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Abstract

We further develop the description of three-dimensional quantum gravity with negative
cosmological constant in terms of Virasoro TQFT formulated in our previous paper [1].
We compare the partition functions computed in the Virasoro TQFT formalism to the
semiclassical evaluation of Euclidean gravity partition functions. This matching is highly
non-trivial, but can be checked directly in some examples. We then showcase the formal-
ism in action, by computing the gravity partition functions of many relevant topologies.
For holographic applications, we focus on the partition functions of Euclidean multi-
boundary wormholes with three-punctured spheres as boundaries. This precisely quan-
tifies the higher moments of the structure constants in the proposed ensemble boundary
dual and subjects the proposal to thorough checks. Finally, we investigate in detail the
example of the figure eight knot complement as a hyperbolic 3-manifold. We show that
the Virasoro TQFT partition function is identical to the partition function computed in
Teichmüller theory, thus giving strong evidence for the equivalence of these TQFTs. We
also show how to produce a large class of manifolds via Dehn surgery on the figure eight
knot.
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1 Introduction

Three-dimensional quantum gravity with negative cosmological constant has proven to be one
of the most interesting and productive toy models of quantum gravity. The major outstanding
problems are to fully solve the theory from first principles and firmly establish a holographic
correspondence for the theory. There has been major progress on both fronts over the last few
years; see [1–7] and [8–14], respectively.

In our previous paper [1], we developed a formalism that computes the gravity partition
function algorithmically on a background of fixed (on-shell) topology. This fixes the contri-
butions of hyperbolic three-manifolds to the gravitational path integral and represents a large
step towards a complete solution of the theory directly from the bulk. The next step would
involve performing the sum over all three-dimensional topologies that appear in the gravita-
tional path integral, which may also require suitable non-perturbative or off-shell contribu-
tions. While our previous paper developed the formalism in terms of the Virasoro TQFT, this
paper gives several interesting applications that exemplify its practical utility and should be
viewed as a natural continuation of [1].

On the holographic side, a consistent picture is emerging that the gravitational path inte-
gral computes certain universal statistical features in a putative ensemble of holographic 2d
CFTs. While the full non-perturbative definition of such an ensemble is still not settled, this
perspective makes very concrete predictions that can be quantitatively matched between the
bulk and boundary. In this paper we will study partition functions of Virasoro TQFT on multi-
boundary wormholes to exemplify the extent to which the gravitational path integral precisely
captures universal statistics of CFT data, transcending the Gaussian approximation of [10].

We will assume that the reader is acquainted with the concepts introduced in [1], but now
recall some key features. As suggested by holography, the Hilbert space of 3d quantum gravity
is spanned by the left- and right-moving Virasoro conformal blocks on the spatial surface Σ.
This factorization of the Hilbert space allows one to consider, say, only the left-movers as a
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fundamental building block.1 A key ingredient in the proposal of [1] is an explicit form of
the inner product on this conformal block Hilbert space. Important for the consistency of this
structure is the fact that the conformal blocks transform among each other under crossing
transformations and as such the Hilbert space carries a unitary action under crossing transfor-
mations. There are remarkably explicit expressions for the crossing transformation in terms
of the Ponsot-Teschner fusion kernel F and the modular crossing kernel S [15–18]. Since the
Hamiltonian in gravity vanishes, the theory can be viewed as a TQFT on a background topol-
ogy. This data completely specifies the TQFT that we called Virasoro TQFT in [1]. The TQFT
partition function on a fixed topology can be computed via surgery techniques similarly to
Chern-Simons theory. The Virasoro TQFT partition function then immediately leads to the full
3d gravity partition function via the following formula, valid for all hyperbolic three-manifolds

Zgrav(M) =
∑

γ∈Map(∂M)/Map(M ,∂M)

|ZVir(M
γ)|2 . (1.1)

Here we sum over all images of the manifold M under the boundary mapping class group
Map(∂M), which is part of the sum over topologies, modulo the bulk mapping class group
Map(M ,∂M), which is gauged in gravity.

We start in Section 2 by analyzing the gravity partition functions as computed in Virasoro
TQFT and their relation to the semiclassical evaluation of the gravitational path integral. Com-
paring the two expressions leads to the (refined) volume conjecture that we already mentioned
in [1] and discuss further here. We also discuss the existence of non-isomorphic hyperbolic
manifolds with identical Virasoro TQFT partition functions. This in particular implies that
the gravitational path integral is not powerful enough to detect the topology of hyperbolic
manifolds.

We then discuss examples that are relevant for the holographic description of 3d grav-
ity in Section 3. We focus on a class of manifolds obtained by removing three-punctured
spheres from S3 and connecting the boundaries appropriately with Wilson lines. They com-
pute holographically the higher moments of the structure constants in the proposed ensemble
description of the boundary dual. We find that the partition functions may be computed using
diagrammatic rules that are simply the q-deformations of the rules for the computation of disk
partition functions in JT gravity + matter [19–21]. When projecting the Wilson lines on a
disk, one associates a Virasoro 6j-symbol to every crossing of lines and one integral to every
loop formed by the internal lines, see eqs. (3.63) and (3.64) for the precise formulae. We also
use Virasoro TQFT to compute the gravity partition function on a class of contributions to the
single-boundary gravitational path integral that are not handlebodies. These non-handlebody
instantons are formed by quotients of the two-boundary Euclidean wormhole and we find that
the gravity partition function is related to the partition function of Liouville CFT on a particular
non-orientable surface.

Finally, we consider the example of the figure eight knot complement in Section 4, which
constitutes one of the simplest examples of a hyperbolic manifold with no asymptotic boundary.
We compute its Virasoro TQFT partition function from a variety of perspectives and demon-
strate that it agrees with the partition function computed in an a priori different TQFT known
as Teichmüller TQFT. This lends strong credence to the equivalence of the two theories, even
though Virasoro TQFT provides a far more convenient framework for holographic applications.
We also illustrate the procedure of Dehn surgery on the figure eight knot, which leads to the
gravity partition function on a whole family of hyperbolic three-manifolds whose volume ac-
cumulates to that of the figure eight knot complement.

1The left- and right-movers are entangled only by the sum over topologies in the gravitational path integral.
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2 Structural properties of Virasoro TQFT

We start by discussing the relation of the formulation of gravity in terms of Virasoro TQFT and
the semiclassical gravity path integral. Comparing the two leads to the volume conjecture and
we discuss various consequences for the volumes of hyperbolic 3-manifolds, conformal blocks
and one-loop determinants. We then also explain some of the consistency conditions of the
Virasoro TQFT. Such consistency conditions are all implied by the consistency of the mapping
class representation on the initial value surface, but often the three-dimensional viewpoint is
much more powerful.

2.1 Volume conjecture

We already stated the (refined) volume conjecture in [1], but it will play a much more promi-
nent role in the present paper. By comparing the usual metric approach of 3d gravity and the
Virasoro TQFT approach, one obtains the following prediction for the semiclassical expansion
of partition functions:

|ZVir(M)|2 = e−
c

6π vol(M)





∏

γ∈P

∞
∏

m=2

1
|1− qm

γ |2
+O(c−1)



 . (2.1)

Here we used that the gravity tree-level action is c
6π vol(M), where vol(M) is the volume of the

hyperbolic manifold. We also used the explicit form of the one-loop determinant as computed
in [3]. This explicit formula for the one-loop determinant is valid for hyperbolic manifolds
without defects that can be written as H3/Γ for a so-called Kleinian group Γ . In case M has
defects, the volume conjecture should still hold, but there is no known general formula for
the one-loop determinant. We recall that P denotes the set of all primitive geodesics on the
three-manifold in question. Alternatively, we can think of P as the set of primitive conjugacy
classes in the Kleinian group Γ (i.e. conjugacy classes that are not powers of other conjugacy
classes) and also identify the conjugacy class of γ with the conjugacy class of γ−1, since this
corresponds to orientation reversal of the corresponding geodesic. We could of course extend
the matching to higher loop order, but will restrict here to the tree-level and one-loop piece.

We refer to this equation as the refined volume conjecture, since the classical volume con-
jecture is the corresponding statement for the tree-level term in the 1

c -expansion [22]. The
relation (2.1) should also hold in the presence of boundaries, in which case the volume of the
hyperbolic manifold is the renormalized volume [23].

2.2 The volume of hyperbolic tetrahedra

Let us explain one of the simplest non-trivial instances of the volume conjecture in more detail.
Consider a single hyperbolic tetrahedron as in Figure 1 with dihedral angles θi specifying the
angle between the two faces meeting at the edge.

The dihedral angles have to satisfy rather complicated conditions for such a hyperbolic
tetrahedron to exist. We can take two identical such hyperbolic tetrahedra and identify them
along the corresponding faces. This leads to a topological three-sphere with conical defects
running in the form of the tetrahedron through it. The hyperbolic tetrahedron is specified by
the dihedral angles θ j ∈ (0,π) spanned by the two faces meeting at an edge. Upon gluing two
tetrahedra, the conical defect angle becomes 2π− 2θ j . Semiclassically, the relation between
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θ6

θ5
θ4

θ3

θ1 θ2

Figure 1: Tetrahedron with dihedral angles specified.

defect angles α j and Liouville momentum reads2 [24]

Pj =
iα j

4πb
∼

iQ
2
−

iθ j

2πb
. (2.3)

This is the hyperbolic three-manifold that we use for the volume conjecture. Some extra care
is necessary to correctly normalize the vertices. We observe that the renormalized volume
of the Euclidean wormhole of the form Σ0,3 × [0, 1] exactly vanishes.3 Since it evaluates to
the Liouville structure constant C0(P1, P2, P3) in the Virasoro TQFT, this means that for the
purposes of the volume conjecture, we should define a juncture with a normalization constant
C0(P1, P2, P3)−

1
2 as follows

1
p

C0(P1, P2, P3)
×

P1

P3

P2 . (2.4)

We compute the TQFT partition function ZVir of this tetrahedral configuration in Sec-
tion 3.2. The result is given by

ZVir












= ρ0(P6)

−1 C0(P1, P2, P3)C0(P3, P4, P5)FP3,P6

�

P4 P2
P5 P1

�

(2.5)

=
Æ

C0(P1, P2, P3)C0(P1, P5, P6)C0(P2, P4, P6)C0(P3, P4, P5)

×
�

P1 P2 P3
P4 P5 P6

�

. (2.6)

The symbol
¦

P1 P2 P3
P4 P5 P6

©

is the crossing kernel for sphere four-point function conformal blocks
in the Racah-Wigner normalization [17], which we also call the Virasoro 6j-symbol. It has the
correct tetrahedral symmetry as required by the picture, where the vertices of the tetrahedron
are formed by (P1, P2, P3), (P1, P5, P6), (P2, P4, P6) and (P3, P4, P5).

2Here we are adopting the standard notation from Liouville theory for the central charge and conformal weights:

c = 1+ 6(b+ b−1)2 = 1+ 6Q2 , ∆ j =
c − 1
24

+ P2
j . (2.2)

3Here and throughout we use Σg,n to refer to a Riemann surface of genus g with n punctures. So here Σ0,3

corresponds to the three-punctured sphere.
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Thus the prediction of the volume conjecture is now that

2 vol(η1,η2,η3,η4,η5,η6) = −2π lim
b→0

b2 log

� iQ
2 −

iη1
2πb

iQ
2 −

iη2
2πb

iQ
2 −

iη3
2πb

iQ
2 −

iη4
2πb

iQ
2 −

iη5
2πb

iQ
2 −

iη6
2πb

�

, (2.7)

where the volume on the left hand side is the volume of the hyperbolic tetrahedron specified
by the dihedral angles η j .

One can evaluate the integral in the defining formula for the crossing kernel via saddle-
point approximation in this limit and confirm that it agrees with the volume formula for a
hyperbolic tetrahedron. This was done in [17], but the volume conjecture gives a conceptual
derivation of that fact.

We also mention that the Virasoro crossing kernel has the following Regge symmetry [25,
26]

FP3,P6

�

P4 P2
P5 P1

�

= FP3,P6

�1
2(P2 + P4 + P5 − P1)

1
2(P1 + P2 + P4 − P5)

1
2(P1 + P4 + P5 − P2)

1
2(P1 + P2 + P5 − P4)

�

. (2.8)

This implies via the volume conjecture that the volume of a hyperbolic tetrahedron is invariant
under the replacement

θ1→
1
2(θ1 + θ2 + θ4 − θ5) , θ5→

1
2(−θ1 + θ2 + θ4 + θ5) , (2.9)

θ2→
1
2(θ1 + θ2 + θ5 − θ4) , θ4→

1
2(θ1 − θ2 + θ4 + θ5) , (2.10)

with θ3 and θ6 unchanged. This property is very non-trivial to see geometrically and giving a
direct proof of it is rather hard.

2.3 Volume conjecture for handlebodies

Semiclassical vacuum blocks. Let us apply the volume conjecture in the form (2.1) to a
handlebody. Recall that the Virasoro TQFT partition function on a genus-g handlebody SΣg
evaluates to the vacuum Virasoro conformal block,

ZVir(SΣg) =
1

11

(2.11)

where we drew a genus-2 surface for concreteness. As such the volume conjecture (2.1) gives
the semiclassical expansion of vacuum blocks,

1
11

∼ e−
c

12π vol(SΣg )
∏

γ∈P(Γg )

∞
∏

m=2

1
1− qm

γ

. (2.12)

Here, vol(SΣg) is the in general complex volume of the handlebody.4 Such a semiclassical
expansion of the conformal blocks is familiar from 2d CFT, where the leading term is called
the semiclassical conformal block [27–29], but to our knowledge there is no general CFT
derivation of the one-loop determinant, and even direct derivations of the leading term are
somewhat limited. The group Γg ⊂ PSL(2,C) that appears in the one-loop determinant is the
Schottky group of the corresponding handlebody.

4In general to write this formula only for a chiral half (which goes beyond the volume conjecture (2.1)), we
also need to assign an imaginary part to the volume which is known as the Chern-Simons invariant.

6

https://scipost.org
https://scipost.org/SciPostPhys.17.5.134


SciPost Phys. 17, 134 (2024)

The Virasoro TQFT approach gives a simple derivation of this fact. It also shows that the
semiclassical block is nothing else than the volume of the corresponding handlebody. It was
shown in [30] that this volume is identified with the on-shell value of the Liouville action as
defined by Takhtajan and Zograf [31],

SL(Σg) = −4Re vol(SΣg) . (2.13)

Defining the on-shell Liouville action requires one to pick a conformal block channel. The
Virasoro TQFT also makes a prediction about the order one term in the semiclassical expansion.

One-loop determinant. Let us recall the formula derived in [32] for the holomorphic fac-
torization of the Laplacian on a Riemann surface. We have

det′∆2

det N2
= cg e−

13
12π SL(Σg )

�

�

�

�

(1− q1)
2(1− q2)
∏

γ∈P(Γg )

∞
∏

m=2

(1− qm
γ )

2

�

�

�

�

2

, (2.14)

for some constant cg independent of the moduli. It depends on the renormalization scheme
used to define the determinant det′∆2. Here ∆2 is the Laplacian acting on holomorphic
quadratic differentials on the surface Σ and the prime indicates that we removed the zero
modes. det N2 is the determinant of 〈ϕ j |ϕk〉 and {ϕ j} j=1,...,3g−3 is a natural basis of holomor-
phic quadratic differentials as defined in [32]. We also denoted q j = qγ j

with γ1, . . . ,γg the g
free generators of the Schottky group. The perhaps unnatural seeming factor (1−q1)2(1−q2)
appears because of the specific way in which ϕ j is defined and is a result of fixing the PSL(2,C)
conjugacy freedom for the Schottky group. Thus we have

�

�

�

�

�

�

�

�

1
11

�

�

�

�

�

�

�

�

2

∼ c′g
e−

c−13
6π vol(SΣg )

Æ

det′∆2

× |1− q1|2|1− q2|
Æ

det N2 . (2.15)

This tells us that the one-loop partition function is exactly the inverse square root of the par-
tition function of a bc-ghost system with a particular choice of ghost insertions.

Explicit check. Here we explicitly check the one-loop refinement of the volume conjecture
for handlebodies in a simple example, perturbatively in the moduli of the Riemann surface in
an expansion about a pinching limit. Consider for concreteness a genus-two Riemann surface
formed by plumbing two two-holed disks D1 and D2:

D1 = {z1 ∈ C | r1 < |z1|< r3, |z1 − 1|> r2} , (2.16a)

D2 = {z2 ∈ C | r̃1 < |z2|< r̃3, |z2 − 1|> r̃2} . (2.16b)

Gluing the boundaries of the disks according to the following inversion map prepares a disk
with three holes

|z2|= r̃3 : z2 ∼
1

p1z1
, with |p1|=

1
r3 r̃3

. (2.17)

The remaining identifications are

|z2|= r̃1 : z2 ∼
p3

z1
, with |p3|= r1 r̃1 , (2.18a)

|z2 − 1|= r̃3 : z2 − 1∼
p2

z1 − 1
, with |p2|= r2 r̃2 . (2.18b)
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The complex plumbing parameters pi parameterize the moduli of the Riemann surface, with
the pi → 0 limit a pinching locus in which the surface is realized by gluing two spheres along
long narrow tubes. The corresponding Virasoro conformal blocks may then straightforwardly
be computed as an expansion in powers of the plumbing parameters pi , see for example [33]
for details.

This parameterization of the genus-two Riemann surface is clearly equivalent to the Schot-
tky parameterization, in which one realizes the Riemann surface Σg as a quotient of the form

Σg = (C∪ {∞}−Λ)/Γ . (2.19)

Here Γ = 〈γ1, . . . ,γg〉 is the Schottky group, which is a free group generated by the loxodromic
elements γ1, . . . ,γg of PSL(2,C), and Λ is the limit set of the action of Γ . The generators γi act
on the Riemann sphere by Möbius transformation. In our example of the genus-two Riemann
surface formed by plumbing two-holed disks as above, the generators of the Schottky group
may be taken to be

γ1(z) = p1p3z , γ2(z) =
(1− p2)z − 1/p1

z − 1/p1
. (2.20)

Each generator γ is conjugate to diag(q1/2
γ , q−1/2

γ ), with |qγ|< 1. Here we have

qγ1
= p1p3 , qγ2

=
1− p1 + p1p2 −

q

1− 2p1(1+ p2) + p2
1(1− p2)2

1− p1 + p1p2 +
q

1− 2p1(1+ p2) + p2
1(1− p2)2

. (2.21)

We are now in a position to directly compare the perturbative expansion of the c →∞
limit of the genus-two Virasoro vacuum block as parameterized in the plumbing frame above5

with that of the gravity one-loop determinant on the genus-two handlebody (2.12). We find

1
11

�

�

�

�

�

�

�

�

c→∞

=
∏

γ∈P(Γ )

∞
∏

m=2

1
1− qm

γ

(2.22)

= 1+ p2
1 p2

2 + p2
2 p2

3 + p2
3 p2

1 + 4(p3
1 p2

2 + p3
2 p2

3 + p2
2 p3

3) + . . . (2.23)

On the left-hand side we evaluate the genus-two identity block in the plumbing frame per-
turbatively in the moduli by brute force, and on the right-hand side we evaluate the one-loop
determinant by taking the product over primitive conjuguacy classes of the Schottky group.
We have verified the agreement between these two expressions up to total degree 12 in the
expansion in the plumbing parameters.

2.4 Mutations of hyperbolic manifolds

One may ask whether ZVir is a perfect invariant of a hyperbolic three-manifold, or, in other
words, is ZVir powerful enough to distinguish any two hyperbolic manifolds? As in Chern-
Simons theory, the answer to this question is negative. There exist non-isometric hyperbolic
three-manifolds M1 and M2 with ZVir(M1) = ZVir(M2). The reason for this is a general opera-
tion known as mutation.

There are different kinds of mutations, these are all relatively subtle operations that go
undetected by most knot invariants, including the Virasoro TQFT partition function ZVir.

6 Let
us first explain the classical example of knot mutations. Consider a region of a knot in which

5As explained in [33], in the plumbing frame the c→∞ limit of the Virasoro blocks is actually finite; in other
words, the corresponding Liouville action vanishes. The c→∞ limit of the vacuum block as computed in (2.12)
plays an important role in determining the seed of the recursive representation of arbitrary Virasoro blocks.

6In Virasoro TQFT, we think of a knot as a defect inserted in the three-sphere S3 that is knotted appropriately.
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Figure 2: The Conway knot and its mutant, the Kinoshita-Teresaka knot. They are
not equivalent, but the value of ZVir is the same.

two strands enter and two strands exit. The path integral over this region gives a state in
the Hilbert space of the four-punctured sphere where all the four labels are identical (since
we considering a knot associated to a single Virasoro representation). Thus, whatever the
resulting state is, it can be expanded in terms of s-channel conformal blocks. However, any
s-channel conformal block with identical external labels is invariant under a Z2×Z2 symmetry
group generated by rotations around the x and y axis as follows:

P0

P0

P0

P0

P (2.24)

the composition of which yields a rotation by 180 degrees. It thus follows that the Virasoro
TQFT partition function on the excised four-punctured sphere is invariant under the same
symmetry operations. In particular, this means that one can cut the four-punctured sphere
with a tangle inside, apply one of these symmetry operations, and then reglue the tangle. This
leads in general to an inequivalent knot, but the difference is not detectable by computing ZVir.
A famous example of a mutant hyperbolic knot pair is the Conway knot and the Kinoshita-
Terasaka knot shown in Figure 2. In particular, since for this example, the mapping class
group of both knot complements is trivial, the gravitational path integral on the Conway knot
and the Kinoshita-Terasaka knot is exactly the same and the gravitational path integral is hence
not a sufficiently refined observable to be able to detect the topology of all hyperbolic three-
manifolds.

Via the volume conjecture (2.1), this implies in particular that mutant knot complements
have the same hyperbolic volume. This result is known in the math literature [34], but the
present discussion makes it tautological. More surprisingly, the refined volume conjecture
(2.1) also implies that the corresponding manifolds have the same one-loop determinants.

Using the same techniques of Virasoro TQFT, one can also show that the geodesics fully
inside or outside the cutting surface have the same length.7 Thus the length spectra of two
mutant manifolds partially coincide. However, the length spectrum in general differs as one
can see by an explicit computation using the software SnapPy [35]. We display in Table 1
the low-lying length spectrum on the Conway knot and the Kinoshita-Teresaka knot. Thus
even though the geodesic length spectrum determines the one-loop determinant (we have
qγ = e−ℓγ) and the one-loop determinants agree, the length spectrum is in general different.

There are other versions of mutations. We can consider any embedded surface in M with
a special symmetry such as the four-punctured sphere above. Cutting M along such a surface,
applying the symmetry and regluing leads to a mutated manifold. For example, we can cut

7This is based on the observation that inserting Wilson lines with degenerate Virasoro representations measure
the geodesic length in the classical limit [26].
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Table 1: The low-lying length-spectrum of primitive geodesics on the complement
of the Conway and the Kinoshita-Teresaka knot. The imaginary part encodes the
holonomy around the geodesic. The length spectrum partially agrees. All geodesics
have multiplicity 1 since the two manifolds have trivial isometry groups.

Conway Kinoshita-Teresaka
1.044+ 2.327i 1.044+ 2.327i
1.152− 2.266i 1.152− 2.266i
1.384+ 2.840i 1.384+ 0.508i
1.756− 2.011i 1.530+ 2.037i
1.831− 0.095i 1.831− 0.095i
1.907+ 2.521i 1.907+ 2.521i
1.938− 2.402i 1.938− 2.402i
2.011+ 0.738i 2.031+ 2.934i
2.184− 1.327i 2.097+ 2.938i
2.230− 1.770i 2.183− 1.425i
2.233− 1.893i 2.233− 1.893i

along a genus 2 surface without punctures and use the Z2 hyperelliptic involution. Every
genus 2 conformal block is invariant under the corresponding Z2 symmetry acting by a rotation
around the x axis as follows:8

P1

P2

P3

(2.25)

Thus any partition function of Virasoro TQFT on a hyperbolic three-manifold with only a genus
2 boundary must have the same property. In particular, we can produce two hyperbolic three-
manifolds by cutting along a genus 2 surface and applying such a rotation. This yields in
general non-equivalent hyperbolic three-manifolds, but with the same value of ZVir. Via the
volume conjecture (2.1), this implies again that such a pair of manifolds has the same hyper-
bolic volume and the same value of the infinite product appearing as the one-loop determinant
in (2.1).

As a concrete example that is perhaps more familiar and directly relevant to holography,
consider the Euclidean wormhole of the form Σ2 × [0,1]. Since the genus 2 surface is hy-
perelliptic, we can perform the hyperelliptic involution on one side, which formally leads to
a different manifold, but with identical partition function. As explained in [1], the Virasoro
TQFT partition function on the Euclidean wormhole is simply given by the partition function
of Liouville CFT ZLiouville(Σ2,0|m1,m2), where the left-moving moduli m1 are associated to the
left boundary and the right-moving moduli m2 to the right-moving boundary. However, the
Liouville partition function is already invariant when we apply the hyperelliptic involution to
only m1, which means that the partition function of this twisted wormhole also equals the
Liouville partition function.

2.5 Consistency conditions on the crossing kernels

The crossing kernels F and S on the four-punctured sphere and the once-punctured torus,
respectively, are subject to a number of constraints known as the Moore-Seiberg consistency

8This would fail at genus 3 since we have in general two different Liouville momenta on the bottom and top of
the middle loop, which get exchanged by this operation. Correspondingly, not every genus 3 surface is hyperelliptic.
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P0
P1 P2

Figure 3: The network of Wilson lines used to derive the relation between the mod-
ular crossing kernel S and the sphere crossing kernel F.

conditions [36]. We listed them in the Appendix of [1], see also [18]. They express consistency
of the projective representation of the 2d mapping class group on the space of conformal
blocks. For example, the modular crossing kernel S has to satisfy the SL(2,Z) relations together
with the Dehn twist T on the once-punctured torus.9

These relations are also necessary for the consistency of the three-dimensional theory.
However, they can often be seen much easier from the three-dimensional perspective. We
explain here one simple example that shows that S can be fully expressed in terms of F that
we also use later in the paper. We should mention that this construction is standard in the con-
text of modular tensor categories which can be viewed as the rational counterpart of Virasoro
TQFT [37].10

Consider S3 with a network of Wilson lines as in Figure 3. We recall that a juncture of
Wilson lines was defined as follows in [1]:11

P1

P3

P2 ≡
1

C0(P1, P2, P3)
×

P1

P3

P2 . (2.26)

On the right hand side, we excise a spherical boundary around the puncture. The path integral
then creates a state in the boundary Hilbert space, which is one-dimensional and hence can be
canonically identified with C by fixing the standard normalization of the three-point function
on the sphere.

The main point is now that the value of the partition function on the network of Wilson
lines in Figure 3 can be computed in two different ways as follows.

Let us first consider the Heegaard splitting into two once-punctured tori. The two once-
punctured tori are homeomorphic to tubular neighborhoods of the Wilson lines P1 and P2,
respectively. The normalization of the juncture in (2.26) is chosen such that the Virasoro
TQFT path integral on the once-punctured tori leads precisely to the respective conformal
blocks on the boundary torus. The two once-punctured tori are interlocking and hence we
have to apply an S-modular transformation. Being more careful about the definition of the
S-modular transformation actually shows that we need the inverse of the modular crossing
kernel S. Since S squares to eπi∆0 ,12 the inverse of S differs from S only by the phase e−πi∆0 .
In the end, we obtain for the partition function of the Wilson line network M ,

ZVir(M) = e−πi∆0

∫

dP ′1 SP1,P ′1
[P0]
­ P0

P2

�

�

�

�

P0
P ′1

·

(2.27)

=
e−πi∆0 SP1,P2

[P0]

ρ0(P2)C0(P0, P2, P2)
, (2.28)

9More precisely, the crossing kernels give rise to a projective representation of SL(2,Z).
10We thank Sahand Seifnashri for explaining the MTC computation to us.
11C0(P1, P2, P3) is the universal Liouville three-point function, see [1, eq. (2.17)].
12See [1, eq. (A.5a)].
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where we applied [1, eq. (2.21)] for the evaluation of the inner product between conformal
blocks. It reads

〈FC
g,n(P⃗) |F

C
g,n(P⃗

′)〉=
δ3g−3+n(P⃗ − P⃗ ′)

∏

cuffs aρ0(Pa)
∏

pair of pants (i, j,k) C0(Pi , Pj , Pk)
. (2.29)

Here, FC
g,n are the genus-g n-point Virasoro blocks in a particular OPE channel C, C0(P1, P2, P3)

is the Liouville three-point function, and ρ0(P) the inverse of the two-point function. In other
words, conformal blocks in a channel C are orthogonal with a density given by the inverse OPE
density of Liouville theory. See [1] for our conventions for the Liouville structure constants.

We can alternatively compute the partition function by a Heegaard splitting along a four-
punctured sphere containing the Wilson line P0 and the stubs of the Wilson lines P1 and P2.
We have in hopefully obvious notation

ZVir(M) =

∫

dP FP0,P

�

P2 P1
P2 P1

�

ZVir

�

PP1 P2

�

(2.30)

=

∫

dP FP0,P

�

P2 P1
P2 P1

�

e2πi(∆−∆1−∆2)ZVir

�

PP1 P2

�

(2.31)

=

∫

dP FP0,P

�

P2 P1
P2 P1

�

e2πi(∆−∆1−∆2)

C0(P, P1, P2)
, (2.32)

where we used the braiding move twice in the second line. In the last line we recognize the
Euclidean wormhole with two three-punctured sphere on both ends, which evaluates to the
Liouville three-point function. Taking into account the normalization in eq. (2.26), we get an
inverse structure constant.

Comparing (2.28) and (2.32) then expresses the modular crossing kernel fully in terms of
the sphere crossing kernel,

SP1,P2
[P0] =

∫

dP
ρ0(P2)C0(P0, P2, P2)

C0(P, P1, P2)
eπi(2∆+∆0−2∆1−2∆2) FP0,P

�

P2 P1
P2 P1

�

. (2.33)

Using the explicit form of the sphere crossing kernel given e.g. in eq. (2.42a) of [1], one can
use various known identities of the involved integrals of special functions to derive the known
expression of the modular fusion kernel from this integral formula [18,26].

This identity can also be derived from a two-dimensional point of view by requiring the
consistency of the representation of the mapping class group on the space of conformal blocks
on the two-punctured torus. It is in fact a special case of the corresponding Moore-Seiberg
relation. However, the corresponding derivation is much more complicated and subtle than
the three-dimensional point of view.

3 Holographic examples

We now move on to holographic applications of the Virasoro TQFT formalism. We will mostly
focus on multi-boundary wormholes that have direct implications for the description of the
holographic dual of 3d gravity in terms of an ensemble of CFT data. In order to set the stage
for this discussion, let us briefly recapitulate the ensemble description of AdS3 gravity.
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i

j

k

i

j

k

Figure 4: The Euclidean wormhole with the topology of a three-punctured sphere
times an interval that contributes to the variance of the structure constants in the
ensemble description of the dual of AdS3 gravity.

In [10] it was shown that averaged products of CFT observables in a Gaussian ensemble
for the CFT data defined by

ci jk = 0 , (3.1a)

ci jkc∗
ℓmn = C0(Pi , Pj , Pk)C0(P̄i , P̄j , P̄k)

�

δiℓδ jmδkn + (−1)ℓi+ℓ j+ℓkδiℓδ jnδkm + 4 permutations
�

,
(3.1b)

together with a Cardy spectrum of heavy states, agree with the on-shell actions (and in cer-
tain cases, the one-loop determinants) of suitable Euclidean wormholes in semiclassical AdS3
gravity coupled to massive point particles. Here ℓi = P2

i − P̄2
i is the spin of the corresponding

primary. The averaged CFT quantities are computed by performing a simultaneous conformal
block decomposition of the observables and computing Wick contractions of the structure con-
stants using (3.1). The gravity computations were mostly restricted to two-boundary worm-
holes with topology Σ× [0,1], with Σ a (possibly punctured) Riemann surface, corresponding
to two-copy averaged observables on the CFT ensemble side. Indeed one may view (3.1) as be-
ing determined by an explicit computation of the 3d gravity partition function on a Euclidean
wormhole with the topology of a three-punctured sphere times an interval [10]; see figure 4.

In [1] the correspondence between two-boundary Euclidean wormhole partition functions
and averaged products of CFT observables was extended to finite central charge using Virasoro
TQFT. In particular the TQFT partition function on the Euclidean wormhole was computed,
with the result

ZVir(Σ× [0,1]|m1,m2) = ZLiouville(Σ|m1,m2) , (3.2)

where m1,m2 collectively denote the moduli of the Riemann surfaces at the two boundaries,
and ZLiouville(Σ) is the correlation function on Σ in Liouville CFT. |ZVir(Σ×[0,1])|2 agrees with
the the averaged CFT computations performed in the Gaussian ensemble (3.1), and its large-c
expansion agrees with the semiclassical gravity saddle-point computations in [10].

Except in certain very special cases it is not clear how to compute the gravity path integral
on configurations with more than two asymptotic boundaries in the metric formalism. Such
configurations in particular encode non-Gaussian corrections to the ensemble formulation of
the boundary theory defined in (3.1), which are known to be needed for the internal consis-
tency of the ensemble description from a variety of points of view [11, 21, 38]. For example,
the existence of a Gaussian contraction often depends on the specific choice of channel in the
conformal block decomposition of the CFT observables; crossing symmetry then requires non-
Gaussian statistics in the dual channel in order to reproduce the result in the channel where
the Gaussian contraction exists. Hence non-Gaussian corrections, which are necessary for an
internally consistent description of the boundary ensemble, are not presently accessible in the
metric formulation of AdS3 gravity.

In the remainder of this section we will study Euclidean wormholes in AdS3 gravity with
more than two asymptotic boundaries using Virasoro TQFT. We will mostly focus on wormholes
with more than two three-punctured sphere boundaries, since these determine the leading
contributions to higher moments of the structure constants in the ensemble description of the
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holographic dual. We will see in some examples that the resulting non-Gaussian statistics
precisely affirm the consistency of the results computed in the Gaussian ensemble.

There may also be non-Gaussian corrections to (3.1) associated to Euclidean wormholes
with two three-punctured sphere boundaries but with higher topology in the bulk. We will
not study such corrections here, but let us briefly mention that we have already encountered
such a correction associated with a higher-topology wormhole. In section 2.5 we studied a
configuration of Wilson lines equivalent to the following two-boundary wormhole with linked
Wilson lines

M =
i

j
j

i
k

k
. (3.3)

The TQFT partition function on this wormhole may be computed as described in section 2.5.
One finds the following for the wormhole partition function

ZVir(M) =
C0(Pi , Pj , Pj)SPj Pk

[Pi]

ρ0(Pk)
, (3.4)

corresponding to the following averaged product of structure constants that would otherwise
vanish (in the case that j ̸= k) in the Gaussian ensemble13

ci j jc
∗
ikk = |ZVir(M)|2 =

�

�

�

�

�

C0(Pi , Pj , Pj)SPj Pk
[Pi]

ρ0(Pk)

�

�

�

�

�

2

. (3.5)

3.1 Cyclic defect wormholes

A simple class of examples that demonstrate the practical utility of the TQFT reformulation
of 3d gravity is provided by multi-boundary wormholes with defects connecting the sphere
boundaries. For concreteness, consider the case where each boundary is a four-punctured
sphere with defects connected in a pairwise cyclic way. See figure 5 for a depiction of such
a wormhole with three boundaries. In [10] it was argued that such on-shell wormholes con-
tribute to the following averaged product of four-point functions

〈O1O2O3O4〉〈O3O4O5O6〉 · · · 〈O2k−1O2kO1O2〉 (3.6)

in the ensemble of CFT data dual to semiclassical 3d gravity.14 The Gaussian ensemble hence
makes a specific prediction for the gravitational partition function of these wormholes [10]:

Zgrav(Mk)
?
=

�

�

�

�

∫ ∞

0

dP ρ0(P)C0(P1, P2, P)C0(P3, P4, P) · · ·C0(P2k−1, P2k, P)

×
P1

P2

P4

P3

P (z1)
P4

P3

P5

P6

P (z2) · · ·
P2k

P2k−1

P1

P2

P (zk)

�

�

�

�

2

. (3.7)

Here we have used the notation Mk to refer to the k-boundary sphere four-point wormhole, the
stick diagrams are shorthand for the conformal blocks as usual, and zi refers to the cross-ratio
of the defect insertions on the ith boundary. The effect of the Gaussian average is to set all
the internal weights equal in this particular conformal block decomposition of the wormhole
partition function.

13Strictly speaking, we get a different bulk manifold when we exchange the two ends of the Wilson line labelled
by k. Exchanging them leads to a braiding phase eπi∆ j . Summing over both possibilities imposes that the spin of i
has to be even.

14Wormholes of this sort also contribute to the Renyi entropies of certain coarse-grained states in 2d CFT [39].
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Figure 5: The three-boundary sphere four-point wormhole M3.

It is not at all clear how to compute the wormhole partition function of the k-boundary
sphere four-point wormhole in the metric formalism of 3d gravity, even in the semiclassi-
cal limit. Here we will describe how this wormhole partition function may be straightfor-
wardly computed in the Virasoro TQFT, reproducing the expectation from the Gaussian en-
semble (3.7).

For concreteness and brevity of the equations we consider here the case k = 3, but empha-
size that the generalization to higher k is completely straightforward. The idea is to view the
wormhole as a compression body as indicated in figure 6. To compute the partition function
on the corresponding compression body we insert a complete set of states in the Hilbert space
of the inner boundaries. This produces a particular state in the Hilbert space of the outer
boundary. Proceeding in this way we have

ZVir(M3) =

∫ ∞

0

dPa dPb ρ0(Pa)ρ0(Pb)C0(P1, P2, Pa)C0(P3, P4, Pa)C0(P3, P4, Pb)

× C0(P5, P6, Pb)

P1

P2

P4

P3

Pa

P4

P3

P5

P6

Pb

P5

P6

P2

P1

PbPa

P4

P3

. (3.8)

6

5

1

2

3

4

Figure 6: The three-boundary sphere four-point wormhole as a compression body.
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We have temporarily restored the sphere boundaries in representing the conformal blocks in
order to emphasize that the last conformal block should be interpreted as a state in the Hilbert
space of the outer sphere boundary with a loop of Wilson lines in the interior, not as a higher-
genus conformal block. In particular we can remove the loop by recalling the TQFT identity [1]

Pa Pb

P4

P3

=
δ(Pa − Pb)

ρ0(Pa)C0(P3, P4, Pa)

Pa
, (3.9)

which leads us to

ZVir(M3) =

∫ ∞

0

dPa ρ0(Pa)C0(P1, P2, Pa)C0(P3, P4, Pa)C0(P5, P6, Pa)

×
P1

P2

P4

P3

Pa
P4

P3

P5

P6

Pa
P5

P6

P2

P1

Pa . (3.10)

The generalization to the case of k four-punctured sphere boundaries follows immediately by
viewing Mk as a compression body with k−1 inner boundaries and repeated application of the
identity (3.9). Upon squaring the TQFT partition function to obtain the 3d gravity partition
function, we hence verify (3.7), the prediction from the averaged product of k sphere four-
point functions in the Gaussian ensemble. Much like the case of the two-boundary Euclidean
wormhole revisited in [1], the correspondence between the averaged CFT quantities and the
gravity partition function on a fixed topology persists beyond the semiclassical limit.

3.2 Four-boundary non-Gaussianity wormhole

Consider a wormhole with four three-punctured spheres as asymptotic boundaries, with de-
fects threading the bulk of the wormhole in the following tetrahedral configuration

M =

3

3

2

2

t

t

ss

4

4

1

1

(3.11)

The gravity path integral on this wormhole should compute the following connected part of
the fourth moment of structure constants in the dual description of 3d gravity in terms of an
ensemble of CFT data

|ZVir(M)|2↔ c12scs34c14t ct32 . (3.12)
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4

1

1 M1 =

3

4
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M2 =

1 4
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t

Figure 7: The Heegaard splitting of the four-boundary wormhole M into two gener-
alized compression bodies M1 and M2, each with the topology of a three-ball with
two three-balls drilled out in its interior and with Wilson lines connecting the two-
sphere boundaries as shown in the figure. The TQFT path integral on each of M1 and
M2 prepares a state in the Hilbert space of the four-punctured sphere.

Computation via Heegaard splitting. It straightforward to apply the Heegaard splitting
technique described in detail in [1] to compute the Virasoro TQFT partition function on the
four-boundary wormhole. For instance, we can cut M along a four-punctured sphere through
the bulk of the wormhole as pictured in figure 7. This cuts the four-boundary wormhole
into two generalized compression bodies M1 and M2. Each compression body has an outer
boundary given by a four-punctured sphere and two three-punctured sphere inner boundaries.
The Virasoro TQFT path integral on each compression body prepares a state in the Hilbert
space of the four-punctured sphere, and the inner product of these states computes the TQFT
partition function on the four-boundary wormhole. Using (2.26) to write the three-punctured
sphere boundaries in terms of trivalent Wilson line junctions, the TQFT partition functions on
the compression bodies are given by

〈ZVir(M1)|= C0(P1, P2, Ps)C0(P3, P4, Ps)

� P1

P2

P4

P3

Ps
�

�

�

�

, (3.13a)

|ZVir(M2)〉= C0(P1, P4, Pt)C0(P2, P3, Pt)

�

�

�

�

P1

P2

P4

P3

Pt

�

. (3.13b)
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Up to the C0 factors, the compression body partition functions are given by individual sphere
four-point conformal blocks in the s- and the t-channel. The inner product of these states is
proportional to the Virasoro fusion kernel essentially by definition:

� P1

P2

P4

P3

Ps
�

�

�

�

P1

P2

P4

P3

Pt

�

=

∫

dP ′s FPt P ′s

�

P1 P2
P4 P3

�� P1

P2

P4

P3

Ps
�

�

�

�

P1

P2

P4

P3

P ′s
�

(3.14)

=
FPt Ps

�

P1 P2
P4 P3

�

ρ0(Ps)C0(P1, P2, Ps)C0(P3, P4, Ps)
(3.15)

=
FPs Pt

�

P1 P4
P2 P3

�

ρ0(Pt)C0(P1, P4, Pt)C0(P2, P3, Pt)
. (3.16)

In the penultimate line we computed the inner product by expanding the t-channel block in a
complete basis of s-channel blocks using the Ponsot-Teschner fusion kernel [15,16], and in the
last line we did the reverse. The equivalence of these two expressions is not a priori obvious
without appealing to consistency of the conformal block inner product, but it is guaranteed
by for example a special case of the pentagon identity, which is one of the Moore-Seiberg con-
sistency conditions satisfied by the fusion kernel. In fact, this combination has a tetrahedral
symmetry inherited from the bulk Wilson line configuration that is obscured by this presenta-
tion. Indeed, it can be rewritten in a manifestly tetrahedrally symmetric form in terms of the
Virasoro 6 j symbol in the Racah-Wigner normalization [17] as follows

� P1

P2

P4

P3

Ps
�

�

�

�

P1

P2

P4

P3

Pt

�

=

�

P1 P2 Ps
P3 P4 Pt

�

p

C0(P1, P2, Ps)C0(P3, P4, Ps)C0(P1, P4, Pt)C0(P2, P3, Pt)
. (3.17)

The upshot is that the Virasoro TQFT partition function on the four-boundary wormhole can
be expressed in terms of the Virasoro 6 j symbol via the following inner product in the Hilbert
space of the four-punctured sphere

ZVir(M) = 〈ZVir(M1) | ZVir(M2)〉 (3.18)

= C0(P1, P2, Ps)C0(P3, P4, Ps)C0(P1, P4, Pt)C0(P2, P3, Pt)

×
� P1

P2

P4

P3

Ps
�

�

�

�

P1

P2

P4

P3

Pt

�

(3.19)

=
Æ

C0(P1, P2, Ps)C0(P3, P4, Ps)C0(P1, P4, Pt)C0(P2, P3, Pt)

�

P1 P2 Ps
P3 P4 Pt

�

. (3.20)
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Consistency with boundary ensemble description. The gravity partition function
Zgrav(M) = |ZVir(M)|2 on the four-boundary wormhole (3.20) makes a concrete prediction
for the connected contribution to the fourth moment of structure constants in the description
of 3d gravity in terms of an ensemble of CFT data:15

c12scs34c14t ct32 ⊃ |ZVir(M)|2 =
r

c2
12s c2

s34 c2
14t c2

t32

�

�

�

�

�

P1 P2 Ps
P3 P4 Pt

��

�

�

�

2

. (3.21)

This represents the leading correction to the Gaussian ensemble elucidated in [10]. We say that
the fourth moment contains this contribution (rather than being literally equal to it) because
there may be corrections to (3.21) associated with wormholes with the same boundaries but
with higher topology in the bulk. It is expected that in the semiclassical limit such contributions
are parametrically suppressed and hence that (3.21) represents the leading contribution to the
fourth moment.

Here we will see that this non-Gaussian correction in fact exactly ensures the internal
consistency of the results predicted by the Gaussian ensemble.

To illustrate the point, consider the two-boundary Euclidean wormhole with the topology
of a (possibly punctured) Riemann surface Σ times an interval. The gravity path integral
on the Euclidean wormhole is given by the square of (3.2), the corresponding observable in
Liouville CFT with the moduli on the two sides paired. This agrees with the averaged product
of CFT observables in the Gaussian ensemble (3.1). However the computation in the Gaussian
ensemble often relies on the choice of a specific channel in the conformal block decomposition;
this is obviously inconsistent with crossing symmetry of the ensemble. Associativity of the
OPE then requires non-Gaussian statistics in order to reproduce this result in other channels.
Relatedly, while the Gaussian ensemble is crossing symmetric on average, higher moments of
the crossing equation do not vanish; this has recently been emphasized in [11].

For concreteness, consider in particular the averaged product of four-point functions of
local operators Oi . In the Gaussian ensemble, we have

〈O1(0)O2(z, z̄)O3(1)O4(∞)〉〈O1(0)O2(z′, z̄′)O3(1)O4(∞)〉∗

=
∑

s,s′
c12sc34sc

∗
12s′ c

∗
34s′

�

�

�

�

P1

P2

P4

P3

Ps (z)
P1

P2

P4

P3

P ′s (z′)

�

�

�

�

2

(3.22)

=

�

�

�

�

�

�

�

∫

dPs ρ0(Ps)C0(P1, P2, Ps)C0(P3, P4, Ps)
P1

P2

P4

P3

Ps (z)
P1

P2

P4

P3

Ps (z′)

�

�

�

�

�

�

�

2

(3.23)

=
�

�ZLiouville(P1, P2, P3, P4|z, z′)
�

�

2
. (3.24)

Here we expanded the four-point functions in the same OPE channel, and performed the Gaus-
sian contractions in the third line using eq. (3.1). If we had instead expanded one four-point
function in the S-channel and the other in the T-channel, we would have gotten zero in the
Gaussian ensemble since

c12scs34c14t ct32

�

�

Gaussian = 0 , (3.25)

for distinct external operators.16 This is obviously inconsistent with basic principles of confor-
mal field theory. The result for the averaged product of four-point functions in terms of the
four-point function in Liouville CFT is equal to the partition function of 3d gravity coupled

15This fourth moment has previously appeared in [11] where it was argued for by requiring that the variance of
the crossing equation vanish, and in [38] where it followed from genus-three modular invariance (using similar
logic as that which shows that the variance should be given by the C0 formula).

16We thank Vladimir Narovlansky for asking a question that raised this point.
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to point particles on the Euclidean wormhole with the topology of a four-punctured sphere
times an interval, so we seek a correction to the Gaussian ensemble that preserves (3.24). If
we supplement the Gaussian ensemble with the fourth moment (3.21) as computed by the
four-boundary wormhole, we instead have

〈O1(0)O2(z, z̄)O3(1)O4(∞)〉〈O1(0)O2(z′, z̄′)O3(1)O4(∞)〉∗

=
∑

s,t

c12scs34c∗41t c
∗
t23

�

�

�

�

P1

P2

P4

P3

Ps (z)

P1

P2

P4

P3

Pt (z′)

�

�

�

�

2

(3.26)

=

�

�

�

�

∫

dPs dPt ρ0(Ps)C0(P1, P2, Ps)C0(P3, P4, Ps)FPs Pt

�

P1 P4
P2 P3

�

×
P1

P2

P4

P3

Ps (z)

P1

P2

P4

P3

Pt (z′)

�

�

�

�

2

(3.27)

=
�

�ZLiouville(P1, P2, P3, P4|z, z′)
�

�

2
, (3.28)

in agreement with the previous computation and with the wormhole partition function.

On braiding and the u-channel. In the discussion so far we have suppressed an important
subtlety. In 2d CFT, the structure constants are not strictly invariant under permutations of
the three operators. For example, swapping a pair of operators leads to a sign that depends
on the sum of the spins of the three operators

cik j = (−1)ℓi+ℓ j+ℓk ci jk . (3.29)

This is inherited from reality properties of the structure constants: they are real if the sum of
spins is even and imaginary if the sum of spins is odd, and the swap complex-conjugates the
structure constants, cik j = c∗i jk. Similarly, in the computation of wormhole partition functions
with bulk Wilson lines via Heegaard splitting, there may be crossings of lines that need to
be undone via braiding operations. These braidings introduce phases that depend on the
conformal weights.

In general, we can read off the ordering of the structure constants from a bulk manifold by
fixing a cyclic ordering and reading the labels around three-punctured boundaries cyclically.
The same applies in CFT computations, where we read off the labels of the structure constants
cyclically around every vertex in the conformal blocks.17

17The overall cyclic direction does not matter since every label appears twice and thus cancels if we reverse the
overall cyclic direction.
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As a simple example of a wormhole computation for which such braidings are essential,
consider the following four-boundary wormhole:

M =

1

2s

s 3

4 4

2 u

u3

1

(3.30)

which is essentially the same as (3.11). The boundaries of this wormhole are three-punctured
spheres corresponding to the structure constants that appear in the s- and u-channel conformal
block decompositions of the sphere four-point function 〈O1O2O3O4〉.

We compute the TQFT partition function as before by splitting along a four-punctured
sphere in the bulk. Undoing the crossing of the Wilson lines and computing the inner product
in the Hilbert space of the splitting surface leads to the following result for the TQFT partition
function on this four-boundary wormhole

ZVir(M) =
Æ

C12sCs34C31uCu42

�

P1 P2 Ps
P4 P3 Pu

�

eπi(P2
1+P2

4−P2
s −P2

u ) . (3.31)

Here we have introduced the shorthand

Ci jk ≡ C0(Pi , Pj , Pk) , (3.32)

We notice the presence of an additional phase compared to (3.20). This result follows from
taking the inner product between an s- and a u-channel Virasoro conformal block, and hence
this phase may be understood in terms of the crossing transformation that relates s- and u-
channel blocks. This crossing transformation is given by

1 4

2 3

s

=

∫ ∞

0

dPu eπi(P2
1+P2

4−P2
s −P2

u ) FPs Pu

�

P1 P3
P2 P4

�

1 4

2 3

u

. (3.33)

The combination that appears on the right-hand side is sometimes referred to as the “R-matrix.”
The semiclassical near-extremal limit of the R-matrix governs the out-of-time-order four-point
function in the Schwarzian theory [19].

Hence for the following fourth moment of CFT structure constants we find

c12scs34c31ucu42 ⊃ |ZVir(M)|2 = (−1)ℓ1+ℓ4+ℓs+ℓu
r

c2
12s c2

s34 c2
13u c2

u24

�

�

�

�

�

P1 P2 Ps
P4 P3 Pu

��

�

�

�

2

. (3.34)

This is exactly consistent with the previous result (3.21) upon relabeling t → u, 4↔ 3 and
making use of the exchange property (3.29). It is also consistent with the averaged product
of sphere four-point functions in the Gaussian ensemble, where we expand one four-point
function in the s-channel and the other in the u-channel.
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Figure 8: A Heegaard splitting of the wormhole with six three-punctured sphere
boundaries. Each constituent compression body is equivalent to the four-boundary
wormhole studied in section 3.2.

3.3 Many-boundary wormholes and higher non-Gaussianities

3.3.1 A simple six-boundary example

Consider the following wormhole with six three-punctured sphere boundaries

M =

a

a

1

1

2

2

5

5

4

4

3

3

bb
6

6
c c

. (3.35)

As indicated by the diagram, it contributes to the following sixth moment of CFT structure
constants

|ZVir(M)|2↔ c12ac2b3c3c4c45ac5c6c6b1 . (3.36)

There are several Heegaard splittings that one could employ to compute the Virasoro TQFT
partition function on this wormhole, but the simplest is indicated in figure 8: we cut the
wormhole through the bulk along a three-punctured sphere. This divides M into two gener-
alized compression bodies M1 and M2, each of which is itself a four-boundary wormhole of
the type described in the previous subsection. The partition function of Virasoro TQFT on the
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generalized compression bodies was computed in (3.20) as

|ZVir(M1)〉=
Æ

C12aC2b3C6b1Ca36

�

P1 P2 Pa
P3 P6 Pb

�

, (3.37a)

|ZVir(M2)〉=
Æ

C3c4C45aC5c6Ca36

�

P3 P4 Pc
P5 P6 Pa

�

. (3.37b)

Then the Virasoro TQFT partition function on the six-boundary wormhole is given by the fol-
lowing inner product between these states in the Hilbert space of the shared three-punctured
sphere boundary

ZVir(M) = 〈ZVir(M1)|ZVir(M2)〉 (3.38)

=
Æ

C12aC2b3C3c4C45aC5c6C6b1

�

P1 P2 Pa
P3 P6 Pb

��

P3 P4 Pc
P5 P6 Pa

�

. (3.39)

Notice that here the only effect of the inner product is to divide by the extra factor of
C0(P3, Pa, P6).

This particular Heegaard splitting of the six-boundary wormhole is far from unique: for
example, we could have cut it through a five-punctured sphere, or along three four-punctured
spheres. In all cases, the corresponding splittings yield the same result (3.39) for the TQFT
partition function.

This wormhole partition function implies that the corresponding sixth moment of CFT
structure constants is given by

c12ac2b3c3c4c45ac5c6c6b1 ⊃
r

c2
12a c2

2b3 c2
3c4 c2

45a c2
5c6 c2

6b1

�

�

�

�

�

P1 P2 Pa
P3 P6 Pb

��

P3 P4 Pc
P5 P6 Pa

��

�

�

�

2

.

(3.40)

Consistency with boundary ensemble description. Much like the fourth moment of the
structure constants inferred from the four-boundary wormhole of section 3.2, the sixth moment
(3.40) is needed for consistency of the description of the boundary theory in terms of an
ensemble of CFT data. There are a variety of ways to see this. Roughly, for each Heegaard
splitting of the wormhole, there is a corresponding product of CFT observables for which
consistency of the ensemble description requires that the appropriate moment of CFT data
is correctly computed by the wormhole.

For concreteness, consider the average of the following product of five-point functions

〈ObO1OaO4Oc〉〈ObO1OaO4Oc〉∗ . (3.41)

This is associated with splitting the wormhole (3.35) along a five-punctured sphere in the
bulk. The average (3.41), which corresponds to the two-boundary sphere five-point function
wormhole, is given by the corresponding five-point function in Liouville CFT as in (3.24). In
the Gaussian ensemble this however requires that we expand the two five-point functions in
aligned channels when taking the ensemble average. Of course we are free to expand the
five-point functions in different channels, in which case we need to invoke the non-Gaussian
statistics. The combination of OPE channels that is associated to the particular Heegaard
splitting is determined by the combination of sphere three-point boundaries that appear in
each compression body of the Heegaard splitting. For example, if we compute the averaged
product of sphere five-point functions by expanding in the following channel where there is
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not a Gaussian contraction

〈ObO1OaO4Oc〉〈ObO1OaO4Oc〉∗

=
∑

O2,3,5,6

c12ac2b3c3c4c∗4a5c∗56cc
∗
61b

�

�

�

�

b

1 a

4

c
3

2 (m1)
b

1

a 4

c
6

5 (m2)

�

�

�

�

2

(3.42)

=

�

�

�

�

∫ ∞

0

dP3 dP6ρ0(P3)ρ0(P6)C0(P1, Pb, P6)C0(P6, Pa, P3)C0(P3, Pc , P4)

× b
6 3

1 a 4

c (m1) b
6 3

1 a 4

c (m2)

�

�

�

�

2

(3.43)

= |ZLiouville(Pb, P1, Pa, P4, Pc|m1, m2)|2 , (3.44)

then making use of the sixth moment (3.40) and the fact that the 6 j symbols implement
crossing transformations on the conformal blocks, we reproduce exactly the result from the
Gaussian contraction, the sphere five-point function in Liouville theory. Here mi collectively
denote the moduli of each five-point function.

We could have considered other Heegaard splittings, corresponding to averaged CFT ob-
servables that receive contributions from this combination of structure constants in a particular
OPE channel. For example, the following averaged product of three four-point functions

〈O6O1O2O3〉〈O1O2O4O5〉〈O6O5O4O3〉 (3.45)

receives contributions from the sixth moment (3.40) in a specific OPE channel that precisely
reproduce the result (3.10) for the averaged product in the Gaussian ensemble.

3.3.2 A more nontrivial six-boundary example

Here we consider another wormhole with six three-punctured sphere boundaries, but with the
defects arranged slightly differently between the boundaries

M =

a

a

1

1

6

6

5

5 4

4

3

3

2

2

c
b

b
c

. (3.46)

This contributes to a different sixth moment of the structure constants

|ZVir(M)|2↔ c1a2c2b3c3c4c4a5c5b6c6c1 . (3.47)
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We could of course compute the TQFT partition function on this wormhole by a straightfor-
ward Heegaard splitting, for example along three four-punctured spheres. In this case it turns
out to be most convenient to replace the three-punctured sphere boundaries with trivalent
junctions as in (2.26) and hence regard the wormhole as a network of Wilson lines embedded
in S3:

ZVir(M) = C12aC23bC34cC45aC56bC61c ZVir















a

a

c
b

b
c

1

6

5 4

3

2














(3.48)

≡ C12aC23bC34cC45aC56bC61c ZVir(M
′) . (3.49)

Here M ′ is the network of Wilson lines depicted on the right-hand side of (3.48) embedded
in S3. Braiding the Wilson lines and applying a fusion transformation, the TQFT partition
function may then be simplified as follows18

ZVir(M
′) = (BPa P5

P4
BPc P1

P6
BP3Pc

P4
)−1 ZVir

















1

6

5 4

3b

a

c

2

















(3.51)

= (BPa P5
P4
BPc P1

P6
BP3Pc

P4
)−1

∫

dPd FP3Pd

�

P2 Pc
Pb P4

�

ZVir

















1

6

5 4

d
b

a

c
2

















. (3.52)

We then recognize the following Wilson line identity (see [1, eq. (3.44)])

2 3

t

1 4

s
=

√

√

√ C23t

C12sC34sC14t

�

P1 P2 Ps
P3 P4 Pt

�

2 3

t

(3.53)

which allows us to recast the TQFT partition function as

ZVir(M
′) = (BPa P5

P4
BPc P1

P6
BP3Pc

P4
)−1

∫

dPd ρ0(Pd)

√

√

√ C2cdCa6d

C2b3C3c4C4a5C5b6

×
�

P2 P3 Pb
P4 Pd Pc

��

P4 P5 Pa
P6 Pd Pb

�

ZVir

















1

6 d
a

c
2

















. (3.54)

18Here

BPj Pk
Pi
= eπi(P2

i −P2
j −P2

k −
Q2
4 ) (3.50)

is the braiding phase.
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Finally, we undo the crossings by braiding the Wilson lines and recognize the remaining con-
figuration as the four-boundary wormhole studied in section 3.2 to arrive at

ZVir(M) =
Æ

C12aC23bC34cC45aC56bC61ce
πi(P2

1+P2
3+P2

5−2P2
2−2P2

4−2P2
6 )

×
∫

dPd ρ0(Pd)e
3πiP2

d

�

P6 P1 Pc
P2 Pd Pa

��

P2 P3 Pb
P4 Pd Pc

��

P4 P5 Pa
P6 Pd Pb

�

. (3.55)

Once the dust has settled, as in previous examples the wormhole partition function is given by
factors of
p

C0 for each sphere three-point boundary together with a suitable combination of
Virasoro 6 j symbols associated with the Wilson line crossings.

This wormhole partition function implies that the corresponding sixth moment for the CFT
structure constants receives the following contribution

c12ac23bc34cc45ac56bc61c ⊃
r

c2
12a c2

23b c2
34c c2

45a c2
56b c2

61c(−1)ℓ1+ℓ3+ℓ5

×
�

�

�

�

∫

dPd ρ0(Pd)e
3πiP2

d

�

P6 P1 Pc
P2 Pd Pa

��

P2 P3 Pb
P4 Pd Pc

��

P4 P5 Pa
P6 Pd Pb

��

�

�

�

2

. (3.56)

As in previous examples, this sixth moment precisely affirms the internal consistency of the
description in terms of an ensemble of CFT data. Indeed, if one expands for example the
product of two sphere five-point functions or three sphere four-point functions in certain OPE
channels where there is not a Gaussian contraction, this leads to a result consistent with the
computation in the Gaussian ensemble. For concreteness, consider the following averaged
product of three four-point functions, all expanded in the u-channel

〈O2OcOaO6〉〈O6OaObO4〉〈O4ObOcO2〉

=
∑

O1,3,5

c1a2c2b3c3c4c4a5c5b6c6c1

�

�

�

� 2 6

c a

1
6 4

a b

5
4 2

b c

3

�

�

�

�

2

(3.57)

=

�

�

�

�

∫

dP1ρ0(P1)dP3ρ0(P3)dP5ρ0(P5)
Æ

C1a2C2b3C3c4C4a5C5b6C6c1 eπi(P2
1+P2

3+P2
5 )

× e−2πi(P2
2+P2

4+P2
6 )

∫

dPd ρ0(Pd)e
3πiP2

d

�

P6 P1 Pc
P2 Pd Pa

��

P2 P3 Pb
P4 Pd Pc

��

P4 P5 Pa
P6 Pd Pb

�

× 2 6

c a

1
6 4

a b

5
4 2

b c

3

�

�

�

�

2

(3.58)

=

�

�

�

�

∫

dPd ρ0(Pd)C2cdC4bdC6ad 2 6

c a

d
6 4

a b

d
4 2

b c

d

�

�

�

�

2

. (3.59)

So we see that applying the statistics (3.56) precisely reproduces the result (3.10) anticipated
from the Gaussian ensemble.

Notice that in this case the corresponding sixth moment receives contributions from con-
figurations in which the Wilson lines have a different pattern of over- and under-crossings in
the bulk, in addition to those with higher topology in the bulk. In principle, we could consider
contributions from the manifolds formed by cutting M along a six-punctured sphere in the
bulk and gluing in another six-punctured sphere with any tangle formed by three strands in
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the bulk. As a simple example, we could have considered the following six-boundary worm-
hole

M =

a

a

1

1

6

6

5

5 4

4

3

3

2

2

c
b

b
c

. (3.60)

The TQFT partition function on this wormhole differs from (3.55) in a subtle way

ZVir(M) =
Æ

C1a2C2b3C3c4C4a5C5b6C6c1eπi(−P2
1+P2

3+P2
5−2P2

4 )

×
∫

dPd ρ0(Pd)e
πiP2

d

�

P6 P1 Pc
P2 Pd Pa

��

P2 P3 Pb
P4 Pd Pc

��

P4 P5 Pa
P6 Pd Pb

�

. (3.61)

The only difference from (3.55) are the phases, particularly that which appears in the integral
over the intermediate Liouville momentum Pd . Although both contribute to the corresponding
sixth moment of the structure constants, between (3.55) and (3.61) is not a priori obvious
which Wilson line configuration dominates in the semiclassical limit.

3.3.3 Diagrammatic rules for multi-boundary wormholes and CFT statistics

Although the intermediate details of the computations were nontrivial, there is an underly-
ing simplicity to the previously discussed results for the Virasoro TQFT partition functions
of wormholes with three-punctured sphere boundaries and trivial topology in the bulk, and
hence for the leading contributions to the non-Gaussian statistics of CFT data in the boundary
ensemble description of 3d gravity. In all cases, the wormhole partition function involves a
factor of
p

C0 for each three-punctured sphere boundary, together with a suitable combination
of Virasoro 6 j symbols. Here we describe diagrammatic rules that straightforwardly reproduce
these results and that enable the computation of more nontrivial wormhole partition functions.
These rules will turn out to be a slight generalization of the disk Feynman rules in JT gravity
coupled to matter (see e.g. [21]).19

It is simplest to describe the situation in which the sphere boundaries are connected in a
cyclic way, as in (3.30) and (3.46); the CFT statistics in other configurations may be obtained
from the results in these cases by application of the swapping rule (3.29).

The idea is the following. Starting from a wormhole configuration with the boundaries
connected in a cyclic way, replacing the punctured sphere boundaries with a trivalent vertex
as follows

1

23
−→

3

1

2
(3.62)

19SC is grateful to Baur Mukhametzhanov for discussions on this. Baur also independently observed that higher
moments of CFT data required for internal consistency of the ensemble description of 3d gravity were reproduced
by generalizations of the disk Feynman diagrams in JT gravity coupled to matter [40].
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produces a disk diagram with lines that may cross in the interior of the disk, such as that drawn
in (3.48). It is important to keep track of the way that the lines over- and under-cross in the
projection to a two-dimensional disk diagram. The TQFT partition function associated with
this disk diagram is then computed according to the following simple Feynman rules:

• Each trivalent vertex contributes a factor of
p

C0:

3

1

2
=
Æ

C0(P1, P2, P3) . (3.63)

• Each closed region in the interior of the disk is associated with a Liouville momentum P
that is integrated with the measure ρ0(P)dP.

• Each crossing of a pair of lines in the interior of the disk contributes a Virasoro 6 j symbol

1 2

34

t

s

=

�

P1 P2 Ps
P3 P4 Pt

�

eπi(P2
1+P2

3−P2
2−P2

4 ) . (3.64)

Here the labels 1, 2, 3 and 4 are associated to the four faces delineated by the Wilson
lines s and t.

The Virasoro 6 j symbol plays the role of a quartic vertex in these diagrammatic rules, dressed
with a phase that keeps track of the way that the Wilson lines over- and under-cross. This
reproduces the partition function on the four-boundary wormhole (3.31) essentially by design.

As a simple example, consider the six-boundary wormhole studied in section 3.3.2. The
two-dimensional projection of this configuration involves three crossings of Wilson lines and
one closed region in the interior of the disk, so the TQFT partition function involves a single
integral of three 6 j symbols. Indeed, a straightforward application of these rules immediately
reproduces the TQFT partition function (3.55).

The Virasoro 6 j symbol obeys many identities that facilitate the consistency of this descrip-
tion. For instance, it is often the case that there is an ambiguity of how to arrange the Wilson
line crossings in the interior of the disk. The TQFT partition function as computed from these
rules should be independent of such choices. For example, we should have

a

b

2

1 3

4

=
a

b

2

1 3

4

, (3.65)

which is guaranteed by idempotency of the Virasoro 6 j symbol
∫

dPs ρ0(Ps)

�

P4 P1 Pb
P2 Ps Pa

��

P2 P3 Pa
P4 Ps Pb

�

=
δ(P1 − P3)
ρ0(P1)

. (3.66)

There is also a Yang-Baxter equation, which facilitates moving a line over a crossing as follows,

a b

1

2

3

4
5

6
c
=

1
2

3

4

5

6

a b

c
. (3.67)
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In equations, this translates to

∫

dPd ρ0(Pd)

�

P1 P2 Pa
P3 Pd Pb

��

P5 P6 Pb
P1 Pd Pc

��

P3 P4 Pc
P5 Pd Pa

�

eπi(P2
d+P2

2+P2
4+P2

6 )

=

∫

dPe ρ0(Pe)

�

P6 P1 Pc
P2 Pe Pa

��

P2 P3 Pb
P4 Pe Pc

��

P4 P5 Pa
P6 Pe Pb

�

eπi(P2
e +P2

1+P2
3+P2

5 ) . (3.68)

This identity follows from the consistency of braiding on the sphere. Indeed, the R-matrix also
appears as the braiding matrix of conformal blocks as in eq. (3.33). The Yang-Baxter equation
then corresponds to the fundamental relation in the braid group as follows:

1
2 3

4

abc

=

1
2 3

4

abc

(3.69)

Using (3.33) to unbraid the left- and right-hand side and comparing the result leads to the
Yang-Baxter equation (3.68).

These diagrammatic rules for wormhole partition functions are structurally identical to the
disk Feynman rules for JT gravity coupled to matter, as described for example in [21]. The
only differences are that here the trivalent vertex is given by

p

C0, the quartic vertex is given
by the Virasoro 6 j symbol rather than the SL(2,R) 6 j symbol, and one must keep track of the
over- and under-crossings of the Wilson lines in the bulk, leading to extra phases in the quartic
vertex. Indeed, these rules precisely reduce to the JT gravity + matter disk Feynman rules in
the semiclassical near-extremal limit of [5,41]. In this limit one takes

c = 1+ 6(b+ b−1)2 , Pext = bsext , Pint =
i
2
(b+ b−1 − 2bhint) , b→ 0 , (3.70)

fixing sext and hint in the semiclassical limit. Here Pext are the Liouville momenta of the Wilson
lines forming the perimeter of the disk, Pint are the Liouville momenta of those in the interior of
the disk, and this limit corresponds to sending the external Wilson lines very near extremality
while assigning the internal Wilson lines a fixed conformal weight hint. With all external Wilson
lines near extremality, the extra phase in the quartic vertex (3.64) cancels and we no longer
need to keep track of the over- and under-crossing of the Wilson lines in the semiclassical limit.

It is likely that these diagrammatic rules may be derived directly from the tensor model
for AdS3 gravity recently introduced in [11], with tensor model diagrams corresponding to
specific wormhole topologies. However we will not pursue this any further here.

3.4 Handle wormholes

In [10], the on-shell action of a class of wormholes contributing to certain single-boundary
observables was constructed. These wormholes admitted an elegant interpretation in terms
of the Coleman-Giddings-Strominger mechanism [42–44], whereby the existence of Euclidean
wormholes induce random bulk couplings in the low-energy effective theory. Here we demon-
strate that the gravity partition function on these single-boundary “handle wormholes” is
straightforward to compute using Virasoro TQFT.

29

https://scipost.org
https://scipost.org/SciPostPhys.17.5.134


SciPost Phys. 17, 134 (2024)

For concreteness, consider the sphere four-point function of pairwise identical operators
〈O1O2O2O1〉. Suppose there is a third species of defect, dual to the operator O3. Naively,
the trivalent coupling λ123 in the bulk low-energy effective field theory vanishes since in the
Gaussian ensemble the averaged structure constant vanishes c123 = 0. However, there is a two-

boundary wormhole that computes the variance c2
123 ̸= 0, so the conclusion that the defects

are entirely non-interacting in the bulk cannot quite be correct. In particular, we expect a
topology that corresponds to the exchange of O3 in the O1 ×O2 OPE and hence contributes
to the bulk-dual of the four-point function 〈O1O2O2O1〉.

Consider the following topology discussed in [10]

M =

1

2

1

2

3
. (3.71)

It is constructed by starting with a compression body whose outer boundary is a four-punctured
sphere and two three-punctured sphere inner boundaries, and then identifying the two inner
boundaries as shown in (3.71). The Wilson lines corresponding to O1 and O2 traverse the
resulting wormhole and that corresponding to O3 forms a closed loop in it. The TQFT partition
function on the compression body (without the identification among the inner boundaries) is
simply proportional to the corresponding sphere four-point conformal block

ZVir







1

2

1

2

3






= C0(P1, P2, P3)

2
1

2

1

2

3 . (3.72)

To implement the identification of the inner boundaries, we first view the partition function
on the compression body as a state in the tensor product Hilbert space associated with the
inner and outer boundaries H0,4 ⊗H0,3 ⊗H0,3. Taking the inner product between the states
in the three-punctured sphere Hilbert spaces implements the identification between the inner
boundaries and leaves us with the following state in H0,4:

ZVir(M) = C0(P1, P2, P3)
1

2

1

2

3 . (3.73)

Squaring the TQFT partition function leads to the expected contribution to the gravity path
integral corresponding to the exchange of O3 in the O1×O2 OPE, with squared OPE coefficient
given by the corresponding variance in the Gaussian ensemble

Zgrav(M) = |C0(P1, P2, P3)|
2

�

�

�

�

1

2

1

2

3
�

�

�

�

2

. (3.74)

This is precisely the result that was computed semiclassically in [10].
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3.5 Twisted I-bundles

Let us discuss another interesting example which has appeared before in the literature on
AdS3 gravity known as a twisted I -bundle. It was studied in [45] as a simple example of a
non-handlebody saddle-point contribution to the 3d gravity path integral with a single higher-
genus boundary. The name stems from the fact that these three-manifolds are constructed as
a non-trivial I -bundle over a Riemann surface, where I is an interval. Consider a hyperbolic
Riemann surface Σ together with an orientation-reversing (i.e. anti-holomorphic) fixed-point
free involution Φ : Σ → Σ. We can then consider a quotient of the Euclidean wormhole
Σ× [0,1] as follows:

MΦ = (Σ× [0, 1])/{(z, x)∼ (Φ(z), 1− x)} . (3.75)

This identification is again orientation-preserving and thus we get an orientable hyperbolic
manifold with a single boundary Σ, where the hyperbolic structure is inherited from the Eu-
clidean wormhole.
Φ induces an involution on the boundary Teichmüller space which we also call Φ and hence

the boundary moduli are constrained to lie on the fixed point set T Φ. By the uniformization
theorems of three-dimensional hyperbolic manifolds that we reviewed in the Appendix of [1],
we are however guaranteed that the manifold with the same topology can also be defined
away from the real locus in Teichmüller space. The construction then proceeds by taking a
quotient of a quasi-Fuchsian wormhole, where the moduli of the left boundary are the image
under Φ of the moduli of the right boundary.

From the TQFT point of view, it is very simple to determine the Virasoro TQFT partition
function on these manifolds. Indeed, we could squash the manifold to the surface Σ×{12} and
the quotient by Φ simply produces eΣ× {12}. Here,

eΣ= Σ/{z ∼ Φ(z)} , (3.76)

is the non-orientable surface obtained from quotienting Σ. Given that the Virasoro TQFT
partition function on the Euclidean wormhole is simply the Liouville partition function, we
see that Φ acts precisely by an orientifold projection. In other words, the partition function on
the twisted I -bundle is simply the Liouville partition function on the non-orientable surface eΣ.

To see that this makes sense, recall that the conformal block expansion on a non-orientable
surface involves a single conformal block on the doubled surface Σwhich hence defines a state
in the boundary Hilbert space of the twisted I -bundle. Let us make this more concrete by recall-
ing the precise construction of Liouville theory on a non-orientable surface. We can construct
a non-orientable surface by including a number of cross-caps on an orientable surface.20 E.g.
on a torus with one puncture and a cross-cap, we have

= . (3.77)

The orientifold acting reflects the right hand side of the picture to the left side and simultane-
ously rotates by 180 degrees around the dashed horizontal line. This map has no fixed point
and the quotient indeed leads to the crosscap state. On the level of the conformal blocks, this
means that the conformal block of the Liouville partition function on this surface takes the
form

20Since two crosscaps are equivalent to a handle in the presence of another crosscap, one can restrict to one or
two crosscaps.
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ZL

� P0
�

=

∫ ∞

0

dP1 dP2 dP3 ρ0(P1)ρ0(P2)Γ (P3)C0(P0, P1, P2)

× C0(P1, P2, P3)
P0 P0

P1

P2

P2

P1

P3 (3.78)

where the picture represents the ordinary conformal block. The only new ingredient is the nor-
malization of the crosscap state given by Γ (P3). It is fully determined by requiring consistency
with the bootstrap. It is in general given by [46]

Γ (P) =
P1,P
p

S1,P
×
Æ

ρ0(P) = P1,P . (3.79)

Here, the first factor is the general result when the two-point function of the theory is canon-
ically normalized. We then multiply by

p

ρ0(P) to account for our normalization of the two-
point function. The P-matrix describes the modular transformation of the Möbius strip char-
acters:

P= T
1
2ST2ST

1
2 . (3.80)

It is simple to work this out explicitly:

PP1,P2
= 8

∫

dP eπi(P2
1+P2

2+4P2− 1
4 ) cos(4πP1P) cos(4πP2P) = 2cos(2πP1P2) . (3.81)

Thus we have

Γ (P) = P1,P = PP1=
i(b2+1)

2b ,P
+ P

P1=
i(b2−1)

2b ,P
= 4 cosh(πbP) cosh(πb−1P) . (3.82)

The + sign comes from a careful treatment of the factor T
1
2 in the definition of the P-matrix;

more physically, it comes because the orientifold projection acts by a factor (−1)N on a level N
descendant. This is the same result as obtained in [47,48] after translating to our conventions.
This fully specifies the Liouville partition function on any non-orientable surface and hence
directly gives the value of ZVir on any twisted I -bundle.

Finally, the gravity partition function is given by applying eq. (1.1),

Zgrav(MΦ) =
∑

γ∈Map(Σ)/Map(eΣ)

|ZL(eΣ
γ)|2 , (3.83)

where we used that the bulk mapping class group is the mapping class group of the non-
orientable surface Σ̃ under which the Liouville partition function is invariant by crossing sym-
metry.

4 The figure eight knot complement

In this section, we look at one particular hyperbolic 3-manifold in detail and illustrate some
features of the theory through this example. The manifold in question is the figure eight knot
complement, i.e. S3 with a Wilson line inside forming a figure eight knot. This manifold is
known to admit a hyperbolic metric. The figure eight knot is the hyperbolic knot with the
smallest possible volume and the only knot with the crossing number 4, as demonstrated
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Figure 9: A visualization of the figure eight knot.

1

1

Figure 10: Heegaard splitting of the figure eight knot complement.

in Figure 9. Thus it is usually denoted as 41. There are two approaches to calculate the
Virasoro TQFT partition function of the figure eight knot complement. One way to compute
the partition function is via the Heegaard splitting procedure. The other way is to consider the
surface bundle construction of the figure eight knot, and to use the mapping torus technique
introduced in [1]. These two approaches will lead to different integral expressions as the
final results. We check that these two expressions agree and both have the same semiclassical
expansions as expected.

4.1 Direct computation

Let us first compute the partition function by successively undoing the over- and under-
crossings in a particular projection of the knot.

We start by computing the partition function via surgery. We embed the above knot config-
uration into a three-sphere to create the figure eight knot complement. In the TQFT setup, we
consider the knot as a tangled Wilson loop with associated conformal weight∆0 =

Q2

4 , i.e. the
cusp, although we will keep the label of the Wilson loop generic for most of the discussion. If
we slice the above figure 9 into halves along the equatorial S2, we obtain two manifolds M1, M2
with boundaries as four-punctured sphere. The path integral over each half prepares a state
in the Hilbert space HΣ0,4

, and the partition function is the inner product between these two
sphere 4-point conformal blocks. Here the Wilson lines inside each component have nontrivial
braidings. Before evaluating the inner product, we want to untangle the Wilson lines. For this
purpose, we need to apply the crossing and braiding operations on the boundary surface Σ0,4.

To make the crossing and braiding explicit, we firstly specify the intermediate channels in
the figure eight knot. In the diagram, we have identity operators propagate in the intermediate
channels corresponding to the contractible cycles in the bulk. We can use the fusion kernel F
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to transform the diagram 10 into the other channel

ZVir















1

1

P0















=

∫

dPs dPt F1,Ps

�

P0 P0P0 P0
�

F1,Pt

�

P0 P0P0 P0
�

× ZVir

















Pt

Ps

P0

















, (4.1)

where P0 labels the conformal weight of the Wilson loop, i.e. P0 = 0 for ∆ = Q2/4. After
transforming the figure eight knot diagram into the other channel, we can untangle the knot
at each trivalent node via the braiding move B as follows

ZVir(41) =

∫

dPs dPt F1,Ps

�

P0 P0P0 P0
�

F1,Pt

�

P0 P0P0 P0
�

(BP0,P0
Ps
)2

× (BP0,P0
Pt
)−2ZVir













Pt

P0P0 Ps













. (4.2)

The fusion kernel F corresponding to the exchange of the identity operator can be written in
terms of ρ0 and C0 as follows

F1,P

�

P0 P0
P0 P0

�

= ρ0(P)C0(P, P0, P0) . (4.3)

Meanwhile, we recognize the remaining contraction as the four-boundary wormhole discussed
in Section 3.2 for which we can use the result (3.20), normalized by inverse structure constants
to account for the normalization of the junctures.

In the end, we obtain an integral expression of the figure eight knot partition function

ZVir(41) =

∫

dPs dPt ρ0(Ps)ρ0(Pt) (B
P0,P0
Ps
)2(BP0,P0

Pt
)−2

�

P0 P0 Ps
P0 P0 Pt

�

. (4.4)

There are two momentum integrals in the above formula (4.4), and we can reduce the
number of integrals by one by using the relation (2.33) between the fusion kernel F and the
modular S-matrix S. We hence get

ZVir(41) =

∫ ∞

0

dP
ρ0(P)
ρ0(P0)

e
πiQ2

4 −3πiP2
SP0,P0

[P] (4.5)

=

∫ ∞

0

dP
ρ0(P)e

3πiQ2

8 −
5πiP2

2

Sb(
Q
2 + iP)

∫ ∞

−∞
dx e−4πi x P0 Sb(

Q
4 +

iP
2 ± iP0 ± i x) , (4.6)

where we inserted the explicit expression for the modular crossing kernel in the second line
[18].
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Of course, this expression is dependent on the framing that we implicitly chose in this
computation. For the figure eight knot complement, a nice way to fix the framing anomaly is by
requiring that the partition function should be real. Indeed, complex conjugation corresponds
to orientation reversal, but since the figure eight knot is invariant under orientation reversal
(this property is called amphichirality), we can choose the partition function to be real.

One can easily check, for example numerically, that this is the case if we multiply the above
expression with e4πiP2

0 = e4πi(∆0−
c

24 ), which is part of the ambiguity from framing. We hence
have

ZVir(41) =

∫ ∞

0

dP
ρ0(P)e

3πiQ2

8 +4πiP2
0−

5πiP2
2

Sb(
Q
2 + iP)

∫ ∞

−∞
dx e−4πi x P0 Sb(

Q
4 +

iP
2 ± iP0 ± i x) , (4.7)

which is the formula we will use from now on.

Choice of contour. There is one additional subtlety with this formula. As it stands, the
integral over P is actually not convergent. Indeed, using the asymptotics of the double sine
function, see e.g. [26, eq. (B.53)] and using that the integral over x is dominated for small x ,
we see that
∫ ∞

−∞
dx e−4πi x P0 Sb(

Q
4 +

iP
2 ± iP0 ± i x)∼

1
p

2
e
πiP2

2 −
πPQ

2 +
πiQ2

24 −
πi
12 . (4.8)

Combining this with the asymptotics of the rest of the integrand, we see that the integrand
behaves for large Re(P) as

integrand(P)∼ e
3πQP

2 −
5πiP2

2 ×O(order 1 in P) . (4.9)

Thus the integral in (4.7) doesn’t converge for P on the real axis. However, we see that we
could have improved convergence by taking P to run along a contour starting at P = 0 and
asymptoting for large P the line R− ia, where the shift a has to be at least a > 3Q

10 to ensure
convergence. Shifting the contour in this way doesn’t cross any poles and is hence a generally
harmless operation. Thus it is understood that the integral over P in (4.7) actually follows this
modified contour.

4.2 Comparison to Teichmüller TQFT

The figure eight knot partition function can also be obtained in Teichmüller TQFT developed
in [49–52]. Translating to our conventions, the expression for the Teichmüller TQFT partition
function is21

ZTeich(41) =
p

2

∫

R−i0+
dx Sb(i x ± 2iP0) . (4.10)

Here the integral runs slightly below the real axis to avoid the poles at x = ±2P0. This formula
can be obtained by realizing the figure eight knot complement as a gluing of two tetrahedra.
Each tetrahedron gives rise to one double sine function and the gluing to the integral (modulo
some constraints).

21Teichmüller TQFT depends on a parameter ħh, which, following the conventions of [50], we identify as
ħh = −iπb2. This expression does not literally match the one given in [49–52]. We are unsure whether this is
a typo in the previous literature. In any case, the semiclassical expansion that we discuss below does match previ-
ous expressions, which gives us a lot of confidence in the correctness of (4.10). We thank Boris Post and Davide
Saccardo for discussions about this.
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Figure 11: Numerical comparison of the Virasoro TQFT and the Teichmüller TQFT
partition function of the figure eight knot complement. The plotted data points are
for the Teichmüller expression (4.10), but are indistinguishable from the Virasoro
data points.

As we already conjectured in our previous paper [1], we expect that Virasoro TQFT is
equivalent to Teichmüller TQFT and thus the two expressions should match,

ZVir(41)
!
= ZTeich(41) . (4.11)

This equality turns out to be quite hard to prove analytically. However, we checked numerically
for various values of b and P0 that the two expressions agree.

The numerical evaluation is in principle straightforward. We restricted our attention to
rational values of b2, since in this case, there is a simple way to express the double sine function
through the Barnes G-function for which we can use efficient implementations, for example in
Mathematica,

Sb(z) = (2π)
p

mnz−m+n
2

m−1
∏

k=0

n−1
∏

ℓ=0

G
� k+1

m + ℓ+1
n −

zp
mn

�

G
� k

m +
ℓ
n +

zp
mn

� . (4.12)

It is then simple to compute the required integrals in (4.7) over a converging contour and
compare with the simpler expression (4.10). We computed the partition functions for b = 1,
b =
p

2 and b =
p

3 for P0 = 0,0.02, . . . , 0.2. To the precision we have computed, all values
agree to seven decimal places, thus showing the equality (4.11) beyond reasonable doubt. The
data points are plotted in Figure 11.

From this discussion, it may seem that the Teichmüller TQFT always produces simpler
expressions than Virasoro TQFT, but this is not the case. The expressions in Teichmüller TQFT
become more complicated when the 3-manifold in question requires more tetrahedra to form
a triangulation, while this is not necessarily so in Virasoro TQFT. It is in general quite hard to
recognize when two integral representations of the partition function agree since there are an
enormous number of non-trivial integral identities relating them.

4.3 Computation via the Seifert surface

Let us explain a completely different way to compute the partition function that will lead to
an inequivalent integral for the partition function.
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Figure 12: The Seifert surface of the figure eight knot. One can easily verify that the
boundary of the Seifert surface traces out a figure eight knot.

The figure eight knot admits a genus 1 Seifert surface. This means that we can realize the
knot as the boundary of a one-holed torus embedded in S3, so that the boundary of the one-
holed torus coincides with knot. This is depicted in Figure 12. However, even more is true.
One can slightly deform the Seifert surface and obtain a foliation of the knot complement in
terms of one-holed tori. The figure eight knot complement is in fact a surface bundle over a
circle, i.e. it is of the form

[0, 1]×Σ1,1/∼ , (4.13)

where Σ1,1 is the one-holed torus and we identify

(0, z)∼ (1,φ(z)) , (4.14)

with φ = ST3 being the corresponding mapping class group element in SL(2,Z) generated by
S and T .

This might let one suspect that we can compute the partition function of the figure eight
knot complement as

ZVir(41)
?
= trH1,1

(S[P0]T3) , (4.15)

but this is not quite correct yet. Indeed, taking the trace over the Hilbert space H1,1 of con-
formal blocks on the once-punctured torus would lead to the partition function of the three-
dimensional manifold where the Wilson line runs along the thermal circle S1. This is not what
we want, since the Wilson line bounds the Seifert surface, which forms the meridian of the
boundary torus of the manifold. This means that the correct expression is obtained by applying
the S-modular transformation in the external parameter P0. So we conclude that we should
have

ZVir(41) =

∫ ∞

0

dP ′0 SP0,P ′0
[1] trH1,1

(S[P ′0]T
3) . (4.16)

We can easily plug in the explicit expressions for the modular crossing kernel and get an alter-
native expression for the partition function of the figure eight knot complement. This expres-
sion is even more unwieldy then the previous ones, since it involves three integrals, one from
the definition of S, one from the trace, and one from the integral over P ′0. This pushes our
numerical capabilities a bit too far. Instead, we will check below that the first two terms in the
semiclassical expansion agree with the semiclassical expansion of the previous expression.22

We note that this expression makes reality of the partition function manifest, while it was
obscured in the expression (4.7) that we discussed above. Indeed, one of the Moore-Seiberg
relations states that TSTST= S as operators (see [1, eq. (A.5b)]) and thus

tr(ST3)∗ = tr(T−1S−1T−2) = tr(STS−1T−1) = tr(ST2STS−1) = tr(ST3) , (4.17)

and so after Fourier transformation we still get a real function.
22We also checked that the corresponding expressions for the figure eight knot partition function in SU(2)k

Chern-Simons theory agree where all the integrals are just finite sums.
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4.4 Semiclassical expansion

We now write down the semiclassical expansion of the Virasoro TQFT partition function in the
form (4.10) and check the volume conjecture explicitly. This was already done before in the
context of Teichmüller TQFT [49,50] and hence we shall be rather brief.

The key identity is the semiclassical expansion of the double sine function,

log Sb(x0 + x) =
∞
∑

n=0

(2πi b2)n−1

2n!

�

Li2−n

�

e−2πi bx0
�

− (−1)nLi2−n

�

e2πi bx0
�

�

Bn

�

1− x
b

�

. (4.18)

In this identity we think of x0 as being of order O( 1
b ), while x is of order O(1). This identity is

standard for the quantum dilogarithm to which the double sine function is closely related, see
e.g. [52, Proposition 6]. For completeness, we have included a short derivation in appendix A.

We now apply this expansion as follows. In the semiclassical limit, the argument of the
double sine function in eq. (4.10) becomes large and we write P0 =

η0
b . We can then evaluate

the integral via saddle point approximation. We write x to leading order as x0
b . Then the

saddle-point equation is

0= −
1

2π
∂x0

∑

±

�

Li2(e
2π(x0±2η0))− Li2(e

−2π(x0±2η0))
�

(4.19)

= log
∏

±,±

�

1− e2π(±x0±2η0)
�

. (4.20)

The solution to this saddlepoint equation takes the form

x0 =
1

2π
log
�

cosh(4πη0)±1
1
2 ±2

r

�

cosh(4πη0)±1
1
2

�2 − 1
�

+ ni , n ∈ Z . (4.21)

The steepest descent contour runs through the saddle point at

x0 =
1

2π
log
�

cosh(4πη0)−
1
2 −
r

�

cosh(4πη0)−
1
2

�2 − 1
�

, (4.22)

and hence only that one is relevant for our analysis. For this to be valid, we should assume
that

|η0|< −
1

2π
log
�

p
5− 1
2

�

, (4.23)

since otherwise x0 becomes real and the saddle-point evaluation is different. We obtain the
semiclassical expansion

ZVir(41) =
p

2 e−
1

2πb2 vol(41)

∆
1
4

exp
�

∞
∑

n=1

Sn b2n
�

, (4.24)

where
∆= −X 2 + 2X + 1+ 2X−1 − X−2 , X = e4πη0 , (4.25)

and

vol(41,η0) = −
i
2

�

Li2
� X−1+X−1+i

p
∆

2X

�

+ Li2
� X−1+X−1+i

p
∆

2 X
�

− Li2
� X−1+X−1−i

p
∆

2X

�

− Li2
� X−1+X−1−i

p
∆

2 X
�

�

. (4.26)
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The first few orders for the higher loop corrections are given by

S1 = −
π

12∆
3
2

(X 3 − X 2 − 2X 2 + 15− 2X−1 − X−2 + X−3) , (4.27a)

S2 =
2π2

∆3
(X 3 − X 2 − 2X + 5− 2X−1 − X−2 + X−3) , (4.27b)

S3 =
π3

90∆
9
2

(X 8 − 4X 7 − 128X 6 + 36X 5 + 1074X 4 − 5630X 3 + 5782X 2

+ 7484X 1 − 18311+ 7484X−1 + 5782X−2 − 5630X−3 + 1074X−4 + 36X−5

− 128X−6 − 4X−7 + X−8) . (4.27c)

Not surprisingly, this reproduces the semiclassical expansion given in [49–51]. Also noticed
there, the one-loop determinant equals the Reidemeister torsion of the figure eight knot, which
can also be derived from computing the functional analytic one-loop determinants appearing
in 3d gravity. Thus this shows the validity of the volume conjecture (2.1) for the figure eight
knot.

Expression from Seifert surface. We now reproduce the semiclassical expansion from the
expression that we got from the computation via the Seifert surface as described in section 4.3.
This gives strong evidence that the expression (4.16) is in fact equal to the simpler expression
given by eq. (4.10).

By using the explicit formula of the Virasoro crossing kernel shown in [1], we rewrite the
integral formula (4.16) in terms of double-sine functions

ZVir(41) = 2
p

2

∫ ∞

0

dP ′0 cos4πP0P ′0

∫ ∞

0

dP ρ0(P)

×
∫ ∞

−∞
dξ

e
πi∆′0

2 −6πi(P2− 1
24 )−4πiξP

Sb(
Q
2 + iP ′0)

Sb(
Q
4 +

iP ′0
2 ± iP ± iξ) . (4.28)

For simplicity, in the following computation, we consider P0 = 0 which sets the conformal
weight of the knot to be ∆ = Q2

4 . As we will see later, the saddle-point equation in the semi-
classical approximation will be simplified in this case. In general, we can also compute the
partition function for the knot with a generic conformal weight, while the complexity of solving
the saddle-point equations increases. Once we consider the semiclassical limit of this expres-
sion, we similarly rescale P ′0 =

η0
b , P = x

b and ξ= η
b . Then we apply the expansion formula of

the double sine function to write the integrand into a expansion in 1/b2.

ZVir(41) =

∫

dη0 dx dη
b3

e
∑∞

n=0 S(n)b2(n−1)
. (4.29)

In b→ 0 limit, we can approximate this integral by saddle-point. The leading order contribu-
tion is proportional to 1/b2 with the coefficient

S(0) =
πi
8
+ 2πx +

πiη2
0

2
− 6πi x2 − 4πiηx −

i
4π

�

Li2(e
−2πη0+iπ)− Li2(e

2πη0−iπ)
�

+
i

4π

∑

±,±

�

Li2(e
−2π( η0

2 ±x±η)+πi
2 )− Li2(e

2π( η0
2 ±x±η)−πi

2 )
�

. (4.30)

This leads to three saddle-point equations.
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Since S[P ′0] only depends on the conformal weight∆′0 = P
′2
0 +

Q2

4 , the function tr(S[P ′0]T
3)

is even in P ′0. This observation implies that η0 = 0 will be a saddle-point and we can reduce
one saddle-point equation with respect to η0. When η0 is set to be 0, we have the saddle-point
equations of η and x respectively as follow

0=− 4πi x +
i
2

log

�

�

cosh (2πx) + i sinh (2πη)
cosh (2πx)− i sinh (2πη)

�2�

, (4.31a)

0=− 12πi x + 2π− 4πiη+
i
2

log

�

�

cosh (2πη) + i sinh (2πx)
cosh (2πη)− i sinh (2πx)

�2�

. (4.31b)

The first equation can be solved by taking 2πiη= arcsin (sinh (2πx)). By plugging this relation
between η and x into the second equation, we solve for x and obtain the following saddle-
point of S(0)

x =
1

4π
log

�

−1− 3
p

3i −
p

−42+ 6
p

3i
4

�

. (4.32)

We also explicitly check that ∂ S(0)
∂ η0

is vanishing when η0 = 0 and x , η take the given saddle-
point values. Therefore, η0 = 0 is indeed the saddle-point along η0 direction as we justified
before. By evaluating the S(0) at the saddle point, we recover the hyperbolic volume of the
figure eight knot as expected

S(0) = −
vol(41)

2π
. (4.33)

In order to compare the semiclassical result with the refined volume conjecture (2.1), we
should also study the higher-loop corrections. Using the expansion of double-sine functions
in (4.18), we can compute the partition function to all orders perturbatively in b2. Here we
focus on the order one factor in the expansion

Z (1) =
1
2

√

√

−
(2π)3

det(Hess S(0))
eS(1) , (4.34)

since this factor is closely related to the one-loop determinant in the 3d gravity calculation.
The prefactor comes from the Gaussian integral around the saddle point. The additional factor
of 1

2 appears because the integral is restricted to P ′0 > 0, while the minus sign inside the square

root originates from the fact that the Gaussian integral has the form e
1
b2 S0 . The three factors

of b get cancelled against the three b’s from the Jacobian in (4.29). We collect all order-one
terms in the expansion

eS(1) =
4i sinh(2πx)

sinh(π( i
4 −

η0
2 ± x ±η))

1
4

, (4.35)

which upon inserting the saddlepoint value simplifies to

eS(1) = 4
p

2i sinh(2πx) . (4.36)

We then take the Gaussian integral contribution to (4.34) into account, we obtain the order-
one correction to the partition function

Z (1) =
2
p

2i sinh(2πx)
q

7i + 5 cosh(2πx)
p

6− 2 cosh(4πx)− 5i cosh(4πx)
=
p

2

3
1
4

. (4.37)

This result matches with the order-one term in the expression (4.24) with the Reidemeister
torsion

p
∆=
p

3 at P0 = 0.
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Note that in the refined volume conjecture (2.1), we write the semiclassical expansion of
the partition function in terms of the central charge c, while we have the b2 expansion in
this part of calculation. The central charge c is defined as c = 1+ 6(b+ 1

b )
2 = 13+ 6

b2 + 6b2.
Therefore, strictly speaking, the one-loop determinant from the gravity calculation is not equal
to Z (1). Instead, we need to renormalize Z (1) to obtain the one-loop determinant

Zone-loop = Z (1) e
13

12π vol(41) , (4.38)

which should be compared with the calculations performed in [3].23

4.5 Dehn surgery

As final application to the figure eight knot computation, we discuss an example of Dehn
surgery. Consider the figure eight knot and excise a small tubular neighborhood around the
knot. We can then glue back a torus, but twisted by an SL(2,Z) element. Such an element is
specified by a two coprime integers (p, q) specifying the slope of the meridian (the contractible
curve).

The Virasoro TQFT partition function on a solid torus gives simply the vacuum character
χ1 in the appropriate channel, while it gives a generic Virasoro character χP with the inclusion
of a Wilson line of momentum P. We can write24

ZVir(41, P0) = 〈ZVir(4
◦
1) |χP0

〉 , (4.39)

where 4◦1 is the figure eight knot complement with a tubular neighborhood around the knot
removed and we emphasize the P0-dependence of the Virasoro TQFT partition function.

Thus the partition function of a manifold obtained by Dehn surgery from the figure eight
knot is given by

ZVir(41(p, q)) = 〈ZVir(4
◦
1) |U(p, q) |χvac〉 (4.40)

=

∫ ∞

0

dP U(p, q)1,P 〈ZVir(4
◦
1) |χP〉 (4.41)

=

∫ ∞

0

dP U(p, q)1,P ZVir(41, P) , (4.42)

where U(p, q) is the representation of the SL(2,Z) modular transformation on the Virasoro
characters. It takes the explicit form (see e.g. [53])

U(p, q)1,P = ϵ(p, q)

√

√8
q

e−
2πi
q (p

∗ Q2

4 −pP2)
�

cosh
�2QPπ

q

�

− e
2πip∗

q cosh
�2Q̂Pπ

q

�

�

. (4.43)

Here Q̂ = b− b−1, ϵ(p, q) is a P-independent 24-th root of unity coming from the transforma-
tion behaviour of the Dedekind η-function and p∗ is the modular inverse of p, pp∗ ≡ 1 mod q.
This leaves an ambiguity in the expression which can be absorbed in the framing ambigu-
ity. For the figure eight knot, we should also notice that because of amphichirality, the Dehn
surgeries (p, q) and (−p, q) are equivalent and we can focus on p, q ≥ 0.

It is in particular simple to evaluate the hyperbolic volume of this class of manifolds via
saddle point approximation. Set P = η

b as before. Then the action is

S = vol(41,η) +
π2i
q
(p∗ − 4pη2)±

4π2η

q
. (4.44)

23The computation in [3] is not directly applicable to the figure eight knot case because of the presence of the
cusp, in which case the relevant Kleinian groups has parabolic elements.

24As explained in [1], the normalization of the inner product on the torus is somewhat ambiguous, but this
ambiguity will cancel out of the calculation.
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Table 2: The volumes of manifolds obtained from Dehn surgery from the figure eight
knot. Zero entries indicate that the corresponding manifolds do not admit a hyper-
bolic metric. The other two exceptional cases that do not admit a hyperbolic metric
are (p, q) = (1,0) and (0, 1), see also [54, Theorem 4.7].

p q 1 2 3 4 5 6 7 8 9

1 0 1.3985 1.7320 1.8581 1.9186 1.9521 1.9725 1.9858 1.9950

2 0 1.7371 1.9195 1.9727 1.9951

3 0 1.4407 1.8634 1.9210 1.9732 1.9862

4 0 1.7571 1.9231 1.9738 1.9955

5 0.9813 1.5295 1.7714 1.8735 1.9557 1.9745 1.9870 1.9958

6 1.2845 1.9287 1.9754

7 1.4638 1.6496 1.8058 1.8871 1.9321 1.9591 1.9882 1.9965

8 1.5832 1.8243 1.9358 1.9776 1.9970

9 1.6678 1.7521 1.9027 1.9397 1.9789 1.9897

Since we focus on the volume, we can omit the purely imaginary part involving p∗. The sign
choice of the last term is also immaterial, since we can send η→−η. We hence find that

vol(41(p, q)) = Re
�

vol(41,η) +
4π2η(1− piη)

q

�

�

�

�

�

η=η∗
, (4.45)

where we plug in the saddle-point value η∗ and the volume is given by (4.26). The saddle-
point equation is transcendental and doesn’t admit a closed form solution. However, it is
straightforward to compute the volumes of various examples numerically, see Table 2. We
compared them to the volumes as computed by the program SnapPy. It is also simple to
compute the volumes in a large p and q expansion, since for large p or q, the saddle point
η∗ → 0 and the volume converges to the volume of the figure eight knot. We find to the first
few orders

vol(41(p, q)) = vol(41)−
2
p

3π2

p2 + 12q2
+

4π4(p4 − 72p2q2 + 144q4)
p

3(p2 + 12q2)4

−
8π6(23p8 − 8904p6q2 + 302400p4q4 − 1620864p2q6 + 767232q8)

45
p

3(p2 + 12q2)7
+ · · · (4.46)

The correction to the figure eight knot volume is always negative as required by general the-
orems about Dehn surgery [54, Theorem 6.5.6.]. This expansion is a known result, see [55].
This case of Dehn surgery exemplifies the existence of accumulation points in the spectrum
of three-manifolds. We discussed their implications for the gravitational path integral in our
previous paper [1].
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A Semiclassical expansion of the double sine function

In this appendix, we will derive the semiclassical expansion of the double sine function (4.18).
We start from the integral representation

log Sb(x0 + x) =
1
4

∫

R+i0+

dt
t

sinh
�

(Q2 − x − x0)t
�

sinh( bt
2 ) sinh( t

2b )
(A.1)

=
1
4

∫

R+i0+

dt
t

e(
b2+1

2 −bx−bx0)t − e−(
b2+1

2 −bx−bx0)t

(e
b2 t
2 − e−

b2 t
2 ) sinh( t

2)
(A.2)

=
1
4

∫

(R+i0+)∪(R+i0−)

dt
t

e(b
2+ 1

2−bx−bx0)t

(eb2 t − 1) sinh( t
2)

. (A.3)

Here we rescaled t and put t → −t in the second expression to have the integrand have the
same form. We can now use the definition of the Bernoulli polynomials and get as formal
expansion

log Sb(x0 + x) =
∞
∑

n=0

b2n−2

4n!
Bn(1−

x
b )

∫

(R+i0+)∪(R+i0−)
dt

tn−2 e(
1
2−bx0)t

sinh( t
2)

. (A.4)

The remaining integral can be computed for example by pulling off the contour off and sum-
ming over the residues at t = 2πim. This gives

∫

R+i0+
dt

tn−2 e(
1
2−bx0)t

sinh( t
2)

=
∞
∑

m=1

2(2πim)n−2 e−2πimbx0 = 2(2πi)n−2Li2−n(e
−2πi bx0) . (A.5)

We similarly evaluate the contribution from the other contour R + i0− which then recov-
ers (4.18).
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