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Abstract

In JT gravity coupled to a CFT, I argue without using the path integral that the entan-
glement wedge of a boundary region is bounded by a quantum extremal surface (QES).
For any candidate not bounded by a QES, a unitary in the complement can make recon-
struction within the candidate inconsistent with boundary causality. The case without
islands is a direct consequence of subregion duality, and the case with islands can also
be dealt with with a stronger assumption.
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1 Introduction

In QFT, it is easy to define a local subsystem: it is merely the algebra of operators of the causal
development of a partial Cauchy slice. The situation changes drastically when we couple a QFT
to gravity, even in the extreme weak-coupling limit; see [1, 2] for example. This is because
gravity has diffeomorphism gauge-invariance. At a first pass, the issue is that it is hard to
define a subregion in a diffeomorphism-invariant way. However, one can define a subregion
using appropriate dressings. The main issue is not so much defining a subregion as defining
a subsystem: what we really need to worry about is whether the degrees of freedom in the
subregion can be considered as independent from the complement in any sense, given the
gauge constraints.

There are two main problems with understanding whether any given subregion is a sub-
system. The first is that we define local operators using gravitational dressing, and the number
of possible gravitational dressings diverges with human creativity.1

The second regards the meaning of a subsystem. Unlike QFT, we cannot define a subsystem
to be an algebra of local operators, since the product of enough local operators can change the
structure of spacetime; a true algebra has to be an algebra in a UV-complete theory, whereas we
are interested in subsystems in low-energy effective theory. There have been many suggestions
to deal with this problem, see especially [5–8]; I use the phrase ‘approximate subalgebra’ in
the introduction to avoid getting into the weeds. These two choices are intertwined, since a
dressing may make sense for only some approximate subalgebras and not others.2

Thus, to make progress on the question of whether a gravitational subregion contains a
gravitational subsystem, we need an approach immune to clever interlocutors who can find
new dressings and approximate subalgebras that are not imagined in our philosophies.3 Such
an approach is given by consistency conditions, conditions that should be true whenever there
is a subsystem. Non-violation of these conditions may be inconclusive, but violation of a con-
sistency condition is a sure sign of inconsistency.

Entanglement wedge reconstruction [6,10–13] is one specific situation where it is possible
to write down such a consistency condition. A boundary subregion B encodes the EFT of a
subregion WE[B;Ψ] of the bulk, meaning that every operator in the latter can be represented as
one in the former. Note that the bulk region depends also on the boundary state Ψ. WE[B;Ψ],
called the entanglement wedge (EW), is the region between B and the minimal quantum
extremal surface (QES) X ∼ B homologous to it [14], in the metric gΨ dual to Ψ. When a bulk
subregion is bounded by a QES, I will call the region itself extremal, for conciseness. Quite
non-trivially, the entanglement wedge is also the subregion dual to B, in the sense that bulk
EFT operators in WE[B;Ψ] can be reconstructed in B.

1To be more accurate and less hyperbolic, we do not have a classification of all types of dressings. See [3,4] for
a recent example of a novel type of dressing.

2For example, an operator defined to be at fixed distance ℓ from the boundary along some geodesic implicitly
contains a projector onto states for which the geodesic has length at least ℓ. This projector might not play well
with locality of the subalgebra, and because of the non-linearity of gravity the importance of this effect can depend
on what order of GN we are working at.

3One approach to such a question was suggested recently in [9]; my approach is different.
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Figure 1: The strategy. For b not extremal, it is possible to push the causal wedge
of B (green) outside b, using a unitary u′ localised in b. This means that b is not a
valid candidate for the entanglement wedge of B.

In this work, I provide a new perspective on (a weaker version of) this non-trivial state-
ment: extremality of the bulk subregion follows from consistency of subregion duality with
causality in the boundary theory. I first argue that subregion duality implies a condition that
I call “complementary causal wedge exclusion” (CCWE), and then that CCWE can be violated
for any putative bulk dual of B that is not extremal.

Suppose someone claims that b is dual to B. By boundary causality, since B is spacelike
to B, operators in b should commute with those in B; and further, the action of a unitary in
b should not change this. In other words, it is not possible to engineer a situation like that in
figure 1 if the shaded region is the entanglement wedge. This is the CCWE condition. It can
be thought of as a dual of the famous causal wedge inclusion (CWI) condition [10,15].

[16–18] effectively showed that CCWE is violated for the causal wedge.4 This work is a
generalisation of the above: CCWE is violated unless WE[B;Ψ] is bounded by a QES, in JT
gravity coupled to a 2d CFT. Thus, extremality of the EW is a more-or-less direct consequence
of subregion duality.

Previous proofs of extremality of the EW include replica trick proofs [11, 12, 19], a proof
from shape deformations of the modular Hamiltonian [20], and (in the special case of JT grav-
ity) an operator algebraic proof [21–23]. This consistency condition approach provides a new
perspective compared to the above, since it implies the subregion duality can, in principle, hold
only for extremal wedges. It should be noted also that extremality of the EW has been shown
to pass a number of important consistency conditions from subregion duality ever since the
EW was defined, see [10,14] and follow-ups. CCWE goes beyond these consistency conditions
in an important way: only extremal regions satisfy it.

Another reason this result is interesting is the connection between quantum gravity and
quantum information. Assuming that holography has a quantum error-correcting structure
is enough to derive a QES-like formula, with the role of the area being played by a state-
independent operator5 in the modular Hamiltonian [6,8,24–27]. However, a concrete identi-
fication of this state-independent operator as the geometric object ‘area of the QES,’ and the
code subsystem as the region bounded by the minimal QES comes indirectly via the replica
trick. The analysis here shows, in the cases where it applies, that extremal wedges are the only
consistent choice of code subsystem, allowing for a direct application of these error-correction
results to holography.

Plan

Section 2 introduces the main new idea of this paper, the ‘complementary causal wedge exclu-
sion’ consistency condition. The rest of the paper applies this condition to prove (quantum)
extremality of the entanglement wedge, in JT gravity coupled to a CFT.

4More precisely, the complement of the causal wedge of the complementary boundary region, WC[B;Ψ].
5More precisely, it is state-independent at first subleading order in GN . Quantum extremisation makes it a ‘little

bit’ state-dependent.
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In section 3, I introduce JT gravity and the Connes cocycle flow in 2d CFT. Section 4 ar-
gues that CCWE implies extremality under the assumption that the EW has a single connected
component. This argument is a straightforward extension of that in [17]. Section 5 extends
this to include the possibility of islands, under some assumptions.

I end with some discussion in section 6.

Notation

1. An overline over a region b, b, denotes the set of points spacelike-separated from b.

2. A causally complete region satisfies b = b.

3. The codimension-two boundary of a bulk region b is ðb. We have ðb = ðb.

4. Small letters denote bulk regions/algebra/operators/states and capital letters denote
boundary regions/algebras/operators/states. One exception to this is Hilbert spaces,
where all Hilbert spaces are H with different subscripts; Hbd is the boundary Hilbert
space and the bulk Hilbert space is Hbulk.6

A calligraphic small letter a refers to a QFT subalgebra in the bulk, a ∈ B(Hbulk).

A particularly important, and potentially confusing, example of this notation is the
Connes cocycle flow unitary u′ that will be my main workhorse: it is an operator in
the bulk EFT, and does not (a priori) have anything to do with a similar unitary in the
boundary theory.

5. A boundary state |Ψ〉 is dual to a bulk metric gΨ and a bulk QFT state |ψ〉 ∈ HgΨ . In
JT gravity, the metric is independent of Ψ, and so the Hilbert space is just Hbulk, but I
include the dilaton configuration in gΨ .

6. For a bulk operator a, I denote by a |ψ〉 a state in Hbulk, i.e. no backreaction is taken
into account. The state with the backreaction taken into account I will denote by a |Ψ〉;
the reader should think of this as bad notation for “embed the bulk operator a into the
boundary algebra B(Hbd) and then act on the boundary state |Ψ〉.”

2 Complementary causal wedge exclusion

Let me now introduce the consistency condition that non-extremal wedges will turn out to
violate. I call it “complementary causal wedge exclusion” (CCWE); it is heuristically the Haag
dual of causal wedge inclusion (CWI) [10,15].

Divide the boundary CFT into two complementary subregions B, B with algebras A,A′;
allow B, B to include reference systems so that the state |Ψ〉 on B ∪ B is pure. Without loss
of generality, we assume that the CFT is not coupled to any such reference systems.7 To each
of B, B we can associate a bulk causal wedge WC[B; gΨ], WC[B; gΨ], where gΨ denotes the
spacetime dual to Ψ.

6In most gravitational theories, we would need to define one Hilbert space for every on-shell bulk metric. JT
gravity simplifies matters for us, however.

7We can always take the state on B ∪ B at a given time and evolve it to all times with a decoupled, time-
independent Hamiltonian; in the bulk, this gives us a spacetime with the usual AdS boundary conditions.

If coupling is allowed, CWI becomes a more involved statement [16], and so does CCWE. Further, the technique
in section 3 does not straightforwardly generalise to deriving a contradiction with this more careful statement.
However, this is not a genuine restriction, since we are interested in states rather than processes.
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Assuming subregion duality is true, we can also associate to B a bulk dual WE[B;Ψ]. It is
the largest bulk region such that for ‘simple’ local unitaries u ∈aWE[B;Ψ],

∃U ∈A , s.t. ∀u′ ∈a′WE[B;Ψ] , uu′ |Ψ〉 ≈ Uu′ |Ψ〉 . (1)

The precise statement, with a characterisation of the class of u allowed, can be found in
[28]. What is important for us is that this class of u is expected to include low-energy lo-
cal bulk unitaries. Note that there is no locality restriction on u′, except that its support
does not extend into WE[B;Ψ]. This is the definition of the max-EW (the largest region that
can always be reconstructed), meaning that by this definition complementary recovery —
“WE[B;Ψ] =WE[B;Ψ]” — is not guaranteed.

Causal wedge inclusion (CWI) implies that

CW I =⇒ WE[B;Ψ] ⊇WC[B; gΨ] , and WE[B;Ψ] ⊇WC

�

B; gΨ
�

. (2)

CWI follows from HKLL reconstruction [29] or the timelike-tube theorem [30–33].8 Comple-
mentary causal wedge exclusion (CCWE) is defined to be

CCW E : ∀unitaries u′ ∈aWE[B;Ψ] , WE[B;Ψ] ⊆WE[B; u′Ψ] ⊆WC

�

B; u′Ψ
�

. (3)

The first inclusion means that WE[B; u′Ψ] contains a region with the same metric and quan-
tum state of bulk fields as WE[B;Ψ]. CCWE is the same as (1), assuming that there are recon-
structible local unitaries everywhere in WE[B;Ψ].

It is possible for example that, in the spacetime gu′Ψ , a region r ⊂ WE[B;Ψ] is causally
connected to WC[B, u′Ψ] but that none of the operators with support in r can be reconstructed
in B. This possibility arises from WE[B;Ψ] being a largest region satisfying a constraint, and
that the class of unitaries that must be reconstructible are not specified in the bulk, continuum
language. However, since WE[B;Ψ] is also the region in which no unitaries are reconstructible
in the complement B, this would mean that unitaries with support in r are not reconstructible
in either B or B. This could be possible, logically, if for some reasons all gauge-invariant uni-
taries with support in r must have support in both WE[B;Ψ] \ r as well as WE[B;Ψ]; then, all
unitaries with support in r can only be reconstructed in the full boundary theory. It is reason-
able to expect, however, that all low-energy local operators in WE[B;Ψ] can be reconstructed,
invalidating this scenario. To deal with this subtlety, I will take CCWE to be assumption A.1.

3 JT gravity coupled to a 2d CFT

3.1 The theory

The action of JT gravity [35–40] minimally coupled to a CFT is

IJT = χS0 +
1

4π

∫

M

φ(R+ 2) +
1

2π

∫

∂M

φ(K − 1) + ICFT[g] , (4)

where χ is the Euler characteristic of M. I have set the AdS length scale to 1. The boundary
condition is

φ
�

�

∂M
=
φr

ε
. (5)

1/φr plays the role of GN in this theory, in that it controls the backreaction effects. We take
the bulk matter to be a CFT with central charge c satisfying

1≪ c≪ φr . (6)

8The equivalence was first pointed out in [34].
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Further, I also assume that the bulk states of interest are such that stress tensor fluctuations are
O(1) and entropies are O(c). These assumptions allow us to ignore fluctuations in the dilaton
φ while being sensitive to quantum effects in the bulk matter.

The equation of motion from the variation of the metric, after a convenient trace-reversal,
is

∇i∂ jφ − gi jφ + 2π



t i j

�

= 0 , (7)

where t i j is the stress tensor of the 2d CFT; it is a small letter because it is an operator in
the bulk theory. Here, conformal invariance and a renormalisation of S0 have been used to
set the trace 〈t i

i〉 = 0. For general matter, we should replace t i j → t i j − gi j t
k
k . Due to the

dilaton equation of motion, all solutions are locally AdS2. Different geometries correspond
to different dilaton profiles; by the boundary condition (5), this can be thought of also as
different (conformal) trajectories for the two boundaries.

Since we are only interested in one topology, the metric can be gauge-fixed to

ds2 =
4dwdw̄

(1−ww̄)2
. (8)

w̄ increases towards the past. There is a residual SL(2,C) gauge freedom because of the
isometries of this metric, which can be used to place any point at the coordinate location
w= w̄= 0.

A boundary state |Ψ〉 is dual to a dilaton profile φ(w, w̄), which I also call gΨ , and a bulk
state |ψ〉. This boundary state is a state in two nCFTs, which we name B and B.

3.2 Connes cocyle flow and the QHANEC in a 2d CFT

Consider a 2d CFT of central charge c on a Lorentzian manifold M with metric

ds2 = e2Ω
cds

2
, cds

2
= dwdw̄ . (9)

The Weyl factor is Ω = log [2/(1−ww̄)] for AdS2. The subregion of interest b is a wedge
extending to the right boundary,

b = {w> w0 , w̄> w̄0} . (10)

Assume that w, w̄ extend to ∞; I will argue that this is the case of interest later. Define
ðb ≡ ∂ b \ ∂M as the part of the boundary of b that is not on the boundary of the spacetime.

There is a special state in the CFT, the vacuum |ω〉g , which is the Weyl transformation
of the vacuum |ω〉

bg on the metric bg.9 Denoting by t i j ,bt i j the stress tensor operators on the
metrics g, bg respectively, they are related as

t i j = bt i j + fi j(c,Ω, bg)1 . (11)

An explicit expression for f can be found in e.g. [41]; the important property is that it is a
c-number.

The vacuum state ω has a local modular Hamiltonian for the region b. The (one-sided)
modular Hamiltonian is the log of the reduced density matrix,

kω;b = − logρω;b . (12)

This is represented by a small letter since it is an operator in the bulk CFT. The subtracted
(one-sided) modular Hamiltonian is

∆kω;b = kω;b − 〈ω|kω;b|ω〉= 2π

∫ ∞

w0

dw (w−w0)bt(w) , (13)

9The boundary condition at ∂M won’t be important, except that it is conformally invariant.
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where bt(w) = btww(w) is the stress tensor on the metric bg. The error from using the stress
tensor on the wrong metric is a c-number that cancels out in the subtraction.

The relative entropy is defined as

Srel(ψ|ω; b) =
¬

ψ
�

�

�kω;b − kψ;b

�

�

�ψ
¶

≥ 0 . (14)

Adding and subtracting 〈ω|kω;b|ω〉, it can be rewritten as

Srel =
¬

ψ
�

�

�∆kω;b

�

�

�ψ
¶

−∆SE,ψ , ∆SE,ψ = SE(ψ; b)− SE(ω; b) . (15)

The first term can be written using (13) as
¬

∆kω;b

¶

ψ
= 2π

∫ ∞

w0

dw (w−w0) 〈∆t(w)〉ψ , ∆t(w)≡ t(w)− 〈t(w)〉ω . (16)

I have used the standard notation that 〈O〉ψ = 〈ψ|O|ψ〉. Relative entropy is monotonic;

for any system c ⊆ b, Srel(ψ|ω; c) ≤ Srel(ψ|ω; b). Using the form (13) for the modular
Hamiltonian, monotonicity can be recast as the quantum half-averaged null energy condition
(QHANEC) [42],

EQHA ≡ −∂w0
Srel(ψ|ω) = 2π

∫ ∞

w0

dw 〈∆t(w)〉+ ∂∆SE,ψ(w0)≥ 0 . (17)

The inequality follows from the fact that increasing w0 makes the region smaller. I will drop
the “∆”s below to reduce clutter.

For a state |ψ〉, the Connes cocycle (CC) flow operator [43,44] is defined as

us

�

ψ|ω; b
�

= ρis
ω;b
ρ−is
ψ;b

. (18)

This operator (appropriately dressed) will be the one we use in the main argument of sec-
tion 4.2 below; notice that it is an operator in the bulk theory and does not make reference
to the boundary dual. The reduced density matrix and one-sided modular Hamiltonian are
not well-defined operators in the continuum, but the CC flow is a well-defined unitary. An
amazing point is that it is possible to work out exactly the stress tensor in the CC-flowed-state

|ψs〉 ≡ us

�

ψ|ω; b
�

|ψ〉 . (19)

Defining
ts(w)≡ 〈ψs|∆t(w)|ψs〉 , (20)

and similarly for t̄, the expectation values are

ts(w) = t0(w)θ (w0 −w) + e−4πs t0

�

we−2πs
�

+
�

e−2πs − 1
� ∂ S

2π
δ(w−w0) ,

t̄s(w̄) = t̄0(w̄)θ (w̄0 − w̄) + e4πs t̄0

�

w̄e2πs
�

+
�

e2πs − 1
� ∂̄ S

2π
δ(w̄− w̄0) . (21)

The derivation of this can be found in [45].10 Colloquially, these equations say that the CC
flow boosts all the energy in b and adds a pair of null shocks at ðb. It is most interesting to
study the effect of the flow on the QHANE,

EQHA,s ≡ 2π

∫ ∞

w0

dw ts(w) + ∂ SE,ψ(w0) = e−2πsEQHA,0 , (22)

using the fact that since us is a one-sided unitary it doesn’t change the entanglement entropy.
Thus, the action of the CC flow can be summarised as ‘boosting away the QHANE.’

10All the results mentioned in this section can be extended to multi-component regions [17]. Instead of using
the vacuum, we use the split vacuum, which is the same as the vacuum in each component but differs in that the
different components are factorised.
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φ→∞

B

φ = −∞

θ > 0

θ < 0

w

w̄

Figure 2: A null ray that hits the asymptotic boundary has positive expansion, and
one that doesn’t has negative expansion.

3.3 Focusing and CWI

CCWE is causal wedge inclusion for a class of bulk states. Causal wedge inclusion for a region
b is the statement that ðb is not causally related to B. In other words, null rays shot out from
ðb to the future/past do not intersect B. Take B to be the right boundary and b to be as in (10).

The expansions are defined as11

θ (w, w̄)≡ ∂ φ(w, w̄) , θ̄ (w, w̄)≡ ∂̄ φ(w, w̄) . (23)

Then, consider at the expansions at the end of the future-directed ray shot out from ðb, namely
θ (∞, w̄0). If this expansion is positive, then the light ray has hit the asymptotic boundary. If
it is zero or negative, then it is to the future of the asymptotic boundary. Similarly, for a past-
directed ray, we check the sign of θ̄ (w0,∞) to see if the ray hits the asymptotic boundary or
lies to its past. This is shown in figure 2.

We can relate the expansions at (w0, w̄0) and (∞, w̄0) using the Raychaudhuri equation
for JT gravity,

∂ θ = Γ w
wwθ − 2π 〈t(w)〉ψ . (24)

The SL(2,C) isometry can be used to set w0 = w̄0 = 0, which also makes the Christoffel
symbols vanish.12 Integrating (24), we find

θ (∞, 0) = θ (0, 0)− 2π

∫ ∞

0

dw 〈t(w)〉 . (25)

The implication of this for the quantum expansion,

Θ ≡ θ + ∂ SE(ψ) , (26)

is suggestive. Adding and subtracting ∂ SE(ψ) to (25) gives

θ (∞, 0) = Θ(0,0)− EQHA . (27)

The fact that the second term is non-positive, due to the QHANEC, can also be considered a
consequence of quantum focusing [46,47].

11What is usually called expansion is more analogous to ∂ φ/φ. But ∂ φ is a simpler quantity for JT gravity.
12Γ w

ww = 2w̄/(1−ww̄).
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It is technically not correct to calculate the expansion at w =∞, since M might end at
a smaller value of w. This would be due to the boundary condition (5) being satisfied for
wmax <∞. But that need not worry us, due to focusing. Specifically, if the spacetime ends at
w= wmax, t(w> wmax) = 0, and

∂ θ ≤ 0 =⇒ θ (∞, 0)≤ θ (wmax, 0) ,

∴ θ (∞, 0)≥ 0 =⇒ θ (wmax, 0)≥ 0 . (28)

It is also common to define some φmin ≤ 0, such that φ = φmin defines the ‘singularity.’ If
a null ray hits this singularity surface at w = wmax, then θ (wmax, 0) < 0 since for w < wmax
the ray is inside the spacetime and therefore φ(w < wmax, 0) > φ(wmax, 0). Again, due to
focusing, θ (w> wmax, 0)≤ θ (wmax, 0)< 0.

So, the sign of θ (∞, 0), which is also the sign of Θ(0, 0) − EQHA, is a good diagnostic
for whether a future-directed rightwards null ray from (0, 0) hits the asymptotic boundary.
Similarly, the sign of θ̄ (0,∞) answers the same question for a past-directed rightwards null
ray. If both of these are negative, the right boundary B is spacelike-separated from ðb and b
satisfies CWI.

3.4 How to properly dress a unitary

As a final step before the main argument, let me discuss subtleties of dressing. The main step
in the argument below will be to use the backreaction of a bulk CFT unitary u′ localised within
b to prove inconsistency of a particular claim with CCWE. However, the bulk CFT is not the full
theory; to make u′ an operator within the JT+CFT system, we will need to dress the unitary u′

so that its support is within b, even after taking into account backreaction. This can be subtle,
and I will assume it below, see assumption A.4. In this section, I argue for the plausibility of
this assumption.

The main subtlety is what was called ‘gravitational spreading’ in [17]. In general gravi-
tational theories, the dressed operator will not be exactly the same as the QFT operator. To
see why, expand u′ as a sum over products of bulk local operators a1(x)a2(y) + . . . . With
gravitational dressing, x , y cannot be specified as coordinates but have to be specified in a
diffeomorphism-invariant way. Suppose that they are defined relationally to some point P0, so
it is actually |x − P0|, |y − P0| that are fixed. But the action of the a2 operator actually changes
the geometry. Thus the distances |y − P0| and |x − P0| are calculated in slightly different ge-
ometries; the former is calculated in gΨ and the latter in ga2Ψ

. So the distance between a1
and a2 is slightly different due to backreaction. While we used a specific dressing to make
this argument, it is easy to see that it is a much more general problem, which can be stated
mathematically as a non-trivial commutator between a1 and the dressing of a2.

To define u′, then, we need a dressing that is guaranteed not to spread into b. Dressing it
to B is not an option, because backreaction can reduce the (renormalised) distance between
B and ðb. But dressing it to ðb = ðb is. This is because the local properties at ðb are fixed
from b.13 Specifically, the dressing must require that every local operator making up u′ must
be located to the right of ðb. This ensures that spreading does not cause the unitary to leak
into b.

The reader might be worried that this dressing doesn’t quite ensure that u′ commutes
with ab, however. For example, if b (and therefore ðb) is defined relationally to B, we have
set up a chain where u′ is dressed to ðb which itself is dressed to B, and therefore that u′

doesn’t commute with ab since ab doesn’t commute with the dressing of ðb. But such a
definition of b is a contradiction already, since φ(ðb) = φ(ðb). Thus it must be that ðb is

13In an appropriately limiting sense, since operators localised to a point typically have divergent fluctuations. In
the semi-classical limit these fluctuations should be suppressed in φr .
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gauge-invariantly defined in a way that does not make reference to any properties in the bulk
of b or b. Extremality is one such definition, but “fixed renormalised distance from the right
boundary” is not.14

Thus, it seems reasonable to dress u′ to ðb. But there is another subtlety because spreading
does deform the unitary u′, even while keeping it localised in b. In calculating the backreaction
of u′, we need to calculate the stress tensor in u′ |Ψ〉; but in general spreading makes it hard to
calculate this even if we know the stress tensor expectation value in u′ |ψ〉. This effect can only
be ignored for unitaries whose energy is small, precluding macroscopic rearrangements of the
bulk stress-energy. An important advantage of JT gravity is that the metric of the bulk AdS2 is
fixed. Backreaction is entirely in the change of the dilaton profile and therefore the trajectories
of the boundary particles. Since we work in the limit ε→ 0 where the boundary particles are
infinitely far away, the bulk CFT does not see this change [50], and so 〈t〉u′Ψ ≈ 〈t〉u′ψ (note
the change of case in the subscript).

While I have argued here that dressing u′ to ðb is enough to prevent spreading into b, I
will not assume that this is the dressing. All I assume is that there exists some gauge-invariant
operator that agrees with u′ atφr →∞ and does not spread into b, i.e. A.4. Further, I will not
assume that this can be done for arbitrary bulk regions b, but only for entanglement wedges;
the importance of this will be highlighted in section 6.1.

4 The main argument

Suppose someone claims that WE[B;Ψ] = b, such that b ⊇ WC[B; gΨ] and b ⊇ WC[B; gΨ].
Call this the Bb claim. I argue in section 4.2, based on assumptions listed in section 4.1, that
most Bb claims — those where b is not quantum extremal — are false.

Take B to be the left boundary, and b to be the region w < w0, w̄ < w̄0. If ðb is not a
QES, then either Θ(w0, w̄0) ̸= 0 or Θ̄(w0, w̄0) ̸= 0. The quantum expansion in one of the four
directions ±w,±w̄ is positive, assuming that there are no divergences in t0, t̄0 at (w0, w̄0).15

Let’s assume that Θ(w0, w̄0)> 0 for definiteness; the argument below is essentially unchanged
if one of the other three quantum expansions is positive. As before, the SL(2,C) isometry can
be used to set w0 = w̄0 = 0.

4.1 Assumptions

Apart from standard assumptions such as the existence of a single semi-classical bulk geometry,
I will also use

A.1 Complementary Causal Wedge Exclusion (CCWE).

A.2 Complementary recovery,
WE[B;Ψ] =WE[B;Ψ] . (29)

A.3 WE[B;Ψ] does not contain islands. In other words, ðWE[B;Ψ] is a single point.

This assumption allows the use of the results of section 3.3 below.

A.4 The bulk CC flow unitary for WE

�

B;Ψ
�

— us

�

ψ|ω; WE[B;Ψ]
�

— can be dressed so that
its support is entirely spacelike to WE[B;Ψ].

14Indeed, the fact that the reconstruction wedge can disagree with the entanglement wedge [48,49] is precisely
a consequence of the fact that the property of being a minimal extremal surface is not a definition of this sort.

15All divergences can be smoothed out, so this is not a serious restriction.
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See section 3.4 for further discussion of this assumption.

Let me pause here to discuss the epistemic status of these assumptions. Assumption A.1 is
the condition discussed in section 2, and an assumption only to avoid a rather odd possibility
as discussed above. Assumptions A.2 and A.3 limit the scope of the argument to certain cases;
and this set of cases is expected to not be the empty set. The only non-trivial assumption, then,
is A.4, and it is true a posteriori [17,51,52].

4.2 The central result: Bulk subregions need to be bounded by QESs

The argument begins with assuming the truth of the Bb-claim. Because of the Bb-claim and
assumption A.2, we have that b =WE[B;Ψ]. By assumption A.4, we have that the operator,

u′s ≡ us

�

ψ|ω; b
�

, (30)

can be dressed such that its support remains spacelike to b.
To check CCWE, we need to calculate the bulk dual of u′s |Ψ〉. Because u′s is localised within

b, it changes the geometry of b but leaves that of b unchanged. Denote the wedge with the new
geometry, including the backreaction of u′s, by bs. To construct the geometry dual to u′s |Ψ〉, we
need to paste bs to b at ðb, imposing the codimension-two junction conditions of [53]. The
first condition is that the dilaton is continuous,

lim
w,w̄→0+

φs(w, w̄) = lim
w,w̄→0−

φ(w, w̄) = φ(0, 0) . (31)

The second condition is that the discontinuity of the expansion is given by the delta-function
contribution in the null-null component of the stress tensor,16

[θ]0
+

0− = sing 〈t(w= 0)〉 ,
�

θ̄
�0+

0− = sing 〈 t̄(w̄= 0)〉 . (32)

These must be satisfied by bs. Integrating the Raychaudhuri equation (24) from w = 0−

— because Θs(0−, 0) = Θ0(0, 0)— to∞ gives

θs(∞, 0) = Θ0(0,0)− e−2πsEQHA
s>s∗−−→ positive, (33)

where

s∗ ≡
1

2π
log

EQHA

Θ0(0,0)
. (34)

By the discussion around figure 2, this means that for large enough s, a null ray shot out from
ðb hits the right boundary.17 Thus, defining s1 = s∗ +δ with δ > 0,

Θ(ðb)> 0 =⇒ WC[B; gus1Ψ
] ⊉ b

CCWE
===⇒ b ̸=WE[B;Ψ] . (35)

There are two cases where the above contradiction doesn’t arise. First, when
Θ(0,0) = Θ̄(0, 0) = 0; in that case, there is no choice of b for which we can run the above logic
and find s∗ <∞. But this is exactly the case when ðb is a QES. The other is when EQHA = 0.
But when the QHANE is 0, θ0(∞, 0) = Θ0(0, 0) and so we must have Θ0(0,0)≤ 0 by CWI for
B. But Θ0(0,0)≥ 0 by assumption, and so we again have that ðb is a QES.

This completes the argument that WE[B;Ψ] must be a quantum extremal wedge.

16Here,

sing f (x = x0)≡ lim
δ→0

∫ x0+δ

x0−δ
dx f (x) .

17For s ≫ s∗, the other shock gets reflected off the boundary and its effect needs to be taken into account, as
explained in [17]. Fortunately, CCWE is already violated when s− s∗ is positive but small, when we can ignore this
effect.
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θ < 0

ðb

−→

θ > 0

Θ > 0
ðb

or

θ = 0

Θ = 0
ðb

Figure 3: An illustration of the effect of the bulk CC flow on the null congruence
passing through ðb. The dilaton has been visualised as the radius of an S1. Left: in
the original spacetime, the congruence collapses into the singularity. Middle: The
case of positive quantum expansion at ðb. The negative energy shock causes a vi-
olation of classical focusing at ðb, and also boosts away the matter so that there is
less focusing in the future. The congruence no longer collapses into a singularity
but keeps expanding, eventually reaching the asymptotic boundary. Right: In the
quantum extremal case, the congruence neither expands not contracts, eventually
becoming the event horizon. More involved figures showing a similar lesson can be
found in [17].

Summary of the argument The above argument implies that, if ðb is not extremal, then
the bulk CC flow unitary engineers the situation shown in figure 1, up to a possible renaming
B↔ B. Thus, if b were genuinely the bulk dual of B, then entanglement wedge reconstruction
would contradict boundary causality: since B and B are not in causal contact on the boundary,
they should likewise not be in causal contact through the bulk.

The specific unitary we used, the bulk CC flow, can be thought of as one that de-focuses
the null congruence to the future of ðb. In the spacetime gΨ , the congruence passing through
ðb focuses, due to matter flux; but in the spacetime gu′Ψ , the matter flux is boosted away,
reducing the focusing effect, and the congruence no longer collapses into a singularity. Instead,
it reaches the asymptotic boundary. This is shown in figure 3, where the dilaton value is
visualised as the size of an S1.

The role of extremality is simple. The final expansion of the congruence is upper-bounded
by the quantum expansion of ðb. If the final expansion is positive, it necessarily reaches the
asymptotic boundary. It is only in the extremal case that the quantum expansion at ðb is not
positive in any of the four directions.

5 The case with islands

A similar logic works in the case where b is allowed to contain islands, but with stronger
assumptions. Define a geometric purification as a state |eΨB〉 that purifies Ψ reduced to B
and has a semi-classical bulk dual. One expects the bulk dual of this purification to contain a
region with the same metric and reduced bulk state as WE[B;Ψ]. I will assume the existence of
a special type of geometric purification and run the previous argument again. This assumption
is non-trivial and may be false.
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B WE [B] WE [B] B

B WE [B] B1 ∪ B2
WE [B] B3

Figure 4: An illustration of assumption AI.2. In the original spacetime, the entangle-
ment wedge of B has two components and three corners. In the new purification,
each corner is homotopic to an asymptotic boundary.

5.1 Assumptions

Apart from the assumptions A.1, A.2 and A.4, I also need

AI.1 The bulk CFT satisfies the split property [54].

AI.2 There is a geometric purification |eΨB〉 such that (a) it contains a region with the same
metric and quantum state as WE[B;Ψ] and (b) every point in ðWE[B;Ψ] is homotopic
to an asymptotic boundary, as illustrated in figure 4.

AI.3 If b is the max-EW of B in the state |Ψ〉, then it is also the max-EW in the purification
assumed above.

5.2 Plausibility of assumption AI.2

Suppose WE[B;Ψ] has n connected components with bulk algebrasa1,...n. By the split property,
there is a unitary Usp from the CFT Hilbert space Hbulk →H⊗n

bulk, such that Uspar U†
sp acts on

the r th copy.
Assumption AI.2 then adds that the action of Usp followed by unitaries in
�

Uspa1 ∨ · · · ∨anU†
sp

�′
can create a solution of the JT gravity equations. Note that the equa-

tions are satisfied inside the images of WE[B;Ψ]. Thus, there is roughly the right amount of
freedom to make the n copies of the bulk on-shell. This is why I believe this assumption to be
reasonable.

There might be further constraints that this very quick analysis hasn’t revealed however.

5.3 The argument

Suppose we are handed a Bb claim for a bulk region b that has many components. The set of
corners ðb can be divided into three sets. The first, ð+b, is the set of points such that one of
the two outward expansions is positive. The second, ð−b, is the set where both the outward
expansions are negative. The third, ð0 b, is the set consisting of quantum extremal points.

To disprove the Bb claim, we need to argue that CCWE is violated whenever either or both
of the first two sets are non-empty. The strategy is just to use assumption AI.2 and the result
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of section 4. First, if |ð+b| > 0, then construct the purification |eΨB〉, and then the previous
argument shows a violation of CCWE in this new spacetime.

Denote by eb the complement of b in g
eΨB

. eb is a union of n= |ðb| wedge-like regions on n
different copies of AdS2, by definition. The flowed state we need is

�

�

�

eψs

�

≡ us

�

eψ|ω⊗n ;eb
�
�

�

�

eψ
�

. (36)

Since the modular Hamiltonian of |ω〉⊗n is a sum over all the copies, we again find

−∂w0
Srel( eψs|ω⊗n ;eb) = e−2πs

h

−∂w0
Srel

�

eψ|ω⊗n ;eb
�i

, (37)

where the derivative is with respect to the coordinates of any point in ðb. The focusing argu-
ment in section 3.3 goes through and we find a violation of CCWE for every point in ð+b. This
implies that b is not the max-EW of B in this new state; by assumption AI.3, it cannot be the
max-EW in Ψ, disproving the Bb claim.

Similarly, if |ð−b|> 0, use assumption A.2 to shift focus to B and construct the purification
eΨB satisfying assumption AI.2 for b. Then, CCWE is violated for B in this new geometry. Thus,
the only Bb claims that don’t fall afoul of CCWE are the ones where b is bounded by a QES.

6 Discussion

I have argued that there is a consistency condition that straightforwardly restricts entangle-
ment wedges to those bounded by QESs, in JT gravity coupled to a CFT. Using this consistency
condition requires incorporating backreaction into the definition of subregion duality, some-
thing that is most natural in the approximate error-correction models of [6,28,48,55].

The important advantages of this new derivation are as follows. First, it is purely
Lorentzian. Secondly, it never uses the replica trick or the gravitational path integral, even
as an intermediate step. This is conceptually important, because the mysterious power of the
gravitational path integral has been a subject of much confusion in recent times, see e.g. [56].
It is interesting to tease out how much of this mysterious power is present only in the path
integral as opposed to Lorentzian low-energy gravity.

The fact that this technique also helps us constrain Bb claims including islands is quite in-
teresting in this regard, since it is a purely Lorentzian argument showing that islands can exist.
To create the bulk purification assumed in assumption AI.2, we presumably need exponential
complexity. This likely ties in to the argument of [55] that semi-classical gravity is protected
by complexity.

An important caveat here is that this new argument is not operational. This is because it
uses the full Heisenberg state u′ |ψ〉, rather than the history where u′ is applied as a process.
So it doesn’t correspond to something a bulk observer can do.

It would also be interesting to investigate the assumptions further, to see if any can be
proven or disproven.

6.1 A different perspective on CCWE

Here is a different perspective on the CCWE condition. Define a Hermitian operator a′ sup-
ported in WC[B;Ψ], defined relationally with respect to B. Similarly, also define another Her-
mitian operator a supported in b, dressed in any way such that it commutes with all operators
in b. Assume also that these operators have small energy, and consequently small backreac-
tion.18

18The choice of Hermitian operator rather than unitary is purely aesthetic. All of the below goes through with
appropriate modifications for the unitary eiδa.

14

https://scipost.org
https://scipost.org/SciPostPhys.17.5.133


SciPost Phys. 17, 133 (2024)

Suppose now that I had assumed A.4 not for WE[B;Ψ] but for arbitrary regions b. Then
for the CC flow unitary localised in b

[a, u′s] = 0 , (38)

because they have explicitly been dressed to be spacelike-separated. The commutator of a, a′

in the state u′ |Ψ〉 is

Csee =



Ψ
�

�u′†s
�

a′, a
�

u′s
�

�Ψ
�

=



Ψ
�

�

�

u′†s a′u′s, a
� �

�Ψ
�

≈



ψ
�

�

�

u′†s a′u′s, a
� �

�ψ
�

gΨ gΨ
= 0 . (39)

The first equality is a consequence of (38). The second equality is a consequence of the unitary
generating a local flow: since both a and u′†s a′u′s have small backreaction, we can evaluate the
commutator as a field theory commutator on gΨ . This last commutator manifestly vanishes
due to the spacelike separation of the operators.

But the implication of a violation of CCWE is exactly that some commutators of this class
are non-zero! Clearly, assumption A.4 can not be true for arbitrary regions; it must be that u′s
cannot be appropriately dressed for non-extremal regions. It would be interesting to see this
non-existence explicitly from gravitational dressing.

6.2 A new derivation of the QES formula?

Consider the set of regions bi that satisfy the CCWE check. There is one for every QES. The
HRT formula for the entropy of B requires us to prove two more things. First, that SE(B;Ψ)
is given by the generalised entropy φ(ðbi) + SE(bi;ψ) of one of these regions. Secondly, this
region is in fact the one with minimal generalised entropy.

Begin with the assumption that one of these regions bi0 is the entanglement wedge
WE[B;Ψ]. Assuming that the results of [24] apply, the modular Hamiltonian of B satisfies

KΨ;B = Â+ Kψ;b , (40)

where the first term is a central operator in aWE[B;Ψ].
19

Since ðWE[B;Ψ] is quantum extremal, a natural choice for the central operator is some
function of the dilaton f [φ(ðWE[B;Ψ])]. This is central because the boundary is fixed by the
quantum extremality condition, and at leading order φ(ðWE[B;Ψ]) can be calculated inde-
pendent of the bulk state.

The results in [57–59] then can be used to fix the function f (φ) = φ, as follows. The state
lims→∞ u′s |Ψ〉 has the property that a null ray shot out from ðb hits the future boundary of B,
and that there is no stress-energy flux through the horizon. The works [57–59] establish an
equality between KΨ;B and the dilaton on the horizon for states with this property (and states
perturbatively close by). But, since u′s commutes with Â, it must be the same operator in Ku′Ψ;B
and KΨ;B. This determines the area operator.

The final part is minimality. Two possibilities for proving this are as follows. First, we can
try to extend the QMS theorem of [6] to the case with a non-trivial area operator. Second,
we can use the simpler QEC models similar to [24] and assume that the QEC has sectors
corresponding to each of the bi being subsystems of the code subspace. Assuming that the
areas of each of these QESs has small fluctuations for simplicity,

|Ψ〉 ≈
1
p

n

n
⊕

i=1

�

�χαi

� �

�ψαi

�

. (41)

19Likely, one needs to use the split property to find a type I∞ algebra contained in b and then use the precise
statements in [27].
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bb
b

?

bu′b

bu′

Figure 5: The action of a unitary in b should not change the spacelike-separated
region b.

That all of these sectors have the same probability is an extra assumption here. Calculating
the Rényi entropy for index k, we find that the minimal generalised entropy sector dominates.
Making this precise would derive minimality for the entanglement entropy, and consequently
also for subregion duality using [24].

6.3 Higher dimensions

There are many new issues to be dealt with in higher dimensions and other theories. It is
likely that the argument involves a combination of the constructions in section 5 and [18].
Generalising this work to higher-derivative theories will also likely shed light on the relation
between the entropies defined by Dong [60] and Wall [61].20

The output of the argument, assuming the myriad subtleties can be dealt with, should be
that ðWE[B] ‘extremises the quantity that focuses.’ In JT gravity, the quantity that focuses is
the dilaton, see (24). [61] defined an entropy in higher-derivative theory as the quantity that
focuses — i.e. by demanding the generalised second law — and noted a curious relation with
the entropy defined using the replica trick in [60]. It would be interesting to flesh this out.

6.4 Defining gravitational subsystems

The original motivation for this work was the question of what constraints there are on grav-
itational subsystems. I have not come close to addressing this question, of course. First, let’s
outline the main obstacle to using the techniques here to address the more general question.

The question is as follows. Suppose someone hands you a gauge-invariantly defined sub-
region b along with an approximate subalgebra within it and claims it is a subsystem in semi-
classical gravity. For this to be true, a unitary u′ localised in a spacelike-supported region
should commute with sufficiently simple local operators in b. Concretely, denote by bu′ the
complementary region with the backreaction of u′ taken into account. The technical question
is whether it is possible to paste bu′ to b at ðb, without violating diffeomorphism constraints.

The main difficulty with addressing this more general problem is the following. The
constraints are first-order non-linear equations that we can integrate from a point inside b.
So there is no problem at ðb itself; we can use the codimension-two junction conditions as
initial data for the integration of the constraints into bu′ . A contradiction can only be found if
there is another “final condition” that is inconsistent with the initial conditions at ðb. CCWE
provides us with this “final condition,” but it is harder to find one more generally.

One question is whether there should be any constraints at all. One reason to believe that
there should be no constraints is that there have been a number of reasonable suggestions
for local gravitational subsystems in recent times [59, 62–64]. It is not clear that they are in
contradiction with there being constraints. [59,64] explicitly work at leading order in GN , and
so don’t take into account backreaction. [62,63] provide a definition of entanglement wedges

20I thank Ayngaran Thavanesan, Diandian Wang, Zi-Yue Wang and Zihan Yan for discussions about this.
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and entropies for arbitrary subregions, showing that their answer satisfies many properties that
one can expect. They leave open the question of what algebra this is the entropy of, however.
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