco|xhard) . (29)

The same can be done for the Monte Carlo estimate of the integral,

p(xreco|α)≈
1

σfid(α)
1
N

N
∑

j=1

1

qϕ(x
( j)
hard|xreco,α( j))

dσ(x ( j)hard|α)
d xhard

pθ (xreco|x
( j)
hard) (30)

=
1

σfid(α)

∑

i

fi(α)
1
N

N
∑

j=1

1

qϕ(x
( j)
hard|xreco,α( j))

gi(x
( j)
hard) pθ (xreco|x

( j)
hard) , (31)

where x ( j)hard ∼ qϕ(xhard|xreco,α( j)). The exact functional form of the integral is only preserved

if the same x ( j)hard are used for all values of α.

Importance sampling trained on transfer probability

The training of the Sampling-cINN assumes that the transfer network encodes p(xreco|xhard)
perfectly. The Sampling-cINN is then used for importance sampling. From that perspective, it
is less important to learn the truth distribution

qϕ(xhard|xreco,α)≈ p(xhard|xreco,α)∝ p(xreco|xhard)pfid(xhard|α) , (32)
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Figure 2: Integration performance with and without importance sampling trained
on the transfer probability and VEGAS refinement. Left: number of iterations (10000
samples each) to reach the 2% target precision, with 2 to 15 iterations. Right: relative
integration error after 10 iterations of 10000 samples each.

than the modeled distribution

qϕ(xhard|xreco,α)≈ pθ (xreco|xhard)pfid(xhard|α) . (33)

The training data, consisting of tuples (α, xhard, xreco) should then be modified by replacing
the reco-level momentum with the generated x̃reco ∼ pθ (xreco|xhard). To increase the training
statistics we re-sample the reco-level momenta at the beginning of each epoch. Because of the
sharply peaked form of the transfer probability, even small deviations from the truth that do not
have a significant impact on the inference performance, can lead to a significant misalignment
with the importance sampling distribution. Hence, training the importance sampling on the
learned transfer probability leads to a significantly better variance of the integrations weights
and a faster convergence of the integral.

VEGAS latent space refinement

Even when the Sampling-cINN is trained on the learned transfer probability, some events lead
to a large variance in the MEM integration. This can be solved by further adapting the proposal
distribution during the integration. Specializing the importance sampling network for such an
event is impracticable. An alternative is to refine the INN latent space using VEGAS. Instead of
directly sampling random numbers and mapping them to phase space, we transform them with
a VEGAS grid first. Note, that the grid is shared for all α because of the small α dependence of
the importance sampling. After each iteration of the integration, this grid is adapted to reduce
the variance of the integral. Because we need to pass the integrand value back to VEGAS, we
choose a value in the middle of the relevant α-interval being evaluated. The results from the
different iterations of the integrals are combined by weighting them by the inverse variance
to reduce the overall variance and especially the effect of early iterations where the grid is not
yet well adapted.

Figure 2 illustrates the effect of training the Sampling-cINN on the transfer probability
and using VEGAS refinement for the MEM integration performance with 1000 SM events and
networks with a similar architecture and hyperparameters as in Ref. [21]. For our baseline,
we use single-pass integration including a factorized differential cross section. While this
guarantees smooth likelihood curves as a function of α, we find that the integration uncertainty
does not meet the target precision of 2% within 15 iteration for most events. Running the
integration with VEGAS refinement improves the convergence, and the importance sampling
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Figure 3: cINN benchmark and learned acceptance: likelihoods for different CP-
angles. We use the same architecture as in Ref. [21], but with the improved inte-
gration. The purple curve shows the two-network cINN benchmark and the orange
curve also includes the learned acceptance. From top to bottom: likelihoods for 400
events, 10000 events, and pulls.

trained on the transfer probability leads to a even larger improvements. The combination
of both methods ensures that the target precision is reached within 15 iterations for most
events. This shows that the Sampling-cINN, trained on the transfer function and with VEGAS

refinement, appears to be sufficiently precise to ensure fast convergence of the phase space
integral.

Two-network cINN benchmark

The purple line in Fig. 3 shows the extracted log-likelihoods for our example process, using
all improvements described in this section, and similar architecture and hyperparameters as
in Ref. [21]. In the top two rows we show the extracted likelihoods from a small set of 400
events and from a large set of 10k events. In both cases, we compare the likelihood extracted
from the reconstructed events to the hard-process truth. Note that we show the integration
uncertainties as error bands in the plots, but due to our low error threshold and the single-pass
integration these are barely visible. By repeating the integration with the same networks, we
confirm that the result is perfectly stable and consistent with these uncertainties.
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Figure 4: Truth (dashed line) and learned (solid line) acceptance as a function of
different kinematic observables.

Performance issues occur when we increase the number of events. The precision of the
combined likelihood increases and leads to a systematic deviation between the hard-process
and the reconstructed likelihoods. This is not caused by the integration, and we will target
this shortcoming by improving the architecture and the training of the transfer probability.

4 Acceptance classifier

Moving from the two-network setup in Sec. 3 to the new, three-network setup introduced in
Sec. 2, we are back to the more general form of the MEM-integral,

p(xreco|α) =
1

σfid(α)

∫

d xhard
dσ(α)
d xhard

εψ(xhard) pθ (xreco|xhard) . (34)

The acceptance function will be encoded in a straightforward classifier network. It targets
the scenario where the jet from the hard process escapes detection, i.e. |η j| > 2.4, while the
event is still accepted since a ISR jet is tagged instead.The two possible origins of the jets are
taken into account by the transfer probability. An additional challenge is the significant drop
in acceptance which is now remedied automatically by the introduction of the classifier to
include the acceptance rate.

We train the classifier on a dataset of hard process configurations with the additional in-
formation of the acceptance label. Its output then provides εψ(xhard) to solve Eq.(34). Its
hyperparameters are given in Tab. 1, and its training only takes a few minutes. The learned
and true acceptances as a function of different kinematic observables are shown in Fig. 4. In-
deed, we see a large jump in the acceptance at |η j| = 2.4, by almost a factor three. Also for
other observables, like the pT of the top, the acceptance varies considerably over phase space.

We then evaluate the MEM integral, now including the learned acceptance. Comparing the
new results (orange) with the two-network baseline (purple) in Fig. 3 we see a considerable
improvement. For the small set of 400 events there is no bias left between the extracted
likelihoods and the hard-process truth. Also for 10k events the large bias from Fig. 3 is reduced
to a level where it is comparable to the statistical precision. Even for the challenging SM-case
α = 0◦ the extracted likelihoods agrees well with the truth extracted from the hard process.
The remaining question is how close we can bring the widths of the extracted likelihood-curves
to the optimal outcome from the hard process, and if a remaining systematic bias can keep up
with statistical improvements. From now on, we will keep the acceptance network within our
MEM setup throughout the rest of our paper.

11

https://scipost.org
https://scipost.org/SciPostPhys.17.5.129


SciPost Phys. 17, 129 (2024)

5 Transfer diffusion

Instead of a Transfer-cINN [21], as discussed in Sec. 2, we can also use other neural networks to
encode the transfer probability. The great advantages of the INN are its stability, its controlled
precision in estimating the density, and its speed in both directions. However, these advantages
come at the prize of limited flexibility, and we can use diffusion networks to slightly shift this
balance [43]. Conditional flow matching (CFM) networks [119–121] allow for more flexibility
in encoding an underlying density, with the main disadvantage of a significant loss in speed
in the likelihood evaluation. While this speed might become a relevant factor eventually, we
compare the performance of the cINN with the CFM at face value. For a detailed introduction
of conditional flow matching in the context of particle physics we refer to Ref. [43] and only
repeat the key points here.

The Transfer-CFM replaces the Transfer-cINN in Eq.(15). The CFM models the trans-
formation between a latent distribution platent(r) and a conditional phase space distribution
pθ (xreco|xhard) inspired by a a time-dependent process. The time evolution is described by an
ordinary differential equation

d x(t)
d t

= v(x(t), t) , (35)

with the velocity field v(x(t), t). The corresponding time-dependent probability density p(x , t)
obeys the continuity equation

∂ p(x , t)
∂ t

+∇x [p(x , t)v(x , t)] = 0 . (36)

To obtain a generative model we need a velocity field that evolves the probability density in
time such that

p(x , t)→

¨

pθ (x)≈ pdata(x) , t → 0 ,

platent(x) =N (x; 0, 1) , t → 1 .
(37)

To construct this velocity field we start from a sample-conditional diffusion trajectory

x(t|x0) = (1− t)x0 + t r →

¨

x0 , t → 0 ,

r ∼N (0, 1) , t → 1 ,
(38)

that evolves the phase space sample x0 towards a latent space sample. The associated sample-
conditional velocity field directly follows from the ODE Eq.(35)

v(x(t|x0), t|x0) =
d
d t
[(1− t)x0 + t r] = −x0 + r . (39)

The desired velocity field for the generative model is then given by [119]

v(x , t) =

∫

d x0
v(x , t|x0)p(x , t|x0)pdata(x0)

p(x , t)
. (40)

Learning the velocity field from data is a straightforward regression task and can again be
reformulated in terms of the conditional velocity field [119]

LFM =
¬

[vθ (x , t)− v(x , t)]2
¶

t,x∼p(x ,t)






y

reparametrization + neglecting constants

LCFM =
¬

[vθ (x(t|x0), t)− v(x(t|x0), t|x0)]
2
¶

t∼U(0,1),x0∼pdata,r∼N (0,1)
. (41)

12

https://scipost.org
https://scipost.org/SciPostPhys.17.5.129


SciPost Phys. 17, 129 (2024)

Once the model is trained to encode the velocity it defines a bijective mapping between the la-
tent and the phase space via numerically solving the ODE Eq.(35). Crucially for our application
the Jacobian of this transformation is tractable through another ODE [122]

d log p(x(t), t)
d t

= −∇x v(x(t), t) . (42)

To calculate the likelihood of a phase space sample x we map it to the latent space according
to Eq.(35) and calculate the jacobian determinant of this transformation according to Eq.(42)

r(x) = x +

∫ 1

0

vθ (x , t)d t , with

�

�

�

�

∂ r
∂ x

�

�

�

�

= exp

�

∫ 1

0

d t∇x vθ (x(t), t)

�

(43)

⇒ p(x) = platent(r(x))exp

�

∫ 1

0

d t∇x vθ (x(t), t)

�

. (44)

Solving the ODEs numerically with the required precision takes O(100) evaluations of the
function. For the transformation ODE this is relatively fast as the function is just the veloc-
ity, i.e. the neural network. For the likelihood ODE however evaluating the function means
calculating the gradients of all components of the velocity with respect to the inputs, making
likelihood calculation significantly slower.

The hyperparameters of our CFM network are given in Tab. 2. It is straightforward to
replace the Transfer-cINN with a Transfer-CFM in our MEM architecture, so we can benchmark
the performance gain through the increased expressivity, at the possible expense of speed.

The likelihoods extracted with the help of the Transfer-CFM are illustrated in Fig. 5 and can
be compared to the same MEM setup, but with a Transfer-cINN in Fig. 3. For 400 events the
difference between the Transfer-cINN and the Transfer-CFM is not visible, suggesting that both
of them work extremely well given the statistical limitations and the phase space integration.
There is no systematic bias, and the width of the extracted likelihoods are close to the optimal
hard-process curves.

For the high-precision case with 10k events the Transfer-CFM leads to a significant im-
provement over the cINN architecture. Now, the picture is the same as for 400 events, where
the extracted likelihoods do not show any significant bias, and the extracted likelihoods are
extremely close to the optimal information.

6 Combinatorics transformer

In our last step, we introduce a transformer [43,97,98] to combine the stability and precision of
the Transfer-cINN and Transfer-CFM with an appropriate treatment of jet combinatorics [123].
The structure follows the idea that the transfer probability turns a sequence of parton-level mo-
menta into a sequence of reco-level momenta. The Transfer-Transformer, in short Transfermer,
should be ideal to encode the correlations between the different particles, without relying on
locality or any other physics-inspired requirement.

Transfermer

The challenge of using a transformer in our MEM setup is that it is not invertible and does
not guarantee a tractable Jacobian. We can solve this problem by making the architecture
autoregressive at the level of reco-level momenta and splitting it into two parts, as illustrated
in the left panel of Fig. 6: (i) the transformer encodes the correlations between the parton-
level and reco-level objects. Their cross-correlation describes the input-output combinatorics;
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Figure 5: Transfer-CFM: likelihoods for different CP-angles. We compare the cINN
baseline with a CFM diffusion network, both including the learned acceptance. From
top to bottom: likelihoods for 400 events, 10000 events, and pulls.

(ii) a small and universal cINN encodes the correlations between the momentum components
of a single particle, conditioned on the output of the transformer c(i).

To guarantee a tractable Jacobian of the full normalizing flow, we apply an autoregressive
factorization of the transfer probability defined in Eq.(B.1),

p(xreco|xhard) =
n
∏

i=1

p(x (i)reco|c(e
(0)
reco, . . . , e(i−1)

reco , ehard)) . (45)

The function c denotes the transformer encoding. We define a special starting token e(0)reco, shift
the inputs by one and mask the self-attention matrix using a triangular mask to ensure that
every momentum is only conditioned on the previous momenta. e(i)reco and e(i)hard denote the
particle-wise embeddings of the momenta and their position. We define this embedding as the
concatenation of the momenta and their one-hot-encoded position in the event, padded with
zeros. Using a single linear layer instead of the zero-padding does not lead to any performance
improvements. We then sample from the transfer probability iteratively, which requires n
Transfermer evaluations,

p(x (i)reco|xhard)≡ p(x (i)reco|c(e
(0)
reco, . . . , e(i−1)

reco , ehard)) . (46)
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Figure 6: Left: transformer combined with cINN, encoding the transfer probability.
Right: cINN used to learn individual momenta, where r is the usual latent space to
parametrize a generative model.

Since all c(i) can be computed in a single step from the reco-level momenta, density estimation
and training this model is very fast. This is also the way the Transfermer is used during the
MEM integration.

The transfer probability in Eq.(45) still has to be converted into a probability distribution
for the 4-momentum components of the external particles. To encode massless and massive
particles in the same cINN we factorize it into

p(x (i)reco|c
(i)) = p(p(i)T ,η(i),φ(i)|c(i))× p(m(i)|p(i)T ,η(i),φ(i), c(i)) , (47)

such that the generation of the mass direction can be omitted without affecting the other three
components. The corresponding cINN architecture is given in the right panel of Fig. 6. Ratio-
nal quadratic spline coupling layers model the one-dimensional distributions. By transforming
each momentum component once and conditioning it on the other components and the trans-
former output, using a feed-forward network, we build a minimal cINN that is able to model
the correlations between the momentum components.

In practice, we use normalized versions of log pT and log m as inputs for the network and
map them to Gaussian latent spaces. Similarly, we map φ and η to uniform latent spaces,
taking into account the detector-level η cuts. For φ we use periodic RQS splines [88]. The
cINN for single momenta and the transformer are trained jointly by minimizing the negative
log-likelihood loss L= − log pθ (xreco|xhard).

We implement the Transfermer with the standard PYTORCH [124] transformer module and
the cINN architecture described above. The hyperparameters are given in Tab. 2. In Fig. 7,
we show the likelihoods for the Transfermer architecture. This plot shows much larger error
bands because they also include the systematic uncertainty from the Transfermer training, es-
timated with a Bayesian network. For the other architectures, we omit these due to runtime
constraints. The likelihoods can be compared to the cINN results in Fig. 3, and we see that
their bias and accuracy have improved. Even for 10k events, the likelihoods are largely un-
biased, albeit not significantly better than for the Transfer-CFM from Fig. 5. The Transfermer
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Figure 7: Transfermer and Transfusion: likelihoods for different CP-angles using
a transformer for the transfer probability, combined with a cINN or a CFM network,
respectively. From top to bottom: likelihoods for 400 events, 10000 events, and
pulls. Only the Transfermer curve includes the training uncertainties estimated with
the Bayesian network.

architecture can be easily generalized to support variable numbers of reco-level jets. We show
this extension in Appendix B but do not find any additional improvements for our reference
process. Furthermore, we show how sensitive this architecture is to the choice of simulation
tool in Appendix C.

Transfusion

As a last transfer architecture we consider the CFM equivalent of the Transfermer, an autore-
gressive Transfusion. We keep the autoregressive structure and the masked self-attention from
Fig. 6 and simply replace the small cINN with a small CFM network to generate the individual
particle momenta. The CFM learning task is a simple regression of the velocity field. As long
as we can track gradients through the network, we obtain a tractable Jacobian according to
Eq.(42). The velocity of the ith particle is then denoted in analogy to Eq.(45)

v(i)(x (i)reco(t), t|c(e(0)reco, . . . , e(i−1)
reco , ehard)) , (48)
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Figure 8: Reco-level distributions for different kinematic observables, obtained from
the different generative transfer networks, conditioned on the hard-scattering mo-
menta. Truth corresponds to the high-statistics training data.

From the velocity field the likelihoods are again obtained by solving the ODEs Eq.(44), in the
Transfusion setup now autoregressively for each particle. For on-shell and off-shell particles,
we use two different small CFMs, one 3-dimensional and one 4-dimensional. This setup out-
performs just using the same 4-dimensional network and discarding the generated masses for
on-shell particles. The hyperparameters of the Transfusion network are given in Tab. 3.

We show the MEM likelihoods obtained with the Transfusion in Fig. 7 and find that they
are indistinguishable from the Transfermer results. This indicates that the difference between
the cINN and CFM likelihoods can be attributed to cINN issues with the jet combinatorics.
Outsourcing this task to the transformer significantly improves the performance. For the CFM
the corresponding improvement is minimal.

7 Outlook

The matrix element method is an example of an LHC inference method, which is hugely at-
tractive but only enabled by modern machine learning [21]. Specifically, it requires a fast and
precise forward-transfer probability, an extremely efficient phase space mapping for the inte-
gration over the hard phase space, and a flexible encoding of the detector efficiency. We have
shown, for a CP measurement in the associated production of a Higgs and a single top, how
each of these tasks can be assigned to a neural network. This combination of three networks
with modern architectures provides the required precision and speed.

To illustrate the performance of the different network architectures and MEM frameworks,
we show a set of kinematic observables from the generative transfer networks in Fig. 8. Before
integrating the likelihood, we can show the distributions at the reco-level and compare them to
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the truth, or training data. We immediately see that the standard cINN is stable and extremely
fast, but limited in its expressivity. The CFM diffusion network improves the performance
significantly. The transformer architectures, i.e. the cINN-driven Transfermer and the CFM-
driven Transfusion deliver a precision at least on par with the CFM diffusion network.

For the likelihood, we have compared the extracted likelihoods from the different archi-
tectures with the hard-process target. As a benchmark, we first improved a range of numerical
aspects of our concept paper [21], with a focus on the integration with the Sampling-cINN.
The improved precision of the integration raises two questions: a systematic bias in the mini-
mum of the extracted likelihoods especially going from 400 to 10k events; and the optimality
of the extracted likelihoods seen in the widths in the CP-angle α. These benchmark results are
shown in Fig. 3.

We then upgraded our two-network setup to a three-network setup, with a learned accep-
tance as a function of phase space. In Fig. 3, we saw that this removes the leading source of
systematic bias, including the challenging SM-case α= 0◦.

Next, we targeted the performance of the transfer network by replacing it with a more ex-
pressive, albeit slower CFM diffusion network. This did not improve the low-statistics results,
but for the high-statistics case of 10k events the Transfer-CFM showed a clear advantage over
the cINN, as can be seen in Fig. 5.

Finally, we solved the problem with the jet multiplicity of the cINN approach by applying a
generative autoregressive Transfer-Transformer, i.e. combining a transformer with a cINN net-
work (Transfermer) and a CFM-model (Transfusion). In Fig. 7, we saw that both transformer-
based models outperformed the cINN, but showed similar performance as the Transfer-CFM.
Notably, both transformer-based models can naturally be extended to describe a variable num-
ber of particles at both reco- and parton-level. This feature will eventually be needed for a
proper description of the MEM at NLO.

In our LO example, all three models, CFM, Transfermer and Transfusion, parametrize the
transfer probability flexibly and reliably. However, the Transfermer integration is approxi-
mately a factor 30 faster than the two diffusion-based models. This gap might eventually be
closed using techniques like diffusion distillation [125–127]. Further improvements on the
architecture, like the parallel Transfusion introduced in Appendix B, might also improve the
performance for more complex processes. Altogether, we conclude that a range of modern
generative networks are available for the MEM, awaiting final judgment from an actual anal-
ysis.
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A Network hyperparameters

Table 1: Hyperparameters of the classifiers learning the acceptance ε(xhard) (left)
and the jet multiplicity used in Appendix B (right).

Parameter Acceptance Multiplicities

Optimizer Adam
Learning rate 0.0001
LR schedule One-cycle
Maximum learning rate 0.0003
Batch size 1024
Epochs 10
Number of layers 6
Hidden nodes 256
Activation function ReLU
Preprocessing pT ,η,φ, m
Loss Binary cross-entropy Categorical cross-entropy
Training samples 5M 3.4M
Validation samples 500k 340k
Testing samples 4.5M 3.1M
Trainable parameters 266k 266k

Table 2: Hyperparameters of the CFM (left) and the Transfermer (right).

Parameter Value

Optimizer Adam
Learning rate 0.001
LR schedule Cosine-annealing
Batch size 16384
Epochs 1000
Number of layers 8
Feed-forward dimension 512
Activation function SiLU
Training samples 3.4M
Validation samples 340k
Testing samples 3.1M
Trainable parameters 3.2M
ODE solver method Runge-Kutta 4
Solver step-size 0.05

Parameter Value

Optimizer RAdam
Learning rate 0.0001
LR schedule One-cycle
Maximum learning rate 0.0003
Batch size 1024
Epochs 200
Number of heads 8
Number of encoder layers 6
Number of decoder layers 8
Embedding dimension 64
Transformer feed-forward dimension 256
Number of subnet layers 5
Subnet hidden nodes 256
Subnet activation function ReLU
RQS spline bins 16
Training samples 3.4M
Validation samples 340k
Testing samples 3.1M
Trainable parameters 2.6M
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Table 3: Hyperparameters of the autoregressive Transfusion (left) and the parallel
Transfusion (right).

Parameter Value

Optimizer Adam
Learning rate 0.001
LR schedule Cosine-annealing
Batch size 8192
Epochs 600
Number of heads 8
Number of encoder layers 6
Number of decoder layers 8
Embedding dimension 64
Transf. feed-forward dim 256
Number of layers CFM 6
Hidden nodes CFM 400
Activation function CFM ReLU
Training samples 3.4M
Validation samples 340k
Testing samples 3.1M
Trainable parameters 3.5M
ODE solver method Runge-Kutta, order 4
Solver step-size 0.05

Parameter Value

Optimizer Adam
Learning rate 0.001
LR schedule Cosine-annealing
Batch size 8192
Epochs 600
Number of heads 4
Number of encoder layers 6
Number of decoder layers 6
Embedding dimension 128
Transf. feed-forward dim 512
Training samples 3.4M
Validation samples 340k
Testing samples 3.1M
Trainable parameters 2.7M
ODE solver method Runge-Kutta, order 4
Solver step-size 0.05

B Variable jet number and permutation invariance

Transfermer with variable jet number

The Transfermer is easy to generalize to events with a variable number of jets at the recon-
struction level. To this end, we split the inclusive transfer probability and evaluate it autore-
gressively,

p(xreco, n|xhard) = p(n|xhard) p(xreco|xhard, n)

= p(n|xhard) p(x (1:nmin)
reco |xhard, n)

n
∏

i=nmin+1

p(x (i)reco|x
(1:i−1)
reco , xhard, n) , (B.1)

where n is the number of final-state particles, x (1:k)
reco denotes the first k reco-level momenta,

x (k)reco denotes the k-th reco-level momentum and nmin is the minimal number of momenta for
an accepted event. The probability p(n|xhard) can be extracted using a simple classifier net-
work with a categorical cross-entropy loss and the number of additional jets as labels. The au-
toregressive factorization of p(xreco|xhard, n)matches the way in which the Transfermer learns
these probabilities. We pass the information about the number of additional jets to the Trans-
fermer by appending it to the embedding of xhard in one-hot encoded form. We can sample
from the transfer probability by first sampling the multiplicity using the probabilities given by
the classifier and then sampling the momenta as described in Eq.(46). Note that it is even pos-
sible to generalize the Transfermer to a variable number of hard-scattering momenta, because
the transformer encoder accepts a variable number of inputs without any further changes to
the architecture, making it a good candidate for a machine-learned MEM at NLO.

We train the jet multiplicity classifier with the hyperparameters given in Tab. 1. We observe
that they are mostly flat for the top and Higgs, but there is a stronger variation as a function of
the forward jet momentum, especially η j . Like for the acceptance function, this is explained
by ISR jets being tagged instead of the forward jet, leading to a lower probability of extra jets
for |η|> 2.4.
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Figure 9: Transfermer with variable jet numbers and parallel Transfusion: likeli-
hoods for different CP-angles using the Transfermer with variable jet multiplicity and
the parallel Transfusion as the transfer probability. From top to bottom: likelihood
for 400 events, 10000 events, and pulls.

We then run the MEM integration to obtain the results shown in Fig. 9. They are mostly
similar to the results with fixed multiplicity shown in Fig. 7. It shows that for our specific
process, we do not gain constraining power by including the information from additional jets.
However, that might be different for other processes and especially at NLO. So the ability to
deal with a variable number of jets is still a valuable addition to our MEM toolbox.

Permutation-invariant transfusion

The Transfusion can be generalized to events with a variable jet number in complete analogy
to the Transfermer. However, as diffusion models do not require invertibility, they allow for an
additional approach in combining the transformer with the CFM network where we drop the
autoregressive setup and instead generate all particle 4-momenta in parallel.

Before, in the autoregressive setup the transformer calculates a condition based on the
hard-level momenta and the already generated reco-level momenta, which is then fed to the
CFM that predicts the time-dependent velocity field. Crucially, the transformer itself has no
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Figure 10: Parallel Transfusion architecture. Compared to the autoregressive setup
we no longer use masked self-attention in the transformer decoder, but instead make
it time-dependent.

time dependence. In the alternative parallel setup, the transformer decoder no longer sees the
first i − 1 reco-level particles x (1,...,i−1)

reco to describe c(i). Instead, its inputs are the conditional
and time-dependent diffusion states x (1,...,n)

reco (t|x0), as defined in Eq.(38), of all n reco-level
particles, and the time t. The encoder, which acts only on the hard-level momente, is un-
changed. Now, the transformer calculates time-dependent embeddings, one for each particle.
These time-dependent embeddings are then again fed to a small CFM network predicting the
velocity field. In this setup the velocity field of the ith particle is calculated as

v(i)(c(ereco(t), ehard, t), t) , (B.2)

where the transformer c is now a time-dependent function of the embeddings e of all momenta.
The overall setup is illustrated in Fig. 10. In practice, a single linear layer is sufficient to
map the transformer outputs to the velocity field components. Note, that during sampling the
initial input to the transformer is the unconditional latent space vector r which is then mapped
onto xreco with the learned velocity field and the ODE solver. The parallel Transfusion setup
naturally generalizes to varying particle multiplicities at both hard- and reco-level without
requiring an arbitrary autoregressive order, as it is permutation-invariant at both levels.

Reco-level distributions for different kinematic observables are shown in Fig. 11. The
marginal distributions show no difference between the parallel Transfusion and the other net-
works, but for the angular correlations we see the parallel Transfusion having a clear edge.
Giving the transformer itself a time-dependence forces us to evaluate it repeatedly inside the
ODE solver, making sampling and likelihood calculation in this setup even slower than for the
pure CFM or the autoregressive Transfusion. We show integration results for 400 events us-
ing the parallel Transfusion in Fig. 9, finding that they are comparable to the results from the
autoregressive Transfusion. Due to the slow likelihood calculation this setup did not scale up
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Figure 11: Reco-level distributions for different kinematic observables, obtained
from the autoregressive and parallel Transfusion networks, conditioned on the hard-
scattering momenta. Truth corresponds to the high-statistics training data.

to 10000 events. The strong performance on the observable distribution level indicates that
this architecture might proof useful in combination with speed-up techniques like diffusion
distillation or for applications that do not require likelihood calculation.

C Evaluating on Herwig

The critical backbone of our inference method is the learned transfer probability pθ (xreco|xhard).
We have demonstrated that generative networks can learn this conditional density from sim-
ulated data to very high precision. However, even a perfect network will only encode the
forward transfer of the simulation, which is close but not necessarily identical to nature. In
this section, we investigate how this impacts the results of our method by using different sim-
ulation setups:

1. a baseline simulation with PYTHIA for network training as described in Sec. 1;

2. an alternative simulation based on HERWIG [128] for inference, emulating the truth
reco-level data of the experiment. The detector effects are still modeled with DELPHES.

The results obtained with our method in this setup are shown in Fig. 12. For 400 events
we find that the extracted reco-level likelihoods mostly agree with the hard-level likelihoods.
Note that the hard-level likelihoods are not fixed but also affected by the underlying simula-
tion assumption, most visible for α = 90◦. This is because the fiducial hard-level likelihood is
only defined on hard-level events xhard leading to accepted xreco events, which critically de-
pends on the efficiency ε(xhard) of the underlying normalized transfer function r, as defined
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in Eqs.(5) and (12). This effectively encodes a dependence on the assumed forward simulation

pfid(xhard|α)≡ pPYTHIA(xhard|α) . (C.1)

Hence, evaluating the fiducial hard-level likelihoods on the HERWIG simulation can generally
lead to a bias in the likelihood distribution. In the high-statistics scenario with 10k events, we
observe good agreement for α= 0, 45◦, comparable to the results when evaluating on PYTHIA,
which means we can assume

pPYTHIA(xhard|α)≈ pHERWIG(xhard|α) . (C.2)

In these cases, we find that the reco-level likelihood obtained using our method still agrees
well with the hard-scattering likelihood, and the results are still well-calibrated. However, for
α = 90◦ the hard-level likelihoods are significantly off from the true value, indicating that
Eq.(C.2) is no longer valid. Further, training the transfer function on events that do not follow
the true distribution of the measured data may introduce α-dependent effects. Consequently,
we also find a large deviation between the hard- and reco-level likelihoods.
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Figure 12: Transfermer applied on HERWIG simulation: likelihoods for different
CP-angles using the Transfermer trained on PYTHIA simulations but evaluated on
HERWIG simulations. From top to bottom: likelihood for 400 events, 10000 events,
and pulls.
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