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Abstract

We expand the concept of two-dimensional topological insulators to encompass a novel
category known as topological dipole insulators (TDIs), characterized by conserved
dipole moments along the x -direction in addition to charge conservation. By generaliz-
ing Laughlin’s flux insertion argument, we prove a no-go theorem and predict possible
edge patterns and anomalies in a TDI with both charge Ue(1) and dipole Ud(1) symme-
tries. The edge of a TDI is characterized as a quadrupolar channel that displays a dipole
Ud(1) anomaly. A quantized amount of dipole gets transferred between the edges under
the dipolar flux insertion, manifesting as ‘quantized quadrupolar Hall effect’ in TDIs. A
microscopic coupled-wire Hamiltonian realizing the TDI is constructed by introducing a
mutually commuting pair-hopping terms between wires to gap out all the bulk modes
while preserving the dipole moment. The effective action at the quadrupolar edge can
be derived from the wire model, with the corresponding bulk dipolar Chern-Simons re-
sponse theory delineating the topological electromagnetic response in TDIs. Finally, we
enrich our exploration of topological dipole insulators to the spinful case and construct
a dipolar version of the quantum spin Hall effect, whose boundary evidences a mixed
anomaly between spin and dipole symmetry. Effective bulk and the edge action for the
dipolar quantum spin Hall insulator are constructed as well.
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1 Introduction

Topological insulators and quantum Hall states in two dimensions possess incompressible bulk
with their boundaries hosting exotic gapless modes of chiral/helical charge currents [1–4].
These gapless edge states exhibit intriguing U(1) quantum anomalies, precluding their real-
ization in purely one-dimensional lattice models with local interactions. Over recent decades,
considerable research has been dedicated to the quest for a more expansive range of topo-
logical insulators known as symmetry-protected topological phases (SPT) [5–35]. As demon-
strated in [27,36–39], the peculiar feature of topological insulators (or broadly defined SPTs)
is the emergence of anomalous symmetry as the effective theory on the boundary. For instance,
the quantum spin Hall insulator [4] whose boundary supports left- and right-moving charge
channels with opposite Sz spins manifests mixed quantum anomaly between the charge and
spin U(1) symmetries, as gauging the charge U(1) symmetry inevitably leads to the breaking
of spin Sz conservation at the edge [14,27,40,41].

More recently, an increasing amount of activity has been dedicated to the study of quan-
tum many-body systems with conservation of higher multipolar moments in addition to the
total charge [42–71]. Systems with multipole conservation law characteristically exhibit con-
strained dynamics for charged excitations [72–75] as they would inevitably violate the multi-
pole symmetry constraint. Multipole conservation is also closely linked to glassy dynamics as it
provides ways to achieve robust ergodicity breaking and anomalously slow diffusion [76–85],
and plays a pertinent role in understanding experiments where ultracold atoms are prepared
in strongly tilted optical lattices [86–88].

In this work, we take a further step in enlarging the scope of multipole symmetry con-
sideration to topological quantum materials. We achieve this by constructing coupled-wire
models for the dipolar version of the quantum Hall effect (denoted as topological dipole in-
sulator, or TDI) for spinless fermions and quantum spin Hall insulators for spinful fermions.
These coupled-wire models possess conserved charge and conserved dipole moment along
one direction, are incompressible in the bulk, and host localized, gapless modes with quantum
anomalies at their boundaries [41, 47, 63, 89–96]. The distinctiveness of TDI arises from the
dipole conservation, which stringently forbids single-particle hopping in some specific direc-
tions. Both the spinless TDI and the spinful dipolar quantum spin Hall insulator can arise from
multi-channel inter-wire scattering that preserves the dipole moment. By a careful choice of
dipole symmetry-allowed inter-wire coupling terms, one can gap out all the modes in the bulk
and leave a single quadrupolar channel gapless at each edge. The construction of a dipolar
quantum spin Hall insulator proceeds in a similar manner, with extra considerations for the
spin degrees of freedom at the wire.

Other pioneering works on the dipolar quantum Hall effect such as those proposed in
[63,89] assumed that dipole moments in both directions are conserved. In our model, dipole
conservation occurs in only one direction, perpendicular to the edge in the case of a cylindrical
geometry, which facilitates the microscopic wire construction. Thus our system possesses two
U(1) symmetries, U e(1) and Ud(1), associated with the conservation of charge and the x-
dipole moment, respectively.
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We start by developing a generalization of Laughlin’s flux-threading argument [97] into
a no-go theorem in Sec. 2, constraining the possible edge patterns in TDI and characterizing
potential quantum anomalies at the boundaries of TDI. In particular, we show that the U e(1)
symmetry cannot be anomalous at the edge nor has a mixed anomaly with Ud(1). As a result,
in contrast with the integer quantum Hall effect which hosts one right-moving (R) channel at
one edge and one left-moving (L) channel at the opposite edge, the edge of TDI is forced to host
a quadrupolar edge pattern whose microscopic feature consists of one R-channel running along
the y-direction at the coordinate x = 1, two L-channels (of different flavors) at x = 2, and
another R-channel at x = 3. The opposite edge hosts its counter-propagate partner, with one L
channel, two R channels, and another L channel at x = Lx −2, Lx −1, and Lx , respectively, for
a strip of width Lx . Such quadrupolar edge structures are in accord with the no-go theorem
stating that, at the edge, a chiral channel with excitations carrying Ud(1) charge is allowed
but those with U e(1) charge are not.

The conclusion drawn from the general no-go argument is further supported by con-
crete microscopic construction for TDI in Sec. 3.1, where we generalize the coupled-wire
scheme of Luttinger liquids [98–107] to incorporate dipole conservation. Note that in related
works [92,93,95,107,108], various methods are demonstrated for constructing a broad class
of 3D subsystem-symmetric topological phases, exhibiting fracton behavior, from a collection
of one-dimensional subsystems, such as electronic quantum wires or spin chains. In Sec. 3.2,
we analyze the effective theory of boundary excitations. As expected, the edge along the y-
direction supports a quadrupole channel. By introducing interactions within the channel, we
can gap out some edge excitations and leave behind a chiral mode that is charge-neutral but
carries a dipole moment, and an anti-propagating chiral mode that is both charge and dipole-
neutral. In App. A, we show that the same pattern of excitations appears at the edges along
the x-direction. For both the x- and y-edges, the chiral mode that carries the dipole moment
is responsible for the Ud(1) anomaly on the edge – A perturbative anomaly that triggers the
increase/decrease of the dipole moment at the left/right edge under the Ud(1) dipole flux
insertion, resulting in the quantized transfer of the dipole across the bulk.

In Sec. 3.3, we derive dipolar Chern-Simons(CS) theory, effectively capturing the topolog-
ical response of TDI. It turns out that the dipolar CS theory is reminiscent of the ordinary CS
theory in the quantum Hall effect, but written in terms of gauge fields that transform according
to the dipole symmetry of the underlying microscopic model [63]. The quantized coefficient
of the dipolar CS theory naturally embodies the quantized dipole transport under the dipolar
flux insertion. Finally, in Sec. 4, we extend our exploration of TDI to spinful fermions and
construct a model for dipole quantum spin Hall insulator, whose boundary supports a mixed
anomaly between dipole charge and the spin Sz moment. The response theory is captured by
a mutual Chern-Simons theory of the dipole and spin gauge field.

2 Flux insertion, edge patterns, and no-go theorem

Our objective is to explore the realm of two-dimensional (2D) topological insulators possessing
the charge and dipole conservation,

Q =

∫

ρ(x , y) d xd y , Dx =

∫

xρ(x , y) d xd y , (1)

where ρ(x , y) is the charge density. (The integral can be replaced by a sum over coordi-
nates for lattice models.) A microscopic model satisfying these conservation laws would, for
instance, consist of single-particle hopping along the y-direction but only dipole-conserving
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two-particle hopping along the x-direction,

tc

∑

r

ψ†
rψr+ey

+ td

∑

r

ψr−ex
ψ†

rψ
†
r+ex
ψr+2ex

+ h.c. ,

where r = (x , y) and ei is the unit vector along the i-direction.
Here we are interested in a gapped and topological model with protected edge states, and

the question of foremost importance is regarding the structure of gapless boundary modes in
TDI, as well as the edge and bulk effective theories governing its low-energy response. These
questions have been addressed to some extent in earlier formulations of quantum Hall states
with dipole symmetry [63,89] through field-theoretic methods, but here our approach differs
significantly in that the dipole symmetry is explicitly imposed in only one direction. This
scheme allows us to make a strong statement regarding the possible structure of edge states in
TDI, construct the microscopic coupled-wire model, and derive the edge and the bulk effective
theories rigorously from the coupled-wire model.

Given that the nontrivial topology of TDI can manifest itself through the symmetry anomaly
on its boundary, we first identify possible edge patterns that display quantum anomalies under
the charge and dipole symmetries. Consider placing the TDI on a cylinder with open bound-
aries at x = 1 and x = Lx , in a lattice model where the x-coordinate takes integer values.
Drawing from analogy to the integer quantum Hall state whose boundaries carry a left-moving
chiral charge current at x = 1 and a right-moving one at x = Lx respectively, a naive expecta-
tion for TDI is to simply ‘double’ the edge channels by placing ‘chiral dipole patterns’ on each
edge, e.g. R-channel at x = 1, L-channel at x = 2; L-channel at x = Lx − 1 and R-channel
at x = Lx . However, such arrangement of edge patterns violates dipole conservation and is
forbidden, as can be demonstrated in a thought experiment similar to Laughlin’s flux insertion
argument for the integer quantum Hall effect [97], which we will elaborate on soon.

Since the TDI exhibits two U(1) symmetries associated with the conservation of charge
and x-dipole moment, two separate flux insertion processes denoted U e(1) and Ud(1) can be
envisioned corresponding to the change of the vector potential Ay from zero to the following:

U e(1) : Ay =
2π
L y

, Ud(1) : Ay =
2πx
L y

. (2)

The gauge potential Ay minimally couples with the electron current through eiAyψ†
rψr+ey

in
the microscopic Hamiltonian, and L y is the circumference of the cylinder wrapped in the y-

direction. The amount of flux inserted through the x-th ring on the cylinder is
∫ L y

0 Ay(x) d y ,
equal to 2π (i.e., a flux quantum) for the U e(1) flux and 2πx for the Ud(1) flux, respectively.
Hence, the U e(1) flux insertion induces a charge shift of ±1 for the R and L-modes, akin to
the chiral anomaly in 1D Weyl fermions. The dipolar flux insertion Ud(1) results in a charge
shift of ±x for the R- and L-channel at the x-th wire.

For the dipolar edge patterns we conjectured earlier, the Ud(1) flux insertion results in a
charge shift of +1,−2,−(Lx −1),+Lx for the wires located at x = 1,2, Lx −1, Lx , respectively,
resulting in the unit charge transfer from one edge to the other. This conserves the total charge
but not the dipole moment, which changed by 2Lx − 4 during the dipole flux insertion. Such
a dipole insulator would be anomalous in the bulk and cannot be realized in 2D lattice models
under local interactions. This exemplifies a no-go theorem, ruling out the existence of chiral
dipole patterns at the boundary of a TDI.

With the preceding discussion in mind, we can systematically search for possible edge
patterns of TDI that are anomaly-free under the U e(1) and Ud(1) symmetries. In essence,
each boundary may host gapless modes that are anomalous under either the charge U e(1)
or the dipole Ud(1) symmetry, but the combination of the two edges along with the bulk as
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Figure 1: Proximate to the edge, the x = i-th row contains mi copies of the chiral
mode. The anomaly-free condition requires that the total charge and dipole moment
remain invariant after U e(1) and Ud(1) flux insertions, thus imposing constraints on
the possible choices of mi .

a complete 2D theory must be anomaly-free. This requires that the bulk charge and dipole
moment remain invariant after the flux insertions.

For the sake of argument, we assume that proximate to the edge, the x = i-th row contains
mi copies of the chiral mode, as illustrated in Fig. 1. Here, the integers mi > 0 (mi < 0) indicate
an R-chiral (L-chiral) mode. Considering the localized nature of the edge modes, we postulate
that nonzero mi is supported only on 1 ≤ i ≲ ξ or 0 ≤ (Lx − i) ≲ ξ, where ξ≪ Lx represents
the correlation length.

The anomaly-free condition under the flux insertions can be formulated as algebraic rela-
tions among the integers mi . The U e(1) flux insertion triggers a charge modification described
by (m1, m2, . . . , mLx−1, mLx

) in the rows from x = 1 to x = Lx , as shown in Fig. 1. Since
the theory requires the conservation of both charge and dipole moment, the total charge and
dipole moment should remain invariant before and after the flux insertion:

Lx
∑

i=1

mi = 0 ,
Lx
∑

i=1

i ×mi = 0 . (3)

In a similar vein, the dipole flux insertion via the gauge potential Ay =
2πx
L y

would lead to
a charge modification described by (m1, 2m2, 3m3, . . . , (Lx − 1)mLx−1, Lx mLx

). Consequently,
the requirements of charge and dipole conservation after flux insertion impose two algebraic
equations:

Lx
∑

i=1

i ×mi = 0 ,
Lx
∑

i=1

i2 ×mi = 0 . (4)

Overall the anomaly-free condition generates three sets of algebraic relations:
∑

i

mi =
∑

i

i ×mi =
∑

i

i2 ×mi = 0 .

These relations constrain the possible edge patterns. Although numerous solutions exist, the
simplest choice is:

(m1, m2, m3) = (1,−2, 1) ,

(mLx−2, mLx−1, mLx
) = (−1, 2,−1) . (5)
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Other solutions are either topologically equivalent to this one up to symmetry-allowed edge
reconstructions or integer multiples of the above. The edge patterns implied by Eq. (5) can be
viewed as a quadrupole channel at one edge and its time-reversal partner at the other. With
these quadrupolar channels in place, both the charge and the dipole moment at each boundary
remain unchanged under the U e(1) flux insertion. On the other hand, under the Ud(1) flux
insertion, the local dipole moment at the left/right edge increases/decreases by 2, resulting
in the transfer of two units of dipole moment across the bulk under the dipolar flux insertion.
This is the dipolar version of the Laughlin argument wherein a net charge transfer across
the bulk takes place under the charge flux insertion. In other words, the edge quadrupole
channels of TDI manifest a self-anomaly concerning the Ud(1) symmetry. While the edge
reconstruction may alter the microscopic form of the edge theory, the anomaly associated with
dipole symmetry remains robust. In Sec. 3.2, we will present a concrete edge reconstruction
that gaps out partial degrees of freedom at the boundary while preserving the key features of
the anomalous boundary.

Given that the TDI exhibits both charge and dipole conservations, one might wonder if a
self-anomaly related to the U e(1) symmetry or a mixed anomaly between Ud(1) and U e(1)
might exist on the edge. We argue, contrary to intuition, that none of these can be realized in
2D lattice models. To see why, suppose there is a mixed anomaly between Ud(1) and U e(1)
symmetry at the edges. In this case, the flux insertion of Ud(1) would alter the total charge
at the left/right boundary by mL/mR(= −mL) respectively. However, such a charge transfer
between the edges immediately violates the dipole moment conservation of the entire system,
rendering the whole 2D theory anomalous. Therefore, a mixed anomaly between Ud(1) and
U e(1) cannot materialize at the edge of a 2D TDI. A similar reasoning rules out the U e(1)
anomaly at the edge as well. In conclusion, the only conceivable anomaly at the edge of a
dipole insulator is the perturbative anomaly related to the Ud(1) symmetry. Similar restrictions
on the boundary anomalies are also observed in 1D dipolar SPTs [67]. Our next step is to
construct a microscopic model that reproduces such anomalous edge patterns of TDI.

3 Wire construction of TDI

We provide a microscopic model of TDI protected by charge and dipole conservations, by
building upon the framework of coupled-wire construction [98,100–103,105,107] which has
proven vastly instrumental in developing various topological models with gapless boundaries.
In particular, we adapt the coupled-wire construction for the quantum Hall states to incorpo-
rate the dipole conservation. The outcome is a coupled-wire model properly embodying the
quadrupolar edge structure of TDI predicted in the previous section, and the edge and the bulk
response theories for TDI.

3.1 Coupled-wire construction of TDI

As the minimal arrangement for constructing the TDI, we assume four flavors of right movers
and another four flavors of left movers, for a total of eight wires per row x ∈ Z. The low-energy
kinetic Hamiltonian at x , with the velocity set to unity, is

Hwires(x , y) = i
4
∑

a=1

[ψa(x , y)]†τz∂yψ
a(x , y) , (6)

spanning four flavors a = 1, ..., 4, and the Pauli matrix τz acts in the space of chirality corre-
sponding to the left and right movers of 1D chiral fermionsψa = (ψa

L ,ψa
R). All excitations are

assumed to occur around the same lattice momentum.
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Figure 2: A) Coupled wire setting for TDI: each row represents four flavors of 1D
Dirac fermions of either R (blue) or L (red) chirality. B) Inserting a dipole flux
through the cylinder triggers dipole pumping between the edges. C) The building
block of the coupled-wire construction. D) How the charges in each wire transform
under the U e(1) and Ud(1) symmetries.

Our objective is to figure out how to couple these 1D wires in a translation-invariant,
dipole-preserving way so that all the bulk modes are gapped out. Recall the wire construction
for the quantum Hall state: A pair of chiral modes [ψL(x),ψR(x)] exists at each x . The inter-
wire backscattering term ∼ ψL(x)ψ

†
R(x + 1) + h.c. is introduced between a pair of modes

[ψL(x),ψR(x + 1)] and gaps out all the modes except the two chiral edge modes ψR(1) and
ψL(Lx) as they are not involved in any of the backscattering terms.

To streamline this formulation, we select a set of chiral modes from several adjacent rows
into a building block, e.g.

[ψ1
L(x),ψ

2,3,4
R (x + 1),ψ2,3,4

L (x + 2),ψ1
R(x + 3)] . (7)

There is a degree of arbitrariness in the choice of flavor indices made above, which will not
affect the final result. The full quantum wire array consists of these building blocks for x ∈ Z,
so that each mode ψa

L/R only belongs to one unique building block. For TDI of width Lx , the
building blocks are confined to 1 ≤ x ≤ Lx − 3. The inter-wire coupling acts within each
building block, and their effects can be analyzed independently of other building blocks.

As depicted in Fig. 2(C), we refer toψa
L/R(x) as the left/right (L/R) chiral fermion mode of

flavor a at row x . Henceforth, we will focus on selecting suitable inter-wire couplings within
this building block to gap out the bulk. Single-particle hopping terms like ψ†,a′

L/R(x
′)ψa

L/R(x)
for x ′ ̸= x are prohibited due to dipole conservation. Consequently, the lowest-order inter-
wire coupling terms are quartic in the fermion fields. The main challenge is to find a Ud(1)
symmetry-preserving coupling term that effectively gaps out all degrees of freedom within
each block.

Hereafter, we will express the inter-wire coupling terms in the bosonized language, in
which the fermion operator is expressed in terms of the vertex operator ψa

R/L ∼ eiφa
R/L . The

vertex operators transform under the Ud(1) dipole symmetry as:

φa
L/R(x , y)→ φa

L/R(x , y) +α · x , (8)

with arbitrary phase α. The inter-wire coupling terms must be invariant under such trans-
formations. Counting all the symmetry-preserving quartic tunneling terms gives the desired

7

https://scipost.org
https://scipost.org/SciPostPhys.17.5.137


SciPost Phys. 17, 137 (2024)

tunneling Hamiltonian,

V(x) = −g1 cos[φ1
L(x)−φ

2
R(x+1)−φ3

R(x+1)+φ4
L(x+2)]

− g2 cos[φ1
L(x)−φ

3
R(x+1)−φ4

R(x+1)+φ2
L(x+2)]

− g3 cos[φ1
L(x)−φ

4
R(x+1)−φ2

R(x+1)+φ3
L(x+2)]

− g4 cos[φ2
R(x+1)−φ3

L(x+2)−φ4
L(x+2)+φ1

R(x+3)]

− g5 cos[φ3
R(x+1)−φ4

L(x+2)−φ2
L(x+2)+φ1

R(x+3)]

− g6 cos[φ4
R(x+1)−φ2

L(x+2)−φ3
L(x+2)+φ1

R(x+3)] . (9)

We omit writing the y-coordinate labels explicitly in the Hamiltonian and assume that all
cosine couplings in Eq. (9) occur at the same y . The coordinate x ranges from x = 1 to
x = Lx − 3, and we only include the chiral modes inside this building block. Recalling the
commutation relations among the chiral fields:

[φa
R(x , y),φa′

R (x
′, y ′)] = −[φa

L(x , y),φa′
L (x
′, y ′)]

= πiδaa′δx x ′sgn(y − y ′) , (10)

it is easy to check that all the cosine terms in Eq. (9) commute with each other. While six
cosine terms are identified in Eq. (9), only the first four are independent; the last two being
linear combinations of the first four. The inter-wire coupling detailed in Eq. (9) results in four
independent mass terms, sufficient to gap out the four helical modes per building block and
consequently all the bulk degrees of freedom, provided that the gi couplings are sufficiently
strong.

A few modes do not show up in the inter-wire Hamiltonian (9) and continue to be gapless.
For example, on the leftmost boundary at x = 1 we have only the φ1

L(x = 1) mode present in
Eq. (9), leaving the other seven modes gapless. However, generic intra-wire coupling within
the x = 1 block can occur without violating the dipole conservation, allowing all three remain-
ing L-modes to pair with three of the R-modes and gap each other out, ultimately leaving only
one R-mode gapless. At x = 2, the modes φ1

R and φ2,3,4
L , not being part of the backscattering

Hamiltonian, are gapless. Yet, φ1
R can be gapped out against one of the three L-modes through

intra-wire coupling, resulting in two gapless L-modes at x = 2. At x = 3, the only mode not
included in the inter-wire Hamiltonian is φ1

R.
In the end, the modes that withstand all generic intra-wire gapping-out processes at the

boundary are one R-mode at x = 1, two L-modes at x = 2, and one R-mode at x = 3, pre-
cisely reproducing the quadrupole channels anticipated from the general consideration of the
previous section. It will be shown next that some of these modes can be further gapped out
using inter-wire couplings and couplings to auxiliary neutral chiral modes.

3.2 Edge effective theory

The hydrodynamic theory for edge excitations in the TDI can be formulated within the coupled-
wire scheme. As established already, the gapless quadrupolar edge mode consists of φ1

R(1),
φ2

L(2), φ
3
L(2), and φ1

R(3). The effective Lagrangian for these boson modes contains the fol-
lowing terms:

L= + 1
4π

�

∂yφ
1
R(1)∂tφ

1
R(1) + ∂yφ

1
R(3)∂tφ

1
R(3)
�

−
1

4π

�

∂yφ
2
L(2)∂tφ

2
L(2) + ∂yφ

3
L(2)∂tφ

3
L(2)
�

, (11)

where the sign of each term reflects their chirality. It turns out that the following potential
term, which commutes with all terms in V(x), can be added while observing the dipole sym-
metry:

V = −v cos
�

φ1
R(1)−φ

2
L(2)−φ

3
L(2) +φ

1
R(3)
�

. (12)
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For sufficiently large v, the fields are restricted to the minimum of the potential:

φ3
L(2) = φ

1
R(1)−φ

2
L(2) +φ

1
R(3) .

Substituting this relation back to the Lagrangian in Eq. (11) and using integration by parts,
we arrive at the new Lagrangian

L= 1
2π
∂yΦ1∂tΦ2 , (13)

where
Φ1 ≡ φ2

L(2)−φ
1
R(1) , Φ2 ≡ φ1

R(3)−φ
2
L(2) .

These fields Φ1,Φ2 are invariant under the U e(1) symmetry but transforms under the Ud(1)
symmetry as Φ1,2→ Φ1,2 +α, leaving the Lagrangian Eq. (13) invariant under it.

We can finalize the construction of the effective edge theory of TDI by adding potential
terms to quadratic order:

L= 1
2π
∂yΦ1∂tΦ2 −

K ′

2π
∂yΦ1∂yΦ2 −

K
4π

�

∂yΦ1

�2 −
K

4π

�

∂yΦ2

�2
. (14)

The coefficients must satisfy K ′ < K to guarantee the stability of the potential. The ensuing
equations of motion are

−∂y∂tΦ2 + K∂ 2
y Φ1 + K ′∂ 2

y Φ2 = 0 ,

−∂y∂tΦ1 + K∂ 2
y Φ2 + K ′∂ 2

y Φ1 = 0 , (15)

solved by identifying two gapless modes

ΦL =
1
2
(Φ1 +Φ2) , ΦR =

1
2
(Φ1 −Φ2) , (16)

with their respective dispersions ωL/R = (K ′ ± K)k. Since K ′ < K , we conclude that the
two eigenmodes are counter-propagating, and ΦL ,ΦR can be interpreted as the left and right
moving modes. Among them, the right mover ΦR is both charge- and dipole-neutral, and
represents a neutral chiral mode. The left mover ΦL , on the other hand, transforms under the
dipole symmetry, Eq. (8), as ΦL → ΦL + α. Only the ΦL mode is responsible for the dipole
anomaly at the boundary.

Finally, we comment on the edge stability and possible edge reconstruction. Although there
are two counter-propagating modes ΦL and ΦR at the edge, they remain gapless under dipole
symmetry as the backscattering between the dipole-charged mode ΦL and the dipole-neutral
mode ΦR is prohibited. One can also consider more exotic edge reconstruction by adding
layers of a chiral state that is both charge and dipole neutral (e.g., chiral spin liquid with a
chiral central charge c = 1), to gap out the chiral neutral ΦR mode and leave the boundary
with only the chiral dipole current ΦL . The effective Lagrangian for the chiral dipole current
is given by

L= 1
2π
∂yΦL∂tΦL −

1
2π
(K + K ′)(∂yΦL)

2 . (17)

A concurrent question on the agenda concerns the effective theory of the edge along the
x-axis. In the context of coupled wire construction in quantum Hall states, it is observed that
both types of boundaries—whether parallel or perpendicular to the wires—exhibit the same
edge state at the infrared (IR) limit, regardless of the anisotropy of the original Hamiltonian.
However, this characteristic does not extend to our dipole-conserving quantum Hall phases.
Specifically, along the y-boundary, the dipole symmetry behaves as if multiple independent
U(1) symmetries are acting on different rows near the edge. In contrast, at the x-edge, the
Ud(1) symmetry, acting along the y-column, performs as a genuine dipole symmetry in one
dimension (1D). For completeness, we have worked out the edge effective action for the edge
along the x-axis in Appendix A.
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3.3 Bulk effective theory

The U e(1) charge and the Ud(1) dipole symmetry of the fermions in TDI dictates that they
couple to background gauge fields with gauge symmetry given by

(At , Ax x , Ay)→ (At + ∂tλ, Ax x +∆
2
xλ, Ay + ∂yλ) . (18)

In accordance with the coupled-wire construction we employ the discrete derivative ∆x de-
fined as

∆xλ(x) = λ(x + 1)−λ(x) ,

∆2
xλ(x) = λ(x + 1)− 2λ(x) +λ(x − 1) . (19)

Meanwhile, the bosonic fields transform under the gauge symmetry as
φL,R(x) → φL,R(x) + λ(x). The response of the TDI is captured by a classical action of the
background gauge field (At , Ax x , Ay).

To derive the response theory, we first couple the wires to the background gauge field
Eq. (18) and then integrate out the compact boson fields. It suffices to do this for a single
building block. For instance, the first term in the potential Eq. (9) becomes

cos[φ1
L(x)−φ

2
R(x + 1)−φ3

R(x + 1) +φ4
L(x + 2)− Ax x(x + 1)] ,

under the coupling to the background field. At low energy, the compact boson fields are pinned
to the minimum of the potential, satisfying

φ2
R(x+1) = φ1

L(x) +φ
1
R(x+3)−φ2

L(x+2)− Ax x(x+1)− Ax x(x+2) ,

φ3
R(x+1) = φ1

L(x) +φ
1
R(x+3)−φ3

L(x+2)− Ax x(x+1)− Ax x(x+2) ,

φ4
R(x+1) = φ2

L(x+2) +φ3
L(x+2)−φ1

R(x+3) + Ax x(x+2) ,

φ4
L(x+2) = φ1

L(x) + 2φ1
R(x+3)−φ2

L(x+2)−φ3
L(x+2)− Ax x(x+1)− 2Ax x(x+2) . (20)

The equations hold modulo 2π and we omit the y and t coordinates, which should be the
same in all arguments. The kinetic term of the chiral bosons when coupled to the background
gauge field is given by

L= − 1
4π
∂yφ

1
L(x)[∂tφ

1
L(x)− 2At(x)]

+
1

4π
∂yφ

1
R(x+3)[∂tφ

1
R(x+3)− 2At(x+3)]

+
1

4π

∑

a=2,3,4

∂yφ
a
R(x+1)[∂tφ

a
R(x+1)− 2At(x+1)]

−
1

4π

∑

a=2,3,4

∂yφ
a
L(x+2)[∂tφ

a
L(x+2)− 2At(x+2)]

+
1

2π
Ex x(x+1)[∂yφ

1
L(x)− Ay(x)]

−
1

2π
Ex x(x+2)[∂yφ

1
R(x+3)− Ay(x+3)] , (21)

where Ex x(x) = ∂tAx x(x)−∆2
xAt(x). The coupling to At in the first four terms is the standard

coupling of chiral bosons to background gauge fields (see, for example, App. A1 of [94]). The
factor of 2 in front of At is included such that the background gauge transformation of the
Lagrangian is independent of the chiral boson fields. Although the Lagrangian is not invariant
under the background gauge transformation, the gauge variations in the action cancel each
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other after summing over all the blocks when there are no boundaries. The last two terms are
already gauge-invariant, and the reason for including them will soon be clear. Substituting the
solution Eq. (20) to the kinetic term Eq. (21) leads to the following response Lagrangian,

L= + 1
2π

Ax x(x)∂y[At(x+1)− At(x − 1)]

−
1

2π
Ax x(x)∂t[Ay(x+1)− Ay(x−1)]

−
1

2π
∆2

xAt(x)[Ay(x+1)− Ay(x−1)] , (22)

where the simplicity of the final expression is due to rearranging terms from different building
blocks and using integration by parts in the y and t directions. If the last two terms in Eq. (21)
were not included, the above manipulation would not have led to a classical action, but rather
an action that depends on some chiral boson fields.

We can take the continuum limit of the response theory Eq. (22) as follows. First, we
introduce a lattice spacing a between the wires and do the following change of variables

Ax x(x)→ a2Ax x(x) ,

∆2
xAt(x)→ a2∂ 2

x At(x) ,

At,y(x ± 1)→ At,y(x)± a∂xAt,y(x) . (23)

Next, we expand the response theory to the leading order in a. This gives the continuum
response Lagrangian:

L= 2a2

2π
[Ax x∂y(∂xAt)−Ax x∂t(∂xAy)+(∂xAt)∂x(∂xAy)] . (24)

The coefficient is proportional to a2 instead of a3 since a factor of a is absorbed into the sum,
turning the latter into an integral. This Lagrangian can be repackaged into a more enlighten-
ing, Chern-Simons term

L= k
4π
εµνρAµ∂νAρ , (25)

with level k = 2, in terms of a dipolar vector gauge field

Aµ = (At ,Ax ,Ay) = (a∂xAt , aAx x , a∂xAy) . (26)

The new gauge field has the gauge symmetry Aµ → Aµ + ∂µΛ, where Λ = a∂xλ, in contrast
to (18). The factor a cannot be removed arbitrarily from the definition of gauge transforma-
tions, and it records the UV cut-off. We refer to the response Lagrangian in Eq. (24) as a dipolar
Chern-Simons term. Since the chiral bosons transform as φ→ φ +λ, the minimal coupling to
the background gauge field takes the form (∂µ∂xφ −Aµ) in the continuum theory. One can
also define the dipolar electromagnetic fields as

B = ∂xAy − ∂yAx = a(∂ 2
x Ay − ∂yAx x) ,

Ex = ∂xAt − ∂tAx = a(∂ 2
x At − ∂tAx x) ,

Ey = ∂yAt − ∂tAy = a∂x(∂yAt − ∂tAy) , (27)

and write the dipolar Chern-Simons action as L ∼ AtB +AxEy −AyEx . Despite the dipole
symmetry, the response theory is still captured by a Chern-Simons theory, with the main dif-
ference from the ordinary quantum Hall state lying in the gauge transformation properties of
the fields Aµ [63].
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The dipolar Chern-Simons action represents the quantized response of charge and dipole
currents to the background fields. First, we compute the charge current in the y direction by
the variation of the response Lagrangian Eq. (24) with respect to Ay :

J e
y =

δL
δAy

=
2a
2π
∂xEx , (28)

where the superscript (e) signifies the charge current. Accordingly, generating a current in the
y-direction requires that the potential At be at least cubic in the x-coordinate, At ∝ x3. By
contrast, a charge Hall current in the conventional Hall effect requires only the linear potential
At ∝ x . A dipole, on the other hand, can move under the quadratic potential At ∝ x2 and
the quadrupole, only under the cubic potential. Thus, the equation for J e

y reflects the building
blocks of TDI being the quadrupolar channels as discussed earlier. We dub this phenomenon
quadrupolar Hall effect for the charge transport along the y-direction in the TDI.

Varying the response Lagrangian with respect to Ax x gives the current Jx x ,

Jx x =
δL
δAx x

=
2a2

2π
∂x Ey =

2a
2π

Ey , (29)

where Ey = ∂yAt−∂tAy is the usual electric field in the y-direction, not to be confused with the
dipolar electric field Ey . Despite the appealingly simple relation, one must exercise caution in
interpreting Jx x . The current conservation equation arising from U(1) dipole symmetry takes
the form,

∂tρ
e − ∂x(∂x Jx x) + ∂y J e

y = 0 , (30)

suggesting that the charge current in the x direction is

J e
x = −∂x Jx x = −

2a2

2π
∂ 2

x Ey . (31)

The charge Hall current in the x direction of TDI depends on the second x-derivative of the
electric field, Ey∝ x2. The dipole current J d

x can be similarly read off from the dipole current
conservation equation derived from Eq. (30),

∂t(xρ) + ∂x(Jx x − x∂x Jx x) + ∂y(xJy) = 0 . (32)

The dipole current is

J d
x = Jx x − x∂x Jx x =

2a2

2π
(∂x Ey − x∂ 2

x Ey) . (33)

It can be generated by an electric field linear in x , i.e. Ey ∝ x . This is consistent with the
analysis in Sec. 2 that inserting a dipole flux in TDI pumps dipoles from one edge to the other.

To complete the picture, the charge density ρe follows from the response Lagrangian
Eq. (24) as

ρe =
δL
δAt

=
2a2

2π
∂x[∂yAx x − ∂ 2

x Ay] = −
2a2

2π
∂xB . (34)

The various relations between the charge and dipole currents and the background fields rep-
resent the dipolar generalization of the well-known relation (ρe, J e

x , J e
y)∝ (B, Ey ,−Ex) in the

integer quantum Hall effect.
We now comment on the quantization of the dipolar Chern-Simons term. Because the

gauge parameterλ appears in the gauge transformation Eq. (18) with a second order derivative
in x , it allows an identification linear in x as follows [54,55]

λ∼ λ+ 2πZ+
2πx

a
Z . (35)
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The coefficient for the linear identification is fixed such that the gauge parameter is 2π peri-
odic on every wire. As a result, the gauge parameter Λ for the vector gauge field Aµ obeys
the identification, Λ ∼ Λ+ 2π, which is the same identification for a gauge parameter of an
ordinary compact vector gauge field. As the level k for the Chern-Simons term is quantized to
be an integer (on spin manifolds), so does the level k of the dipolar Chern-Simons term.

Although the k = 2 level emerges naturally in our wire construction of TDI, we do not
claim that this is the minimal dipole charge allowed and believe that a unit dipole (k = 1)
is possible in a more intricate wire construction. Also, given the well-known extension of the
wire construction to the fractional quantum Hall state [99], extension of our wire construction
to the fractional TDI is a theme worth pursuing in the future.

4 Dipolar quantum spin Hall insulator

In this section, we propose a model for dipolar quantum spin Hall insulator possessing spin
U s(1) symmetry for Sz conservation in addition to the conservation of charge and dipole. A
central question is whether the analog of quantum spin Hall state can be manifested in the
presence of an additional Ud(1) symmetry. As previously elucidated for the topological dipole
insulator, a bulk topological state can be characterized by its anomalous boundary. Accordingly,
our initial effort is to identify potential quantum anomalies at the boundary.

We begin by exploring the possibility of achieving an edge pattern that exhibits a mixed
anomaly between U e(1) and U s(1). This evokes the prominent feature of the quantum spin
Hall effect, wherein a flux insertion of the spin (Sz) results in a change in the charge at each
boundary. What distinguishes our scenario is the additional requirement for the system to
maintain Ud(1) symmetry owing to the dipole conservation.

Let us suppose that a mixed anomaly does exist between spin U s(1) and charge U e(1) at the
edge. This edge anomaly can be manifested by inserting a spin flux given by As

y =
2π
L y

. Such a
mixed anomaly between U e(1) and U s(1) necessitates that the charge at the left and the right
boundary change following the insertion of U s(1) flux. This then implies a charge transfer
between the edges, violating the dipole conservation. Hence, it immediately follows that a
gapped insulator with a mixed anomaly between U e(1) and U s(1) on the edge is impossible.

To avoid having the mixed anomaly between charge and spin, we can assume a pair of
counter-propagating channels near the edges at row x with one of these channels being spinful
and having the chirality mi , and the other spin-neutral channel having the opposite chirality
−mi . Since the opposite chiralities come in pairs at each edge row, their response to U e(1) or
Ud(1) is zero for each site x .

For concreteness, we can select m1 = 1 and m2 = −1 for the left edge, and mLx−1 = −1
and mLx

= 1 for the right edge, as depicted in Fig. 3. In this configuration, the leftmost edge
(x = 1) hosts an L-channel carrying both charge and spin, and an R-channel that carries only
charge. The edge at x = 2 features an L-channel with charge and an R-channel with both
charge and spin. Such edge channel exhibits a mixed anomaly between Ud(1) and U s(1).
Under the insertion of a spin flux As

y =
2π
L y

, the edge dipole moment increases (decreases) by 1
at the left (right) edge, resulting in the pumping of the dipole moment between the edges. This
is a dipolar quantum spin Hall effect, wherein a unit dipole is transferred between boundaries
following the insertion of spin flux.
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Figure 3: Dipolar quantum spin Hall edge configuration. (The blue/red color in-
dicates the L/R moving mode. The solid line refers to the mode that carries both
charge and spin, while the dashed line only carries charge). At x = 1, there is a
right-moving mode that carries both charge and spin (solid) accompanied by a left-
moving mode (dashed line) that only carries charge. Similarly, the x = 2 row exhibits
a right-moving mode that only carries charge, alongside a left-moving mode that car-
ries both charge and spin.

A microscopic model supporting such anomalous edge states can be constructed using the
coupled-wire construction. The 1D modes extended along the y-direction areφa

L/R(r),Θ
a
L/R(r)

(a = 1, 2 for flavor index), where the φ-modes carry both charge and spin, and Θ-modes carry
only the charge. They transform under spin, charge, and dipole symmetry as

U e(1) : φa
L/R(x)→ φ

a
L/R(x) + γ , Θ

1,2
L/R(x)→ Θ

1,2
L/R(x) + γ ,

U s(1) : φa
L/R(x)→ φ

a
L/R(x) + β , Θa

L/R(x)→ Θ
a
L/R(x) ,

Ud(1) : φa
L/R(x)→ φ

a
L/R(x) +α · x , Θa

L/R(x)→ Θ
a
L/R(x) +α · x . (36)

The elementary building block consists of the following eight modes (omitting y coordinate):

φ1
L(x) , φ

1,2
R (x + 1) , φ2

L(x + 2) ,

Θ1
R(x) , Θ

1,2
L (x + 1) , Θ2

R(x + 2) .

There are four spinless and four spinful modes in each block, extended over three adjacent x-
coordinates and forming a quadrupolar channel. All the pertinent symmetries (charge, spin,
dipole) are anomaly-free within the building block, so there are no obstructions to gapping
them out while preserving the symmetries.

Four independent mass terms are required to gap out all the modes. In keeping with the
dipole symmetry, we will couple the wires using quartic inter-wire interactions. After some
consideration, we arrive at the tunneling Hamiltonian

V(x) = −g1 cos[φ1
L(x)−φ

1
R(x+1)−φ2

R(x+1)+φ2
L(x+2)]

− g2 cos[Θ1
R(x)−Θ

1
L(x+1)−Θ2

L(x+1)+Θ2
R(x+2)]

− g3 cos[Θ1
R(x)−Θ

1
L(x+1)−φ1

L(x)+φ
1
R(x+1)]

− g4 cos[Θ1
R(x)−Θ

2
L(x+1)−φ1

L(x)+φ
2
R(x+1)] , (37)

that respects all the symmetries defined in Eq. 36. All cosine terms in Eq. (37) are independent
and commute with each other. At sufficiently strong coupling gi , they are capable of generating
four independent mass terms, leading to a fully gapped bulk.
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At the boundary, there are eight chiral modes φ1,2
R (1), φ

2
L(1) , φ1

R(2) , Θ1,2
L (1) , Θ2

R(1),
Θ1

L(2) that remain gapless. One can further introduce symmetry-permitted terms to couple
these edge modes and gap out some degrees of freedom. First, we can add intra-wire coupling
to gap outφ2

R(1) againstφ2
L(1) and Θ2

L(1) against Θ2
R(1). This leaves four gapless chiral modes

φ1
L(1), φ

1
R(2), Θ

1
R(1), Θ

1
L(2) with the Lagrangian density

L= − 1
4π
∂yφ

1
L(1)∂tφ

1
L(1) +

1
4π
∂yφ

1
R(2)∂tφ

1
R(2) +

1
4π
∂yΘ

1
R(1)∂tΘ

1
R(1)−

1
4π
∂yΘ

1
L(2)∂tΘ

1
L(2) . (38)

We can continue gapping out degrees of freedom by introducing the following inter-wire cou-
pling:

V = −v cos[Θ1
R(1)−Θ

1
L(2)−φ

1
L(1) +φ

1
R(2)] . (39)

The hopping of the spinful mode from site 1 to 2 is compensated for by the hopping of the
spinless mode from 2 to 1, thereby preserving the overall dipole moment. At strong enough
v, the fields are pinned at Θ1

R(1) = Θ
1
L(2) +φ

1
L(1) −φ

1
R(2). Substituting this relation to the

Lagrangian Eq. (38) leads to

L= 1
2π

�

∂tΦ∂y Φ̃−
K1

2
(∂y Φ̃)

2 −
K2

2
(∂yΦ)

2
�

, (40)

where
Φ= φ1

R(2)−φ
1
L(1) , Φ̃= φ1

R(2)−Θ
1
L(2) . (41)

The last two terms in Eq. (40) are potential terms for Φ and Φ̃, which we added by hand. This
edge theory describes a Luttinger liquid, exhibiting an emergent ‘t Hooft anomaly, where the
bosonic field Φ and its dual field Φ̃ carry different symmetry charges. To be precise, based
on the symmetry assignment in Eq. (36), Φ is spin- and charge-neutral and transforms under
Ud(1) as:

Ud(1) : Φ→ Φ+α , (42)

while Φ̃ is dipole- and charge-neutral and transform under U s(1) as:

U s(1) : Φ̃→ Φ̃+ β , (43)

This symmetry assignment in the edge theory reveals a mixed anomaly between dipole Ud(1)
and spins U s(1), which consequently prevents the gapping out of the helical mode in Eq. (40).
By introducing a global U s(1) flux – realized through the addition of a spin gauge potential
As

y =
2π
L y

– the system facilitates the transfer of a dipole moment from the left to the right
boundary.

Equations of motion for Φ, Φ̃ are

∂t∂y Φ̃− K2∂
2
y Φ= 0 ,

∂t∂yΦ− K1∂
2
y Φ̃= 0 . (44)

There are two counter-propagating modes
p

K2Φ±
p

K1Φ̃with the dispersionsω= ±
p

K1K2k,
respectively, representing the propagation of the mixed spin and dipole excitations. For
K1 = K2, the two modes Φ̃+Φ and Φ̃−Φ share the same dipole moment but opposite spins.

The response of the dipolar quantum spin Hall effect is captured by a response functional
of a pair of background gauge fields, one for the charge and dipole symmetry

(At , Ax x , Ay)→ (At+∂tλ, Ax x+∂
2
x λ, Ay+∂yλ) , (45)

and the other for the spin symmetry

(Bt , Bx , By)→ (Bt + ∂tχ, Bx + ∂xχ, By + ∂yχ) . (46)
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Here, we directly work in the continuum limit so the gauge transformations use the continuum
derivative ∂x instead of the lattice difference∆x . The response theory can be derived following
a similar procedure as in Sec. 3.3, which gives

L= a
2π

Bt(∂
2
x Ay − ∂yAx x) +

a
2π

Bx∂x(∂yAt − ∂tAy) +
a

2π
By(∂tAx x − ∂ 2

x At) ,

where a is the lattice spacing between the wires. It can be repackaged into a mutual Chern-
Simons theory of the two vector gauge fields Bµ = (Bt , Bx , By) and Aµ = (a∂xAt , aAx x , a∂xAy).
It describes a dipolar spin Hall effect, where the spin Hall current in the x direction,

J s
x =

δL
δBx

=
a

2π
∂x Ey , (47)

is generated by a y direction electric field Ey = ∂yAt − ∂tAy that is linear in x , while the spin
Hall current in the y direction,

J s
y =

δL
δBy

=
a

2π
(∂tAx x − ∂ 2

x At) , (48)

is generated by a potential quadratic in x .
Finally, we provide some insights into the mutual Chern-Simons response theory in Eq. 47.

This theory intertwines a higher-rank gauge field, associated with the charge/dipole current,
with a conventional vector gauge field associated with the spin current. The mutual Chern-
Simons coupling suggests a mixed anomaly between the spin and dipole moments at the
boundary. While the gauge potentials in this context are external fields probing electromag-
netic responses, one might also consider a dynamical gauge field where the gauge currents
represent the hydrodynamic charges, dipole, and spin currents of the quasiparticles. An in-
triguing question in this thrust is whether nontrivial braiding statistics can exist between spin
excitations (which are fully mobile) and charge excitations (which have restricted mobility).
Furthermore, it is worth exploring whether such braiding, between fully mobile excitations
and fractons, could be captured through a mutual Chern-Simons coupling akin to Eq. 47. Such
kind of braiding has been considered for example in Ref. [109,110]. This line of investigation
would enrich our understanding of the hybrid fracton phase [111, 112] from a field theory
standpoint, and we reserve that for future explorations.

5 Summary and outlook

We have proposed a notion of topological dipole insulators as an extension of quantum Hall
and quantum spin Hall insulators by imposing a dipole symmetry in one direction. Gen-
eral anomaly considerations for the dipolar quantum Hall insulator show that it must host
quadrupolar edge channels, with gapless excitations at the edge carrying quantized dipoles. A
Luttinger-liquid wire model embodying the dipole symmetry is constructed employing charge-
and dipole-conserving backscattering processes among the channels. Starting from the wire
construction, one can construct the effective theory of edge dynamics of quantized dipoles, as
well as the bulk response theory taking the form of the Chern-Simons action in terms of dipolar
gauge fields. In a model for dipolar quantum spin Hall insulator, an edge channel carrying one
unit of dipole charge and one unit of spin Sz exhibits mixed anomaly between the spin and
dipole symmetries. A coupled-wire construction for such an insulator is also given, along with
the edge effective action and the bulk response theory in the form of mutual Chern-Simons
theory.
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We speculate that a possible candidate for realizing this kind of topological dipole insulator
could be the various two-dimensional moiré materials, which exhibit spontaneous quantum
Hall ground states in the absence of magnetic field [113–118]. The moiré system’s artificially
large effective lattice spacing, on the order of the moiré length, and its shallow effective po-
tential for the unit cell, make it significantly more susceptible to strong electric fields than
ordinary atomic insulators. The electronic hopping under a strong tilted potential could lead
to the emergence of a dipole conservation law, resulting in pairwise electron hopping, akin
to what we envision in our wire construction. In a parallel thread, Ref. [119] proposed that
lattice tilted by a strong linear potential and a weak quadratic potential naturally produce a
rank-2 electric field, which is indeed coupled to the dipole current. Such tensor gauge fields
can be realized in dipolar Harper-Hofstadter models in laboratories. We anticipate that the ex-
perimental setup for such a higher-rank electric field can enrich our explorations of the dipole
pumping and topological responses in topological dipole insulators.
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A Chiral quadrupole moment along the x -edge

In this appendix, we investigate the boundary theory of TDI by examining modes terminating
in the direction perpendicular to the wires. In the context of coupled-wire construction across
various quantum Hall states, both types of boundaries — whether parallel or perpendicular
to the wires — exhibit the same edge state dynamics in the infrared (IR) limit, regardless of
the anisotropy of the original Hamiltonian. This characteristic does not extend to our dipole-
conserving quantum Hall phases. Specifically, the dipole symmetry along the y-boundary
behaves as if multiple independent U(1) symmetries are acting on different rows near the
edge. In contrast, for the x-edge, the Ud(1) symmetry, acting along the y-column, functions
as a genuine dipole symmetry in one dimension (1D). This raises a new question regarding
the hydrodynamic description of the anomalous boundaries along the x-edge.

Since the wires terminate at the x-edge, we need to pick a boundary condition for the
chiral bosons. A natural boundary condition that preserves the U e(1) and Ud(1) symmetry is
the reflected boundary condition that reflects a left-mover to a right-mover on the same wire.
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This can be realized by adding a boundary coupling between φL and φR as follows

S = Swire + Sboundary ,

Swire =
1

4π

∫

x<0

d xd t (∂yφR∂tφR − ∂yφL∂tφL) ,

Sboundary =
1

4π

∫

x=0

d tφL∂tφR .

Varying the action with respect to φL , φR leads to the following boundary equations of motion

∂t(φL −φR)|x=0 = 0 , (A.1)

that implements the reflected boundary condition dynamically. Since there are four pairs of
left-mover and right-movers on each wire, we need four coupling terms on the boundary, which
are chosen to be

L= 1
4π
(φ1

L∂tφ
4
R +φ

2
L∂tφ

3
R +φ

3
L∂tφ

2
R +φ

4
L∂tφ

1
R) , (A.2)

where all the fields live on the same wire sharing the same x coordinate. Recall that there are
inter-wire couplings in the bulk given by Eq. (9). At strong coupling gi , the fields are pinned
down to the minimum of the potential,

φ2
R(x+1) = φ1

L(x) +φ
1
R(x+3)−φ2

L(x+2) ,

φ3
R(x+1) = φ1

L(x) +φ
1
R(x+3)−φ3

L(x+2) ,

φ4
R(x+1) = φ2

L(x+2) +φ3
L(x+2)−φ1

R(x+3) ,

φ4
L(x+2) = φ1

L(x) + 2φ1
R(x+3)−φ2

L(x+2)−φ3
L(x+2) , (A.3)

where the equations are valid modulo 2π. Substituting this relation to the boundary La-
grangian Eq. (A.2) and rearranging terms among different wires, we arrive at the following
boundary Lagrangian

L= 1
4π
∂tΦ1(x) (Φ2(x + 1)−Φ2(x − 1)) , (A.4)

where we define

Φ1(x) = φ
1
R(x + 1)−φ2

L(x) ,

Φ2(x) = φ
1
R(x + 1)−φ3

L(x) . (A.5)

Both Φ1 and Φ2 are neutral under the charge symmetry φ(x)→ φ(x) + γ, but charged under
the dipole symmetry φ(x)→ φ(x) +αx as

Φ1,2(x)→ Φ1,2(x) +α . (A.6)

In the continuum limit, the boundary Lagrangian becomes,

L= 1
2π
∂tΦ1∂xΦ2 −

K ′

2π
∂yΦ1∂yΦ2 −

K
4π
(∂xΦ1)

2 −
K

4π
(∂xΦ2)

2 , (A.7)

where we introduce a dipole-symmetry-preserving potential in the last three terms. The co-
efficients must satisfy K ′ < K to guarantee the stability of the potential. The hydrodynamic
equation governing the boundary modes are given by the equations of motion

∂t∂xΦ1 − K∂ 2
x Φ2 − K ′∂ 2

y Φ1 = 0 ,

∂t∂xΦ2 − K∂ 2
x Φ1 − K ′∂ 2

y Φ2 = 0 . (A.8)

There are two counter-propagating modes ΦL =
1
2(Φ1+Φ2) with the dispersionω= (K+K ′)k

and ΦR =
1
2(Φ1−Φ2) with the dispersionω= −(K−K ′)k. ΦL carries one unit of charge under

the Ud(1) symmetry, representing a chiral dipole excitation, while ΦR is neutral under all the
pertinent symmetries and represents a neutral excitation with opposite chirality.

18

https://scipost.org
https://scipost.org/SciPostPhys.17.5.137


SciPost Phys. 17, 137 (2024)

References

[1] X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83,
1057 (2011), doi:10.1103/RevModPhys.83.1057.

[2] C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95,
226801 (2005), doi:10.1103/PhysRevLett.95.226801.

[3] B. A. Bernevig, T. L. Hughes and S.-C. Zhang, Quantum spin Hall effect and
topological phase transition in HgTe quantum wells, Science 314, 1757 (2006),
doi:10.1126/science.1133734.

[4] M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045
(2010), doi:10.1103/RevModPhys.82.3045.

[5] W. P. Su, J. R. Schrieffer and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42,
1698 (1979), doi:10.1103/PhysRevLett.42.1698.

[6] F. D. M. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: Iden-
tification with the O(3) nonlinear sigma model, Phys. Lett. A 93, 464 (1983),
doi:10.1016/0375-9601(83)90631-X.

[7] I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki, Rigorous results on valence-
bond ground states in antiferromagnets, Phys. Rev. Lett. 59, 799 (1987),
doi:10.1103/PhysRevLett.59.799.

[8] N. Schuch, D. Perez-Garcia and I. Cirac, Classifying quantum phases using matrix
product states and projected entangled pair states, Phys. Rev. B 84, 165139 (2011),
doi:10.1103/PhysRevB.84.165139.

[9] F. Pollmann, A. M. Turner, E. Berg and M. Oshikawa, Entanglement spectrum
of a topological phase in one dimension, Phys. Rev. B 81, 064439 (2010),
doi:10.1103/PhysRevB.81.064439.

[10] A. M. Turner, F. Pollmann and E. Berg, Topological phases of one-dimensional
fermions: An entanglement point of view, Phys. Rev. B 83, 075102 (2011),
doi:10.1103/PhysRevB.83.075102.

[11] L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B
83, 075103 (2011), doi:10.1103/PhysRevB.83.075103.

[12] X. Chen, Z.-C. Gu and X.-G. Wen, Classification of gapped symmetric
phases in one-dimensional spin systems, Phys. Rev. B 83, 035107 (2011),
doi:10.1103/PhysRevB.83.035107.

[13] W. Son, L. Amico and V. Vedral, Topological order in 1D cluster state protected by symmetry,
Quantum Inf. Process. 11, 1961 (2011), doi:10.1007/s11128-011-0346-7.

[14] X. Chen, Z.-X. Liu and X.-G. Wen, Two-dimensional symmetry-protected topological or-
ders and their protected gapless edge excitations, Phys. Rev. B 84, 235141 (2011),
doi:10.1103/PhysRevB.84.235141.

[15] F. Pollmann, E. Berg, A. M. Turner and M. Oshikawa, Symmetry protection of topolog-
ical phases in one-dimensional quantum spin systems, Phys. Rev. B 85, 075125 (2012),
doi:10.1103/PhysRevB.85.075125.

19

https://scipost.org
https://scipost.org/SciPostPhys.17.5.137
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1016/0375-9601(83)90631-X
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevB.84.165139
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.83.075102
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1007/s11128-011-0346-7
https://doi.org/10.1103/PhysRevB.84.235141
https://doi.org/10.1103/PhysRevB.85.075125


SciPost Phys. 17, 137 (2024)

[16] X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry-protected topological orders in in-
teracting Bosonic systems, Science 338, 1604 (2012), doi:10.1126/science.1227224.

[17] M. Levin and Z.-C. Gu, Braiding statistics approach to symmetry-protected topological
phases, Phys. Rev. B 86, 115109 (2012), doi:10.1103/PhysRevB.86.115109.

[18] X.-L. Qi, A new class of (2+ 1)-dimensional topological superconductors with Z8 topological
classification, New J. Phys. 15, 065002 (2013), doi:10.1088/1367-2630/15/6/065002.

[19] A. Vishwanath and T. Senthil, Physics of three-dimensional Bosonic topological insulators:
Surface-deconfined criticality and quantized magnetoelectric effect, Phys. Rev. X 3, 011016
(2013), doi:10.1103/PhysRevX.3.011016.

[20] H. Yao and S. Ryu, Interaction effect on topological classification of superconductors in two
dimensions, Phys. Rev. B 88, 064507 (2013), doi:10.1103/PhysRevB.88.064507.

[21] A. Mesaros and Y. Ran, Classification of symmetry enriched topological phases with exactly
solvable models, Phys. Rev. B 87, 155115 (2013), doi:10.1103/PhysRevB.87.155115.

[22] D. V. Else and C. Nayak, Classifying symmetry-protected topological phases through
the anomalous action of the symmetry on the edge, Phys. Rev. B 90, 235137 (2014),
doi:10.1103/PhysRevB.90.235137.

[23] Z.-C. Gu and X.-G. Wen, Symmetry-protected topological orders for interacting fermions:
Fermionic topological nonlinear σ models and a special group supercohomology theory,
Phys. Rev. B 90, 115141 (2014), doi:10.1103/PhysRevB.90.115141.

[24] X. Chen, Y.-M. Lu and A. Vishwanath, Symmetry-protected topological phases from deco-
rated domain walls, Nat. Commun. 5, 3507 (2014), doi:10.1038/ncomms4507.

[25] A. Kapustin, Symmetry protected topological phases, anomalies, and cobordisms: Beyond
group cohomology, (arXiv preprint) doi:10.48550/arXiv.1403.1467.

[26] A. Kapustin, R. Thorngren, A. Turzillo and Z. Wang, Fermionic symmetry pro-
tected topological phases and cobordisms, J. High Energy Phys. 12, 001 (2015),
doi:10.1007/JHEP12(2015)052.

[27] T. Senthil, Symmetry-protected topological phases of quantum matter, Annu. Rev. Condens.
Matter Phys. 6, 299 (2015), doi:10.1146/annurev-conmatphys-031214-014740.

[28] D. Gaiotto and A. Kapustin, Spin TQFTs and fermionic phases of matter, Int. J. Mod. Phys.
A 31, 1645044 (2016), doi:10.1142/S0217751X16450445.

[29] D. S. Freed and M. J. Hopkins, Reflection positivity and invertible topological phases, Geom.
Topol. 25, 1165 (2021), doi:10.2140/gt.2021.25.1165.

[30] L. Tsui, Y.-T. Huang, H.-C. Jiang and D.-H. Lee, The phase transitions between Zn × Zn
bosonic topological phases in 1+ 1D, and a constraint on the central charge for the critical
points between bosonic symmetry protected topological phases, Nucl. Phys. B 919, 470
(2017), doi:10.1016/j.nuclphysb.2017.03.021.

[31] R. Verresen, R. Moessner and F. Pollmann, One-dimensional symmetry pro-
tected topological phases and their transitions, Phys. Rev. B 96, 165124 (2017),
doi:10.1103/PhysRevB.96.165124.

[32] R. Thorngren and D. V. Else, Gauging spatial symmetries and the classification of topological
crystalline phases, Phys. Rev. X 8, 011040 (2018), doi:10.1103/PhysRevX.8.011040.

20

https://scipost.org
https://scipost.org/SciPostPhys.17.5.137
https://doi.org/10.1126/science.1227224
https://doi.org/10.1103/PhysRevB.86.115109
https://doi.org/10.1088/1367-2630/15/6/065002
https://doi.org/10.1103/PhysRevX.3.011016
https://doi.org/10.1103/PhysRevB.88.064507
https://doi.org/10.1103/PhysRevB.87.155115
https://doi.org/10.1103/PhysRevB.90.235137
https://doi.org/10.1103/PhysRevB.90.115141
https://doi.org/10.1038/ncomms4507
https://doi.org/10.48550/arXiv.1403.1467
https://doi.org/10.1007/JHEP12(2015)052
https://doi.org/10.1146/annurev-conmatphys-031214-014740
https://doi.org/10.1142/S0217751X16450445
https://doi.org/10.2140/gt.2021.25.1165
https://doi.org/10.1016/j.nuclphysb.2017.03.021
https://doi.org/10.1103/PhysRevB.96.165124
https://doi.org/10.1103/PhysRevX.8.011040


SciPost Phys. 17, 137 (2024)

[33] M. Cheng, Z. Bi, Y.-Z. You and Z.-C. Gu, Classification of symmetry-protected
phases for interacting fermions in two dimensions, Phys. Rev. B 97, 205109 (2018),
doi:10.1103/PhysRevB.97.205109.

[34] D. T. Stephen, H. P. Nautrup, J. Bermejo-Vega, J. Eisert and R. Raussendorf, Subsystem
symmetries, quantum cellular automata, and computational phases of quantum matter,
Quantum 3, 142 (2019), doi:10.22331/q-2019-05-20-142.

[35] D. Sauerwein, A. Molnar, J. I. Cirac and B. Kraus, Matrix product states: Entangle-
ment, symmetries, and state transformations, Phys. Rev. Lett. 123, 170504 (2019),
doi:10.1103/PhysRevLett.123.170504.

[36] S. Ryu, Interacting topological phases and quantum anomalies, Phys. Scr. 08, 014009
(2015). doi:10.1088/0031-8949/2015/T164/014009.

[37] X. Chen, F. J. Burnell, A. Vishwanath and L. Fidkowski, Anomalous symme-
try fractionalization and surface topological order, Phy. Rev. X 5, 041013 (2015),
doi:10.1103/PhysRevX.5.041013.

[38] C.-T. Hsieh, G. Y. Cho and S. Ryu, Global anomalies on the surface of fermionic symmetry-
protected topological phases in (3+ 1) dimensions, Phys. Rev. B 93, 075135 (2016),
doi:10.1103/PhysRevB.93.075135.

[39] G. Y. Cho, C.-T. Hsieh and S. Ryu, Anomaly manifestation of Lieb-Schultz-
Mattis theorem and topological phases, Phys. Rev. B 96, 195105 (2017),
doi:10.1103/PhysRevB.96.195105.

[40] C. G. Callan Jr. and J. A. Harvey, Anomalies and fermion zero modes on strings and domain
walls, Nucl. Phys. B 250, 427 (1985), doi:10.1016/0550-3213(85)90489-4.

[41] J. Sullivan, A. Dua and M. Cheng, Weak symmetry breaking and topological order in a 3D
compressible quantum liquid, (arXiv preprint) doi:10.48550/arXiv.2109.13267.

[42] S. Sachdev, K. Sengupta and S. M. Girvin, Mott insulators in strong electric fields, Phys.
Rev. B 66, 075128 (2002), doi:10.1103/PhysRevB.66.075128.

[43] A. Seidel, H. Fu, D.-H. Lee, J. M. Leinaas and J. Moore, Incompressible quan-
tum liquids and new conservation laws, Phys. Rev. Lett. 95, 266405 (2005),
doi:10.1103/PhysRevLett.95.266405.

[44] M. Pretko, Subdimensional particle structure of higher rank U(1) spin liquids, Phys. Rev. B
95, 115139 (2017), doi:10.1103/PhysRevB.95.115139.

[45] M. Pretko, The fracton gauge principle, Phys. Rev. B 98, 115134 (2018),
doi:10.1103/PhysRevB.98.115134.

[46] Y. You, T. Devakul, F. J. Burnell and T. Neupert, Higher-order symmetry-protected topo-
logical states for interacting bosons and fermions, Phys. Rev. B 98, 235102 (2018),
doi:10.1103/PhysRevB.98.235102.

[47] Y. You, Higher-order topological phase without crystalline symmetry, (arXiv preprint)
doi:10.48550/arXiv.1908.04299.

[48] Y. You, T. Devakul, S. L. Sondhi and F. J. Burnell, Fractonic Chern-Simons and BF theories,
Phys. Rev. Res. 2, 023249 (2020), doi:10.1103/PhysRevResearch.2.023249.

21

https://scipost.org
https://scipost.org/SciPostPhys.17.5.137
https://doi.org/10.1103/PhysRevB.97.205109
https://doi.org/10.22331/q-2019-05-20-142
https://doi.org/10.1103/PhysRevLett.123.170504
https://doi.org/10.1088/0031-8949/2015/T164/014009
https://doi.org/10.1103/PhysRevX.5.041013
https://doi.org/10.1103/PhysRevB.93.075135
https://doi.org/10.1103/PhysRevB.96.195105
https://doi.org/10.1016/0550-3213(85)90489-4
https://doi.org/10.48550/arXiv.2109.13267
https://doi.org/10.1103/PhysRevB.66.075128
https://doi.org/10.1103/PhysRevLett.95.266405
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.98.115134
https://doi.org/10.1103/PhysRevB.98.235102
https://doi.org/10.48550/arXiv.1908.04299
https://doi.org/10.1103/PhysRevResearch.2.023249


SciPost Phys. 17, 137 (2024)

[49] Y. You, F. J. Burnell and T. L. Hughes, Multipolar topological field theories: Bridg-
ing higher order topological insulators and fractons, Phys. Rev. B 103, 245128 (2021),
doi:10.1103/PhysRevB.103.245128.

[50] A. Gromov, A. Lucas and R. M. Nandkishore, Fracton hydrodynamics, Phys. Rev. Res. 2,
033124 (2020), doi:10.1103/PhysRevResearch.2.033124.

[51] O. Dubinkin, J. May-Mann and T. L. Hughes, Theory of dipole insulators, Phys. Rev. B 103,
125129 (2021), doi:10.1103/PhysRevB.103.125129.

[52] J. May-Mann and T. L. Hughes, Crystalline responses for rotation-invariant
higher-order topological insulators, Phys. Rev. B 106, L241113 (2022),
doi:10.1103/PhysRevB.106.L241113.

[53] G. Delfino, C. Chamon and Y. You, 2D fractons from gauging exponential symmetries,
(arXiv preprint) doi:10.48550/arXiv.2306.17121.

[54] P. Gorantla, H. T. Lam, N. Seiberg and S.-H. Shao, Global dipole symmetry, compact
Lifshitz theory, tensor gauge theory, and fractons, Phys. Rev. B 106, 045112 (2022),
doi:10.1103/PhysRevB.106.045112.

[55] P. Gorantla, H. T. Lam, N. Seiberg and S.-H. Shao, (2+ 1)-dimensional compact Lif-
shitz theory, tensor gauge theory, and fractons, Phys. Rev. B 108, 075106 (2023),
doi:10.1103/PhysRevB.108.075106.

[56] P. Zechmann, E. Altman, M. Knap and J. Feldmeier, Fractonic Luttinger liquids and
supersolids in a constrained Bose-Hubbard model, Phys. Rev. B 107, 195131 (2023),
doi:10.1103/PhysRevB.107.195131.

[57] E. Lake, M. Hermele and T. Senthil, Dipolar Bose-Hubbard model, Phys. Rev. B 106,
064511 (2022), doi:10.1103/PhysRevB.106.064511.

[58] E. Lake, H.-Y. Lee, J. H. Han and T. Senthil, Dipole condensates in tilted Bose-Hubbard
chains, Phys. Rev. B 107, 195132 (2023), doi:10.1103/PhysRevB.107.195132.

[59] E. Lake and T. Senthil, Non-Fermi liquids from kinetic constraints in tilted optical lattices,
Phys. Rev. Lett. 131, 043403 (2023), doi:10.1103/PhysRevLett.131.043403.

[60] A. Anakru and Z. Bi, Non-Fermi liquids from dipolar symmetry breaking, Phys. Rev. B 108,
165112 (2023), doi:10.1103/PhysRevB.108.165112.

[61] Y.-T. Oh, J. Kim and J. H. Han, Effective field theory of dipolar braiding statistics in two
dimensions, Phys. Rev. B 106, 155150 (2022), doi:10.1103/PhysRevB.106.155150.

[62] P. Glorioso, X. Huang, J. Guo, J. F. Rodriguez-Nieva and A. Lucas, Goldstone bosons and
fluctuating hydrodynamics with dipole and momentum conservation, J. High Energy Phys.
05, 022 (2023), doi:10.1007/JHEP05(2023)022.

[63] X. Huang, A Chern-Simons theory for dipole symmetry, SciPost Phys. 15, 153 (2023),
doi:10.21468/SciPostPhys.15.4.153.

[64] F. J. Burnell, S. Moudgalya and A. Prem, Filling constraints on transla-
tion invariant dipole conserving systems, Phys. Rev. B 110, L121113 (2024),
doi:10.1103/PhysRevB.110.L121113.

22

https://scipost.org
https://scipost.org/SciPostPhys.17.5.137
https://doi.org/10.1103/PhysRevB.103.245128
https://doi.org/10.1103/PhysRevResearch.2.033124
https://doi.org/10.1103/PhysRevB.103.125129
https://doi.org/10.1103/PhysRevB.106.L241113
https://doi.org/10.48550/arXiv.2306.17121
https://doi.org/10.1103/PhysRevB.106.045112
https://doi.org/10.1103/PhysRevB.108.075106
https://doi.org/10.1103/PhysRevB.107.195131
https://doi.org/10.1103/PhysRevB.106.064511
https://doi.org/10.1103/PhysRevB.107.195132
https://doi.org/10.1103/PhysRevLett.131.043403
https://doi.org/10.1103/PhysRevB.108.165112
https://doi.org/10.1103/PhysRevB.106.155150
https://doi.org/10.1007/JHEP05(2023)022
https://doi.org/10.21468/SciPostPhys.15.4.153
https://doi.org/10.1103/PhysRevB.110.L121113


SciPost Phys. 17, 137 (2024)

[65] J. H. Han, E. Lake, H. T. Lam, R. Verresen and Y. You, Topological quantum chains pro-
tected by dipolar and other modulated symmetries, Phys. Rev. B 109, 125121 (2024),
doi:10.1103/PhysRevB.109.125121.

[66] P. Sala, Y. You, J. Hauschild and O. Motrunich, Exotic quantum liquids in Bose-
Hubbard models with spatially modulated symmetries, Phys. Rev. B 109, 014406 (2024),
doi:10.1103/PhysRevB.109.014406.

[67] H. T. Lam, Classification of dipolar symmetry-protected topological phases: Matrix product
states, stabilizer Hamiltonians, and finite tensor gauge theories, Phys. Rev. B 109, 115142
(2024), doi:10.1103/PhysRevB.109.115142.

[68] H. Ebisu, M. Honda and T. Nakanishi, Foliated field theories and multipole symmetries,
Phys. Rev. B 109, 165112 (2024), doi:10.1103/PhysRevB.109.165112.

[69] Y.-H. Du, S. Moroz, D. X. Nguyen and D. T. Son, Noncommutative field theory of
the Tkachenko mode: Symmetries and decay rate, Phys. Rev. Res. 6, L012040 (2024),
doi:10.1103/PhysRevResearch.6.L012040.

[70] Y.-H. Du, H. T. Lam and L. Radzihovsky, Quantum vortex lattice: Lifshitz dual-
ity, topological defects, and multipole symmetries, Phys. Rev. B 110, 035164 (2024),
doi:10.1103/PhysRevB.110.035164.

[71] J. H. Han, Dipolar background field theory and dipolar braiding statistics, Phys. Rev. B
109, 235127 (2024), doi:10.1103/PhysRevB.109.235127.

[72] S. Vijay, J. Haah and L. Fu, Fracton topological order, generalized lattice gauge theory, and
duality, Phys. Rev. B 94, 235157 (2016), doi:10.1103/PhysRevB.94.235157.

[73] S. Pai and M. Hermele, Fracton fusion and statistics, Phys. Rev. B 100, 195136 (2019),
doi:10.1103/PhysRevB.100.195136.

[74] R. M. Nandkishore and M. Hermele, Fractons, Annu. Rev. Condens. Matter Phys. 10, 295
(2019), doi:10.1146/annurev-conmatphys-031218-013604.

[75] M. Pretko, X. Chen and Y. You, Fracton phases of matter, Int. J. Mod. Phys. A 35, 2030003
(2020), doi:10.1142/S0217751X20300033.

[76] P. Sala, T. Rakovszky, R. Verresen, M. Knap and F. Pollmann, Ergodicity breaking aris-
ing from Hilbert space fragmentation in dipole-conserving Hamiltonians, Phys. Rev. X 10,
011047 (2020), doi:10.1103/PhysRevX.10.011047.

[77] V. Khemani, M. Hermele and R. Nandkishore, Localization from Hilbert space shat-
tering: From theory to physical realizations, Phys. Rev. B 101, 174204 (2020),
doi:10.1103/PhysRevB.101.174204.

[78] J. Feldmeier, P. Sala, G. De Tomasi, F. Pollmann and M. Knap, Anomalous diffusion
in dipole- and higher-moment-conserving systems, Phys. Rev. Lett. 125, 245303 (2020),
doi:10.1103/PhysRevLett.125.245303.

[79] T. Rakovszky, P. Sala, R. Verresen, M. Knap and F. Pollmann, Statistical localization:
From strong fragmentation to strong edge modes, Phys. Rev. B 101, 125126 (2020),
doi:10.1103/PhysRevB.101.125126.

[80] J. Iaconis, A. Lucas and R. Nandkishore, Multipole conservation laws and subdiffusion in
any dimension, Phys. Rev. E 103, 022142 (2021), doi:10.1103/PhysRevE.103.022142.

23

https://scipost.org
https://scipost.org/SciPostPhys.17.5.137
https://doi.org/10.1103/PhysRevB.109.125121
https://doi.org/10.1103/PhysRevB.109.014406
https://doi.org/10.1103/PhysRevB.109.115142
https://doi.org/10.1103/PhysRevB.109.165112
https://doi.org/10.1103/PhysRevResearch.6.L012040
https://doi.org/10.1103/PhysRevB.110.035164
https://doi.org/10.1103/PhysRevB.109.235127
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.100.195136
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1142/S0217751X20300033
https://doi.org/10.1103/PhysRevX.10.011047
https://doi.org/10.1103/PhysRevB.101.174204
https://doi.org/10.1103/PhysRevLett.125.245303
https://doi.org/10.1103/PhysRevB.101.125126
https://doi.org/10.1103/PhysRevE.103.022142


SciPost Phys. 17, 137 (2024)

[81] P. Glorioso, J. Guo, J. F. Rodriguez-Nieva and A. Lucas, Breakdown of hydrodynamics below
four dimensions in a fracton fluid, Nat. Phys. 18, 912 (2022), doi:10.1038/s41567-022-
01631-x.

[82] P. Sala, J. Lehmann, T. Rakovszky and F. Pollmann, Dynamics in systems with modulated
symmetries, Phys. Rev. Lett. 129, 170601 (2022), doi:10.1103/PhysRevLett.129.170601.

[83] J. H. Han, E. Lake and S. Ro, Scaling and localization in multipole-conserving diffusion,
Phys. Rev. Lett. 132, 137102 (2024), doi:10.1103/PhysRevLett.132.137102.

[84] J. Gliozzi, J. May-Mann, T. L. Hughes and G. De Tomasi, Hierarchical hydrody-
namics in long-range multipole-conserving systems, Phys. Rev. B 108, 195106 (2023),
doi:10.1103/PhysRevB.108.195106.

[85] A. Morningstar, N. O’Dea and J. Richter, Hydrodynamics in long-range interact-
ing systems with center-of-mass conservation, Phys. Rev. B 108, L020304 (2023),
doi:10.1103/PhysRevB.108.L020304.

[86] E. Guardado-Sanchez, A. Morningstar, B. M. Spar, P. T. Brown, D. A. Huse and W. S. Bakr,
Subdiffusion and heat transport in a tilted two-dimensional Fermi-Hubbard system, Phys.
Rev. X 10, 011042 (2020), doi:10.1103/PhysRevX.10.011042.

[87] S. Scherg, T. Kohlert, P. Sala, F. Pollmann, B. H. Madhusudhana, I. Bloch and M. Aidels-
burger, Observing non-ergodicity due to kinetic constraints in tilted Fermi-Hubbard chains,
Nat. Commun. 12, 4490 (2021), doi:10.1038/s41467-021-24726-0.

[88] H. Zahn, V. P. Singh, M. N. Kosch, L. Asteria, L. Freystatzky, K. Sengstock, L. Mathey and
C. Weitenberg, Formation of spontaneous density-wave patterns in dc driven lattices, Phys.
Rev. X 12, 021014 (2022), doi:10.1103/PhysRevX.12.021014.

[89] A. Prem, M. Pretko and R. M. Nandkishore, Emergent phases of fractonic matter, Phys.
Rev. B 97, 085116 (2018), doi:10.1103/PhysRevB.97.085116.

[90] W. Shirley, K. Slagle and X. Chen, Foliated fracton order from gauging subsystem symme-
tries, SciPost Phys. 6, 041 (2019), doi:10.21468/SciPostPhys.6.4.041.

[91] Y. You, T. Devakul, F. J. Burnell and S. L. Sondhi, Symmetric fracton matter: Twisted and
enriched, Ann. Phys. 416, 168140 (2020), doi:10.1016/j.aop.2020.168140.

[92] J. Sullivan, T. Iadecola and D. J. Williamson, Planar p-string condensation: Chiral fracton
phases from fractional quantum Hall layers and beyond, Phys. Rev. B 103, 205301 (2021),
doi:10.1103/PhysRevB.103.205301.

[93] J. Sullivan, A. Dua and M. Cheng, Fractonic topological phases from coupled wires, Phys.
Rev. Res. 3, 023123 (2021), doi:10.1103/PhysRevResearch.3.023123.

[94] F. J. Burnell, T. Devakul, P. Gorantla, H. T. Lam and S.-H. Shao, Anomaly inflow for subsys-
tem symmetries, Phys. Rev. B 106, 085113 (2022), doi:10.1103/PhysRevB.106.085113.

[95] J.-H. Zhang, M. Cheng and Z. Bi, Classification and construction of interact-
ing fractonic higher-order topological phases, Phys. Rev. B 108, 045133 (2023),
doi:10.1103/PhysRevB.108.045133.

[96] L. Radzihovsky, Lifshitz gauge duality, Phys. Rev. B 106, 224510 (2022),
doi:10.1103/PhysRevB.106.224510.

24

https://scipost.org
https://scipost.org/SciPostPhys.17.5.137
https://doi.org/10.1038/s41567-022-01631-x
https://doi.org/10.1038/s41567-022-01631-x
https://doi.org/10.1103/PhysRevLett.129.170601
https://doi.org/10.1103/PhysRevLett.132.137102
https://doi.org/10.1103/PhysRevB.108.195106
https://doi.org/10.1103/PhysRevB.108.L020304
https://doi.org/10.1103/PhysRevX.10.011042
https://doi.org/10.1038/s41467-021-24726-0
https://doi.org/10.1103/PhysRevX.12.021014
https://doi.org/10.1103/PhysRevB.97.085116
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.1016/j.aop.2020.168140
https://doi.org/10.1103/PhysRevB.103.205301
https://doi.org/10.1103/PhysRevResearch.3.023123
https://doi.org/10.1103/PhysRevB.106.085113
https://doi.org/10.1103/PhysRevB.108.045133
https://doi.org/10.1103/PhysRevB.106.224510


SciPost Phys. 17, 137 (2024)

[97] R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23, 5632
(1981), doi:10.1103/PhysRevB.23.5632.

[98] D. Poilblanc, G. Montambaux, M. Héritier and P. Lederer, Quantized Hall effect in the
field-induced density-wave phases of low-dimensionality conductors, Phys. Rev. Lett. 58,
270 (1987), doi:10.1103/PhysRevLett.58.270.

[99] C. L. Kane, R. Mukhopadhyay and T. C. Lubensky, Fractional quantum Hall
effect in an array of quantum wires, Phys. Rev. Lett. 88, 036401 (2002),
doi:10.1103/PhysRevLett.88.036401.

[100] J. C. Y. Teo and C. L. Kane, From Luttinger liquid to non-Abelian quantum Hall states,
Phys. Rev. B 89, 085101 (2014), doi:10.1103/PhysRevB.89.085101.

[101] M. Vazifeh, Weyl semimetal from the honeycomb array of topological insulator nanowires,
Europhys. Lett. 102, 67011 (2013), doi:10.1209/0295-5075/102/67011.

[102] T. Meng, Fractional topological phases in three-dimensional coupled-wire systems, Phys.
Rev. B 92, 115152 (2015), doi:10.1103/PhysRevB.92.115152.

[103] E. Sagi and Y. Oreg, From an array of quantum wires to three-dimensional fractional topo-
logical insulators, Phys. Rev. B 92, 195137 (2015), doi:10.1103/PhysRevB.92.195137.

[104] D. F. Mross, J. Alicea and O. I. Motrunich, Explicit derivation of duality between a free
Dirac cone and quantum electrodynamics in (2+ 1) dimensions, Phys. Rev. Lett. 117,
016802 (2016), doi:10.1103/PhysRevLett.117.016802.

[105] T. Iadecola, T. Neupert, C. Chamon and C. Mudry, Wire constructions of Abelian
topological phases in three or more dimensions, Phys. Rev. B 93, 195136 (2016),
doi:10.1103/PhysRevB.93.195136.

[106] A. A. Patel and D. Chowdhury, Two-dimensional spin liquids with Z2 topolog-
ical order in an array of quantum wires, Phys. Rev. B 94, 195130 (2016),
doi:10.1103/PhysRevB.94.195130.

[107] J.-H. Zhang, Strongly correlated crystalline higher-order topological phases in two-
dimensional systems: A coupled-wire study, Phys. Rev. B 106, L020503 (2022),
doi:10.1103/PhysRevB.106.L020503.

[108] J. May-Mann and T. L. Hughes, Topological dipole conserving insulators and multipolar
responses, Phys. Rev. B 104, 085136 (2021), doi:10.1103/PhysRevB.104.085136.

[109] D. Bulmash and M. Barkeshli, Gauging fractons: Immobile non-Abelian quasiparti-
cles, fractals, and position-dependent degeneracies, Phys. Rev. B 100, 155146 (2019),
doi:10.1103/PhysRevB.100.155146.

[110] A. Prem and D. Williamson, Gauging permutation symmetries as a route to non-Abelian
fractons, SciPost Phys. 7, 068 (2019), doi:10.21468/SciPostPhys.7.5.068.

[111] N. Tantivasadakarn, W. Ji and S. Vijay, Hybrid fracton phases: Parent orders
for liquid and nonliquid quantum phases, Phys. Rev. B 103, 245136 (2021),
doi:10.1103/PhysRevB.103.245136.

[112] N. Tantivasadakarn, W. Ji and S. Vijay, Non-Abelian hybrid fracton orders, Phys. Rev. B
104, 115117 (2021), doi:10.1103/PhysRevB.104.115117.

25

https://scipost.org
https://scipost.org/SciPostPhys.17.5.137
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevLett.58.270
https://doi.org/10.1103/PhysRevLett.88.036401
https://doi.org/10.1103/PhysRevB.89.085101
https://doi.org/10.1209/0295-5075/102/67011
https://doi.org/10.1103/PhysRevB.92.115152
https://doi.org/10.1103/PhysRevB.92.195137
https://doi.org/10.1103/PhysRevLett.117.016802
https://doi.org/10.1103/PhysRevB.93.195136
https://doi.org/10.1103/PhysRevB.94.195130
https://doi.org/10.1103/PhysRevB.106.L020503
https://doi.org/10.1103/PhysRevB.104.085136
https://doi.org/10.1103/PhysRevB.100.155146
https://doi.org/10.21468/SciPostPhys.7.5.068
https://doi.org/10.1103/PhysRevB.103.245136
https://doi.org/10.1103/PhysRevB.104.115117


SciPost Phys. 17, 137 (2024)

[113] J. Cai et al., Signatures of fractional quantum anomalous Hall states in twisted MoTe2,
Nature 622, 63 (2023), doi:10.1038/s41586-023-06289-w.

[114] Y. Zeng et al., Thermodynamic evidence of fractional Chern insulator in moiré MoTe2,
Nature 622, 69 (2023), doi:10.1038/s41586-023-06452-3.

[115] H. Park et al., Observation of fractionally quantized anomalous Hall effect, Nature 622,
74 (2023), doi:10.1038/s41586-023-06536-0.

[116] F. Xu et al., Observation of integer and fractional quantum anomalous
Hall effects in twisted bilayer MoTe2, Phys. Rev. X 13, 031037 (2023),
doi:10.1103/PhysRevX.13.031037.

[117] Z. Lu et al., Fractional quantum anomalous Hall effect in multilayer graphene, Nature
626, 759 (2024), doi:10.1038/s41586-023-07010-7.

[118] K. Kang, B. Shen, Y. Qiu, Y. Zeng, Z. Xia, K. Watanabe, T. Taniguchi, J. Shan and K. F.
Mak, Evidence of the fractional quantum spin Hall effect in moiré MoTe2, Nature 628, 522
(2024), doi:10.1038/s41586-024-07214-5.

[119] S. Zhang, C. Lv and Q. Zhou, Synthetic tensor gauge fields, (arXiv preprint)
doi:10.48550/arXiv.2306.15663.

26

https://scipost.org
https://scipost.org/SciPostPhys.17.5.137
https://doi.org/10.1038/s41586-023-06289-w
https://doi.org/10.1038/s41586-023-06452-3
https://doi.org/10.1038/s41586-023-06536-0
https://doi.org/10.1103/PhysRevX.13.031037
https://doi.org/10.1038/s41586-023-07010-7
https://doi.org/10.1038/s41586-024-07214-5
https://doi.org/10.48550/arXiv.2306.15663

	Introduction
	Flux insertion, edge patterns, and no-go theorem
	Wire construction of TDI
	Coupled-wire construction of TDI
	Edge effective theory
	Bulk effective theory

	Dipolar quantum spin Hall insulator
	Summary and outlook
	Chiral quadrupole moment along the x-edge
	References

