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Abstract

In this paper, we study the twisted gauging on the (1+1)d lattice and construct various
non-local mappings on the lattice operators. To be specific, we define the twisted Gauss
law operator and implement the twisted gauging of the finite group on the lattice mo-
tivated by the orbifolding procedure in the conformal field theory, which involves the
data of non-trivial element in the second cohomology group of the gauge group. We
show the twisted gauging is equivalent to the two-step procedure of first applying the
SPT entangler and then untwisted gauging. We use the twisted gauging to construct the
triality (order 3) and p-ality (order p) mapping on the Zp ×Zp symmetric Hamiltonians,
where p is a prime. Such novel non-local mappings generalize Kramers-Wannier dual-
ity and they preserve the locality of symmetric operators but map charged operators to
non-local ones. We further construct quantum process to realize these non-local map-
pings and analyze the induced mappings on the phase diagrams. For theories that are
invariant under these non-local mappings, they admit the corresponding non-invertible
symmetries. The non-invertible symmetry will constrain the theory at the multicritical
point between the gapped phases. We further give the condition when the non-invertible
symmetry can have symmetric gapped phase with a unique ground state.
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1 Introduction

In (1+1)d, Kramers-Wannier duality, Kennedy-Tasaki transformation, and many other duality
mappings are powerful tools in solving the quantum spin models [1–7]. These dualities map
symmetric operators to other symmetric operators while preserving locality, but they may not
preserve locality when mapping charged operators. Consequently, these dualities induce the
maps among different gapped and gapless phases [8–14]. They provide a simple and precise
way to identify the critical points, understand relatively exotic phases and solve the interacting
theories. For the recent discussion of duality mapping and non-invertible symmetry on the
lattice, see [15–27].

However, these duality mappings in general lead to the dual theory with a different sym-
metry. It is difficult to identify them from these non-local mappings. Translating these dual-
ity maps to the gauging procedure would make the dual theory and symmetry more explicit
[28,29]. Nonetheless, some duality, such as the Kennedy-Tasaki transformation [3–5,30–34],
involves “twisted gauging”, which will be the main focus of this paper.

In a (1+1)d quantum spin chain, gauging a 0-form global symmetry will lead to a dual
0-form global symmetry [28, 35, 36]. The ordinary Kramers-Wannier duality is obtained
by gauging the Z2 spin-flip symmetry in the transverse field Ising model. In the contin-
uum perspective, for a theory with a global symmetry G together with the ’t Hooft anomaly
ω ∈ H3(G, U(1)), we can gauge its anomaly-free subgroup H ⊆ G, twisted by a discrete torsion
ϕ ∈ H2(H, U(1)). The original theory is mapped to a dual theory with the dual (categorical)
symmetry C(G,ω, H,ϕ), the so-called group-theoretical fusion category, under the twisted
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Table 1: Bulk-boundary correspondence between the 2+1d bulk Symmetry TFT and
1+1d boundary theory. The anyon permutation symmetries in the bulk correspond to
different transformations on the boundary theory. T corresponds to applying an SPT
entangler with non-trivial ϕ. S corresponds to gauging with diagonal bicharaters. S
followed by R corresponds to gauging with different bicharacters S.

Bulk anyon permutation symmetry Transformation on the boundary

T-type Applying an SPT entangler

R-type Automorphism of global symmetry

S-type Gauging the global symmetry

gauging. Many physically interesting fusion category symmetries are group-theoretical fusion
categories, for example, Rep(G) = C(G, 1, G, 1) [20,25–27] and the Tambara-Yamagami fusion
category can be group theoretical with certain conditions [37,38]. The general gauging of H
is specified by:

• a symmetric, non-degenerate bicharacter χ : H × H → U(1), specifying how the dual
symmetry should be identified with the original symmetry. For H = ZN , the identification
is unique. But for H = ZN × ZN , there are diagonal pairing and off-diagonal pairing,
which are related by the automorphism of H.

• a discrete torsion ϕ ∈ H2(H, U(1)), corresponding whether applying an SPT entangler
before gauging [39].

In the partition function level, the data is presented as1

eZ[X , bA] = #
∑

a∈H1(X ,G)

Z[X , a]exp

�

2πi

∫

χ(a, bA) +α(a)

�

, (1)

where α(g, h) = ϕ(g, h)ϕ(h, g)−1 and # is the normalization factor. a is the dynamical gauge
field being summed over and bA is the background gauge field for the dual global symmetry.
We incorporate these data in the lattice gauging in this paper, the non-trivial discrete torsion
ϕ(g, h) will modify the Gauss law operator (17) and different bicharacters are obtained by
certain global symmetries. We denote the untwisted (twisted) gauging as gauging with the
trivial (non-trivial) discrete torsion and using the diagonal pairing between the original sym-
metry and the dual symmetry.2 We implement the twisted gauging using the modified Gauss
law, and show on lattice that

Twisted gauging= Applying SPT entangler then untwisted gauging. (2)

There is a bulk-boundary correspondence between the (un)twisted gauging in (1+1)d theory
and anyon permutation symmetry of the bulk (2+1)d topological order [40–54], a lightning
review of the bulk-boundary correspondence is given in Appendix D. We will mainly focus on
the lattice version of the transformations on the (1+1)d boundary theory. In this language,
we can reinterpret the duality as gauging, for instance,

1We assume G is abelian for simplicity. Gauging the non-abelian symmetry G leads to dual non-invertible Rep(G)
symmetry. The more accurate treatment is to use the topological defect line operators, which will be elaborated in
Sec. 2.

2More generally, the twisted and untwisted gauging only have a relative difference, we thank Sahand for raising
the case about anomaly-free non-on-site symmetry.
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• Kramers-Wannier duality = Untwisted gauging Z2 global symmetry (S).

• Kennedy-Tasaki duality= (−1)-Twisted gauging Z2×Z2 then applying an SPT entangler
(TS1S2T−1),

where T denotes bulk anyon permutation symmetry corresponding to applying the SPT en-
tangler with a non-trivial element in H2(H, U(1)) [55], and Si corresponds to the untwisted
gauging of i-th symmetry with diagonal pairing. There is an additional elementary transforma-
tion R corresponds to the automorphism of the global symmetry, which can be used to change
the diagonal pairing to off-diagonal pairing Tab. 1.

Note that the twisted gauging generates quite general non-local mappings, which are be-
yond order 2 duality. Combining with the global symmetry actions, the non-local mapping
is the generator of triality (order 3), p-ality (order p) and even K-ality, where K is a finite
group [56]. In particular, this paper studies the lattice version of triality and p-ality which is
a combination of twisted gauging and global symmetry action. To be specific,

• Triality Tri = Twisted gauging ZN ×ZN follow by an automorphism (R(U1)S1S2T),

• p-ality P = (−2)-Twisted gauging Zp ×Zp follow by an automorphism (R(U1)S1S2T−2),

where U1 =
�

0 1
−1 0

�

and R(U1) changes the diagonal pairing to off-diagonal pairing. To be con-
crete, for a 1d chain with Ze

N , Zo
N acting on even and odd sites respectively. The automorphism

of Ze
N ×Z

o
N specified by U1 is obtained by T Ce, where T is the lattice translation symmetry and

Ce is the charge conjugation symmetry acting on the even sites. The translation symmetry T
effectively swap the two ZN s. All the non-local mappings are derived in the algebra level and
they induce the mapping among the Hamiltonians. For ZN ×ZN symmetric Hamiltonians that
describe gapped phases, triality maps,

Tri : SPT0 =SYM
SPTN−1

SSB , SPTa→ SPT(−a−1)−1
, (3)

where SPTa denotes the a-th ZN × ZN SPT, and the disordered phase (SYM) is equivalent to
0-th ZN ×ZN SPT. Depending on N , there could be triality invariant SPTs. For N being prime
numbers, the triality invariant SPTa is given by the condition a(a+ 1) + 1= 0 mod N , which
exists for N = 3 or N = 1 mod 3. The 3+1d analog of triality is discussed in [57]. We show
that the non-invertible triality non-local mapping can be related to invertible Z3 automorphism
of ZN × ZN in Sec. 7.1. For instance, let’s consider the Z2 × Z2 symmetric Hamiltonians, the
Ze

2 ×Z
o
2 acts on even and odd sites of the 1d chain respectively,

SPT

SYM SSB

T
=

2c

TS
1 S
2 T

S1S2

Tri

Tri

Tri

KT KWe

←−→

SSBdiag

SSBe SSBo

3
auto

3
auto

3
auto

KT (4)

where SSB denotes the Z2 × Z2 spontaneously symmetry breaking phase, and SSBi denotes
the i-th Z2 partially SSB phase. Under the Kramers-Wannier duality on the even sites, the
non-local map Tri is transformed into the Zauto

3 automorphism of Z2 × Z2. The center of the
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equilateral triangle is the gapless Kosterlitz-Thouless (KT) transition point, which is triality
invariant and admits the triality fusion category symmetry.

The p-ality transformation acts on the Zp × Zp symmetric Hamiltonians with p being a
prime number,

P : SPT1 SSB→ SYM→ SPT2−1
→ ·· · → SPT2→ SSB , SPTa→ SPT(−a+2)−1

, (5)

where x−1 shoud be understood as modular multiplicative inverse of x mod p. For p = 2 the
p-ality reduces to the duality with the off-diagonal bicharacter R(U1)S1S2 related to the blue
arrow in the first diagram of (4), the corresponding non-invertible symmetry can be Rep(D8)
(one can stack an 2+1dZ2 SPT to change the Frobenius-Schur indicator of the duality TDL [21]
and realize a different fusion category). Similar to the triality, the p-ality non-local mapping
can be transformed into a Zc

p non-on-site symmetry under the TS1S2T−1 transformation as the
green arrow in (4) and in the following for Z3 ×Z3,

SPT2

SYM

SSB

SPT

3
c

P

TST-1

P

P

3
c 3

c

(6)

The disordered phase (SYM) is equivalent to the SPT0, theZc
3 is generated by the SPT entangler

∏

j CZ
−1
2 j−1,2 jCZ2 j,2 j+1, where CZ j, j+1 is the controlled-Z gate for qutrits. For p = 5,

P

P

P

P
P

SPT2

SSB

SPT0

SPT3
SPT4

SPT1

TS1S2T−1

←−−−−→

5
c

5
c

5
c

5
c

5
c

SPT0

SPT1

SPT2

SPT3
SPT4

SSB

(7)

The type III mixed anomaly among Zp×Zp×Zc
p is used to bootstrap the conformal field theory

at the multicritical point between different SPT phases [58], such as the center of the right
figure in (7). Under the TS1S2T−1, the p-ality also constrains a multicritical point. For general
prime p, the SPT1 is always the p-ality invariant phase and admits the p-ality fusion category
symmetry. It would be interesting to classify the symmetric gapped phases or the fiber functors
of the p-ality fusion category symmetry [56,59,60]. As we analyzed in Sec. 7.2, the SPT1 could
have several cousins but their domain walls will host zero modes [24,61,62]. More details of
these non-local mapping will be elaborated in the main context.

In this paper, we study the non-local mappings on the 1+1d lattice model using the
(un)twisted gauging. In particular, we define the twisted Gauss law operator and derive the
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dual Hamiltonians under the twisted gauging. We connect the (un)twisted gauging to the
quantum process and orbifold in field theory. The locality of symmetric operators is preserved
under the (un) twisted gauging, while the charged operators are mapped to non-local ones.
The mapping is on the algebra level and does not need to specify the Hamiltonians. To be
concrete, we study the triality mapping of ZN ×ZN symmetric Hamiltonians and p-ality map-
ping of Zp ×Zp symmetric Hamiltonians in detail, where p is a prime number. Both non-local
mappings are generated by the different twisted gauging. We find the condition for triality or
p-ality invariant gapped phase with a unique ground state. And consequences of the triality
or p-ality fusion category symmetry. The outline is as follows, we review the gauging in con-
tinuum, lattice, and quantum information perspective in Sec. 2 and define the general twisted
Gauss law operator on the 1d lattice. In Sec. 3, we review the Kramers-Wannier duality and
set up the notations. In Sec. 4, we study the Z2 ×Z2 twisted gauging and construct its corre-
sponding quantum process. By simplifying the steps of minimal coupling and imposing Gauss
law, we find that twisted gauging is equivalent to applying the SPT entangler and then gaug-
ing. We summarize the non-local mapping among gapped phases in Sec. 4.1. We generalize
the twisted gauging of ZN × ZN in Sec. 5 and detailed study the triality and p-ality non-local
mapping in Sec. 6. Specifically, we derive the triality and p-ality non-local mappings on sym-
metric Hamiltonians and find the condition when the symmetric gapped phases with unique
ground state are invariant under such mapping. We further study their corresponding fusion
category symmetries. In Sec. 7, we give the continuum field theory perspective and connect
them to the lattice transformations. We give the group theoretical fusion category construction
of the triality and p-ality fusion category, which implies that the non-local mappings can be
converted into the invertible symmetries.

We will use mathsf font for general (non-)local mapping of the operators in the Hamilto-
nians and quantum gates. K··· represents the corresponding Kraus operator. T··· represents the
matrix acting on the Pauli polynomials as reviewed in Appendix C. U··· represents the corre-
sponding unitaries. mathrm font, like S, T,R, labels the bulk automorphism symmetry in the
one higher dimensional symmetry topological field theory as reviewed in Appendix D.

1.1 Relation to the previous studies

Another important consequence of the duality is its constraint on the phase diagram. As a
textbook application, the Kramers-Wannier duality can pin the Ising critical point given there
is only one transition point. Since the duality maps one phase to another, the critical point is
invariant under the duality [63]. An interesting scenario is that the second-order transition
can be driven to the first-order via a multicritical point by turning on the duality-invariant
operators [64, 65]. The self-duality is used to constrain the phase diagram and analyze the
critical behavior in higher dimensions and other contexts [66–71]. Note that we will focus on
the strong duality (exact duality) that maps between ultraviolet theories, in contrast with the
weak duality that relates the infrared phases, see recent review of infrared weak duality web
in [72–78]. Given the non-local mapping, it is generally hard to find such duality invariant
operators, but the (un)twisted gauging procedure again gives clear transformations on the op-
erators. In particular, the (un)twisted gauging can be mapped to a symplectic transformation
acting on the stabilizers [79–81]. The duality invariant operators can be easily found using
the algebraic method reviewed in Appendix C. To be specific, all the transformations that map
the Pauli operator to the Pauli operator while preserving the commutation relations can be
represented as the symplectic transformation. The Pauli operators are represented by vectors
in the symplectic vector space Appendix C. By solving for the invariant vectors under the sym-
plectic transformation, one can find the non-local-mapping-invariant operators and construct
the Hamiltonians.
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If a theory is invariant under the duality, it is said to be self-dual. In the generalized sym-
metry perspective, the self-dual theory admits the non-invertible symmetry associated with
the self-duality [82–85]. For (1+1)d systems, the 0-form symmetry is generated by line op-
erators. In particular, these line operators commute with the energy-momentum tensor and
they are topological defect line (TDL) operators. The TDL associated to the self-duality can
be understood as the interface between the original theory and the dual theory. Because
the theory is self-dual, the duality TDL can be moved freely as a consequence of commut-
ing with the Hamiltonian. However, such duality TDL is not invertible. The intuition is that
the TDL maps among gapped phases with different ground state degeneracies (GSDs). The
ordinary Kramers-Wannier duality maps the ferromagnetic phase with GSD 2 to the paramag-
netic phase with GSD 1 and applies twice to get back to the ferromagnetic phase but only with
1 ground state. Then the fusion of duality TDL gives the projection to the symmetric combina-
tion of the SSB groundstates. The Kramers-Wannier duality defect has been extensively studied
in [6,7,19,86–91] and can be constructed from the half-gauging procedure [21,57,92,93]. For
the Kramers-Wannier-like non-invertible symmetry in higher dimension, see [57,92,94,95].

If the theory is invariant under the twisted gauging, the TDLs that are constructed from
half-twisted-gauging generate the corresponding non-invertible symmetry. The fusion cate-
gory consists of the original invertible line and the new non-invertible TDLs as its simple ob-
jects. Note that the data of twisted gauging is not enough to determine the fusion category.
Additional data should be provided. For example, the Frobenius-Schur indicator of the du-
ality line in the Tambara-Yamagami fusion category is specified by whether or not stacking a
(2+1)d SPT from H3(Z2, U(1)) before gauging [38, 96]. The Z2 SPT in (2+1)d is discussed
in [97, 98]. For triality and p-ality fusion category, additional data on symmetry fractional-
ization is needed [60, 99, 100]. Nevertheless, sets of the triality and p-ality fusion category
have group theoretical fusion category construction, which is discussed in detail in Sec. 7. The
group theoretical fusion category construction suggests that the non-local mapping Tri or P
can be converted into invertible symmetry in the dual theories. This is reminiscent of the
construction in [24,101].

Similar to ordinary symmetry, the non-invertible symmetry can be anomalous, but the pre-
cise meaning deviates from those of ordinary symmetry [102]. It is possible to gauge the
anomalous fusion category symmetry C by inserting the mesh of the Frobenius algebra object
but the anomalous fusion category symmetry C is not compatible with the symmetric gapped
phase with a unique ground state. Gauging the non-invertible symmetry is recently discussed
in [100,101,103]. The anomaly of a non-invertible symmetry is the obstruction to a symmetric
gapped phase with a unique ground state, and mathematically the fusion category does not
admit a fiber functor [52, 102, 104]. For the anomaly condition of the self-duality TY cate-
gory and its generalization in higher dimension, see [38,62,96,105,106]. If a non-invertible
symmetry is anomaly-free, then it has at least one symmetric gapped phase with a unique
ground state. The anomaly free non-invertible symmetry is described by the local fusion cat-
egory [42]. More interestingly, it could have several non-invertible symmetric gapped phases
with a unique ground state, but they cannot be smoothly connected to each other [20,24]. As
commented in [24], there is no notion of stacking the non-invertible symmetric gapped phases
with a unique ground state and there are no symmetric entangler between the gapped phases.

The (un)twsited gauging relates to the idea of preparing the long-range entangled states
from measuring the short-range entangled states [107–109]. Moreover, the Kramers-Wannier
duality and other mapping are realized by sequential quantum circuits and quantum pro-
cess [34, 110–115]. In particular, we construct the Kraus operator for the twisted gauging
of ZN ×ZN by viewing it as a quantum process. The Kraus operators of Tri and P can be con-
structed accordingly. It is interesting to generalize the twisted gauging to higher dimensions
and realize the low-depth parity check codes [116]. Related construction of the non-local
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mapping using the matrix product operator is discussed in [117–123], bond algebraic method
in [22, 124, 125] and bilinear phase map is discussed in [32, 33, 126, 127]. The gauging of
generalized symmetry using matrix product operator is formulated in [119].

These non-local mappings in (1+1)d that are generated by (un)twisted gauging corre-
sponds to the anyon permutation symmetries of the (2+1)d symmetry topological field theory
(SymTFT) [40–54]. In particular, the (1+1)d theories are the boundary of the (2+1)d SymTFT
with different boundary conditions. By examining the condensable algebras, one can classify
the (1+1)d gapped or gapless theories [10–12,14,46,128,129]. We review the corresponding
anyon permutation symmetries of triality and p-ality in Appendix D.

2 Gauging in different perspectives

In this section, we mostly review gauging a global symmetry in field theory, lattice model, and
quantum circuit perspectives. The fruitful generalization of symmetry in (1+1)d theory is by
analyzing the symmetry operators, which are in general codimension-1 topological defect line
(TDL) operators [63, 82], see [130–136] for recent reviews on generalized global symmetry.
The TDLs commute with energy-momentum tensor of the conformal field theory and thus
commute with the Hamiltonian. The mathematical structure of TDLs is generalized from finite
group to fusion category [99], where the TDLs are the simple objects of the fusion category
[61,63,137].

In the following, we will discuss the TDLs in continuum field theory and lattice theory. We
review the gauging in the continuum by inserting algebraic objects. We then follow [138] to
discuss the TDLs on the lattice. We define the Gauss law operator for the (un)twisted gauging
in (17) and pictorially in (18). The Gauss law operator can be efficiently diagonalized using
the algebraic method reviewed in Appendix C. The (un)twisted gauging on the lattice can also
be implemented by the quantum process (Kraus operator), which involves adding degrees of
freedom, unitary transformation, and measuring out degrees of freedom. Our goal is to explain
how to translate the (un)twisted gauging procedure step-by-step to quantum processes and
derive the corresponding Kraus operators.

Gauging in 2d CFT Gauging the symmetry in 2d CFTs is to insert the mesh of algebraic object
in the partition function [28, 139] and resulting in a summation of twisted torus partition
function [87,88,140]. The algebraic object A is the direct sum of simple TDLs, together with
the fusion junction µ ∈ HomC(A⊗A,A) and split junction µ∨ ∈ HomC(A,A⊗A). Since the
gauged theory should be invariant under different triangulations of the manifold, the fusion
and split junctions should be invariant under the various F -moves, [141]

A

A

A

A
A

µ

µ∨

=

A

A

A

A
A

µ∨

µ

,

A

A

A

AA

µ

µ
= A

A

A

AA

µ

µ
, (8)
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A

A

A

A A

µ∨

µ∨
= A

A

A

A A

µ∨

µ∨
,

and the bubble shrinking,

A

A

A

µ∨

µ

= A . (9)

For a generic triangulation of the torus, the gauging is to put the mesh of an algebraic object on
the dual graph, the partition function is equal to the minimal mesh after the bubble shrinking
and F -moves,

A

A

AA

=

AA

AA

= A

A

=

A

A

A

A
A

µ

µ∨

. (10)

The algebraic object is used to gauge non-invertible symmetry in 2d CFTs [28, 139]. For ex-
ample, to gauge an anomaly-free finite group G, the algebra object A =

⊕

g∈G g. The fusion
and split junctions are given by,

A

A A

µ =
1

p

|G|

∑

g,h∈G

ϕ(g, h)

gh

g h

,

A

A A

µ∨

=
1

p

|G|

∑

g,h∈G

ϕ∨(g, h)

gh

g h

.

(11)

According to the consistency condition, δϕ(g, h, k) = ω(g, h, k) = 1. ϕ(g, h) ∈ H2(G, U(1))
and ϕ∨(g, h) = ϕ(g, h)−1. Inserting the mesh of the algebra object into the partition function,
we obtain,

A

A

A

A
A

µ

µ∨

=
1
|G|

∑

g,h∈G
gh=hg

ϕ(g, h)
ϕ(h, g)

g

h

g

h
gh

. (12)
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The gauged partition function depends on the choice of the discrete torsion
ϕ(g, h) ∈ H2(G, U(1)). However, there is no natural choice to favor one discrete torsion over
the others, since the notion of SPT order is relative. In the quantum information perspective,
the SPT phases are short-range entangled states that can be connected to the trivial product
state by finite-depth local unitaries.

For example, H2(Z2, U(1)) = Z1 is trivial, there is a unique choice of gauging Z2 global
symmetry. But for Z2 × Z2, H2(Z2 × Z2, U(1)) = Z2, these result in two different ways of
gauging (differed by choice of ± signs in the following gauged partition function),

ZT /Z2×Z2
=

1
4
(ZT [1,1,1] + ZT [1, a, a] + ZT [1, b, b] + ZT [1, ab, ab] + ZT [a,1, a] + ZT [b,1, b]

+ ZT [ab,1, ab] + ZT [a, a,1] + ZT [b, b,1] + ZT [ab, ab,1]± ZT [a, b, ab] (13)

± ZT [a, ab, b]± ZT [b, a, ab]± ZT [b, ab, a]± ZT [ab, a, b]± ZT [ab, b, a]) ,

where a, b are the symmetry lines for Za
2 × Z

b
2 , and the twisted torus partition function is

defined as follows,

Z[L1,L2,L3;µ,ν](τ) =

L1

L2

L3

µ

ν
. (14)

For TDLs of quantum dimension 1, such as group-like TDLs, their fusion junction is 1 dimen-
sional, such that the labels µ,ν will be omitted for this case, as in (13).

Gauging on the lattice The connection between field theory and lattice begins with the
identification of topological defect lines in the lattice model. This has been elaborated in [138]
as well as the Lieb-Schultz-Mattis anomaly and ’t Hooft anomaly of the symmetry on the lattice.
We follow [138] to define the topological defect lines (TDLs) on the lattice.

Consider the tensor product Hilbert space H = ⊗ jH j . For the on-site symmetry G, the
symmetry TDL corresponding to g ∈ G is U g =

∏

j U g
j , where U g

j is a unitary operator acting
non-trivially on the site j. It acts on local operator Oa

j at site j with representation index a as

(U g)−1Oa
j U g = (U g

j )
−1Oa

j U g
j = R(g)abOb

j . And the Hamiltonian H = (U g)−1HU g is invariant
under the symmetry action as expected.

In the system with Lorentz invariance, the partition function with TDL L action Tr
�

Le−βH
�

is related to the defect partition function TrHL
e−βH by the modular S-transformation, where

HL is the defect Hilbert space. For a lattice system, there is no Lorentz invariance, and we
define the defect Hamiltonian by acting the TDL on half of the space. To be specific, the defect
Hamiltonian with a symmetry defect of g at link ( j, j + 1) is obtained by,

H( j−1, j)
g ≡ (U g

< j)
−1HU g

< j , where U g
< j =

j−1
∏

i=−∞
U g

i . (15)

The symmetry defect is topological, and it can be moved freely without energy cost. The defect
moving operator is given by,

λ
g
j = (U

g
< j)
−1U g

< j+1 = U g
j , (λg

j )
−1H( j−1, j)

g λ
g
j = H( j, j+1)

g . (16)

When moving one defect close to another defect, the fusion junction of TDLs is in general
a vector space of dimension N c

ab, where a, b, c are the TDLs. There is in general a matrix acting
on the fusion junction. For group-like TDLs, the fusion junction is 1-dimensional and there is a
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phase ambiguity 2-cocycle ϕ(g, h) associated to the junction. Since the ϕ(g, h) is a 2-cocycle,
δϕ(g, h, k) = 0, it will not introduce new ’t Hooft anomaly. Although such phase commutes
with the defect Hamiltonian, we will show the phase ϕ(g, h) ∈ H2(G, U(1)) could change the
Gauss law operator, imposing the corresponding twisted Gauss law corresponds to the twisted
gauging.

To gauge the symmetry G, we first introduce the degrees of freedom on the links labeled
by a group element g. |g〉 j− 1

2
at the link ( j−1, j) denotes the g defect between site j−1 and j.

The gauge transformation operator is defined by,

ϕGg
j ≡

∑

a,b∈G

�

ϕ(ag−1, g)†
�

�ag−1
�

〈a|
�

j− 1
2
⊗λg

j ⊗ (ϕ(g, b) |g b〉 〈b|) j+ 1
2

. (17)

which is pictorially depicted as,

ϕGg
j ≡

∑

a,b

a〉 b〉

ag-1〉 gb〉

g 〉

λg

j - 1 / 2 j j + 1 / 2

φ (g, b)

φ† a g-1, g
. (18)

Different from the Gauss law operator in the previous literature, this Gauss law operator in-
corporates the data of ϕ ∈ H2(G, U(1)). The twisted (untwisted) Gauss law operator refers
to non-trivial (trivial) ϕ(g, h). We note that the general Gauss law operators ϕGg

j on different
sites commute with each other. The product of all the Gauss law operators act the same as
the symmetry operator on the physical Hilbert space on sites

∏

j
ϕGg

j |sites〉 =
∏

j U g
j |sites〉,

as it is not necessary to require
∏

j
ϕGg

j =
∏

j U g
j . When imposing the (un)twisted Gauss

law ϕGg
j = 1, ∀ j, we obtain the dual physical space. The (un)twisted gauging refers to the

process of introducing the link variable, mimial coupling, and imposing the (un)twisted Gauss
law constraint.

Technically, one needs to find a unitary to transform the Gauss law operator to its diagonal
form, and other terms in the extended Hamiltonian will be transformed accordingly. This
unitary in general is hard to find, so we will use the algebra structure of the Pauli polynomials
to find the unitary. This method is used in studying stabilizer code [79–81,142].

The untwisted gauging corresponds to ϕ(g, h) = 1, while the twisted gauging is obtained
by takingϕ(g, h) ∈ H2(G, U(1)). Note that such modification will not contribute to the ’t Hooft
anomaly. Although the symmetry operator U g has a phase ambiguity, such phase ambiguity
can not trivialize the phase ϕ(g, h) ∈ H2(G, U(1)) associated with the fusion vertex of the
defect lines. The twisted gauging of ZN × ZN is explicitly shown in the following section
Sec. 5. We will show that twisted gauging is equivalent to first applying SPT entangler and
then untwisted gauging the symmetry.

Gauging via quantum process Both the untwisted gauging and twisted gauging involve
adding additional link degrees of freedom, extending the Hamiltonian, and imposing the Gauss
law constraint. These procedures can be translated to quantum processes, that involve adding
ancilla freedoms, performing unitary transformations via quantum circuits, making partial
measurements, and then post-selecting measurement outcomes to enforce gauge constraints.
Here, the notion of a quantum process refers to a completely positive (CP) map of quantum
states that are not necessarily trace-preserving, namely ρ→ KρK† by some Kraus operator K .
To be precise, given that the post-selection procedure (as a projection) is not trace-preserving,
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(non-)invertible symmetries K (as TDLs) are generally implemented as quantum processes,
other than quantum channels that are completely positive trace-preserving (CPTP) maps.

Nevertheless, a key ingredient in specifying these quantum processes is the sequential
quantum circuit that implements the (majority of) operator mappings. We will explain how to
realize the gauging process by quantum gates in the quantum circuit. After compilation and
simplification of the circuit structure, the mapping between the original Hamiltonian and the
dual Hamiltonian can be achieved efficiently. Once having the quantum circuit, one can find
general translation invariant local operators that are invariant under the duality transforma-
tions and construct the duality invariant Hamiltonians.

3 Warm-up: Kramers-Wannier duality in Ising model as Z2 gaug-
ing

In this section, we review the Kramers-Wannier duality in the Ising model and understand
it from field theory, lattice, and quantum process perspectives. This section is meant to set
up the notation and review the method, all results in this section are not new. The qubit
(spin) operators in the original Hamiltonian are X j , Z j , j ∈ Z, while the dual operators are
eX j+ 1

2
, eZ j+ 1

2
, j ∈ Z.

The Ising model on 1d lattice is given by,

HIsing = −
∑

j

Z j Z j+1 + gX j , (19)

where X , Y, Z are the Pauli matrices. The Z2 global symmetry is generated by Uη =
∏

j X j ,
and the local operator Z j is charged under this Z2 global symmetry. For simplicity, we will
first consider an infinite chain, and we will deal with the boundary conditions later. It is
well-known that the Kramers-Wannier duality exchanges the paramagnetic (disordered) and
ferromagnetic (ordered) phase, and,

KW : Z j Z j+1⇒ eX j , X j ⇒ eZ j−1eZ j . (20)

Hence, the Ising critical point g = 1 is invariant under the Kramers-Wannier duality (20).
We will use ⇒ for mapping using generic quantum processes and their reserves, and → for
mapping using unitary operators. AlthoughKW maps the local Hamiltonian to the dual Hamil-
tonian and preserves locality, it maps the Z2 charged local operator to the non-local disorder
operator,

KW : Z j ⇒ eX j eX j+1 eX j+2 · · · . (21)

More drastically, KW maps the symmetry operator Uη =
∏

j X j ⇒
∏

j
eZ j−1eZ j = 1. The KW

cannot be implemented by a unitary operator. However, the Kramers-Wannier duality is ob-
tained by gauging the global Z2 symmetry,

Kramers-Wannier duality= untwisted gauging Z2 global symmetry (S). (22)

Lattice perspective To gauge the Z2 symmetry on the lattice, we follow the procedure in
[138]. We first create many Z2 defects and then make them dynamic. This enlarges the
Hilbert space to include link degrees of freedom. In particular, for every link ( j, j + 1), we
introduce a local Hilbert space as j+ 1

2 with two states labeling the Ising domain wall degrees
of freedom. The extended Hamiltonian becomes,

HIsing-gauged = −
∑

j

Z j eZ j+ 1
2
Z j+1 + gX j . (23)
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The Z2 defect moving operator is given by λg
j = (X j)g . According to (17), the Gauss law

operator is given by,

Gg
j =

∑

a,b

(|a− g〉 〈a|) j− 1
2
⊗ X g

j ⊗ (|g + b〉 〈b|) j+ 1
2
= eX g

j− 1
2
X g

j
eX−g

j+ 1
2

. (24)

Finally, we impose G j = 1, ∀ j to project to the dual Hilbert space. To be specific, we use the
unitary,

Ucond =
∏

j

H j+ 1
2

∏

j

CZ j− 1
2 , j

∏

j

CZ j, j+ 1
2

, (25)

where CZi, j =
1
2(1 + Zi + Z j − Zi Z j) and H j =

1p
2
(Z j + X j). Ucond is a finite depth unitary

quantum circuit,

i - 3 / 2 i - 1 i - 1 / 2 i i + 1 / 2 i + 1 i + 3 / 2
H H H H

(26)

In our convention, the unitary transformation is taken as O U
−→ O′ = U†OU . Applying the

unitary transformation, the extended Hamiltonian and Gauss law become,

HIsing-gauged = −
∑

j

Z j eZ j+ 1
2
Z j+1 + gX j

Ucond−→ eHIsing-gauged = −
∑

j

eX j+ 1
2
+ geZ j− 1

2
X j eZ j+ 1

2
, (27)

G j = eX j− 1
2
X j eX j+ 1

2

Ucond−→ eG j = X j . (28)

By setting X j = 1, we arrived at the dual Ising model,

eHIsing = −
∑

j

eX j+ 1
2
+ geZ j− 1

2
eZ j+ 1

2
. (29)

It can be further mapped back to the original Ising model by shifting the lattice by “ j→ j− 1
2”

and sending g → 1/g.

Quantum process perspective In the quantum process perspective, introducing new de-
grees of freedom on the link and minimal coupling can be formulated as introducing ancilla
qubits and entangling with the original qubits, and enforcing the Gauss law constraint can be
formulated as making measurement and post-selecting the measurement outcome.

To be concrete, we introduce ancilla qubits on the link with an initial state specified by
eZ j+ 1

2
= 1,∀ j ∈ Z. First, we apply a layer of Hadamard gates,

Uinitial =
∏

j

H j+ 1
2

, (30)

to transform these ancilla qubits to the state of eX j+ 1
2
= +1,∀ j ∈ Z, which will turn out to be

more convenient for performing the gauging procedure via minimal coupling. In the quantum
process perspective, gauging means entangling the ancilla qubits to the system as the link
(gauge string) degree of freedom with Gauss law constraint.

Next, we aim to construct a sequential quantum circuit that can implement the following
maps:

X j → X j , eX j+ 1
2
→ eX j− 1

2
X j eX j+ 1

2
, Z j → Z j eZ j+ 1

2
eZ j+ 3

2
eZ j+ 5

2
· · · . (31)
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Physically, the second mapping corresponds to the emergence of a local Gauss law constraint
G j = +1 from the ancilla qubit initial state eX j+ 1

2
= +1, and the last two mappings correspond

to the generation and termination of gauge string at the matter field site, realizing the minimal
coupling. Such sequential quantum circuit is given by,

Ugauge =
∏

j

CX j+ 1
2 , j− 1

2
CX j+ 1

2 , j , (32)

where CXi, j =
1
2(1+ Zi + X j − ZiX j). Together with the introduction of the ancilla qubit, the

quantum circuit UinitialUgauge in each sequential step can be depicted as,

j - 1 / 2 j j + 1 / 2

H

(33)

Here we stick to the notation that the ancilla qubit (down-triangle) is always introduced in the
Z = +1 state in the circuit diagram, therefore it requires a Hadamard gate H j+ 1

2
(as provided

by Uinitial) to transform to the X = +1 initial state.
Finally, we need to implement the gauge constraint G j = eX j− 1

2
X j eX j+ 1

2
= +1,∀ j ∈ Z by

measuring each G j observable, and post-selecting its measurement outcome to G j = +1.
Given that G j is a non-onsite operator, the first step is to evoke the unitary transformation
Ucond in (25) to transform the Gauss law operator G j = eX j− 1

2
X j eX j+ 1

2
to an on-site operator

G′j = U†
condG jUcond = X j . This amounts to applying the unitary layer Ucond to the system. Then

we further apply a final layer of Hadamard gates,

Ufinal =
∏

j

H j , (34)

to transform X j → Z j , such that the gauge constraint becomes Z j = +1,∀ j ∈ Z effectively,
which can then be implemented by measuring every integer-site qubit in Z basis and post-
selecting the Z = +1 result.

Note that all these unitary transformations can be combined as a single unitary circuit
UKW,

UKW = UinitialUgaugeUcondUfinal

=
∏

j

H j+ 1
2

∏

j

CX j+ 1
2 , j− 1

2
CX j+ 1

2 , j

∏

j

H j+ 1
2

∏

j

CZ j− 1
2 , j

∏

j

CZ j, j+ 1
2

∏

j

H j

=
∏

j

H jCX j− 1
2 , jCX j+ 1

2 , jSWAP j, j+ 1
2

,

(35)

where SWAPi, j =
1
2(1+X iX j+YiYj+ Zi Z j). Here we have merged the gates and compiled the

quantum circuit into a simpler form.
As a result, the Kramers-Wannier duality KW can be viewed as the composition of intro-

ducing of ancilla qubits eZ j+ 1
2
= 1,∀ j ∈ Z on the links (half-integer sites), performing the

unitary transformation UKW, and post-selecting Z j = 1,∀ j ∈ Z by projective measurement on
integer sites. The combined operation goes beyond the scope of unitary transformations. It
should be understood as a quantum process implemented by a Kraus operator KKW, such that
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any operator mapping KW : O ⇒ O′ under the Kramers-Wannier duality will be realized as
a Kraus map O′∝ K†

KW
OKKW, or more precisely as OKKW = KKWO′. Thus KKW should be

identified as the duality operator, corresponding to a non-invertible symmetry in the self-dual
Ising model.

Inherited from the sequential structure of the unitary quantum circuit UKW, the Kraus
operator KKW also assumes a sequential structure,

KKW =
∏

j

KKW
j− 1

2 , j, j+ 1
2

, (36)

where each step of the Kraus operator can be represented by the following quantum circuit
diagram following the result of (35),

KKW
j− 1

2 , j, j+ 1
2
=

j - 1 / 2 j j + 1 / 2

H
(37)

In the above diagram, we assume that the ancilla qubit (down-triangle) is always introduced in
the Z = +1 state and the single-qubit measurement (square apparatus) is always performed in
the Z basis and post-select to the Z = +1 outcome. To be more precise, we define the Z = +1
projection operator on site- j as

P j =
1
2
(1+ Z j) , (38)

which enables us to express the Kraus operator in terms of

KKW
j− 1

2 , j, j+ 1
2
= P j+ 1

2
H jCX j− 1

2 , jCX j+ 1
2 , jSWAP j, j+ 1

2
P j , (39)

with the understanding that the projection operator P j+ 1
2

prepares the a new qubit j+ 1
2 to the

eZ j+ 1
2
= +1 state and the projection operator P j post-selects an existing qubit j to the Z j = +1

state. Since the projection P j is not invertible, the Kraus operator KKW as a whole is also not
invertible.

From the simplified quantum circuit, we can see that the introduced ancilla qubit in the
Z = +1 state is never modified by any gate in the circuit until it gets measured to the same
Z = +1 state with probability one (therefore no selection is actually needed). Effectively, the
introduced ancilla will do nothing and then be projected out by measurement, so the combined
operations P j+ 1

2
CX j+ 1

2 , jSWAP j, j+ 1
2
P j can be dropped together from the circuit, apart from

those in the initial and final steps (we will take care of these boundary operations later). The
gauging with respect to symmetries encoded into nilpotent fusion categories can be realised
in constant depth as discussed in [123]. The sequential unitary circuit within each step is then
simplified to:

j - 1 j
H

(40)

It is easy to check that the sequential unitary circuit maps Z j Z j+1 → X j and X j → Z j−1Z j , as
expected for the Kramers-Wannier duality.
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However, more care should be given to the gate structure near the left and right boundaries,
since the first ancilla qubit on the left boundary will be entangled into the system and not be
measured until the sequential quantum circuit runs into its right end. To be more specific, we
choose j = 1 as the starting point of the periodic chain of size L, meaning that the site L+1 is
equivalent to the site 1. The first ancilla qubit at 1

2 will be acted by both KKW
1
2 ,1, 3

2
and KKW

L− 1
2 ,L, 1

2
.

The complete quantum circuit that implements the Kramers-Wannier duality is

0 1 2 L- 1 L

H H H HH …

…

(41)

where the boundary qubit is relabelled to be 1
2 → 0. Therefore, we finally arrive at the simpli-

fied Kraus operator

KKW = P0

 

L
∏

j=0

H j

L
∏

j=1

CX j−1, j

!

CX0,LPL . (42)

In the end, the entire KW quantum process only introduces one ancilla qubit on the left end
by P0, and measures one final qubit on the right end by PL [19, 123]. This is reminiscent of
orbifolding in the conformal field theory, where the line operators are only inserted once along
the non-contractible loops. In particular, the unitary part of KKW (the quantum circuit part)
maps

Z0ZL Z1→ X0 , X L → ZL ZL−1Z0 . (43)

Therefore, Z0 controls the periodic or anti-periodic boundary condition for the original Ising
model, while ZL controls the boundary condition of the dual model, which are both set to
Z = +1 by the projection operators P0 and PL , realizing periodic boundary conditions in both
original and dual Ising models.

Moreover, unitary part of KW maps the symmetry operator as follows,

L
∏

k=1

Xk→ ZL , Z0→
L−1
∏

k=0

Xk . (44)

These mappings describe how the original Z2 symmetry
∏L

k=1 Xk disappears under gauging

and how the dual Z2 symmetry
∏L−1

k=0 Xk emerges at the same time. Physically, KW inter-
changes the symmetry charge and defect charge. For example, let us consider the sector with

L
∏

k=1

Xk = −1 , Z0 = +1 , (45)

of the original theory (defined on sites j = 1, · · · , L). Under the KW, it maps to,

ZL = −1 ,
L−1
∏

k=0

Xk = +1 , (46)
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which is in the twisted Z2 even sector of the Z2 orbifold theory (defined on sites
j = 0, · · · , L − 1). This is consistent with the Z2 orbifold of Ising CFT that KW interchanges
the sectors,

B Z2-even Z2-odd
untwisted 1,ε σ

twisted µ ψL ,ψR

Z2-orbifold
←→

B/Z2 Z2-even Z2-odd
untwisted 1,ε µ

twisted σ ψL ,ψR

(47)

Pauli polynomial In general, it could be hard to keep track of the mapping of all operators
under the unitary transformations, as in (25), (32). The algebra method used in quantum sta-
bilizer codes becomes useful for this purpose. As reviewed in Appendix C, the tensor product
of Pauli matrices with translation invariance can be represented as a vector, where the coef-
ficients are Z2-valued. For example, the terms (independent sets of stabilizers) in the Ising
model are

Z j Z j+1⇝
�

0
1+ x

�

, X j ⇝
�

1
0

�

. (48)

The unitary transformations will preserve the commutation relation of the stabilizers, and the
unitary transformations can be represented as symplectic transformations on the Pauli poly-
nomials. We introduce ancilla qubits with eX j+ 1

2
= +1, j ∈ Z, which amounts to adding eX j+ 1

2

to each stabilizer set by appending another column of Pauli polynomials in correspondence
to eX j+ 1

2
,

�

0
1+ x

�

→







0 0
0 1

1+ x 0
0 0






,

�

1
0

�

→







1 0
0 1
0 0
0 0






, (49)

where each row now corresponds to (X j , eX j+1/2; Z j , eZ j+1/2) respectively. The unitary maps
Ugauge in (32) and Ucond in (25) are represented as the following symplectic transformations

Tgauge =









1 1 0 0
0 1

x + 1 0 0
0 0 1 0
0 0 1

x+1
1

x+1









, Tcond =







1 0 0 0
0 0 0 1
0 0 1 1+ x

1
x + 1 1 0 0






. (50)

Note that Tgauge is a sequential quantum circuit, while Tcond is a finite depth local unitary
circuit, which can be obtained by combining the elementary transformations,

Tcond = TCZ
j− 1

2 , j
· TCZ

j, j+ 1
2

· TH
j+ 1

2

=







1 0 0 0
0 1 0 0
0 x 1 0
1
x 0 0 1






·







1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1






·







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0






. (51)

Then the symplectic transformation of KW is

TKW = Tcond · Tgauge =









1 1 0 0
0 0 1

x+1
1

x+1
0 0 0 1

1
x + 1 0 0 0









. (52)

It is straightforward to check the KW transformation on the local operators X j , Z j is,

�

X j , Z j

�

⇝







1 0
0 0
0 1
0 0







TKW−−→









1 0
0 1

1+x
0 0

1
x + 1 0









Gauss law
−−−−−→

�

0 1
1+x

1
x + 1 0

�

⇝
�

eZ j− 1
2
eZ j+ 1

2
, eX j+ 1

2
eX j+ 3

2
· · ·
�

, (53)
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where the Gauss law is imposed in the last step to set X j = +1, j ∈ Z, effectively removing the
integer sites from the system. After site relabeling of j+ 1

2 → j, the symplectic transformation

T eff
KW =

�

0 1
1+x

1
x +1 0

�

, (54)

corresponds to the effective KW transformation, under which the operators transform as

(X j , Z j)⇝
�

1 0
0 1

�

T eff
KW−−→

�

0 1
1+x

1
x + 1 0

�

⇝

 

Z j−1Z j ,
∏

j′≥ j

X j′

!

. (55)

In the Kraus operator representation, the KW transformation can be formulated as a quantum
process, implemented by the Kraus operator in an infinite system
KKW = · · ·

∏

j H j
∏

j CX j−1, j · · · , such that X jKKW = KKWZ j−1Z j and Z jKKW = KKW

∏

j′≥ j X j′ .
This matches the quantum circuit description in (40), after adding boundary terms and pro-
jection operators for finite-sized systems.

4 Warm-up with a twist: Z2×Z2 twisted gauging in quantum spin
chain

In this section, we will elaborate on twisted gauging and its connection with “applying an
SPT entangler then untwisted gauging”. This twisted gauging generates a non-local mapping
between local Hamiltonians, in particular, the gapped phases. We will postpone the in-depth
discussion of various duality, triality between gapped phases, and their combination later in
this section.

To illustrate the twisted gauging on the lattice, we start with the concrete Hamiltonians that
respect Z2×Z2 symmetry and describe gapped phases. To be specific, the Z2×Z2 spontaneous
symmetry breaking phase is described by,

HSSB =
∑

j

Z2 j−1Z2 j+1 + Z2 j Z2 j+2 , (56)

where X j , Z j are Pauli matrices. The SSB Hamiltonian hasZe
2×Z

o
2 symmetry, which is generated

by ηe =
∏

j X2 j ,η
o =

∏

j X2 j−1 for even (e) and odd (o) sublattices respectively. The Ze
2 ×Z

o
2

symmetric states include the cluster state in the SPT phase

HSPT =
∑

j

Z2 j−1X2 j Z2 j+1 + Z2 jX2 j+1Z2 j+2 , (57)

and the symmetric trivial product state in the disordered phase,

HSYM =
∑

j

X2 j + X2 j+1 . (58)

Lattice perspective The Ze
2 × Z

o
2 defect moving operator is given by λ(g1,g2)

j = X g1
2 j X g2

2 j+1,
where g1 = 0, 1 (g2 = 0, 1) labels the group element of Ze

2 (Zo
2). Different from the pre-

vious Z2 case, ϕ ∈ H2(Ze
2 × Z

o
2, U(1)) = Z2 has non-trivial element explicitly given by

ϕ(g, h) = (−1)g1h2 . This non-trivial element cannot be trivialized by redefining the symmetry
operator U g → eiν(g)U g no matter how the phase factor ν(g) is chosen. Therefore, the Ze

2×Z
o
2

Gauss law operator has two choices of ϕ(g, h),

ϕ(g, h) = 1 , ϕ(g, h) = (−1)g1h2 , (59)
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for g = (g1, g2), h= (h1, h2) ∈ Ze
2×Z

o
2. The corresponding untwisted Gauss law operator with

ϕ(g, h) = 1 is,
Ge

j = eX2 j− 3
2
X2 j eX2 j+ 1

2
, Go

j = eX2 j− 1
2
X2 j+1 eX2 j+ 3

2
, (60)

and the twisted Gauss law operator with ϕ(g, h) = (−1)g1h2 is given by,

twGe
j = eX2 j− 3

2
eZ2 j− 1

2
X2 j eX2 j+ 1

2
, twGo

j = eX2 j− 1
2
eZ2 j+ 1

2
X2 j+1 eX2 j+ 3

2
. (61)

The twisted Gauss law operator is directly computed using (17), and the ZN × ZN version is
derived in Appendix A. Note that the twisted Gauss law operators are dressed by the operator
acting on the other Z2 gauge field, but the twisted Gauss law operators all commute with each
other as they should.

The Hamiltonians are also extended to include link variables. The untwisted gauging is
similar to the previous Z2 example. We are focusing on the twisted gauging in the following
discussion. The twisted Gauss law operators can be diagonalized by the unitary transforma-
tion, whose explicit form is given by the following finite depth local unitary,

twUcond =
∏

j

CX2 j,2 j+ 1
2
CX2 j,2 j− 3

2
CZ2 j,2 j− 1

2

∏

j

CX2 j−1,2 j− 1
2
CX2 j−1,2 j− 5

2
CZ2 j−1,2 j− 3

2

∏

j

H2 j− 1
2
H2 j+ 1

2
. (62)

Pictorially, it is given by,

-1 -1 / 2-3 -5 / 2 1 3 / 2

H H H

0 1 / 2-2 -3 / 2 2 5 / 2

H H H

...... (63)

where the numbers # correspond to 2 j +#. The corresponding symplectic transformation is
given by,

twTcond =

























1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0
1
x 0 0 0 0 0 0 1
0 0 0 x 1 1+ x 0 0

1
x + 1 1 0 0 0 0 0 0

0 1 0 0 0 0 1 1+ x
0 0 1

x + 1 1 0 0 0 0

























, (64)

whose basis is (X2 j−1, eX2 j− 1
2
, X2 j , eX2 j+ 1

2
, Z2 j−1, eZ2 j− 1

2
, Z2 j , eZ2 j+ 1

2
). Its action on the gauged sta-

bilizers is,
�

Z2 j eZ2 j+ 1
2
Z2 j+2, Z2 j−1eZ2 j− 1

2
Z2 j+1

�

→
�

eX2 j+ 1
2
, eX2 j− 1

2

�

, (65)
�

X2 j , X2 j+1

�

→
�

eZ2 j− 3
2
eX2 j− 1

2
X2 j eZ2 j+ 1

2
, eZ2 j− 1

2
eX2 j+ 1

2
X2 j+1eZ2 j+ 3

2

�

, (66)
�

Z2 j eZ2 j+ 1
2
X2 j+1Z2 j+2, Z2 j−1eZ2 j− 1

2
X2 j Z2 j+1

�

→
�

eZ2 j− 1
2
X2 j+1eZ2 j+ 3

2
, eZ2 j− 3

2
X2 j eZ2 j+ 1

2

�

. (67)

Its action on the Gauss law operators is as desired,

(eX2 j− 3
2
eZ2 j− 1

2
X2 j eX2 j+ 1

2
, eX2 j− 1

2
eZ2 j+ 1

2
X2 j+1 eX2 j+ 3

2
)→ (X2 j , X2 j+1) . (68)
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We then impose the Gauss law, X j = 1, and the twisted gauging maps these gapped phases
to each other as,

TG : SYM
SPT

SSB (69)

For the partial SSB phases,

TG : SSBe↔ SSBo , SSBdiag invariant. (70)

TG generates an order-6 non-local mapping among gapped phases,

(TG)3 = T , (71)

where T is translation by 1 lattice constant (as j→ j + 1), which will permute the Ze
2 and Zo

2
symmetries.

Quantum process perspective The minimal coupling between the local fields and the ad-
ditional ancilla again can be obtained by unitary transformation as Ugauge in the previous Z2
case. However, the twisted Gauss law operator requires a modified sequential quantum circuit,

-1 / 2 1 3 / 2

H

1 / 2 2 5 / 2

H

(72)

where (−1/2, 1,3/2)∼ (2 j−5/2,2 j−1, 2 j−1/2) and (1/2,2, 5/2)∼ (2 j−3/2,2 j, 2 j+1/2).
Its corresponding symplectic transformation is,

twTgauge =

























1 1 0 0 0 0 0 0
0 1

x + 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1

x + 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 1

x+1
1

x+1 0 0
0 0 0 0 0 0 1 0
0 1

x 0 0 0 0 1
x+1

1
x+1

























. (73)

It is straightforward to check the combined action on local operators, the effective symplectic
transformation with Gauss law constraint is,

twTcond · twTgauge
project
−−−→









0 1 1
1+x 0

1
x 0 0 1

1+x
1
x + 1 0 0 0

0 1
x + 1 0 0









≡ TTG , (74)

which acts on (X2 j−1, X2 j; Z2 j−1, Z2 j) basis. It is easy to verify that the symplectic transforma-
tion TG is equivalent to first doing the SPT entangler and then doing Kramers-Wannier duality

20

https://scipost.org
https://scipost.org/SciPostPhys.17.5.136


SciPost Phys. 17, 136 (2024)

on even and odd sites separately,

TTG = TKWe · TKWo · TSPT

=









0 0 1
x+1 0

0 1 0 0
1
x + 1 0 0 0

0 0 0 1









·









1 0 0 0
0 0 0 1

x+1
0 0 1 0
0 1

x + 1 0 0









·







1 0 0 0
0 1 0 0
0 1+ x 1 0

1
x + 1 0 0 1






.

(75)

The quantum circuit for the twisted gauging is

-1 1 3 2 L - 3 2 L - 1

H H H H H

…

…

0 2 4 2 L - 2 2 L

H H H H H

…

…

(76)

or expressed as the following Kraus operator

KTG = USPTKKWo KKWe ,

USPT =

 

2L
∏

j=2

CZ j−1, j

!

CZ2L,1 ,

KKWo = P−1

 

L−1
∏

j=0

H2 j−1

L−1
∏

j=0

CX2 j−1,2 j+1

!

CX−1,2L−1P2L−1 ,

KKWe = P0

 

L−1
∏

j=0

H2 j

L−1
∏

j=0

CX2 j,2 j+2

!

CX0,2LP2L .

(77)

The twisted gauging TG already induces a cyclic permutation among the three gap phases:
SYM, SPT, and SSB, given that their Hamiltonians are related by the Kraus map:

HSYMKTG = KTGHSPT , HSPTKTG = KTGHSSB , HSSBKTG = KTGHSYM . (78)

The slogan for the twisted gauging is,

Twisted gauging= SPT entangler then gauging (S2S1T) , (79)

where T corresponds to applying the SPT entangler SPT and S1 (S2) corresponds for the
Kramers-Wannier duality KWe (KWo) by gauging each of the two Z2 symmetries.

We note that the Kennedy-Tasaki (KT) duality is twisted gauging and then applying an SPT
entangler. The Kennedy-Tasaki (KT) duality maps Z2 × Z2 symmetry-protected topological
(SPT) phase to Z2×Z2 spontaneously symmetry breaking (SSB) phase. The HSYM is invariant
under the KT duality, which is the KT non-invertible symmetry-protected gapped phase.

Kennedy-Tasaki duality= Twisted gauging Z2 ×Z2 then an SPT entangler (TS2S1T). (80)

21

https://scipost.org
https://scipost.org/SciPostPhys.17.5.136


SciPost Phys. 17, 136 (2024)

4.1 (S3 × S3)⋊Z2 action on Z2 ×Z2 gapped phases

As discussed in the previous section, the twisted gauging of Z2×Z2 is not an order-3 map yet,
since TG3 = T , where T is the lattice translation symmetry, and it will swap the Ze

2 and Zo
2.

However, under the TTG map, the SPT phase, symmetric phase and completely SSB phase are
permuted, while the partially SSB phases remain invariant,

TTG :

SYM

SPT

SSB SSBe

SSBdiag

SSBo

. (81)

The left and right triangles are related by KWe.

KWe :

SYM

SPT

SSB SSBe

SSBdiag

SSBo

. (82)

Moreover, the combination (KWe)† ◦ TTG ◦KWe maps,

(KWe)† ◦ TTG ◦KWe :

SYM

SPT

SSB SSBe

SSBdiag

SSBo

. (83)

In general, the untwisted gauging KWeo = KWe ◦ KWo, together with twisted gauging TG
and KWe generate the maps corresponding to the element in (S3 × S3)⋊Z2.3

This can be understood from the symmetry topological field theory (SymTFT) perspective.
The SymTFT of Z2 × Z2 symmetric Hamiltonian is Z2 × Z2 toric code, which contains 16
anyons. The different gapped phases are given by condensing different Lagrangian algebras.
The anyons with self-boson statistics can be organized as follows, such that each column and
row are mutual bosons,

e1 1e ee
1m m1 mm
em me f f

(84)

The table has (S3 × S3) ⋊ Z2 symmetry, where the S3 × S3 permutes the columns and rows,
and Z2 reflects the table along the diagonal (like matrix transpose). This is exactly the anyon
permutation symmetry of the Z2 × Z2 toric code. Depending on condensing which row or
column, there are 6 gapped phases,

Condensible algebra A Gapped phase

11+ e1+ 1e+ ee Z2 ×Z2 SSB
11+ 1m+m1+mm Z2 ×Z2 SYM
11+ em+me+ f f Z2 ×Z2 SPT
11+ e1+ 1m+ em Ze

2 SSB
11+ 1e+m1+me Zo

2 SSB

11+ ee+mm+ f f Zdiag
2 SSB

(85)

3We reserve the term G-ality for every elements in G corresponding to (un)twisted gauging [56]. Since in this
case the Z2 ×Z2 SPT entangler is a unitary, it differs from other order-2 elements that corresponds to (un)twisted
gauging and combining them won’t have the proper fusion rule.
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The bulk (S3×S3)⋊Z2 anyon permutation symmetry generates corresponding maps between
theories [9],

TTG : SPT → SSB→ SYM→ SPT , (86)

KWeo : SYM↔ SSB , (87)

(TTG)†KWeo : SPT ↔ SYM, (88)

(TTG)†KWeo(TTG) : SPT ↔ SSB , (89)

KWe : SYM↔ Ze
2 SSB , SSB↔ Zo

2 SSB , SPT↔ Zdiag
2 SSB . (90)

If we label the symmetry group as (S(1)3 × S(2)3 )⋊Z
c
2, and the generators satisfy,

(a(i))3 = (b(i))2 = (b(i)a(i))2 = 1 , c2 = 1 , ca(i)c = a(̄i), cb(i)c = b(ī) , (91)

where a(i), b(i) are the generators of S(i)3 , and c is the generator for Zc
2. 1̄, 2̄= 2, 1 respectively.

The corresponding maps are related as,

TTG∼ a(1) , KWeo ∼ b(1) , KWe ∼ c . (92)

Then it is clear about the relations of other group elements.
However, the mappings in this Z2 × Z2 case are not on equal footing. In particular, the

element that corresponds to b(1)a(1) is SPT entangler which doesn’t involve any gauging,
therefore, it corresponds to invertible mapping with quantum dimension 1. In the following,
we will specify the G-ality as that each element corresponds to (un)twisted gauging, so that it
can have a consistent fusion rule. We will discuss triality (G = Z3) and p-ality (G = Zp) in the
subsequent sections. The S3-ality is discussed in [56].

Note that SPT phase is invariant under the Kramers-Wannier duality, while the SYM phase is
invariant under the Kennedy-Tasaki transformation. They both admit non-invertible symmetry,
and they are corresponding non-invertible symmetric gapped phase with a unique ground
state.

5 Twisted gauging of ZN ×ZN

It is straightforward to generalize the twisted gauging of Z2×Z2 to ZN×ZN . We first introduce
the ZN generalized Pauli matrices, also known as shift and clock matrices. Let X , Z be N × N
matrices, acting on the states as X |n〉 = |n− 1〉 , Z |n〉 = ωn |n〉, where ω = e

2πi
N . They satisfy

X Z =ωZX . Using these ZN Pauli matrices, we can define controlled gates for the ZN case:

COi, j =
1
N

N
∑

a=1

N
∑

b=1

ω−abZa
i O

b
j , (93)

where i is the controlled site and j is the action site, and the operator O will be replaced by
either X or Z to indicate either CX or CZ gate. We can also define the projection operator to
the Z = 1 state (i.e. the state |n= 0〉) on the site j as

P j =
1
N

N
∑

a=1

Za
j . (94)

These operators will enable us to construct Kraus operators for ZN ×ZN twisted gauging.
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The ZN ×ZN SPT is classified by H2(ZN ×ZN , U(1)) = ZN , which is given by,

HSPTa =
∑

j

Za
2 jX2 j+1Z−a

2 j+2 + Z−a
2 j−1X2 j Z

a
2 j+1 + h.c. (95)

This Hamiltonian is symmetric under the Ze
N × Z

o
N symmetry which is generated by

ηe =
∏

j X2 j ,η
o =

∏

j X2 j−1 on the even (e) and odd (o) sublattices respec-
tively. The SPT Hamiltonian can be obtained from the trivial symmetric phase Hamil-
tonian HSYM ≡ HSPT0 =

∑

j X j + h.c. by the unitary transformation SPT entangler

USPTa =
∏

j CZ
−a
2 j−1,2 jCZ

a
2 j,2 j+1, as HSPTa = U†

SPTa HSYMUSPTa . Here, SPTa denotes the ath
order SPT entangler, which effectively attaches the SPT root state to the system by a times.
Another important gapped phase is the spontaneous symmetry breaking phase, which is sta-
bilized by HSSB =

∑

j Z2 j−1Z−1
2 j+1 + Z2 j Z

−1
2 j+2 + h.c..

The defect moving operator is given by λg1,g2
j = X g1

2 j X g2
2 j+1. The phase associated with the

defect fusion junction is given by ϕ(g, h) =ωbg1h2 ∈ H2(ZN ×ZN , U(1)), where every integer
b ∈ ZN labels a twisted gauging, called b-twisted gauging. Then, following the general formula
of (17), the associated b-twisted Gauss law operators for Ze

N and Zo
N are given by

bGe
j = eX2 j− 3

2
eZ b

2 j− 1
2
X2 j eX

−1
2 j+ 1

2
, bGo

j = eX2 j− 1
2
eZ−b

2 j+ 1
2
X2 j+1 eX

−1
2 j+ 3

2
. (96)

The detailed derivation of the twisted Gauss law operator is in Appendix A. Under the twisted
gauging, the stabilizers for the gapped phase become,

�

Z2 j Z
−1
2 j+2, Z2 j−1Z−1

2 j+1

�

→
�

eX2 j+ 1
2
, eX2 j− 1

2

�

, (97)
�

X2 j , X2 j+1

�

→
�

eZ2 j− 3
2
eX−b

2 j− 1
2

eZ−1
2 j+ 1

2
, eZ2 j− 1

2
eX b

2 j+ 1
2

eZ−1
2 j+ 3

2

�

, (98)
�

Za
2 jX2 j+1Z−a

2 j+2, Z−a
2 j−1X2 j Z

a
2 j+1

�

→
�

eZ2 j− 1
2
eX a+b

2 j+ 1
2

eZ−1
2 j+ 3

2
, eZ2 j− 3

2
eX−a−b

2 j− 1
2

eZ−1
2 j+ 1

2

�

. (99)

Using the symplectic transformation representation, the b-twisted gauging is given by,

bTgauge =

























1 −1 0 0 0 0 0 0
0 1− 1

x 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1− 1

x 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 −b 1

1−x
1

1−x 0 0
0 0 0 0 0 0 1 0
0 b

x 0 0 0 0 1
1−x

1
1−x

























, (100)

whose basis is (X2 j−1, eX2 j− 1
2
, X2 j , eX2 j+ 1

2
, Z2 j−1, eZ2 j− 1

2
, Z2 j , eZ2 j+ 1

2
). And the unitary transforma-

tion that diagonalizes the Gauss law operator is given by,

bTcond =

























−1 0 0 0 0 0 0 0
0 0 −b 0 0 1 0 0
0 0 1 0 0 0 0 0
b
x 0 0 0 0 0 0 1
0 0 0 −bx −1 1− x 0 0

1
x − 1 −1 0 0 0 0 0 0

0 −b 0 0 0 0 1 −1+ x
0 0 1

x − 1 −1 0 0 0 0

























. (101)
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The twisted gauging is given by,

bTcond · bTgauge
project
−−−→ TTGb =









0 −b 1
1−x 0

b
x 0 0 1

1−x
1
x − 1 0 0 0

0 1
x − 1 0 0









, (102)

which acts on (X2 j−1, X2 j , Z2 j−1, Z2 j). One can check (97) in the Pauli polynomial representa-
tion, the SSB, SYM and SPT stabilizers transform as






0 0 0 1 x 0
0 0 1 0 0 1
0 1− x 0 0 0 ax − a

1− x 0 0 0 a− ax 0







T
TGb
−−−→









0 1 −b 0 0 −a− b
1 0 0 b

x a+ b 0
0 0 0 1

x − 1 1− x 0
0 0 1

x − 1 0 0 1
x − 1









. (103)

As a non-local mapping among ZN×ZN symmetric SPT Hamiltonians (and their corresponding
phases), TGb maps SPTa to SPT(−a−b)−1

when N is a prime number, where the inverse should
be understood as the modular multiplicative inverse with respect to N . One can easily convert
the twisted gauging to a quantum process,

TGb = KWe ◦KWo ◦ SPTb , (104)

where the KWe/KWo corresponds to ZN Kramers-Wannier duality on even and odd sites, and
SPTb corresponds to attaching b multiples of the ZN × ZN SPT root state. At the level of
symplectic transformation of Pauli polynomials, (104) means (multiplication order goes from
right to left as the operator mapping reads vP → T · vP , where vP denotes the vector encoding
of Pauli operator P),

TTGb = TKWe · TKWo · TSPTb ,

TKWe =









1 0 0 0
0 0 0 1

1−x
0 0 1 0
0 1

x − 1 0 0









,

TKWo =









0 0 1
1−x 0

0 1 0 0
1
x − 1 0 0 0

0 0 0 1









,

TSPTb =







1 0 0 0
0 1 0 0
0 −b(1− x) 1 0

b( 1
x − 1) 0 0 1






.

(105)

At the level of the Kraus operator, (104) is explicitly realized as (multiplication order goes
from left to right as the operator mapping is given by O⇒ K†OK)

KTGb = USPTb KKWo KKWe ,

USPTb =

 

L
∏

j=1

CZ−b
2 j−1,2 jCZ

b
2 j,2 j+1

!

CZb
2L,1 ,

KKWo = P−1

 

L−1
∏

j=0

H2 j−1

L−1
∏

j=0

CX2 j−1,2 j+1

!

CX−1,2L−1P2L−1 ,

KKWe = P0

 

L−1
∏

j=0

H2 j

L−1
∏

j=0

CX2 j,2 j+2

!

CX0,2LP2L .

(106)

25

https://scipost.org
https://scipost.org/SciPostPhys.17.5.136


SciPost Phys. 17, 136 (2024)

Under the Kraus map of TGb, the SPT Hamiltonians with prime N (95) are related by

HSPTa KTGb ∼ KTGb HSPT(−a−b)−1 , (107)

where ∼ denotes that the Hamiltonians on both sides are in the same SPT phase.

6 Non-local mapping among gapped phases with ZN ×ZN symme-
try

In this section, we use the (un)twisted gauging to study the nonlocal mapping among different
gapped phases. For ZN ×ZN symmetric Hamiltonians, the possible low energy gapped phases
are disorder phase (SYM = SPT0), symmetry-protected topological phases (SPTa) and spon-
taneously symmetry breaking phases (SSB). We will consider the b = 1 and b = −2 twisted
gauging. The twisted gauging combined with global symmetry transformation generates the
triality and p-ality (p is a prime number) mapping between gapped phases.

6.1 Tri = TC eTG1 as the triality map

For general N > 2, the twisted gauging with b = 1 maps,

SPT0 =SYM
SPTN−1

SSB , (108)

which looks like an order-3 triality map. However, these 3 gapped phases are symmetric under
the T Ce symmetry, where T is the translation and Ce is the charge conjugation on the even
sites. If considering partially SSB phases, the TG1 generates an order-12 map. In particular,

(TG1)3 = T Ce . (109)

Note that the translation symmetry effectively swaps the even and odd Ze
N ×Z

o
N symmetry. In

particular, under the (TG1)3 map, the partially symmetry breaking phase becomes,

HSSBe =
∑

j

Za
2 j Z

−a
2 j+2 + X2 j+1 + h.c.

(TG1)3
−−−−→ HSSBo =

∑

j

Z−a
2 j−1Za

2 j+1 + X2 j + h.c. (110)

It is straightforward to modify the order-12 non-local mapping to an order-3 triality map
Tri by combining the T Ce symmetry action to TG1. Since the symmetry action T Ce commutes
with the twisted gauging TG1,

Tri≡ T CeTG1 , (Tri)3 = (T CeTG1)3 = 1 . (111)

This can also be seen from the Pauli polynomial representation acting on
(X2 j−1, X2 j , Z2 j−1, Z2 j),

TTri =









−1 0 0 x
x−1

0 −1 1
1−x 0

0 −1+ x 0 0
1
x − 1 0 0 0









, (112)

and T3
Tri = 1. According to (97), the twisted gauging TG1 combining with the T Ce symmetry

action maps the stabilizers of SPTs as,

Tri= T CeTG1 :
�

Za
2 jX2 j+1Z−a

2 j+2, Z−a
2 j−1X2 j Z

a
2 j+1

�

→
�

eZ2 j eX
−a−1
2 j+1

eZ−1
2 j+2, eZ−1

2 j−1
eX−a−1

2 j
eZ2 j+1

�

. (113)
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Table 2: Non-local mapping Tri acts on the gapped phases. For N = 3 and N = 1
mod 3, there are symmetric gapped phases invariant under Tri. The other gapped
phases are permuted by Tri in disjoint orbits.

N G Tri= T CeTG1 mapping among the gapped phases

2 Z2 ×Z2 SYM

SPT

SSB

3 Z3 ×Z3 SYM

SPT2

SSB SPT1

5 Z5 ×Z5 SYM

SPT4

SSB SPT1

SPT2

SPT3

7 Z7 ×Z7 SYM

SPT6

SSB SPT1

SPT3

SPT5 SPT2 SPT4

For N is prime number, any number x with 1 ≤ x ≤ N − 1, has the greatest common divisor
(x , N) = 1, therefore, x has unique inverse x−1, such that x−1 x = 1 mod N . The stabilizers
after mapping are equivalent to,

�

eZ (−a−1)−1

2 j
eX2 j+1eZ

−(−a−1)−1

2 j+2 , eZ−(−a−1)−1

2 j−1
eX2 j eZ

(−a−1)−1

2 j+1

�

, (114)

where x−1 is understood as the modular multiplicative inverse of x modulo N . It is obvious
that there is an order-3 map among

Tri : SPT0 =SYM
SPTN−1

SSB . (115)

The mapping among other SPTs depends on a and N ,

Tri : SPTa→ SPT(−a−1)−1
. (116)

It is interesting to notice that, the SPTa is invariant under the triality if and only if,

a(a+ 1) + 1= 0 mod N . (117)

We will consider N as a prime number in the following. The equation has solutions if N = 1
mod 3 for general prime N > 3. Since (117) is a quadratic equation, it has at most two
solutions. If the two solutions are a1, a2, then by Vieta’s relations,

a1a2 = 1 mod N , a1 + a2 = −1 mod N . (118)

For example, N = 3, the SPT1 is invariant under the triality. For N = 7, both SPT2 and SPT4

are invariant under the triality. More examples of the triality invariant SPTs are summarized
in Tab. 2. The first few Tri-ality invariant SPTs are given as follows,

{SPT1
3} , {SPT2

7, SPT4
7} , {SPT3

13, SPT9
13} , {SPT7

19, SPT11
19} , {SPT5

31, SPT25
31} , (119)

where the SPT phases are labelled by SPTa
N . Other ZN × ZN SPTs are permuted by order 3

cycles under the Tri-ality map,

N 5 7 11 13
Cycles (1,2, 3) (1,3, 5) (1,5, 9)(2,7, 4)(3,8, 6) (1, 6,11)(2,4, 5)(7,8, 10) . (120)
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To summarize, the gapped phases of ZN × ZN are invariant under Tri if and only if N = 3 or
N = 1 mod 3, and for the latter case, there are at least 2 gapped SPTs that are Tri invariant.
The Tri maps other gapped phases by order 3 permutations as the consequences of Tri being a
triality map. The Tri invariant theories admit triality fusion category symmetry. More detailed
analysis of triality fusion category symmetry protected topological phases relies on the study
of its fiber functors and we leave it for future study.

The ordinary SPTs cannot be smoothly connected without breaking the protecting symme-
try. Similarly, the triality fusion category symmetry-protected topological phases will undergo
a phase transition between them, the critical theory can also be triality fusion category sym-
metric. For example, when N = 7,

H7
tri =

∑

j

λ(Z2
2 jX2 j+1Z−2

2 j+2 + Z−2
2 j−1X2 j Z

2
2 j+1) + (1−λ)(Z

4
2 jX2 j+1Z−4

2 j+2 + Z−4
2 j−1X2 j Z

4
2 j+1) + h.c. (121)

The transition occurs at λ = 1
2 , which is pinned by the duality transformation TKWeKWo.

The whole phase diagram is invariant under the triality and admits triality fusion category
symmetry. In particular, the non-invertible line operators Q that corresponds to Tri= T CeTG1

with quantum dimension N has the fusion rules with invertible lines in ZN ×ZN ,

Q⊗Q=
⊕

g∈ZN×ZN

g , g ⊗Q=Q⊗ g =Q , g ⊗ h= gh , (122)

g ⊗Q=Q⊗ g =Q , Q⊗Q= NQ , (123)

where g, h ∈ ZN ×ZN and thus Q⊗Q⊗Q= N
⊕

g∈ZN×ZN
g. The details of this triality fusion

category will discussed in Sec. 7. The quantum dimension of Q can also be counted by the
Kraus operator that implements such triality transformation. The KWeo effectively adds 1 lat-
tice site which corresponds to quantum dimension N , while translation T , charge conjugation
Ce and SPT are unitary transformations that will not change the quantum dimension of the
defect line.

6.2 P = TC eTG−2 as the p-ality map for Zp ×Zp with prime p

Another special non-local map is an p-ality map, which is given by,

P= T CeTG−2 : TP =









2 0 0 x
x−1

0 2 1
1−x 0

0 x − 1 0 0
1
x − 1 0 0 0









. (124)

One can find its action on the stabilizers in the Hamiltonian straightforwardly. Interestingly, n
times P transformation yields,

(TP)
n =







n+ 1 0 0 nx
x−1

0 n+ 1 n
1−x 0

0 n(x − 1) −n+ 1 0
n( 1

x − 1) 0 0 −n+ 1






. (125)

Therefore, for Zp ×Zp system with prime p, Pp = 1 mod p and P generates an order p non-
local mapping. The p-ality P maps the SPT phases as,

P : SPTa→ SPT(−a+2)−1
, (126)
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Table 3: Non-local mapping P acts on the Zp × Zp gapped phases. For all prime
numbers p, SPT1 is P invariant. The other p gapped phases are permuted under P.

p G p-ality P= T CeTG−2 mapping among the gapped phases

2 Z2 ×Z2 SPT SSB↔ SYM

3 Z3 ×Z3 SPT1 SSB→ SYM→ SPT2→ SSB

5 Z5 ×Z5 SPT1 SSB→ SYM→ SPT3→ SPT4→ SPT2→ SSB

7 Z7 ×Z7 SPT1 SSB→ SYM→ SPT4→ SPT3→ SPT6→ SPT5→ SPT2→ SSB

where the x−1 should be understood as the modular multiplicative inverse of x modulo p.
Therefore, for any prime number p, there exists only one p-ality invariant SPT phase, which
is given by,

a2 − 2a+ 1= 0⇒ a = 1 . (127)

Then the p-ality P maps the gapped phases as,

P : SPT1 SSB→ SYM→ SPT2−1
→ ·· · → SPT2→ SSB , (128)

where the sequence of SPT phases follows (126) with the understanding that SPT0 = SYM
and “SPT∞” = SSB. For the first few prime numbers, the p-ality mapping is given in Tab. 3.
We note that for p = 2 the p-ality coincides with the duality with off-diagonal bicharacter, i.e.
Rep(D8), and for p = 3, the p-ality coincides with the triality Tri. The detailed mathematical
structures and continuum field theory applications of p-ality are discussed in [56].

From this lattice perspective, we see that the p-ality always has a symmetric gapped phase,
which is given by SPT1. In general, if a theory is invariant under the p-ality, it admits the p-ality
fusion category symmetry. We note that there are distinct p-ality fusion category symmetric
gapped phases that cannot be continuously deformed to each other without breaking the non-
invertible symmetry, similar to [24]. The p-ality non-invertible lines Pi , i = 1, · · · , p − 1 have
quantum dimension p which follows the same argument as that in triality, namely, only the
KWeKWo part will contribute quantum dimension p, the other actions correspond to quantum
dimension 1. The fusion rules for Pi are,

g ⊗Pi = Pi ⊗ g = Pi , Pi ⊗P j =

¨

⊕

g∈Zp⊗Zp
g , i = − j ,

pPi+ j , otherwise.
(129)

7 Noninvertible symmetry from (un)twisted gauging

Given the partition function of the continuum field theory, the discrete gauging is specified by a
bicharacter χ : G× bG→ U(1) and the possible discrete torsion α(g, h) = ϕ(g, h)ϕ(h, g)−1. We
assume G is abelian for simplicity. Suppose the original partition function has global symmetry
G, which is tracked by the background gauge field A. We promote the background gauge field
A to the dynamical gauge field labeled by a. After gauging, there is a dual symmetry bG with
background gauge field bA,

eZ[X , bA] =
1
|G|g

∑

a∈H1(X ,G)

Z[X , a]exp

�

2πi

∫

χ(a, bA) +α(a)

�

, (130)

where X is the 2-dimensional base manifold, a ∈ H1(X , G) and bA∈ H1(X , bG). The bicharacter
χ gives the identification between the original global symmetry and the dual symmetry. For
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Ze
2×Z

o
2, if χ((A1, A2), (bA1, bA2)) = A1∪ bA1+A2∪ bA2 is diagonal pairing, then intuitively the dual

symmetry is still Ze
2 ×Z

o
2. However, if χ((A1, A2), (bA1, bA2)) = A1 ∪ bA2 + A2 ∪ bA1 is off-diagonal

pairing, then the two Z2s get swapped. In particular,

KWeo ∼ diagonal pairing∼ Rep(H8) = TY(Z2 ×Z2,χdiag,+1) , (131)

TKWeo ∼ off-diagonal pairing∼ Rep(D8) = TY(Z2 ×Z2,χoffdiag,+1) , (132)

where KWeo = KWe ◦ KWo as before and the last column gives the emerged infrared non-
invertible symmetry if the theory is self-dual under gauging theZ2×Z2 symmetry with different
bicharacters [61, 83, 84]. The translation T will permute the even and odd sites, resulting in
exchanging Ze

2 and Zo
2.

In general, if the theory is invariant under gauging an abelian symmetry A, then it admits
the Tambara-Yamagami category symmetry TY(A,χ,ε), where χ is the bicharater in the gaug-
ing, and ε ∈ H3(Z2, U(1)) is the Frobenius-Schur indicator. The simple objects in TY(A,χ,ε)
are group-like line operators g ∈ A and a non-invertible line N with quantum dimension

p

|A|.
These simple lines satisfy the following fusion rules,

g ⊗ h= gh , g ⊗N =N ⊗ g =N , N ⊗N =
⊕

g∈A
g . (133)

The only non-trivial F -symbols are

[F gNh
N ]N ,N = [F

N gN
h ]N ,N = χ(g, h), [FNNN

N ]g,h =
ε

p

|A|
χ(g, h)−1 , (134)

where ε = ±1 is the Frobenius-Schur indicator for N , which is classified by
ε ∈ H3(Z2, U(1)) = Z2, and χ : A× A → U(1) is a non-degenerate symmetric bicharacter,
which satisfies

χ(g, h) = χ(h, g) , χ(gh, k) = χ(g, k)χ(h, k) , χ(g, hk) = χ(g, h)χ(g, k) . (135)

For general ZN × ZN , the untwisted gauging with diagonal and off-diagonal bicharacters
are,

KWeo : Z[A1, A2]→ Z[bA1, bA2] =
1
|G|g

∑

a1,a2

Z[a1, a2]ω
a1∪bA1+a2∪bA2 , (136)

TKWeo : Z[A1, A2]→ Z[bA1, bA2] =
1
|G|g

∑

a1,a2

Z[a1, a2]ω
a1∪bA2+a2∪bA1 . (137)

The twisted gaugings TG1,Tri= T CeTG1 and P= T CeTG−2 discussed in the previous section
correspond to,

TG1 = KWeoSPT : Z[A1, A2]→ Z[bA1, bA2] =
1
|G|g

∑

a1,a2

Z[a1, a2]ω
a1∪a2ωa1∪bA1+a2∪bA2 , (138)

Tri= T CeKWeoSPT : Z[A1, A2]→ Z[bA1, bA2] =
1
|G|g

∑

a1,a2

Z[a1, a2]ω
a1∪a2ωa1∪bA2−a2∪bA1 . (139)

When N = 2, Tri transformation reduces to the triality in [61]. It is straightforward to verify
(TG1)3 : Z[A1, A2]→ Z[A2,−A1] and (Tri)3 = 1 using a∪b = −b∪a and

∑

aω
a∪b = δb,0. One

can also compute such partition function on a torus, the cup product becomes
A∪B = Ax By−Ay Bx , where Ax ,y denote the gauge fields along the cycles in the x , y-direction.
The partition functions for the gapped phases are given by,

ZSPTa[A1, A2] =ω
aA1∪A2 , ZSSB[A1, A2] = δA1,0δA2,0 . (140)
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And the partially SSB phases are given by δA,0, where A is some combination of A1, A2 that
corresponds to the diagonal subgroup. Lastly, the p-ality transformation P= T CeKWeoSPT−2

is give by,

P : Z[A1, A2]→ Z[bA1, bA2] =
1
|G|g

∑

a1,a2

Z[a1, a2]ω
−2a1∪a2ωa1∪bA2−a2∪bA1 . (141)

The better way to check the transformation on the boundary partition function is to examine
the symmetry of bulk SymTFT as discussed in Appendix D.

For a theory that is invariant under the Tri or P transformation, it admits the triality or
p-ality fusion category symmetry. Similar to the TY category, the pairing between the orig-
inal symmetry and the dual symmetry relates to the F -symbols of the form of F gDh

D , where
g, h ∈ ZN×ZN and D is the triality or p-ality non-invertible defect. However, different from the
TY category, the symmetry fractionalization class of triality or p-ality fusion category symmetry

is in general not trivial, then, for example, FDD̄g
h and F gDD̄

h will be non-trivial [60,99,100].

7.1 Triality fusion category symmetry

If theZN×ZN symmetric theory is invariant under the trialityTri transformation, then it admits
the triality fusion category symmetry. Similar to the Tambara-Yamagami category, the triality
fusion category can be viewed as an Z3 extension of VecZN×ZN

. The simple lines in the triality
fusion category are group-like lines g ∈ ZN ×ZN and non-invertible lines Q,Q with quantum
dimension N ,

g ⊗ h= gh , g ⊗Q=Q⊗ g =Q , g ⊗Q=Q⊗ g =Q , (142)

Q⊗Q= NQ , Q⊗Q=
⊕

g∈ZN×ZN

g , (143)

which implies Q⊗Q⊗Q = N
⊕

g∈ZN×ZN
g. In the following, we try to determine the triality

fusion category that is realized in the ZN × ZN spin model. The triality fusion category of
this particular twisted gauging Tri with corresponding transformation on the partition func-
tion(139) can be a group theoretical fusion category,

C((Za
N ×Z

b
N )⋊Z3,ωκ,Za

N , 1) , (144)

where

(Za
N ×Z

b
N )⋊Z3 = 〈a, b, c|aN = bN = c3 = 1, ab = ba, cac−1 = a−1 b, cbc−1 = a−1〉 , (145)

where Z3 is the subgroup of the automorphism group of Za
N ×Z

b
N , Aut(Za

N ×Z
b
N ) = GL(2,ZN )

assuming N is prime. ωκ relates to the Frobenius-Schur (FS) indicator of Q, and its explicit
form is given in [56]. For this triality fusion category, the non-trivial FS indicator forbids
a symmetric gapped phase. Therefore, in the case that has Tri invariant gapped phase, the
triality fusion category is necessarily anomaly-free with a trivial FS indicator. Hence, for N = 3
and prime N = 1 mod 3, the triality fusion category is C((Za

N ×Z
b
N )⋊Z3, 1,Za

N , 1).
The group theoretical fusion category suggests that the triality transformation can be ob-

tained by gauging the subgroup Za
N of (Za

N × Z
b
N ) ⋊ Z3. One starts with the theory that is

symmetric under (Za
N ×Z

b
N )⋊Z3, then gauges the Za

N subgroup, the Z3 symmetry transforma-
tion becomes triality transformation as illustrated in [56].
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In particular, we consider the Ze
N ×Z

o
N spin model, there are 3 particular partially sponta-

neously symmetry breaking phases,

HSSBe = −
∑

j

Z2 j Z
−1
2 j+2 + X2 j+1 + h.c. , (146)

HSSBo = −
∑

j

Z2 j−1Z−1
2 j+1 + X2 j + h.c. , (147)

HSSBdiag = −
∑

j

Z2 j−2Z−1
2 j−1Z−1

2 j Z2 j+1 + X2 j−2X2 j−1 + h.c. (148)

The Z3 invertible symmetry permutes these 3 partially SSB phases, while it becomes triality
Tri non-invertible symmetry under the conjugation of KWe or gauging Ze

N ,

SSBe

SSBdiag

SSBo
KWe

←−→ SYM

SPT−1

SSB . (149)

In partition function formalism, the Z3 symmetry acts as,

Z3 : Z[A1, A2]→ Z[−A1 + A2,−A1] , (150)

where A1, A2 are the background gauge fields of Ze
N , Zo

N . We define the Ze
N gauged partition

function,
bZ[A1, A2] =

1
|G|g

∑

a1

Z[a1, A2]ω
a1∪A1 . (151)

Then the Z3 acts on the gauged theory as,

bZ3 : bZ[A1, A2] =
1
|G|g

∑

a1

Z[a1, A2]ω
a1∪A1 (152)

−→
1
|G|g

∑

a1

Z[−a1 + A2,−a1]ω
a1∪A1 (153)

=
1
|G|g

∑

a1,a2

bZ[a2, a1]ω
−a1∪A1+a2∪a1+a2∪A2 (154)

=
1
|G|g

∑

a1,a2

bZ[a1, a2]ω
a1∪a2ωa1∪A2−a2∪A1 , (155)

which agrees with the transformation in (139).

7.2 p-ality fusion category symmetry

In the following discussion, p is a prime number. If the Zp × Zp symmetric theory is further
invariant under the p-ality P transformation, then it admits the p-ality fusion category sym-
metry. We then try to determine the p-ality fusion category that is realized in the Zp×Zp spin
models. The fusion rules of the simple lines are given by,

g ⊗ h= gh , g ⊗Pi = Pi ⊗ g = Pi , Pi ⊗P j =

¨

⊕

g∈Zp⊗Zp
g , i = − j ,

pPi+ j , otherwise.
(156)
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The complete classification of the p-ality fusion category is not known. However, one particu-
larly interesting one is the group theoretical fusion category [56],

P+,m = C(Za
p ×Z

b
p ×Z

c
p,ω+,m,Za

p ×Z
b
p, 1) , (157)

where ω+,m(ai1 b j1 ck1 , ai2 b j2 ck2 , ai3 b j3 ck3) = e
2πi
p i1 j2k3+

2πim
p2 k1(k2+k3−[k2+k3]p). The second part in

ω+,m is a type I anomaly of Zc
p and it relates to Frobenius-Schur indicator of Pi . In this p-ality

fusion category, the non-trivial FS indicator obstructs the symmetric trivial gapped phase. Our
interested models have SPT1 as the p-ality invariant theory, therefore, the FS indicator must
be trivial. To realize non-trivial FS indicators, one needs to stack SPT corresponding to the
non-trivial element in H3(Zp, U(1)) [21].

The group theoretical fusion category suggests the p-ality is obtained by gauging Za
p ×Z

b
p

subgroup of global symmetryZa
p×Z

b
p×Z

c
p with type III anomaly. The type III anomaly is used to

bootstrap the conformal field theory of the multicritical point between the SPT phases [58]. For
p = 2, this analysis coincides with study of Rep(D8)∼= C(Z2×Z2×Z2,ω+,0,Z2×Z2, 1) [101]. In
particular, [24] uses the Kennedy-Tasaki transformation to convert the Rep(D8) to Z2×Z2×Z2
with the type III anomaly, and then analyze the different symmetry breaking patterns to con-
struct the symmetric gapped phases (fiber functors) of Rep(D8). Parallel analysis can yield
other symmetric gapped phases of this p-ality fusion category.

To be specific, we consider the Ze
p × Z

o
p spin system as in the previous section, where the

symmetry is generated by ηe =
∏

j X2 j ,η
o =

∏

j X2 j−1. The Zc
p symmetry is generated by

ηc =
∏

j

CZ−1
2 j−1,2 jCZ

1
2 j,2 j+1 , (158)

which permutes the SPTa→ SPTa+1 but leaves the SSB phase invariant,

Zc
p : SSB SYM→ SPT1→ SPT2→ ·· · → SPTp−1→ SYM. (159)

Following the group theoretical fusion category, the p-ality fusion category is obtained by gaug-
ing Ze

p × Z
o
p. Note that stacking Ze

p × Z
o
p SPTs will not change the fusion category since the

type III anomaly will assimilate the SPT. In the following, we consider the TS1S2T−1 transfor-
mation, which is the Zp generalization of Kennedy-Tasaki transformation, SPT KWe,o SPT−1.
Note that this is an order 2 non-local mapping,

SSB
TST−1

←−−→ SPT1 , SPTa TST−1

←−−→ SPT1−(a−1)−1
, (160)

where the inverse should be understood as mod p. This matches with the (128),

P : SPT1 SPT2→ SSB→ SYM→ ·· · → SPT3·2−1
→ SPT2 . (161)

We follow the procedure in the previous section and [56] to derive the p-ality action on the
partition function. Because of the type III anomaly, the Zc

p symmetry acts on the partition
function as,

Zc
p : Z[A1, A2]→ Z[A1, A2]ω

A1∪A2 , (162)

where A1, A2 tracks the global symmetry Ze
p and Zo

p. We define the Ze
p × Z

o
p gauged partition

function following the TS1S2T−1 transformation,

bZ[A1, A2] =
1
|G|g

∑

a1,a2

Z[a1, a2]ω
−a1∪a2+a1∪A1+a2∪A2+A1∪A2 . (163)
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Then the Zc
p symmetry acts on the gauged theory as,

bZc
p : bZ[A1, A2] =

1
|G|g

∑

a1,a2

Z[a1, a2]ω
−a1∪a2+a1∪A1+a2∪A2+A1∪A2 (164)

→
1
|G|g

∑

a1,a2

Z[a1, a2]ω
a1∪a2ω−a1∪a2+a1∪A1+a2∪A2+A1∪A2

=
1
|G|g

∑

a1,a2;b1,b2

bZ[b1, b2]ω
−b1∪b2+b1∪a1+b2∪a2+a1∪a2ωa1∪A1+a2∪A2+A1∪A2 (165)

=
1
|G|g

∑

b1,b2

bZ[b1, b2]ω
−2b1∪b2+b1∪A2−b2∪A1 . (166)

This matches with (141).
Furthermore, another group theoretical fusion category P−,m in [56] involves type II

anomaly, and it is also compatible with the fusion rules in (156). In this case, the non-trivial
FS indicator can still have a symmetric trivial gapped phase, since the type II anomaly will
“cancel” the obstruction. It is also interesting to construct various symmetric gapped phases
of this p-ality fusion category P−,m.

8 Conclusion

In this paper, we studied the (un)twisted gauging on a 1d lattice incorporating the analogous
data from continuous theory. The non-local duality mapping is translated into the gauging
procedure, and the general (un)twisted gauging leads to novel non-local mapping of the local
Hamiltonians, which preserves the locality of symmetric operators but maps charged operators
to non-local operators. The dual symmetry is explicit in this construction and could be fusion
category symmetry under the (un)twisted gauging. We elaborate the (un)twisted gauging on
lattice using both lattice operator algebra and Kraus operator in the quantum process. We
detailed study the triality for ZN × ZN symmetric Hamiltonians and p-ality mapping for the
Zp×Zp symmetric Hamiltonians with prime p, we found the mapping among different gapped
phases. Under certain conditions, there exist triality or p-ality invariant gapped phases. For
theories that are invariant under the triality or p-ality, they admit corresponding non-invertible
symmetry. We analyze their corresponding group theoretical fusion category construction.
The data of the non-invertible symmetry contains additional information of the triality or p-
ality defects, which can be extracted from the lattice defect Hamiltonians as in [21]. For the
non-invertible symmetric gapped phases with unique ground state, there are distinguishable
cousins which cannot be smoothly connected to each other.

There are several directions to pursue in the future:

• Since we know the triality and p-ality fusion category admit symmetric gapped phases
with unique ground state under certain algebraic condition, it is interesting to have the
classification of these symmetric gapped phases. For group theoretical fusion category,
the condition is known in [56,59,60]. The lattice construction of these trivial symmetric
gapped phases is leaving for future study. One approach is to import the fusion category
data to the tensor network formalism as developed in [120].

• It would be interesting to generalize the lattice twisted gauging as an ingredient to com-
pare and generate other interesting non-local mapping with respect to non-abelian sym-
metry, fermionic symmetry, non-invertible symmetry and higher form symmetry. Many
related works on duality mappings for various cases are reviewed in the introduction.
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• It is also interesting to extract more fusion category data and the data of fiber functors
from the lattice (defect) Hamiltonian [21,24,61,93,143].

• The (1+1)d symmetric gapped phases with domains can be used to encode the logical
qubits and using non-local mapping as the quantum gate to implement the quantum
computing. This corresponds to the boundary perspective of the dynamic automorphism
codes [144–148].
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A Twisted Gauss law operator

For ZN ×ZN , the non-trivial element in H2(ZN ×ZN , U(1)) is ϕ(g, h) =ωbg1h2 , where b ∈ ZN .
The general Gauss law operator is given by,

G(g1,g2)
j =

∑

a,b∈G

�

ϕ(ag−1, g)†
�

�ag−1
�

〈a|
�

⊗λg
j ⊗ (ϕ(g, b) |g b〉 〈b|)

=
∑

(a1,a2),(b1,b2)

�

ω−b(a1−g1)g2 |a1 − g1〉 〈a1|
�

j− 1
2
⊗ (|a2 − g2〉 〈a2|) j− 1

2
⊗ (X e

j )
g1(X o

j )
g2

⊗ (|g1 + b1〉 〈b1|) j+ 1
2
⊗
�

ωbg1 b2 |g2 + b2〉 〈b2|
�

j+ 1
2

= (eZe
j− 1

2
)−bg2(eX e

j− 1
2
)g1(eX o

j− 1
2
)g2(X e

j )
g1(X o

j )
g2(eX e

j+ 1
2
)−g1(eX o

j+ 1
2
)−g2(eZo

j+ 1
2
)bg1 , (A.1)

where (a1, a2), (b1, b2), (g1, g2) ∈ Ze
N ×Z

o
N and |a〉 j− 1

2
= (|a1〉 ⊗ |a2〉) j− 1

2
. Let (g1, g2) = (1, 0)

and (0, 1), we have,

G(1,0)
j = eX e

j− 1
2
(X e

j )
g1(eX e

j+ 1
2
)−1(eZo

j+ 1
2
)b , G(0,1)

j = (eZe)−b
j− 1

2

eX o
j− 1

2
X o

j (eX
o
j− 1

2
)−1 . (A.2)

B Useful identities for ZN generalized Pauli matrices

As defined in the main text,

COm,n =
1
N

N
∑

α=1

N
∑

β=1

ω−αβ ZαmO
β
n . (B.1)

Under the CZa transformation,

X I → X Za , IX → ZaX , Z I → Z I , I Z → I Z , (B.2)
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whose symplectic transformation is,

TCZa =







1 0 0 0
0 1 0 0
0 a 1 0
a 0 0 1






. (B.3)

Under the CXa transformation,

X I → X X a , IX → IX , Z I → Z I , I Z → Z−aZ , (B.4)

whose symplectic transformation is,

TCXa =







1 0 0 0
a 1 0 0
0 0 1 −a
0 0 0 1






. (B.5)

We can also define the generalized Hadamard gate and its corresponding symplectic transfor-
mation,

H=
1
p

N
ω−(i−1)( j−1) , TH =

�

0 1
−1 0

�

. (B.6)

C Practical review of algebraic methods for quantum codes on lat-
tice

In this section, we give a practical review of the algebraic methods for quantum codes on lattice
developed in [79,80] and the nice review [81]. The basic idea is that the Pauli operators can be
mapped to vectors in the symplectic vector spaces to keep the commutation relation but forget
the phases in front of the Pauli operators. The elements in the Clifford group, which maps any
Pauli operator to a Pauli operator, are represented as matrices that preserve the symplectic
structure.

First, let’s consider a quNit, with local Hilbert space CN , spanned by |n〉 , n ∈ ZN . We define
the generalized Pauli operator as in the main context, X |n〉 = |n− 1〉 , Z |n〉 = ωn |n〉, where
ω = ei

2π
N . And X Z = ωZX . The general Pauli operator is given by ηX ξZζ, where ξ,ζ ∈ ZN

and η is the phase factor. Two Pauli operators have the commutation relation,

ηX ξZζη′X ξ
′
Zζ
′
=ωξζ

′−ξ′ζη′X ξ
′
Zζ
′
ηX ξZζ . (C.1)

And they commute up to a phase ωm, where

m= ξζ′ − ξ′ζ mod N =
�

ξ ζ
�

�

0 1
−1 0

��

ξ′

ζ′

�

mod N . (C.2)

The Pauli operator ηX ξZζ is represented by the vector ( ξ ζ )⊺. And the commutation relation
between two Pauli operators is encoded by,

�

ξ ζ
�

�

0 1
−1 0

��

ξ′

ζ′

�

mod N . (C.3)

Any transformation that preserves the commutation relation is a symplectic transformation on
the vector, for the symplectic transformation A is a 2× 2 matrix with values in ZN ,

A⊺
�

0 1
−1 0

�

A=

�

0 1
−1 0

�

. (C.4)
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For example, the elementary transformations are,
�

1 0
a 1

�

,

�

0 1
−1 0

�

,

�

a 0
0 a−1

�

, (C.5)

where a ∈ Z×N . They correspond to the phase gate, Hadamard gate, and the Kd =
∑

i |−i〉 〈i|
gate [149]. For m quNit system, the Pauli operator is represented as 2m-vector,

m
∏

l=1

(X l)ξ
l
(Z l)ζ

l
⇝
�

ξ1 · · · ξm | ζ1 · · · ζm
�⊺

, (C.6)

where X l acts on the l-th quNit, similar for Z l . We neglect the phase factors in front of the
Pauli operators since they are irrelevant for the commutation relation. Then the symplectic
transformation is given by 2m× 2m matrix with values in ZN and satisfies,

A⊺
�

0 I
−I 0

�

A=

�

0 I
−I 0

�

, A∈ GL(2m,ZN ) , (C.7)

where I is m×m identity matrix. The symplectic transformations correspond to CZ and CX
are listed in Appendix B.

It is interesting and useful to incorporate the translation invariance in the algebraic
method. In one spatial dimension, the translation symmetry is Z and generated by x . x i

represents translation by i sites (unit cells). Then the Pauli operator
∏

i X ξi
i Zζi

i , where X i , Zi
act on the site (unit cell) i, is represented as,

�∑

i ξi x
i |

∑

i ζi x
i
�⊺

. (C.8)

And the dual vector is given by x → x−1,
�∑

i ξi x
−i |

∑

i ζi x
−i
�

. (C.9)

The commutation relation between two Pauli operators is encoded by,

xtr

�

�∑

i ξi x
−i

∑

i ζi x
−i
�

�

0 1
−1 0

��∑

i ξ
′
i x

i
∑

i ζ
′
i x

i

��

, (C.10)

where xtr[x i] = 1 if i = 0 and 0 otherwise. For example, the Ising coupling Zi Z
−1
i+1 is repre-

sented as,
�

0 | x i − x i+1
�⊺ ≃

�

0 | 1− x
�⊺

. (C.11)

The ≃ is because of the translation invariance. For m quNit system on 1-dimensional lattice
with translation invariance, the general Pauli operator is given by

∏m
l=1

∏

i(X
l
i )
ξl

i (Z l
i )
ζl

i , where
X l

i acts on l-th quNit and site i. It is represented as,
m
∏

l=1

∏

i

(X l
i )
ξl

i (Z l
i )
ζl

i ⇝
∑

i

x i
�

ξ1
i · · · ξm

i | ζ1
i · · · ζm

i

�⊺
. (C.12)

Any transformation A(x) that preserves the commutation relation is given by,

A(x−1)⊺
�

0 I
−I 0

�

A(x) =

�

0 I
−I 0

�

, (C.13)

where A(x) is a polynomial of x with coefficients as 2m× 2m matrices with values in ZN . For
example, on the 1d lattice with one quNit per site, some interesting unitary is given by,

∏

j

CZ j, j+1⇝
�

1 0
x−1 + x 1

�

,
∏

j

CX j, j+1→
�

1
1−x 0
0 −x−1 + 1

�

, (C.14)

where the second one is acting CX j, j+1 sequentially and it does not preserve locality. For local
Hilbert space with m quNit, some elementary symplectic transformations are given by,
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• Hadamard eHi: rowi = row j , row j = −rowi for 1≤ i ≤ m,

• controlled-NOT eCi→ j(a): rowi += a(x) × row j , row j+m += −a(x−1) × rowi+m for
1≤ i ̸= j ≤ m,

• controlled-Phase: rowi+m += f × rowi where f ∈ ZN for 1≤ i ≤ m,

where a(x) is a polynomial of x with coefficients in ZN .
For example, the stabilizers for the ZN × ZN symmetric phase (1,2-column), SSB phase

(3,4-column) and SPT phase (5,6-column) with minimal coupling to the ZN ×ZN gauge field
is represented as



























SYM SSB SPT Gauss law
0 1 0 0 x 0 0 x
0 0 0 0 0 0 0 1− x
1 0 0 0 0 1 x 0
0 0 0 0 0 0 1− x 0
0 0 0 1− x 0 ax − a 0 0
0 0 0 1 0 −a bx 0
0 0 1− x 0 a− ax 0 0 0
0 0 1 0 a 0 0 −b



























, (C.15)

where the basis is (X2 j−1, eX2 j− 1
2
, X2 j , eX2 j+ 1

2
, Z2 j−1, eZ2 j− 1

2
, Z2 j , eZ2 j+ 1

2
) and the last two columns

correspond to the twisted Gauss law operators (96). To find the unitary that transforms the
twisted Gauss law operator (96) into the form of single X , one applies the elementary sym-
plectic transformations to (C.15),

eH4◦eH1◦eC4→1(bx)◦eC2→1(x)◦eC2→1(−1)◦eC3→2(−b)◦eC3→4(−x−1)◦eC3→4(1)◦eH1◦eH2 , (C.16)

which corresponds to the matrix form in (101). Certainly, there are different paths lead to the
same unitary transformation. It is an interesting question to find the minimal one. Under the
unitary transformation, the resulting stabilizers are,

























0 −1 0 0 −x 0 0 −x
−b 0 0 1 0 −a− b 0 0
1 0 0 0 0 1 x 0
0 b

x 1 0 a+ b 0 0 0
0 0 0 0 0 0 0 0
0 1

x − 1 0 0 1− x 0 0 0
0 0 0 0 0 0 0 0

1
x − 1 0 0 0 0 1

x − 1 0 0

























. (C.17)

D Bulk symmetry TFT

The ZN ×ZN symmetric theory in (1+1)d can be viewed as the boundary of (2+1)d ZN ×ZN
quantum double. Using the Chern-Simons theory representation,

L= 1
4π

KI J aI ∧ daJ , K = N







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0






, (D.1)
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the charge vector is (e1, e2, m1, m2)⊺. The above Chern-Simons theory is a continuum descrip-
tion of the ZN ×ZN Dijkgraaf-Witten theory [150–152]. The non-local mappings of the bound-
ary theories correspond to the global symmetry of the bulk theory [153, 154]. In particular,
the bulk global symmetry of Zm

N quantum double is generated by V ,
�

V ∈ GL(2m,ZN ) | V
�

0 I
I 0

�

V ⊺ =

�

0 I
I 0

��

, (D.2)

where I is m×m identity matrix. Such a group is called a split orthogonal group. There are
3 types of bulk global symmetry, and they correspond to different actions on the boundary
theory [153].

R-type The R-type symmetry in the matrix form is,

R(U) =

�

U 0
0 U−1⊺

�

, A⊺→ U−1⊺A⊺ , (D.3)

where A is the background gauge fields in the boundary theory that track the global symme-
try. Note that such bulk global symmetry corresponds to the automorphism of the boundary
symmetry group.

T-type The T-type symmetry is generated by,

Tn =





I

�

0 n
−n 0

�

0 I



 , Z[A1, A2]→ Z[A1, A2]ω
nA1∪A2 , (D.4)

where I is the identity matrix and Z[A1, A2] is the partition function of the boundary theory.
The T-type bulk symmetry corresponds to applying an SPT entangler on the boundary theory.

S-type The S-type symmetry is given by,

Si =

�

I − J J
J I − J

�

, Z[· · · , Ai , · · · ]→
∑

ai∈H1(X ,ZN )

Z[· · · , ai , · · · ]ωai∪Ai , (D.5)

where I is the identity matrix, Ji,i = 1 and 0 otherwise. Si is the EM duality between the
i-th ZN in the bulk and corresponds to gauging the i-th ZN symmetry on the boundary, i.e. Si
corresponds to the Kramers-Wannier duality of the i-th ZN on the boundary.

Note that both R-type and T-type correspond to action with finite depth local unitary on
the boundary theory. To classify the non-local mapping on the boundary theory, one should
mod out the R-type and T-type transformations [154].

In particular, the triality transformation Tri corresponds to the bulk symmetry,

VTri = R(U1) · S2 · S1 · T =







0 0 0 1
0 0 −1 0
0 1 −1 0
−1 0 0 −1






, (D.6)

where U1 =
�

0 1
−1 0

�

. It is easy to check V 3
Tri = 1.

The p-ality transformation P is given by,

VP = R(U1) · S2 · S1 · T−2 =







0 0 0 1
0 0 −1 0
0 1 2 0
−1 0 0 2






, (D.7)

where U1 =
�

0 1
−1 0

�

is the same as above. It is easy to check V p
P
= 1 mod p, where p is a prime

number.
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E Defect

One can obtain the Kramer-Wannier duality defect Hamiltonian using the half-gauging on the
lattice as illustrated in [21,93]. We will show the defect Hamiltonian with various (un)twisted
half-gaugings.

E.1 Untwisted Half-gauging ZN ×ZN

We consider half gauging the system < 2 j+1, then it creates the defect located at (2 j, 2 j+1).
The defect Hamiltonian is closely related to the Kramer-Wannier duality defect and corre-
sponds to doing Kramer-Wannier duality on even and odd sites KWeKWo and then shift
j→ j − 1

2 ,

Z2 j Z
−1
2 j+2→ X2 j Z

−1
2 j+2 , X2 j → Z2 j−2Z−1

2 j ,

Z2 j−1Z−1
2 j+1→ X2 j−1Z−1

2 j+1 , X2 j−1→ Z2 j−3Z−1
2 j−1 . (E.1)

The defect terms for the SPTa are given by,

Z−a
2 j−1X2 j Z

a
2 j+1→ Z2 j−2X−a

2 j−1Z−1
2 j Za

2 j+1 ,

Za
2 jX2 j+1Z−a

2 j+2→ X a
2 jX2 j+1Z−a

2 j+2 . (E.2)

When N = 2, such defect Hamiltonian under the renormalization group flow will corre-
spond to inserting the duality defect of Rep(H8). A closely related duality defect of Rep(D8) is
given by TKWeKWo, whose ZN ×ZN version is,

Z2 j Z
−1
2 j+2→ eX2 j+1Z−1

2 j+2 , X2 j → Z2 j−1eZ
−1
2 j+1 ,

Z2 j−1Z−1
2 j+1→ X2 j Z

−1
2 j+1 , X2 j−1→ Z2 j−2Z−1

2 j . (E.3)

The defect terms for the SPTa are given by,

Z−a
2 j−1X2 j Z

a
2 j+1→ Z2 j−1X−a

2 j
eZ−1

2 j+1Za
2 j+1 ,

Za
2 jX2 j+1Z−a

2 j+2→ eX a
2 j+1X2 j+1Z−a

2 j+2 . (E.4)

There is an additional site in the Hilbert space and the dimension of the defect Hilbert space
is larger by N times. This corresponds to the quantum dimension of the duality defect.

E.2 Twisted half-gauging

The twisted half-gauging can be obtained by first applying SPT entangler to half of the space
and then applying untwisted half-gauging,

Z2 j Z
−1
2 j+2→ X2 j Z

−1
2 j+2 , X2 j → Z2 j−2X−b

2 j−1Z−1
2 j ,

Z2 j−1Z−1
2 j+1→ X2 j−1Z−1

2 j+1 , X2 j−1→ Z2 j−3X b
2 j−2Z−1

2 j−1 . (E.5)

The defect terms for the SPTa are given by,

Z−a
2 j−1X2 j Z

a
2 j+1→ Z2 j−2X−a−b

2 j−1 Z−1
2 j Za

2 j+1 ,

Za
2 jX2 j+1Z−a

2 j+2→ X a
2 jX2 j+1Z−a

2 j+2 . (E.6)

Combined with the translation operator, the defect terms become,

Z2 j Z
−1
2 j+2→ eX2 j+1Z−1

2 j+2 , X2 j → Z2 j−1X−b
2 j
eZ−1

2 j+1 ,

Z2 j−1Z−1
2 j+1→ X2 j Z

−1
2 j+1 , X2 j−1→ Z2 j−2X b

2 j−1Z−1
2 j . (E.7)
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The defect terms for the SPTa are given by,

Z−a
2 j−1X2 j Z

a
2 j+1→ Z2 j−1X−a−b

2 j
eZ−1

2 j+1Za
2 j+1 ,

Za
2 jX2 j+1Z−a

2 j+2→ eX a
2 j+1X2 j+1Z−a

2 j+2 . (E.8)

Again, the dimension of the defect Hilbert space is N times larger than the original Hilbert
space. This corresponds to the quantum dimension of the triality defect.

E.3 Derivation of half gauging

E.3.1 Untwisted half-gauging

KWeKWo

Z2 j eZ2 j+ 1
2
Z−1

2 j+2→ eX2 j+ 1
2
Z−1

2 j+2 , X2 j → eZ2 j− 3
2
eZ−1

2 j+ 1
2

,

Z2 j−1eZ2 j− 1
2
Z−1

2 j+1→ eX2 j− 1
2
Z−1

2 j+1 , X2 j−1→ eZ2 j− 5
2
eZ−1

2 j− 1
2

. (E.9)

The defect terms for the SPTa are given by,

Z−a
2 j−1

eZ−a
2 j− 1

2
X2 j Z

a
2 j+1→ eZ2 j− 3

2
eX−a

2 j− 1
2

eZ−1
2 j+ 1

2
Za

2 j+1 ,

Za
2 j
eZa

2 j+ 1
2
X2 j+1Z−a

2 j+2→ eX a
2 j+ 1

2
X2 j+1Z−a

2 j+2 . (E.10)

E.3.2 SPT entangler

U =
∏

j CZ
−b
2 j−1,2 jCZ

b
2 j,2 j+1 acts < 2 j + 1, only the following terms will be modified

X2 j → Z−b
2 j−1X2 j , (E.11)

Z−a
2 j−1X2 j Z

a
2 j+1→ Z−a−b

2 j−1 X2 j Z
a
2 j+1 . (E.12)

E.3.3 Twisted half-gauging

Combining the SPT entangler and untwisted half-gauging, we have,

Z2 j eZ2 j+ 1
2
Z−1

2 j+2→ eX2 j+ 1
2
Z−1

2 j+2 , X2 j → Z−b
2 j−1X2 j → Z−b

2 j−1
eZ−b

2 j− 1
2
X2 j → eZ2 j− 3

2
eX−b

2 j− 1
2

eZ−1
2 j+ 1

2
,

Z2 j−1eZ2 j− 1
2
Z−1

2 j+1→ eX2 j− 1
2
Z−1

2 j+1, X2 j−1→ Z b
2 j−2X2 j−1Z−b

2 j → eZ2 j− 5
2
eX b

2 j− 3
2

eZ−1
2 j− 1

2
. (E.13)

The defect terms for the SPTa are given by,

Z−a
2 j−1X2 j Z

a
2 j+1→ Z−a−b

2 j−1 X2 j Z
a
2 j+1→ Z−a−b

2 j−1
eZ−a−b

2 j− 1
2

X2 j Z
a
2 j+1→ eZ2 j− 3

2
eX−a−b

2 j− 1
2

eZ−1
2 j+ 1

2
Za

2 j+1 ,

Za
2 j
eZa

2 j+ 1
2
X2 j+1Z−a

2 j+2→ eX a
2 j+ 1

2
X2 j+1Z−a

2 j+2 . (E.14)
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